WorldWideScience

Sample records for hill heat stress

  1. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir NEW OSHA- ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  2. Atmostpheric simulations of extreme surface heating episodes on simple hills

    Science.gov (United States)

    W.E. Heilman

    1992-01-01

    A two-dimensional nonhydrostatic atmospheric model was used to simulate the circulation patterns (wind and vorticity) and turbulence energy fields associated with lines of extreme surface heating on simple two-dimensional hills. Heating-line locations and ambient crossflow conditions were varied to qualitatively determine the impact of terrain geometry on the...

  3. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  4. Heat stress in Tunisia

    African Journals Online (AJOL)

    RACHID BOURAOUI

    Humidity Index (THI), examine heat stress effects on lactating cows and to suggest potential management strategies that can be ... monthly temperature and relative humidity data from different weather stations. ... The objectives of the current work were to characterize the environmental conditions to which dairy cows are ...

  5. Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-16

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  6. Protect Yourself from Heat Stress

    Centers for Disease Control (CDC) Podcasts

    2016-07-19

    Heat stress can be a major concern for indoor and outdoor workers, especially during the hot summer months. Learn how to identify the symptoms and protect yourself from heat stress.  Created: 7/19/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 7/19/2016.

  7. Exercise heat stress and metabolism.

    Science.gov (United States)

    Mündel, Toby

    2008-01-01

    Apart from few studies, the majority of the research conducted on the effects of heat stress on energy metabolism during exercise has only been done so in the past two decades. Whilst increasing exercise duration under conditions of heat stress favours the oxidation of carbohydrate (CHO) and appears to increase the rate of muscle glycogenolysis, total CHO oxidation is often less and levels of muscle glycogen remain much higher at the point of fatigue when compared with the same exercise without heat stress. Furthermore, supplementing CHO during exercise in the heat appears to exert an ergogenic effect that is not related to 'peripheral' but rather 'central' factors. However, there may be a role for the excess ammonia (NH3) produced in the exercising muscle during heat stress, as cerebral uptake and subsequent metabolism of NH3 may have detrimental effects on cerebral function. Recent exciting results point toward an increased cerebral CHO uptake relative to that of O2, termed the cerebral metabolic ratio (CMR) during exercise with heat stress, although a causative link between this and reduced exercise performance has yet to be identified. Therefore, it appears that despite a shift towards greater CHO utilisation in both skeletal muscular and cerebral metabolism, these responses have ultimately not proved limiting to exercise with heat stress.

  8. Biomass district heating in the Tug Hill, NY: Feasibility and regional economic impacts

    Science.gov (United States)

    Hendricks, Aaron

    Biomass district heating (BDH) has the potential to stimulate rural economies in the Tug Hill region of New York State by establishing a local industry and providing lower cost heat compared to the local alternative, #2 fuel oil. However, the competitiveness and economic impact of BDH networks in rural villages is largely unknown. This study proposes a methodology to provide initial assessments of the feasibility of BDH in rural communities. BDH would deliver heat below the cost of the local alternative in eight of the ten study villages examined. Capital costs comprised over 80% of the project costs, illuminating the importance of reaching a sufficient heat density; however, specific building heat was a stronger determinant of a village's feasibility. An input-output analysis determined that BDH would generate $18.6 million in output and create 143 jobs throughout the three county region, a significant impact if concentrated around the study villages.

  9. Measured resolved shear stresses and Bishop-Hill stress states in individual grains of austenitic stainless steel

    DEFF Research Database (Denmark)

    Juul, Nicolai Ytterdal; Oddershede, Jette; Beaudoin, Armand

    2017-01-01

    The full three-dimensional stress state of 172 individual bulk grains in austenitic stainless steel 316L at 0.1 and 1% sample elongation has been determined with sufficient accuracy to allow comparison with the theoretical Bishop-Hill stress states for plastically deforming grains as well as calc...

  10. Orientation of minimum principal stress in the hot dry rock geothermal reservoir at Fenton Hill, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Burns, K.L.

    1991-01-01

    The stress field at the source of microearthquakes in the interior of the hot dry rock geothermal reservoir at Fenton Hill appears to be different to the far field stress outside the reservoir. The stress field seems to be re-oriented prior to failure, during the course of processes that inflate the reservoir. The state of stress, both inside and outside, the hot dry rock (HDR) geothermal reservoir at Fenton Hill, is important in predicting the course of stress-dependent processes, and in transferring HDR technology developed at Fenton Hill, to sites, such as at Clearlake in California, where the stress field is expected to be substantially different. The state of stress at Fenton Hill is not well known because of limitations in stress measuring technology. It is necessary to use a variety of indirect methods and seek an estimate of the stress. 5 refs.

  11. Study of the technology of heat pipe on prevention wildfire of coal gangue hill

    Science.gov (United States)

    Deng, Jun; Li, Bei; Ding, Ximei; Ma, Li

    2017-04-01

    Self-ignitable coal gangue hill (CGH) is one kind of special combustion system, which has the characteristics of low self-ignite point, large heat storage, and easy reignition. The currently industrial fire extinguishing methods, such as inhibiting tendency of coal self-ignition, loessial overburden, and cement grouting, had unsatisfied effects for dispersing the heat out in time. Correspondingly, the CGH will lead reignition more frequently with the passage of time. The high underground temperature of CGH threatens the process of ecological and vegetation construction. Therefore, the elimination of high temperature is a vital issue to be solved urgently for habitat restoration. To achieve the ultimately ecological management goal of self-ignitable CGH - extinguishing the fire completely and never reignited, it is crucial to break the heat accumulation. Heat-pipe (HP) has a character of high efficient heat transfer capacity for eliminating the continuously high temperature in CGH. An experimental system was designed to test the heat transfer performance of HP for preventing and extinguishing the spontaneous combustion of coal gangue. Based on the heat transfer theory, the resistance network of the coal-HP heat removal system was analyzed for studying the cooling effect of HP. The experimental results show that the HP can accelerate the heat release in coal gangue pile. The coal temperature could be controlled at 59.6 ˚ C with HP in 7 h and the highest cooling value is 39.4 % with HP in 150 h, which can effectively cool the temperatures of high temperature zones. As a powerful heat transfer components, as soon as HPs were inserted into the CGH with a reasonable distance, it can completely play a vital role in inhibiting the coal self-ignition process.

  12. Measured Resolved Shear Stresses and Bishop Hill Stress States in Individual Grains of Austenitic Stainless Steel (Postprint)

    Science.gov (United States)

    2017-09-13

    AFRL-RX-WP-JA-2017-0330 MEASURED RESOLVED SHEAR STRESSES AND BISHOP-HILL STRESS STATES IN INDIVIDUAL GRAINS OF AUSTENITIC STAINLESS ...IN INDIVIDUAL GRAINS OF AUSTENITIC STAINLESS STEEL (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...grains in austenitic stainless steel 316 L at 0.1 and 1% sample elongation has been determined with sufficient accuracy to allow comparison with the

  13. Heat stroke and related heat stress disorders.

    Science.gov (United States)

    Knochel, J P

    1989-05-01

    Medical disorders related to environmental heat exposure are exceptionally common in persons who perform hard work in hot climates. They are also common in competitive athletes as well as in persons who participate in casual exercise to maintain health. The important issue of salt and water disturbances consequent to heavy sweating in hot climates is discussed in detail as are mechanisms of potassium deficiency and its implications. The major forms of environmental heat illness including heat syncope, heat cramp, heat exhaustion, and heat stroke are presented in detail with relevant clinical examples. A discussion of the differential diagnosis of hyperthermia and rhabdomyolysis follows. Because of the difference in treatment and complications, heat stroke is subdivided into the classic variety that affects the elderly and very young and that form that follows heavy physical work and is always associated with rhabdomyolysis. Because severe heat exhaustion and heat stroke are life-threatening disorders, the chapter includes a detailed discussion of complications and plans for treatment.

  14. Osmotic and Heat Stress Effects on Segmentation

    National Research Council Canada - National Science Library

    Weiss, Julian; Devoto, Stephen H

    2016-01-01

    .... Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals...

  15. Impact of Heat Stress on Poultry Production

    Directory of Open Access Journals (Sweden)

    Lucas J. Lara

    2013-04-01

    Full Text Available Understanding and controlling environmental conditions is crucial to successful poultry production and welfare. Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effects of heat stress on broilers and laying hens range from reduced growth and egg production to decreased poultry and egg quality and safety. Moreover, the negative impact of heat stress on poultry welfare has recently attracted increasing public awareness and concern. Much information has been published on the effects of heat stress on productivity and immune response in poultry. However, our knowledge of basic mechanisms associated to the reported effects, as well as related to poultry behavior and welfare under heat stress conditions is in fact scarce. Intervention strategies to deal with heat stress conditions have been the focus of many published studies. Nevertheless, effectiveness of most of the interventions has been variable or inconsistent. This review focuses on the scientific evidence available on the importance and impact of heat stress in poultry production, with emphasis on broilers and laying hens.

  16. Heat stress management in hot mines

    CSIR Research Space (South Africa)

    Schutte, P

    2009-09-01

    Full Text Available Occupational heat stress is a recognized health and safety hazard in South African mines. The consequences of high occupational heat loads can be expressed in terms of impaired work capacity, errors of judgment with obvious implications for safety...

  17. Investigation heat stress in small enterprise in Qom city

    Directory of Open Access Journals (Sweden)

    R. hajizadeh

    2014-02-01

    .Conclusion: Heat stress in almost all of the studied workplaces are higher than the recommended limits, and the outdoor workshops had the highest thermal stress, although heat stress did not show a significant correlation with the studied strains.

  18. Heat Stress Effects on Growing-Finishing Swine

    Science.gov (United States)

    Understanding the factors that create heat stress, the response of the animals while under heat stress, and the signs of heat-stressed swine are essential to making rational decisions for the selection, design, and management of their environments. Heat stressors include combinations of environment...

  19. Heat stress exposure of aerial spray pilots.

    Science.gov (United States)

    Gribetz, B; Richter, E D; Krasna, M; Gordon, M

    1980-01-01

    Heat stress (WBGT index) in the cockpits of agricultural spray pilots, and its physiological and subjective effects, were measured for 9 pilots flying in hot weather for a large Israeli aerial spray company. There was concern that heat exposure may be one of the factors involved in a recent increase in the fatal and non-fatal crash rate among Israeli spray pilots. WBGT index calculations were based on sequential cockpit wet bulb, dry bulb, and globe temperatures read when aircraft landed. The WBGT was always above 25 degrees C and exceeded 26.7 degrees C in 70% of observations. In pilots, a daily weight loss of 0.6-1.2% of total body weight was usual, as were rectal temperature increases of 0.5 degrees C. Daily water intakes ranged from less than 100 ml to 2000 ml per workshift. Questionnaires indicated that 42 of 45 pilots said they would drink more fluids if they were provided between flights by ground crews. An unresolved problem was whether conventional threshold standards for heat exposure were set at levels that may produce insidious impairments in pilot psychomotor performance. Cockpit air cooling is suggested as a measure for preventing heat stress in hot climates. However, appropriate filter technologies would be needed to prevent pesticide exposures during flight. Engineering and other measures to prevent heat stress and dehydration should rank high as part of a comprehensive program to protect the health and performance levels of agricultural spray pilots.

  20. Potassium nutrition of heat-stressed lactating

    African Journals Online (AJOL)

    measure of dry bulb air temperature, wind velocity and solar radiation ... high milk potassium content (0,15-0,17%), (b) heat stress owing to increased ... level) as sub plots. All cows received different dietary potassium treatments in each 30-day period. Basal diet was 52% ground corn, 9,5% corn gluten meal, 1,0% urea,.

  1. Sensing the Heat Stress by Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Cates Jordan

    2011-08-01

    Full Text Available Abstract Background The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF, which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. Results The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO cells. The time profile of the GFP protein depends on the transient activity, Transient(t, of the heat shock system. The function Transient(t depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104. The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i the response of the cell to two

  2. Tank waste remediation system heat stress control program report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carls, D.R.

    1995-09-28

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it`s inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  3. Heat Stress and feeding strategies in meat-type chickens

    NARCIS (Netherlands)

    Syafwan, W.; Kwakkel, R.P.; Verstegen, M.W.A.

    2011-01-01

    Heat stress can induce hyperthermia in poultry. A reduction in heat load can be achieved by increasing the possibilities for dissipation, decreasing the level of heat production or by changing the thermal production pattern within a day. Strategies to reduce the negative effects of heat stress can

  4. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    The maximum thermal stress ratio positions inside the tube have been indicated as MX for all investigated cases. In the light of the thermal stress values, various designs can be applied to reduce thermal stress in grooved tubes. Keywords. Heat transfer; thermal stress; grooved tubes. 1. Introduction. Heat transfer in pipe flow ...

  5. Intermittent hyperthyreosis -- a heat stress syndrome.

    Science.gov (United States)

    Sulman, F G; Tal, E; Pfeifer, Y; Superstine

    1975-09-01

    Intermittent hyperthyreosis occurs under various forms of stress, especially heat stress. The clinician may diagnose such cases as masked or apathetic hyperthyroidism or "forme fruste" hyperthyreosis or thyroid autonomy. As most routine and standard tests may here yield inconsistent results, it is the patients' anamnesis which may provide the clue. Our Bioclimatology Unit has now seen over 100 cases in which thyroid hypersensitivity towards heat was the most prominent syndrome: 10-15% of weather-sensitive patients are affected. The patients complain before or during heat spells of such contradictory symptoms as insomnia, irritability, tension, tachycardia, palpitations, precordial pain, dyspnoe, flushes with sweating or chills, tremor, abdominal pain or diarrhea, polyuria or pollakisuria, weight loss in spite of ravenous appetite, fatigue, exhaustion, depression, adynamia, lack of concentration and confusion. Determination of urinary neurohormones allows a differential diagnosis, intermittent hyperthyreosis being characterized by three cardinal symptoms: 1. tachycardia -- every case with more than 80 pulse beats being suspect (not specific); 2. urinary histamine -- every case excreting more than 90 mug/day being suspect. Again the drawback of this test is its lack of specificity, as histamine may also be increased in cases of allergy and spondylitis; 3. urinary thyroxine -- every case excreting more than 20 mug/day T-4 being suspect. This is the only specific test. Therapy should make use of lithium carbonate and beta-blockers. Propyl thiouracil is rarely required.

  6. Laser pulse heating of surfaces and thermal stress analysis

    CERN Document Server

    Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M

    2013-01-01

    This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.

  7. Heat Stress in Dairy Cattle Alters Lipid Composition of Milk.

    Science.gov (United States)

    Liu, Z; Ezernieks, V; Wang, J; Arachchillage, N Wanni; Garner, J B; Wales, W J; Cocks, B G; Rochfort, S

    2017-04-19

    Heat stress, potentially affecting both the health of animals and the yield and composition of milk, occurs frequently in tropical, sub-tropical and temperate regions. A simulated acute heat stress experiment was conducted in controlled-climate chambers and milk samples collected before, during and after the heat challenge. Milk lipid composition, surveyed using LC-MS, showed significant changes in triacylglycerol (TAG) and polar lipid profiles. Heat stress (temperature-humidity index up to 84) was associated with a reduction in TAG groups containing short- and medium-chain fatty acids and a concomitant increase in those containing long-chain fatty acids. The abundance of five polar lipid classes including phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, lysophosphatidylcholine and glucosylceramide, was found to be significantly reduced during heat stress. Lysophosphatidylcholine, showing the greatest reduction in concentration, also displayed a differential response between heat tolerant and heat susceptible cows during heat stress. This phospholipid could be used as a heat stress biomarker for dairy cattle. Changes in TAG profile caused by heat stress are expected to modify the physical properties of milk fat, whereas the reduction of phospholipids may affect the nutritional value of milk. The results are discussed in relation to animal metabolism adaptation in the event of acute heat stress.

  8. The Effects of Heat Stress on Job Satisfaction, Job Performance and Occupational Stress in Casting Workers

    OpenAIRE

    Dehghan; Mobinyzadeh; Habibi

    2016-01-01

    Background Job satisfaction, job performance, job stress and heat stress affect the productivity of workers. Objectives This research aimed to study the relationship between heat stress indices with job satisfaction, job performance and job stress in casting workers. Patients and Methods This descriptive-analytical cross sectional survey was performed during summer 2013 on one hund...

  9. Nutritional interventions to alleviate the negative consequences of heat stress.

    Science.gov (United States)

    Rhoads, Robert P; Baumgard, Lance H; Suagee, Jessica K; Sanders, Sara R

    2013-05-01

    Energy metabolism is a highly coordinated process, and preferred fuel(s) differ among tissues. The hierarchy of substrate use can be affected by physiological status and environmental factors including high ambient temperature. Unabated heat eventually overwhelms homeothermic mechanisms resulting in heat stress, which compromises animal health, farm animal production, and human performance. Various aspects of heat stress physiology have been extensively studied, yet a clear understanding of the metabolic changes occurring at the cellular, tissue, and whole-body levels in response to an environmental heat load remains ill-defined. For reasons not yet clarified, circulating nonesterified fatty acid levels are reduced during heat stress, even in the presence of elevated stress hormones (epinephrine, glucagon, and cortisol), and heat-stressed animals often have a blunted lipolytic response to catabolic signals. Either directly because of or in coordination with this, animals experiencing environmental hyperthermia exhibit a shift toward carbohydrate use. These metabolic alterations occur coincident with increased circulating basal and stimulated plasma insulin concentrations. Limited data indicate that proper insulin action is necessary to effectively mount a response to heat stress and minimize heat-induced damage. Consistent with this idea, nutritional interventions targeting increased insulin action may improve tolerance and productivity during heat stress. Further research is warranted to uncover the effects of heat on parameters associated with energy metabolism so that more appropriate and effective treatment methodologies can be designed.

  10. Occupational Heat Stress and Kidney Health: From Farms to Factories.

    Science.gov (United States)

    Nerbass, Fabiana B; Pecoits-Filho, Roberto; Clark, William F; Sontrop, Jessica M; McIntyre, Christopher W; Moist, Louise

    2017-11-01

    Millions of workers around the world are exposed to high temperatures, intense physical activity, and lax labor practices that do not allow for sufficient rehydration breaks. The extent and consequences of heat exposure in different occupational settings, countries, and cultural contexts is not well studied. We conducted an in-depth review to examine the known effects of occupational heat stress on the kidney. We also examined methods of heat-stress assessment, strategies for prevention and mitigation, and the economic consequences of occupational heat stress. Our descriptive review summarizes emerging evidence that extreme occupational heat stress combined with chronic dehydration may contribute to the development of CKD and ultimately kidney failure. Rising global temperatures, coupled with decreasing access to clean drinking water, may exacerbate the effects of heat exposure in both outdoor and indoor workers who are exposed to chronic heat stress and recurrent dehydration. These changes create an urgent need for health researchers and industry to identify work practices that contribute to heat-stress nephropathy, and to test targeted, robust prevention and mitigation strategies. Preventing occupational heat stress presents a great challenge for a concerted multidisciplinary effort from employers, health authorities, engineers, researchers, and governments.

  11. Occupational Heat Stress and Kidney Health: From Farms to Factories

    Directory of Open Access Journals (Sweden)

    Fabiana B. Nerbass

    2017-11-01

    Full Text Available Millions of workers around the world are exposed to high temperatures, intense physical activity, and lax labor practices that do not allow for sufficient rehydration breaks. The extent and consequences of heat exposure in different occupational settings, countries, and cultural contexts is not well studied. We conducted an in-depth review to examine the known effects of occupational heat stress on the kidney. We also examined methods of heat-stress assessment, strategies for prevention and mitigation, and the economic consequences of occupational heat stress. Our descriptive review summarizes emerging evidence that extreme occupational heat stress combined with chronic dehydration may contribute to the development of CKD and ultimately kidney failure. Rising global temperatures, coupled with decreasing access to clean drinking water, may exacerbate the effects of heat exposure in both outdoor and indoor workers who are exposed to chronic heat stress and recurrent dehydration. These changes create an urgent need for health researchers and industry to identify work practices that contribute to heat-stress nephropathy, and to test targeted, robust prevention and mitigation strategies. Preventing occupational heat stress presents a great challenge for a concerted multidisciplinary effort from employers, health authorities, engineers, researchers, and governments.

  12. Diurnal gradual heat stress affects antioxidant enzymes, proline ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... 45°C heat stress. As for the amount of total chlorophyll content, a slight increase at plants treated with. 38°C temperature was observed. Furthermore, the ... dismutase (SOD), which were associated with heat stress response in other plants was also ... to non-toxic levels by catabolizing it to water and oxygen.

  13. Diurnal gradual heat stress affects antioxidant enzymes, proline ...

    African Journals Online (AJOL)

    Even though high temperatures significantly reduce both vegetative growth and yield in cotton, very little is known about the effects of heat stress on cotton antioxidant system. Thus, the effects of gradual heat stress on cotton growth in controlled conditions were investigated in the present study. At squaring stage, cotton ...

  14. Metabolic acclimation to heat stress in farm housed Holstein cows ...

    African Journals Online (AJOL)

    The aim of this study was to determine the effects of body condition score to metabolic acclimation in heat stressed Holstein cows. Body condition of cows had no effect on any of the tested parameters during the thermal neutral period, except for the percentage of protein in milk. Heat stress has been demonstrated to have ...

  15. Quantifying Livestock Heat Stress Impacts in the Sahel

    Science.gov (United States)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2014-12-01

    Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on

  16. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    Science.gov (United States)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  17. Perceived heat stress and health effects on construction workers.

    Science.gov (United States)

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  18. Occupational Heat Stress Profiles in Selected Workplaces in India.

    Science.gov (United States)

    Venugopal, Vidhya; Chinnadurai, Jeremiah S; Lucas, Rebekah A I; Kjellstrom, Tord

    2015-12-29

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses.

  19. Occupational Heat Stress Profiles in Selected Workplaces in India

    Directory of Open Access Journals (Sweden)

    Vidhya Venugopal

    2015-12-01

    Full Text Available Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers’ perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively. Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001 and reduced productivity (chi square = 15.82, p ≤ 0.001, especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses.

  20. Insect heat shock proteins during stress and diapause.

    Science.gov (United States)

    King, Allison M; MacRae, Thomas H

    2015-01-07

    Insect heat shock proteins include ATP-independent small heat shock proteins and the larger ATP-dependent proteins, Hsp70, Hsp90, and Hsp60. In concert with cochaperones and accessory proteins, heat shock proteins mediate essential activities such as protein folding, localization, and degradation. Heat shock proteins are synthesized constitutively in insects and induced by stressors such as heat, cold, crowding, and anoxia. Synthesis depends on the physiological state of the insect, but the common function of heat shock proteins, often working in networks, is to maintain cell homeostasis through interaction with substrate proteins. Stress-induced expression of heat shock protein genes occurs in a background of protein synthesis inhibition, but in the course of diapause, a state of dormancy and increased stress tolerance, these genes undergo differential regulation without the general disruption of protein production. During diapause, when ATP concentrations are low, heat shock proteins may sequester rather than fold proteins.

  1. Investigation of stress and heat strain in asphalt workers

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Beheshti

    2017-07-01

    Full Text Available Heat stress is one of the harmful factors in workplaces. Asphalt workers are exposed to thermal stress due to the open environment and process. The aim of this study was to assess the heat stress and strain in asphalt workers. This study was conducted on 29 employees of asphalt workstation. The heat stress was measured based on Wet-Bulb Globe Temperature (WBGT. Also, physiological parameters such as blood pressure and heart rate of asphalt workers were measured. The mean of WBGT index for drivers of asphalt machinery, trowels, shovels people and burner servicemen were 27.77, 27.77 and 29.61°C respectively whereas this value was 29.81, 29.85 and 3.23°C for workers of asphalt workstations respectively. The process of asphalting has significant effect on heat stress and physiological parameters of individuals. The pearson correlation between WBGT and heart rate, systolic blood pressure and diastolic blood pressure was significant. Asphalt workers are exposed to heat stress caused by different sources which may generate a host of heat strains in these people so special attention should be paid to control heat stress.

  2. Metabolic and hormonal acclimation to heat stress in domesticated ruminants.

    Science.gov (United States)

    Bernabucci, U; Lacetera, N; Baumgard, L H; Rhoads, R P; Ronchi, B; Nardone, A

    2010-07-01

    Environmentally induced periods of heat stress decrease productivity with devastating economic consequences to global animal agriculture. Heat stress can be defined as a physiological condition when the core body temperature of a given species exceeds its range specified for normal activity, which results from a total heat load (internal production and environment) exceeding the capacity for heat dissipation and this prompts physiological and behavioral responses to reduce the strain. The ability of ruminants to regulate body temperature is species- and breed-dependent. Dairy breeds are typically more sensitive to heat stress than meat breeds, and higher-producing animals are more susceptible to heat stress because they generate more metabolic heat. During heat stress, ruminants, like other homeothermic animals, increase avenues of heat loss and reduce heat production in an attempt to maintain euthermia. The immediate responses to heat load are increased respiration rates, decreased feed intake and increased water intake. Acclimatization is a process by which animals adapt to environmental conditions and engage behavioral, hormonal and metabolic changes that are characteristics of either acclimatory homeostasis or homeorhetic mechanisms used by the animals to survive in a new 'physiological state'. For example, alterations in the hormonal profile are mainly characterized by a decline and increase in anabolic and catabolic hormones, respectively. The response to heat load and the heat-induced change in homeorhetic modifiers alters post-absorptive energy, lipid and protein metabolism, impairs liver function, causes oxidative stress, jeopardizes the immune response and decreases reproductive performance. These physiological modifications alter nutrient partitioning and may prevent heat-stressed lactating cows from recruiting glucose-sparing mechanisms (despite the reduced nutrient intake). This might explain, in large part, why decreased feed intake only accounts for

  3. Biophysical aspects of human thermoregulation during heat stress.

    Science.gov (United States)

    Cramer, Matthew N; Jay, Ollie

    2016-04-01

    Humans maintain a relatively constant core temperature through the dynamic balance between endogenous heat production and heat dissipation to the surrounding environment. In response to metabolic or environmental disturbances to heat balance, the autonomic nervous system initiates cutaneous vasodilation and eccrine sweating to facilitate higher rates of dry (primarily convection and radiation) and evaporative transfer from the body surface; however, absolute heat losses are ultimately governed by the properties of the skin and the environment. Over the duration of a heat exposure, the cumulative imbalance between heat production and heat dissipation leads to body heat storage, but the consequent change in core temperature, which has implications for health and safety in occupational and athletic settings particularly among certain clinical populations, involves a complex interaction between changes in body heat content and the body's morphological characteristics (mass, surface area, and tissue composition) that collectively determine the body's thermal inertia. The aim of this review is to highlight the biophysical aspects of human core temperature regulation by outlining the principles of human energy exchange and examining the influence of body morphology during exercise and environmental heat stress. An understanding of the biophysical factors influencing core temperature will enable researchers and practitioners to better identify and treat individuals/populations most vulnerable to heat illness and injury during exercise and extreme heat events. Further, appropriate guidelines may be developed to optimize health, safety, and work performance during heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Red Hill

    Science.gov (United States)

    Information about the Red Hill Bulk Fuel Storage Facility in Hawaii Administrative Order on Consent (AOC), an enforceable agreement of the Hawaii Department of Health, the Environmental Protection Agency, and the U.S. Navy -- Defense Logistics Agency.

  5. Hill's equation

    CERN Document Server

    Magnus, Wilhelm

    1979-01-01

    The hundreds of applications of Hill's equation in engineering and physics range from mechanics and astronomy to electric circuits, electric conductivity of metals, and the theory of the cyclotron. New applications are continually being discovered and theoretical advances made since Liapounoff established the equation's fundamental importance for stability problems in 1907. Brief but thorough, this volume offers engineers and mathematicians a complete orientation to the subject.""Hill's equation"" connotes the class of homogeneous, linear, second order differential equations with real, period

  6. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  7. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  8. Invited review: Effects of heat stress on dairy cattle welfare.

    Science.gov (United States)

    Polsky, Liam; von Keyserlingk, Marina A G

    2017-11-01

    The effects of high ambient temperatures on production animals, once thought to be limited to tropical areas, has extended into northern latitudes in response to the increasing global temperature. The number of days where the temperature-humidity index (THI) exceeds the comfort threshold (>72) is increasing in the northern United States, Canada, and Europe. Compounded by the increasing number of dairy animals and the intensification of production, heat stress has become one of the most important challenges facing the dairy industry today. The objectives of this review were to present an overview of the effects of heat stress on dairy cattle welfare and highlight important research gaps in the literature. We will also briefly discuss current heat abatement strategies, as well as the sustainability of future heat stress management. Heat stress has negative effects on the health and biological functioning of dairy cows through depressed milk production and reduced reproductive performance. Heat stress can also compromise the affective state of dairy cows by inducing feelings of hunger and thirst, and we have highlighted the need for research efforts to examine the potential relationship between heat stress, frustration, aggression, and pain. Little work has examined how heat stress affects an animal's natural coping behaviors, as well as how the animal's evolutionary adaptations for thermoregulation are managed in modern dairy systems. More research is needed to identify improved comprehensive cow-side measurements that can indicate real-time responses to elevated ambient temperatures and that could be incorporated into heat abatement management decisions. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  9. Camelid heat stress: 15 cases (2003–2011)

    Science.gov (United States)

    Norton, Piper L.; Gold, Jenifer R.; Russell, Karen E.; Schulz, Kara L.; Porter, Brian F.

    2014-01-01

    This case series describes novel findings associated with heat stress in 15 cases in South American camelids that had no pre-existing illnesses and which had clinical signs of illness after exposure to a warm environment. Novel findings include decreased packed cell volume and albumin concentration and mild spinal axonal degeneration. Heat stress should be considered in weak camelids with a history of hyperthermia. PMID:25320390

  10. Cardiovascular drift during heat stress: implications for exercise prescription.

    Science.gov (United States)

    Wingo, Jonathan E; Ganio, Matthew S; Cureton, Kirk J

    2012-04-01

    Cardiovascular drift, the progressive increase in heart rate and decrease in stroke volume that begins after approximately 10 min of prolonged moderate-intensity exercise, is associated with decreased maximal oxygen uptake, particularly during heat stress. Consequently, the increased heart rate reflects an increased relative metabolic intensity during prolonged exercise in the heat when cardiovascular drift occurs, which has implications for exercise prescription.

  11. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  12. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined

    DEFF Research Database (Denmark)

    Zhou, Rong; Yu, Xiaqing; Ottosen, Carl-Otto

    2017-01-01

    of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. RESULTS: Shoot fresh and dry weight, leaf area...... significantly decreased under drought and combined stress as compared to control. The tomato 'Arvento' was more affected by heat stress than 'LA1994' and 'LA2093' due to significant decreases in shoot dry weight, chlorophyll a and carotenoid content, starch content and NPQ (non-photochemical quenching) only...... in 'Arvento' under heat treatment. By comparison, the two heat-tolerant tomatoes were more affected by drought stress compared to 'Arvento' as shown by small stomatal and pore area, decreased sucrose content, ΦPSII (quantum yield of photosystem II), ETR (electron transport rate) and qL (fraction of open PSII...

  13. Environmental heat stress, hyperammonemia and nucleotide metabolism during intermittent exercise.

    Science.gov (United States)

    Mohr, Magni; Rasmussen, Peter; Drust, Barry; Nielsen, Bodil; Nybo, Lars

    2006-05-01

    This study investigated the influence of environmental heat stress on ammonia (NH3) accumulation in relation to nucleotide metabolism and fatigue during intermittent exercise. Eight males performed 40 min of intermittent exercise (15 s at 306+/-22 W alternating with 15 s of unloaded cycling) followed by five 15 s all-out sprints. Control trials were conducted in a 20 degrees C environment while heat stress trials were performed at an ambient temperature of 40 degrees C. Muscle biopsies and venous blood samples were obtained at rest, after 40 min of exercise and following the maximal sprints. Following exercise with heat stress, the core and muscle temperatures peaked at 39.5+/-0.2 and 40.2+/-0.2 degrees C to be approximately 1 degrees C higher (Pheat stress trial (PNH3 increased from 31+/-2 microM at rest to 93+/-6 at 40 min and 151+/-15 microM after the maximal sprints to be 34% higher than control (Pheat stress compared to control, while muscle glycogen, CP, ATP and IMP levels were similar across trials. In conclusion, altered levels of "classical peripheral fatiguing agents" does apparently not explain the reduced capacity for performing repeated sprints following intermittent exercise in the heat, whereas the augmented systemic NH3 response may be a factor influencing fatigue during exercise with superimposed heat stress.

  14. Ideas and perspectives: Heat stress: more than hot air

    Science.gov (United States)

    De Boeck, Hans J.; Van De Velde, Helena; De Groote, Toon; Nijs, Ivan

    2016-10-01

    Climate models project an important increase in the frequency and intensity of heat waves. In gauging the impact on plant responses, much of the focus has been on air temperatures, while a critical analysis of leaf temperatures during heat extremes has not been conducted. Nevertheless, direct physiological consequences from heat depend primarily on leaf rather than on air temperatures. We discuss how the interplay between various environmental variables and the plants' stomatal response affects leaf temperatures and the potential for heat stress by making use of both an energy balance model and field data. The results demonstrate that this interplay between plants and environment can cause leaf temperature to vary substantially at the same air temperature. In general, leaves tended to heat up when radiation was high and when stomates were closed, as expected. But perhaps counterintuitively, high air humidity also raised leaf temperatures, while humid conditions are typically regarded as benign with respect to plant survival since they limit water loss. High wind speeds brought the leaf temperature closer to the air temperature, which can imply either cooling or warming (i.e. abating or reinforcing heat stress) depending on other prevailing conditions. The results thus indicate that heat waves characterized by similar extreme air temperatures may pose little danger under some atmospheric conditions but could be lethal in other cases. The trends illustrated here should give ecologists and agronomists a more informed indication about which circumstances are most conducive to the occurrence of heat stress.

  15. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress.

    Science.gov (United States)

    Zhou, Rong; Yu, Xiaqing; Ottosen, Carl-Otto; Rosenqvist, Eva; Zhao, Liping; Wang, Yinlei; Yu, Wengui; Zhao, Tongmin; Wu, Zhen

    2017-01-25

    Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. Shoot fresh and dry weight, leaf area and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars significantly decreased under drought and combined stress as compared to control. The tomato 'Arvento' was more affected by heat stress than 'LA1994' and 'LA2093' due to significant decreases in shoot dry weight, chlorophyll a and carotenoid content, starch content and NPQ (non-photochemical quenching) only in 'Arvento' under heat treatment. By comparison, the two heat-tolerant tomatoes were more affected by drought stress compared to 'Arvento' as shown by small stomatal and pore area, decreased sucrose content, ΦPSII (quantum yield of photosystem II), ETR (electron transport rate) and qL (fraction of open PSII centers) in 'LA1994' and 'LA2093'. The three cultivars showed similar response when subjected to the combination of drought and heat stress as shown by most physiological parameters, even though only 'LA1994' and 'LA2093' showed decreased Fv/Fm (maximum potential quantum efficiency of photosystem II), ΦPSII, ETR and qL under combined stress. The cultivars differing in heat sensitivity did not show difference in the combined stress sensitivity, indicating that selection for tomatoes

  16. Heat stress protection in abnormally hot environments.

    CSIR Research Space (South Africa)

    Schutte, PC

    1994-11-01

    Full Text Available operational protocol for emergency work where environmental heat loads exceed the upper limits for routine work. In this respect ‘routine work’ includes all practices and procedures specifically covered by COMRO User Guide no 22 of 1991....

  17. Reductions in labour capacity from heat stress under climate warming

    Science.gov (United States)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  18. Calibration of Heat Stress Monitor and its Measurement Uncertainty

    Science.gov (United States)

    Ekici, Can

    2017-07-01

    Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.

  19. Heat stress: an overview of molecular responses in photosynthesis.

    Science.gov (United States)

    Allakhverdiev, Suleyman I; Kreslavski, Vladimir D; Klimov, Vyacheslav V; Los, Dmitry A; Carpentier, Robert; Mohanty, Prasanna

    2008-01-01

    The primary targets of thermal damage in plants are the oxygen evolving complex along with the associated cofactors in photosystem II (PSII), carbon fixation by Rubisco and the ATP generating system. Recent investigations on the combined action of moderate light intensity and heat stress suggest that moderately high temperatures do not cause serious PSII damage but inhibit the repair of PSII. The latter largely involves de novo synthesis of proteins, particularly the D1 protein of the photosynthetic machinery that is damaged due to generation of reactive oxygen species (ROS), resulting in the reduction of carbon fixation and oxygen evolution, as well as disruption of the linear electron flow. The attack of ROS during moderate heat stress principally affects the repair system of PSII, but not directly the PSII reaction center (RC). Heat stress additionally induces cleavage and aggregation of RC proteins; the mechanisms of such processes are as yet unclear. On the other hand, membrane linked sensors seem to trigger the accumulation of compatible solutes like glycinebetaine in the neighborhood of PSII membranes. They also induce the expression of stress proteins that alleviate the ROS-mediated inhibition of repair of the stress damaged photosynthetic machinery and are required for the acclimation process. In this review we summarize the recent progress in the studies of molecular mechanisms involved during moderate heat stress on the photosynthetic machinery, especially in PSII.

  20. Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle.

    Science.gov (United States)

    Montilla, Sandra I Rosado; Johnson, Theresa P; Pearce, Sarah C; Gardan-Salmon, Delphine; Gabler, Nicholas K; Ross, Jason W; Rhoads, Robert P; Baumgard, Lance H; Lonergan, Steven M; Selsby, Joshua T

    2014-01-01

    Heat stress is associated with death and other maladaptions including muscle dysfunction and impaired growth across species. Despite this common observation, the molecular effects leading to these pathologic changes remain unclear. The purpose of this study was to determine the extent to which heat stress disrupted redox balance and initiated an inflammatory response in oxidative and glycolytic skeletal muscle. Female pigs (5-6/group) were subjected to thermoneutral (20 °C) or heat stress (35 °C) conditions for 1 or 3 days and the semitendinosus removed and dissected into red (STR) and white (STW) portions. After 1 day of heat stress, relative abundance of proteins modified by malondialdehyde, a measure of oxidative damage, was increased 2.5-fold (P < 0.05) compared with thermoneutral in the STR but not the STW, before returning to thermoneutral conditions following 3 days of heat stress. This corresponded with increased catalase and superoxide dismutase-1 gene expression (P < 0.05) and superoxide dismutase-1 protein abundance (P < 0.05) in the STR but not the STW. In the STR catalase and total superoxide dismutase activity were increased by ~30% and ~130%, respectively (P < 0.05), after 1 day of heat stress and returned to thermoneutral levels by day 3. One or 3 days of heat stress did not increase inflammatory signaling through the NF-κB pathway in the STR or STW. These data suggest that oxidative muscle is more susceptible to heat stress-mediated changes in redox balance than glycolytic muscle during chronic heat stress.

  1. Human Responses to Exercise-Heat Stress

    Science.gov (United States)

    1993-11-01

    Relationship between sweat sodium concentration and back sweating rate before and after heat acclimation (1). FIGURE 12: Relationship between maximal oxygen...property placed, to be uncomfortable (22). and occasionally, the sensor may perborate the tympanic membrane (226:235). Because of these problems, some...in extracelular fluid mediated by retention of crystalloids (primarily sodium chloride) and perhaps an increase in plasma volume selectively mediated

  2. Environmental heat stress, hyperammonemia and nucleotide metabolism during intermittent exercise

    DEFF Research Database (Denmark)

    Mohr, Magni; Rasmussen, Peter; Drust, Barry

    2006-01-01

    exercise with heat stress, the core and muscle temperatures peaked at 39.5±0.2 and 40.2±0.2°C to be ~ 1°C higher (P...Abstract  This study investigated the influence of environmental heat stress on ammonia (NH3) accumulation in relation to nucleotide metabolism and fatigue during intermittent exercise. Eight males performed 40 min of intermittent exercise (15 s at 306±22 W alternating with 15 s of unloaded cycling......) followed by five 15 s all-out sprints. Control trials were conducted in a 20°C environment while heat stress trials were performed at an ambient temperature of 40°C. Muscle biopsies and venous blood samples were obtained at rest, after 40 min of exercise and following the maximal sprints. Following...

  3. Analysis of transcriptional response to heat stress in Rhazya stricta.

    Science.gov (United States)

    Obaid, Abdullah Y; Sabir, Jamal S M; Atef, Ahmed; Liu, Xuan; Edris, Sherif; El-Domyati, Fotouh M; Mutwakil, Mohammed Z; Gadalla, Nour O; Hajrah, Nahid H; Al-Kordy, Magdy A; Hall, Neil; Bahieldin, Ahmed; Jansen, Robert K

    2016-11-14

    Climate change is predicted to be a serious threat to agriculture due to the need for crops to be able to tolerate increased heat stress. Desert plants have already adapted to high levels of heat stress so they make excellent systems for identifying genes involved in thermotolerance. Rhazya stricta is an evergreen shrub that is native to extremely hot regions across Western and South Asia, making it an excellent system for examining plant responses to heat stress. Transcriptomes of apical and mature leaves of R. stricta were analyzed at different temperatures during several time points of the day to detect heat response mechanisms that might confer thermotolerance and protection of the plant photosynthetic apparatus. Biological pathways that were crosstalking during the day involved the biosynthesis of several heat stress-related compounds, including soluble sugars, polyols, secondary metabolites, phenolics and methionine. Highly downregulated leaf transcripts at the hottest time of the day (40-42.4 °C) included genes encoding cyclin, cytochrome p450/secologanin synthase and U-box containing proteins, while upregulated, abundant transcripts included genes encoding heat shock proteins (HSPs), chaperones, UDP-glycosyltransferase, aquaporins and protein transparent testa 12. The upregulation of transcripts encoding HSPs, chaperones and UDP-glucosyltransferase and downregulation of transcripts encoding U-box containing proteins likely contributed to thermotolerance in R. stricta leaf by correcting protein folding and preventing protein degradation. Transcription factors that may regulate expression of genes encoding HSPs and chaperones under heat stress included HSFA2 to 4, AP2-EREBP and WRKY27. This study contributed new insights into the regulatory mechanisms of thermotolerance in the wild plant species R. stricta, an arid land, perennial evergreen shrub common in the Arabian Peninsula and Indian subcontinent. Enzymes from several pathways are interacting in the

  4. Study of heat-stress levels in naturally ventilated sheep barns during heat waves: development and assessment of regression models

    Science.gov (United States)

    Papanastasiou, D. K.; Bartzanas, T.; Panagakis, P.; Zhang, G.; Kittas, C.

    2016-11-01

    It is well documented that heat-stress burdens sheep welfare and productivity. Peak heat-stress levels are observed when high temperatures prevail, i.e. during heat waves; however, continuous measurements inside livestock buildings are not usually available for long periods so as to study the variation of summer heat-stress levels for several years, especially during extreme hot weather. Α methodology to develop a long time series of summer temperature and relative humidity inside naturally ventilated sheep barns is proposed. The accuracy and the transferability of the developed linear regression models were verified. Temperature Humidity Index (THI) was used to assess sheep's potential heat-stress. Τhe variation of THI inside a barn during heat wave and non-heat wave days was examined, and the results were comparatively assessed. The analysis showed that sheep were exposed to moderate, severe, and extreme severe heat-stress in 10, 21 and 66 % of hours, respectively, during heat wave days, while the corresponding values during non-heat wave days were 14, 33 and 43 %, respectively. The heat load on sheep was much higher during heat wave events than during non-heat wave periods. Additionally, based on the averaged diurnal variation of THI, it was concluded that extreme severe heat-stress conditions were prevailing between 1000 and 2400 hours local time during heat wave days. Cool off night periods were never and extremely rarely detected during heat wave and non-heat wave days, respectively.

  5. Chloroplast retrograde regulation of heat stress responses in plants

    Directory of Open Access Journals (Sweden)

    Ai-Zhen eSun

    2016-03-01

    Full Text Available It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the primary susceptible targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. In recent years several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS and organellar gene expression (OGE in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation and cellular coordination in plants.

  6. Hypersonic Composites Resist Extreme Heat and Stress

    Science.gov (United States)

    2007-01-01

    Through research contracts with NASA, Materials and Electrochemical Research Corporation (MER), of Tucson, Arizona, contributed a number of technologies to record-breaking hypersonic flights. Through this research, MER developed a coating that successfully passed testing to simulate Mach 10 conditions, as well as provide several additional carbon-carbon (C-C) composite components for the flights. MER created all of the leading edges for the X-43A test vehicles at Dryden-considered the most critical parts of this experimental craft. In addition to being very heat resistant, the coating had to be very lightweight and thin, as the aircraft was designed to very precise specifications and could not afford to have a bulky coating. MER patented its carbon-carbon (C-C) composite process and then formed a spinoff company, Frontier Materials Corporation (FMC), also based in Tucson. FMC is using the patent in conjunction with low-cost PAN (polyacrylonitrile)-based fibers to introduce these materials to the commercial markets. The C-C composites are very lightweight and exceptionally strong and stiff, even at very high temperatures. The composites have been used in industrial heating applications, the automotive and aerospace industries, as well as in glass manufacturing and on semiconductors. Applications also include transfer components for glass manufacturing and structural members for carrier support in semiconductor processing.

  7. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    Science.gov (United States)

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-08

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. Copyright © 2016 by the American Society of Nephrology.

  8. Simulating canopy temperature for modelling heat stress in cereals

    Science.gov (United States)

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  9. Heat stress response in plants: a complex game with chaperones ...

    Indian Academy of Sciences (India)

    2004-10-27

    Oct 27, 2004 ... The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: HsfA1a is the master regulator responsible for hs-induced gene expression ...

  10. Physiological mechanisms through which heat stress compromises reproduction in pigs.

    Science.gov (United States)

    Ross, Jason W; Hale, Benjamin J; Seibert, Jacob T; Romoser, Matthew R; Adur, Malavika K; Keating, Aileen F; Baumgard, Lance H

    2017-09-01

    Seasonal variations in environmental temperatures impose added stress on domestic species bred for economically important production traits. These heat-mediated stressors vary on a seasonal, daily, or spatial scale, and negatively impact behavior and reduce feed intake and growth rate, which inevitably lead to reduced herd productivity. The seasonal infertility observed in domestic swine is primarily characterized by depressed reproductive performance, which manifests as delayed puberty onset, reduced farrowing rates, and extended weaning-to-estrus intervals. Understanding the effects of heat stress at the organismal, cellular, and molecular level is a prerequisite to identifying mitigation strategies that should reduce the economic burden of compromised reproduction. In this review, we discuss the effect of heat stress on an animal's ability to maintain homeostasis in multiple systems via several hypothalamic-pituitary-end organ axes. Additionally, we discuss our understanding of epigenetic programming and how hyperthermia experienced in utero influences industry-relevant postnatal phenotypes. Further, we highlight the recent recognized mechanisms by which distant tissues and organs may molecularly communicate via extracellular vesicles, a potentially novel mechanism contributing to the heat-stress response. © 2017 Wiley Periodicals, Inc.

  11. Genetic solutions to infertility caused by heat stress

    Science.gov (United States)

    Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...

  12. Physiological response of heat stressed broiler chickens to ...

    African Journals Online (AJOL)

    Effect of supplementing the drinking water of broilers reared under natural heat stress with ammonium chloride (NH4Cl), sodium bicarbonate (NaHCO3), calcium chloride (CaCl2) and ascorbic acid (AA) on physiological response was investigated. A 200, one-day Arbor acre chicks were randomly allotted to five treatments in ...

  13. Modelflow underestimates cardiac output in heat-stressed individuals

    DEFF Research Database (Denmark)

    Shibasaki, Manabu; Wilson, Thad E; Bundgaard-Nielsen, Morten

    2011-01-01

    An estimation of cardiac output can be obtained from arterial pressure waveforms using the Modelflow method. However, whether the assumptions associated with Modelflow calculations are accurate during whole body heating is unknown. This project tested the hypothesis that cardiac output obtained via...... Modelflow accurately tracks thermodilution-derived cardiac outputs during whole body heat stress. Acute changes of cardiac output were accomplished via lower-body negative pressure (LBNP) during normothermic and heat-stressed conditions. In nine healthy normotensive subjects, arterial pressure was measured...... via brachial artery cannulation and the volume-clamp method of the Finometer. Cardiac output was estimated from both pressure waveforms using the Modeflow method. In normothermic conditions, cardiac outputs estimated via Modelflow (arterial cannulation: 6.1 ± 1.0 l/min; Finometer 6.3 ± 1.3 l/min) were...

  14. A Chrysanthemum Heat Shock Protein Confers Tolerance to Abiotic Stress

    Science.gov (United States)

    Song, Aiping; Zhu, Xirong; Chen, Fadi; Gao, Haishun; Jiang, Jiafu; Chen, Sumei

    2014-01-01

    Heat shock proteins are associated with protection against various abiotic stresses. Here, the isolation of a chrysanthemum cDNA belonging to the HSP70 family is reported. The cDNA, designated CgHSP70, encodes a 647-residue polypeptide, of estimated molecular mass 70.90 kDa and pI 5.12. A sub-cellular localization assay indicated that the cDNA product is deposited in the cytoplasm and nucleus. The performance of Arabidopsis thaliana plants constitutively expressing CgHSP70 demonstrated that the gene enhances tolerance to heat, drought and salinity. When CgHSP70 was stably over-expressed in chrysanthemum, the plants showed an increased peroxidase (POD) activity, higher proline content and inhibited malondialdehyde (MDA) content. After heat stress, drought or salinity the transgenic plants were better able to recover, demonstrating CgHSP70 positive effect. PMID:24663057

  15. A Chrysanthemum Heat Shock Protein Confers Tolerance to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Aiping Song

    2014-03-01

    Full Text Available Heat shock proteins are associated with protection against various abiotic stresses. Here, the isolation of a chrysanthemum cDNA belonging to the HSP70 family is reported. The cDNA, designated CgHSP70, encodes a 647-residue polypeptide, of estimated molecular mass 70.90 kDa and pI 5.12. A sub-cellular localization assay indicated that the cDNA product is deposited in the cytoplasm and nucleus. The performance of Arabidopsis thaliana plants constitutively expressing CgHSP70 demonstrated that the gene enhances tolerance to heat, drought and salinity. When CgHSP70 was stably over-expressed in chrysanthemum, the plants showed an increased peroxidase (POD activity, higher proline content and inhibited malondialdehyde (MDA content. After heat stress, drought or salinity the transgenic plants were better able to recover, demonstrating CgHSP70 positive effect.

  16. An adaptability limit to climate change due to heat stress.

    Science.gov (United States)

    Sherwood, Steven C; Huber, Matthew

    2010-05-25

    Despite the uncertainty in future climate-change impacts, it is often assumed that humans would be able to adapt to any possible warming. Here we argue that heat stress imposes a robust upper limit to such adaptation. Peak heat stress, quantified by the wet-bulb temperature T(W), is surprisingly similar across diverse climates today. T(W) never exceeds 31 degrees C. Any exceedence of 35 degrees C for extended periods should induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 degrees C, calling the habitability of some regions into question. With 11-12 degrees C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 degrees C are possible from fossil fuel burning. One implication is that recent estimates of the costs of unmitigated climate change are too low unless the range of possible warming can somehow be narrowed. Heat stress also may help explain trends in the mammalian fossil record.

  17. Thermoregulatory disorders and illness related to heat and cold stress.

    Science.gov (United States)

    Cheshire, William P

    2016-04-01

    Thermoregulation is a vital function of the autonomic nervous system in response to cold and heat stress. Thermoregulatory physiology sustains health by keeping body core temperature within a degree or two of 37°C, which enables normal cellular function. Heat production and dissipation are dependent on a coordinated set of autonomic responses. The clinical detection of thermoregulatory impairment provides important diagnostic and localizing information in the evaluation of disorders that impair thermoregulatory pathways, including autonomic neuropathies and ganglionopathies. Failure of neural thermoregulatory mechanisms or exposure to extreme or sustained temperatures that overwhelm the body's thermoregulatory capacity can also result in potentially life-threatening departures from normothermia. Hypothermia, defined as a core temperature of 40.5°C, may present with sweating, flushing, tachycardia, fatigue, lightheadedness, headache, and paresthesia, progressing to weakness, muscle cramps, oliguria, nausea, agitation, hypotension, syncope, confusion, delirium, seizures, and coma. Mental status changes and core temperature distinguish potentially fatal heat stroke from heat exhaustion. Management requires the immediate reduction of core temperature. Ice water immersion has been shown to be superior to alternative cooling measures. Avoidance of thermal risk and early recognition of cold or heat stress are the cornerstones of preventive therapy. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  18. Parks of Chapel Hill

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Hours, location, and amenity information for Chapel Hill parks as shown on the Town of Chapel Hill's website. Includes a map with points for each park location.

  19. The Relationship between the Heat Disorder Incidence Rate and Heat Stress Indices at Yamanashi Prefecture in Japan

    OpenAIRE

    Shin Akatsuka; Tadashi Uno; Masahiro Horiuchi

    2016-01-01

    In recent years, the risk of heat disorder in daily life has increased dramatically because the thermal environment has been deteriorating. The main objective of this study was to examine regional differences in the relationship between heat disorder incidence rate and heat stress indices at Yamanashi Prefecture, Japan. Daily maximum air temperature and daily maximum WBGT were used as heat stress indices in each region. Nonlinear regression analysis was used to examine the regional difference...

  20. Stress relaxation in tempered glass caused by heat soak testing

    DEFF Research Database (Denmark)

    Schneider, Jens; Hilcken, Jonas; Aronen, Antti

    2016-01-01

    of commercial soda-lime-silica glass, it causes stress relaxation in tempered glass and the fracture pattern of the glass changes accordingly, especially thin glasses are affected. Based on the Tool-Narayanaswamy-Model, this paper comprises the theoretical background of the stress......Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so...

  1. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses.

    Science.gov (United States)

    Huang, Ya-Chen; Niu, Chung-Yen; Yang, Chen-Ru; Jinn, Tsung-Luo

    2016-10-01

    Heat stress response (HSR) is a conserved mechanism developed to increase the expression of heat shock proteins (HSPs) via a heat shock factor (HSF)-dependent mechanism. Signaling by the stress phytohormone abscisic acid (ABA) is involved in acquired thermotolerance as well. Analysis of Arabidopsis (Arabidopsis thaliana) microarray databases revealed that the expression of HSFA6b, a class A HSF, extensively increased with salinity, osmotic, and cold stresses, but not heat. Here, we show that HSFA6b plays a pivotal role in the response to ABA and in thermotolerance. Salt-inducible HSFA6b expression was down-regulated in ABA-insensitive and -deficient mutants; however, exogenous ABA application restored expression in ABA-deficient, but not -insensitive plants. Thus, ABA signaling is required for proper HSFA6b expression. A transcriptional activation assay of protoplasts revealed that ABA treatment and coexpression of an ABA signaling master effector, ABA-RESPONSIVE ELEMENT-BINDING PROTEIN1, could activate the HSFA6b promoter. In addition, HSFA6b directly bound to the promoter of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2A and enhanced its expression. Analysis of ABA responses in seed germination, cotyledon greening, and root growth as well as salt and drought tolerance in HSFA6b-null, overexpression, and dominant negative mutants revealed that HSFA6b is a positive regulator participating in ABA-mediated salt and drought resistance. Thermoprotection tests showed that HSFA6b was required for thermotolerance acquisition. Our study reveals a network in which HSFA6b operates as a downstream regulator of the ABA-mediated stress response and is required for heat stress resistance. This new ABA-signaling pathway is integrated into the complex HSR network in planta. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Heat stress causes substantial labour productivity loss in Australia

    Science.gov (United States)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  3. The influence of heat stress on metabolic status of cows

    Directory of Open Access Journals (Sweden)

    Horvat Jožef

    2014-01-01

    Full Text Available It is considered that high air temperature and humidity during the summer are the main factors which adversely affect both the health and production-reproductive performance of high yielding dairy cows. The resulting heath stress leads to a series of changes in endocrine regulation of homeostasis. The changes in hormonal status reflect in some way to the indicators of metabolic status of the cows. The objective of this work was to investigate the influence of heat stress on metabolic status of cows. The experiment was carried out on 20 cows of Holstein-Friesian breed during the summer, in the period from 18th to 45th day of lactation. During the performance of the experiment, the value of heat index (THI was determined hourly and then the value of average morning (from 10 pm the previous day to 9 am the current day, afternoon (from 10 am to 9 pm the current day and all-day THI was calculated. Blood sampling was carried out on the 1st, 2nd, 8th, 11th, 14th, 18th, 25th, 29th and 37th day of the experiment, in the morning and the afternoon. On the basis of hourly THI values, whole experimental period was divided into three periods: period A during which the cows were exposed to a extreme high heat stress (THI≥78 at least 7 hours in 24 hours; period B during which the cows were exposed to a moderate heat stress (72≥THI≤78 at least 7 hours in 24 hours; period C during which the cows were not exposed to a heat stress (THI≤72 in 24 hours. The average daily THI in period A (73,25±0,89 was significantly higher (p<0,01, individually in regard to period B (71,45±0,96 and period C (65,41±2,09. THI was significantly higher in the period B than in the period C (p<0,01. Significantly lower blood glucose value (p<0,05 during the afternoon period in the cows exposed to the extreme heat stress (3,02±0,31 mmol/L in regard to the morning period (3,14±0,41 mmol/L points to the fact that in such conditions, metabolism redirects to use of glucose as an

  4. Robustness to chronic heat stress in laying hens: a meta-analysis

    NARCIS (Netherlands)

    Mignon-Grasteau, S.; Moreri, U.; Narcy, A.; Rousseau, X.; Rodenburg, T.B.; Tixier-Boichard, M.; Zerjal, T.

    2015-01-01

    Chronic heat is a major stress factor in laying hens and many studies on the effect of heat stress have been published. It remains difficult, however, to draw general conclusions about the effect of chronic heat stress on performance and its relationship with genetic and environmental factors, as

  5. Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, Brandon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kelly, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haslam, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-29

    The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finite Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.

  6. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heran Ma

    2016-09-01

    Full Text Available The antioxidant properties of l-arginine (l-Arg in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate.

  7. HSFA2 orchestrates transcriptional dynamics after heat stress in Arabidopsis thaliana

    OpenAIRE

    L?mke, J?rn; Brzezinka, Krzysztof; B?urle, Isabel

    2016-01-01

    In nature, stress is typically chronic or recurring and stress exposure can prime modified responses to recurring stress. Such stress priming may occur at the level of transcription. Here, we discuss the connection between plant stress memory, transcription, and chromatin modifications using the example of recurring heat stress.

  8. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  9. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  10. Carcass and meat quality traits of rabbits under heat stress.

    Science.gov (United States)

    Zeferino, C P; Komiyama, C M; Fernandes, S; Sartori, J R; Teixeira, P S S; Moura, A S A M T

    2013-03-01

    Rabbits are very sensitive to heat stress because they have difficulty eliminating excess body heat. The objective of the current study was to evaluate the effects of heat stress on slaughter weight, dressing percentage and carcass and meat quality traits of rabbits from two genetic groups. Ninety-six weaned rabbits were used: half were from the Botucatu genetic group and half were crossbreds between New Zealand White sires and Botucatu does. They were assigned to a completely randomized design in a 2 × 3 factorial arrangement (two genetic groups and three ambient temperatures: 18°C, 25°C and 30°C) and kept under controlled conditions in three environmental chambers from 5 to 10 weeks of age. Slaughter took place at 10 weeks, on 2 consecutive days. Meat quality measurements were made in the longissimus muscle. Actual average ambient temperature and relative humidity in the three chambers were 18.4°C and 63.9%, 24.4°C and 80.2% and 29.6°C and 75.9%, respectively. Purebred rabbits were heavier at slaughter and had heavier commercial and reference carcasses than crossbreds at 30°C; however, no differences between genetic groups for these traits were found at lower temperatures. No genetic group × ambient temperature interaction was detected for any other carcass or meat quality traits. The percentages of distal parts of legs, skin and carcass forepart were higher in crossbred rabbits, indicating a lower degree of maturity at slaughter in this group. The percentage of thoracic viscera was higher in the purebreds. Lightness of the longissimus muscle was higher in the purebreds, whereas redness was higher in the crossbreds. Slaughter, commercial and reference carcass weights and the percentages of thoracic viscera, liver and kidneys were negatively related with ambient temperature. Commercial and reference carcass yields, and the percentage of distal parts of legs, on the other hand, had a positive linear relationship with ambient temperature. Meat redness and

  11. Cardiovascular responses to heat stress in late gestation fetal sheep.

    Science.gov (United States)

    Walker, D W; Hale, J R; Fawcett, A A; Pratt, N M

    1995-09-01

    Heat stress during pregnancy in sheep is associated with respiratory alkalosis in both the mother and fetus, and, if prolonged, fetal growth is retarded. In seven pregnant sheep at 130-137 days gestation we used 15 microns diameter radioactive microspheres to determine the effect of raising the environmental temperature from 20 to 43 degrees C for 8 h on uteroplacental blood flows and the distribution of cardiac output in the ewe and fetus. Fetal cardiac output increased slightly from 47.0 +/- 3.2 (mean +/- S.E.M.) to 54.0 +/- 3.6 ml min-1 (100 g tissue)-1, fetal arterial pressure and heart rate were unchanged, and total vascular conductance in the fetus increased significantly from 12397 +/- 1111 to 14732 +/- 1569 ml min-1 kg-1 mmHg-1 (P release of vasodilator substances, or a decrease of sympathoadrenal effector responses. Blood flow to the fetal and maternal sides of the placenta did not change during the heat stress, suggesting that perfusion-dependent transfer of heat from fetus to mother across the placenta does not increase under hyperthermic conditions.

  12. Interacting Effects of Heat Stress and Soil Moisture Stress on Crop Yield Losses in Dryland Agriculture

    Science.gov (United States)

    Debats, S. R.; Caylor, K. K.; Estes, L. D.; Chaney, N.; Sheffield, J.

    2012-12-01

    Increased interannual variability and greater frequency of extreme events place new pressures on subsistence farmers as a direct result of climate change. Of particular concern are farmers practicing rainfed agriculture in dryland ecosytems, where food security is closely linked to climate. In these areas, an improved understanding of the occurrence of extreme events as well as their effects on crop yields is essential. The main goals of this research are to identify the relative importance and possible coupling of heat stress and soil moisture stress in determining dryland crop yield losses. In particular, we are interested in determining the extent to which irrigation is an effective buffer against drought and heat stress in dryland regions. While irrigation can protect against soil moisture stress, its ability to mitigate heat stress, or the combined effects of the two stresses, is uncertain. Our study focuses on the Eastern and Southern provinces of Zambia as characteristic regions of dryland agriculture. Sites in the study area are identified based on farming type (irrigated versus rainfed). As irrigation is assumed to negate soil moisture stress, this approach enables separate analysis of heat stress and soil moisture stress, as well as their combined effects. To quantify the effects of heat stress, distributions of daily minimum and maximum temperatures are used to identify the frequency and severity of anomalously warm periods and their correlation with resulting crop yield losses. We also utilize Standardized Precipitation Index (SPI) data and soil moisture data derived from the Variable Infiltration Capacity (VIC) macroscale hydrologic model to examine the effects of meteorological drought and hydrological drought, respectively, on crop yields. To quantify crop yield losses, we employ yield estimates derived from the integration of time series of 250 meter resolution Normalized Difference Vegetation Index (NDVI) images collected by the Moderate Resolution

  13. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress.

    Science.gov (United States)

    Koskas, Sivan; Decottignies, Anabelle; Dufour, Solenne; Pezet, Mylène; Verdel, André; Vourc'h, Claire; Faure, Virginie

    2017-06-20

    In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Short term post-partum heat stress in dairy cows

    Science.gov (United States)

    Fuquay, J. W.; Chapin, L. T.; Brown, W. H.

    1980-06-01

    Since many dairy cows calve during late summer, the objective was to determine if heat stress immediately post-partum would (1) alter metabolism, thus, increasing susceptibility to metabolic disorders, (2) affect lactation and/or (3) affect reproduction. Forty four cows, calving during late summer, were paired with one member of each pair stressed (HS) for the first 10 post-partum days in a hot barn. Controls (CC) were kept in a cooled section of the barn. Plasma drawn weekly for 7 weeks was analyzed in an autoanalyzer for calcium, inor. phosphorus, protein, glucose and cholesterol and by radioimmunoassay for cortisol and progesterone. Ovaries and uteri were palpated weekly. Rectal temperatures were significant higher for HS during the first 10 post-partum days. No significant effects on plasma constituents were observed during the 10-day treatment period. For the 7-week period, glucose and cholesterol were lower in HS, as were cyclic peaks of progesterone and cortisol. Both calcium and inorganic phosphorus remained clinically low for the 7 weeks, but no treatment effects were seen. Uteri of HS involuted more rapidly than the CC. Treatment did not affect reproductive efficiency. Lactation milk yields did not differ, but milk fat percent was lower in HS. Heat stress immediately post-partum altered lipid metabolism, but the animal's compensatory mechanisms prevented reduction in milk production or reproductive efficiency.

  15. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout......Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  16. THERMOREGULATION IN CHILDREN: EXERCISE, HEAT STRESS & FLUID BALANCE

    Directory of Open Access Journals (Sweden)

    Shawnda A. Morrison

    2014-12-01

    Full Text Available This review focuses on the specific physiological strategies of thermoregulation in children, a brief literary update relating exercise to heat stress in girls and boys as well as a discussion on fluid balance strategies for children who are performing exercise in the heat. Both sport performance and thermoregulation can be affected by the body’s water and electrolyte content. The recommendations for pre-pubertal fluid intake have been generalized from adult literature, including a limited concession for the physiological differences between adults and children. Considering these body fluid shifts, carbohydrate-electrolyte drinks are thought to be an essential tool in combating dehydration as a result of active hyperthermia (i.e. exercise, thus we examine current hydration practices in exercising children. Finally, this review summarizes research which examines the relationship between cognition and hypohydration on young athletes’ performance.

  17. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  18. The heat stress for workers employed in a dairy farm

    Directory of Open Access Journals (Sweden)

    A. Marucci

    2013-09-01

    Full Text Available The italian dairy production is characterized by high heterogeneity. The typology quantitatively more important (80% of national production is represented by cow’s milk cheeses (Grana Padano cheese, string cheese, Parmesan cheese, etc.,while the cheese from buffalo’s milk (especially string cheese such as mozzarella and cheese from sheep and goats represents respectively 4% and 8% of the national dairy production, and are linked to specific regional contexts. Some phases of the cycle of milk processing occur at certain temperatures that not are comfortable for the operator also in relation to possible problems due to thermal shock. The aim of this study was to evaluate the risk of heat stress on workers operating in a dairy for processing of buffalo milk. The research was conducted at a dairy farm located in the province of Viterbo, Italy, during the spring-summer period. To carry out the research were detected major climatic parameters (air temperature, relative humidity, mean radiant temperature, air velocity and the main parameters of the individual operators (thermal insulation provided by clothing and the energy expenditure required from the work done by employees in the work areas investigated. Subsequently were calculated main indices of heat stress assessment provided by the main technical standards. In particular have been calculated Predicted Mean Vote (PMV and Predicted Percentage of Dissatisfied (PPD in moderate environments, provided by the UNI EN ISO 7730 and the wet bulb globe temperature (WBGT in severe hot environments required by UNI EN 27243. The results show some phases of risk from heat stress and possible solutions to improve the safety of the operators.

  19. The heat stress for workers employed in a dairy farm

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2014-02-01

    Full Text Available The Italian dairy production is characterized by high heterogeneity. The typology quantitatively more important (80% of national production is represented by cow’s milk cheeses (Grana Padano cheese, string cheese, Parmesan cheese, etc., while the cheese from buffalo’s milk (especially string cheese such as mozzarella and cheese from sheep and goats represents respectively 4% and 8% of the national dairy production, and are linked to specific regional contexts. Some phases of the cycle of milk processing occur at certain temperatures that are not comfortable for the workers also in relation to possible problems due to thermal shock. The aim of this study was to evaluate the risk of heat stress on workers operating in a dairy for processing of buffalo milk. The research was conducted at a dairy farm located in the province of Viterbo, Italy, during the spring-summer period. To carry out the research were detected major climatic parameters (air temperature, relative humidity, mean radiant temperature, air velocity and the main parameters of the individual operators (clothing thermal insulation and the energy expenditure required from the work done by employees. Subsequently, main indices of heat stress assessment provided by the main technical standards were calculated. In particular have been calculated predicted mean vote and predicted percentage of dissatisfied in moderate thermal environments (environments in which the objective, in the design and management phases, is to achieve the thermal comfort, provided by the UNI EN ISO 7730 and the wet bulb globe temperature in severe hot environments (environments in which you must protect the health of workers required by UNI EN ISO 27243. The results show some phases of risk from heat stress especially during times of test in which the internal air temperature exceeds the threshold of 30°C and possible solutions to improve the safety of the operators.

  20. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Directory of Open Access Journals (Sweden)

    Fu-Wei Liu

    Full Text Available Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  1. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Science.gov (United States)

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  2. Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.)

    Science.gov (United States)

    Park, Hyun Ji; Jung, Won Yong; Lee, Sang Sook; Song, Jun Ho; Kwon, Suk-Yoon; Kim, HyeRan; Kim, ChulWook; Ahn, Jun Cheul; Cho, Hye Sun

    2013-01-01

    Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL), “HO”, and a heat-sensitive cabbage line (HSCL), “JK”, by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR) to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13) were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS). Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress. PMID:23736694

  3. Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-06-01

    Full Text Available Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL, “HO”, and a heat-sensitive cabbage line (HSCL, “JK”, by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13 were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS. Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress.

  4. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    OpenAIRE

    Fu-Wei Liu; Fu-Chao Liu; Yu-Ren Wang; Hsin-I Tsai; Huang-Ping Yu

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in hu...

  5. Passive heat stress reduces circulating endothelial and platelet microparticles.

    Science.gov (United States)

    Bain, Anthony R; Ainslie, Philip N; Bammert, Tyler D; Hijmans, Jamie G; Sekhon, Mypinder; Hoiland, Ryan L; Flück, Daniela; Donnelly, Joseph; DeSouza, Christopher A

    2017-06-01

    What is the central question of this study? Does passive heat stress of +2°C oesophageal temperature change concentrations of circulating arterial endothelial- and platelet-derived microparticles in healthy adults? What is the main finding and its importance? Concentrations of circulating endothelial- and platelet-derived microparticles were markedly decreased in heat stress. Reductions in circulating microparticles might indicate favourable vascular changes associated with non-pathological hyperthermia. Interest in circulating endothelial- and platelet-derived microparticles (EMPs and PMPs, respectively) has increased because of their potential pathogenic role in vascular disease and as biomarkers for vascular health. Hyperthermia is commonly associated with a pro-inflammatory stress but might also provide vascular protection when the temperature elevation is non-pathological. Circulating microparticles might contribute to the cellular adjustments and resultant vascular impacts of hyperthermia. Here, we determined whether circulating concentrations of arterial EMPs and PMPs are altered by passive heat stress (+2°C oesophageal temperature). Ten healthy young men (age 23 ± 3 years) completed the study. Hyperthermia was achieved by circulating ∼49°C water through a water-perfused suit that covered the entire body except the hands, feet and head. Arterial (radial) blood samples were obtained immediately before heating (normothermia) and in hyperthermia. The mean ± SD oesophageal temperature in normothermia was 37.2 ± 0.1°C and in hyperthermia 39.1 ± 0.1°C. Concentrations of circulating EMPs and PMPs were markedly decreased in hyperthermia. Activation-derived EMPs were reduced by ∼30% (mean ± SD; from 61 ± 8 to 43 ± 7 microparticles μl -1 ; P microparticles μl -1 ; P microparticles μl -1 ). These beneficial reductions in circulating EMPs and PMPs in response to a 2°C increase in core temperature might partly underlie the

  6. A Systems Biology Approach to Heat Stress, Heat Injury and Heat Stroke

    Science.gov (United States)

    2015-01-01

    cardiomyocyte contraction define the variables of glycolysis, citric acid cycle, fatty acid oxidation, and oxidative phosphorylation needed to produce...heart, kidney, and liver failure are increased by 40% in Service members with a history of heat stroke [5, 6]. Indeed, there is an urgent need for...amino acid sequence [34, 35]. Even single point mutations can affect aggregation of a peptide or protein in its unfolded state [36]. Predictive

  7. Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2

    Directory of Open Access Journals (Sweden)

    Alexandre Evrard

    2013-04-01

    Full Text Available So far little is known on the functional role of phosphorylation in the heat stress response of plants. Here we present evidence that heat stress activates the Arabidopsis mitogen-activated protein kinase MPK6. In vitro and in vivo evidence is provided that MPK6 specifically targets the major heat stress transcription factor HsfA2. Activation of MPK6 results in complex formation with HsfA2. MPK6 phosphorylates HsfA2 on T249 and changes its intracellular localisation. Protein kinase and phosphatase inhibitor studies indicate that HsfA2 protein stability is regulated in a phosphorylation-dependent manner, but this mechanism is independent of MPK6. Overall, our data show that heat stress-induced targeting of HsfA2 by MPK6 participates in the complex regulatory mechanism how plants respond to heat stress.

  8. Response of restraint stress-selected lines of Japanese quail to heat stress and Escherichia coli challenge

    Science.gov (United States)

    Japanese quail selected for divergent corticosterone (Cort) response to restraint stress were evaluated for their susceptibility to heat stress and challenge with Escherichia coli. These quail lines are designated as the high stress (HS), low stress (LS), and the random-bred control (CS) lines. Hea...

  9. Review Article: Heat stress and the role of protective clothing in ...

    African Journals Online (AJOL)

    Background: The body heat exchange, environmental stress and protective clothing becomes stressful in military service too. The use of microporous material and ventilation of garment significantly improve heat exchange, hence reducing physiological strain and improving tolerance to the heat. Moisture absorption ...

  10. Heat stress and sudden infant death syndrome--stress gene expression after exposure to moderate heat stress

    DEFF Research Database (Denmark)

    Rohde, Marianne Cathrine; Corydon, Thomas Juhl; Hansen, Jakob

    2013-01-01

    The aim of the present study was to investigate stress gene expression in cultured primary fibroblasts established from Achilles tendons collected during autopsies from sudden infant death syndrome (SIDS) cases, and age-matched controls (infants dying in a traumatic event). Expression of 4 stress...

  11. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    Science.gov (United States)

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p heat control at source can be considered as a first solution for reducing radiant heat of blast furnaces. However, the simultaneous application of interventions could noticeably reduce worker heat stress. The results provide reliable information in order to implement the effective heat controls in typical hot steel industries.

  12. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals.

    Science.gov (United States)

    Grahn, D A; Dillon, J L; Heller, H C

    2009-07-01

    Insulation reduces heat exchange between a body and the environment. Glabrous (nonhairy) skin surfaces (palms of the hands, soles of the feet, face, and ears) constitute a small percentage of total body surface area but contain specialized vascular structures that facilitate heat loss. We have previously reported that cooling the glabrous skin surfaces is effective in alleviating heat stress and that the application of local subatmospheric pressure enhances the effect. In this paper, we compare the effects of cooling multiple glabrous skin surfaces with and without vacuum on thermal recovery in heavily insulated heat-stressed individuals. Esophageal temperatures (T(es)) and heart rates were monitored throughout the trials. Water loss was determined from pre- and post-trial nude weights. Treadmill exercise (5.6 km/h, 9-16% slope, and 25-45 min duration) in a hot environment (41.5 degrees C, 20-30% relative humidity) while wearing insulating pants and jackets was used to induce heat stress (T(es)>or=39 degrees C). For postexercise recovery, the subjects donned additional insulation (a balaclava, winter gloves, and impermeable boot covers) and rested in the hot environment for 60 min. Postexercise cooling treatments included control (no cooling) or the application of a 10 degrees C closed water circulating system to (a) the hand(s) with or without application of a local subatmospheric pressure, (b) the face, (c) the feet, or (d) multiple glabrous skin regions. Following exercise induction of heat stress in heavily insulated subjects, the rate of recovery of T(es) was 0.4+/-0.2 degrees C/h(n=12), but with application of cooling to one hand, the rate was 0.8+/-0.3 degrees C/h(n=12), and with one hand cooling with subatmospheric pressure, the rate was 1.0+/-0.2 degrees C/h(n=12). Cooling alone yielded two responses, one resembling that of cooling with subatmospheric pressure (n=8) and one resembling that of no cooling (n=4). The effect of treating multiple surfaces was

  13. Stress Intensity Factors of a Small Crack near the Transient Partial Heat Source

    OpenAIRE

    宮尾, 嘉寿; 中林, 秀明; 五嶋, 孝仁

    1991-01-01

    stress intensity factors of a small crack have been analyzed when an infinite plate is step-functionally heated in a circular region near the crack tip. The stress solution can be obtained by superposing the stress disturbance by the crack on the transient thermal stresses due to the heat source in an infinite plate. The problem is reduced to a singular integral equation which satisfies the boundary condition on the crack face. The numerical results of stress intensity factors are obtained fo...

  14. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants

    Directory of Open Access Journals (Sweden)

    Pezzotti Mario

    2011-07-01

    Full Text Available Abstract Background Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many crop plants. Tolerance to such a stress can be achieved by constitutive gene expression or by rapid changes in gene expression, which ultimately leads to protection against thermal damage. We have used cDNA-AFLP and microarray analyses to compare the early response of the tomato meiotic anther transcriptome to moderate heat stress conditions (32°C in a heat-tolerant and a heat-sensitive tomato genotype. In the light of the expected global temperature increases, elucidating such protective mechanisms and identifying candidate tolerance genes can be used to improve breeding strategies for crop tolerance to heat stress. Results The cDNA-AFLP analysis shows that 30 h of moderate heat stress (MHS alter the expression of approximately 1% of the studied transcript-derived fragments in a heat-sensitive genotype. The major effect is gene down-regulation after the first 2 h of stress. The microarray analysis subsequently applied to elucidate early responses of a heat-tolerant and a heat-sensitive tomato genotype, also shows about 1% of the genes having significant changes in expression after the 2 h of stress. The tolerant genotype not only reacts with moderate transcriptomic changes but also exhibits constitutively higher expression levels of genes involved in protection and thermotolerance. Conclusion In contrast to the heat-sensitive genotype, the heat-tolerant genotype exhibits moderate transcriptional changes under moderate heat stress. Moreover, the heat-tolerant genotype also shows a different constitutive gene expression profile compared to the heat-sensitive genotype, indicating genetic differences in adaptation to increased temperatures. In

  15. Heat stress induces ferroptosis-like cell death in plants.

    Science.gov (United States)

    Distéfano, Ayelén Mariana; Martin, María Victoria; Córdoba, Juan Pablo; Bellido, Andrés Martín; D'Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Roldán, Juan Alfredo; Bartoli, Carlos Guillermo; Zabaleta, Eduardo Julián; Fiol, Diego Fernando; Stockwell, Brent R; Dixon, Scott J; Pagnussat, Gabriela Carolina

    2017-02-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient. © 2017 Distéfano et al.

  16. Propofol alleviate oxidative stress and mitochondrial damage in endothelial cells after heat stress

    Directory of Open Access Journals (Sweden)

    Li LI

    2017-08-01

    Full Text Available Objective To explore the protective effect of propofol on endothelial cells during heat stress and its protective effect to mitochondra. Methods Heat stress model of human umbilical vein endothelial cell was established when cells were incubated at 43℃ for 2h, then further incubted at 37℃, 5%CO2 for 6h. The experimental group was subdivided into six groups, including 37℃ group, 37℃ plus intralipid group (negative control group, 37℃ plus propofol group, 43℃ plus propofol group, 43℃ plus intralipid group, H2O2 plus propofol group (positive control group; Pretreated with 50μmol/L propofol, 0.2ml intralipid or 25μmol/L H2O2 before heat stress at 43℃, while the cells in the control group were incubated at 37℃. Cell viability was tested by CCK-8. ROS, mitochondrial membrane potential and the changes in mitochondrial permeability transition pore were determined by flow cytometry. The level of ATP was detected by fluorescein-luciferase. The changes of caspase-9 and caspase-3 were analyzed by Caspase Activity Assay Kit. Results HUVESs cell viability and damage of mitochondra were significantly decreased after heat stress. Compared with 43℃ heat stress group, pretreatment with propofol induced the recovery of cell viability and the ROS levels were significantly decreased in HUVEC cells (P<0.05. Meanwhile, the number of cells representing the decrease of mitochondrial membrane potential (the proportion of JC-1 monomer was significantly decreased (P<0.05 by propofol. The average fluorescence intensity of calcein which representing the MPTP changes and intracellular ATP content was significantly increased (P<0.05. In addition, the activation of mitochondrial apoptotic pathway mediated by caspase-9/3 was also inhibited. Conclusions Propofol have anti-oxidative, anti-apoptosis and mitochondria protective effect against endothelial cell injury during heat stress. DOI: 10.11855/j.issn.0577-7402.2017.06.04

  17. Proline accumulation in response to drought and heat stress in cotton.

    African Journals Online (AJOL)

    Water and heat stress are the most important environmental variables affecting cotton growth and development. The main objective of our study was to evaluate the effect of water stress and a combination of water and heat stress on proline accumulation in six cotton cultivars (Gossypium hirsutum) and to determine the ...

  18. Biochemical analysis of ‘kerosene tree’ Hymenaea courbaril L. under heat stress

    Science.gov (United States)

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants. PMID:25482765

  19. Biochemical analysis of 'kerosene tree' Hymenaea courbaril L. under heat stress.

    Science.gov (United States)

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants.

  20. Major E. coli heat-stress protein do not translocate: implications for cell survival.

    Science.gov (United States)

    Yatvin, M B; Clark, A W; Siegel, F L

    1987-10-01

    When Escherichia coli are exposed to heat stress, the majority of proteins in the process of synthesis at the time of heat stress are rapidly translocated to the outer membrane of the bacterium. The synthesis of most of these proteins appears to take place on membrane-bound polyribosomes. With the temperature shift, overall protein synthesis is inhibited while the synthesis of a small group of proteins is initiated. These proteins are not translocated, but remain in the cytosolic compartment, and they are identifiable as heat-stress proteins. Both the translocation phenomenon and the retention of heat-stress proteins in the cytosolic compartment in proximity to the nucleoid could counteract the effects of heat stress. The translocated proteins may operate by stabilizing the outer membrane prior to the induction of heat-stress proteins and the latter, which are confined to the cytoplasmic compartment, may serve to protect the integrity of the nucleoid structures.

  1. Heat and Dehydration Additively Enhance Cardiovascular Outcomes following Orthostatically-Stressful Calisthenics Exercise

    National Research Council Canada - National Science Library

    Ashley P. Akerman; Samuel J. E. Lucas; Rajesh Katare; James D. Cotter

    2017-01-01

    ...) completed three trials of 90-min orthostatically-stressful calisthenics, in: (i) temperate conditions (22°C, 50% rh, no airflow; CON); (ii) heat (40°C, 60% rh) whilst euhydrated (HEAT), and (iii...

  2. Antioxidant defence and stress protein induction following heat stress in the Mediterranean snail Xeropicta derbentina.

    Science.gov (United States)

    Troschinski, Sandra; Dieterich, Andreas; Krais, Stefanie; Triebskorn, Rita; Köhler, Heinz-R

    2014-12-15

    The Mediterranean snail Xeropicta derbentina (Pulmonata, Hygromiidae), being highly abundant in Southern France, has the need for efficient physiological adaptations to desiccation and over-heating posed by dry and hot environmental conditions. As a consequence of heat, oxidative stress manifests in these organisms, which, in turn, leads to the formation of reactive oxygen species (ROS). In this study, we focused on adaptations at the biochemical level by investigation of antioxidant defences and heat shock protein 70 (Hsp70) induction, both essential mechanisms of the heat stress response. We exposed snails to elevated temperature (25, 38, 40, 43 and 45°C) in the laboratory and measured the activity of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx), determined the Hsp70 level and quantified lipid peroxidation. In general, we found a high constitutive level of CAT activity in all treatments, which may be interpreted as a permanent protection against ROS, i.e. hydrogen peroxide. CAT and GPx showed temperature-dependent activity: CAT activity was significantly increased in response to high temperatures (43 and 45°C), whereas GPx exhibited a significantly increased activity at 40°C, probably in response to high levels of lipid peroxides that occurred in the 38°C treatment. Hsp70 showed a maximum induction at 40°C, followed by a decrease at higher temperatures. Our results reveal that X. derbentina possesses a set of efficient mechanisms to cope with the damaging effects of heat. Furthermore, we demonstrated that, besides the well-documented Hsp70 stress response, antioxidant defence plays a crucial role in the snails' competence to survive extreme temperatures. © 2014. Published by The Company of Biologists Ltd.

  3. Transcriptomic analysis of grape (Vitis vinifera L. leaves during and after recovery from heat stress

    Directory of Open Access Journals (Sweden)

    Liu Guo-Tian

    2012-09-01

    Full Text Available Abstract Background Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L. leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts, followed by quantitative Real-Time PCR validation for some transcript profiles. Results We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes, protein fate (i.e., HSPs, primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. Conclusion The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery

  4. Loess Hills of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage outlines the boundary of the Loess Hills in Iowa at 1:100,000 scale. Criteria applied to the delineation of the Loess Hills included drainage density,...

  5. Evaluation of floor cooling on lactating sows under mild and moderate heat stress

    Science.gov (United States)

    The effectiveness of sow cooling pads during lactation was evaluated under mild and moderate heat stress conditions. The moderate heat stress room was targeted to achieve 32°C from 0800 to 1600 h and 27°C for the rest of the day. The mild heat stress room was targeted to achieve 27°C and 22°C for th...

  6. Relationship of environmental, physiological, and perceptual heat stress indices in Iranian Men

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2015-01-01

    Conclusions: The results have shown that simultaneous with the increase in valid indices of heat stress such as WBGT and PSI indices, the amount of HSSI has also increased with high power. Therefore, when there is no access to a reliable heat stress method such as WBGT, or PSI indices, HSSI, an observative and subjective heat strain method, can be used as a simple, fast in least 5 min, and inexpensive for evaluating the heat strain in Iranian men.

  7. Effects of genistein and hesperidin on biomarkers of heat stress in broilers under persistent summer stress.

    Science.gov (United States)

    Kamboh, A A; Hang, S Q; Bakhetgul, M; Zhu, W-Y

    2013-09-01

    This study investigated the supplemental effects of the flavonoids genistein and hesperidin for biomarkers of heat stress in broilers reared under persistent summer stress. A total of 360 one-day-old, mixed-sex broiler chickens were divided into 6 treatment groups: control or supplemented with 5 mg of genistein•kg of feed(-1), 20 mg of hesperidin•kg of feed(-1), or a mixture of genistein and hesperidin (1:4) at a dosage of 5 mg•kg(-1), 10 mg•kg(-1), and 20 mg•kg(-1) of feed. Broilers were slaughtered at 42 d and samples were analyzed for hematological profile, creatine kinase, lactate dehydrogenase, and heat shock protein 70 mRNA levels. Results showed that dietary genistein and hesperidin improved (P hesperidin could be a prime strategy to ameliorate summer stress effects in broilers; and a combination of both compounds may lead to mutual synergistic effects. It could be suggested that dietary use of both genistein and hesperidin as a feed supplement may offer a potential nutritional strategy in tropical and subtropical regions to overcome the deleterious effects of persistent summer stress in broiler production.

  8. Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood

    National Research Council Canada - National Science Library

    TOZZI, EMILY S; EASLON, HSIEN MING; RICHARDS, JAMES H

    2013-01-01

    .... However, stomatal closure during water stress predisposed Fremont cottonwood leaves to light and heat stress, resulting in greatly reduced photosynthesis beginning at 31 ° C versus at 41 ° C for well‐watered plants...

  9. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars

    DEFF Research Database (Denmark)

    Wang, Xiao; Dinler, Burcu Seckin; Vignjevic, Marija

    2015-01-01

    and sensitive cultivar under heat stress in relation to the corresponding control. The abundance of proteins related to signal transduction, heat shock, photosynthesis, and antioxidants increased, while the abundance of proteins related to nitrogen metabolism decreased in the tolerant cv. '810' under heat...... compared to sensitive cultivars under heat stress. The tolerant cv. '810' and the sensitive cv. '1039' were selected for further proteome analysis of leaves. Proteins related to photosynthesis, glycolysis, stress defence, heat shock and ATP production were differently expressed in leaves of the tolerant...... stress as compared to the control. Collectively, the results indicate that primarily changes in both the amount and activities of enzymes involved in photosynthesis and antioxidant activities in leaves contributed to higher heat tolerance in the cv. '810' compared to the heat sensitive cv. '1039'. (C...

  10. Heat stress risk profiles for three non-woven coveralls.

    Science.gov (United States)

    Garzón-Villalba, Ximena P; Wu, Yougui; Ashley, Candi D; Bernard, Thomas E

    2018-01-01

    The ACGIH® Threshold Limit Value® (TLV®) is used to limit heat stress exposures so that most workers can maintain thermal equilibrium. That is, the TLV was set to an upper limit of Sustainable exposures for most people. This article addresses the ability of the TLV to differentiate between Sustainable and Unsustainable heat exposures for four clothing ensembles over a range of environmental factors and metabolic rates (M). The four clothing ensembles (woven clothing, and particle barrier, water barrier and vapor barrier coveralls) represented a wide range of evaporative resistances. Two progressive heat stress studies provided data on 480 trials with 1440 pairs of Sustainable and Unsustainable exposures for the clothing over three levels of relative humidity (rh) (20, 50 and 70%), three levels of metabolic rate (115, 180, and 254 Wm-2) using 29 participants. The exposure metric was the difference between the observed wet bulb globe temperature (WBGT) and the TLV. Risk was characterized by odds ratios (ORs), Receiver Operating Characteristic (ROC) curves, and dose-response curves for the four ensembles. Conditional logistic regression models provided information on ORs. Logistic regressions were used to determine ROC curves with area under the curve (AUC), model the dose-response curve, and estimate offsets from woven clothing. The ORs were about 2.5 per 1°C-WBGT for woven clothing, particle barrier, and water barrier and for vapor barrier at 50% rh. When using the published Clothing Adjustment Values (CAVs, also known as Clothing Adjustment Factors, CAFs) or the offsets that included different values for vapor barrier based on rh, the AUC for all clothing was 0.86. When the fixed CAVs of the TLV were used, the AUC was 0.81. In conclusion, (1) ORs and the shapes of the dose-response curves for the nonwoven coveralls were similar to woven clothing, and (2) CAVs provided a robust way to account for the risk of nonwoven clothing. The robust nature of CAV extended

  11. Sm-like protein-mediated RNA metabolism is required for heat stress tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Masanori Okamoto

    2016-07-01

    Full Text Available Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5 and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 h and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative (AGI transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance.

  12. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010-2012.

    Science.gov (United States)

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Hand, Karen; Kelton, David F

    2015-11-27

    Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010-2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality

  13. Future Changes in Heat Stress over East Asia Resulting from Different Target Temperature Increases

    Science.gov (United States)

    Lee, Sang-Min; Min, Seung-Ki

    2017-04-01

    In assessing the impact of global warming, it is very important to understand the change in comprehensive heat stress as a function of several variables, rather than only temperature. Furthermore, in order to assess and implement the target temperature goals of the 2015 Paris Agreement, it is essential to have effective and scientifically valid information to predict and measure regional impact. In this study, the future changes in summer heat stress over East Asia were examined based on the Wet-Bulb Globe Temperature (WBGT) using CMIP5 multimodel simulations (historical and RCP scenario simulations), and differences in heat stress changes were assessed between 1.5-degree and 2-degree warmer worlds. Future boreal summer heat stress of land regions over East Asia, in excess of the 50-year return value, shows a rapid and nonlinear increase from the 2000s, and it is expected that severe heat stress will occur in the overall East Asia region by the 2040s. In particular, extreme heat stress events were found to occur much more frequently than summer mean intensity of heat stress. Comparisons of the increase in heat stress between 1.5-degree and 2-degree warmer worlds indicated a 20% decrease in the area experiencing severe heat stress over East Asia, and relatively large benefits (i.e. less frequent and less severe heat stress) were found in the southeastern China, the Korean Peninsula and Japan compared to other regions. Further, the equilibrium scenarios showed a larger increase in heat stress over East Asia than the transient scenarios, particularly in case of the 1.5-degree warmer world, which was found due to warmer water in the northwestern North Pacific in the equilibrium scenarios.

  14. Study of heat exchange in cooling systems of heat-stressed structures

    Science.gov (United States)

    Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.

    2017-01-01

    Increasing working parameters of the cycle of gas-turbine engines, complicating design of gas-turbine plants, as well as growing aerodynamic, thermal, static, and dynamic loads, necessitate the development of promising cooling systems for heat-stressed structures. This work is devoted to an experimental study of heat exchange in ducts equipped with systems of inclined and cross walls (fins). It has been found that an increase in the Reynolds number Re from 3000 to 20000 leads to a decrease in the heat exchange, which is characterized by the relative Nusselt number overline{Nu}, by 19-30% at the angle of inclination of the walls φ = 0, 40°, 50°, and 90° if the length of the walls x w is comparable to the spacing b s and by 12-15% at φ = 30° and 90° if x w ≫ b s. If cross walls are used in cooling ducts, the length of the walls x w plays the governing role; an increase in this characteristic from 1.22 × 10-3 to 3.14 × 10-3 m leads to an increase in the intensity of heat exchange by 30-40% and to a decrease in the capacity of the entire system of the walls. It has been shown that, on surfaces with wavy fins, the intensity of heat exchange is closest to that determined in the models under study. For example, values of the Colborne criterion StPr2/3 for ducts equipped with wavy fins and for the models under study differ only slightly (by 2-20% depending on the value of the angle φ). However, the difference for surfaces with short plate fins and ducts equipped with inclined walls is high (30-40%). This is due to the design features of these surfaces and to the severe effect of the inlet portion on heat exchange, since the surfaces are characterized by a higher ratio of the duct length to the hydraulic diameter L/d h at small fin thicknesses ((0.1-0.15) × 10-3 m). The experimental results can be used in developing designs of nozzle and rotor blades of high-temperature gas turbines in gas-turbine engines and plants.

  15. Full genome gene expression analysis of the heat stress response in Drosophila melanogaster.

    Science.gov (United States)

    Sørensen, Jesper G; Nielsen, Morten M; Kruhøffer, Mogens; Justesen, Just; Loeschcke, Volker

    2005-01-01

    The availability of full genome sequences has allowed the construction of microarrays, with which screening of the full genome for changes in gene expression is possible. This method can provide a wealth of information about biology at the level of gene expression and is a powerful method to identify genes and pathways involved in various processes. In this study, we report a detailed analysis of the full heat stress response in Drosophila melanogaster females, using whole genome gene expression arrays (Affymetrix Inc, Santa Clara, CA, USA). The study focuses on up- as well as downregulation of genes from just before and at 8 time points after an application of short heat hardening (36 degrees C for 1 hour). The expression changes were followed up to 64 hours after the heat stress, using 4 biological replicates. This study describes in detail the dramatic change in gene expression over time induced by a short-term heat treatment. We found both known stress responding genes and new candidate genes, and processes to be involved in the stress response. We identified 3 main groups of stress responsive genes that were early-upregulated, early-downregulated, and late-upregulated, respectively, among 1222 differentially expressed genes in the data set. Comparisons with stress sensitive genes identified by studies of responses to other types of stress allow the discussion of heat-specific and general stress responses in Drosophila. Several unexpected features were revealed by this analysis, which suggests that novel pathways and mechanisms are involved in the responses to heat stress and to stress in general. The majority of stress responsive genes identified in this and other studies were downregulated, and the degree of overlap among downregulated genes was relatively high, whereas genes responding by upregulation to heat and other stress factors were more specific to the stress applied or to the conditions of the particular study. As an expected exception, heat shock

  16. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice.

    Science.gov (United States)

    Hu, Wenhuo; Hu, Guocheng; Han, Bin

    2009-04-01

    Heat shock proteins (Hsps) are molecular chaperons, which function in protein folding and assembly, protein intracellular localization and secretion, and degradation of misfolded and truncated proteins. Heat shock factors (Hsfs) are the transcriptional activators of Hsps. It has been reported that Hsps and Hsfs are widely involved in response to various abiotic stresses such as heat, drought, salinity and cold. To elucidate the function and regulation of rice Hsp and Hsf genes, we examined a global expression profiling with heat stressed rice seedling, and then compared our results with the previous rice data under cold, drought and salt stresses. The comparison revealed that, while most Hsfs and Hsps had highly similar and overlapped response and regulation patterns under different stresses, some of those genes showed significantly specific response to distinct stress. We also found that heat-responsive gene profiling differed largely from those under cold/drought/salt stresses, and that drought treatment was more effective to up-regulate Hsf expression in rice than in Arabidopsis. Overall, our data suggests that Hsps and Hsfs might be important elements in cross-talk of different stress signal transduction networks. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Effects of exogenous desmopressin on a model of heat stress nephropathy in mice.

    Science.gov (United States)

    Roncal-Jimenez, Carlos A; Milagres, Tamara; Andres-Hernando, Ana; Kuwabara, Masanari; Jensen, Thomas; Song, Zhilin; Bjornstad, Petter; Garcia, Gabriela E; Sato, Yuka; Sanchez-Lozada, Laura G; Lanaspa, Miguel A; Johnson, Richard J

    2017-03-01

    Recurrent heat stress and dehydration have recently been shown experimentally to cause chronic kidney disease (CKD). One potential mediator may be vasopressin, acting via the type 2 vasopressin receptor (V2 receptor). We tested the hypothesis that desmopressin accelerates CKD in mice subjected to heat stress and recurrent dehydration. Recurrent exposure to heat with limited water availability was performed in male mice over a 5-wk period, with one group receiving desmopressin two times daily and the other group receiving vehicle. Two additional control groups were not exposed to heat or dehydration and received vehicle or desmopressin. The effects of the treatment on renal injury were assessed. Heat stress and recurrent dehydration induced functional changes (albuminuria, elevated urinary neutrophil gelatinase-associated protein), glomerular changes (mesangiolysis, matrix expansion), and tubulointerstitial changes (fibrosis, inflammation). Desmopressin also induced albuminuria, glomerular changes, and tubulointerstitial fibrosis in normal animals and also exacerbated injury in mice with heat stress nephropathy. Both heat stress and/or desmopressin were also associated with activation of the polyol pathway in the renal cortex, likely due to increased interstitial osmolarity. Our studies document both glomerular and tubulointerstitial injury and inflammation in heat stress nephropathy and may be clinically relevant to the pathogenesis of Mesoamerican nephropathy. Our data also suggest that vasopressin may play a role in the pathogenesis of the renal injury of heat stress nephropathy, likely via a V2 receptor-dependent pathway. Copyright © 2017 the American Physiological Society.

  18. Heat Stress in Tunisia: Effects on dairy cows and potential means ...

    African Journals Online (AJOL)

    Thus, one of the challenges to dairy producers is heat stress. The objectives of this work were to characterize the environmental conditions to which Holstein cows are exposed in Tunisia using the Temperature Humidity Index (THI), examine heat stress effects on lactating cows and to suggest potential management ...

  19. Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Nehammer, Camilla; Podolska, Agnieszka; Mackowiak, Sebastian D

    2015-01-01

    to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We...

  20. Heat Stress Alters Ruminal Fermentation and Digesta Characteristics, and Behavior in Lactating Dairy Cattle

    Science.gov (United States)

    In a study designed to assess the impact and interaction of nonfiber carbohydrates (NFC) and ruminally degradable protein (RDP) on ruminal characteristics and animal behavior, animals experienced heat stress in the first period (HS), and no/greatly reduced heat stress (NHS) in the second period, all...

  1. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    Science.gov (United States)

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  2. Drought priming effects on alleviating later damages of heat and drought stress in different wheat cultivars

    DEFF Research Database (Denmark)

    Mendanha, Thayna; Hyldgaard, Benita; Ottosen, Carl-Otto

    The ongoing change is climate; in particular the increase of drought and heat waves episodes are a major challenge in the prospect of food safety. Under many field conditions, plants are usually exposed to mild intermittent stress episodes rather than a terminal stress event. Previous, but limited...... studies suggest that plants subjected to early stress (primed) can be more resistant to future stress exposure than those not stressed during seedling stage. In our experiment we aimed to test if repeated mild drought stresses could improve heat and drought tolerance during anthesis heat and drought...... stresses in wheat cultivars. Two wheat cultivars, Gladius and Paragon, were grown in a fully controlled gravimetric platform and subjected to either no stress (control) or two (P) drought cycles during seedling stage, at three and five complete developed leaves. Each cycle consisted of withholding water...

  3. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Science.gov (United States)

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  4. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Directory of Open Access Journals (Sweden)

    C A Downs

    Full Text Available Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex, usually by expulsion or xenophagy (symbiophagy of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2 s(-1 PAR at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  5. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    Science.gov (United States)

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  6. Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper)

    National Research Council Canada - National Science Library

    Logan, Cheryl A; Somero, George N

    2011-01-01

    ... proteins of the cellular stress response. Here, using a complementary DNA microarray, we investigated the sequence in which cellular stress response-linked genes are expressed during acute heat stress, to elucidate how severity of stress...

  7. Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila

    DEFF Research Database (Denmark)

    Malmendal, Anders; Overgaard, Johannes; Bundy, Jacob G.

    2006-01-01

    on selective studies of specific compounds or characteristics or studies at the genomic or proteomic levels. In the present study, we have used untargeted NMR metabolomic profiling to examine the biological response to heat stress in Drosophila melanogaster. The metabolite profile was analyzed during recovery......Frequent exposure of terrestrial insects to temperature variation has led to the evolution of protective biochemical and physiological mechanisms, such as the heat shock response, which markedly increases the tolerance to heat stress. Insight into such mechanisms has, so far, mainly relied...... after exposure to different thermal stress treatments and compared with untreated controls. Both moderate and severe heat stress gave clear effects on the metabolite profiles. The profiles clearly demonstrated that hardening by moderate heat stress led to a faster reestablishment of metabolite...

  8. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism

    Science.gov (United States)

    Liu, Chengcheng; Niu, Yulong; Zhou, Xuedong; Zheng, Xin; Wang, Shida; Guo, Qiang; Li, Yuqing; Li, Mingyun; Li, Jiyao; Yang, Yi; Ding, Yi; Lamont, Richard J.; Xu, Xin

    2015-01-01

    Dental caries is closely associated with the virulence of Streptococcus mutans. The virulence expression of S. mutans is linked to its stress adaptation to the changes in the oral environment. In this work we used whole-genome microarrays to profile the dynamic transcriptomic responses of S. mutans during physiological heat stress. In addition, we evaluated the phenotypic changes, including, eDNA release, initial biofilm formation, extracellular polysaccharides generation, acid production/acid tolerance, and ATP turnover of S. mutans during heat stress. There were distinct patterns observed in the way that S. mutans responded to heat stress that included 66 transcription factors for the expression of functional genes being differentially expressed. Especially, response regulators of two component systems (TCSs), the repressors of heat shock proteins and regulators involved in sugar transporting and metabolism co-ordinated to enhance the cell’s survival and energy generation against heat stress in S. mutans. PMID:26251057

  9. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy

    National Research Council Canada - National Science Library

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-01-01

    ... as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN...

  10. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    Directory of Open Access Journals (Sweden)

    Hsiang-Ting Huang

    Full Text Available Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  11. Management of climatic heat stress risk in construction: a review of practices, methodologies, and future research.

    Science.gov (United States)

    Rowlinson, Steve; Yunyanjia, Andrea; Li, Baizhan; Chuanjingju, Carrie

    2014-05-01

    Climatic heat stress leads to accidents on construction sites brought about by a range of human factors emanating from heat induced illness, and fatigue leading to impaired capability, physical and mental. It is an occupational characteristic of construction work in many climates and the authors take the approach of re-engineering the whole safety management system rather than focusing on incremental improvement, which is current management practice in the construction industry. From a scientific viewpoint, climatic heat stress is determined by six key factors: (1) air temperature, (2) humidity, (3) radiant heat, and (4) wind speed indicating the environment, (5) metabolic heat generated by physical activities, and (6) "clothing effect" that moderates the heat exchange between the body and the environment. By making use of existing heat stress indices and heat stress management processes, heat stress risk on construction sites can be managed in three ways: (1) control of environmental heat stress exposure through use of an action-triggering threshold system, (2) control of continuous work time (CWT, referred by maximum allowable exposure duration) with mandatory work-rest regimens, and (3) enabling self-paced working through empowerment of employees. Existing heat stress practices and methodologies are critically reviewed and the authors propose a three-level methodology for an action-triggering, localized, simplified threshold system to facilitate effective decisions by frontline supervisors. The authors point out the need for "regional based" heat stress management practices that reflect unique climatic conditions, working practices and acclimatization propensity by local workers indifferent geographic regions. The authors set out the case for regional, rather than international, standards that account for this uniqueness and which are derived from site-based rather than laboratory-based research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Blood amino acids profile responding to heat stress in dairy cows

    Directory of Open Access Journals (Sweden)

    Jiang Guo

    2018-01-01

    Full Text Available Objective The objective of this experiment was to investigate the effects of heat stress on milk protein and blood amino acid profile in dairy cows. Methods Twelve dairy cows with the similar parity, days in milk and milk yield were randomly divided into two groups with six cows raised in summer and others in autumn, respectively. Constant managerial conditions and diets were maintained during the experiment. Measurements and samples for heat stress and no heat stress were obtained according to the physical alterations of the temperature-humidity index. Results Results showed that heat stress significantly reduced the milk protein content (p<0.05. Heat stress tended to decrease milk yield (p = 0.09. Furthermore, heat stress decreased dry matter intake, the concentration of blood glucose and insulin, and glutathione peroxidase activity, while increased levels of non-esterified fatty acid and malondialdehyde (p<0.05. Additionally, the concentrations of blood Thr involved in immune response were increased under heat stress (p<0.05. The concentration of blood Ala, Glu, Asp, and Gly, associated with gluconeogenesis, were also increased under heat stress (p<0.05. However, the concentration of blood Lys that promotes milk protein synthesis was decreased under heat stress (p<0.05. Conclusion In conclusion, this study revealed that more amino acids were required for maintenance but not for milk protein synthesis under heat stress, and the decreased availability of amino acids for milk protein synthesis may be attributed to competition of immune response and gluconeogenesis.

  13. Heat stress induced, ligand-independent MET and EGFR signalling in hepatocellular carcinoma.

    Science.gov (United States)

    Thompson, Scott M; Jondal, Danielle E; Butters, Kim A; Knudsen, Bruce E; Anderson, Jill L; Stokes, Matthew P; Jia, Xiaoying; Grande, Joseph P; Roberts, Lewis R; Callstrom, Matthew R; Woodrum, David A

    2017-11-06

    The aims of the present study were 2-fold: first, to test the hypothesis that heat stress induces MET and EGFR signalling in hepatocellular carcinoma (HCC) cells and inhibition of this signalling decreases HCC clonogenic survival; and second, to identify signalling pathways associated with heat stress induced MET signalling. MET(+) and EGFR(+) HCC cells were pre-treated with inhibitors to MET, EGFR, PI3K/mTOR or vehicle and subjected to heat stress or control ± HGF or EGF growth factors and assessed by colony formation assay, Western blotting and/or quantitative mass spectrometry. IACUC approved partial laser thermal or sham ablation was performed on orthotopic N1S1 and AS30D HCC tumours and liver/tumour assessed for phospho-MET and phospho-EGFR immunostaining. Heat-stress induced rapid MET and EGFR phosphorylation that is distinct from HGF or EGF in HCC cells and thermal ablation induced MET but not EGFR phosphorylation at the HCC tumour ablation margin. Inhibition of the MET and EGFR blocked both heat stress and growth factor induced MET and EGFR phosphorylation and inhibition of MET decreased HCC clonogenic survival following heat stress. Pathway analysis of quantitative phosphoproteomic data identified downstream pathways associated with heat stress induced MET signalling including AKT, ERK, Stat3 and JNK. However, inhibition of heat stress induced MET signalling did not block AKT signalling. Heat-stress induced MET and EGFR signalling is distinct from growth factor mediated signalling in HCC cells and MET inhibition enhances heat stress induced HCC cell killing via a PI3K/AKT/mTOR-independent mechanism.

  14. Role and Regulation of Autophagy in Heat Stress Responses of Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jie eZhou

    2014-04-01

    Full Text Available As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7 or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.

  15. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Young-Hee [Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, Chosun University College of Dentistry, Gwangju 501-759 (Korea, Republic of); Kim, Soo-A., E-mail: ksooa@dongguk.ac.kr [Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714 (Korea, Republic of)

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling.

  16. New guidelines are needed to manage heat stress in elite sports--The Fédération Internationale de Volleyball (FIVB) Heat Stress Monitoring Programme.

    Science.gov (United States)

    Bahr, Roald; Reeser, Jonathan C

    2012-09-01

    There seems to be a discrepancy between the available heat stress guidelines and the actual risk of heat-related illness among professional beach volleyball players competing under hot and humid conditions. To monitor heat stress and record cases of heat-related medical forfeits on the Swatch FIVB Beach Volleyball World Tour. The FIVB Heat Stress Monitoring Protocol covered events on the FIVB Beach Volleyball World Tour and FIVB Beach Volleyball World Championships during the 2009, 2010 and 2011 seasons (51 events, most of these double gender). The protocol consisted of (1) measuring the Wet Bulb Globe Temperature (WBGT) on centre court prior to the start of every match, and (2) recording any heat-related medical forfeits during the tournament. Data were collected during 48 of 51 events. There were nine events where the peak WBGT exceeded the US Navy Black flag conditions of >32.3°C and an additional two events where the peak WBGT exceeded 31°C, (meeting Red flag conditions.) In two events, the average WBGT equalled at least 31°C. One case of a medical forfeit related to heat stress was recorded over the 3-year surveillance period: an athlete whose fluid balance was compromised from a 3-day bout of acute gastroenteritis. The incidence of significant heat illness among athletes competing on the FIVB Beach Volleyball World Tour appears to be quite low, even though weather conditions frequently result in a WBGT index >32°C. Currently available guidelines appear to be inadequate to fully assess the risk of heat stress and too conservative to inform safety decisions in professional beach volleyball.

  17. Exercise intensity prescription during heat stress: A brief review.

    Science.gov (United States)

    Wingo, J E

    2015-06-01

    Exercise intensity can be prescribed using a variety of indices, such as rating of perceived exertion, heart rate, levels of absolute intensity (e.g., metabolic equivalents), and levels of relative intensity [e.g., percentage of maximal aerobic capacity (% V ˙ O 2 m a x ) or percentage of oxygen uptake reserve (% V ˙ O 2 R )]. Heart rate has a linear relationship with oxygen uptake, is easy to measure, and requires relatively inexpensive monitoring equipment, so it is commonly used to monitor exercise intensity. During heat stress, however, cardiovascular adjustments - including a rise in heart rate that is disproportionate to absolute intensity - result in diminished aerobic capacity and performance. These adjustments include cardiovascular drift, the progressive rise in heart rate and fall in stroke volume over time during prolonged, constant-rate exercise. A variety of factors have been shown to modulate the magnitude of cardiovascular drift, e.g., hyperthermia, dehydration, exercise intensity, and ambient temperature. Regardless of the mode of manipulation, decreases in stroke volume with cardiovascular drift are associated with proportionally similar decreases in V ˙ O 2 m a x , which affects the relationship between heart rate and relative metabolic intensity (% V ˙ O 2 m a x or % V ˙ O 2 R ). This review summarizes the current state of knowledge regarding the influence of cardiovascular drift and reduced V ˙ O 2 m a x on exercise intensity prescription in hot conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Occupational heat stress assessment and protective strategies in the context of climate change

    Science.gov (United States)

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2017-04-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  19. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.

    Science.gov (United States)

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Chan, Daniel W M

    2017-10-01

    A hot environment combined with physically demanding tasks can subject workers to a higher risk of heat stress. A series of regulations and guidelines have been proposed to design appropriate anti-heat stress work uniform to reduce body heat strain. The present study aimed to examine heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion in the heat. 10 healthy males performed intermittent treadmill running/walking to exhaustion, followed by 30min passive recovery sitting in a climatic chamber, which simulated the hot and humid outdoor environment (34°C temperature, 60% relative humidity, 0.3m/s air velocity, and 450W/m(2) solar radiation). The participants took part in five wear trials in counter-balanced order, including Sportswear, CIC Uniform, NEW Uniform, ICEBANK Cooling Vest, and NEW Cooling Vest, which have different levels of cooling capacity. Core temperature, skin temperature, heart rate, sweat loss, ratings of perceived exertion, and thermal sensations were measured throughout the entire heat exposure period. Physiological heat strain indices, including the physiological strain index (PhSI) and the perceptual strain index (PeSI), were used as a yardstick to quantify and compare the rate of recovery. Significantly lower physiological strain was observed in the newly developed NEW Uniform and NEW Cooling Vest groups compared with the commonly worn CIC Uniform group during recovery. At the end of the recovery period, participants in NEW Cooling Vest achieved the highest recovery (42.18% in PhSI and 81.08% in PeSI), followed by ICEBANK Cooling Vest, Sportswear, NEW Uniform, and CIC Uniform. The cooling capacity of anti-heat stress clothing ensembles and the recovery time significantly affect the rate of recovery in PhSI and PeSI, which may benefit the industry by formulating the appropriate work-rest schedule by considering the clothing effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. How specialized volatiles respond to chronic and short‐term physiological and shock heat stress in Brassica nigra

    National Research Council Canada - National Science Library

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-01-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress...

  1. BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.

    Science.gov (United States)

    Misztal, I

    2017-04-01

    Production environments are expected to change, mostly to a hotter climate but also possibly more extreme and drier. Can the current generation of farm animals cope with the changes or should it be specifically selected for changing conditions? In general, genetic selection produces animals with a smaller environmental footprint but also with smaller environmental flexibility. Some answers are coming from heat-stress research across species, with heat tolerance partly understood as a greater environmental flexibility. Specific studies in various species show the complexities of defining and selecting for heat tolerance. In Holsteins, the genetic component for effect of heat stress on production approximately doubles in second and quadruples in third parity. Cows with elevated body temperature have the greatest production under heat stress but probably are at risk for increased mortality. In hot but less intensive environments, the effect of heat stress on production is minimal, although the negative effect on fertility remains. Mortality peaks under heat stress and increases with parity. In Angus, the effect of heat stress is stronger only in selected regions, probably because of adaptation of calving seasons to local conditions and crossbreeding. Genetically, the direct effect shows variability because of heat stress, but the maternal effect does not, probably because dams shield calves from environmental challenges. In pigs, the effect of heat stress is strong for commercial farms but almost nothing for nucleus farms, which have lower pig density and better heat abatement. Under intensive management, heat stress is less evident in drier environments because of more efficient cooling. A genetic component of heat stress exists, but it is partly masked by improving management and selection based on data from elite farms. Genetic selection may provide superior identification of heat-tolerant animals, but a few cycles may be needed for clear results. Also, simple

  2. Role and mechanism of endoplasmic reticulum stress and Ca2+ overload in pulmonary endothelial cell damage induced by heat stress

    Directory of Open Access Journals (Sweden)

    Bao-jun YU

    2017-08-01

    Full Text Available Objective To observe the effect of different temperatures on endoplasmic reticulum stress, calcium overload, mitochondria and cell damage in pulmonary microvascular endothelial cells (PMVEC induced by heat stress, and clarify the mechanism of endothelial cell injury in the process of heat stress to provide experimental basis for clinical prevention and treatment of heat stree. Methods Heat stress model of PMVEC cell was set up. Control group cells were incubated at 37℃, 5%CO2, while heat stress group cells were incubated at 39℃, 41℃, 43℃ for 2h, respectively, then further incubated at 37℃, 5%CO2 for 6h. Pretreatment of cells with 20μmol/L BAPTA-AM or 50μmol/L CsA before heat stress at 43℃. The protein levels of p-PERK, PERK p-eIF2a, eIF2a, ATF4 and GRP78 were analyzed by Western blotting. Intracellular Ca2+, mitochondrial membrane potential and the changes in mitochondrial permeability transition pore were investigated by flow cytometry. The change of caspase-3 was detected by Caspase Assay Kit. Millicell-ERS Volt-Ohm Meter and Accessories was used for determining the changes of transepithelium electrical resistance (TER. Results Compared with the control group, with the increase of heat stress temperature (41-43℃, the phosphorylation of p-PERK and p-eIF2a protein and the expressions of ATF4 and GRP78 proteins were gradually activated, intracellular Ca2+ increased, MPTP pore was opened, mitochondrial membrane potential decreased, cell permeability increased and apoptosis occurred, and it was the most obvious in the 43℃ heat stress group, and the difference was statistically significant (P<0.05. Pretreatment with Ca2+ inhibitors promoted the recovery of the MPTP hole, mitochondrial membrane potential and cell permeability, and reduced the occurrence of apoptosis. While pretreatment with the mitochondrial protective agent did not reduce the release of Ca2+, but it could promote the recovery of cell permeability and reduce the

  3. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    Science.gov (United States)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  4. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  5. The American football uniform: uncompensable heat stress and hyperthermic exhaustion.

    Science.gov (United States)

    Armstrong, Lawrence E; Johnson, Evan C; Casa, Douglas J; Ganio, Matthew S; McDermott, Brendon P; Yamamoto, Linda M; Lopez, Rebecca M; Emmanuel, Holly

    2010-01-01

    ). Systolic and diastolic blood pressures (n = 9) indicated that hypotension developed throughout exercise (all treatments). Compared with the PART condition, the FULL condition resulted in a faster rate of T(re) increase (P < .001, d = 0.79), decreased treadmill exercise time (P = .005, d = 0.48), and fewer completed exercise bouts. Interestingly, T(re) increase was correlated with lean body mass during the FULL condition (R(2) = 0.71, P = .005), and treadmill exercise time was correlated with total fat mass during the CON (R(2) = 0.90, P < .001) and PART (R(2) = 0.69, P = .005) conditions. The FULL and PART conditions resulted in greater physiologic strain than the CON condition. These findings indicated that critical internal temperature and hypotension were concurrent with exhaustion during uncompensable (FULL) or nearly uncompensable (PART) heat stress and that anthropomorphic characteristics influenced heat storage and exercise time to exhaustion.

  6. Influence of Turmeric Rhizome Powder diets on decreasing oxidative stress caused by heat stress inbroiler model

    Directory of Open Access Journals (Sweden)

    Seyyed Javad Hosseini-Vashan

    2012-08-01

    Full Text Available Background and Aim: Production of reactive oxygen species (ROS increases during oxidative stress conditions, which stimulates diabetes, inflammatory reactions, rheumatism and anemia. Some antioxidant properties of turmeric rhizome powder (TRP were revealed by previous researchers. The present study was conducted to evaluate the influence of TRP on decreasing effects of oxidative stress resulted from heat stress in broiler chickens.   Materials and Methods: In this experimental study, two-hundred-sixty-four 1-day-old broilers were divided into 3 dietary treatments. The dietary treatments involved 0(control, 0.4 and 0.8% turmeric rhizome powder (cases. In order to create oxidative stress, the ambient temperature was daily raised from 21 to 33oc for 5 hours (11a.m-4p.m throughout the 28th-42nd days. Blood lipids, Glutathione peroxidase (GPx ,superoxide dismutase (SOD, and Tiobarbituric acid reaction score (TBARS were determined at the end of the experiment.   Results: The results revealed that total cholesterol and triglyceride were not affected. The 0.4 TRP diet decreased blood LDL (46.7±3.01 compared to basal group (52.0±2.17. HDL increased in broilers fed 0.8% TRP (74.0 ± 3.87 compared to chickens with basal diet (63.7± 2.98. Enzyme activity of GPx improved in broilers fed TRP diets (225.9± 11.52 as compared to chickens with basal diet(183.1± 8.52 however, the TRP diet did not affect enzyme activity of SOD (P > 0.05. The TBARS index decreased in broilers fed TRP (0.76 ± 0.0052 in basal vs.0.49 ± 0.0032 in 0.8% TRP.   Conclusion: The major bioactive component of TRP is Curcumin that can improve the antioxidant properties under oxidative stress and high ambient temperature.

  7. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster

    Science.gov (United States)

    Landis, Gary; Shen, Jie; Tower, John

    2012-01-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  8. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    Science.gov (United States)

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  9. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress.

    Science.gov (United States)

    Johnson, Stephanie M; Lim, Fei-Ling; Finkler, Aliza; Fromm, Hillel; Slabas, Antoni R; Knight, Marc R

    2014-06-10

    Abiotic stresses which include drought and heat are amongst the main limiting factors for plant growth and crop productivity. In the field, these stress types are rarely presented individually and plants are often subjected to a combination of stress types. Sorghum bicolor is a cereal crop which is grown in arid and semi-arid regions and is particularly well adapted to the hot and dry conditions in which it originates and is now grown as a crop. In order to better understand the mechanisms underlying combined stress tolerance in this important crop, we have used microarrays to investigate the transcriptional response of Sorghum subjected to heat and drought stresses imposed both individually and in combination. Microarrays consisting of 28585 gene probes identified gene expression changes equating to ~4% and 18% of genes on the chip following drought and heat stresses respectively. In response to combined stress ~20% of probes were differentially expressed. Whilst many of these transcript changes were in common with those changed in response to heat or drought alone, the levels of 2043 specific transcripts (representing 7% of all gene probes) were found to only be changed following the combined stress treatment. Ontological analysis of these 'unique' transcripts identified a potential role for specific transcription factors including MYB78 and ATAF1, chaperones including unique heat shock proteins (HSPs) and metabolic pathways including polyamine biosynthesis in the Sorghum combined stress response. These results show evidence for both cross-talk and specificity in the Sorghum response to combined heat and drought stress. It is clear that some aspects of the combined stress response are unique compared to those of individual stresses. A functional characterization of the genes and pathways identified here could lead to new targets for the enhancement of plant stress tolerance, which will be particularly important in the face of climate change and the increasing

  10. Tolerence for work-induced heat stress in men wearing liquidcooled garments

    Science.gov (United States)

    Blockley, W. V.; Roth, H. P.

    1971-01-01

    An investigation of the heat tolerance in men unable to dispose of metabolic heat as fast as it is produced within the body is discussed. Examinations were made of (a) the effect of work rate (metabolic rate) on tolerance time when body heat storage rate is a fixed quantity, and (b) tolerance time as a function of metabolic rate when heat loss is terminated after a thermal quasi-equilibrium was attained under comfortable conditions of heat transfer. The nature of the physiological mechanisms involved in such heat stress situations, and the possibility of using prediction techniques to establish standard procedures in emergencies involving cooling system failures are also discussed.

  11. Regulation of Heat Stress by HSF1 and GR

    Science.gov (United States)

    2016-09-01

    is to examine how activation of two cellular defense mechanisms involving heat shock transcription factor 1 (HSF1) and glucocorticoid receptor (GR) is...work of the project is progressing as projected. 15. SUBJECT TERMS heat adaptation , heat intolerance, skeletal muscle, C2C12, myoblast, rodent 16...Organizations 8 8. Special Reporting Requirements 8 9. Appendix 9 4 1. Introduction The cellular defense mechanisms mediated by heat shock

  12. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions.

    Science.gov (United States)

    Larose, Joanie; Boulay, Pierre; Wright-Beatty, Heather E; Sigal, Ronald J; Hardcastle, Stephen; Kenny, Glen P

    2014-07-01

    This study examined the progression of impairments in heat dissipation as a function of age and environmental conditions. Sixty men (n = 12 per group; 20-30, 40-44, 45-49, 50-54, and 55-70 yr) performed four intermittent exercise/recovery cycles for a duration of 2 h in dry (35°C, 20% relative humidity) and humid (35°C, 60% relative humidity) conditions. Evaporative heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and heat loss during the sessions. Evaporative heat loss was reduced during exercise in the humid vs. dry condition in age groups 20-30 (-17%), 40-44 (-18%), 45-49 (-21%), 50-54 (-25%), and 55-70 yr (-20%). HE fell short of being significantly different between groups in the dry condition, but was greater in age group 20-30 yr (279 ± 10 W) compared with age groups 45-49 (248 ± 8 W), 50-54 (242 ± 6 W), and 55-70 yr (240 ± 7 W) in the humid condition. As a result of a reduced rate of heat dissipation predominantly during exercise, age groups 40-70 yr stored between 60-85 and 13-38% more heat than age group 20-30 yr in the dry and humid conditions, respectively. These age-related differences in heat dissipation and heat storage were not paralleled by significant differences in local sweating and skin blood flow, or by differences in core temperature between groups. From a whole body perspective, combined heat and humidity impeded heat dissipation to a similar extent across age groups, but, more importantly, intermittent exercise in dry and humid heat stress conditions created a greater thermoregulatory challenge for middle-aged and older adults. Copyright © 2014 the American Physiological Society.

  13. Heat stress mortality and desired adaptation responses of healthcare system in Poland

    Science.gov (United States)

    Błażejczyk, Anna; Błażejczyk, Krzysztof; Baranowski, Jarosław; Kuchcik, Magdalena

    2017-09-01

    Heat stress is one of the environmental factors influencing the health of individuals and the wider population. There is a large body of research to document significant increases in mortality and morbidity during heat waves all over the world. This paper presents key results of research dealing with heat-related mortality (HRM) in various cities in Poland which cover about 25% of the country's population. Daily mortality and weather data reports for the years 1991-2000 were used. The intensity of heat stress was assessed by the universal thermal climate index (UTCI). The research considers also the projections of future bioclimate to the end of twenty-first century. Brain storming discussions were applied to find necessary adaptation strategies of healthcare system (HCS) in Poland, to minimise negative effects of heat stress. In general, in days with strong and very strong heat stress, ones must expect increase in mortality (in relation to no thermal stress days) of 12 and 47%, respectively. Because of projected rise in global temperature and heat stress frequency, we must expect significant increase in HRM to the end of twenty-first century of even 165% in comparison to present days. The results of research show necessity of urgent implementation of adaptation strategies to heat in HCS.

  14. Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine.

    Science.gov (United States)

    Rocheta, Margarida; Becker, Jörg D; Coito, João L; Carvalho, Luísa; Amâncio, Sara

    2014-03-01

    Grapevine is an extremely important crop worldwide.In southern Europe, post-flowering phases of the growth cycle can occur under high temperatures, excessive light, and drought conditions at soil and/or atmospheric level. In this study, we subjected greenhouse grown grapevine, variety Aragonez, to two individual abiotic stresses, water deficit stress(WDS), and heat stress (HS). The adaptation of plants to stress is a complex response triggered by cascades of molecular net works involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Using microarrays, we analyzed the leaf transcriptomic profile of the grapevine plants. Photosynthesis measurements verified that the plants were significantly affected by the stresses applied. Leaf gene expression was obtained using a high-throughput transcriptomic grapevine array, the 23K custom-made Affymetrix Vitis GeneChip. We identified 1,594 genes as differentially expressed between control and treatments and grouped them into ten major functional categories using MapMan software. The transcriptome of Aragonez was more significantly affected by HS when compared with WDS. The number of genes coding for heat-shock proteins and transcription factors expressed solely in response to HS suggesting their expression as unique signatures of HS. However, across-talk between the response pathways to both stresses was observed at the level of AP2/ERF transcription factors.

  15. Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress

    Directory of Open Access Journals (Sweden)

    Xiuli eHu

    2015-05-01

    Full Text Available Drought and heat stress, especially their combination, greatly affect crop production. Many studies have described transcriptome, proteome and phosphoproteome changes in response of plants to drought or heat stress. However, the study about the phosphoproteomic changes in response of crops to the combination stress is scare. To understand the mechanism of maize responses to the drought and heat combination stress, phosphoproteomic analysis was performed on maize leaves by using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. Five-leaf-stage maize was subjected to drought, heat or their combination, and the leaves were collected. Globally, heat, drought and the combined stress significantly changed the phosphorylation levels of 172, 149 and 144 phosphopeptides, respectively. These phosphopeptides corresponded to 282 proteins. Among them, 23 only responded to the combined stress and could not be predicted from their responses to single stressors; 30 and 75 only responded to drought and heat, respectively. Notably, 19 proteins were phosphorylated on different sites in response to the single and combination stresses. Of the seven significantly enriched phosphorylation motifs identified, two were common for all stresses, two were common for heat and the combined stress, and one was specific to the combined stress. The signaling pathways in which the phosphoproteins were involved clearly differed among the three stresses. Functional characterization of the phosphoproteins and the pathways identified here could lead to new targets for the enhancement of crop stress tolerance, which will be particularly important in the face of climate change and the increasing prevalence of abiotic stressors.

  16. Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles

    Directory of Open Access Journals (Sweden)

    Oswaldo eValdes-Lopez

    2016-04-01

    Full Text Available Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1,849 and 3,091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified ten key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  17. Wheat multiple synthetic derivatives: a new source for heat stress tolerance adaptive traits.

    Science.gov (United States)

    Elbashir, Awad Ahmed Elawad; Gorafi, Yasir Serag Alnor; Tahir, Izzat Sidahmed Ali; Kim, June-Sik; Tsujimoto, Hisashi

    2017-06-01

    Heat stress is detrimental to wheat (Triticum aestivum L.) productivity. In this study, we aimed to select heat-tolerant plants from a multiple synthetic derivatives (MSD) population and evaluate their agronomic and physiological traits. We selected six tolerant plants from the population with the background of the cultivar 'Norin 61' (N61) and established six MNH (MSD population of N61 selected as heat stress-tolerant) lines. We grew these lines with N61 in the field and growth chamber. In the field, we used optimum and late sowings to ensure plant exposure to heat. In the growth chamber, in addition to N61, we used the heat-tolerant cultivars 'Gelenson' and 'Bacanora'. We confirmed that MNH2 and MNH5 lines acquired heat tolerance. These lines had higher photosynthesis and stomata conductance and exhibited no reduction in grain yield and biomass under heat stress compared to N61. We noticed that N61 had relatively good adaptability to heat stress. Our results indicate that the MSD population includes the diversity of Aegilops tauschii and is a promising resource to uncover useful quantitative traits derived from this wild species. Selected lines could be useful for heat stress tolerance breeding.

  18. Overexpression of Small Heat Shock Protein Enhances Heat- and Salt-Stress Tolerance of Bifidobacterium longum NCC2705.

    Science.gov (United States)

    Khaskheli, Gul Bahar; Zuo, FangLei; Yu, Rui; Chen, ShangWu

    2015-07-01

    Bifidobacteria are probiotics that are incorporated live into various dairy products. They confer health-promotive effects via gastrointestinal tract colonization. However, to provide their health-beneficial properties, they must battle the various abiotic stresses in that environment, such as bile salts, acids, oxygen, and heat. In this study, Bifidobacterium longum salt- and heat-stress tolerance was enhanced by homologous overexpression of a small heat shock protein (sHsp). A positive contribution of overproduced sHsp to abiotic stress tolerance was observed when the bacterium was exposed to heat and salt stresses. Significantly higher survival of B. l ongum NCC2705 overexpressing sHsp was observed at 30 and 60 min into heat (55 °C) and salt (5 M NaCl) treatment, respectively. Thermotolerance analysis at 47 °C with sampling every 2 h also revealed the great potential tolerance of the engineered strain. Cell density and acid production rate increased for the sHsp-overexpressing strain after 8 and 10 h of both heat and salt stresses. In addition, tolerance to bile salts, low pH (3.5) and low temperature (4 °C) was also increased by homologous overexpression of the sHsp hsp20 in B. l ongum. Results revealed that hsp20 overexpression in B longum NCC2705 plays a positive cross-protective role in upregulating abiotic responses, ensuring the organism's tolerance to various stress conditions; therefore, sHsp-overexpressing B. l ongum is advised for fermented dairy foods and other probiotic product applications.

  19. Work-related heat stress concerns in automotive industries: a case study from Chennai, India.

    Science.gov (United States)

    Ayyappan, Ramalingam; Sankar, Sambandam; Rajkumar, Paramasivan; Balakrishnan, Kalpana

    2009-11-11

    Work-related heat stress assessments, the quantification of thermal loads and their physiological consequences have mostly been performed in non-tropical developed country settings. In many developing countries (many of which are also tropical), limited attempts have been made to create detailed job-exposure profiles for various sectors. We present here a case study from Chennai in southern India that illustrates the prevalence of work-related heat stress in multiple processes of automotive industries and the efficacy of relatively simple controls in reducing prevalence of the risk through longitudinal assessments. We conducted workplace heat stress assessments in automotive and automotive parts manufacturing units according to the protocols recommended by NIOSH, USA. Sites for measurements included indoor locations with process-generated heat exposure, indoor locations without direct process-generated heat exposure and outdoor locations. Nearly 400 measurements of heat stress were made over a four-year period at more than 100 locations within eight units involved with automotive or automotive parts manufacturing in greater Chennai metropolitan area. In addition, cross-sectional measurements were made in select processes of glass manufacturing and textiles to estimate relative prevalence of heat stress. Results indicate that many processes even in organised large-scale industries have yet to control heat stress-related hazards adequately. Upwards of 28% of workers employed in multiple processes were at risk of heat stress-related health impairment in the sectors assessed. Implications of longitudinal baseline data for assessing efficacy of interventions as well as modelling potential future impacts from climate change (through contributions from worker health and productivity impairments consequent to increases in ambient temperature) are described. The study re-emphasises the need for recognising heat stress as an important occupational health risk in both formal

  20. Calcium overload injury of rats' enterocyte IEC-6 by heat stress in vitro

    Directory of Open Access Journals (Sweden)

    Yan GENG

    2013-07-01

    Full Text Available Objective To investigate the effect of gradient heat stress on calcium overload of rats' enterocyte IEC-6 and calcium overload-related cell injury in vitro. Methods Thermal gradient was set in culturing IEC-6 cells in vitro. After thermal stimulation, Fluo-3Am probe with fluorescence microscope or flow cytometry was used to detect the change in intracellular Ca2+ concentration of IEC-6 cells. Phase contrast microscope was used to observe the morphological change in IEC-6. Coomassie blue dying method was employed to test the change in IEC-6 cytoskeleton. CCK-8 assay was used to assess cellular viability. Adhesion assay was applied to test the change in basilar membrane adhesiveness of IEC-6 cells. Results Compared with normal control group, cells of heat stress groups showed a thermal-dependent increase in intracellular Ca2+ concentration (P<0.01. Cells of heat stress groups were rounded in shape, the pseudopod was shorter, and cell space was enlarged. These phenomena were more obvious in 45℃ culture than in that of 43℃. Coomassie blue dying showed that the cytoskeleton of cells in heat stress groups became thickened and disordered, and stress fibers appeared. These phenomena were also more obvious in 45℃ culture than in that of 43℃. A thermal-dependant decline of cell viability in heat stress groups was observed via CCK-8 assay (P<0.01, and a thermal-dependant decline of basilar membrane adhesiveness in heat stress groups was observed via adhesion assay (P<0.01. Conclusion Heat stress may cause calcium overload of IEC-6 cells, and thus resulting in a series of calcium overload-related cell injury. Further investigation of the effect and mechanism of heat stress on calcium overload of intestinal mucosa endothelial cells may help further understand the mechanism of the pathogenesis of heat stroke.

  1. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    Energy Technology Data Exchange (ETDEWEB)

    Roudkenar, Mehryar Habibi, E-mail: roudkenar@ibto.ir [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Halabian, Raheleh [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Roushandeh, Amaneh Mohammadi [Department of Anatomy, Faculty of Medicine, Medical University of Tabriz, Tabriz (Iran, Islamic Republic of); Nourani, Mohammad Reza [Chemical Injury Research Center, Baqiyatallah Medical Science University, Tehran (Iran, Islamic Republic of); Masroori, Nasser [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Ebrahimi, Majid [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Chemical Injury Research Center, Baqiyatallah Medical Science University, Tehran (Iran, Islamic Republic of); Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Najafabadi, Ali Jahanian [Department of Molecular Biology, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali [National Cell Bank of Iran, Pasteur institute of Iran, Tehran (Iran, Islamic Republic of)

    2009-11-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  2. Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men

    DEFF Research Database (Denmark)

    Ganio, Matthew S; Overgaard, Morten; Seifert, Thomas

    2012-01-01

    (LBNP) to presyncope in 11 passively heat-stressed subjects (increase core temperature: 1.2 ± 0.2°C; means ± SD). Cardiac output was measured via thermodilution, and SVC was calculated while subjects were normothermic, heat stressed, and throughout subsequent LBNP. MAP was not changed by heat stress...

  3. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis.

    Directory of Open Access Journals (Sweden)

    Sara F Jastrebski

    Full Text Available The liver plays a central role in metabolism and is important in maintaining homeostasis throughout the body. This study integrated transcriptomic and metabolomic data to understand how the liver responds under chronic heat stress. Chickens from a rapidly growing broiler line were heat stressed for 8 hours per day for one week and liver samples were collected at 28 days post hatch. Transcriptome analysis reveals changes in genes responsible for cell cycle regulation, DNA replication, and DNA repair along with immune function. Integrating the metabolome and transcriptome data highlighted multiple pathways affected by heat stress including glucose, amino acid, and lipid metabolism along with glutathione production and beta-oxidation.

  4. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  5. The Populus trichocarpa PtHSP17.8 involved in heat and salt stress tolerances.

    Science.gov (United States)

    Li, Jianbo; Zhang, Jin; Jia, Huixia; Li, Yu; Xu, Xiangdong; Wang, Lijuan; Lu, Mengzhu

    2016-08-01

    PtHSP17.8 was regulated by various abiotic stresses. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses through maintain ROS homeostasis and cooperate with stress-related genes in Arabidopsis. Small heat shock proteins (sHSPs) play important roles in response to diverse biotic and abiotic stresses, especially in heat tolerance. However, limited information is available on the stress tolerance roles of sHSPs in woody species. To explore the function of sHSPs in poplar, we isolated and characterized PtHSP17.8 from Populus trichocarpa. Phylogenetic analysis and subcellular localization revealed that PtHSP17.8 was a cytosolic class I sHSP. The gene expression profile of PtHSP17.8 in various tissues showed that it was significantly accumulated in stem and root, which was consistent with the GUS expression pattern driven by promoter of PtHSP17.8. The expression of PtHSP17.8 could be induced by various abiotic stresses and significantly activated by heat stress. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses in Arabidopsis. The seedling survival rate, root length, relative water content, antioxidative enzyme activities, proline, and soluble sugar content were increased in transgenic Arabidopsis under heat and salt stresses, but not in normal condition. The co-expression network of PtHSP17.8 were constructed and demonstrated many stress responsive genes included. The stress-related genes in the co-expression network were up-regulated in the PtHSP17.8 overexpression seedlings. These results suggest that PtHSP17.8 confers heat and salt tolerances in plants.

  6. Analysis of age dependent effects of heat stress on EEG frequency components in rats.

    Science.gov (United States)

    Sinha, Rakesh Kumar

    2009-04-01

    To demonstrate changes in different frequencies of cerebral electrical activity or electroencephalogram (EEG) following exposure to high environmental heat in three different age groups of freely moving' rats. Rats were divided into three groups (i) acute heat stress--subjected to a single exposure for four hours at 38 degrees C; (ii) chronic heat stress--exposed for 21 days daily for one hour at 38 degrees C, and (iii) handling control groups. The digital polygraphic sleep-EEG recordings were performed just after the heat exposure from acute stressed rats and on 22nd day from chronic stressed rats by simultaneous recording of cortical EEG, EOG (electrooculogram), and EMG (electromyogram). Further, power spectrum analyses were performed to analyze the effects of heat stress. The frequency analysis of EEG signals following exposure to high environmental heat revealed that in all three age groups of rats, changes in higher frequency components (beta 2) were significant in all sleep-wake states following both acute and chronic heat stress conditions. After exposure to acute heat, significant changes in EEG frequencies with respect to their control groups were observed, which were reversed partly or fully in four hours of EEG recording. On the other hand, due to repetitive chronic exposure to hot environment, adaptive and long-term changes in EEG frequency patterns were observed. The present study has exhibited that the cortical EEG is sensitive to environmental heat and alterations in EEG frequencies in different sleep-wake states due to heat stress can be differentiated efficiently by EEG power spectrum analysis.

  7. The Influence of Non-Uniform High Heat Flux on Thermal Stress of Thermoelectric Power Generator

    Directory of Open Access Journals (Sweden)

    Tingzhen Ming

    2015-11-01

    Full Text Available A thermoelectric generator (TEG device which uses solar energy as heat source would achieve higher efficiency if there is a higher temperature difference between the hot-cold ends. However, higher temperature or higher heat flux being imposed upon the hot end will cause strong thermal stress, which will have a negative influence on the life cycle of the thermoelectric module. Meanwhile, in order to get high heat flux, a Fresnel lens is required to concentrate solar energy, which will cause non-uniformity of heat flux on the hot end of the TEG and further influence the thermal stress of the device. This phenomenon is very common in solar TEG devices but seldom research work has been reported. In this paper, numerical analysis on the heat transfer and thermal stress performance of a TEG module has been performed considering the variation on the power of the heat flux being imposed upon the hot-end; the influence of non-uniform high heat flux on thermal stress has also been analyzed. It is found that non-uniformity of high heat flux being imposed upon the hot end has a significant effect on the thermal stress of TEG and life expectation of the device. Taking the uniformity of 100% as standard, when the heating uniformity is 70%, 50%, 30%, and 10%, respectively, the maximum thermal stress of TEG module increased by 3%, 6%, 12%, and 22% respectively. If we increase the heat flux on the hot end, the influence of non-uniformity on the thermal stress will be more remarkable.

  8. Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots

    Directory of Open Access Journals (Sweden)

    Anju Giri

    2017-01-01

    Full Text Available Global warming will increase root heat stress, which is already common under certain conditions. Effects of heat stress on root nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease it; no studies have examined heat-stress effects on the concentration of nutrient-uptake proteins. We grew Solanum lycopersicum (tomato at 25 °C/20 °C (day/night and then transferred some plants for six days to 35 °C /30 °C (moderate heat or 42 °C/37 °C (severe heat (maximum root temperature = 32 °C or 39 °C, respectively; plants were then moved back to control conditions for seven days to monitor recovery. In a second experiment, plants were grown for 15 days at 28 °C/23 °C, 32 °C/27 °C, 36 °C/31 °C, and 40 °C/35 °C (day/night. Concentrations of nutrient-uptake and -assimilation proteins in roots were determined using protein-specific antibodies and ELISA (enzyme-linked immunosorbent assay. In general, (1 roots were affected by heat more than shoots, as indicated by decreased root:shoot mass ratio, shoot vs. root %N and C, and the level of nutrient metabolism proteins vs. less sensitive photosynthesis and stomatal conductance; and (2 negative effects on roots were large and slow-to-recover only with severe heat stress (40 °C–42 °C. Thus, short-term heat stress, if severe, can decrease total protein concentration and levels of nutrient-uptake and -assimilation proteins in roots. Hence, increases in heat stress with global warming may decrease crop production, as well as nutritional quality, partly via effects on root nutrient relations.

  9. Proliferation of dental follicle-derived cell populations in heat-stress conditions.

    Science.gov (United States)

    Yao, S; Gutierrez, D L; He, H; Dai, Y; Liu, D; Wise, G E

    2011-10-01

    Isolation and purification of adult stem cells (ASC) are a great challenge. Our objectives were to determine whether ASC are more heat-tolerant than non-stem cells, and to explore if ASC could be enriched by heat-stress treatments. Rat dental follicle cells were cultured in a variety of media to obtain either a heterogeneous cell population (H-DFC) consisting of stem cells and non-stem cells, or a homogenous cell population (DFC) containing non-stem cells only. Real-time RT-PCR was conducted to compare expression of heat-shock proteins (HSPs) between the two populations. To study heat tolerance, H-DFC and DFC were incubated under heat-stress conditions and cell proliferation was evaluated by alamar blue reduction assay. Furthermore, cells resulting from heat-stress treatments were evaluated for differentiation capability and expression of stem cell markers. H-DFC expressed higher levels of HSP110, HSP70s and HSP27s than did DFC. H-DFC increased levels of proliferation at 40 °C compared to controls grown at 37 °C; no significant reduction in proliferation occurred at temperatures below 40.5 °C. In contrast, DFC showed significant reduction in proliferation under all heat-stress treatments. Heat-stressed H-DFC had increased differentiation capability and increased expression of stem cell markers. Stem cells appear to be more tolerant to heat stress than non-stem cells. Incubation of a heterogeneous cell population in heat-stress conditions resulted in increased stem cell numbers. © 2011 Blackwell Publishing Ltd.

  10. Proliferation of Dental Follicle Derived Cell Populations in Heat-stress conditions

    Science.gov (United States)

    Yao, Shaomian; Gutierrez, Dina L.; He, Hongzhi; Dai, Yuntao; Liu, Dawen; Wise, Gary E.

    2011-01-01

    Objectives Isolation and purification of adult stem cells (ASC) are a great challenge. Our objectives were to determine if ASC are more heat-tolerant than non-stem cells, and to explore if ASC can be enriched by heat-stress treatments. Methods Rat dental follicle cells were cultured in different media to obtain either a heterogeneous cell population (H-DFC) consisting of stem cells and non-stem cells, or a homogenous cell population (DFC) containing only non-stem cells. Real-time RT-PCR was conducted to compare the expression of heat shock proteins (HSPs) between the two populations. To study the heat tolerance, H-DFC and DFC were incubated under heat stress conditions and cell proliferation was evaluated by an Alamar blue reduction assay. Furthermore, the cells resulting from heat stress treatments were evaluated for their differentiation capability and expression of stem cell markers. Results H-DFC expressed higher levels of HSP110, HSP70s and HSP27s than did the DFC. H-DFC increased proliferation at 40°C as compared to the control grown at37°C, and no significant reduction of proliferation occurred at temperatures below 40.5°C. In contrast, DFC showed significant reductions in proliferation under all heat stress treatments. Moreover, heat stressed H-DFC increased differentiation capability and increased expression of stem cell markers. Conclusion Stem cells appear to be more tolerant to heat-stress than non-stem cells. Incubation of heterogeneous cell population in heat-stress conditions resulted in increased stem cell numbers. PMID:21951291

  11. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers.

    Science.gov (United States)

    Abdo, Safaa E; El-Kassas, Seham; El-Nahas, Abeer F; Mahmoud, Shawky

    2017-01-01

    In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70, HSP90, HSF1, and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light.

  12. Differences in response to heat stress due to production level and breed of dairy cows

    Science.gov (United States)

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen

    2017-09-01

    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  13. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers

    Directory of Open Access Journals (Sweden)

    Safaa E. Abdo

    2017-01-01

    Full Text Available In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500. At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70, HSP90, HSF1, and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light.

  14. Differences in response to heat stress due to production level and breed of dairy cows.

    Science.gov (United States)

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen

    2017-05-06

    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  15. Extracellular vesicles released following heat stress induce bystander effect in unstressed populations.

    Science.gov (United States)

    Bewicke-Copley, Findlay; Mulcahy, Laura Ann; Jacobs, Laura Ann; Samuel, Priya; Akbar, Naveed; Pink, Ryan Charles; Carter, David Raul Francisco

    2017-01-01

    Cells naïve to stress can display the effects of stress, such as DNA damage and apoptosis, when they are exposed to signals from stressed cells; this phenomenon is known as the bystander effect. We previously showed that bystander effect induced by ionising radiation are mediated by extracellular vesicles (EVs). Bystander effect can also be induced by other types of stress, including heat shock, but it is unclear whether EVs are involved. Here we show that EVs released from heat shocked cells are also able to induce bystander damage in unstressed populations. Naïve cells treated with media conditioned by heat shocked cells showed higher levels of DNA damage and apoptosis than cells treated with media from control cells. Treating naïve cells with EVs derived from media conditioned by heat shocked cells also induced a bystander effect when compared to control, with DNA damage and apoptosis increasing whilst the level of cell viability was reduced. We demonstrate that treatment of naïve cells with heat shocked cell-derived EVs leads to greater invasiveness in a trans-well Matrigel assay. Finally, we show that naïve cells treated with EVs from heat-shocked cells are more likely to survive a subsequent heat shock, suggesting that these EVs mediate an adaptive response. We propose that EVs released following stress mediate an intercellular response that leads to apparent stress in neighbouring cells but also greater robustness in the face of a subsequent insult.

  16. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    Science.gov (United States)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT

  17. Heat stress induces expression of HSP genes in genetically divergent chickens.

    Science.gov (United States)

    Cedraz, Haniel; Gromboni, Juliana Gracielle Gonzaga; Garcia, Antonio Amandio Pinto; Farias Filho, Ronaldo Vasconcelos; Souza, Teillor Machado; Oliveira, Eduardo Ribeiro de; Oliveira, Elizangela Bonfim de; Nascimento, Carlos Souza do; Meneghetti, Camila; Wenceslau, Amauri Arias

    2017-01-01

    Chickens are animals that are sensitive to thermal stress, which may decrease their production level in terms that it affects feed intake and thus, decreasing body weight gain. The Heat Shock Factors (HSF) and Heat Shock Proteins (HSP) genes are involved in the key cellular defense mechanisms during exposure in hot environments. Aimed with this study to analyze the expression of HSF1, HSF3, HSP70 and HSP90 genes in two local breeds (Peloco and Caneluda) and a commercial broiler line (Cobb 500®) to verify differences in resistance of these chicken to Heat stress treatment. Chicken were submitted to heat stress under an average temperature of 39°C ± 1. Under stress environment, the HSP70 and HSP90 genes were more expressed in backyard chickens than in broiler. There was a difference in HSP70 and HSP90 expression between Caneluda and Cobb and between Peloco and Cobb under stress and comfort environment respectively. HSP70 expression is higher in local breeds during heat stress than in a commercial broiler line. No significant differences were observed in the expression of HSF1 and HSF3 genes between breeds or environments. HSP70 and HSP90 genes are highly expressed, HSF1 and HSF3 genes did not have high expression in all genetic groups. HSP70 and HSP90 are highly expressed in Peloco and Caneluda within heat stress, these breeds proved to be very resistant to high temperature.

  18. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress?

    Science.gov (United States)

    Zheng, Jincheng; Cheng, Xiongbin; Hoffmann, Ary A; Zhang, Bo; Ma, Chun-Sen

    2017-10-01

    Thermal stress at one life stage can affect fitness at a later stage in ectotherms with complex life cycles. Most relevant studies have focused on extreme stress levels, but here we also show substantial fitness effects in a moth when pupae are exposed to a relatively mild and sublethal heat stress. We consider the impact of a 35°C heat stress of 2h in three geographically separate populations of the oriental fruit moth (OFM, Grapholita molesta) from northern, middle and southern China. Heat stress negatively affected fecundity but increased adult heat resistance and adult longevity. Fitness effects were mostly consistent across populations but there were also some population differences. In the Shenyang population from northern China, there was a hormetic effect of heat on female longevity not evident in the other populations. Adults from all populations had higher LT 50 s due to heat stress after pupal exposure to the sublethal stress. These results highlight that the pupal stage is a particularly sensitive window for development and they have implications for seasonal adaptation in uncertain environments as well as changes in pest dynamics under climate warming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Carla E Barraza

    Full Text Available Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs and processing bodies (PBs. Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.

  20. Crop Production under Drought and Heat Stress: Plant Responses and Management Options.

    Science.gov (United States)

    Fahad, Shah; Bajwa, Ali A; Nazir, Usman; Anjum, Shakeel A; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang

    2017-01-01

    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future.

  1. Subjective heat stress of urban citizens: influencing factors and coping strategies

    Science.gov (United States)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Hans

    2014-05-01

    Given urbanization trend and a higher probability of heat waves in Europe, heat discomfort or heat stress for the population in cities is a growing concern that is addressed from various perspectives, such as urban micro climate, urban and spatial planning, human health, work performance and economic impacts. This presentation focuses on subjective heat stress experienced by urban citizens. In order to better understand individual subjective heat stress of urban citizens and how different measures to cope with heat stress in everyday life are applied, a questionnaire survey was conducted in Karlsruhe, Germany. Karlsruhe is located in one of the warmest regions in Germany and holds the German temperature record of 40.2°C in August 2003. In 2013, two hot weather periods with continuous heat warnings by the German Weather Service for 7 and 8 days occurred during the last 10 days of July and first 10 days of August 2013 with an inofficial maximum temperature of again 40.2°C on July 27th in Karlsruhe (not taken by the official network of the German Weather Service). The survey data was collected in the six weeks after the heat using an online-questionnaire on the website of the South German Climate Office that was announced via newspapers and social media channels to reach a wide audience in Karlsruhe. The questionnaire was additionally sent as paper version to groups of senior citizens to ensure having enough respondents from this heat sensitive social group in the sample. The 428 respondents aged 17-94 show differences in subjective heat stress experienced at home, at work and during various typical activities in daily routine. They differ also in the measures they used to adjust to and cope with the heat such as drinking more, evading the heat, seeking cooler places, changing daily routines, or use of air condition. Differences in heat stress can be explained by housing type, age, subjective health status, employment, and different coping measures and strategies

  2. Temperature and thermal stress evolutions in sapphire crystal during the cooling process by heat exchanger method

    Science.gov (United States)

    Ma, Wencheng; Zhao, Wenhan; Wu, Ming; Ding, Guoqiang; Liu, Lijun

    2017-09-01

    Transient numerical calculations were carried out to predict the evolutions of temperature and thermal stress in sapphire single crystal during the cooling process by heat exchanger method (HEM). Internal radiation in the semitransparent sapphire crystal was taken into account using the finite volume method (FVM) in the global heat transfer model. The numerical results seem to indicate that the narrow bottom region of the sapphire crystal is subjected to high thermal stress during the cooling process, which could be responsible for the seed cracking of the as-grown crystal, while the thermal stress is relatively small in the central main body of the crystal, and is less than 10 MPa during the whole cooling process. The fast decrease of the thermal stress in the bottom region of the crystal during the initial stage of cooling process is dominated by the reduction of the cooling helium gas in the heat exchanger shaft, and is not significantly affected by the heating power reduction rate.

  3. Chinese Herbal Medicines as Potential Agents for Alleviation of Heat Stress in Poultry

    Directory of Open Access Journals (Sweden)

    Parisa Shokryazdan

    2017-01-01

    Full Text Available Heat stress negatively affects the productivity of chickens in commercial poultry farms in humid tropics. In this study, the concentrations and types of the antioxidant compounds of eight Chinese herbal medicines, which have previously demonstrated promising effects on suppressing heat stress as a mixture, were investigated using reversed-phase High Performance Liquid Chromatography, spectrophotometry, Liquid Chromatography Mass Spectrometry, and Gas-Liquid Chromatography. Our results provided the levels of phenolic compounds, total amounts of sugars, and total unsaturated fatty acids in the herbal extracts. Apart from the detection and quantification of the active ingredients of herbs that have the potential to mitigate heat stress in poultry, results of this study also provide useful data for developing an efficient and accurate formulation of the herbs’ mixtures in order to induce positive effects against heat stress in in vivo studies.

  4. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  5. Expression of a Conserved Family of Cytoplasmic Low Molecular Weight Heat Shock Proteins during Heat Stress and Recovery.

    Science.gov (United States)

    Derocher, A E; Helm, K W; Lauzon, L M; Vierling, E

    1991-08-01

    Plants synthesize several families of low molecular weight (LMW) heat shock proteins (HSPs) in response to elevated temperatures. We have characterized two cDNAs, HSP18.1 and HSP17.9, that encode members of the class I family of LMW HSPs from pea (Pisum sativum). In addition, we investigated the expression of these HSPs at the mRNA and protein levels during heat stress and recovery. HSP18.1 and HSP17.9 are 82.1% identical at the amino acid level and are 80.8 to 92.9% identical to class I LMW HSPs of other angiosperms. Heat stress experiments were performed using intact seedlings subjected to a gradual temperature increase and held at a maximum temperature of 30 to 42 degrees Celsius for 4 hours. HSP18.1 and HSP17.9 mRNA levels peaked at the beginning of the maximum temperature period and declined rapidly after the stress period. Antiserum against a HSP18.1 fusion protein recognized both HSP18.1 and HSP17.9 but not members of other families of LMW HSPs. The accumulation of HSP18.1-immunodetected protein was proportional to the severity of the heat stress, and the protein had a half-life of 37.7 +/- 8 hours. The long half-life of these proteins supports the hypothesis that they are involved in establishing thermotolerance.

  6. Investigating the Association between Heat Stress and its Psychological Response to Determine the Optimal Index of Heat Strain

    Directory of Open Access Journals (Sweden)

    Amir Negahban

    2014-04-01

    Full Text Available Background & Objectives : Exposure to high temperatures is common among workers in warm environments leading to some undesirable effects . The aim of this study was to examine physiological responses to heat stress to determine the optimal index for direct measurement of physiological strain in workers of hot environments . Methods: In this study, 40 workers of melting and casting process were evaluated . Thermal stress was evaluated based on the WBGT index and physiological strain by measuring oral and tympanic temperature , urine temperature , heart rate, and recovery heart rate. Data was analyzed using SPSS v.16 software . Results : Heat stress exceeded the national and international recommended limits based on the WBGT index in 80% of cases of workstations . The correlations between heat strains including tympanic temperature, oral temperature, urine temperature, heart rate and heart rate recovery to heat stress index were significant, while tympanic temperature had a stronger association according to simple linear regression (P<0.01, R2=0.78 . Conclusion: Tympanic temperature had a stronger correlation with the WBGT index among the investigated indices . Accordingly , tympanic temperature could be a useful indicator compared to other parameters for measuring physiological strain in warm workplaces due to the ease of measurement, noninvasive nature , acceptance by workers , and fast and non- interference in the measurement process .

  7. Heat stress reduction of helicopter crew wearing a ventilated vest

    NARCIS (Netherlands)

    Reffeltrath, P.A.

    2006-01-01

    Background: Helicopter pilots are often exposed to periods of high heat strain, especially when wearing survival suits. Therefore, a prototype of a ventilated vest was evaluated on its capability to reduce the heat strain of helicopter pilots during a 2-h simulated flight. Hypothesis: It was

  8. Effect heat stress on subcellular localization of Ca2+ in tomato fruits

    Directory of Open Access Journals (Sweden)

    Grażyna Garbaczewska

    2014-01-01

    Full Text Available The aim of this paper was to compare the fruit cell ultrastructure and subcellular localization of Ca2+ after heat stress with the use of the potassium antimonate method (Slocum and Roux 1982, Tretyn et al. 1992. The tomato plants Robin cv., relatively tolerant to heat stress, were grown under uncontrolled greenhouse conditions to the stage of fruiting. The plants were placed for 20h in two temperature regimes: 23oC (optimal temperature or 40oC (heat stress in darkness, under water vapour saturated atmosphere. Immediately after heat stress the fruits were harvested to estimate water soluble and insoluble calcium contents and subcellular localization of Ca2+. After heating the concentration of calcium in tomato fruits increased about twice. In both temperature treatments the water soluble fractions were lower than insoluble ones at smaller differences between insoluble and soluble fractions after heat stress. The shapes and localization of Ca2+ detected with the use of potassium antimonate method show that in fruits of control plants the precipitates were numerous, small and of oval shape. They were dispersed in cytosol or adjoined to endoplasmic reticulum or to external membrane of chloroplast. In the fruit of heated plants the precipitates were irregular in shape, amorphous and singly dispersed in the cytosol. We observed also some cytological changes in the structure of membranes and organelles of the plants of both experimental treatments. The heat induced increase of calcium content and the changes in subcellular localization of Ca2+ under heat stress suggest that calcium ions may be involved in avoiding heat injury. The problem requires more detailed further investigations.

  9. Heat stress in an open-pit iron ore mine and its relationship with physiological strain

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Jafari

    2016-12-01

    (P value<0.001. The Pearson’s correlation coefficients were obtained 0.658 and 0.566 respectively, between WBGT index and values of PSI and PSIHR. Conclusion: WBGT index showed a higher correlation with physiological strain Index; and level of heat stress in all work units of mine was higher than recommended thresholds. Thus, countermeasures should be adopted to control heat stress for the workers in this field.

  10. Heat Stress and Injury Prevention Practices During Summer High School Football Training in South Texas

    OpenAIRE

    HEARON, CHRISTOPHER M.; RUIZ, ALBERTO; TAYLOR, ZACHARY J.

    2010-01-01

    The purpose was to describe practice conditions influencing the risk of heat stress to athletes in summer football training in South Texas high schools, and to compare these conditions to ACSM recommendations for heat stress/injury risk reduction in this population. Thirty (N=30) high school summer football practices were observed. Wet bulb globe temperature (WBGT) was measured before/after practices and practices were observed for: duration/structure; athlete clothing; and rest break frequen...

  11. Invited review: heat stress effects during late gestation on dry cows and their calves.

    Science.gov (United States)

    Tao, S; Dahl, G E

    2013-07-01

    In dairy cattle, late gestation is a critical period for fetal growth and physiological transition into the next lactation. Environmental factors, such as temperature and light, exert dramatic effects on the production, health, and well-being of animals during this period and after parturition. The aim of this review was to introduce effects of heat stress during late gestation on dairy cattle, and discuss the biological mechanisms that underlie the observed production and health responses in the dam and her fetus. Relative to cooled cows, cows that are heat stressed during late gestation have impaired mammary growth before parturition and decreased milk production in the subsequent lactation. In response to higher milk yield, cows cooled prepartum undergo a series of homeorhetic adaptations in early lactation to meet higher demand for milk synthesis compared with heat-stressed cows, but no direct effect of environmental heat stress on metabolism exists during the dry period. Prepartum cooling improves immune status of transition cows and evidence suggests that altered prolactin signaling in immune cells mediates the effects of heat stress on immune function. Late-gestation heat stress compromises placental development, which results in fetal hypoxia, malnutrition, and eventually fetal growth retardation. Maternal heat stress may also have carryover effects on the postnatal growth of offspring, but direct evidence is still lacking. Emerging evidence suggests that offspring from prepartum heat-stressed cows have compromised passive immunity and impaired cell-mediated immune function compared with those from cooled cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerability.

    Science.gov (United States)

    Aubrecht, Christoph; Özceylan, Dilek

    2013-06-01

    The increase in the number and severity of weather extremes (including excessive heat) potentially associated with climate change has highlighted the needs for research into risk assessment and risk reduction measures. Extreme heat events, the focus of this paper, have been consistently reported as the leading cause of weather-related mortality in the United States in recent years. In order to fully understand impact potentials and analyze risk in its individual components both the spatially and temporally varying patterns of heat and the multidimensional characteristics of vulnerability have to be considered. In this paper we present a composite index aggregating these factors to assess heat related risk for the U.S. National Capital Region in 2010. The study reveals how risk patterns are in part driven by the geographic variations of vulnerability, generally showing a clear difference between high-risk urban areas and wide areas of low risk in the suburban and rural environments. This pattern is particularly evident for the core center of the study area around the District of Columbia, which is largely characterized by high index values despite not having experienced the peak of the heat stress as compared to other regions in the metropolitan area. The article aims to set a framework for local-level heat stress risk assessment that can provide valuable input and decision support for climate adaptation planning as well as emergency managers aiming at risk reduction and optimization of resource distribution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows.

    Science.gov (United States)

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; B, Indu; Aarif, Ovais

    2017-06-01

    Thermal stress in India is one of the major constraints affecting dairy cattle productivity. Every attempt should be made to ameliorate the heat and calving related stress in high producing dairy cows for higher economic returns. In the current study, inorganic zinc was tried to alleviate the adverse effects of thermal stress in periparturient cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were chosen for the experiment. The blood samples were collected periparturiently on three occasions viz. -21, 0 and +21 days relative to calving. The in vitro study was conducted after isolating peripheral blood mononuclear cells (PBMC) from whole blood. The cultured PBMC were subjected to three different levels of exposures viz. 37°C as control, 42°C to induce thermal stress and 42°C + zinc to ameliorate the adverse effects of high temperature. Heat shock lead to a significant (Pdairy cows. The study could help to alleviate the heat stress and potentiate immunity by providing mineral supplements in periparturient dairy cattle habituating tropics. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Léonie Suter

    Full Text Available Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha. Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana.

  15. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress

    Directory of Open Access Journals (Sweden)

    Lane William S

    2005-03-01

    Full Text Available Abstract Background Heat shock factor (HSF/HSF1 not only is the transcription factor primarily responsible for the transcriptional response of cells to physical and chemical stress but also coregulates other important signaling pathways. The factor mediates the stress-induced expression of heat shock or stress proteins (HSPs. HSF/HSF1 is inactive in unstressed cells and is activated during stress. Activation is accompanied by hyperphosphorylation of the factor. The regulatory importance of this phosphorylation has remained incompletely understood. Several previous studies on human HSF1 were concerned with phosphorylation on Ser303, Ser307 and Ser363, which phosphorylation appears to be related to factor deactivation subsequent to stress, and one study reported stress-induced phosphorylation of Ser230 contributing to factor activation. However, no previous study attempted to fully describe the phosphorylation status of an HSF/HSF1 in stressed cells and to systematically identify phosphoresidues involved in factor activation. The present study reports such an analysis for human HSF1 in heat-stressed cells. Results An alanine scan of all Ser, Thr and Tyr residues of human HSF1 was carried out using a validated transactivation assay, and residues phosphorylated in HSF1 were identified by mass spectrometry and sequencing. HSF1 activated by heat treatment was phosphorylated on Ser121, Ser230, Ser292, Ser303, Ser307, Ser314, Ser319, Ser326, Ser344, Ser363, Ser419, and Ser444. Phosphorylation of Ser326 but none of the other Ser residues was found to contribute significantly to activation of the factor by heat stress. Phosphorylation on Ser326 increased rapidly during heat stress as shown by experiments using a pSer326 phosphopeptide antibody. Heat stress-induced DNA binding and nuclear translocation of a S326A substitution mutant was not impaired in HSF1-negative cells, but the mutant stimulated HSP70 expression several times less well than wild type

  16. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain.

    Science.gov (United States)

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-12-19

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: "Primadur", an elite cultivar with high yellow index, and "T1303", an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in "Primadur", with a general decrease in "T1303". Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.

  17. Impact Of Phenylpropanoid Compounds On Heat Stress Tolerance In Carrot Cell Cultures

    Directory of Open Access Journals (Sweden)

    Mauro Commisso

    2016-09-01

    Full Text Available ABSTRACTThe phenylpropanoid and flavonoid families include thousands of specialized metabolites that influence a wide range of processes in plants, including seed dispersal, auxin transport, photoprotection, mechanical support and protection against insect herbivory. Such metabolites play a key role in the protection of plants against abiotic stress, in many cases through their well-known ability to inhibit the formation of reactive oxygen species (ROS. However, the precise role of specific phenylpropanoid and flavonoid molecules is unclear. We therefore investigated the role of specific anthocyanins (ACs and other phenylpropanoids that accumulate in carrot cells cultivated in vitro, focusing on their supposed ability to protect cells from heat stress. First we characterized the effects of heat stress to identify quantifiable morphological traits as markers of heat stress susceptibility. We then fed the cultures with precursors to induce the targeted accumulation of specific compounds, and compared the impact of heat stress in these cultures and unfed controls. Data modeling based on Projection to Latent Structures (PLS regression revealed that metabolites containing coumaric or caffeic acid, including ACs, correlate with less heat damage. Further experiments suggested that one of the cellular targets damaged by heat stress and protected by these metabolites is the actin microfilament cytoskeleton.

  18. Nitric Oxide (NO in Plant Heat Stress Tolerance: Current Knowledge and Perspectives

    Directory of Open Access Journals (Sweden)

    Santisree Parankusam

    2017-09-01

    Full Text Available High temperature is one of the biggest abiotic stress challenges for agriculture. While, Nitric oxide (NO is gaining increasing attention from plant science community due to its involvement in resistance to various plant stress conditions, its implications on heat stress tolerance is still unclear. Several lines of evidence indicate NO as a key signaling molecule in mediating various plant responses such as photosynthesis, oxidative defense, osmolyte accumulation, gene expression, and protein modifications under heat stress. Furthermore, the interactions of NO with other signaling molecules and phytohormones to attain heat tolerance have also been building up in recent years. Nevertheless, deep insights into the functional intermediaries or signal transduction components associated with NO-mediated heat stress signaling are imperative to uncover their involvement in plant hormone induced feed-back regulations, ROS/NO balance, and stress induced gene transcription. Although, progress is underway, much work remains to define the functional relevance of this molecule in plant heat tolerance. This review provides an overview on current status and discuss knowledge gaps in exploiting NO, thereby enhancing our understanding of the role of NO in plant heat tolerance.

  19. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Roots provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined the response of these plant organs to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to whole roots. We identified 2,013 genes differentially regulated in root hairs in response to heat stress. Our gene regulatory module analysis identified ten, key modules that controlled the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from roots and root hairs. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a role in thermotolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  20. Comprehension of climatic and occupational heat stress amongst agricultural advisers and workers in Slovenia

    DEFF Research Database (Denmark)

    Pogačar, Tjaša; Črepinšek, Zalika; Kajfež Bogataj, Lučka

    2017-01-01

    Climate changes and the associated higher frequency of heat waves in Middle-European countries will aggravate occupational heat stress experienced by Slovenian workers. Appropriate behavioral adaptations are important coping strategies and it is pertinent to establish if knowledge among advisers ...

  1. Heat stress in wheat (Triticum aestivum L.) : Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo Martin, C.; Don, C.; Putten, van der P.E.L.

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila

  2. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; Putten, P.E.L. van der

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila

  3. Integrated Physiological Mechanisms of Exercise Performance, Adaptation, and Maladaptation to Heat Stress

    Science.gov (United States)

    2011-10-01

    Hypohydration effects on thermoregulation during moderate exercise in the cold . Eur J Appl Physiol 92: 565-570, 2004. 201. Kenefick RW, Sawka MN. Heat...regarding human thermoregulation and acclimation to heat stress (216, 220, 359), cardiovascular and endocrine adjust- ments (120, 192), and heat stroke... thermoregulation because of their motivation to complete a task or win in athletics; or with prac- tice/experience develop strategies of managing these cues to

  4. Computer simulation of working stress of heat treated steel specimen

    OpenAIRE

    B. Smoljan; D. Iljkić; S. Smokvina Hanza

    2009-01-01

    Purpose: In this paper, the prediction of working stress of quenched and tempered steel has been done. The working stress was characterized by yield strength and fracture toughness. The method of computer simulation of working stress was applied in workpiece of complex form.Design/methodology/approach: Hardness distribution of quenched and tempered workpiece of complex form was predicted by computer simulation of steel quenching using a finite volume method. The algorithm of estimation of yie...

  5. Baroreceptor unloading does not limit forearm sweat rate during severe passive heat stress.

    Science.gov (United States)

    Schlader, Zachary J; Gagnon, Daniel; Lucas, Rebekah A I; Pearson, James; Crandall, Craig G

    2015-02-15

    This study tested the hypothesis that sweat rate during passive heat stress is limited by baroreceptor unloading associated with heat stress. Two protocols were performed in which healthy subjects underwent passive heat stress that elicited an increase in intestinal temperature of ∼1.8°C. Upon attaining this level of hyperthermia, in protocol 1 (n = 10, 3 females) a bolus (19 ml/kg) of warm (∼38°C) isotonic saline was rapidly (5-10 min) infused intravenously to elevate central venous pressure (CVP), while in protocol 2 (n = 11, 5 females) phenylephrine was infused intravenously (60-120 μg/min) to return mean arterial pressure (MAP) to normothermic levels. In protocol 1, heat stress reduced CVP from 3.9 ± 1.9 mmHg (normothermia) to -0.6 ± 1.4 mmHg (P 0.999). Sweat rate was elevated by heat stress (1.21 ± 0.44 mg·cm(-2)·min(-1)) but remained unchanged during rapid saline infusion (1.26 ± 0.47 mg·cm(-2)·min(-1), P = 0.5), whereas cutaneous vascular conductance increased from 77 ± 10 to 101 ± 20% of local heating max (P = 0.029). In protocol 2, MAP was reduced with heat stress from 85 ± 7 mmHg to 76 ± 8 mmHg (P = 0.048). Although phenylephrine infusion returned MAP to normothermic levels (88 ± 7 mmHg; P > 0.999), sweat rate remained unchanged during phenylephrine infusion (1.39 ± 0.22 vs. 1.41 ± 0.24 mg·cm(-2)·min(-1); P > 0.999). These data indicate that both cardiopulmonary and arterial baroreceptor unloading do not limit increases in sweat rate during passive heat stress. Copyright © 2015 the American Physiological Society.

  6. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  7. Heat stress in chemical protective clothing: Porosity and vapour resistance

    NARCIS (Netherlands)

    Havenith, G.; Hartog, E.A. den; Martini, S.

    2011-01-01

    Heat strain in chemical protective clothing is an important factor in industrial and military practice. Various improvements to the clothing to alleviate strain while maintaining protection have been attempted. More recently, selectively permeable membranes have been introduced to improve

  8. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    Science.gov (United States)

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is

  9. Effect of heat stress on seed yield components and oil composition ...

    African Journals Online (AJOL)

    High temperature stress is a major environmental factor influencing processes such as growth, yield and quality of crops. The objective of this study was to assess the effect of heat stress, applied during grain-filling, on seed yield- and oil quality components in high- and mid-oleic sunflower hybrids. Genotypes were exposed ...

  10. Mild heat stress at a young age in Drosophila melanogaster leads to ...

    Indian Academy of Sciences (India)

    Unknown

    defence/cleaning systems (heat shock proteins (Hsps), antioxidases, DNA repair) or to effects of a changed metabolic rate, or both. We investigated the effect of mild stress exposures early in life on Hsp70 synthesis after a harder stress exposure later in life in .... laboratory at 20ºC (on agar, sugar, yeast, oatmeal medium).

  11. Ascorbic acid and heat stress in domestic chicken nutrition: A review ...

    African Journals Online (AJOL)

    The depressant effect of high temperature on performance often compels the technique of supplementing poultry diets to ensure optimum production. Therefore, it is necessary to adopt effective measures to control heat stress and its adverse effects on livestock. Vitamin C alleviates the side effects of stress, thus increased ...

  12. Effect of indomethacin on hyperthermia induced by heat stress in broiler chickens

    Science.gov (United States)

    Furlan, R. L.; Macari, M.; Malheiros, E. B.; Secato, E. R.; Guerreiro, J. R.

    An investigation was carried out to verify whether the heat stress hyperthermia response of broilers is prostaglandin-dependent. Male broiler chickens of the Hubbard-Petterson strain, aged 35-49 days, were used. Chickens were injected with indomethacin (1 mg/kg intraperitoneally ) 15 min before or 2 h after heat exposure (at 35°C for 4 h), and rectal temperature was measured before injection and up to 4 h thereafter. Birds were separated into two groups with and without access to water during heat stress. The increase in rectal temperature was lower (Pbroiler chickens.

  13. Heat and Dehydration Additively Enhance Cardiovascular Outcomes following Orthostatically-Stressful Calisthenics Exercise

    Directory of Open Access Journals (Sweden)

    Ashley P. Akerman

    2017-10-01

    Full Text Available Exercise and exogenous heat each stimulate multiple adaptations, but their roles are not well delineated, and that of the related stressor, dehydration, is largely unknown. While severe and prolonged hypohydration potentially “silences” the long-term heat acclimated phenotype, mild and transient dehydration may enhance cardiovascular and fluid-regulatory adaptations. We tested the hypothesis that exogenous heat stress and dehydration additively potentiate acute (24 h cardiovascular and hematological outcomes following exercise. In a randomized crossover study, 10 physically-active volunteers (mean ± SD: 173 ± 11 cm; 72.1 ± 11.5 kg; 24 ± 3 year; 6 females completed three trials of 90-min orthostatically-stressful calisthenics, in: (i temperate conditions (22°C, 50% rh, no airflow; CON; (ii heat (40°C, 60% rh whilst euhydrated (HEAT, and (iii heat with dehydration (no fluid ~16 h before and during exercise; HEAT+DEHY. Using linear mixed effects model analyses, core temperature (TCORE rose 0.7°C more in HEAT than CON (95% CL: [0.5, 0.9]; p < 0.001, and another 0.4°C in HEAT+DEHY ([0.2, 0.5]; p < 0.001, vs. HEAT. Skin temperature also rose 1.2°C more in HEAT than CON ([0.6, 1.8]; p < 0.001, and similarly to HEAT+DEHY (p = 0.922 vs. HEAT. Peak heart rate was 40 b·min−1 higher in HEAT than in CON ([28, 51]; p < 0.001, and another 15 b·min−1 higher in HEAT+DEHY ([3, 27]; p = 0.011, vs. HEAT. Mean arterial pressure at 24-h recovery was not consistently below baseline after CON or HEAT (p ≥ 0.452, but was reduced 4 ± 1 mm Hg after HEAT+DEHY ([0, 8]; p = 0.020 vs. baseline. Plasma volume at 24 h after exercise increased in all trials; the 7% increase in HEAT was not reliably more than in CON (5%; p = 0.335, but was an additional 4% larger after HEAT+DEHY ([1, 8]; p = 0.005 vs. HEAT. Pooled-trial correlational analysis showed the rise in TCORE predicted the hypotension (r = −0.4 and plasma volume expansion (r = 0.6 at 24 h, with

  14. Naval Hill Planetarium

    Science.gov (United States)

    Olivier, Bosman

    2014-04-01

    This article describes a new digital planetarium owned by the University of the Free State and located on Naval Hill, Bloemfontein, in the building formerly occupied by the Lamont-Hussey Observatory of the University of Michigan.

  15. Red Hill Updates

    Science.gov (United States)

    This and other periodic updates are intended to keep the public informed on major progress being made to protect public health and the environment at the Red Hill Underground Fuel Storage Facility in Hawaii.

  16. Evaluation of the workers exposure to heat and presenting intervention to control heat stress in profile factory

    Directory of Open Access Journals (Sweden)

    Motamedzade Majid

    2014-10-01

    Full Text Available Background & Objectives : Exposure to heat is a significant problem in the Industries. The present study aimed at the evaluation of thermal risk, measurement of heat stress index, and proposing a plan for heat control in cutting and welding units in profile factory . Methods : The data of study was analyzed through the measurement of physical parameters with digital WBGT device and silvered Kata thermometer. Workers’ thermal comfort was calculated based on predicted mean voted (PMV and predicted percentage of dissatisfied (PPD with regard to the computed parameters. In order to control heat stress, an aluminum-insulated wall was used and airflow velocity was increased in cutting and welding units. Results : The results of the WBGT index before and after the intervention using the shield were 30.8° C and 23.2° C, and by increasing airflow velocity were 30° C and 29.5° C respectively. In addition, the obtained results for PMV and PPD by using the shield were 1.38 and %44, and by increasing airflow velocity they were %90 and 2.56 respectively. The results confirmed by using the shield the measured WBGT index was lower than the occupational exposure limit (28 ◦ c. Conclusion : The results showed that by appropriate designing and using control methods, such as insulation shield and increased airflow velocity, optimal thermal comfort based on national heat exposure limits could be reached .

  17. Heat stress is overestimated in climate impact studies for irrigated agriculture

    Science.gov (United States)

    Siebert, Stefan; Webber, Heidi; Zhao, Gang; Ewert, Frank

    2017-05-01

    Climate change will increase the number and severity of heat waves, and is expected to negatively affect crop yields. Here we show for wheat and maize across Europe that heat stress is considerably reduced by irrigation due to surface cooling for both current and projected future climate. We demonstrate that crop heat stress impact assessments should be based on canopy temperature because simulations with air temperatures measured at standard weather stations cannot reproduce differences in crop heat stress between irrigated and rainfed conditions. Crop heat stress was overestimated on irrigated land when air temperature was used with errors becoming larger with projected climate change. Corresponding errors in mean crop yield calculated across Europe for baseline climate 1984-2013 of 0.2 Mg yr-1 (2%) and 0.6 Mg yr-1 (5%) for irrigated winter wheat and irrigated grain maize, respectively, would increase to up to 1.5 Mg yr-1 (16%) for irrigated winter wheat and 4.1 Mg yr-1 (39%) for irrigated grain maize, depending on the climate change projection/GCM combination considered. We conclude that climate change impact assessments for crop heat stress need to account explicitly for the impact of irrigation.

  18. Heat-stress increase under climate change twice as large in cities as in rural areas

    Science.gov (United States)

    Wouters, Hendrik; De Ridder, Koen; Poelmans, Lien; Willems, Patrick; Brouwers, Johan; Hosseinzadehtalaei, Parisa; Tabari, Hossein; Vanden Broucke, Sam; van Lipzig, Nicole P. M.; Demuzere, Matthias

    2017-04-01

    Urban areas, being warmer than their surroundings, are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine a 35-year convection-permitting climate model integrations with information from an ensemble of general circulation models to assess heat stress in a typical densely populated mid-latitude maritime region. We show that the heat-stress increase for the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heatwaves, and urban expansion. Cities experience a heat-stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat-stress surpasses everywhere the urban hot spots of today. Our novel insights exemplify the need to combine information from climate models, acting on different scales, for climate-change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.

  19. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available To protect humans from heat stress risks, thermal comfort and heat stress potential were evaluated under arid environment, which had never been made for such climate. The thermal indices THI, WBGT, PET, and UTCI were used to evaluate thermal comfort and heat stress. RayMan software model was used to estimate the PET, and the UTCI calculator was used for UTCI. Dry and wet bulb temperatures (Td, Tw, natural wet bulb temperature (Tnw, and globe temperature (Tg were measured in a summer day to be used in the calculation. The results showed the following. (i The thermal sensation and heat stress levels can be evaluated by either the PET or UTCI scales, and both are valid for extremely high temperature in the arid environment. (ii In the comfort zone, around 75% of individuals would be satisfied with the surrounding environment and feel comfortable during the whole day. (iii Persons are exposed to strong heat stress and would feel uncomfortable most of the daytime in summer. (iv Heat fatigue is expected with prolonged exposure to sun light and activity. (v During the daytime, humans should schedule their activities according to the highest permissible values of the WBGT to avoid thermal shock.

  20. The response of apoptotic and proteolytic systems to repeated heat stress in atrophied rat skeletal muscle.

    Science.gov (United States)

    Yoshihara, Toshinori; Sugiura, Takao; Yamamoto, Yuki; Shibaguchi, Tsubasa; Kakigi, Ryo; Naito, Hisashi

    2015-10-01

    We examined the effect of repeated heat stress on muscle atrophy, and apoptotic and proteolytic regulation in unloaded rat slow- and fast-type skeletal muscles. Forty male Wistar rats (11 week-old) were divided into control (CT), hindlimb unweighting (HU), intermittent weight-bearing during HU (HU + IWB), and intermittent weight-bearing with heat stress during HU (41-41.5°C for 30 min; HU + IWB + HS) groups. The HU + IWB + HS and HU + IWB groups were released from unloading for 1 h every second day, during which the HU + IWB + HS group underwent the heating. Our results revealed that repeated bouts of heat stress resulted in protection against disuse muscle atrophy in both soleus and plantaris muscles. This heat stress-induced protection against disuse-induced muscular atrophy may be partially due to reduced apoptotic activation in both muscles, and decreased ubiquitination in only the soleus muscle. We concluded that repeated heat stress attenuated skeletal muscle atrophy via suppressing apoptosis but the response to proteolytic systems depend on the muscle phenotype. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Managing heat and immune stress in athletes with evidence-based strategies.

    Science.gov (United States)

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  2. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630.

    Directory of Open Access Journals (Sweden)

    Nigel G Ternan

    Full Text Available Clostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41 °C versus 37 °C in C. difficile strain 630 and identified 341 differentially expressed genes encompassing multiple cellular functional categories. While the transcriptome was relatively resilient to the applied heat stress, we noted upregulation of classical heat shock genes including the groEL and dnaK operons in addition to other stress-responsive genes. Interestingly, the flagellin gene (fliC was downregulated, yet genes encoding the cell-wall associated flagellar components were upregulated suggesting that while motility may be reduced, adherence--to mucus or epithelial cells--could be enhanced during infection. We also observed that a number of phage associated genes were downregulated, as were genes associated with the conjugative transposon Tn5397 including a group II intron, thus highlighting a potential decrease in retromobility during heat stress. These data suggest that maintenance of lysogeny and genome wide stabilisation of mobile elements could be a global response to heat stress in this pathogen.

  3. Acute Heat Stress Induces Differential Gene Expressions in the Testes of a Broiler-Type Strain of Taiwan Country Chickens

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2015-01-01

    The expression of testicular genes following acute heat stress has been reported in layer-type roosters, but few similar studies have been conducted on broilers. This study investigated the effect of acute heat stress on the gene expression in the testes of a broiler-type strain of Taiwan country chickens. Roosters were subjected to acute heat stress (38°C) for 4 h, and then exposed to 25°C, with testes collected 0, 2, and 6 h after the cessation of heat stress, using non-heat-stressed roosters as controls (n = 3 roosters per group). The body temperature and respiratory rate increased significantly (pbroiler-type and layer-type chickens. We concluded that the transcriptional responses of testes to acute heat stress may differ between the broiler-type and layer-type roosters. Whether the differential expression patterns associate with the heat-tolerance in the strains require a further exploration. PMID:25932638

  4. Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress.

    Science.gov (United States)

    Zhang, Shengchun; Wang, Xiaojing

    2011-11-15

    Basal thermotolerance is very important for plant growth and development when plants are subjected to heat stress. However, little is known about the functional mechanism of gibberellins (GAs) in the basal thermotolerance of plants. In the present work, we provide molecular evidence that a member of the gene family encoding the GA-stimulated Arabidopsis (GASA) peptides, namely GASA5, is involved in the regulation of seedling thermotolerance. The GASA5-overexpressing plants displayed a weak thermotolerance, with a faster cotyledon-yellowing rate, lower seedling-survival rate, and slower hypocotyl elongation, in comparison to the wild-type and GASA5 null-mutant (gasa5-1) plants, after heat-stress treatment. The short-hypocotyl phenotype of GASA5-overexpressing plants could be rescued by the exogenous application of salicylic acid (SA), the hormone found to protect plants from heat stress-induced damage. GASA5 expression was inhibited by heat stress but unaffected by the application of exogenous SA. However, expression of the gene encoding the noexpresser of PR genes 1 (NPR1), a key component of the SA-signaling pathway, was downregulated by GASA5 overexpression. Importantly, when different GASA5-genotype plants were treated with heat stress, several genes encoding heat-shock proteins, including HSP101, HSP70B, HSP90.1, HSP17.6-C1, and HSP60, were inhibited by GASA5 overexpression. Meanwhile, hydrogen peroxide was accumulated at high levels in heat stress-treated GASA5-overexpressing plants. These results suggest that the Arabidopsis GASA5 gene acts as a negative regulator in thermotolerance by regulating both SA signaling and heat shock-protein accumulation. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Maxwell-Cattaneo Heat Convection and Thermal Stresses Responses of a Semi-Infinite Medium to High-Speed Laser Heating due to High Speed Laser Heating

    Directory of Open Access Journals (Sweden)

    Abdallah I. A.

    2009-07-01

    Full Text Available Based on Maxwell-Cattaneo convection equation, the thermoelasticity problem is in- vestigated in this paper. The analytic solution of a boundary value problem for a semi- infinite medium with traction free surface heated by a high-speed laser-pulses have Dirac temporal profile is solved. The temperature, the displacement and the stresses distributions are obtained analytically using the Laplace transformation, and discussed at small time duration of the laser pulses. A numerical study for Cu as a target is performed. The results are presented graphically. The obtained results indicate that the small time duration of the laser pulses has no e ect on the finite velocity of the heat con- ductivity, but the behavior of the stress and the displacement distribution are affected due to the pulsed heating process and due to the structure of the governing equations.

  6. A Comparative Proteomic Analysis of Pinellia ternata Leaves Exposed to Heat Stress

    Directory of Open Access Journals (Sweden)

    Zuoyi Liu

    2013-10-01

    Full Text Available Pinellia ternata is an important traditional Chinese medicinal plant. The growth of P. ternata is sensitive to high temperatures. To gain a better understanding of heat stress responses in P. ternata, we performed a comparative proteomic analysis. P. ternata seedlings were subjected to a temperature of 38 °C and samples were collected 24 h after treatment. Increased relative ion leakage and lipid peroxidation suggested that oxidative stress was frequently generated in rice leaves exposed to high temperature. Two-dimensional electrophoresis (2-DE was used to analyze heat-responsive proteins. More than 600 protein spots were reproducibly detected on each gel; of these spots, 20 were up-regulated, and 7 were down-regulated. A total of 24 proteins and protein species were successfully identified by MALDI-TOF/TOF MS. These proteins and protein species were found to be primarily small heat shock proteins (58% as well as proteins involved in RNA processing (17%, photosynthesis (13%, chlorophyll biosynthetic processes (4%, protein degradation (4% and defense (4%. Using 2-DE Western blot analysis, we confirmed the identities of the cytosolic class II small heat shock protein (sHSPs-CII identified by MS. The expression levels of four different proteins [cytosolic class I small heat shock protein (sHSPs-CI, sHSPs-CII, mitochondrial small heat shock protein (sHSPs-MIT, glycine-rich RNA-binding protein (GRP] were analyzed at the transcriptional level by quantitative real-time PCR. The mRNA levels of three sHSPs correlated with the corresponding protein levels. However, GRP was down-regulated at the beginning of heat stress but then increased substantially to reach a peak after 24 h of heat stress. Our study provides valuable new insight into the responses of P. ternata to heat stress.

  7. OF PHYSIOLOGICAL REACTIONS AND PHYSIOLOGICAL STRAIN IN HEALTHY MEN UNDER HEAT STRESS IN DRY AND STEAM HEAT SAUNAS

    Directory of Open Access Journals (Sweden)

    W. Pilch

    2014-07-01

    Full Text Available The aim of the paper was to follow up major physiological reactions, provoked by heat stress during dry and wet sauna baths. A physical strain index and subjective estimation of heat comfort of subjects who had not taken sauna baths before was also evaluated. Ten healthy males aged 25-28 underwent a dry sauna bath and then after a one-month break they underwent a steam sauna bath. Each time, they entered the sauna chamber 3 times for 15 minutes with five-minute breaks. During breaks they cooled their bodies with a cold shower and then rested in a sitting position. Before and after the baths, body mass and blood pressure were measured. Rectal temperature and heart rate were monitored during the baths. The physiological strain index (PSI and cumulative heat strain index (CHSI were calculated. Subjects assessed heat comfort by Bedford’s scale. Greater body mass losses were observed after the dry sauna bath compared to the wet sauna (-0.72 vs. -0.36 kg respectively. However, larger increases in rectal temperature and heart rate were observed during the wet sauna bath (38.8% and 21.2% respectively. Both types of sauna baths caused elevation of systolic blood pressure, but changes were greater after the dry one. Diastolic pressure was reduced similarly. Subjective feelings of heat comfort as well as PSI (4.83 ± 0.29 vs. 5.7 ± 0.28 and CHSI (76.3 ± 18.4 vs. 144.6 ± 21.7 were greater during the wet sauna bath. It can be concluded that due to high humidity and reduction of thermoregulation mechanisms, the wet sauna is more stressful for the organism than the dry sauna, where the temperature is higher with low humidity. Both observed indexes (PSI and CHSI could be appropriate for objective assessment of heat strain during passive heating of the organism.

  8. Phenotypic, physiological and malt quality analyses of US barley varieties subjected to short periods of heat and drought stress

    Science.gov (United States)

    Drought and heat are major abiotic stresses that significantly reduce crop yield and seed quality. In this study, we examined the impact of heat, drought and combined effect of heat and drought stress imposed during the grain filling stage in 18 US spring barley varieties. These impacts were assesse...

  9. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica

    Science.gov (United States)

    Danielle E. Marias; Frederick C. Meinzer; Christopher Still

    2017-01-01

    Given future climate predictions of increased temperature, and frequency and intensity of heat waves in the tropics, suitable habitat to grow ecologically, economically, and socially valuable Coffea arabica is severely threatened. We investigated how leaf age and heat stress duration impact recovery from heat stress in C. arabica...

  10. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress

    Science.gov (United States)

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-01

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  11. Metabolic Effects of Acibenzolar-S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass

    Directory of Open Access Journals (Sweden)

    David Jespersen

    2017-07-01

    Full Text Available Acibenzolar-S-methyl (ASM is a synthetic functional analog of salicylic acid which can induce systemic acquired resistance in plants, but its effects on abiotic stress tolerance is not well known. The objectives of this study were to examine effects of acibenzolar-S-methyl on heat or drought tolerance in creeping bentgrass (Agrostis stolonifera and to determine major ASM-responsive metabolites and proteins associated with enhanced abiotic stress tolerance. Creeping bentgrass plants (cv. ‘Penncross’ were foliarly sprayed with ASM and were exposed to non-stress (20/15°C day/night, heat stress (35/30°C, or drought conditions (by withholding irrigation in controlled-environment growth chambers. Exogenous ASM treatment resulted in improved heat or drought tolerance, as demonstrated by higher overall turf quality, relative water content, and chlorophyll content compared to the untreated control. Western blotting revealed that ASM application resulted in up-regulation of ATP synthase, HSP-20, PR-3, and Rubisco in plants exposed to heat stress, and greater accumulation of dehydrin in plants exposed to drought stress. Metabolite profiling identified a number of amino acids, organic acids, and sugars which were differentially accumulated between ASM treated and untreated plants under heat or drought stress, including aspartic acid, glycine, citric acid, malic acid, and the sugars glucose, and fructose. Our results suggested that ASM was effective in improving heat or drought tolerance in creeping bentgrass, mainly through enhancing protein synthesis and metabolite accumulation involved in osmotic adjustment, energy metabolism, and stress signaling.

  12. Exercise and heat stress: cerebral challenges and consequences

    DEFF Research Database (Denmark)

    Nybo, Lars

    2007-01-01

    to relate to central fatigue arising as the core/brain increases, the central fatigue during exercise with hyperthermia thus can be considered as the ultimate safety break against catastrophic hyperthermia. This would force the subject to stop exercising or decrease the internal heat production. It appears......This review deals with new aspects of exercise in the heat as a challenge that not only influences the locomotive and cardiovascular systems, but also affects the brain. Activation of the brain during such exercise is manifested in the lowering of the cerebral glucose to oxygen uptake ratio...

  13. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, Christoph; Carlson, Kent

    2011-07-22

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting's overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions

  14. Metabolomic Profiling of Soybeans (Glycine Max L.) Reveals Importance of Sugar and Nitogen Metabolisms under Drought and Heat Stress

    Science.gov (United States)

    Soybean, an important legume crop, is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen in the alterations of metabolic homeostasis of vegetative tissues. A global metabolomics approach can b...

  15. Effects of heat stress on gene expression in eggplant ( Solanum ...

    African Journals Online (AJOL)

    In order to identify differentially expressed genes involved in heat shock response, cDNA amplified fragment length polymorphism (cDNA-AFLP) and quantitative real-time polymerase chain reaction (QPCR) were used to study gene expression of eggplant seedlings subjected to 0, 6 and 12 h at 43°C. A total of 53 of over ...

  16. Pulmonary artery and intestinal temperatures during heat stress and cooling

    DEFF Research Database (Denmark)

    Pearson, James; Ganio, Matthew S; Seifert, Thomas

    2012-01-01

    In humans, whole body heating and cooling are used to address physiological questions where core temperature is central to the investigated hypotheses. Core temperature can be measured in various locations throughout the human body. The measurement of intestinal temperature is increasingly used...

  17. Prion-based memory of heat stress in yeast.

    Science.gov (United States)

    Chernova, Tatiana A; Chernoff, Yury O; Wilkinson, Keith D

    2017-05-04

    Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices.  We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.

  18. How a retrotransposon exploits the plant's heat stress response for its activation.

    Directory of Open Access Journals (Sweden)

    Vladimir V Cavrak

    2014-01-01

    Full Text Available Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.

  19. How a retrotransposon exploits the plant's heat stress response for its activation.

    Science.gov (United States)

    Cavrak, Vladimir V; Lettner, Nicole; Jamge, Suraj; Kosarewicz, Agata; Bayer, Laura Maria; Mittelsten Scheid, Ortrun

    2014-01-01

    Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.

  20. Influence of Newtonian heating on three dimensional MHD flow of couple stress nanofluid with viscous dissipation and Joule heating.

    Science.gov (United States)

    Ramzan, Muhammad

    2015-01-01

    The present exploration discusses the influence of Newtonian heating on the magnetohydrodynamic (MHD) three dimensional couple stress nanofluid past a stretching surface. Viscous dissipation and Joule heating effects are also considered. Moreover, the nanofluid model includes the combined effects of thermophoresis and Brownian motion. Using an appropriate transformation, the governing non linear partial differential equations are converted into nonlinear ordinary differential equations. Series solutions using Homotopy Analysis method (HAM) are computed. Plots are presented to portrait the arising parameters in the problem. It is seen that an increase in conjugate heating parameter results in considerable increase in the temperature profile of the stretching wall. Skin friction coefficient, local Nusselt and local Sherwood numbers tabulated and analyzed. Higher values of conjugate parameter, Thermophoresis parameter and Brownian motion parameter result in enhancement of temperature distribution.

  1. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Heat stress is a potent stimulus for enhancing rescue efficiency of recombinant Borna disease virus.

    Science.gov (United States)

    Kojima, Shohei; Honda, Tomoyuki; Matsumoto, Yusuke; Tomonaga, Keizo

    2014-11-01

    Recently developed vector systems based on Borna disease virus (BDV) hold promise as platforms for efficient and stable gene delivery to the central nervous system (CNS). However, because it currently takes several weeks to rescue recombinant BDV (rBDV), an improved rescue procedure would enhance the utility of this system. Heat stress reportedly enhances the rescue efficiency of other recombinant viruses. Here, heat stress was demonstrated to increase the amount of BDV genome in persistently BDV-infected cells without obvious cytotoxicity. Further analyses suggested that the effect of heat stress on BDV infection is not caused by an increase in the activity of BDV polymerase. More cells in which BDV replication occurs were obtained in the initial phase of rBDV rescue by using heat stress than when it was not used. Thus, heat stress is a useful improvement on the published rescue procedure for rBDV. The present findings may accelerate the practical use of BDV vector systems in basic science and the clinic and thus enable broader adoption of this viral vector, which is uniquely suited for gene delivery to the CNS. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  3. Effects of city expansion on heat stress under climate change conditions.

    Science.gov (United States)

    Argüeso, Daniel; Evans, Jason P; Pitman, Andrew J; Di Luca, Alejandro

    2015-01-01

    We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009) and future (2040-2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  4. Relationships between heat stress and metabolic and milk parameters in dairy cows in Southern Brazil.

    Science.gov (United States)

    Garcia, Alejandra Barrera; Angeli, Natalia; Machado, Letícia; de Cardoso, Felipe Cardoso; Gonzalez, Félix

    2015-06-01

    This study approached the relationships between heat stress and metabolic and milk parameters in a commercial herd of Holstein cows located in southern Brazil. A total of 50 multiparous cows at different lactations and lactation stages were selected in order to obtain 450 samples during two consecutive years (2011 and 2012). The animals were fed a partial mixed ration along with ryegrass pasture in a semi-confinement system. Blood, milk, and urine samples were taken during the summer and winter for a total of eight samples. Three intervals of temperature-humidity index (THI) were established during the summer months (January and February) as follows: low group (LOW), THI between 75 and 81 (N = 100); moderate group (MOD), THI between 81 and 82 (N = 150); and severe group (SEV), THI between 83 and 90 (N = 150). The group of cows sampled during winter (July) constituted the control group (CON; THI = 59, N = 50). Increased total protein, albumin, glucose, and cholesterol occurred in heat-stressed cows. Increased AST activity was also observed in heat-stressed cows, but triglycerides and beta-OH-butyrate did not show any difference among groups. Lower lactate and higher pO2 were seen in cows with heat stress than CON. Cows in SEV had a 21 % milk yield decrease, while lactose and protein decreased with fat not being affected. Heat stress had strong effects on metabolic, clinical, and performance parameters in Holstein cows.

  5. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

    Science.gov (United States)

    Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh

    2016-01-01

    Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (Pstress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

  6. Analysis of Thermal Stresses and Strains Developing during the Heat Treatment of Windmill Shaft

    Directory of Open Access Journals (Sweden)

    Cebo-Rudnicka A.

    2017-06-01

    Full Text Available In the paper the results of evaluation of the temperature and stress fields during four cycles of the heat treatment process of the windmill shaft has been presented. The temperature field has been calculated from the solution to the heat conduction equation over the whole heat treatment cycles of the windmill shaft. To calculate the stress field an incremental method has been used. The relations between stresses and strains have been described by Prandtl-Reuss equation for the elastic-plastic body. In order to determine the changes in the temperature and stress fields during heat treatment of the windmill shaft self-developed software utilizing the Finite Element Method has been used. This software can also be used to calculate temperature changes and stress field in ingots and other axially symmetric products. In the mathematical model of heating and cooling of the shaft maximum values of the strains have been determined, which allowed to avoid the crack formation. The critical values of strains have been determined by using modified Rice and Tracy criterion.

  7. Evaluation of heat stress in dry cleaner units:A case study in Qom, Iran

    Directory of Open Access Journals (Sweden)

    Javad Malakouti

    2016-04-01

    Full Text Available Background & Aims of the Study: Nowadays, heat stress is one of the most harmful physical agents in workplaces. According to the consequences of heat stress and have no information about it in Qom dry cleaner units, Iran, this study have been designed to evaluate the heat stress among workers of dry cleaner units in Qom province of Iran, in Jul-Aug 2011. Materials & Methods: This cross-sectional study was conducted in 113 units of active dry cleaner units. WBGT (Wet Bulb Globe Temperature index was selected for heat stress evaluation. In order to measure the requisite parameters, WBGT meter made of Casella Company had been used according to ISO 7243. Data had been analyzed according to Occupational Exposure Limits (OELs with SPSS V.16, using analysis of variance, independent T and LSD tests. Results: The average of WBGT index in Qom dry cleaner units of Iran were 28.98±1.64 °C. The average of WBGT index in 66.4% of units was up to 28°C. The average of relative humidity was 42.86%, the average of wet bulb temperature and globe temperature were 25.56°C and 36.72°C, respectively. The findings showed a significant correlation between the average of WBGT index and the standard recommendation level (p<0.0001. In dry cleaner units with less than 10 m2 area, heat stress was higher than other units  significantly (p<0.05. Conclusions: Heat stress in many dry cleaner units in Qom, Iran, was more than recommended OELs. Because of wet bulb and globe temperature in units were high value, the most important measures to heat controls, are technical engineering controls such as  radiation shield, insulation on boilers and modify the cooling systems.

  8. Effects of acclimation on water and electrolitic disbalance in soldiers during exertional heat stress

    Directory of Open Access Journals (Sweden)

    Radaković Sonja S.

    2007-01-01

    Full Text Available Background/Aim. Exertional heat stress is a common problem in military services. The aim of this study was to examine changes in body water and serum concentrations of some electrolites in soldiers during exertional heat stress (EHST, as well as effects of 10-day passive or active acclimation in a climatic chamber. Methods. Forty male soldiers with high aerobic capacity, performed EHST either in cool (20 ºC, 16 ºC WBGT-wet bulb globe temperature, or hot (40 ºC, 25 ºC WBGT environment, unacclimatized, or after 10 days of passive or active acclimation. The subjects were allowed to drink tap water ad libitum during EHST. Mean skin (Tsk and tympanic (Tty temperatures and heart rates (HR measured physiological strain, while sweat rate (SwR, and serum concentrations of sodium, potassium and osmolality measured changes in water and electrolyte status. Blood samples were collected before and immediately after the EHST. Results. Exertional heat stress in hot conditions induced physiological heat stress (increase in Tty, HR, and SwR, with significant decrease in serum sodium concentration (140.6±1.52 before vs 138.5±1.0 mmol/l after EHST, p < 0.01 and osmolality (280.7±3.8 vs 277.5±2.6 mOsm/kg, p < 0.05 in the unacclimatized group. The acclimated soldiers suffered no such effects of exertional heat stress, despite almost the same degree of heat strain, measured by Tty, HR and SwR. Conclusion. In the trained soldiers, 10-day passive or active acclimation in a climatic chamber can prevent disturbances in water and electrolytic balance, i.e. decrease in serum sodium concentrations and osmolality induced by exertional heat stress.

  9. First wall thermal stress analysis for suddenly applied heat fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Dalessandro, J A

    1978-01-01

    The failure criterion for a solid first wall of an inertial confinement reactor is investigated. Analytical expressions for induced thermal stresses in a plate are given. Two materials have been chosen for this investigation: grade H-451 graphite and chemically vapor deposited (CVD) ..beta..-silicon carbide. Structural failure can be related to either the maximum compressive stress produced on the surface or the maximum tensile stress developed in the interior of the plate; however, it is shown that compressive failure would predominate. A basis for the choice of the thermal shock figure of merit, k(1 - ..nu..) sigma/E ..cap alpha.. kappa/sup 1/2/, is identified. The result is that graphite and silicon carbide rank comparably.

  10. Heat adaptation from regular hot water immersion decreases proinflammatory responses, HSP70 expression, and physical heat stress.

    Science.gov (United States)

    Yang, Fwu-Lin; Lee, Chia-Chi; Subeq, Yi-Maun; Lee, Chung-Jen; Ke, Chun-Yen; Lee, Ru-Ping

    2017-10-01

    Hot-water immersion (HWI) is a type of thermal therapy for treating various diseases. In our study, the physiological responses to occasional and regular HWI have been explored. The rats were divided into a control group, occasional group (1D), and regular group (7D). The 1D and 7D groups received 42°C during 15mins HWI for 1 and 7 days, respectively. The blood samples were collected for proinflammatory cytokines examinations, the heart, liver and kidney were excised for subsequent IHC analysis to measure the level of heat shock protein 70 (HSP70). The results revealed that the body temperature increased significantly during HWI on Day 3 and significantly declined on Days 6 and 7. For the 7D group, body weight, heart rate, hematocrit, platelet, osmolarity, and lactate level were lower than those in the 1D group. Furthermore, the levels of granulocyte counts, tumor necrosis factor-α, and interleukin-6 were lower in the 7D group than in the 1D group. The induction of HSP70 in the 1D group was higher than in the other groups. Physiological responses to occasional HWI are disadvantageous because of heat stress. However, adaptation to heat from regular HWI resulted in decreased proinflammatory responses and physical heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Heat stress and occupational health and safety – spatial and temporal differentiation

    Directory of Open Access Journals (Sweden)

    Błażejczyk Krzysztof

    2014-03-01

    Full Text Available Evidence of climatic health hazards on the general population has been discussed in many studies but limited focus is placed on developing a relationship between climate and its effects on occupational health. Long working hours with high physical activity can cause health problems for workers ranging from mild heat cramps to severe heat stroke leading to death. The paper presents the possible risk of heat hazard to outdoor workers, using the example of Warsaw. The heat stress hazard, defined by WBGT values above 26 and 28°C and UTCI above 32 and 38°C, is assessed from two perspectives: its spatial distribution on a local scale and its temporal changes during the 21st century due to climate change. City centre and industrial districts were identified as the places with the greatest heat stress hazard. The number of heat stress days in a year (as predicted for the 21st century is increasing, meaning that heat-related illnesses are more likely to have a direct impact on workers’ health.

  12. Elevatated CO2 alleviates heat stress tolerance in wheat

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Rosenqvist, Eva S. K.; Ottosen, Carl-Otto

    2014-01-01

    Wollenweber4 1Department of Bioenergy, Tamilnadu Agricultural University, Coimbatore, India. 2Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Årslev, Denmark 3Institute of Agricultural Sciences and Ecology, University of Copenhagen, Hojbakkegaard Allé 9, 2630 Taastrup, Denmark 4......Institute for Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark *Presenting author This study analysed the alleviating effect of elevated CO2 on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different...... crop performance under various climatic stresses....

  13. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  14. Clostridium thermocellum Transcriptomic Profiles after Exposure to Furfural or Heat Stress

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Charlotte M [ORNL; Yang, Shihui [ORNL; Rodriguez, Jr., Miguel [ORNL; Ma, Qin [University of Georgia, Athens, GA; Johnson, Courtney M [ORNL; Dice, Lezlee T [ORNL; Xu, Ying [University of Georgia, Athens, GA; Brown, Steven D [ORNL

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP)biocatalyst for cellulosic ethanol production. It is capable of both cellulose solubilization and its fermentation to produce lignocellulosic ethanol. Intolerance to stresses routinely encountered during industrial fermentations may hinder the commercial development of this organism. A previous C. thermocellum ethanol stress study showed that largest transcriptomic response was in genes and proteins related to nitrogen uptake and metabolism. Results In this study, C. thermocellum was grown to mid-exponential phase and treated with furfural or heat to a final concentration of 3 g.L-1 or 68 C respectively to investigate general and specific physiological and regulatory stress responses. Samples were taken at 10, 30, 60 and 120 min post-shock, and from untreated control fermentations, for transcriptomic analyses and fermentation product determinations and compared to a published dataset from an ethanol stress study. Urea uptake genes were induced following furfural stress, but not to the same extent as ethanol stress and transcription from these genes was largely unaffected by heat stress. The largest transcriptomic response to furfural stress was genes for sulfate transporter subunits and enzymes in the sulfate assimilatory pathway, although these genes were also affected late in the heat and ethanol stress responses. Lactate production was higher in furfural treated culture, although the lactate dehydrogenase gene was not differentially expressed under this condition. Other redox related genes such as a copy of the rex gene, a bifunctional acetaldehyde-CoA/alcohol dehydrogenase and adjacent genes did show lower expression after furfural stress compared to the control, heat and ethanol fermentation profiles. Heat stress induced expression from chaperone related genes and overlap was observed with the responses to the other stresses. This study suggests the

  15. Heat and Dehydration Additively Enhance Cardiovascular Outcomes following Orthostatically-Stressful Calisthenics Exercise

    Science.gov (United States)

    Akerman, Ashley P.; Lucas, Samuel J. E.; Katare, Rajesh; Cotter, James D.

    2017-01-01

    Exercise and exogenous heat each stimulate multiple adaptations, but their roles are not well delineated, and that of the related stressor, dehydration, is largely unknown. While severe and prolonged hypohydration potentially “silences” the long-term heat acclimated phenotype, mild and transient dehydration may enhance cardiovascular and fluid-regulatory adaptations. We tested the hypothesis that exogenous heat stress and dehydration additively potentiate acute (24 h) cardiovascular and hematological outcomes following exercise. In a randomized crossover study, 10 physically-active volunteers (mean ± SD: 173 ± 11 cm; 72.1 ± 11.5 kg; 24 ± 3 year; 6 females) completed three trials of 90-min orthostatically-stressful calisthenics, in: (i) temperate conditions (22°C, 50% rh, no airflow; CON); (ii) heat (40°C, 60% rh) whilst euhydrated (HEAT), and (iii) heat with dehydration (no fluid ~16 h before and during exercise; HEAT+DEHY). Using linear mixed effects model analyses, core temperature (TCORE) rose 0.7°C more in HEAT than CON (95% CL: [0.5, 0.9]; p exercise increased in all trials; the 7% increase in HEAT was not reliably more than in CON (5%; p = 0.335), but was an additional 4% larger after HEAT+DEHY ([1, 8]; p = 0.005 vs. HEAT). Pooled-trial correlational analysis showed the rise in TCORE predicted the hypotension (r = −0.4) and plasma volume expansion (r = 0.6) at 24 h, with more hypotension reflecting more plasma expansion (r = −0.5). In conclusion, transient dehydration with heat potentiates short-term (24-h) hematological (hypervolemic) and cardiovascular (hypotensive) outcomes following calisthenics. PMID:29062280

  16. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress.

    Science.gov (United States)

    Dikmen, S; Wang, X-z; Ortega, M S; Cole, J B; Null, D J; Hansen, P J

    2015-12-01

    Dairy cows with increased rectal temperature experience lower milk yield and fertility. Rectal temperature during heat stress is heritable, so genetic selection for body temperature regulation could reduce effects of heat stress on production. One aim of the study was to validate the relationship between genotype and heat tolerance for single nucleotide polymorphisms (SNPs) previously associated with resistance to heat stress. A second aim was to identify new SNPs associated with heat stress resistance. Thermotolerance was assessed in lactating Holsteins during the summer by measuring rectal temperature (a direct measurement of body temperature regulation; n = 435), respiration rate (an indirect measurement of body temperature regulation, n = 450) and sweating rate (the major evaporative cooling mechanism in cattle, n = 455). The association between genotype and thermotolerance was evaluated for 19 SNPs previously associated with rectal temperature from a genomewide analysis study (GWAS), four SNPs previously associated with change in milk yield during heat stress from GWAS, 2 candidate gene SNPs previously associated with rectal temperature and respiration rate during heat stress (ATPA1A and HSP70A) and 66 SNPs in genes previously shown to be associated with reproduction, production or health traits in Holsteins. For SNPs previously associated with heat tolerance, regions of BTA4, BTA6 and BTA24 were associated with rectal temperature; regions of BTA6 and BTA24 were associated with respiration rate; and regions of BTA5, BTA26 and BTA29 were associated with sweating rate. New SNPs were identified for rectal temperature (n = 12), respiration rate (n = 8) and sweating rate (n = 3) from among those previously associated with production, reproduction or health traits. The SNP that explained the most variation were PGR and ASL for rectal temperature, ACAT2 and HSD17B7 for respiration rate, and ARL6IP1 and SERPINE2 for sweating rate. ARL6IP1 was associated with all three

  17. Case studies on heat stress related perceptions in different industrial sectors in southern India

    Directory of Open Access Journals (Sweden)

    Kalpana Balakrishnan

    2010-11-01

    Full Text Available Linkages between thermal loads and its physiological consequences have been widely studied in non-tropical developed country settings. In many developing countries like India, despite the widespread recognition of the problem, limited attempts have been made to estimate health impacts related to occupational heat stress and fewer yet to link heat stress with potential productivity losses. This is reflected in the ubiquity of workplaces with limited or no controls to reduce exposures. As a prelude to understanding the feasibility of alternative interventions in different industrial sectors, we present case studies from 10 different industrial units in Tamil Nadu, Chennai, which describe perceptions of occupational heat stress among the workers and supervisors/management.Units were selected from among those who had previously requested an assessment of workplace heat stress exposure at select locations as part of routine industrial hygiene services provided by the investigators. Since the earlier measurements were performed in response to a management request, all units were revisited to generate a simple job and process profile using checklists in order to understand the overall heat exposure situation in the concerned unit. This was followed by a simple questionnaire administration to a small subsample of employees to evaluate the perceptions of workers and supervisors/management. Finally, we retrieved available quantitative data from previous measurements of heat stress at these units to correlate prevalence of exposures with respective perceptions.Results indicate that the existing level of controls may not be sufficient for managing work-related heat stress in any of the sectors studied, with wide variations in perceived risks. There was a noticeable disconnect between worker's perceptions and their ability to secure workplace improvements related to heat stress from the management. Wider availability of engineering and administrative

  18. Indirect calorimetry: assessing animal response to heat and cold stress

    NARCIS (Netherlands)

    Gaughan, J.B.; Heetkamp, M.J.W.; Hendriks, P.

    2015-01-01

    Calorimetric thermal stress studies where indirect calorimetry is used as a tool to estimate energy expenditure have been undertaken since this technique was developed. Some examples of these studies are presented in this chapter. The measurement of gas exchange by means of an open-circuit

  19. Effects of heat stress on the level of heat shock protein 70 on the surface of hepatocellular carcinoma Hep G2 cells: implications for the treatment of tumors.

    Science.gov (United States)

    Cui, Naizhong; Xu, Yongping; Cao, Zhenhui; Xu, Fanxing; Zhang, Peng; Jin, Liji

    2013-04-01

    The ability to distinguish tumor cells from normal cells is vital to allow the immune system to selectively destroy tumor cells. In order to find an effective marker, we used enzyme-linked immunosorbent assay, immunocytochemistry, immunofluorescence, and flow cytometry to investigate the effects of heat stress on the amount of heat shock protein 70 on the surface of tumor cells (Hep G2 cells). Heat shock protein 70 is the major stress-induced heat shock protein found on the surface of tumor cells. Our results indicate that the percentage of Hep G2 cells with a detectable level of heat shock protein 70 on their cell surface increased significantly (P heat stress at 42 °C for 2 h (up to 1.92 times the level before heat treatment). The detectable level of heat shock protein 70 on the surface of Hep G2 cells reached its peak 12 h after treatment. However, the fluorescent intensity of stressed and unstressed Hep G2 cells was not significantly different (P > 0.05). The increase in the level of heat shock protein 70 on the surface of tumor cells following heat stress could provide a basis for finding novel immunotoxins as targets for drug action and may have application to be used in conjunction with hyperthermia in the treatment of tumors.

  20. Heat and Dehydration Additively Enhance Cardiovascular Outcomes following Orthostatically-Stressful Calisthenics Exercise.

    Science.gov (United States)

    Akerman, Ashley P; Lucas, Samuel J E; Katare, Rajesh; Cotter, James D

    2017-01-01

    Exercise and exogenous heat each stimulate multiple adaptations, but their roles are not well delineated, and that of the related stressor, dehydration, is largely unknown. While severe and prolonged hypohydration potentially "silences" the long-term heat acclimated phenotype, mild and transient dehydration may enhance cardiovascular and fluid-regulatory adaptations. We tested the hypothesis that exogenous heat stress and dehydration additively potentiate acute (24 h) cardiovascular and hematological outcomes following exercise. In a randomized crossover study, 10 physically-active volunteers (mean ± SD: 173 ± 11 cm; 72.1 ± 11.5 kg; 24 ± 3 year; 6 females) completed three trials of 90-min orthostatically-stressful calisthenics, in: (i) temperate conditions (22°C, 50% rh, no airflow; CON); (ii) heat (40°C, 60% rh) whilst euhydrated (HEAT), and (iii) heat with dehydration (no fluid ~16 h before and during exercise; HEAT+DEHY). Using linear mixed effects model analyses, core temperature (TCORE) rose 0.7°C more in HEAT than CON (95% CL: [0.5, 0.9]; p calisthenics.

  1. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.

    Science.gov (United States)

    Renaudeau, D; Collin, A; Yahav, S; de Basilio, V; Gourdine, J L; Collier, R J

    2012-05-01

    Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate

  2. Investigating inbreeding depression for heat stress tolerance in the model organism Drosophila melanogaster

    DEFF Research Database (Denmark)

    Pedersen, Kamilla Sofie; Pedersen, Louise Dybdahl; Sørensen, Anders Christian

    2012-01-01

    into vials before exposure to 38°C heat stress in a water bath for 1 h. Half an hour later the number of comatose inbred and control flies were scored and chi-square statistic procedures were used to test for different degrees of heat stress tolerance between the two lines of flies. The practical introduces......Mating between closely related individuals often causes reduced fitness, which is termed ‘inbreeding depression’. Inbreeding is, therefore, a threat towards the persistence of animal and plant populations. Here we present methods and results from a practical for high-school and first......-year university students and discuss learning outcomes of the exercise as an example of inquiry-based science teaching. We use the model organism Drosophila melanogaster to test the ability of inbred and control (non-inbred) females to survive heat stress exposure. Flies were anaesthetised and collected...

  3. Heat Stress Equation Development and Usage for Dryden Flight Research Center (DFRC)

    Science.gov (United States)

    Houtas, Franzeska; Teets, Edward H., Jr.

    2012-01-01

    Heat Stress Indices are equations that integrate some or all variables (e.g. temperature, relative humidity, wind speed), directly or indirectly, to produce a number for thermal stress on humans for a particular environment. There are a large number of equations that have been developed which range from simple equations that may ignore basic factors (e.g. wind effects on thermal loading, fixed contribution from solar heating) to complex equations that attempt to incorporate all variables. Each equation is evaluated for a particular use, as well as considering the ease of use and reliability of the results. The meteorology group at the Dryden Flight Research Center has utilized and enhanced the American College of Sports Medicine equation to represent the specific environment of the Mojave Desert. The Dryden WBGT Heat Stress equation has been vetted and implemented as an automated notification to the entire facility for the safety of all personnel and visitors.

  4. Umbilical Cord Blood-Derived Stem Cells Improve Heat Tolerance and Hypothalamic Damage in Heat Stressed Mice

    Directory of Open Access Journals (Sweden)

    Ling-Shu Tseng

    2014-01-01

    Full Text Available Heatstroke is characterized by excessive hyperthermia associated with systemic inflammatory responses, which leads to multiple organ failure, in which brain disorders predominate. This definition can be almost fulfilled by a mouse model of heatstroke used in the present study. Unanesthetized mice were exposed to whole body heating (41.2°C for 1 hour and then returned to room temperature (26°C for recovery. Immediately after termination of whole body heating, heated mice displayed excessive hyperthermia (body core temperature ~42.5°C. Four hours after termination of heat stress, heated mice displayed (i systemic inflammation; (ii ischemic, hypoxic, and oxidative damage to the hypothalamus; (iii hypothalamo-pituitary-adrenocortical axis impairment (reflected by plasma levels of both adrenocorticotrophic-hormone and corticosterone; (iv decreased fractional survival; and (v thermoregulatory deficits (e.g., they became hypothermia when they were exposed to room temperature. These heatstroke reactions can be significantly attenuated by human umbilical cord blood-derived CD34+ cells therapy. Our data suggest that human umbilical cord blood-derived stem cells therapy may improve outcomes of heatstroke in mice by reducing systemic inflammation as well as hypothalamo-pituitary-adrenocortical axis impairment.

  5. Assessing Heat Stress and Health among Construction Workers in a Changing Climate: A Review

    Directory of Open Access Journals (Sweden)

    Payel Acharya

    2018-02-01

    Full Text Available Construction workers are at an elevated risk of heat stress, due to the strenuous nature of the work, high temperature work condition, and a changing climate. An increasing number of workers are at risk, as the industry’s growth has been fueled by high demand and vast numbers of immigrant workers entering into the U.S., the Middle East and Asia to meet the demand. The risk of heat-related illnesses is increased by the fact that little to no regulations are present and/or enforced to protect these workers. This review recognizes the issues by summarizing epidemiological studies both in the U.S. and internationally. These studies have assessed the severity with which construction workers are affected by heat stress, risk factors and co-morbidities associated with heat-related illnesses in the construction industry, vulnerable populations, and efforts in implementing preventive measures.

  6. Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila

    DEFF Research Database (Denmark)

    Malmendal, Anders; Overgaard, Johannes; Bundy, Jacob G

    2006-01-01

    homeostasis after subsequent heat stress. Several metabolites were identified as responsive to heat stress and could be related to known physiological and biochemical responses. The time course of the recovery of metabolite homeostasis mirrored general changes in gene expression, showing that recovery follows...... the same temporal pattern at these two biological levels. Finally, our data show that heat hardening permits a quicker return to homeostasis, rather than a reduction of the acute metabolic perturbation and that the reestablishment of homeostasis is important for obtaining maximal heat-hardening effect....... The results display the power of NMR metabolomic profiling for characterization of the instantaneous physiological condition, enabling direct visualization of the perturbation of and return to homeostasis....

  7. Multi-model ensemble projections of future extreme heat stress on rice across southern China

    Science.gov (United States)

    He, Liang; Cleverly, James; Wang, Bin; Jin, Ning; Mi, Chunrong; Liu, De Li; Yu, Qiang

    2017-08-01

    Extreme heat events have become more frequent and intense with climate warming, and these heatwaves are a threat to rice production in southern China. Projected changes in heat stress in rice provide an assessment of the potential impact on crop production and can direct measures for adaptation to climate change. In this study, we calculated heat stress indices using statistical scaling techniques, which can efficiently downscale output from general circulation models (GCMs). Data across the rice belt in southern China were obtained from 28 GCMs in the Coupled Model Intercomparison Project phase 5 (CMIP5) with two emissions scenarios (RCP4.5 for current emissions and RCP8.5 for increasing emissions). Multi-model ensemble projections over the historical period (1960-2010) reproduced the trend of observations in heat stress indices (root-mean-square error RMSE = 6.5 days) better than multi-model arithmetic mean (RMSE 8.9 days) and any individual GCM (RMSE 11.4 days). The frequency of heat stress events was projected to increase by 2061-2100 in both scenarios (up to 185 and 319% for RCP4.5 and RCP8.5, respectively), especially in the middle and lower reaches of the Yangtze River. This increasing risk of exposure to heat stress above 30 °C during flowering and grain filling is predicted to impact rice production. The results of our study suggest the importance of specific adaption or mitigation strategies, such as selection of heat-tolerant cultivars and adjustment of planting date in a warmer future world.

  8. Physiological tolerance to uncompensated heat stress in soldiers: effects of various types of body cooling systems.

    Science.gov (United States)

    Jovanović, Dalibor; Karkalić, Radovan; Zeba, Snjezana; Pavlović, Miroslav; Radaković, Sonja S

    2014-03-01

    In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC) contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the "Phase Change Material" (PCM), and its effects on soldiers' subjective comfort and physiological performance during exertional heat stress in hot environments. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs) consisted of walking on a treadmill (5.5 km/h) in hot conditions (40 degreesC) in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL), and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk), tympanic temperature (Tty), and heart rate values (HR), while sweat rates (SwR) indicated changes in hydration status. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 +/- 0.03 and 0.49 +/- 0.05 degrees C, respectively; p PCM in the form of vest under NBC protective clothes during physical activity in hot conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperatures and heart rate values. These effects directly improve heat tolerance, hydration state, decrease in the risk of heat illness, and extends the duration of soldiers' exposure to extreme conditions.

  9. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance

    Directory of Open Access Journals (Sweden)

    Kamila Lucia Bokszczanin

    2013-08-01

    Full Text Available Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of heat stress response mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant heat stress response. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on heat stress response of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen heat stress response and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into

  10. The modulation of catecholamines on immune response of scallop Chlamys farreri under heat stress.

    Science.gov (United States)

    Zhang, Huan; Zhou, Zhi; Yue, Feng; Wang, Lingling; Yang, Chuanyan; Wang, Mengqiang; Song, Linsheng

    2014-01-01

    Catecholamines (CAs) play key roles in mediating the physiological responses to various stresses. In the present study, the expression of CA-related genes were examined in the hemocytes of scallop Chlamys farreri under heat stress, and several immune or metabolism-related parameters were investigated after heat stress and adrenoceptor antagonist stimulation. After the scallops were cultured at 28°C, the mRNA expression level of dopa decarboxylase (CfDDC) and α-adrenoceptor (CfαAR) increased significantly (P<0.01), whereas that of monoamine oxidase (CfMAO) was down-regulated in the first 6h (P<0.05), and then up-regulated to the maximum level at 24h (P<0.01). In the hemocytes of scallops injected with adrenoceptor antagonist, the expression levels of peptidoglycan-recognition protein (CfPGRP-S1) and C-type lectin (CfLec-1) began to increase significantly at 2 and 3h post propranolol and high temperature treatment, respectively (P<0.01). While the up-regulation of heat shock protein 70 (CfHSP70) post heat stress was significantly inhibited by prazosin injection (P<0.01), and that of hexokinase (CfHK) was inhibited by both prazosin and propranolol injection (P<0.01). Moreover, the remarkable increase of relative specific activity of SOD in the hemolymph post heat stress (P<0.01) was further up-regulated early after prazosin or propranolol injection (P<0.01), while that of the relative anti-bacterial ability was down-regulated by prazosin or propranolol treatment (P<0.01). These results collectively indicated that the catecholaminergic neuroendocrine system in scallop could be activated by heat stress to release CAs, which subsequently modulated the immune response and energy metabolism via α- and β-adrenoceptors. Copyright © 2013. Published by Elsevier Inc.

  11. Proteomic changes of the porcine skeletal muscle in response to chronic heat stress.

    Science.gov (United States)

    Cui, Yanjun; Hao, Yue; Li, Jielei; Gao, Yanli; Gu, Xianhong

    2017-12-14

    Heat stress (HS) has an adverse effect on meat quality; yet, the underlying molecular mechanisms altering meat quality due to muscle responses to stress remain unclear. Sixteen castrated male crossbreeds between Landrace × Yorkshire sows and Duroc boars (79.00 ± 1.50 kg body weight) were exposed to either thermal neutral (22 °C, n=8) or heat stress (30 °C, n=8) conditions for 3 weeks. Subsequently, the longissimus dorsi (LD) muscle of all pigs was assayed for meat quality parameters and proteome analysis. HS decreased postmortem pH (24 h) and intramuscular fat, changed ultimate L*a*b*values, and increased drip loss and shear force. Proteome analysis of the LD was conducted by two-dimensional gel electrophoresis and mass spectrometry. A total of 23 differentially expressed proteins were identified, of which 3 were verified by western blotting analysis. The identified proteins were involved in six type of biological process: carbohydrate metabolism, myofibrillar and cytoskeleton structure, stress response, antioxidant and detoxification, calcium binding and cellular apoptosis. Interestingly, heat stress induced higher levels of heat shock protein, antioxidants, and calcium-binding proteins, which are involved in the mechanisms of defense and homeostasis. The results indicate that HS-induced changes in the expression of myofibrillar proteins, glucose and energy metabolism-related proteins, heat shock protein, and antioxidant enzymes might, at least partly, contribute to increase in meat tenderness. These findings will provide the foundation for developing future mitigating solutions and preventative therapies to reduce the detrimental effects of chronic heat stress on muscle function, metabolism and meat quality. This article is protected by copyright. All rights reserved.

  12. Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling.

    Science.gov (United States)

    Luo, Q B; Song, X Y; Ji, C L; Zhang, X Q; Zhang, D X

    2014-08-10

    The process of heat regulation is complex and its exact molecular mechanism is not fully understood. In this study, to investigate the global gene regulation response to acute heat exposure, gene microarrays were exploited to analyze the effects of heat stress on three tissues (brain, liver, leg muscle) of the yellow broiler chicken (Gallus gallus). We detected 166 differentially expressed genes (DEGs) in the brain, 219 in the leg muscle and 317 in the liver. Six of these genes were differentially expressed in all three tissues and were validated by qRT-PCR, and included heat shock protein genes (HSPH1, HSP25), apoptosis-related genes (RB1CC1, BAG3), a cell proliferation and differentiation-related gene (ID1) and the hunger and energy metabolism related gene (PDK). All these genes might be important factors in chickens suffering from heat stress. We constructed gene co-expression networks using the DEGs of the brain, leg muscle and liver and two, four and two gene co-expression modules were identified in these tissues, respectively. Functional enrichment of these gene modules revealed that various functional clusters were related to the effects of heat stress, including those for cytoskeleton, extracellular space, ion binding and energy metabolism. We concluded that these genes and functional clusters might be important factors in chickens under acute heat stress. Further in-depth research on the newly discovered heat-related genes and functional clusters is required to fully understand their molecular functions in thermoregulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  14. Patterns of Gene Expression Associated with Recovery and Injury in Heat-stressed Rats

    Science.gov (United States)

    2014-12-03

    anatomically accurate, three- dimensional rat model of thermoregulation during heat stress [20], in which rats were placed at 37°C until their core...transcriptomics (to include small RNA) will provide the foundation for a com- putationally based linkage to human three-dimensional thermoregulation models...1162. 5. Winkenwerder M, Sawka MN: Disorders due to heat and cold . In Cecil Medicine. 23rd edition. Edited by Goldman L, Ausiello D. Philadelphia

  15. Effect of Heat Flux on Creep Stresses of Thick-Walled Cylindrical Pressure Vessels

    Directory of Open Access Journals (Sweden)

    Mosayeb Davoudi Kashkoli

    2014-06-01

    Full Text Available Assuming that the thermo-creep response of the material is governed by Norton’s law, an analytical solution is presented for the calculation of time-dependent creep stresses and displacements of homogeneous thick-walled cylindrical pressure vessels. For the stress analysis in a homogeneous pressure vessel, having material creep behavior, the solutions of the stresses at a time equal to zero (i.e. the initial stress state are needed. This corresponds to the solution of materials with linear elastic behavior. Therefore, using equations of equilibrium, stress-strain and strain-displacement, a differential equation for displacement is obtained and then the stresses at a time equal to zero are calculated. Using Norton’s law in the multi-axial form in conjunction with the above-mentioned equations in the rate form, the radial displacement rate is obtained and then the radial, circumferential and axial creep stress rates are calculated. When the stress rates are known, the stresses at any time are calculated iteratively. The analytical solution is obtained for the conditions of plane strain and plane stress. The thermal loading is as follows: inner surface is exposed to a uniform heat flux, and the outer surface is exposed to an airstream. The heat conduction equation for the one-dimensional problem in polar coordinates is used to obtain temperature distribution in the cylinder. The pressure, inner radius and outer radius are considered constant. Material properties are considered as constant. Following this, profiles are plotted for the radial displacements, radial stress, circumferential stress and axial stress as a function of radial direction and time.

  16. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea.

    Science.gov (United States)

    Jiang, Yunfei; Lahlali, Rachid; Karunakaran, Chithra; Kumar, Saroj; Davis, Arthur R; Bueckert, Rosalind A

    2015-11-01

    Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar. © 2015 John Wiley & Sons Ltd.

  17. Comprehension of climatic and occupational heat stress amongst agricultural advisers and workers in Slovenia

    Directory of Open Access Journals (Sweden)

    Tjaša POGAČAR

    2017-12-01

    Full Text Available Climate changes and the associated higher frequency of heat waves in Middle-European countries will aggravate occupational heat stress experienced by Slovenian workers. Appropriate behavioral adaptations are important coping strategies and it is pertinent to establish if knowledge among advisers and workers is sufficient and identify the symptoms experienced by workers. Therefore a survey including 230 farmers and 86 agricultural advisers was completed. Thermal comfort ranged from hot to extremely hot for 85 ± 5 % of farmers working outside and heat stress had a negative impact on well-being (74 ± 6 %, productivity (68 ± 6 % and concentration (34 ± 6 %. Reported symptoms were excessive sweating (84 ± 5 %, thirst (81 ± 5 %, and tiredness (59 ± 6 %. Women had a higher prevalence of headache (64 ± 10 % compared to males (47 ± 8 %, higher frequency of fatigue (69 ± 10 vs 56 ± 8 %, and incidents with nausea or vomiting (19 ± 8 vs 9 ± 5 %. 81 ± 4 % of the responders reported that more time is required to complete tasks when the weather is hot. Nevertheless, 61 ± 6 % of farmers have never been informed of the impacts of heat stress and 29 ± 10 % of the agricultural advisers does not include this information in their guidance. This emphasizes the need for increased information and implementation of feasible solutions to mitigate the negative impact of heat stress on workers in the agricultural sector.

  18. The gut-brain axis interactions during heat stress and avian necrotic enteritis.

    Science.gov (United States)

    Calefi, Atilio Sersun; da Silva Fonseca, Juliana Garcia; Cohn, Daniel Wagner Hamada; Honda, Bruno Takashi Bueno; Costola-de-Souza, Carolina; Tsugiyama, Lucila Emiko; Quinteiro-Filho, Wanderley Moreno; Piantino Ferreira, Antonio J; Palermo-Neto, João

    2016-05-01

    The gut-brain axis is known to modulate behavioral and immune responses in animals; evidence supporting this modulation in chickens, however, is elusive. Here, we analyzed the effects of heat stress and/orClostridium perfringens (CP) infection on behavior, intestinal morphology, brain activity, and corticosterone serum levels in chickens. Broilers were randomly divided into 5 equal groups: a naïve group (N), a thioglycolate group (T), a thioglycolate heat-stressed group (T/HS35), an infected group (I), and an infected/stressed (I/HS35) group. Broilers in the I and I/HS35 groups were experimentally infected withClostridium perfringensfrom the 15th to the 19th day of life. Heat stress (35±1°C) was constantly applied to the broilers in the stressed groups from the 14th to the 19th day of life. Our data showed that heat stress andC. perfringensinfection produced significant differential responses in the chickens' behavior and in c-fosexpression in the paraventricular nucleus of the hypothalamus (PVN), nucleus taenia of the amygdala (Tn), medial preoptic area (POM), andglobus pallidus (GP) of the chickens. Heat stress ameliorated some of the intestinal lesions and the neuroendocrine changes induced byC. perfringensin the birds. Our results suggest the existence of clear relationships between the degree of intestinal lesions, the chickens' behavioral outcomes, brain activity, and serum levels of corticosterone. Together, they reinforce the importance of neuroimmunomodulation and especially of brain-gut axis interactions. © 2016 Poultry Science Association Inc.

  19. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  20. Evaluating Effects of Heat Stress on Cognitive Function among Workers in a Hot Industry

    Directory of Open Access Journals (Sweden)

    Adel Mazloumi

    2014-12-01

    Full Text Available Background:Heat stress, as one of the most common occupational health problems, can impair operators' cognitive processes. The aim of this study was to evaluate the impact of thermal stress on cognitive function among workers in a hot industry. Methods: In this cross-sectional study conducted in Malibel Saipa Company in 2013, workers were assigned into two groups: one group were exposed to heat stress (n=35, working in casting unit and the other group working in machin-ing unit (n=35 with a normal air conditioning. Wet Bulb Globe Temperature was measured at three heights of ankle, abdomen, and head. In order to evalu-ate the effects of heat stress on attention and reaction time, Stroop tests 1, 2, and 3 were conducted before starting the work and during the work. Results: A significant positive correlation was observed between WBGT and test duration (P=0.01 and reaction time of Stroop test 3 (P=0.047, and be-tween number of errors in Stroop tests 1, 2, and 3, during the work (P= 0.001. Moreover, Stroop test 3 showed a significant higher score for both test dura-tion and reaction time of workers in case group. Conclusion: Results of the present study, conducted in a real work environment, confirmed the impairment of cognitive functions, including selective attention and reaction time, under heat stress conditions.

  1. Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature.

    Science.gov (United States)

    Zahoor, Imran; de Koning, Dirk-Jan; Hocking, Paul M

    2017-09-20

    In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers.

  2. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    Science.gov (United States)

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  3. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  4. Role of Gram-Negative Bacteria and Their Endotoxins in Rat Death after Heat Stress,

    Science.gov (United States)

    1981-02-26

    circulatory collapse and coagulative disorders noted in human heatstroke (2, 9). Furthermore, treatment to reduce gut flora increases length of survival...Table 4). Thus, it is likely that this invasion did not originate iS from the gut but represented multiplication or spread of extra-intestinal bacteria ...pathophysiology of different forms of stress. These findings also do not explain why heat stressed dogs pre-treated to reduce gut flora experienced a

  5. HEATING AND ULTRAVIOLET LIGHT ACTIVATE ANTI-STRESS GENE FUNCTIONS IN HUMANS

    Directory of Open Access Journals (Sweden)

    Victor Fadeevitch Semenkov

    2015-07-01

    Full Text Available All types of cell stress are accompanied by the activation of anti-stress genes that can suppress ROS synthesis. We hypothesized that different environmental factors would affect organisms through the activation of anti-stress genes by autologous serum (AS proteins, followed by the synthesis of molecules that increase cell resistance to oxidative stress. The goal of this work was to study the influence of AS on ROS production by peripheral blood neutrophils isolated from donors in different age groups. Neutrophils were isolated from 59 donors (38-94 years old. AS was heated at 100˚C for 30 sec. or irradiated by ultraviolet light (UV at 200-280 nm and 8 W for 10 min. Neutrophils were exposed to heat shock at 42˚C for 1 min. (short-term heating stress or 43˚C for 10 min., followed by the determination of the chemiluminescence reaction induced by zymosan. AS can increase or decrease ROS production by neutrophils depending on the structure of the proteins in the serum; these structures can be changed by heating or UV treatment and the temperature of their interaction (4˚C or 37˚C. We propose that the effect of environmental factors on AS proteins can cause an adverse increase in oxidative stress levels due to the functional reduction of anti-stress genes. We found a negative correlation between the quantity of intracellular Hsp70 and levels of intracellular ROS production following 10 minutes of heat shock at 43°C. Short-term heating stress (1 minute at 42°C was followed by a prominent reduction in ROS production. This effect may be a result of the impact of the hormone adrenaline on the functions of anti-stress genes. Indeed, the same effect was observed after treatment of the neutrophils with adrenaline at concentrations of 10-4 M and 10-5 M. In contrast, dexamethasone from the other stress hormone group did not evoke the same effect at the same concentrations.

  6. Effects of heat stress on survival of Frankliniella occidentalis (Thysanoptera: Thripidae) and Thrips tabaci (Thysanoptera: Thripidae).

    Science.gov (United States)

    Wang, J C; Zhang, B; Wang, J P; Li, H G; Wang, S F; Sun, L J; Zheng, C Y

    2014-08-01

    Temperature is known to play a crucial role in the population dynamics of insects. Insects have evolved different mechanisms to resist unfavorable extreme temperatures. In recent years, western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), have caused significant damage to vegetable crops. Because of global warming and expanding areas of vegetable cultivation, a study of the effects of heat stress on these thrips species is warranted. We exposed the various developmental stages of western flower thrips and onion thrips to temperatures of 41, 43, or 45 degrees C for 2, 6, 12, 24, or 36 h to determine the effects of heat stress on survival. Our results showed that the heat resistance of nonadult western flower thrips was greater than that of the nonadult onion thrips, and that the natural heat resistant ability was the primary factor in heat resistance in western flower thrips. In contrast, the heat resistance of adult onion thrips was greater than that of the adult western flower thrips, which was primarily the result of the ability of searching suitable microenvironment that enabled the onion thrips to mitigate the effects of high temperatures more efficiently than the western flower thrips. Our analysis of the differences in heat resistance between western flower thrips and onion thrips provides important information for the development of thermal treatments for controlling western flower thrips and onion thrips.

  7. Does low-protein diet improve broiler performance under heat stress conditions?

    Directory of Open Access Journals (Sweden)

    RL Furlan

    2004-06-01

    Full Text Available Nutrition for broilers under high temperatures is extremely important for brazilian broiler chicken industry because the amounts of consumed nutrients and environmental temperature have great effects on bird performance and carcass quality. Among diet nutrients, protein has the highest heat increment; thus, during many years, diets with low protein level were recommended in order to reduce heat production in broiler chickens under heat stress. However, reports have shown that low-protein diets have negative effects on broiler performance when environmental temperature is high, because during heat stress, low food intake associated to a low diet protein induce amino acid deficiencies. Other studies have shown that broilers fed low-protein diets increase their energy requirement for maintenance with higher heat production. Thus, with the growth of broiler industry in tropical areas more challenges need to be faced by the farmers. So, both the ambient and nutritional conditions ought to be well managed to avoid negative effects on poultry production once they can affect the metabolism (body heat production under low temperature and body heat dissipation under high temperature with consequence on poultry performance (meat and eggs.

  8. Thermal–stress analysis on the crack formation of tungsten during fusion relevant transient heat loads

    Directory of Open Access Journals (Sweden)

    Changjun Li

    2017-12-01

    Full Text Available In the future fusion devices, ELMs-induced transient heat flux may lead to the surface cracking of tungsten (W based plasma-facing materials (PFMs. In theory, the cracking is related to the material fracture toughness and the thermal stress-strain caused by transient heat flux. In this paper, a finite element model was successfully built to realize a theoretical semi infinite space. The temperature and stress-strain distribution as well as evolution of W during a single heating-cooling cycle of transient heat flux were simulated and analyzed. It showed that the generation of plastic deformation during the brittle temperature range between room temperature and DBTT (ductile to brittle transition temperature, ∼400 °C caused the cracking of W during the cooling phase. The cracking threshold for W under transient heat flux was successfully obtained by finite element analysis, to some extent, in consistent with the similar experimental results. Both the heat flux factors (FHF = P·t0.5 and the maximum surface temperatures at cracking thresholds were almost invariant for the transient heat fluxes with different pulse widths and temporal distributions. This method not only identified the theoretical conclusion but also obtained the detail values for W with actual temperature-dependent properties.

  9. Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India.

    Science.gov (United States)

    Krishnamurthy, Manikandan; Ramalingam, Paramesh; Perumal, Kumaravel; Kamalakannan, Latha Perumal; Chinnadurai, Jeremiah; Shanmugam, Rekha; Srinivasan, Krishnan; Venugopal, Vidhya

    2017-03-01

    Workers laboring in steel industries in tropical settings with high ambient temperatures are subjected to thermally stressful environments that can create well-known risks of heat-related illnesses and limit workers' productivity. A cross-sectional study undertaken in a steel industry in a city nicknamed "Steel City" in Southern India assessed thermal stress by wet bulb globe temperature (WBGT) and level of dehydration from urine color and urine specific gravity. A structured questionnaire captured self-reported heat-related health symptoms of workers. Some 90% WBGT measurements were higher than recommended threshold limit values (27.2-41.7°C) for heavy and moderate workloads and radiational heat from processes were very high in blooming-mill/coke-oven (67.6°C globe temperature). Widespread heat-related health concerns were prevalent among workers, including excessive sweating, fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures (χ2 = 26.1258, degrees of freedom = 1, p work capacities. Health and productivity risks in developing tropical country work settings can be further aggravated by the predicted temperature rise due to climate change, without appropriate interventions. Apart from industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.

  10. Deciphering DNA methylation under heat stress in contrasting rice genotypes

    OpenAIRE

    Fradique, João Manuel Silva, 1988-

    2012-01-01

    Tese de mestrado. Biologia (Biologia Evolutiva e do Desenvolvimento). Universidade de Lisboa, Faculdade de Ciências, 2012 Rice is one of the foremost crops in the history of humanity and today it feeds billions of people worldwide, as it is the second most cultivated crop. However, rice can be affected by various environmental stresses. Global climatic models predict a gradual increase in temperature by an average of 2-4ºC by the end of this century (IPCC, 2007). Thus, future climates with...

  11. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress

    Directory of Open Access Journals (Sweden)

    Niku K.J. Oksala

    2014-01-01

    Full Text Available Heat shock proteins (HSPs, originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish, a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6 °C to those living in normal river water temperature (25.4±4.7 °C, and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75 were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection.

  12. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus

    Directory of Open Access Journals (Sweden)

    Sara I. Zandalinas

    2017-06-01

    Full Text Available Drought and high temperatures are two major abiotic stress factors that often occur simultaneously in nature, affecting negatively crop performance and yield. Moreover, these environmental challenges induce oxidative stress in plants through the production of reactive oxygen species (ROS. Carrizo citrange and Cleopatra mandarin are two citrus genotypes with contrasting ability to cope with the combination of drought and heat stress. In this work, a direct relationship between an increased antioxidant activity and stress tolerance is reported. According to our results, the ability of Carrizo plants to efficiently coordinate superoxide dismutase (SOD, ascorbate peroxidase (APX, catalase (CAT, and glutathione reductase (GR activities involved in ROS detoxification along with the maintenance of a favorable GSH/GSSG ratio could be related to their relative tolerance to this stress combination. On the other hand, the increment of SOD activity and the inefficient GR activation along with the lack of CAT and APX activities in Cleopatra plants in response to the combination of drought and heat stress, could contribute to an increased oxidative stress and the higher sensibility of this citrus genotype to this stress combination.

  13. Effect of drought and heat stresses on plant growth and yield: a review

    Science.gov (United States)

    Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K.

    2013-12-01

    Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress-tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.

  14. Altered expression of iron regulatory proteins with aging is associated with transient hepatic iron accumulation after environmental heat stress.

    Science.gov (United States)

    Bloomer, Steven A; Han, Okhee; Kregel, Kevin C; Brown, Kyle E

    2014-01-01

    An increasing body of evidence suggests that dysregulation of iron metabolism contributes to age-related pathologies. We have previously observed increased hepatic iron with aging, and that environmental heat stress stimulates a further increase in iron and oxidative liver injury in old rats. The purpose of this study was to determine a mechanism for the increase in hepatic iron in old rats after heat stress. Young (6 mo) and old (24 mo) Fischer 344 rats were exposed to two heating bouts separated by 24 h. Livers were harvested after the second heat stress, and protein levels of the iron import protein, transferrin receptor-1 (TFR1), and the iron export protein, ferroportin (Fpn) were determined by immunoblot. In the nonheated condition, old rats had lower TFR1 expression, and higher Fpn expression. After heat stress, TFR1 declined in the old rats, and iron chelation studies demonstrated that this decline was dependent on a hyperthermia-induced increase in iron. TFR1 did not change in the young rats after heat stress. Since TFR1 is inversely regulated by iron, our results suggest that the increase in intracellular iron with aging and heat stress lower TFR1 expression. Fpn expression increased in both age groups after heat stress, but this response was delayed in old rats. This delay in the induction of an iron exporter suggests a mechanism for the increase in hepatic iron and oxidative injury after heat stress in aged organisms. © 2013.

  15. Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Li, Yongjuan; Huang, Jinqiang; Liu, Zhe; Zhou, Yanjing; Xia, Binpeng; Wang, Yongjie; Kang, Yujun; Wang, Jianfu

    2017-07-01

    The rainbow trout is an economically important fish in the world. The limited stress tolerance of this species to high summer-like temperatures usually leads to mass mortality and great economic loss. However, there is limited information on the mechanisms underlying moderate heat responses in the liver of the rainbow trout. Here, we performed transcriptome profiling of rainbow trout liver under moderate heat stress by using the Hiseq™ 4000 sequencing platform. More than 277 million clean reads were obtained from 6 libraries and aligned against the rainbow trout genome. A total of 128 unique transcripts were differentially expressed in the liver under heat-stress and control conditions, many heat shock protein genes for thermoregulation and some novel genes involved in heat stress were identified. Nine of the differently expressed genes were further validated by qRT-PCR. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that several pathways, including those for protein metabolism, energy metabolism, and immune system, were influenced by heat stress. Moreover, an important protein-processing pathway in the endoplasmic reticulum (ER) was identified, and the key role of ER-associated degradation and function of calpain as an upstream regulator of apoptosis were confirmed under heat stress. The results of this study provide a comprehensive overview of heat stress-induced transcriptional patterns in rainbow trout liver and would be particularly useful for further studies on the molecular mechanisms underlying responses to heat stress in this species. Copyright © 2017. Published by Elsevier B.V.

  16. The effects of acclimatization on blood clotting parameters in exertional heat stress

    Directory of Open Access Journals (Sweden)

    Vesić Zoran

    2013-01-01

    Full Text Available Background/Aim. Exertional heat stress is a common problem in military services. Considering the coagulation abnormalities are of major importance in development of severe heat stroke, we wanted to examine changes in hemostatic parameters in soldiers during exertional heat stress test as well as the effects of a 10-day passive or active acclimatization in a climatic chamber. Methods. A total of 40 male soldiers with high aerobic capacity performed exertional heat stress test (EHST either in cool [20ºC, 16ºC wet bulb globe temperature (WBGT], or hot (40ºC, 29ºC, (WBGT environment, unacclimatized (U or after 10 days of passive (P or active (A acclimatization. Physiological strain was measured by tympanic temperatures (Tty and heart rates (HR. Platelet count (PC, antithrombin III (AT, and prothrombin time (PT were assessed in blood samples collected before and immediately after the EHST. Results. EHST in hot conditions induced physiological heat stress (increase in Tty and HR, with a significant increase in prothrombin time in the groups U and A. Platelet counts were significantly higher after the EHST compared to the basic levels in all the investigated groups, regardless environmental conditions and acclimatization state. Antithrombin levels were not affected by EHST whatsoever. Conclusion. In the trained soldiers, physiological heat stress caused mild changes in some serum parameters of blood clotting such as prothrombin time, while others such as antithrombin levels were not affected. Platelet counts were increased after EHST in all groups. A 10-day passive or active acclimatization in climatic chamber showed no effect on parameters investigated.

  17. Functional aspects of the photosynthetic light reactions in heat stressed Arabidopsis deficient in digalactosyl-diacylglycerol.

    Science.gov (United States)

    Essemine, Jemâa; Govindachary, Sridharan; Ammar, Saïda; Bouzid, Sadok; Carpentier, Robert

    2011-09-01

    Plants are often submitted, in their natural environment, to various abiotic stresses such as heat stress. However, elevated temperature has a detrimental impact on overall plant growth and development. We have examined the physiological response of the dgd1-2 and dgd1-3 Arabidopsis mutants lacking 30-40% of digalactosyl-diacylglycerol (DGDG) exposed to heat constraint. These mutants, which grow similarly to wild type under normal conditions, were previously reported to be defective in basal thermotolerance as measured by cotyledon development. However their functional properties were not described. Chlorophyll fluorescence measurements and absorbance changes at 820nm were used to monitor photosystem II (PSII) and PSI activity, respectively. It was observed that both mutants have similar photosystem activities with some differences. The mutants were less able to use near saturation light energy and elicited higher rates of cyclic PSI electron flow compare to wild type. Arabidopsis leaves exposed to short-term (5min) mild (40°C) or strong (44°C) heat treatment have shown a decline in the operating effective quantum yield of PSII and in the proportion of active PSI reaction centers. However, cyclic PSI electron flow was enhanced. The establishment of the energy-dependent non-photochemical quenching of chlorophyll fluorescence was accelerated but its decline under illumination was inhibited. Furthermore, heat stress affected the process implicated in the redistribution of light excitation energy between the photosystems known as the light state transitions. All the effects of heat stress mentioned above were more intense in the mutant leaves with dgd1-3 being even more susceptible. The decreased DGDG content of the thylakoid membranes together with other lipid changes are proposed to influence the thermo-sensitivity of the light reactions of photosynthesis towards heat stress. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Analysis of genetic diversity among the maize inbred lines (Zea mays L. under heat stress condition

    Directory of Open Access Journals (Sweden)

    Manoj Kandel

    2017-12-01

    Full Text Available High temperature adversely affects the plant physiological processes: limits plant growth and reduction in grain yield. Heat stress is often encountered to spring sowing of maize in spring season. Twenty maize inbred lines were studied for days to 50 % anthesis and silking, anthesis–silking interval, leaf firing, tassel blast, SPAD reading and leaf senescence, plant and ear height, leaf area index, ear per plant, cob length and diameter, number of kernel/ear, number of kernel row/ear, number of kernel row, silk receptivity, shelling percentage, thousand kernel weight and grain yield in alpha lattice design at National Maize Research Program at Rampur, Chitwan,Nepal with the objective to identify superior heat stress tolerant lines. Analysis of variance showed significant difference for all the traits. Result of multivariable analysis revealed that twenty inbred lines formed four clusters. The resistance inbred lines and susceptible inbred lines formed different clusters. The members of cluster 4 were found to be tolerant to heat stress due to they had lowest value of tassel blast, leaf firing, and leaf area index with highest value of cob diameter and length, ear per plant, number of kernel row/ear, number of kernel/ear, number of kernel row, shelling percentage, silk receptivity and grain yield whereas as members of cluster 1were found most susceptible due to they had longer anthesis silking interval, with maximum tassel blast and leaf firing along with no grain yield under heat stress condition. From this study inbred lines RL-140, RML-76, RML-91 and RML-40 were found most tolerant to heat stress. These inbred lines belonging to superior cluster could be considered very useful in developing heat tolerant variety and other breeding activities.

  19. Evaluation of infrared thermography as a diagnostic tool to predict heat stress events in feedlot cattle.

    Science.gov (United States)

    Unruh, Ellen M; Theurer, Miles E; White, Brad J; Larson, Robert L; Drouillard, James S; Schrag, Nora

    2017-07-01

    OBJECTIVE To determine whether infrared thermographic images obtained the morning after overnight heat abatement could be used as the basis for diagnostic algorithms to predict subsequent heat stress events in feedlot cattle exposed to high ambient temperatures. ANIMALS 60 crossbred beef heifers (mean ± SD body weight, 385.8 ± 20.3 kg). PROCEDURES Calves were housed in groups of 20 in 3 pens without any shade. During the 6 am and 3 pm hours on each of 10 days during a 14-day period when the daily ambient temperature was forecasted to be > 29.4°C, an investigator walked outside each pen and obtained profile digital thermal images of and assigned panting scores to calves near the periphery of the pen. Relationships between infrared thermographic data and panting scores were evaluated with artificial learning models. RESULTS Afternoon panting score was positively associated with morning but not afternoon thermographic data (body surface temperature). Evaluation of multiple artificial learning models indicated that morning body surface temperature was not an accurate predictor of an afternoon heat stress event, and thermographic data were of little predictive benefit, compared with morning and forecasted weather conditions. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated infrared thermography was an objective method to monitor beef calves for heat stress in research settings. However, thermographic data obtained in the morning did not accurately predict which calves would develop heat stress later in the day. The use of infrared thermography as a diagnostic tool for monitoring heat stress in feedlot cattle requires further investigation.

  20. Astragaloside-IV Alleviates Heat-Induced Inflammation by Inhibiting Endoplasmic Reticulum Stress and Autophagy.

    Science.gov (United States)

    Dong, Zhiwei; Zhou, Jian; Zhang, Ying; Chen, Yajie; Yang, Zichen; Huang, Guangtao; Chen, Yu; Yuan, Zhiqiang; Peng, Yizhi; Cao, Tongtong

    2017-01-01

    Thermal injury is the main cause of pulmonary disease in stroke after burn and can be life threatening. Heat-induced inflammation is an important factor that triggers a series of induces pathological changes. However, this mechanism underlying heat-induced inflammation in thermal inhalation injury remains unclear. Studies have revealed that astragaloside-IV (AS-IV), a natural compound extracted from Astragalus membranaceus, has protective effects in inflammatory diseases. Here, we investigated whether the protective effects of AS-IV occur because of the suppression of heat-induced endoplasmic reticulum (ER) stress and excessive autophagy Methods: AS-IV was administered to Wistar rats after thermal inhalation injury and 16HBE140-cells were treated with AS-IV. TNF-α, IL-6, and IL-8 levels were determined by ELISA and real-time PCR. ER stress and autophagy were determined by western blot. Autophagic flux was measured by recording the fluorescence emission of the fusion protein mRFP-GFP-LC3 by dynamic live-cell imaging. AS-IV had protective effects against heat-induced reactive oxygen species production and attenuated ER stress. AS IV alleviated heat-induced excessive autophagy in vitro and in vivo. Excessive autophagy was attenuated by the PERK inhibitor GSK2656157 and eIF2α siRNA, suggesting that heat stress-induced autophagy can activate the PERK-eIF2α pathway. Beclin 1 and Atg5 siRNAs inhibited the upregulation of the inflammatory cytokines TNF-α, IL-6, and IL-8 after heat exposure. Thus, AS-IV may attenuate inflammatory responses by disrupting the crosstalk between autophagy and the PERK-eIF2α pathway and may be an ideal agent for treating inflammatory pulmonary diseases. © 2017 The Author(s). Published by S. Karger AG, Basel.

  1. Communicating the deadly consequences of global warming for human heat stress

    Science.gov (United States)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  2. Communicating the deadly consequences of global warming for human heat stress

    Science.gov (United States)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-01-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations. PMID:28348220

  3. Communicating the deadly consequences of global warming for human heat stress.

    Science.gov (United States)

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  4. Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3.

    Science.gov (United States)

    Salgado, Roy M; Sheard, Ailish C; Vaughan, Roger A; Parker, Daryl L; Schneider, Suzanne M; Kenefick, Robert W; McCormick, James J; Gannon, Nicholas P; Van Dusseldorp, Trisha A; Kravitz, Len R; Mermier, Christine M

    2017-02-01

    Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat-induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre-HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post-HA testing. Pre- and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat-stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P economy did not change at low and moderate exercise intensities. Our findings indicate that while heat-induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Hill, Prof. Archibald Vivian

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1935 Honorary. Hill, Prof. Archibald Vivian Nobel Laureate (Medicine) - 1922. Date of birth: 26 September 1886. Date of death: 3 June 1977. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the ...

  6. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress.

    Science.gov (United States)

    Maya, Moslama Aktar; Matsubara, Yoh-ichi

    2013-07-01

    The influence of the arbuscular mycorrhizal (AM) fungus, Glomus fasciculatum, on the growth, heat stress responses and the antioxidative activity in cyclamen (Cyclamen persicum Mill.) plants was studied. Cyclamen plants (inoculated or not with the AM fungus) were placed in a commercial potting media at 17-20 °C for 12 weeks in a greenhouse and subsequently subjected to two temperature conditions in a growth chamber. Initially, plants were grown at 20 °C for 4 weeks as a no heat stress (HS-) condition, followed by 30 °C for another 4 weeks as a heat stress (HS+) condition. Different morphological and physiological growth parameters were compared between G. fasciculatum-inoculated and noninoculated plants. The mycorrhizal symbiosis markedly enhanced biomass production and HS + responses in plants compared to that in the controls. A severe rate of leaf browning (80-100%) was observed in control plants, whereas the mycorrhizal plants showed a minimum rate of leaf browning under HS + conditions. The mycorrhizal plants showed an increase activity of antioxidative enzymes such as superoxide dismutase and ascorbate peroxidase, as well as an increase in ascorbic acid and polyphenol contents. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity also showed a greater response in mycorrhizal plants than in the control plants under each temperature condition. The results indicate that in cyclamen plants, AM fungal colonisation alleviated heat stress damage through an increased antioxidative activity and that the mycorrhizal symbiosis strongly enhanced temperature stress tolerance which promoted plant growth and increased the host biomass under heat stress.

  7. Physiological and metabolic aspects of very prolonged exercise with particular reference to hill walking.

    Science.gov (United States)

    Ainslie, Philip N; Campbell, Iain T; Lambert, Janet P; MacLaren, Donald P M; Reilly, Thomas

    2005-01-01

    Hill walking is a popular recreational activity in the developed world, yet it has the potential to impose severe stress simultaneously upon several regulatory systems. Information regarding the physiological strain imposed by prolonged walking outdoors in adverse climatic conditions was reported almost four decades ago and recent research has extended some of this work. These data indicate that once the walker fatigues and starts to slow or stops walking altogether, the rate of heat production falls dramatically. This decrease alone predisposes to the development of hypothermia. These processes, in adverse weather conditions and/or during periods when the level of exertion is low (with low heat production), will be accelerated. Since the majority of walkers pursue this activity in groups, the less fit walkers may be more susceptible to fatigue when exercising at a higher relative intensity compared with their fitter counterparts. The best physiological offset for hypothermia is to maintain heat production by means of exercise, and so fatigue becomes a critical predisposing factor; it is as important to facilitate heat loss, especially during periods of high exertion, as it is to maintain heat production and preserve insulation. This can be partly achieved by clothing adjustments and consideration of the intensity of exercise. Failure to provide adequate energy intake during hill walking activities has been associated with decreased performance (particularly with respect to balance) and impaired thermoregulation. Such impairments may increase susceptibly to both fatigue and injury whilst pursuing this form of activity outdoors. The prolonged low to moderate intensity of activity experienced during a typical hill walk elicits marked changes in the metabolic and hormonal milieu. Available data suggest that during hill walking, even during periods of acute negative energy balance, blood glucose concentrations are maintained. The maintenance of blood glucose

  8. The influence of heat treatment by annealing on clad plates residual stresses

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2011-10-01

    Full Text Available The influence of applied clad procedure as well as heat treatment by annealing (650 °C/2h on level and nature of residual stresses was researched. Three clad procedures are used i.e. hot rolling, submerged arc welding (SAW with strip electrode and explosion welding. The relaxed deformation measurement on clad plate surfaces was performed by applying centre-hole drilling method using special measuring electrical resistance strain gauges (rosettes. After performed measuring, size and nature of residual stresses were determined using analytical method. Depending of residual stresses on depth of drilled blind-hole is studied.

  9. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis

    OpenAIRE

    Dobrá, J. (Jana); Černý, M.; Štorchová, H. (Helena); Dobrev, P. (Petre); Skalák, J.; Jedelský, P.L.; Lukšanová, H. (Hana); Gaudinová, A. (Alena); Pešek, B. (Bedřich); Malbeck, J. (Jiří); Vaněk, T.; Brzobohatý, B. (Břetislav); Vaňková, R. (Radomíra)

    2015-01-01

    Targeting of the heat stress (HS, 40 degrees C) to shoots, roots or whole plants substantially affects Arabidopsis physiological responses. Effective stress targeting was proved by determination of the expression of HS markers, HsfA2 and HSA32, which were quickly stimulated in the targeted organ(s), but remained low in non-stressed tissues for at least 2 h. When shoots or whole plants were subjected to HS, a transient decrease in abscisic acid, accompanied by a small increase in active cytoki...

  10. Effect of heat stress on six beef breeds in the Zastron district: The ...

    African Journals Online (AJOL)

    A study was done to determine which factors had the greatest influence on a heifer's susceptibility to heat stress. Parameters tested were breed, coat colour, coat score, hide thickness, weight gain, respiration rate and body condition score. The study was conducted in the southeastern Free State. Afrikaner, Bonsmara ...

  11. Early Transcriptional Responses during Heat Stress in the Coral Acropora hyacinthus.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Rose, Noah H; Sheets, Elizabeth A; Palumbi, Stephen R

    2017-04-01

    Corals respond to heat pulses that cause bleaching with massive transcriptional change, but the immediate responses to stress that lead up to these shifts have never been detailed. Understanding these early signals could be important for identifying the regulatory mechanisms responsible for bleaching and how these mechanisms vary between more and less resilient corals. Using RNA sequencing (RNAseq) and sampling every 30 minutes during a short-term heat shock, we found that components of the transcriptome were significantly upregulated within 90 min and after a temperature increase of +2 °C. The developmental transcription factor, Krüppel-like factor 7, was highly expressed within 60 min, and stress-related transcription factors such as Elk-3 were highly expressed starting at 240 min. The sets of genes enriched for early transcriptional response to heat stress included heat shock proteins, small GTPases, and proteasome genes. Retrovirus-related Pol polyproteins from transposons were significantly expressed throughout the whole experiment. Lastly, we propose a model for early transcriptional regulation of protein degradation and cell adhesion response that may ultimately lead to the bleaching and stress response.

  12. Heat Stress in Tunisia: Effects on dairy cows and potential means ...

    African Journals Online (AJOL)

    Tunisia has a Mediterranean climate characterized by high ambient temperatures for a long period. Thus, one of the challenges to dairy producers is heat stress. The objectives of this work were to characterize the environmental conditions to which Holstein cows are exposed in Tunisia using the Temperature Humidity ...

  13. Gene expression microarray analysis of heat stress in the soil invertebrate Folsomia candida.

    NARCIS (Netherlands)

    Nota, B.; van Straalen, N.M.; Ylstra, B.; Roelofs, D.

    2010-01-01

    Sudden temperature changes in soil can induce stress in soil-dwelling invertebrates. Hyperthermic conditions have an impact on gene expression as one of the first steps. We use a transcriptomics approach using microarrays to identify expression changes in response to heat in the springtail Folsomia

  14. Guide to the measurement and assessment of heat stress in Gold Mines

    CSIR Research Space (South Africa)

    Stewart, JM

    1978-04-01

    Full Text Available This report is intended primarily for ventilation staff on mines, but is also of importance to management. In the gold mining industry the assessment of heat stress is likely to be for one of three purposes: to assess either the average or the worst...

  15. Global hot-spots of heat stress on agricultural crops due to climate change

    NARCIS (Netherlands)

    Teixeira, E.; Fischer, G.; Velthuizen, van H.; Walter, C.; Ewert, F.

    2013-01-01

    The productivity of important agricultural crops is drastically reduced when they experience short episodes of high temperatures during the reproductive period. Crop heat stress was acknowledged in the IPCC 4th Assessment Report as an important threat to global food supply. We produce a first

  16. The heat shock/oxidative stress connection. Relevance to Alzheimer disease.

    Science.gov (United States)

    Pappolla, M A; Sos, M; Omar, R A; Sambamurti, K

    1996-01-01

    Involvement of free-radical oxidations in the aging process has been a topic of interest since Harman's original contribution. Because of the close association between aging and Alzheimer disease (AD) and the qualitative similarity in the neuropathology of both conditions, it has been proposed by many investigators that oxidative stress may be important in Ad. If such modality of injury was indeed involved, one should expect to find markers of oxidation and heat shock (since free radicals are key mediators of heat-shock induction) in brains of patients with AD. In fact, several studies documented abnormal expression of antioxidant enzymes and heat-shock proteins (HSP) along with other markers of oxidation in AD brains. We showed that abnormally expressed antioxidant enzymes are topographically associated with senile plaques and neurofibrillary tangles, and that the activity of these enzymes is (contrary to what one would expect) markedly reduced. These findings have recently been confirmed by other investigators. Despite a large amount of evidence that suggests an association between oxidative stress and the pathogenesis of AD, it is not yet known whether oxidative stress is a cause or consequence of the disorder. Future research efforts regarding the oxidative stress hypothesis of AD should include attempts at generating AD pathology by oxidative means in laboratory animals, determining the role and integrity of the heat-shock response in AD, as well as that of various antioxidant systems, growth factors, and hormones with antioxidant and neuroprotective properties.

  17. Management of Heat and Cold Stress - Guidance to NATO Medical Personnel

    Science.gov (United States)

    2012-12-01

    to retain body water. Other beverages or fluids served in dining facilities (except those containing alcohol), such as milk , are acceptable for...additional acclimatization sessions; inserting acclimatization with training; alternating acclimatization days with training days, and no detraining...in ice beverage cooler with ice water mixture).  Ineffective Technologies. Other recent technologies have been found not to mitigate heat stress

  18. The effect of Brazilian Propolis on leg health in broilers reared under heat stress

    Science.gov (United States)

    Exposing broiler chickens to heat stress increases leg abnormalities and Gait Score, also it reduced the time of Latency to Lie Test. This experiment was conducted to examine the effect of dietary supplemention with green Brazilian propolis on Latency to Lie Test for leg strength and leg abnormaliti...

  19. Effect of propolis supplementations on behavioral activities of heat stressed broiler chickens

    Science.gov (United States)

    This experiment investigated effects of dietary supplementation of green Brazilian propolis on behavior of heat stressed broiler chickens. Five hundred and four 15-day old male Ross 708 broiler chicks were randomly allotted to six dietary treatments containing 0, 100, 250, 500, 1000 or 3000 mg kg-1 ...

  20. Effect of gibberrelic acid on α-amylase activity in heat stressed mung ...

    African Journals Online (AJOL)

    reading 7

    2012-06-28

    Jun 28, 2012 ... growth by hydrolyzing starch into maltose. This experiment was carried out to study the effect of GA3 ... Key words: Mung bean, α-amylase, gibberellic acid, heat stress. INTRODUCTION. Plant development is ..... molecules in rice seed scutellum at high temperatures. Plant Physiol.,. 82: 880-884. Porch TG ...

  1. The relative influence of body characteristics on humid heat stress response

    NARCIS (Netherlands)

    Havenith, G.; Luttikholt, V. G.; Vrijkotte, T. G.

    1995-01-01

    The present study was designed to determine the relative importance of individual characteristics such as maximal oxygen uptake (VO2max), adiposity, DuBois body surface area (AD), surface to mass ratio (AD: mass) and body mass, for the individual's reaction to humid heat stress. For this purpose 27

  2. The effect of Brazilian propolis on serum thyroid hormones in broilers reared under chronic heat stress

    Science.gov (United States)

    This experiment evaluated the effect of dietary supplement with green Brazilian propolis on serum thyroxin (T4) and tri-iodothyronine (T3) levels in broiler chickens exposed to chronic heat stress for 4 wks (from 15 to 42 d of age). Five hundred and four 15-d-old, male broiler chickens (Ross 708) w...

  3. Effect of floor cooling on late lactation sows under acute heat stress

    Science.gov (United States)

    The objective was to evaluate the effects of floor cooling on late lactation sows under severe summer heat stress. Ten multiparous sows were provided with a cooling pad built with an aluminum plate surface, high-density polyethylene base and copper pipes. Treatments were randomly allotted to sows to...

  4. Effects of floor cooling on late lactation sows under severe acute heat stress

    Science.gov (United States)

    The objective was to evaluate the effects of floor cooling on late lactation sows under severe summer heat stress. Ten multiparous sows were provided with a cooling pad built with an aluminum plate surface, high-density polyethylene base and copper pipes. Treatments were randomly allotted to sows to...

  5. Effect of Prior Heat Stress on the Early Growth of Carica papaya

    Directory of Open Access Journals (Sweden)

    Gideon Olarewaju OKUNLOLA

    2013-12-01

    Full Text Available The experiment was carried out to determine the effects of heat stress on some growth parameters like shoot height, leaf area, fresh weight, dry weight as well as the accumulation of chlorophylls in Carica papaya. Seedlings of C. papaya were exposed to prior heat stress at 40 °C. A group of plants was placed in a Gallenkamp oven for four hours; another group of plants was placed in the oven for eight hours while the third group of plants was placed in a dark cupboard for the period of eight hours. Sampling was carried out at weekly intervals starting from seven days after treatment. Plants were randomly picked from each of the three treatments. Three replicates were used for each parameter. The results obtained from the study showed that there was an increment in the shoot height, leaf area, fresh weight and dry weight from the beginning to the end of the experimental period. However, the accumulation of chlorophylls did not follow a particular pattern. The analysis of variance carried out on the data obtained showed that heat stress had a significant effect on the petiole length, shoot height, leaf length, leaf width, leaf area, fresh weight and dry weight. Heat stress, however, did not produce a significant effect on the accumulation of chlorophylls a and b and total chlorophyll.

  6. Effect of Prior Heat Stress on the Early Growth of Carica papaya

    Directory of Open Access Journals (Sweden)

    Gideon Olarewaju OKUNLOLA

    2013-12-01

    Full Text Available The experiment was carried out to determine the effects of heat stress on some growth parameters like shoot height, leaf area, fresh weight, dry weight as well as the accumulation of chlorophylls in Carica papaya. Seedlings of C. papaya were exposed to prior heat stress at 40 °C. A group of plants was placed in a Gallenkamp oven for four hours; another group of plants was placed in the oven for eight hours while the third group of plants was placed in a dark cupboard for the period of eight hours. Sampling was carried out at weekly intervals starting from seven days after treatment. Plants were randomly picked from each of the three treatments. Three replicates were used for each parameter. The results obtained from the study showed that there was an increment in the shoot height, leaf area, fresh weight and dry weight from the beginning to the end of the experimental period. However, the accumulation of chlorophylls did not follow a particular pattern. The analysis of variance carried out on the data obtained showed that heat stress had a significant effect on the petiole length, shoot height, leaf length, leaf width, leaf area, fresh weight and dry weight. Heat stress, however, did not produce a significant effect on the accumulation of chlorophylls a and b and total chlorophyll.

  7. Implementation and model to model intercomparison of 12 heat stress metrics

    Science.gov (United States)

    Buzan, Jonathan R.

    Earth system models simulate the dynamics of the most complex systems on our planet with some success. Despite the overwhelming sophistication of these models, which include dynamical interactions of ocean, atmosphere, vegetation, ice, and land-surface properties, they fail to include the most important element. People. Humans are also a complex physical-biological system and coupling of human physiology within an Earth Systems Modeling framework is challenging. This thesis presents results that tackle one particular component of human physiological climate interaction--a representation of heat stress on human physiology. Twelve different metrics were implemented and analyzed. These metrics represent a variety of philosophical approaches to characterizing heat stress: thermal comfort, physiological responses, and first principle physics. We implemented these 12 metrics into the Community Land Model (CLM4.5). All of the metrics implemented measure the covariance of near surface atmospheric variables: temperature, pressure, and humidity. Results show that heat stress may be broken into two regimes; arid and non-arid regions (i.e. the rest of the land surface). Additionally, results show that the highest heat stress zones are a robust feature with low variability. Temperatures vary by +/-3°C as compared to +/-1°C wet bulb temperatures, and is consistent over a vast area of Earth.

  8. Low-level laser effects on bacterial cultures submitted to heat stress

    Science.gov (United States)

    Gonçalves, E. M.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2016-06-01

    Low-level lasers have been used worldwide to treat a number of diseases, pain relief, and wound healing. Some studies demonstrated that low-level laser radiations induce effects depending on the physiological state and DNA repair mechanisms of cells. In this work we evaluated the effects of low-level red and infrared lasers on Escherichia coli cells deficient in SOS responses submitted to heat stress. Exponential and stationary E. coli cultures of wild type (AB1157), RecA deficient (AB2463) and LexA deficient (AB2494), both SOS response deficient, were exposed to low-level red and infrared lasers at different fluences and submitted to heat stress (42 °C, 20 min). After that, cell survival and morphology were evaluated. Previous exposure to red, but not infrared lasers, increases survival fractions and decreases the area ratios of E. coli AB1157 cells submitted to heat stress. Our research suggests that a low-level red laser increases cell viability and protects cells from morphological alteration in E. coli cultures submitted to heat stress depending on laser wavelength and SOS response.

  9. Effect of heat stress on six beef breeds in the Zastron district: the ...

    African Journals Online (AJOL)

    LA Foster

    A study was done to determine which factors had the greatest influence on a heifer's susceptibility to heat stress. Parameters tested were breed, coat colour, coat score, hide thickness, weight gain, ... difference in rectal temperature Tre between breeds was measured on seven occasions. ... and ability to work (Finch, 1986).

  10. Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast

    DEFF Research Database (Denmark)

    Hou, Jin; Tang, Hongting; Liu, Zihe

    2014-01-01

    In yeast Saccharomyces cerevisiae, accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR), which is mediated by Hac1p. The heat shock response (HSR) mediated by Hsf1p, mainly regulates cytosolic processes and protects...

  11. Environmental Heat and Salt Stress Induce Transgenerational Phenotypic Changes in Arabidopsis thaliana

    Science.gov (United States)

    Suter, Léonie; Widmer, Alex

    2013-01-01

    Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana. PMID:23585834

  12. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    Science.gov (United States)

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  13. Scenario-neutral Food Security Risk Assessment: A livestock Heat Stress Case Study

    Science.gov (United States)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2015-12-01

    Food security risk assessments can provide decision-makers with actionable information to identify critical system limitations, and alternatives to mitigate the impacts of future conditions. The majority of current risk assessments have been scenario-led and results are limited by the scenarios - selected future states of the world's climate system and socioeconomic factors. A generic scenario-neutral framework for food security risk assessments is presented here that uses plausible states of the world without initially assigning likelihoods. Measures of system vulnerabilities are identified and system risk is assessed for these states. This framework has benefited greatly by research in the water and natural resource fields to adapt their planning to provide better risk assessments. To illustrate the utility of this framework we develop a case study using livestock heat stress risk within the pastoral system of West Africa. Heat stress can have a major impact not only on livestock owners, but on the greater food production system, decreasing livestock growth, milk production, and reproduction, and in severe cases, death. A heat stress index calculated from daily weather is used as a vulnerability measure and is computed from historic daily weather data at several locations in the study region. To generate plausible states, a stochastic weather generator is developed to generate synthetic weather sequences at each location, consistent with the seasonal climate. A spatial model of monthly and seasonal heat stress provide projections of current and future livestock heat stress measures across the study region, and can incorporate in seasonal climate and other external covariates. These models, when linked with empirical thresholds of heat stress risk for specific breeds offer decision-makers with actionable information for use in near-term warning systems as well as for future planning. Future assessment can indicate under which states livestock are at greatest risk

  14. Stress Responses to Heat Exposure in Three Species of Australian Desert Birds.

    Science.gov (United States)

    Xie, Shangzhe; Romero, L Michael; Htut, Zaw Win; McWhorter, Todd J

    Birds need to respond to weather changes quickly and appropriately for their own well-being and survival. The inability to respond appropriately to heat waves can be fatal to individual birds and can translate into large-scale mortality events. We investigated corticosterone (CORT) and heterophil∶lymphocyte (H∶L) ratio responses of budgerigars (Melopsittacus undulatus), zebra finches (Taeniopygia guttata), and diamond doves (Geopelia cuneata) to heat exposures. The birds were exposed to a temperature similar to what they experience during a typical summer day (35°C) and a higher temperature (45°C) similar to that experienced during a heat wave. There were no significant increases between the CORT concentrations before and after heat exposure in zebra finches and budgerigars at 35° and 45°C, but there was a significant increase in CORT concentrations in diamond doves after exposure to 45°C. The H∶L ratios increased significantly after heat exposure in budgerigars at 35° and 45°C and in diamond doves at 35°C. No significant correlation was found between the changes in CORT and H∶L ratios. The data suggest that there are species differences in birds' stress responses to heat exposure that may reflect their ability to detect and adapt to high temperatures. There appear to be differences between the two types of stress measurements, which may reflect differences in the timescales of these responses.

  15. Reducing heat stress under thermal insulation in protective clothing: microclimate cooling by a 'physiological' method.

    Science.gov (United States)

    Glitz, K J; Seibel, U; Rohde, U; Gorges, W; Witzki, A; Piekarski, C; Leyk, D

    2015-01-01

    Heat stress caused by protective clothing limits work time. Performance improvement of a microclimate cooling method that enhances evaporative and to a minor extent convective heat loss was tested. Ten male volunteers in protective overalls completed a work-rest schedule (130 min; treadmill: 3 × 30 min, 3 km/h, 5% incline) with or without an additional air-diffusing garment (climatic chamber: 25°C, 50% RH, 0.2 m/s wind). Heat loss was supported by ventilating the garment with dry air (600 l/min, ≪5% RH, 25°C). Ventilation leads (M ± SD, n = 10, ventilated vs. non-ventilated) to substantial strain reduction (max. HR: 123 ± 12 b/min vs. 149 ± 24 b/min) by thermal relief (max. core temperature: 37.8 ± 0.3°C vs. 38.4 ± 0.4°C, max. mean skin temperature: 34.7 ± 0.8°C vs. 37.1 ± 0.3°C) and offers essential extensions in performance and work time under thermal insulation. Heat stress caused by protective clothing limits work time. Performance can be improved by a microclimate cooling method that supports evaporative and to a minor extent convective heat loss. Sweat evaporation is the most effective thermoregulatory mechanism for heat dissipation and can be enhanced by insufflating dry air into clothing.

  16. The "STAY-GREEN" trait and phytohormone signaling networks in plants under heat stress.

    Science.gov (United States)

    Abdelrahman, Mostafa; El-Sayed, Magdi; Jogaiah, Sudisha; Burritt, David J; Tran, Lam-Son Phan

    2017-07-01

    The increasing demand for food and the heavy yield losses in primary crops due to global warming mean that there is an urgent need to improve food security. Therefore, understanding how plants respond to heat stress and its consequences, such as drought and increased soil salinity, has received much attention in plant science community. Plants exhibit stress tolerance, escape or avoidance via adaptation and acclimatization mechanisms. These mechanisms rely on a high degree of plasticity in their cellular metabolism, in which phytohormones play an important role. "STAY-GREEN" is a crucial trait for genetic improvement of several crops, which allows plants to keep their leaves on the active photosynthetic level under stress conditions. Understanding the physiological and molecular mechanisms concomitant with "STAY-GREEN" trait or delayed leaf senescence, as well as those regulating photosynthetic capability of plants under heat stress, with a certain focus on the hormonal pathways, may be a key to break the plateau of productivity associated with adaptation to high temperature. This review will discuss the recent findings that advance our understanding of the mechanisms controlling leaf senescence and hormone signaling cascades under heat stress.

  17. Influence of heat stress on leaf morphology and nitrogen–carbohydrate metabolisms in two wucai (Brassica campestris L. genotypes

    Directory of Open Access Journals (Sweden)

    Lingyun Yuan

    2017-06-01

    Full Text Available Heat stress is a major environmental stress that limits plant growth and yield worldwide. The present study was carried out to explore the physiological mechanism of heat tolerant to provide the theoretical basis for heat-tolerant breeding. The changes of leaf morphology, anatomy, nitrogen assimilation, and carbohydrate metabolism in two wucai genotypes (WS-1, heat tolerant; WS-6, heat sensitive grown under heat stress (40°C/30°C for 7 days were investigated. Our results showed that heat stress hampered the plant growth and biomass accumulation in certain extent in WS-1 and WS-6. However, the inhibition extent of WS-1 was significantly smaller than WS-6. Thickness of leaf lamina, upper epidermis, and palisade mesophyll were increased by heat in WS-1, which might be contributed to the higher assimilation of photosynthates. During nitrogen assimilation, WS-1 possessed the higher nitrogen-related metabolic enzyme activities, including nitrate reductase (NR, glutamine synthetase (GS, glutamate synthase (GOGAT, and glutamate dehydrogenase (GDH, which were reflected by higher photosynthetic nitrogen-use efficiency (PNUE with respect to WS-6. The total amino acids level had no influence in WS-1, whereas it was reduced in WS-6 by heat. And the proline contents of both wucai genotypes were all increased to respond the heat stress. Additionally, among all treatments, the total soluble sugar content of WS-1 by heat got the highest level, including higher contents of sucrose, fructose, and starch than those of WS-6. Moreover, the metabolism efficiency of sucrose to starch in WS-1 was greater than WS-6 under heat stress, proved by higher activities of sucrose phosphate synthase (SPS, sucrose synthase (SuSy, acid invertase (AI, and amylase. These results demonstrated that leaf anatomical alterations resulted in higher nitrogen and carbon assimilation in heat-tolerant genotype WS-1, which exhibited a greater performance to resist heat stress.

  18. Real-time simulation of thermal stresses and creep in plates subjected to transient heat input

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Jacobsen, Torben Krogsdal; Hansen, P.N.

    1997-01-01

    -difference approach. It applies a general formulation which takes into account nonconstant material properties (e.g. temperature, material, or time dependency), heat-transfer coefficients, and creep. The temperature calculation applies a one-dimensional numerical model, whereas the stress analysis is semi......This paper presents a novel numerical technique for solving the temperature and stress fields in a plate subjected to arbitrarily varying transient boundary conditions (transient temperature and heat-flux variations) on a surface. The numerical method is based on the control-volume finite......-two-dimensional. Both plane stress and plane strain conditions are considered as extreme cases. It is shown that, by using the developed numerical technique, very fast real-time simulations can be performed. The method has proved its applicability in e.g. high-pressure die-casting, and applications to this industrial...

  19. Metabolic crosstalk between membrane and storage lipids facilitates heat stress management in Schizosaccharomyces pombe.

    Science.gov (United States)

    Péter, Mária; Glatz, Attila; Gudmann, Péter; Gombos, Imre; Török, Zsolt; Horváth, Ibolya; Vígh, László; Balogh, Gábor

    2017-01-01

    Cell membranes actively participate in stress sensing and signalling. Here we present the first in-depth lipidomic analysis to characterize alterations in the fission yeast Schizosaccharomyces pombe in response to mild heat stress (HS). The lipidome was assessed by a simple one-step methanolic extraction. Genetic manipulations that altered triglyceride (TG) content in the absence or presence of HS gave rise to distinct lipidomic fingerprints for S. pombe. Cells unable to produce TG demonstrated long-lasting growth arrest and enhanced signalling lipid generation. Our results reveal that metabolic crosstalk between membrane and storage lipids facilitates homeostatic maintenance of the membrane physical/chemical state that resists negative effects on cell growth and viability in response to HS. We propose a novel stress adaptation mechanism in which heat-induced TG synthesis contributes to membrane rigidization by accommodating unsaturated fatty acids of structural lipids, enabling their replacement by newly synthesized saturated fatty acids.

  20. Oscillation regulation of Ca2+ /calmodulin and heat-stress related genes in response to heat stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Wu, Hui-Chen; Jinn, Tsung-Luo

    2012-09-01

    The Ca ( 2+) /calmodulin (CaM) signaling pathway mediates the heat stress (HS) response and acquisition of thermotolerance in plants. We showed that the rice CaM1-1 isoform can interpret a Ca ( 2+) signature difference in amplitude, frequency, and temporal-spatial properties in regulating transcription of nucleoplasmic small heat-shock protein gene (sHSPC/N) during HS. Ca ( 2+) and A23187 treatments under HS generated an intense and sustained increase in [Ca ( 2+) ]cyt and accelerated the expression of CaM1-1 and sHSPC/N genes, which suggests that HS-induced apoplastic Ca ( 2+) influx was responsible for the [Ca ( 2+) ]cyt transient and downstream HS signaling. Here, we discuss an emerging paradigm in the oscillation regulation of CaM1-1 expression during HS and highlight the areas that need further investigation.

  1. Traits in Spring Wheat Cultivars Associated with Yield Loss Caused by a Heat Stress Episode after Anthesis

    DEFF Research Database (Denmark)

    Vignjevic, Marija; Wang, Xiao; Olesen, Jørgen E

    2015-01-01

    in all cultivars. Significant variation was observed among cultivars in the reduction in average grain weight and grain dry matter yield under heat stress (up to 36 % and 45 %, respectively). The duration of the grain-filling period was reduced by 3–12 days by the heat treatment. The reduction...... with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield...... in the grain-filling period was negatively correlated with grain nitrogen yield (r = −0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water-soluble carbohydrates (WSC...

  2. Traditional Chinese Medicine Prescriptions Enhance Growth Performance of Heat Stressed Beef Cattle by Relieving Heat Stress Responses and Increasing Apparent Nutrient Digestibility

    Directory of Open Access Journals (Sweden)

    Xiaozhen Song

    2014-10-01

    Full Text Available The present aim was to investigate the effects of traditional Chinese medicine prescriptions (TCM on body temperature, blood physiological parameters, nutrient apparent digestibility and growth performance of beef cattle under heat stress conditions. Twenty-seven beef cattle were randomly divided into three groups as following; i high temperature control (HTC, ii traditional Chinese medicine prescriptions I+high temperature (TCM I and iii traditional Chinese medicine prescriptions II+high temperature (TCM II (n = 9 per group. The results showed that the mean body temperature declined in TCM II treatment (p<0.05. Serum T3 and T4 levels with TCM I and TCM II treatments elevated (p<0.05, and serum cortisol levels of TCM I treatments decreased (p<0.05, compared with the HTC group. Total protein, albumin, globulin in TCM II treatments elevated and blood urea nitrogen levels of both TCM treatments increased, but glucose levels of both TCM treatments decreased, compared with the HTC group (p<0.05. The apparent digestibility of organic matter and crude protein with TCM I treatment increased, and the apparent digestibility of acid detergent fiber elevated in both TCM treatments (p<0.05. Average daily feed intake was not different among three groups, however average daily gain increased and the feed:gain ratio decreased with both TCM treatments, compared with the HTC group (p<0.05. The present results suggest that dietary supplementation with TCM I or TCM II improves growth performance of heat stressed beef cattle by relieving heat stress responses and increasing nutrient apparent digestibility.

  3. Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates

    Science.gov (United States)

    Danielle E. Marias; Frederick C. Meinzer; David R. Woodruff; Katherine A. McCulloh; David Tissue

    2016-01-01

    Temperature and the frequency and intensity of heat waves are predicted to increase throughout the 21st century. Germinant seedlings are expected to be particularly vulnerable to heat stress because they are in the boundary layer close to the soil surface where intense heating occurs in open habitats. We quantified leaf thermotolerance and whole-plant physiological...

  4. Errors in macromolecular synthesis after stress : a study of the possible protective role of the small heat shock proteins

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  5. Urban heat stress: novel survey suggests health and fitness as future avenue for research and adaptation strategies

    Science.gov (United States)

    Schuster, Christian; Honold, Jasmin; Lauf, Steffen; Lakes, Tobia

    2017-04-01

    Extreme heat has tremendous adverse effects on human health. Heat stress is expected to further increase due to urbanization, an aging population, and global warming. Previous research has identified correlations between extreme heat and mortality. However, the underlying physical, behavioral, environmental, and social risk factors remain largely unknown and comprehensive quantitative investigation on an individual level is lacking. We conducted a new cross-sectional household questionnaire survey to analyze individual heat impairment (self-assessed and reported symptoms) and a large set of potential risk factors in the city of Berlin, Germany. This unique dataset (n = 474) allows for the investigation of new relationships, especially between health/fitness and urban heat stress. Our analysis found previously undocumented associations, leading us to generate new hypotheses for future research: various health/fitness variables returned the strongest associations with individual heat stress. Our primary hypothesis is that age, the most commonly used risk factor, is outperformed by health/fitness as a dominant risk factor. Related variables seem to more accurately represent humans’ cardiovascular capacity to handle elevated temperature. Among them, active travel was associated with reduced heat stress. We observed statistical associations for heat exposure regarding the individual living space but not for the neighborhood environment. Heat stress research should further investigate individual risk factors of heat stress using quantitative methodologies. It should focus more on health and fitness and systematically explore their role in adaptation strategies. The potential of health and fitness to reduce urban heat stress risk means that encouraging active travel could be an effective adaptation strategy. Through reduced CO2 emissions from urban transport, societies could reap double rewards by addressing two root causes of urban heat stress: population health and

  6. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations.

    Science.gov (United States)

    Louis, Yohan D; Bhagooli, Ranjeet; Kenkel, Carly D; Baker, Andrew C; Dyall, Sabrina D

    2017-01-01

    Gene expression biomarkers (GEBs) are emerging as powerful diagnostic tools for identifying and characterizing coral stress. Their capacity to detect sublethal stress prior to the onset of signs at the organismal level that might already indicate significant damage makes them more precise and proactive compared to traditional monitoring techniques. A high number of candidate GEBs, including certain heat shock protein genes, metabolic genes, oxidative stress genes, immune response genes, ion transport genes, and structural genes have been investigated, and some genes, including hsp16, Cacna1, MnSOD, SLC26, and Nf-kB, are already showing excellent potential as reliable indicators of thermal stress in corals. In this mini-review, we synthesize the current state of knowledge of scleractinian coral GEBs and highlight gaps in our understanding that identify directions for future work. We also address the underlying sources of variation that have sometimes led to contrasting results between studies, such as differences in experimental set-up and approach, intrinsic variation in the expression profiles of different experimental organisms (such as between different colonies or their algal symbionts), diel cycles, varying thermal history, and different expression thresholds. Despite advances in our understanding there is still no universally accepted biomarker of thermal stress, the molecular response of corals to heat stress is still unclear, and biomarker research in Symbiodinium still lags behind that of the host. These gaps should be addressed in future work. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    DEFF Research Database (Denmark)

    Martre, Pierre; Reynolds, Matthew; Asseng, Senthold

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown dur...

  8. [Reduction of the immunological rejection in composite tissue allotransplantation by heat stress preconditioning].

    Science.gov (United States)

    Schorr, N; Sauerbier, M; Germann, G; Gebhard, M M; Ofer, N

    2011-12-01

    In spite of great advances in the field of composite tissue allotransplantations (CTA), there is still a major need for optimisation in terms of immunosuppression. Heat shock proteins are produced as a reaction of the body during a stress situation. Once elevated, they protect against a second stress and reduce ischaemia-reperfusion injury within transplantations. In the literature the effect of heat shock and HSP70 on rejection after CTA has not been described. The purpose of this experimental study was to examine the effect of heat shock proteins on rejection in a rat model of CTA. Evaluated was the effect of preconditioning by prior heat stress. Brown Norway rats were systemically heated to a core temperature of 42 °C in order to up-regulate HSP70. The expression of HSP70 in muscle was measured by Western blot analysis and showed a peak 24 h after heat shock. Allogeneic hindlimb transplantations were performed between Brown Norway rats (donor) and Lewis rats (recipients). Group 1 (n=12) was preheated 24 h prior to transplantation. In group 2 (n=12) the transplantation was performed without prior heat shock. Group 3 (n=6) was used as a control group with syngeneic hindlimb transplantations between Lewis rats. Postoperatively the appearance of the transplanted hindlimb was evaluated every 12 h. The beginning of rejection was defined when plantar erythema and foot oedema could be observed at the same time. To verify these discrete signs of rejection, the observation was continued for a further 24 h. In this time erythema and oedema spread over the whole transplanted hindlimb. The rat was sacrificed after specimens of skin and muscle had been taken for histological assessment. The rejection in group 1 (with preconditioning heat shock) began after 4.83±0.44 days, in group 2 (without heat shock) already after 3.88±0.53 days. The difference between these groups was significant because of the small standard deviation (Whitney-Mann U test: p<0.01). In our

  9. Effect of heat stress on development in vitro and in vivo and on synthesis of heat shock proteins in porcine embryos.

    Science.gov (United States)

    Kojima, T; Udagawa, K; Onishi, A; Iwahashi, H; Komatsu, Y

    1996-04-01

    The present study was conducted (1) to examine the effect of an acute increase in ambient temperature on the development of porcine day 6 embryos in culture and after transfer to recipient gilts, and (2) to analyze intracellular production of heat shock proteins (hsps). The viability of porcine day 6 embryos following a temporary acute elevation in ambient temperature (at 42 degrees-45.5 degrees C and for 10-180 min) was examined. Synthesis of 70 kDa hsp (hsp70) and 90 kDa hsp (hsp90) was determined by SDS-PAGE and Western blot analysis in porcine day 6 embryos subjected to heat stresses. Nonheat-stressed embryos were considered as control. Significantly higher numbers of viable nuclei were observed in treatment groups of 42 degrees C-10 min (236.6 +/- 71.4; P heat stress compared to control (82.5 +/- 47.3 microns), while heat stress with 43 degrees C for > or = 60 min, 44 degrees-44.5 degrees C for > or = 30 min, or 45 degrees-45.5 degrees C for > or = 10 min impaired their survival, as assessed by differences in number of viable nuclei. The embryos subjected to heat stresses under the conditions of 42 degrees C-180 min, 43 degrees C-10 min, 43 degrees C-30 min, 44 degrees C-10 min, or 45 degrees C-10 min developed to normal piglets after transfer to recipient gilts. Overall pregnancy rate was 75% (6/8), and farrowing rate 62.5% (5/8). Of heat-stressed embryos transferred, 59% (36/61) developed to normal piglets. Heat-stress conditions of 42 degrees C for 180 min, 43 degrees C for 30 min, 44 degrees C for 10 min, and 45 degrees C for 10 min were determined as critical with respect to the in vitro and in vivo survival of porcine embryos. Porcine day 6 embryos constitutively synthesized hsp70 even without heat stress, while hsp90 was detected only at trace level. Neither hsp70 nor hsp90 levels increased in the embryos subjected to heat stresses. In conclusion, porcine day 6 embryos could continue to develop in vivo or during in vitro culture after exposure to acute

  10. Dietary Supplementation of Seaweed (Ulva lactuca to alleviate the Impact of Heat Stress in Growing Lambs

    Directory of Open Access Journals (Sweden)

    Kkalid A. Abdoun, Aly B. Okab, Ahmed M. El-Waziry, Emad M. Samara and Ahmed A. Al-Haidary

    2014-01-01

    Full Text Available Several environmental and nutritional management approaches have been used to mitigate heat stress and improve performance of farm animals in semi-arid and arid regions. The present study was designed with the intention to alleviate the negative effects of heat stress and to promote the performance of growing lambs reared under hot environmental conditions. The study was conducted on 18 male Naimey lambs with average body weight of 22.78±0.49 kg, and 4-5 months old. The animals were randomly divided into 3 equal groups (A, B and C, and fed diets containing different concentrations of seaweed (Ulva lactuca for 90 days. Group A served as control and was offered diet containing 0.0% seaweed. Groups B and C served as treated groups and were offered diets containing 3.0 and 5.0% seaweed, respectively. Dietary inclusion of seaweed to the diet of growing lambs exposed to heat stress (max Ta 43.9oC, max RH 81.1%, max THI 84.6 neither influenced (P>0.05 the thermo-physiological parameters (rectal and skin temperatures, nor affected (P>0.05 the performance parameters (feed intake, body weight gain, feed conversion efficiency. Furthermore, dietary seaweed supplementation did not alter (P>0.05 blood constituents or blood antioxidant capacity. However, dietary seaweed supplementation significantly (P<0.05 reduced respiratory rate, and increased serum potassium concentration. Based on the data of the present study, seaweed (Ulva lactuca supplementation to the diets of growing lambs reared under heat stress conditions did not show any indication of promoting their production performance or heat tolerance.

  11. Functional Characterization of Waterlogging and Heat Stresses Tolerance Gene Pyruvate decarboxylase 2 from Actinidia deliciosa

    Directory of Open Access Journals (Sweden)

    Hui-Ting Luo

    2017-11-01

    Full Text Available A previous report showed that both Pyruvate decarboxylase (PDC genes were significantly upregulated in kiwifruit after waterlogging treatment using Illumina sequencing technology, and that the kiwifruit AdPDC1 gene was required during waterlogging, but might not be required during other environmental stresses. Here, the function of another PDC gene, named AdPDC2, was analyzed. The expression of the AdPDC2 gene was determined using qRT-PCR, and the results showed that the expression levels of AdPDC2 in the reproductive organs were much higher than those in the nutritive organs. Waterlogging, NaCl, and heat could induce the expression of AdPDC2. Overexpression of kiwifruit AdPDC2 in transgenic Arabidopsis enhanced resistance to waterlogging and heat stresses in five-week-old seedlings, but could not enhance resistance to NaCl and mannitol stresses at the seed germination stage and in early seedlings. These results suggested that the kiwifruit AdPDC2 gene may play an important role in waterlogging resistance and heat stresses in kiwifruit.

  12. Relationship between physical attributes and heat stress in dairy cattle from different genetic groups

    Science.gov (United States)

    Alfonzo, Evelyn Priscila München; Barbosa da Silva, Marcos Vinicius Gualberto; dos Santos Daltro, Darlene; Stumpf, Marcelo Tempel; Dalcin, Vanessa Calderaro; Kolling, Giovani; Fischer, Vivian; McManus, Concepta Margaret

    2016-02-01

    Dairy cattle raised under harsh conditions have to adapt and prevent heat stress. The aim of this study was to evaluate physical characteristics and their association with heat tolerance in different genetic groups of dairy cattle. Thickness of the skin and coat, length and number of hairs, body measurements, as well as physiological parameters and body temperatures by infrared thermography were determined in 19 Holstein and 19 Girolando (½ and ¾ Holstein) cows. The Holstein cattle were less tolerant to heat stress than Girolando (GH50 and GH75 Holstein), because of the difficulty in dissipating heat due to the larger body size, as well as thicker and longer hairs. The correlations between physical characteristics, physiological parameters, and thermographic measurements prove to be inconsistent among genetic groups and therefore are not predictive of heat tolerance, while the regressions of morphometric characteristics on physiological and thermographic measures were not significant. Thus, the physical characteristics were not good predictors of physiological indices and thermographic temperature and so should not be used.

  13. Amelioration of heat stress induced disturbances of antioxidant defense system in chicken by brahma rasayana.

    Science.gov (United States)

    Ramnath, V; Rekha, P S; Sujatha, K S

    2008-03-01

    Since the range of comfort zone or thermo neutral zone of domestic chickens is narrow, they become easily susceptible to heat and cold environmental stress. We evaluated Brahma Rasayana (BR) supplementation on concentrations of certain oxidative stress markers associated with heat stress. A total of 48 egg type male chickens of local strain were divided into six groups (n = 8) for the study. Three groups were fed with BR orally at the rate of 2 g/kg bw daily for 10 days prior to and during the period of experiment. Two of the four groups that were exposed to heat stress (HST i.e. to a temperature of 40 +/- 1 degrees C and relative humidity of 80 +/- 5% in an environmental chamber) for 4 h daily for 5 or 10 days, received BR orally. The other two groups remained as BR treated and untreated non-heat stressed (NHST) controls. There was a significant (P < 0.05) increase in the activities of antioxidant enzymes in blood such as catalase (CAT) and superoxide dismutase (SOD), as well as liver CAT, glutathione peroxidase (GPX) and glutathione reductase (GR) in NHST-BR treated and HST-BR treated (both 5 and 10 days) chickens when compared with untreated controls. A great deal of significant (P < 0.05) variations were seen in serum and liver reduced glutathione (GSH) concentration in NHST-BR treated and HST-BR treated (both 5 and 10 days) chickens. Serum and liver lipid peroxidation levels were found to be significantly (P < 0.05) higher in HST-untreated (both 5 and 10 days) chickens when compared with other groups. Thus BR supplementation during HST brings about enhanced action of enzymatic and non-enzymatic antioxidants, which nullified the undesired side effects of free radicals that are generated during HST.

  14. Amelioration of Heat Stress Induced Disturbances of Antioxidant Defense System in Chicken by Brahma Rasayana

    Directory of Open Access Journals (Sweden)

    V. Ramnath

    2008-01-01

    Full Text Available Since the range of comfort zone or thermo neutral zone of domestic chickens is narrow, they become easily susceptible to heat and cold environmental stress. We evaluated Brahma Rasayana (BR supplementation on concentrations of certain oxidative stress markers associated with heat stress. A total of 48 egg type male chickens of local strain were divided into six groups (n = 8 for the study. Three groups were fed with BR orally at the rate of 2 g/kg bw daily for 10 days prior to and during the period of experiment. Two of the four groups that were exposed to heat stress (HST i.e. to a temperature of 40 ± 1°C and relative humidity of 80 ± 5% in an environmental chamber for 4 h daily for 5 or 10 days, received BR orally. The other two groups remained as BR treated and untreated non-heat stressed (NHST controls. There was a significant (P < 0.05 increase in the activities of antioxidant enzymes in blood such as catalase (CAT and superoxide dismutase (SOD, as well as liver CAT, glutathione peroxidase (GPX and glutathione reductase (GR in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens when compared with untreated controls. A great deal of significant (P < 0.05 variations were seen in serum and liver reduced glutathione (GSH concentration in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens. Serum and liver lipid peroxidation levels were found to be significantly (P < 0.05 higher in HST-untreated (both 5 and 10 days chickens when compared with other groups. Thus BR supplementation during HST brings about enhanced action of enzymatic and non-enzymatic antioxidants, which nullified the undesired side effects of free radicals that are generated during HST.

  15. Dietary glutamine supplementation improves growth performance, meat quality and colour stability of broilers under heat stress.

    Science.gov (United States)

    Dai, S F; Wang, L K; Wen, A Y; Wang, L X; Jin, G M

    2009-05-01

    1. The present study was conducted to investigate the effects of dietary glutamine (Gln) supplementation on growth performance, carcase characteristics and meat quality in broilers exposed to high ambient temperature. 2. A total of 240 35-d-old male Arbor Acres broilers were randomly assigned to 4 treatment groups (three replicates of 20 birds per cage). The broilers were kept in a temperature-controlled room at either 23 degrees C (no-stress groups, NS) or 28 degrees C (heat stress groups, HS). The broilers were fed either on a basal diet (control, NS) or on the basal diet supplemented with 0, 0.5 or 1.0% Gln (HS). 3. Compared with the NS, the HS (0% Gln) group gained less weight and consumed less feed, had lower final body weight, gain-to-feed ratio, and abdominal fat yield. Breast meat in HS (0% Gln) had lower pH, water-holding capacity (WHC), a* value, ether extract (EE) content and crude protein (CP) content, and had higher shear force (SF) and L* value. 4. Linear increase were found in groups supplemented with Gln (0, 0.5% and 1.0%) for final body weight, weight gain, feed consumption, gain-to-feed ratio and abdominal fat yield. Supplementation with Gln improved breast meat pH, WHC, SF, L* value, a* value, EE content and CP content in broilers exposed to heat stress. No significant difference was observed in all the indices determined between the HS (1% Gln) and the NS. 5. Heat stress caused obvious breast meat discoloration in L*, a* and b* values. However, dietary supplementation with Gln gave a better colour stability. 6. The results indicated that dietary supplementation with Gln may alleviate heat stress-caused deterioration in growth performance, carcase characteristics, meat quality and meat colour stability of broilers.

  16. Oligo-microarray analysis and identification of stress-immune response genes from manila clam (Ruditapes philippinarum) exposure to heat and cold stresses.

    Science.gov (United States)

    Menike, Udeni; Lee, Youngdeuk; Oh, Chulhong; Wickramaarachchi, W D N; Premachandra, H K A; Park, Se Chang; Lee, Jehee; De Zoysa, Mahanama

    2014-10-01

    Thermal stress regulates the complex system of gene expression and downstream biochemical and physiological responses in aquatic species. To identify genes involved in heat stress responses in manila clam (Ruditapes philippinarum), microarray analysis was conducted using clam transcriptome generated by pyrosequencing of cDNA library. Manila clams were exposed to heat (30 ± 1 °C) and cold (4 ± 1 °C) stresses and compared with control animals (18 ± 1 °C). Heat stressed animals have changed greater number of transcripts (8,306) than cold stress (7,573). Results of both heat and cold exposure has shown that over 2-fold up-regulated or down regulated (>2-or <2-fold) transcripts were higher at 24 h than at 6 h. It suggests that silent and constitutive express genes can activate at critical stage of thermal stress which could be between 6 and 24 h post stresses. We identified wide range of stress-immune response genes such as transcription factors, heat shock proteins, antioxidant and detoxification enzymes, inflammatory and apoptosis related genes, cell adhesion molecules, cytokines, and IFN regulatory proteins. Histological results revealed that non-specific cellular alterations such as lesions, hypertrophy, and necrosis in stressed gills could be due to decrease of gas exchange rate which may cause hypoxia.

  17. Physiological tolerance to uncompensated heat stress in soldiers: Effects of various types of body cooling systems

    Directory of Open Access Journals (Sweden)

    Jovanović Dalibor

    2014-01-01

    Full Text Available Background/Aim. In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the “Phase Change Material” (PCM, and its effects on soldiers’ subjective comfort and physiological performance during exertional heat stress in hot environments. Methods. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs consisted of walking on a treadmill (5.5 km/h in hot conditions (40ºC in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL, and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk, tympanic temperature (Tty, and heart rate values (HR, while sweat rates (SwR indicated changes in hydration status. Results. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 ± 0.03 and 0.49 ± 0.05ºC, respectively; p < 0.05, as well as the average SwR (0.17 ± 0.03 L/m2/h. When using underwear, the values of given parameters were not significantly different compared to NOCOOL tests. Conclusions. Using a body cooling system based on PCM in the form of vest under NBC protective clothes during physical activity in hot conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperatures and heart rate values. These effects

  18. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  19. 21st Century Heat Stress Projections and their Effects on US Livestock

    Science.gov (United States)

    McCabe, E.; Buzan, J. R.; Krishnan, S.; Huber, M.

    2016-12-01

    In this study we aim to determine future yield changes in the United States for livestock caused by heat stress, under the high greenhouse gas emissions scenario, representative concentration pathway 8.5 (RCP8.5). We use CMIP5 output and the Community Earth System Model Large Ensemble (CESM LENS), produced by the National Center for Atmospheric Research (NCAR). We apply the HumanIndexMod, a diagnostic heat stress package, to calculate Temperature Humidity Index for Comfort (THIC) and wet bulb temperature (Buzan et al., 2015). THIC is used to assess an animal's behavioral changes as it is subjected to discomfort. Using output from our simulations with the HumanIndexMod, we utilized the agricultural livestock model of St. Pierre et al. (2003). THIC and wet bulb temperatures are all projected by climate models to increase by the end of the century. We found that increases in THIC and heat stress are caused by both temperature and humidity increases. We show the differences for dry matter intake loss and milk loss for the Dairy Cow Model as well as other yield related variables. These variables are estimated to decrease overall production for dairy cattle, finishing hogs, poultry and various livestock. By the end of the 21st century (2071-2100), dairy cow milk production decreases by 14%, and food intake decreases by 11% compared to the beginning of the century (2005-2034). 35% less weight is gained and 19% less food is consumed by hogs the end of the century compared to the beginning of the century. We estimate and discuss resulting yield losses for the livestock industries and the implications of these losses in the United States. These results indicate that the effect of heat stress on livestock production will be highest for dairy cows, finishing hogs, and poultry.References:Buzan, J.R., K. Oleson, and M. Huber. 2015. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geoscien. Model Devel. 8(2): 151-170. St

  20. Influence of acclimatization on serum enzyme changes in soldiers during exertional heat stress

    Directory of Open Access Journals (Sweden)

    Radaković Sonja

    2009-01-01

    Full Text Available Background/Aim. Exertional heat stress is common problem in military services. The aim was to examine changes in serum concentrations of some enzymes in soldiers during exertional heat stress test (EHST as well as the effects of 10-days passive or active acclimatization in climatic chamber. Methods. Forty male soldiers with high aerobic capacity, performed EHST either in cool (20 ºC, 16 ºC Wet bulb globe temperature - WBGT, or hot (40 ºC, 25 ºC WBGT environment, unacclimatized, or after 10 days of passive or active acclimation. Physiological strain was measured by tympanic temperatures (Tty and heart rates (HR. Concentrations of alanine aminotransferase (ALT and aspartate aminotransferase (AST, lactate dehydrogenase (LDH, and creatine-kinase (CK were measured in blood samples collected before and immediately after EHST. Results. Exertional heat stress test in hot conditions induced physiological heat stress (increase in Tty and HR, with significant increase in concentrations of all enzymes in unacclimatized group: ALT (42.5 ± 4.2 before vs 48.1 ± 3.75 U/L after EHST, p < 0.01, AST (24.9 ± 5.1 vs 33.4 ± 4.48 U/L, p < 0.01, LDH (160.6 ± 20.2 vs 195.7 ± 22.6 U/L, p < 0.001 and CK (215.5 ± 91.2 vs 279.1 ± 117.5 U/L, p < 0.05. In acclimatized soldiers there were no significant changes in concentrations of ALT and AST, while concentration of CK was significantly higher. Concentrations of LDH were significantly higher in all investigated groups, regardless of temperature conditions. Conclusion. In trained soldiers, 10-days passive or active acclimatization in climatic chamber can prevent increase in serum concentrations of ALT and AST, induced by exertional heat stress. Increase of serum concentrations of CK and LDH was induced by physical strain itself, with no additional effect of heat stress.

  1. Antioxidant response to heat stress in seagrasses. A gene expression study.

    Science.gov (United States)

    Tutar, O; Marín-Guirao, L; Ruiz, J M; Procaccini, G

    2017-12-01

    Seawater warming associated to the ongoing climate change threatens functioning and survival of keystone coastal benthic species such as seagrasses. Under elevated temperatures, the production of reactive oxygen species (ROS) is increased and plants must activate their antioxidant defense mechanisms to protect themselves from oxidative damage. Here we explore from a molecular perspective the ability of Mediterranean seagrasses to activate heat stress response mechanisms, with particular focus on antioxidants. The level of expression of targeted genes was analyzed in shallow and deep plants of the species Posidonia oceanica and in shallow plants of Cymodocea nodosa along an acute heat exposure of several days and after recovery. The overall gene expression response of P. oceanica was more intense and complete than in C. nodosa and reflected a higher oxidative stress level during the experimental heat exposure. The strong activation of genes with chaperone activity (heat shock proteins and a luminal binding protein) just in P. oceanica plants, suggested the higher sensitivity of the species to increased temperatures. In spite of the interspecific differences, genes from the superoxide dismutase (SOD) family seem to play a pivotal role in the thermal stress response of Mediterranean seagrasses as previously reported for other marine plant species. Shallow and deep P. oceanica ecotypes showed a different timing of response to heat. Shallow plants early responded to heat and after a few days relaxed their response which suggests a successful early metabolic adjustment. The response of deep plants was delayed and their recovery incomplete evidencing a lower resilience to heat in respect to shallow ecotypes. Moreover, shallow ecotypes showed some degree of pre-adaptation to heat as most analyzed genes showed higher constitutive expression levels than in deep ecotypes. The recurrent exposure of shallow plants to elevated summer temperatures has likely endowed them with a

  2. Comparing the Heat Stress Index of HSI and WBGT in BakeryWorkplaces in Hamadan

    Directory of Open Access Journals (Sweden)

    S. Mahdavi

    2006-10-01

    Full Text Available Background and aims   Thermal stress is one of the important issues of physical stress in workplaces. Bakery workers that are one of widely population that under occupation heat stress. In this study, heat stress indexes consist of HSI and WBGT in worker positions in total of 88  bakeries in Hamadan city was assessed.   Methods   In this study 88 bakery workplace was considered. Measuring of air variables to obtain  of HSI and WBGTheat stress indices was performed by axial fan anemometer, WBGTmeter and  hygrometer made in CASELLA CompanyIn this study 88 bakery workplace was considered.   Measuring of air variables to obtain of HSI and WBGTheat stress indices was performed by axial fan anemometer, WBGTmeter and hygrometer made in CASELLACompany.   Results   Results showed that the average HSI index (214.2 ± 43.7 % and the average work experience were (28.57±1.97 C. Analyzing of results showed that Pearson's correlation of coefficient between HSI and WBGT was equal to 0.509. Depending of HSI to air velocity was considerable (r = -0.811 that was not expected.   Conclusion   Values of HSI index had a wide scatter in variances in study fields comparing of  WBGTindex that had a minimal scatter, whereas those are measuring of variables and computing of indexes were same workplaces. Finally, although both heat indexes showed exceeded values form criteria, but calibration between HSI and WBGT in this study, showed that, the HSI index  had any weakness.    

  3. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP).

    Science.gov (United States)

    Timperio, Anna Maria; Egidi, Maria Giulia; Zolla, Lello

    2008-10-07

    The most crucial function of plant cell is to respond against stress induced for self-defence. This defence is brought about by alteration in the pattern of gene expression: qualitative and quantitative changes in proteins are the result, leading to modulation of certain metabolic and defensive pathways. Abiotic stresses usually cause protein dysfunction. They have an ability to alter the levels of a number of proteins which may be soluble or structural in nature. Nowadays, in higher plants high-throughput protein identification has been made possible along with improved protein extraction, purification protocols and the development of genomic sequence databases for peptide mass matches. Thus, recent proteome analysis performed in the vegetal Kingdom has provided new dimensions to assess the changes in protein types and their expression levels under abiotic stress. As reported in this review, specific and novel proteins, protein-protein interactions and post-translational modifications have been identified, which play a role in signal transduction, anti-oxidative defence, anti-freezing, heat shock, metal binding etc. However, beside specific proteins production, plants respond to various stresses in a similar manner by producing heat shock proteins (HSPs), indicating a similarity in the plant's adaptive mechanisms; in plants, more than in animals, HSPs protect cells against many stresses. A relationship between ROS and HSP also seems to exist, corroborating the hypothesis that during the course of evolution, plants were able to achieve a high degree of control over ROS toxicity and are now using ROS as signalling molecules to induce HSPs.

  4. Assessment of indoor heat stress variability in summer and during heat warnings: a case study using the UTCI in Berlin, Germany

    Science.gov (United States)

    Walikewitz, Nadine; Jänicke, Britta; Langner, Marcel; Endlicher, Wilfried

    2018-01-01

    Humans spend most of their time in confined spaces and are hence primarily exposed to the direct influence of indoor climate. The Universal Thermal Climate Index (UTCI) was obtained in 31 rooms (eight buildings) in Berlin, Germany, during summer 2013 and 2014. The indoor UTCI was determined from measurements of both air temperature and relative humidity and from data of mean radiant temperature and air velocity, which were either measured or modeled. The associated outdoor UTCI was obtained through facade measurements of air temperature and relative humidity, simulation of mean radiant temperature, and wind data from a central weather station. The results show that all rooms experienced heat stress according to UTCI levels, especially during heat waves. Indoor UTCI varied up to 6.6 K within the city and up to 7 K within building. Heat stress either during day or at night occurred on 35 % of all days. By comparing the day and night thermal loads, we identified maximum values above the 32 °C threshold for strong heat stress during the nighttime. Outdoor UTCI based on facade measurements provided no better explanation of indoor UTCI variability than the central weather station. In contrast, we found a stronger relationship of outdoor air temperature and indoor air temperature. Building characteristics, such as the floor level or window area, influenced indoor heat stress ambiguously. We conclude that indoor heat stress is a major hazard, and more effort toward understanding the causes and creating effective countermeasures is needed.

  5. Thermal stress response of General Purpose Heat Source (GPHS) aeroshell material

    Science.gov (United States)

    Grinberg, I. M.; Hulbert, L. E.; Luce, R. G.

    1980-01-01

    A thermal stress test was conducted to determine the ability of the GPHS aeroshell 3 D FWPF material to maintain physical integrity when exposed to a severe heat flux such as would occur from prompt reentry of GPHS modules. The test was performed in the Giant Planetary Facility at NASA's Ames Research Center. Good agreement was obtained between the theoretical and experimental results for both temperature and strain time histories. No physical damage was observed in the test specimen. These results provide initial corroboration both of the analysis techniques and that the GPHS reentry member will survive the reentry thermal stress levels expected.

  6. [The effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell in vitro].

    Science.gov (United States)

    Pan, Zhiguo; Shao, Yu; Geng, Yan; Chen, Jinghe; Su, Lei

    2015-08-01

    To study the effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell ( HUVEC ) in vitro. HUVEC was cultured in vitro in 5%CO(2) medium at 37 centigrade ( control group ) or 43 centigrade ( heat stress group ) for 1 hour. Coomassie brilliant blue R-250 staining was used to determine the effect of heat stress on the cytoskeleton. The cells in heat stress group were subsequently cultured at 37 centigradein 5%CO(2) medium after heat stress for 1 hour, and cell cycle of HUVEC was determined at 0, 6, 12, 18 and 24 hours with flow cytometry. Under light microscopy normal cytoskeleton was observed in control group, but thicker and shorter cytoskeleton was found after a rise of temperature, and stress fibers were found in heat stress group. The DNA content of HUVEC at all time points in G0/G1 stage was 38.07%-55.19% after heat stress. The DNA content in control group was 48.57%, and it was 54.06%, 55.19%, 48.23%, 38.07%, and 41.03% at 0, 6, 12, 18, 24 hours in G0/G1 stage in heat stress group. DNA content in S phase was 35.33%-48.18%. The DNA content in control group was 44.62%, and it was 35.33%, 39.50%, 42.50%, 48.18%, and 47.99% at 0, 6, 12, 18, 24 hours in S stage in heat stress group. DNA content in G2/M phase was 5.31%-13.75%. The DNA content in control group was 6.81, and it was 10.61%, 5.31%, 9.27%,13.75%, and 10.98% at 0, 6, 12, 18, 24 hours in G2/M stage in heat stress group. It was demonstrated that compared with control group, the DNA content in G0/G1 stage was significantly increased when the HUVEC were separated from heat stress within 6 hours, and it recovered at a similar level as control group at 12 hours. Heat stress can change the cytoskeleton of HUVEC, and cause stagnation at G0/G1 stage in cell cycle.

  7. Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available Thermal sensation and heat stress were evaluated in a plastic greenhouse, with and without evaporative cooling, under arid climatic conditions in Riyadh, Saudi Arabia. Suitable thermal comfort and heat stress scales were selected for the evaluation. Experiments were conducted in hot sunny days to measure the required parameters (i.e., the dry and wet bulb temperatures, globe temperature, natural wet bulb temperature, and solar radiation flux in the greenhouse. The results showed that in the uncooled greenhouse, workers are exposed to strong heat stress and would feel very hot most of the day time; they are safe from heat stress risk and would feel comfortable during night. An efficient evaporative cooling is necessary during the day to reduce heat stress and to improve the comfort conditions and is not necessary at night. In the cooled greenhouse, workers can do any activity: except at around noon they should follow a proposed working schedule, in which the different types of work were scheduled along the daytimes based on the heat stress value. To avoid heat stress and to provide comfort conditions in the greenhouses, the optimum ranges of relative humidity and air temperature are 48–55% and 24–28°C, respectively.

  8. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming.

    Science.gov (United States)

    Bergmann, Nina; Winters, Gidon; Rauch, Gisep; Eizaguirre, Christophe; Gu, Jenny; Nelle, Peter; Fricke, Birgit; Reusch, Thorsten B H

    2010-07-01

    Summer heat waves have already resulted in mortality of coastal communities, including ecologically important seagrass meadows. Gene expression studies from controlled experiments can provide important insight as to how species/genotypes react to extreme events that will increase under global warming. In a common stress garden, we exposed three populations of eelgrass, Zostera marina, to extreme sea surface temperatures, simulating the 2003-European heat wave. Populations came from locations widely differing in their thermal regime, two northern European locations [Ebeltoft (Kattegat), Doverodde (Limfjord, Baltic Sea)], and one southern population from Gabicce Mare (Adriatic Sea), allowing to test for population specificity in the response to a realistic heat stress event. Eelgrass survival and growth as well as the expression of 12 stress associated candidate genes were assessed during and after the heat wave. Contrary to expectations, all populations suffered equally from 3 weeks of heat stress in terms of shoot loss. In contrast, populations markedly differed in multivariate measures of gene expression. While the gene expression profiles converged to pre-stress values directly after the heat wave, stress correlated genes were upregulated again 4 weeks later, in line with the observed delay in shoot loss. Target genes had to be selected based on functional knowledge in terrestrial plants, nevertheless, 10/12 genes were induced relative to the control treatment at least once during the heat wave in the fully marine plant Z. marina. This study underlines the importance of realistic stress and recovery scenarios in studying the impact of predicted climate change.

  9. Heat stress induced changes in metabolic regulators of donkeys from arid tracts in India

    Directory of Open Access Journals (Sweden)

    Kataria N.

    2012-05-01

    Full Text Available To find out heat stress induced changes in metabolic regulators of donkeys from arid tracts in India, blood samples were collected to harvest the serum during moderate and extreme hot ambiences. The metabolic enzymes determined were sorbitol dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, ornithine carbamoyl transferase, gammaglutamayl transferase, 5’nucleotidase, glucose-6-phosphatase, arginase, and aldolase. The mean values of all the serum enzymes increased significantly (p≤0.05 during hot ambience as compared to respective values during moderate ambience. It was concluded that increased activity of all the enzymes in the serum was due to modulation of metabolic reactions to combat the effect of hot ambience on the animals. Activation of gluconeogenesis along with hexose monophosphate shunt and urea cycle probably helped the animals to combat the heat stress.

  10. The reliability and validity of questionnaire for preliminary assessment of heat stress at workplace

    Directory of Open Access Journals (Sweden)

    Habibollah Dehghan

    2015-09-01

    Full Text Available Background: Heat stress is one of the most important consequences of occupational heat exposure in worldwide. Current heat stress indices are not suitable for heat strain screening in developing countries due to their inherent and applied limitations. The Aim of this study was design, validity and reliability of a questionnaire method entitled "Heat Strain Score Index" or HSSI for preliminary assessment of heat stress at workplace. Material and Methods: This cross-sectional study was conducted during 2009-2010. This research included seven stages (i Item generation (ii Evaluation of content validity by 9 subjects of occupational health specialists and 30 occupational health providers (iii Reliability analysis was performed on 98 workers (iv Structure validity was conducted on 150 workers (v Test of the measurement model (vi Criteria validity on 122 worker and (vii classification of level thermal risk with ROC curves. Data were analyzed with SPSS-18 and AMOS-16 software. Results: In stage of item generation 40 items were identified. In Content Validity evaluation in the level of occupational health specialists, 27 items modified, 3 items were removed and 3 items added in evaluation by occupational health providers, 19 items modified. Internal consistency (α of items was 0.91. Exploratory factor analysis on items HSSI scale identified four subscales which explained 71.6% of the variance. Confirmatory factor analysis provides evidence of model fits (GFI=0.991, RMSEA=0.036. Correlation between the HSSI score with aural temperature was 0.73.Cut-off point, sensitivity and specificity for upper green zone (no thermal strain were 13.5, 91% and 50%.whereas Cut-off point, sensitivity and specificity for lower red zone (thermal strain were 18, 86% and 73%. Conclusion: This study revealed HSSI scale includes 18 of measurable variables that high overlapped with WBGT index and others questionnaires. This scale demonstrated high reliability and validity

  11. Antigravity Hills are Visual Illusions

    OpenAIRE

    Bressan, Paola; Garlaschelli, Luigi; Barracano, Monica

    2003-01-01

    Antigravity hills, also known as spook hills or magnetic hills, are natural places where cars put into neutral are seen to move uphill on a slightly sloping road, apparently defying the law of gravity. We show that these effects, popularly attributed to gravitational anomalies, are in fact visual illusions. We re-created all the known types of antigravity spots in our laboratory using tabletop models; the number of visible stretches of road, their slant, and the height of the visible horizon ...

  12. Heat Stress and Injury Prevention Practices During Summer High School Football Training in South Texas.

    Science.gov (United States)

    Hearon, Christopher M; Ruiz, Alberto; Taylor, Zachary J

    The purpose was to describe practice conditions influencing the risk of heat stress to athletes in summer football training in South Texas high schools, and to compare these conditions to ACSM recommendations for heat stress/injury risk reduction in this population. Thirty (N=30) high school summer football practices were observed. Wet bulb globe temperature (WBGT) was measured before/after practices and practices were observed for: duration/structure; athlete clothing; and rest break frequency/duration/content. Practices averaged 125±31 min and WBGT (pre- to post-practice) was 29.7±2.1°C to 31.2±2.2°C for morning, and 31.2±1.6°C to 28.9±1.2°C for evening practices. Most practices included contact (93%), and a majority were full-contact (53%). Most athletes wore full pads (83%) and medium/dark colored clothing (73%). Outside of scheduled breaks athletes removed helmets (63%), sat/knelt (63%), and had access to fluid (90%). Athletic trainers were present at 93% of the practices. A typical practice had 3 rest breaks, each lasting approximately 5 min. During breaks, athletes were provided fluid (93%), removed helmets (89%), and sat/knelt (76%), but were rarely provided shade (2%). While none of the practice sessions were conducted in conditions warranting the cancellation of outside activity (WBGT>33.1°C), the environmental data confirms that this region presents athletes with a very high risk of heat stress/injury. While a majority of the schools were taking many of the precautionary measures recommended by ACSM, many of the guidelines were not being followed. Governing bodies of high school athletics need to encourage compliance with recommendations for the reduction of heat stress/injury in this population.

  13. Effect of heat stress on histopathological alterations in kidneys of albino rats

    OpenAIRE

    Sabah S.A. Al-Tekrity

    2011-01-01

    The effect of heat stress was studied over two months (July and August) by using thirty adult male rats. The animals were divided into six groups (five animals per each group) and tested for 7, 14, 21, 28, 35 and 42 days, under controlled condition (45±5°C). The clinical observation indicated significant decrease in activity and body weight associated with oligourea and hypophagia. All these signs were prominent after five days of the experiment. The kidneys of rats u...

  14. Snow shoes and sandals? : genetic aspects of heat stress sensitivity and sow reproduction

    OpenAIRE

    Bloemhof, S.

    2013-01-01

    Globally the average size of pig herds are increasing and amount of labour spent per sow / finisher pig is decreasing. These changes require sows which need less management interventions. In addition to easier manageable sows modern genotypes will also need to be more adaptable considering that global temperatures are expected to increase and pork production is partially moving to warmer climates. The end result is that commercial pigs nowadays will potentially face more heat stress challenge...

  15. Impact of heat stress on health and performance of dairy animals: A review

    Science.gov (United States)

    Das, Ramendra; Sailo, Lalrengpuii; Verma, Nishant; Bharti, Pranay; Saikia, Jnyanashree; Imtiwati; Kumar, Rakesh

    2016-01-01

    Sustainability in livestock production system is largely affected by climate change. An imbalance between metabolic heat production inside the animal body and its dissipation to the surroundings results to heat stress (HS) under high air temperature and humid climates. The foremost reaction of animals under thermal weather is increases in respiration rate, rectal temperature and heart rate. It directly affect feed intake thereby, reduces growth rate, milk yield, reproductive performance, and even death in extreme cases. Dairy breeds are typically more sensitive to HS than meat breeds, and higher producing animals are, furthermore, susceptible since they generates more metabolic heat. HS suppresses the immune and endocrine system thereby enhances susceptibility of an animal to various diseases. Hence, sustainable dairy farming remains a vast challenge in these changing climatic conditions globally. PMID:27057109

  16. Cardiovascular disease-induced thermal responses during passive heat stress: an integrated computational study.

    Science.gov (United States)

    Zhang, Xiancheng; Noda, Shigeho; Himeno, Ryutaro; Liu, Hao

    2016-11-01

    The cardiovascular system plays a crucial role in human thermoregulation; cardiovascular diseases may lead to significantly degrading the thermoregulation ability for patients during exposure to heat stress. To evaluate the thermal responses of patients with common chronic cardiovascular diseases, we here propose an integrated computational model by coupling a two-node thermoregulation model with a closed-loop, multi-compartment, lumped-parameter cardiovascular model. This bioheat transfer model is validated, capable to predict cardiovascular functions and thermal responses under varying environmental conditions. Our results demonstrate that the cardiovascular disease-induced reduction in cardiac output and skin blood flow causes extra elevation in core temperature during hyperthermic challenges. In addition, a combination of aging, obesity, and cardiovascular diseases shows a pronounced increase in core temperature during heat exposure, which implies that such combined effect may increase the risk of heat-related morbidity and mortality. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Impact of heat stress on health and performance of dairy animals: A review

    Directory of Open Access Journals (Sweden)

    Ramendra Das

    2016-03-01

    Full Text Available Sustainability in livestock production system is largely affected by climate change. An imbalance between metabolic heat production inside the animal body and its dissipation to the surroundings results to heat stress (HS under high air temperature and humid climates. The foremost reaction of animals under thermal weather is increases in respiration rate, rectal temperature and heart rate. It directly affect feed intake thereby, reduces growth rate, milk yield, reproductive performance, and even death in extreme cases. Dairy breeds are typically more sensitive to HS than meat breeds, and higher producing animals are, furthermore, susceptible since they generates more metabolic heat. HS suppresses the immune and endocrine system thereby enhances susceptibility of an animal to various diseases. Hence, sustainable dairy farming remains a vast challenge in these changing climatic conditions globally.

  18. The effect of air velocity on heat stress at increased air temperature

    DEFF Research Database (Denmark)

    Bjerg, Bjarne Schmidt; Wang, Xiaoshuai; Zhang, Guoqiang

    to the temperature difference between the surfaces of animals and the surrounding air, and this temperature difference declines when the air temperature approaches the animal body temperature. Consequently it can it by expected that the effect of air velocity decreases at increased air temperature. The literature...... on different categories of farm animals to determine how the effect of air velocity depends on the air temperature. A new expression to calculate the chilling effect of increased air velocity was suggested. In addition to the parameters air velocity and air temperature this new expression included three......Increased air velocity is a frequently used method to reduce heat stress of farm animals housed in warm conditions. The main reason why the method works is that higher air velocity increases the convective heat release from the animals. Convective heat release from the animals is strongly related...

  19. Colloid volume loading does not mitigate decreases in central blood volume during simulated hemorrhage while heat stressed

    DEFF Research Database (Denmark)

    Crandall, Craig G; Wilson, Thad E; Marving, Jens

    2012-01-01

    intravenous colloid volume loading (11 ml/kg). Relative changes in torso and regional blood volumes were determined by gamma camera imaging with technetium-99m labeled erythrocytes. Heat stress reduced blood volume in all regions (ranging from 7 to 16%), while subsequent volume loading returned those values......±5%, all P0.05 relative to heat stress alone). These data suggest that blood volume loading during passive heat stress (via 11 ml/kg of a colloid solution) normalizes regional blood volumes in the torso, but does not mitigate the reduction in central blood volume during a simulated hemorrhagic challenge...

  20. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress

    DEFF Research Database (Denmark)

    Laino, Paolo; Shelton, Dale; Finnie, Christine

    2010-01-01

    include proteins with metabolic activity or structural function. In order to investigate the consequences of heat stress on the accumulation of nonprolamin proteins in mature durum wheat kernels, the Italian cultivar Svevo was subjected to two thermal regimes (heat stress versus control). The 2-D patterns...... polypeptides, 47 of which were identified by MALDI-TOF and MALDI-TOF-TOF MS and included HSPs, proteins involved in the glycolysis and carbohydrate metabolism, as well as stress-related proteins. Many of the heat-induced polypeptides are considered to be allergenic for sensitive individuals....

  1. Heat Stress Nephropathy From Exercise-Induced Uric Acid Crystalluria: A Perspective on Mesoamerican Nephropathy.

    Science.gov (United States)

    Roncal-Jimenez, Carlos; García-Trabanino, Ramón; Barregard, Lars; Lanaspa, Miguel A; Wesseling, Catharina; Harra, Tamara; Aragón, Aurora; Grases, Felix; Jarquin, Emmanuel R; González, Marvin A; Weiss, Ilana; Glaser, Jason; Sánchez-Lozada, Laura G; Johnson, Richard J

    2016-01-01

    Mesoamerican nephropathy (MeN), an epidemic in Central America, is a chronic kidney disease of unknown cause. In this article, we argue that MeN may be a uric acid disorder. Individuals at risk for developing the disease are primarily male workers exposed to heat stress and physical exertion that predisposes to recurrent water and volume depletion, often accompanied by urinary concentration and acidification. Uric acid is generated during heat stress, in part consequent to nucleotide release from muscles. We hypothesize that working in the sugarcane fields may result in cyclic uricosuria in which uric acid concentrations exceed solubility, leading to the formation of dihydrate urate crystals and local injury. Consistent with this hypothesis, we present pilot data documenting the common presence of urate crystals in the urine of sugarcane workers from El Salvador. High end-of-workday urinary uric acid concentrations were common in a pilot study, particularly if urine pH was corrected to 7. Hyperuricemia may induce glomerular hypertension, whereas the increased urinary uric acid may directly injure renal tubules. Thus, MeN may result from exercise and heat stress associated with dehydration-induced hyperuricemia and uricosuria. Increased hydration with water and salt, urinary alkalinization, reduction in sugary beverage intake, and inhibitors of uric acid synthesis should be tested for disease prevention. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Internal stress-induced melting below melting temperature at high-rate laser heating

    Science.gov (United States)

    Hwang, Yong Seok; Levitas, Valery I.

    2014-06-01

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  3. Internal stress-induced melting below melting temperature at high-rate laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Seok, E-mail: yshwang@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States); Levitas, Valery I., E-mail: vlevitas@iastate.edu [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-06-30

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.

  4. Short communication: Effect of heat stress on nonreturn rate of Italian Holstein cows.

    Science.gov (United States)

    Biffani, S; Bernabucci, U; Vitali, A; Lacetera, N; Nardone, A

    2016-07-01

    The data set consisted of 1,016,856 inseminations of 191,012 first, second, and third parity Holstein cows from 484 farms. Data were collected from year 2001 through 2007 and included meteorological data from 35 weather stations. Nonreturn rate at 56 d after first insemination (NR56) was considered. A logit model was used to estimate the effect of temperature-humidity index (THI) on reproduction across parities. Then, least squares means were used to detect the THI breakpoints using a 2-phase linear regression procedure. Finally, a multiple-trait threshold model was used to estimate variance components for NR56 in first and second parity cows. A dummy regression variable (t) was used to estimate NR56 decline due to heat stress. The NR56, both for first and second parity cows, was significantly (unfavorable) affected by THI from 4 d before 5 d after the insemination date. Additive genetic variances for NR56 increased from first to second parity both for general and heat stress effect. Genetic correlations between general and heat stress effects were -0.31 for first parity and -0.45 for second parity cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Heat stress and age induced maternal effects on wing size and shape in parthenogenetic Drosophila mercatorum

    DEFF Research Database (Denmark)

    Andersen, DH; Pertoldi, C; Scali, V

    2005-01-01

    Maternal effects on progeny wing size and shape in a homozygous parthenogenetic strain of Drosophila mercatorum were investigated. The impact of external maternal factors (heat stress) and the impact of internal maternal factors (different maternal and grand maternal age) were studied. The offspr......Maternal effects on progeny wing size and shape in a homozygous parthenogenetic strain of Drosophila mercatorum were investigated. The impact of external maternal factors (heat stress) and the impact of internal maternal factors (different maternal and grand maternal age) were studied....... The offspring developed under identical environmental conditions, and due to lack of genetic variation any phenotypic difference among offspring could be ascribed to maternal effects. Wing size was estimated by centroid size, shape was analysed with the Procrustes geometric morphometric method and variation...... in landmark displacement was visualized by principal component analysis. Both kinds of maternal effects had a significant impact on progeny wing size and shape. Maternal heat stress led to the same pattern of response in size and shape among the progeny, with increased difference between the control group...

  6. Heat Capacity Measurements of Sr2RuO4 Under Uni-axial Stress

    Science.gov (United States)

    Li, You-Sheng; Gibbs, Alexandra; MacKenzie, Andrew; Hicks, Clifford; Nicklas, Michael

    One of the most-discussed possible pairing symmetries of the superconductor Sr2RuO4 is px + /-ipy. By applying in-plane uniaxial stress, the degeneracy of the px and py components should be lifted, yielding two critical temperatures (Tc) . Hicks et al. observed an increase of Tc of Sr2RuO4 under both compressive and tensile stress, and did not find evidence for splitting of transition. However, that result was based on magnetic susceptibility measurements, which would be sensitive only to the upper transition. For a direct test of possible splitting, we measure the heat capacity of Sr2RuO4 under uniaxial stress. To do so, we have developed an approach to measure heat capacity under non-adiabatic conditions. We have observed the increase in Tc under compressive strain, providing the first thermodynamic evidence for the strain-induced increase in Tc of Sr2RuO4, and also resolve strong strain-induced changes in the normal-state heat capacity.

  7. Heat stress and seasonal effects on reproduction in the dairy cow--a review.

    Science.gov (United States)

    De Rensis, Fabio; Scaramuzzi, Rex John

    2003-10-01

    In dairy cows inseminated during the hot months of the year, there is a decrease in fertility. Different factors contribute to this situation; the most important are a consequence of increased temperature and humidity that result in a decreased expression of overt estrus and a reduction in appetite and dry matter intake. Heat stress reduces the degree of dominance of the selected follicle and this can be seen as reduced steroidogenic capacity of its theca and granulosa cells and a fall in blood estradiol concentrations. Plasma progesterone levels can be increased or decreased depending on whether the heat stress is acute or chronic, and on the metabolic state of the animal. These endocrine changes reduce follicular activity and alter the ovulatory mechanism, leading to a decrease in oocyte and embryo quality. The uterine environment is also modified, reducing the likelihood of embryo implantation. Appetite and dry matter intake are both reduced by heat stress thus prolonging the postpartum period of negative energy balance and increasing the calving-conception interval, particularly in high producing dairy cows. The utilization of cooling systems may have a beneficial effect on fertility but dairy cows cooled in this way are still unable to match the fertility achieved in winter. Recent studies suggest that the use of gonadotropins to induce follicular development and ovulation can decrease the severity of seasonal postpartum infertility in dairy cows.

  8. Activation of proliferation and differentiation of dental follicle stem cells (DFSCs) by heat stress.

    Science.gov (United States)

    Rezai Rad, M; Wise, G E; Brooks, H; Flanagan, M B; Yao, S

    2013-02-01

    Adult stem cells (ASCs) remain in a slowly cycling/quiescent state under normal physiological conditions, but they can be awakened from this by certain factors, such as injury signals. Previously, our group has shown that dental follicle stem cells (DFSCs) appear to proliferate more rapidly than their non-stem cell counterparts at elevated temperatures. The study described here has aimed to (i) elucidate optimal temperature in which to culture DFSCs, (ii) determine whether elevated temperatures could enhance differentiation capability of DFSCs and (iii) characterize stem cell and osteogenic marker expression of DFSCs at elevated temperatures. DFSCs obtained from rat first molars were cultured at 37 (control), 38, 39, 40 and 41 ºC. Cell proliferation was evaluated by Alamar blue reduction assay and mean numbers of viable dissociated cells. Osteogenic differentiation was evaluated after 7 or 14 days osteogenic induction. Expression of selected marker genes was also assessed during proliferation and differentiation of the cells. Increased cell proliferation was seen at heat-stress temperatures of 38º, 39º and 40 ºC. DFSCs revealed maximal osteogenesis when cultured at 39 and 40 ºC. Moreover, some stem cell and osteogensis-associated markers had elevated expression in heat-stress conditions. Under determined heat-stress conditions, DFSCs increased their proliferation, osteogenic differentiation and expression of some marker genes. Thus, it is likely that elevated temperature could serve as a factor to activate adult stem cells. © 2013 Blackwell Publishing Ltd.

  9. Activation of the proliferation and differentiation of dental follicle stem cells (DFSCs) by heat-stress

    Science.gov (United States)

    Rad, Maryam Rezai; Wise, Gary E.; Brooks, Hunter; Flanagan, Michael B.; Yao, Shaomian

    2012-01-01

    Objectives Adult stem cells (ASCs) are maintained in a slow cycling and quiescent state under normal physiological conditions. This state could be awakened by certain factors, such as injury signals. Previously, we have shown that dental follicle stem cells (DFSCs) appear to grow more rapidly than their non-stem cell counterparts at elevated temperatures. This study aimed to (a) elucidate the optimal temperature to grow DFSCs, (b) determine if the elevated temperatures could enhance the differentiation capability of DFSCs, and (c) characterize the stem cell and osteogenic markers expression in DFSCs under elevated temperatures. Materials and methods DFSCs obtained from rat first molar were cultured at 37 (control), 38, 39, 40, and 41°C. Cell proliferation was evaluated by Alamar blue reduction assay and mean number of viable dissociated cells. Osteogenic differentiation was evaluated after 7 or 14 days of osteogenic induction. Expression of selected marker genes was also assessed during proliferation and differentiation of the DFSCs. Results Increased cell proliferation was seen at heat-stress temperatures of 38, 39 and 40 °C, DFSCs showed maximal osteogenesis when cultured at 39 and 40°C. Moreover, some stem cell and osteogenic associated markers increased their expression under heat-stress conditions. Conclusions Under proper heat-stress conditions, DFSCs increased proliferation, osteogenic differentiation, and expression of some marker genes. Thus, it is likely that elevated temperature could serve as a factor to activate ASCs. PMID:23278983

  10. Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress

    Directory of Open Access Journals (Sweden)

    Xuedong Yang

    2016-05-01

    Full Text Available The HSF (heat shock factor gene family contains highly conserved plant-specific transcription factors that play an important role in plant high-temperature stress responses. The present study aimed to characterize the HSF transcription factor genes in tomato (Solanum lycopersicum, which is an important vegetable crop worldwide and the model plant for fruit development studies. Twenty-six SlyHSF genes were identified in tomato, and the phylogenetic analysis showed the possible evolution profile of subgroups among in the plant kingdom. A new group O was identified that involved HSF genes in primitive plant species, like in the green algae, mosses and lycophytes. The gene structure and motifs of each SlyHSF were comprehensively analyzed. We identified orthologous, co-orthologous and paralogous HSF gene pairs in tomato, Arabidopsis and rice, and constructed a complex interaction network among these genes. The SlyHSF genes were expressed differentially in different species and at a higher level in mature fruits. The qPCR analysis was performed and showed SlyHSF genes greatly participate in plant heat tolerant pathways. Our comprehensive genome-wide analysis provided insights into the HSF gene family of tomatoes.

  11. Proteome Profiling of Heat, Oxidative, and Salt Stress Responses in Thermococcus kodakarensis KOD1

    Directory of Open Access Journals (Sweden)

    Baolei eJia

    2015-06-01

    Full Text Available The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism for studying hyperthermophiles, has adapted to optimal growth under conditions of high temperature and salinity. However, the environmental conditions for the strain are not always stable, and this strain might face different stresses. In the present study, we compared the proteome response of T. kodakarensis to heat, oxidative, and salt stresses using two-dimensional electrophoresis, and protein spots were identified through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins, four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and protein disulphide oxidoreductase were associated with all three stresses. Gene ontology analysis showed that these proteins were primarily involved metabolic and cellular processes. The KEGG pathway analysis suggested that the main metabolic pathways involving these enzymes were related to carbohydrate metabolism, secondary metabolite synthesis, and amino acid biosynthesis. These data might enhance our understanding of the functions and molecular mechanisms of thermophilic Archaea for survival and adaptation in extreme environments.

  12. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md. Mahabub; Roychowdhury, Rajib; Fujita, Masayuki

    2013-01-01

    High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants. PMID:23644891

  13. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis.

    Science.gov (United States)

    Dobrá, Jana; Černý, Martin; Štorchová, Helena; Dobrev, Petre; Skalák, Jan; Jedelský, Petr L; Lukšanová, Hana; Gaudinová, Alena; Pešek, Bedřich; Malbeck, Jiří; Vanek, Tomas; Brzobohatý, Břetislav; Vanková, Radomíra

    2015-02-01

    Targeting of the heat stress (HS, 40°C) to shoots, roots or whole plants substantially affects Arabidopsis physiological responses. Effective stress targeting was proved by determination of the expression of HS markers, HsfA2 and HSA32, which were quickly stimulated in the targeted organ(s), but remained low in non-stressed tissues for at least 2h. When shoots or whole plants were subjected to HS, a transient decrease in abscisic acid, accompanied by a small increase in active cytokinin levels, was observed in leaves, consistent with stimulation of transpiration, the main cooling mechanism in leaves. HS application targeted to part of plant resulted in a rapid stimulation of expression of components of cytokinin signaling pathway (especially of receptor genes) in the non-exposed tissues, which indicated fast inter-organ communication. Under all HS treatments, shoot apices responded by transient elevation of active cytokinin contents and stimulation of transcription of genes involved in photosynthesis and carbohydrate metabolism. Duration of this stimulation was negatively correlated with stress strength. The impact of targeted HS on the expression of 63 selected genes, including those coding regulatory 14-3-3 proteins, was compared. Stimulation of GRF9 (GRF14μ) in stressed organs after 2-6h may be associated with plant stress adaptation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2012-11-01

    Full Text Available Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54 at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  15. Effect of nutritional immunomodulation and heat stress during the dry period on subsequent performance of cows.

    Science.gov (United States)

    Fabris, Thiago F; Laporta, Jimena; Corra, Fabiana N; Torres, Yazielis M; Kirk, David J; McLean, Derek J; Chapman, J D; Dahl, Geoffrey E

    2017-08-01

    Heat stress in dairy cows during the dry period impairs milk yield in the next lactation. Feeding OmniGen-AF (OG; Phibro Animal Health Corp., Teaneck, NJ) to lactating cows during heat stress may increase dry matter intake (DMI) and lowers respiration rate (RR) and rectal temperature (RT), but the effects in dry cows are not known. We hypothesized that OG supplementation before, during, and after the dry period (approximately 160 d total) would overcome the effects of heat stress and improve cow performance in the next lactation. Cows were randomly assigned to OG or control (placebo) treatments for the last 60 d in milk (DIM), based on mature-equivalent milk yield in the previous lactation. Cows were dried off 45 d before expected calving and randomly assigned to heat stress (HT) or cooling (CL) treatments. Thus, cows received dietary supplementation during late lactation before they were exposed to either CL or HT. After dry-off, treatment groups included heat stress with placebo (HT, only shade, 56 g/d of placebo, n = 17), HT with OG supplementation (HTOG, 56 g/d of OG, n = 19), cooling with placebo (CL, shade, fans, and soakers, 56 g/d of placebo, n = 16), and CL with OG supplementation (CLOG, 56 g/d of OG, n = 11). After parturition, all cows were kept under the same CL system and management, and all cows continued to receive OG or control treatment until 60 DIM. Cooling cows during the dry period reduced afternoon RT (CL vs. HT; 38.9 ± 0.05 vs. 39.3 ± 0.05°C) and RR (CL vs. HT; 45 ± 1.6 vs. 77 ± 1.6 breaths/min). Respiration rate was also decreased by OG supplementation under HT conditions (HTOG vs. HT; 69.7 ± 1.6 vs. 77.2 ± 1.6 breaths/min). An interaction was observed between OG supplementation and HT; HTOG cows tended to have lower morning RT compared with HT cows. During the dry period, OG reduced DMI relative to control cows. Birth weight was greater in calves from CL cows (CL vs. HT; 40.6 ± 1.09 vs. 38.7 ± 1.09 kg). No differences were detected

  16. Effect of heat stress during the dry period on mammary gland development.

    Science.gov (United States)

    Tao, S; Bubolz, J W; do Amaral, B C; Thompson, I M; Hayen, M J; Johnson, S E; Dahl, G E

    2011-12-01

    Heat stress during the dry period negatively affects hepatic metabolism and cellular immune function during the transition period, and milk production in the subsequent lactation. However, the cellular mechanisms involved in the depressed mammary gland function remain unknown. The objective of the present study was to determine the effect of heat stress during the dry period on various indices of mammary gland development of multiparous cows. Cows were dried off approximately 46 d before expected calving and randomly assigned to 2 treatments, heat stress (HT, n=15) or cooling (CL, n=14), based on mature equivalent milk production. Cows in the CL treatment were provided with sprinklers and fans that came on when ambient temperatures reached 21.1°C, whereas HT cows were housed in the same barn without fans and sprinklers. After parturition, all cows were housed in a freestall barn with cooling. Rectal temperatures were measured twice daily (0730 and 1430 h) and respiration rates recorded at 1500 h on a Monday-Wednesday-Friday schedule from dry off to calving. Milk yield and composition were recorded daily up to 280 d in milk. Daily dry matter intake was measured from dry off to 42 d relative to calving. Mammary biopsies were collected at dry off, -20, 2, and 20 d relative to calving from a subset of cows (HT, n=7; CL, n=7). Labeling with Ki67 antigen and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling were used to evaluate mammary cell proliferation and apoptosis, respectively. The average temperature-humidity index during the dry period was 76.6 and not different between treatments. Heat-stressed cows had higher rectal temperatures in the morning (38.8 vs. 38.6°C) and afternoon (39.4 vs. 39.0°C), greater respiration rates (78.4 vs. 45.6 breath/min), and decreased dry matter intake (8.9 vs. 10.6 kg/d) when dry compared with CL cows. Relative to HT cows, CL cows had greater milk production (28.9 vs. 33.9 kg/d), lower milk protein

  17. Autophagy, a conserved mechanism for protein degradation, responds to heat and other abiotic stresses in Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Yufei eZhai

    2016-02-01

    Full Text Available Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L. tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses.

  18. Sweat mineral-element responses during 7 h of exercise-heat stress.

    Science.gov (United States)

    Montain, Scott J; Cheuvront, Samuel N; Lukaski, Henry C

    2007-12-01

    Uncertainty exists regarding the effect of sustained sweating on sweat mineral-element composition. To determine the effect of multiple hours of exercise-heat stress on sweat mineral concentrations. Seven heat-acclimated subjects (6 males, 1 female) completed 5 x 60 min of treadmill exercise (1.56 m/s, 2% grade) with 20 min rest between exercise periods in 2 weather conditions (27 degrees C, 40% relative humidity, 1 m/s and 35 degrees C, 30%, 1 m/s). Sweat was collected from a sweat-collection pouch attached to the upper back during exercise bouts 1, 3, and 5. Mineral elements were determined by using inductively coupled plasma-emission spectrography. At 27 degrees C, sweat sodium (863 [563] microg/mL; mean [SD]), potassium (222 [48] microg/mL), calcium (16 [7]) microg/mL), magnesium (1265 [566] ng/mL), and copper (80 [56] ng/mL) remained similar to baseline over 7 h of exercise-heat stress, whereas sweat zinc declined 42-45% after the initial hour of exercise-heat stress (Ex1 = 655 [362], Ex3 = 382 [168], Ex5 = 355 [288] microg/mL, P sweat zinc at 35 degrees C when sweat rates were higher. Sweat rate had no effect on sweat trace-element composition. Sweat sodium, potassium, and calcium losses during multiple hours of sustained sweating can be predicted from initial sweat composition. Estimates of sweat zinc losses, however, will be overestimated if sweat zinc conservation is not accounted for in sweat zinc-loss estimates.

  19. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress.

    Science.gov (United States)

    Yang, Dongqing; Li, Yong; Shi, Yuhua; Cui, Zhengyong; Luo, Yongli; Zheng, Mengjing; Chen, Jin; Li, Yanxia; Yin, Yanping; Wang, Zhenlin

    2016-01-01

    Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar) and Jimai 20 (a control cultivar), were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA). The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA) between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P cytokinin substances in the cultivation of heat-resistant wheat.

  20. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress.

    Science.gov (United States)

    Zeferino, C P; Komiyama, C M; Pelícia, V C; Fascina, V B; Aoyagi, M M; Coutinho, L L; Sartori, J R; Moura, A S A M T

    2016-01-01

    The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2×3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature×diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair

  1. Capsaicinoids improve egg production by regulating ovary nuclear transcription factors against heat stress in quail.

    Science.gov (United States)

    Sahin, N; Orhan, C; Tuzcu, M; Juturu, V; Sahin, K

    2017-04-01

    1. To examine the molecular mechanism of capsaicinoid supplementation from capsicum extract, laying Japanese quail (n = 180, 5 weeks old) were reared either at 22°C for 24 h/d (thermoneutral, TN) or at 34°C for 8 h/d (heat stress, HS) and fed on one of three diets containing 0, 25 or 50 mg of capsaicinoids per kilogram for 12 weeks (2 × 3 factorial arrangement). 2. The results revealed that exposure to HS decreased feed consumption by 10.7% and egg production by 13.6%, increased serum and ovary malondialdehyde (MDA) levels by 66.9% and 88.1%, respectively, and reduced ovary superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities by 28.3%, 48.7% and 43.8%, respectively. 3. There were magnifications in the ovary nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) levels by 42.4% and suppressions in nuclear factor (erythroid-derived 2)-like 2 (Nrf2), protein kinase B (Akt) and haem-oxygenase 1 (HO-1) levels by 29.2%, 38.2% and 30.7%, respectively, in heat-stressed quail. 4. With increasing supplemental capsaicinoids, there were linear increases in egg production, antioxidant enzyme activity, linear decreases in ovary MDA and NF-κB levels and linear increases in ovary Nrf2, Akt and HO-1 levels at a greater extent in quail reared under TN condition than those reared under HS condition. Two-way treatment interactions showed that the degree of restorations in all response variables was more notable under the HS environment than under the TN environment as supplemental capsaicinoid level was increased. 5. In conclusion, capsaicinoid supplementation alleviates oxidative stress through regulating the ovary nuclear transcription factors in heat-stressed quail.

  2. Hsp70 and Hsp90 are differentially expressed in crayfish muscle and neurons after heat stress

    Directory of Open Access Journals (Sweden)

    Liang S

    2013-12-01

    Full Text Available Shuang Liang, Xiaoqing Yu, Debra E Wood, Emmitt R Jolly Department of Biology, Case Western Reserve University, Cleveland, OH, USA Abstract: Heat shock proteins are essential cellular proteins that are highly conserved across organisms and contribute to adaptive responses of organisms during changing environmental conditions. Protein members of the families of heat shock genes can be differentially regulated in response to stressors and play critical roles in protein stability, folding, and molecular trafficking. We used a crustacean species with strong adaptability to diverse environments, the crayfish Procambarus clarkii, to study expression profiles of two well known heat shock genes, Hsp90 and Hsp70. This crayfish can withstand a broad range of temperatures, and its adaptability contributes to its value for human use as an agricultural food source and as a biological control agent against snails that transmit schistosomiasis. However, it has become a harmful invasive species in some areas. To begin to understand the thermal resilience of P. clarkii, we identified and cloned Hsp90 from crayfish by degenerate polymerase chain reaction in conjunction with rapid amplification of 3' and 5' cDNA ends, and subsequently sequenced and characterized the molecular chaperone. Sequence analysis by phylogenetic alignment and polypeptide three-dimensional structure prediction of the newly identified Hsp90 gene shows that it has conserved motifs with Hsp90 s in other species. Using quantitative polymerase chain reaction, we characterized the expression profiles of Hsp90 and Hsp70 in muscle and in central nervous system tissues. We found that Hsp70 and Hsp90 transcripts are upregulated under heat stress in both muscle and the central nervous system, but that their expression levels are more robustly increased in muscle. Keywords: crayfish, stress response, Procambarus clarkii, heat shock protein, Hsp90, schistosomiasis

  3. Effects of hydration level and heat stress on thermoregulatory responses, hematological and blood rheological properties in growing pigs.

    Science.gov (United States)

    Waltz, Xavier; Baillot, Michelle; Connes, Philippe; Bocage, Bruno; Renaudeau, David

    2014-01-01

    Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1) to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2) to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24 °C (D-7 to D-1). Then, at D0, temperature was progressively increased until 32 °C and maintained during one week (D1 to D7). We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate), hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.

  4. Effects of hydration level and heat stress on thermoregulatory responses, hematological and blood rheological properties in growing pigs.

    Directory of Open Access Journals (Sweden)

    Xavier Waltz

    Full Text Available Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1 to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2 to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24 °C (D-7 to D-1. Then, at D0, temperature was progressively increased until 32 °C and maintained during one week (D1 to D7. We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate, hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.

  5. Periconceptional Heat Stress of Holstein Dams Is Associated with Differences in Daughter Milk Production and Composition during Multiple Lactations

    OpenAIRE

    Brown, Britni M.; Stallings, Jon W.; Clay, John S.; Rhoads, Michelle L.

    2015-01-01

    Heat stress at the time of conception affects the subsequent milk production of primiparous Holstein cows; however, it is unknown whether these effects are maintained across multiple lactations. Therefore, the objective of the current study was to examine the relationship between periconceptional heat stress and measurements of milk production and composition in cows retained within a herd for multiple lactations. National Dairy Herd Improvement Association data was obtained from Dairy Record...

  6. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Vignjevic, Marija; Liu, Fulai

    2015-01-01

    Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage....... Comparedwith the non-primed plants, drought priming could alleviate photo-inhibition in flag leaves caused by drought and heat stress episodes during grain filling. In the primed plants, drought stress inhibited photosynthesis mainly through decrease of maximum photosynthetic electron transport rate, while...... decrease of the carboxylation efficiency limited photosynthesis under heat stress. The higher saturated net photosynthetic rate of flag leaves coincidedwith the lowered nonphotochemical quenching rates in the twice-primed plants under drought stress and in the primed plants during stem elongation under...

  7. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks.

    Science.gov (United States)

    Mehaisen, Gamal M K; Ibrahim, Rania M; Desoky, Adel A; Safaa, Hosam M; El-Sayed, Osama A; Abass, Ahmed O

    2017-01-01

    Heat stress is one of the most detrimental confrontations in tropical and subtropical regions of the world, causing considerable economic losses in poultry production. Propolis, a resinous product of worker honeybees, possesses several biological activities that could be used to alleviate the deleterious effects of high environmental temperature on poultry production. The current study was aimed at evaluating the effects of propolis supplementation to Japanese quail (Coturnix coturnix japonica) diets on the production performance, intestinal histomorphology, relative physiological and immunological parameters, and selected gene expression under heat stress conditions. Three hundred one-day-old Japanese quail chicks were randomly distributed into 20 wired-cages. At 28 d of age, the birds were divided into 2 temperature treatment groups; a normal at 24°C (C group) and a heat stress at 35°C (HS group). The birds in each group were further assigned to 2 subgroups; one of them was fed on a basal diet without propolis supplementation (-Pr subgroup) while the other was supplemented with propolis (+Pr subgroup). Production performance including body weight gain, feed intake and feed conversion ratio were measured. The intestinal histomorphological measurements were also performed for all treatment groups. Relative physiological parameters including body temperature, corticosterone hormone level, malondialdehyde (MDA) and free triiodothyronine hormone (fT3), as well as the relative immunological parameters including the total white blood cells count (TWBC's), heterophil/lymphocyte (H/L) ratio and lymphocyte proliferation index, were also measured. Furthermore, the mRNA expression for toll like receptor 5 (TLR5), cysteine-aspartic protease-6 (CASP6) and heat shock proteins 70 and 90 (Hsp70 and Hsp90) genes was quantified in this study. The quail production performance was significantly (Ppropolis significantly alleviated this negative effect. Moreover, quail of the HS

  8. Heat stress attenuates new cell generation in the hypothalamus: a role for miR-138.

    Science.gov (United States)

    Kisliouk, T; Cramer, T; Meiri, N

    2014-09-26

    The anterior hypothalamus (Ant Hyp) of the brain serves as the main regulator of numerous homeostatic functions, among them body temperature. Fine-tuning of the thermal-response set point during the critical postnatal sensory-developmental period involves neuronal network remodeling which might also be accompanied by alterations in hypothalamic cell populations. Here we demonstrate that heat stress during the critical period of thermal-control establishment interferes with generation of new cells in the chick hypothalamus. Whereas conditioning of the 3-day-old chicks under high ambient temperatures for 24h diminished the number of newborn cells in anterior hypothalamic structures 1 week after the treatment, mild heat stress did not influence the amount of new cells. Phenotypic analysis of these newborn cells indicated a predominant decrease in non-neuronal cell precursors, i.e. cells that do not express doublecortin (DCX). Furthermore, heat challenge of 10-day-old previously high-temperature-conditioned chicks abolished hypothalamic neurogenesis and significantly decreased the number of cells of non-neural origin. As a potential regulatory mechanism for the underlying generation of new cells in the hypothalamus, we investigated the role of the microRNA (miRNA) miR-138, previously reported by us to promote hypothalamic cell migration in vitro and whose levels are reduced during heat stress. Intracranial injection into the third ventricle of miR-138 led to an increase in the number of newborn cells in the Ant Hyp, an effect which might be partially mediated by inhibition of its direct target reelin. These data demonstrate the role of ambient temperature on the generation of new cells in the hypothalamus during the critical period of thermal-control establishment and highlight the long-term effect of severe heat stress on hypothalamic cell population. Moreover, miRNAs, miR-138 in particular, can regulate new cell generation in the hypothalamus. Copyright © 2014 IBRO

  9. The Transcriptional Heat Shock Response of Salmonella Typhimurium Shows Hysteresis and Heated Cells Show Increased Resistance to Heat and Acid Stress

    DEFF Research Database (Denmark)

    Pin, C.; Hansen, Trine; Munoz-Cuevas, M.

    2012-01-01

    We investigated if the transcriptional response of Salmonella Typhimurium to temperature and acid variations was hysteretic, i.e. whether the transcriptional regulation caused by environmental stimuli showed memory and remained after the stimuli ceased. The transcriptional activity of non.......e., they remained up-regulated after the environmental stress ceased. At 25uC the transcriptional regulation of genes encoding for heat shock proteins was determined by the previous environment. Gene networks constructed with up-regulated genes were significantly more modular than those of down-regulated genes......H 4.5 were not affected. The exposure to pH 5 only caused up-regulation of 12 genes and this response was neither hysteretic nor accompanied of increased resistance to inactivation conditions. Cellular memory at the transcriptional level may represent a mechanism of adaptation to the environment...

  10. The welfare risks and impacts of heat stress on sheep shipped from Australia to the Middle East.

    Science.gov (United States)

    Phillips, Clive

    2016-12-01

    This review considers the welfare issues confronting sheep due to heat stress on board ships undertaking long distance voyages. Sheep engage in behavioural and physiologic mechanisms to attempt to mitigate heat stress, but the evidence from Australian shipments from 2005 to 2014 is that mortality approximately doubles when sheep are transported from Australia in winter to the Middle East in summer. Much of this increase has been attributed to salmonellosis and inanition, but this may have been mistaken for, or exacerbated by, heat stress. The Australian government's estimate of the heat stress threshold of sheep is substantially higher than that observed under simulated live export conditions, which leads to an underestimate of the importance of heat stress in sheep on voyages where mortality is high. Improved temperature monitoring on ships and the creation of both a robust model of the impact of increased temperatures on sheep morbidity and mortality, and a heat stress scale for sheep would assist in understanding and addressing this welfare concern. The high risk to sheep exported from Australia during summer in the Middle East is sufficient to warrant consideration of restriction of trade during this period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.).

    Science.gov (United States)

    Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; Ferrarese, Maria de Lourdes Lúcio; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; Petkowicz, Carmen Lúcia de Oliveira

    2013-03-01

    Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Heat stress in cows at pasture and benefit of shade in a temperate climate region

    Science.gov (United States)

    Veissier, Isabelle; Van laer, Eva; Palme, Rupert; Moons, Christel P. H.; Ampe, Bart; Sonck, Bart; Andanson, Stéphane; Tuyttens, Frank A. M.

    2017-11-01

    Under temperate climates, cattle are often at pasture in summer and are not necessarily provided with shade. We aimed at evaluating in a temperate region (Belgium) to what extent cattle may suffer from heat stress (measured through body temperature, respiration rate and panting score, cortisol or its metabolites in milk, and feces on hot days) and at assessing the potential benefits of shade. During the summer of 2012, 20 cows were kept on pasture without access to shade. During the summer of 2011, ten cows had access to shade (young trees with shade cloth hung between them), whereas ten cows had no access. Climatic conditions were quantified by the Heat Load Index (HLI). In animals without access to shade respiration rates, panting scores, rectal temperatures, and milk cortisol concentrations increased as HLI increased in both 2011 and 2012. Fecal cortisol metabolites varied with HLI in 2011 only. When cattle had access to shade, their use of shade increased as the HLI increased. This effect was more pronounced during the last part of the summer, possibly due to better acquaintance with the shade construction. In this case, shade use increased to 65% at the highest HLI (79). Shade tempered the effects on respiration, rectal temperature, and fecal cortisol metabolites. Milk cortisol was not influenced by HLI for cows using shade for > 10% of the day. Therefore, even in temperate areas, cattle may suffer from heat when they are at pasture in summer and providing shade can reduce such stress.

  13. Steady-state chlorophyll fluorescence (Fs) as a tool to monitor plant heat and drought stress

    Science.gov (United States)

    Cendrero Mateo, M.; Carmo-Silva, A.; Salvucci, M.; Moran, S. M.; Hernandez, M.

    2012-12-01

    Crop yield decreases when photosynthesis is limited by heat or drought conditions. Yet farmers do not monitor crop photosynthesis because it is difficult to measure at the field scale in real time. Steady-state chlorophyll fluorescence (Fs) can be used at the field level as an indirect measure of photosynthetic activity in both healthy and physiologically-perturbed vegetation. In addition, Fs can be measured by satellite-based sensors on a regular basis over large agricultural regions. In this study, plants of Camelina sativa grown under controlled conditions were subjected to heat and drought stress. Gas exchange and Fs were measured simultaneously with a portable photosynthesis system under light limiting and saturating conditions. Results showed that Fs was directly correlated with net CO2 assimilation (A) and inversely correlated with non-photochemical quenching (NPQ). Analysis of the relationship between Fs and Photosynthetically Active Radiation (PAR) revealed significant differences between control and stressed plants that could be used to track the status, resilience, and recovery of photochemical processes. In summary, the results provide evidence that Fs measurements, even without normalization, are an easy means to monitor changes in plant photosynthesis, and therefore, provide a rapid assessment of plant stress to guide farmers in resource applications. Figure1. Net CO2 assimilation rate (A) of Camelina sativa plants under control conditions and after heat stress exposure for 1 or 3 days (1d-HS and 3d-HS, respectively) (right) and control, drought and re-watering conditions (left). Conditions for infra-red gas analysis were: reference CO2 = 380 μmol mol-1, PPFD = 500 μmol m-2 s-1 and Tleaf set to 25°C (control, drought and re-water) or 35°C (HS). Different letters denote significant differences at the α=0.05 level. Values are means±SEM (n=10). Figure 2. Stable chlorophyll fluorescence (Fs) of Camelina sativa plants under control conditions and

  14. Predicting Heat Stress to Inform Reef Management: NOAA Coral Reef Watch's 4-Month Coral Bleaching Outlook

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available The U.S. National Oceanic and Atmospheric Administration's (NOAA Coral Reef Watch (CRW operates a global 4-Month Coral Bleaching Outlook system for shallow-water coral reefs in collaboration with NOAA's National Centers for Environmental Prediction (NCEP. The Outlooks are generated by applying the algorithm used in CRW's operational satellite coral bleaching heat stress monitoring, with slight modifications, to the sea surface temperature (SST predictions from NCEP's operational Climate Forecast System Version 2 (CFSv2. Once a week, the probability of heat stress capable of causing mass coral bleaching is predicted for 4-months in advance. Each day, CFSv2 generates an ensemble of 16 forecasts, with nine runs out to 45-days, three runs out to 3-months, and four runs out to 9-months. This results in 28–112 ensemble members produced each week. A composite for each predicted week is derived from daily predictions within each ensemble member. The probability of each of four heat stress ranges (Watch and higher, Warning and higher, Alert Level 1 and higher, and Alert Level 2 is determined from all the available ensemble members for the week to form the weekly probabilistic Outlook. The probabilistic 4-Month Outlook is the highest weekly probability predicted among all the weekly Outlooks during a 4-month period for each of the stress ranges. An initial qualitative skill analysis of the Outlooks for 2011–2015, compared with CRW's satellite-based coral bleaching heat stress products, indicated the Outlook has performed well with high hit rates and low miss rates for most coral reef areas. Regions identified with high false alarm rates will guide future improvements. This Outlook system, as the first and only freely available global coral bleaching prediction system, has been providing critical early warning to marine resource managers, scientists, and decision makers around the world to guide management, protection, and monitoring of coral reefs

  15. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Directory of Open Access Journals (Sweden)

    Michael A Petrie

    Full Text Available Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat and mechanical stress (vibration on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction.The purpose of this study is to examine whether active mechanical stress (muscle contraction, passive mechanical stress (vibration, or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair.Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus to analyze mRNA gene expression.We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold, PGC-1α (5.46 fold, and ABRA (5.98 fold; and repressed MSTN (0.56 fold. Heat stress repressed PGC-1α (0.74 fold change; p < 0.05; while vibration induced FOXK2 (2.36 fold change; p < 0.05. Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05, but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05 while heat stress repressed PGC-1α (0.74 fold and ANKRD1 genes (0.51 fold; p < 0.05.These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell

  16. Obligatory role of hyperaemia and shear stress in microvascular adaptation to repeated heating in humans.

    Science.gov (United States)

    Green, Daniel J; Carter, Howard H; Fitzsimons, Matthew G; Cable, N Timothy; Thijssen, Dick H J; Naylor, Louise H

    2010-05-01

    The endothelium, a single layer of cells lining the entire circulatory system, plays a key role in maintaining vascular health. Endothelial dysfunction independently predicts cardiovascular events and improvement in endothelial function is associated with decreased vascular risk. Previous studies have suggested that exercise training improves endothelial function in macrovessels, a benefit mediated via repeated episodic increases in shear stress. However, less is known of the effects of shear stress modulation in microvessels. In the present study we examined the hypothesis that repeated skin heating improves cutaneous microvascular vasodilator function via a shear stress-dependent mechanism. We recruited 10 recreationally active males who underwent bilateral forearm immersion in warm water (42 degrees C), 3 times per week for 30 min. During these immersion sessions, shear stress was manipulated in one arm by inflating a pneumatic cuff to 100 mmHg, whilst the other arm remained uncuffed. Vasodilatation to local heating, a NO-dependent response assessed using laser Doppler, improved across the 8 week intervention period in the uncuffed arm (cutaneous vascular conductance week 0 vs. week 4 at 41 degrees C: 1.37 +/- 0.45 vs. 2.0 +/- 0.91 units, P = 0.04; 42 degrees C: 2.06 +/- 0.45 vs. 2.68 +/- 0.83 units; P = 0.04), whereas no significant changes were evident in the cuffed arm. We conclude that increased blood flow, and the likely attendant increase in shear stress, is a key physiological stimulus for enhancing microvascular vasodilator function in humans.

  17. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens ( Gallus gallus domesticus)

    Science.gov (United States)

    Sun, Xiaolei; Zhang, Haichao; Sheikhahmadi, Ardashir; Wang, Yufeng; Jiao, Hongchao; Lin, Hai; Song, Zhigang

    2015-02-01

    In broiler chickens, heat stress disrupts nutrient digestion and absorption. However, the underlying molecular mechanism is not clearly understood. Hence, to investigate the effects of high ambient temperatures on the expression levels of nutrient transporters in the jejunum of broiler chickens, seventy-two 35-day-old male broiler chickens with similar body weights were randomly allocated into two groups: control (24 ± 1 °C) and heat-stressed (32 ± 1 °C). The chickens in the heat-stressed group were exposed to 10 h of heat daily from 08:00 to 18:00 and then raised at 24 ± 1 °C. The rectal temperature and feed intake of the chickens were recorded daily. After 7 days, nine chickens per group were sacrificed by exsanguination, and the jejunum was collected. The results show that heat exposure significantly decreased the feed intake and increased the rectal temperature of the broiler chickens. The plasma concentrations of uric acid and triglyceride significantly increased and decreased, respectively, in the heat-stressed group. No significant differences in the levels of plasma glucose, total amino acids, and very low-density lipoprotein were observed between the heat-stressed and control groups. However, the plasma concentration of glucose tended to be higher ( P = 0.09) in the heat-stressed group than in the control group. Heat exposure did not significantly affect the mRNA levels of Na+-dependent glucose transporter 1 and amino acid transporters y + LAT1, CAT1, r-BAT, and PePT-1. However, the expression levels of GLUT-2, FABP1, and CD36 were significantly decreased by heat exposure. The results of this study provide new insights into the mechanisms by which heat stress affects nutrient absorption in broiler chickens. Our findings suggest that periodic heat exposure might alter the jejunal glucose and lipid transport rather than amino acid transport. However, intestinal epithelial damage and cell loss should be considered when interpreting the effects of heat

  18. Review of comparative responses of men and women to heat stress

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, W.L.

    1985-01-01

    Most of their present knowledge regarding human responses to thermal stress is primarily a result of research conducted on male subjects. Recently, as women have moved into the industrial workplace and forefront of athletic activity, attention has turned to comparative responses of men and women. Very limited research on preadolescent children suggests no physiological thermoregulatory sex differences except for a slightly higher sweat rate in lean boys as compared to lean girls of a similar age. Boys also tended to be more tolerant of higher temperatures. Current beliefs regarding men and women are: (1) women, as a population, are less tolerant to a given imposed heat stress however, if cardiovascular fitness level, body size, and acclimation state are standardized, the differences tend to disappear; (2) women have a lower sweat rate than men of equal fitness, size, and acclimation which is disadvantageous in hot-dry environments, but advantageous in hot-wet environments; and (3) menstrual cycle effects are minimal. It is concluded that aerobic capacity, surface area-to-mass ratio, and state of acclimation are more important than sex in determining physiological responses to heat stress.

  19. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism.

    Science.gov (United States)

    Wang, R H; Liang, R R; Lin, H; Zhu, L X; Zhang, Y M; Mao, Y W; Dong, P C; Niu, L B; Zhang, M H; Luo, X

    2017-03-01

    This study investigated the effects of acute heat stress and slaughter processing on poultry meat quality and carbohydrate metabolism. Broilers (200) were randomly divided into 2 groups receiving heat stress (HS; 36°C for one h), compared to a non-stressed control (C). At slaughter, each group was further divided into 2 groups for slaughter processing (L = laboratory; F = commercial factory). L group breasts were removed immediately after bleeding without carcass scalding or defeathering, and stored at 4°C. F group broilers were scalded (60°C, 45 s) after bleeding and defeathering. Then the breasts were removed and cooled in ice water until the core temperature was ≤4°C. Rates of Pectoralis core temperature and pH decline were changed by slaughter processing, but only HS affected ultimate pH in group L. HS muscles had higher L* values (P  0.05). Sarcoplasmic protein solubility was higher in F processed birds (P slaughtered birds. Thus, HS caused a higher frequency of accelerated muscle glycolysis than controls. Factory processing (chilling) could not completely eliminate the effects of accelerated glycolysis caused by pre-slaughter HS. © 2016 Poultry Science Association Inc.

  20. Dietary supplementation of Zingiber officinale and Zingiber zerumbet to heat-stressed broiler chickens and its effect on heat shock protein 70 expression, blood parameters and body temperature.

    Science.gov (United States)

    Hasheimi, S R; Zulkifli, I; Somchit, M N; Zunita, Z; Loh, T C; Soleimani, A F; Tang, S C

    2013-08-01

    The present study was conducted to assess the effects of dietary supplementation of Zingiber officinale and Zingiber zerumbet and to heat-stressed broiler chickens on heat shock protein (HSP) 70 density, plasma corticosterone concentration (CORT), heterophil to lymphocyte ratio (HLR) and body temperature. Beginning from day 28, chicks were divided into five dietary groups: (i) basal diet (control), (ii) basal diet +1%Z. zerumbet powder (ZZ1%), (iii) basal diet +2%Z. zerumbet powder (ZZ2%), (iv) basal diet +1%Z. officinale powder (ZO1%) and (v) basal diet +2%Z. officinale powder (ZO2%). From day 35-42, heat stress was induced by exposing birds to 38±1°C and 80% RH for 2 h/day. Irrespective of diet, heat challenge elevated HSP70 expression, CORT and HLR on day 42. On day 42, following heat challenge, the ZZ1% birds showed lower body temperatures than those of control, ZO1% and ZO2%. Neither CORT nor HLR was significantly affected by diet. The ZO2% and ZZ2% diets enhanced HSP70 expression when compared to the control groups. We concluded that dietary supplementation of Z. officinale and Z. zerumbet powder may induce HSP70 reaction in broiler chickens exposed to heat stress. © 2012 Blackwell Verlag GmbH.

  1. Heat stress and inadequate sanitary facilities at workplaces – an occupational health concern for women?

    Directory of Open Access Journals (Sweden)

    Vidhya Venugopal

    2016-09-01

    Full Text Available Background: Health concerns unique to women are growing with the large number of women venturing into different trades that expose them to hot working environments and inadequate sanitation facilities, common in many Indian workplaces. Objective: The study was carried out to investigate the health implications of exposures to hot work environments and inadequate sanitation facilities at their workplaces for women workers. Design: A cross-sectional study was conducted with 312 women workers in three occupational sectors in 2014–2015. Quantitative data on heat exposures and physiological heat strain indicators such as core body temperature (CBT, sweat rate (SwR, and urine specific gravity (USG were collected. A structured questionnaire captured workers perceptions about health impacts of heat stress and inadequate sanitary facilities at the workplace. Results: Workplace heat exposures exceeded the threshold limit value for safe manual work for 71% women (Avg. wet bulb globe temperature=30°C±2.3°C during the study period. Eighty-seven percent of the 200 women who had inadequate/no toilets at their workplaces reported experiencing genitourinary problems periodically. Above normal CBT, SwR, and USG in about 10% women workers indicated heat strain and moderate dehydration that corroborated well with their perceptions. Observed significant associations between high-heat exposures and SwR (t=−2.3879, p=0.0192, inadequate toilet facilities and self-reported adverse heat-related health symptoms (χ2=4.03, p=0.0444, and prevalence of genitourinary issues (χ2=42.92, p=0.0005×10−7 reemphasize that heat is a risk and lack of sanitation facilities is a major health concern for women workers. Conclusions: The preliminary evidence suggests that health of women workers is at risk due to occupational heat exposures and inadequate sanitation facilities at many Indian workplaces. Intervention through strong labor policies with gender sensitivity is the

  2. Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders.

    Science.gov (United States)

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2015-07-01

    Heat tolerance can be improved by feed restriction in broiler chickens. It is unknown whether the same is true for broiler breeders, which are restrictedly fed. Therefore, the current study was conducted to study the effects of heat stress on plasma metabolites, hormones, and oxidative status of restricted fed broiler breeders with special emphases on the temperature and latency of heat exposure. In trial 1, 12 broiler breeders were kept either in a thermoneutral chamber (21°C, control, n = 6) or in a chamber with a step-wise increased environmental temperature from 21 to 33°C (21, 25, 29, 33°C, heat-stressed, n = 6). Changes in plasma total cholesterol, glucose, and triiodothyronine (T3) were closely related to the environmental temperature. When the temperature reached 29°C, plasma T3 (P broiler breeders were divided into 2 groups and raised under 21°C and 32°C for 8 weeks, respectively. Total cholesterol was increased in chronic heat-stressed broiler breeders after 4 weeks. Plasma lactate dehydrogenase (LDH, P = 0.047) and glutamic-oxaloacetic transaminase (GOT, P = 0.036) was up-regulated after 6 weeks of thermal treatment, whereas plasma CK (P = 0.009) was increased at the end of thermal treatment. Plasma malonaldehyde, protein carbonyl content, activity of total superoxide dismutase (SOD), and corticosterone content were not altered after acute and prolonged heat challenges. Taken together, acute heat stress primarily resulted in disturbance of plasma metabolites, whereas chronic heat stress caused tissue damage reflected by increased plasma LDA, GOT, and CK. During acute heat stress, plasma metabolites were minimally disturbed in broiler breeders until the environmental temperature reached 33°C. © 2015 Poultry Science Association Inc.

  3. Changes in relative fit of human heat stress indices to cardiovascular, respiratory, and renal hospitalizations across five Australian urban populations

    Science.gov (United States)

    Goldie, James; Alexander, Lisa; Lewis, Sophie C.; Sherwood, Steven C.; Bambrick, Hilary

    2017-09-01

    Various human heat stress indices have been developed to relate atmospheric measures of extreme heat to human health impacts, but the usefulness of different indices across various health impacts and in different populations is poorly understood. This paper determines which heat stress indices best fit hospital admissions for sets of cardiovascular, respiratory, and renal diseases across five Australian cities. We hypothesized that the best indices would be largely dependent on location. We fit parent models to these counts in the summers (November-March) between 2001 and 2013 using negative binomial regression. We then added 15 heat stress indices to these models, ranking their goodness of fit using the Akaike information criterion. Admissions for each health outcome were nearly always higher in hot or humid conditions. Contrary to our hypothesis that location would determine the best-fitting heat stress index, we found that the best indices were related largely by health outcome of interest, rather than location as hypothesized. In particular, heatwave and temperature indices had the best fit to cardiovascular admissions, humidity indices had the best fit to respiratory admissions, and combined heat-humidity indices had the best fit to renal admissions. With a few exceptions, the results were similar across all five cities. The best-fitting heat stress indices appear to be useful across several Australian cities with differing climates, but they may have varying usefulness depending on the outcome of interest. These findings suggest that future research on heat and health impacts, and in particular hospital demand modeling, could better reflect reality if it avoided "all-cause" health outcomes and used heat stress indices appropriate to specific diseases and disease groups.

  4. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p < 0.05) whereas that in 16% MC seeds increased significantly (p < 0.05) during heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p < 0.05) decline occurred in 16% MC seeds at 45°C. Proteome analysis revealed 21 significantly different proteins, including 19 down-regulated and two up-regulated proteins. The down-regulated proteins, notably six heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in

  5. Worsening of Heat Stress Due To Global Warming in South Korea Based on Multi-RCM Ensemble Projections

    Science.gov (United States)

    Im, Eun-Soon; Choi, Yeon-Woo; Ahn, Joong-Bae

    2017-11-01

    This study assesses the future changes in summer (June-July-August; JJA) heat stress over South Korea under global warming. To better resolve the region-specific changes in terms of geographical patterns and severity of heat stress in the Korean peninsula, four regional climate models (RCMs) are used for dynamical downscaling of Hadley Centre Global Environmental Model version 2—Atmosphere and Ocean global projections forced by two Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios. Dynamically downscaled simulations (horizontal resolution of 12.5 km and output interval of 3 h) facilitate in-depth analysis of diurnal variation and extremes over South Korea, as well as focusing on the particular location, Daegu, that is characterized by high vulnerability to rising temperature. Both maximum temperature and heat stress indices such as wet bulb globe temperature and apparent temperature, which include the effect of humidity, are examined in order to comprehensively interpret the behaviors of heat stress in response to anthropogenic climate change. Ensemble projections reveal robust patterns of temperature and resultant humidity increases that are roughly constrained by the approximate 7%/K increase in the moisture holding capacity. The changes in temperature and humidity are directly transmitted to the heat stress indices, showing a significant increase. The heat stress is exacerbated in a differentiated way, with more intensification in diurnal variation at nighttime and in regional variation at low-elevation basins. Both RCP4.5 and RCP8.5 scenarios project the statistical likelihood of a notable increase of extreme heat stress indices, much stronger and more extended heat waves, and the emergence of a long period of consecutive tropical nights.

  6. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk.

    Directory of Open Access Journals (Sweden)

    Franziska Koch

    Full Text Available Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS at 28°C or pair-feeding (PF at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development

  7. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.

    Science.gov (United States)

    Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang

    2018-01-24

    Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish. Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.

  8. Refined experimental methodology for assessing the heat dissipated in cyclically loaded materials at low stress levels

    Science.gov (United States)

    Maquin, François; Pierron, Fabrice

    2007-03-01

    The present study is aimed at studying the heat generated in steel specimens cyclically tested at stresses lower than their macroscopic elastic limit, in the objective of detecting the onset of microplasticity. First, the data processing procedure is presented to calculate heat sources and thermal energy levels from temperature maps. Then, a sensitivity study is performed to establish the smallest energy value that can be detected above noise. Finally, results are presented for a cold rolled low carbon steel material. It is shown that two main mechanisms of dissipation are present, the first one corresponding to viscoelastic effects and the second one associated to microplasticity. To cite this article: F. Maquin, F. Pierron, C. R. Mecanique 335 (2007).

  9. Tuber Water and Pressure Potentials Decrease and Sucrose Contents Increase in Response to Moderate Drought and Heat Stress

    Science.gov (United States)

    Environmental stress during the growing season can reduce the quality of stored Solanum tuberosum (potato) tubers. Sugar end defect is a serious quality concern for growers and processors of russet potatoes that is initiated by drought or heat stress. Changes in tuber water potential and tuber compo...

  10. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    Science.gov (United States)

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  11. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis).

    Science.gov (United States)

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K; Mohanty, Ashok K; Mukesh, Manishi

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  12. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis.

    Directory of Open Access Journals (Sweden)

    Neha Kapila

    Full Text Available The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs. The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h along with control samples (un-stressed. In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1, apoptotic (Bax and Bcl2, immune (IL6, TNFα and NF-kβ and

  13. Moderate summer heat stress does not modify immunological parameters of Holstein dairy cows

    Science.gov (United States)

    Lacetera, Nicola; Bernabucci, Umberto; Ronchi, Bruno; Scalia, Daniela; Nardone, Alessandro

    2002-02-01

    The study was undertaken during spring and summer months in a territory representative of the Mediterranean climate to assess the effects of season on some immunological parameters of dairy cows. Twenty Holstein cows were used. Eleven of those cows gave birth during spring; the remaining nine cows gave birth in summer. The two groups of cows were homogeneous for parity. Values of air temperatures and relative humidity were recorded both during spring and summer, and were utilized to calculate the temperature humidity index (THI). One week before the expected calving, rectal temperatures and respiratory rates of the cows were recorded (1500 hours), and cell-mediated immunity was assessed by measuring the proliferation of mitogen-stimulated peripheral blood mononuclear cells (PBMC). Within 3 h of calving, one colostrum sample was taken from each cow and analysed to determine content of immunoglobulin (Ig) G1, IgG2, IgM and IgA. At 48 h after birth, passive immunization of the calves was assessed by measuring total serum IgG. During summer, daytime (0900-2000 hours) THI values were above the upper critical value of 72 [75.2, (SD 2.6)] indicating conditions that could represent moderate heat stress. That THI values were able to predict heat stress was confirmed by the values of rectal temperatures and respiratory rates, which were higher ( P cows. Results indicated that moderate heat stress due to the hot Mediterranean summer does not modify cell-mediated immunity, the protective value of colostrum and passive immunization of the offspring in dairy cows.

  14. Ebola Response: Modeling the Risk of Heat Stress from Personal Protective Clothing

    Science.gov (United States)

    Potter, Adam W.; Gonzalez, Julio A.; Xu, Xiaojiang

    2015-01-01

    Introduction A significant number of healthcare workers have responded to aid in the relief and containment of the 2013 Ebola virus disease (EVD) outbreak in West Africa. Healthcare workers are required to wear personal protective clothing (PPC) to impede the transmission of the virus; however, the impermeable design and the hot humid environment lead to risk of heat stress. Objective Provide healthcare workers quantitative modeling and analysis to aid in the prevention of heat stress while wearing PPC in West Africa. Methods A sweating thermal manikin was used to measure the thermal (Rct) and evaporative resistance (Ret) of the five currently used levels of PPC for healthcare workers in the West Africa EVD response. Mathematical methods of predicting the rise in core body temperature (Tc) in response to clothing, activity, and environment was used to simulate different responses to PPC levels, individual body sizes, and two hot humid conditions: morning/evening (air temperature: 25°C, relative humidity: 40%, mean radiant temperature: 35°C, wind velocity: 1 m/s) and mid-day (30°C, 60%, 70°C, 1 m/s). Results Nearly still air (0.4 m/s) measures of Rct ranged from 0.18 to 0.26 m2 K/W and Ret ranged from 25.53 to 340.26 m2 Pa/W. Conclusion Biophysical assessments and modeling in this study provide quantitative guidance for prevention of heat stress of healthcare workers wearing PPC responding to the EVD outbreak in West Africa. PMID:26575389

  15. Ebola Response: Modeling the Risk of Heat Stress from Personal Protective Clothing.

    Directory of Open Access Journals (Sweden)

    Adam W Potter

    Full Text Available A significant number of healthcare workers have responded to aid in the relief and containment of the 2013 Ebola virus disease (EVD outbreak in West Africa. Healthcare workers are required to wear personal protective clothing (PPC to impede the transmission of the virus; however, the impermeable design and the hot humid environment lead to risk of heat stress.Provide healthcare workers quantitative modeling and analysis to aid in the prevention of heat stress while wearing PPC in West Africa.A sweating thermal manikin was used to measure the thermal (Rct and evaporative resistance (Ret of the five currently used levels of PPC for healthcare workers in the West Africa EVD response. Mathematical methods of predicting the rise in core body temperature (Tc in response to clothing, activity, and environment was used to simulate different responses to PPC levels, individual body sizes, and two hot humid conditions: morning/evening (air temperature: 25°C, relative humidity: 40%, mean radiant temperature: 35°C, wind velocity: 1 m/s and mid-day (30°C, 60%, 70°C, 1 m/s.Nearly still air (0.4 m/s measures of Rct ranged from 0.18 to 0.26 m2 K/W and Ret ranged from 25.53 to 340.26 m2 Pa/W.Biophysical assessments and modeling in this study provide quantitative guidance for prevention of heat stress of healthcare workers wearing PPC responding to the EVD outbreak in West Africa.

  16. 3-D numerical evaluation of residual stress and deformation due welding process using simplified heat source models

    Energy Technology Data Exchange (ETDEWEB)

    Eslampanah, Amir Hossein [Islamic Azad University, Arak (Iran, Islamic Republic of); Aalami-aleagha, Mohammad Ebrahim; Feli, Saeid [Razi University, Kermanshah (Iran, Islamic Republic of); Ghaderi, Mohammad Reza [Islamic Azad University, Sanandaj (Iran, Islamic Republic of)

    2015-01-15

    Thermal elastic-plastic finite element method has been employed to predict residual stress and deformation in a T-Fillet welded joint. An uncoupled thermal-mechanical three-dimensional (3-D) model has been developed. A nonlinear-transient heat flow analysis was used to obtain the temperature distribution; then by applying thermal results in the three dimensional elastic-plastic model, residual stress and deformation distribution were obtained. Experiments were carried out to find fusion zone dimensions and displacement. Two heat source models with infinite speed are proposed and the mechanical result of the mentioned models and normal moving heat source are compared.

  17. Mitigation of urban heat stress – a modelling case study for the area of Stuttgart

    Directory of Open Access Journals (Sweden)

    Fallmann, Joachim

    2014-04-01

    Full Text Available In 2050 the fraction of urban global population will increase to over 69%, which means that around 6.3 billion people are expected to live in urban areas (UN 2011. Cities are the predominant habitation places for humans to live and are vulnerable to extreme weather events aggravating phenomena like heat stress. Finding mitigation strategies to sustain future development is of great importance, given expected influences on human health. In this study, the mesoscale numerical model WRF is used on a regional scale for the urban area of Stuttgart, to simulate the effect of urban planning strategies on dynamical processes affecting urban climate. After comparing two urban parameterisation schemes, a sensitivity study for different scenarios is performed; it shows that a change of the reflective properties of surfaces has the highest impact on near-surface temperatures compared to an increase of urban green areas or a decrease of building density. The Urban Heat Island (UHI describes the temperature difference between urban and rural temperatures; it characterises regional urban climate and is responsible for urban-rural circulation patterns. Applying urban planning measures may decrease the intensity of the UHI in the study area by up to 2 °C by using heat-reflective roof paints or by 1 °C through replacing impervious surfaces by natural vegetation in the urban vicinity – compared to a value of 2.5 °C for the base case. Because of its topographical location in a valley and the overall high temperatures in this region, the area of Stuttgart suffers from heat stress to a comparatively large extent.

  18. Differences in Susceptibility to Heat Stress along the Chicken Intestine and the Protective Effects of Galacto-Oligosaccharides.

    Directory of Open Access Journals (Sweden)

    Soheil Varasteh

    Full Text Available High ambient temperatures negatively affect the human well-being as well as animal welfare and production. The gastrointestinal tract is predominantly responsive to heat stress. The currently available information about the multifaceted response to heat stress within different parts of the intestine is limited, especially in avian species. Hence, this study aims to evaluate the heat stress-induced sequence of events in the intestines of chickens. Furthermore, the gut health-promoting effect of dietary galacto-oligosaccharides (GOS was investigated in these heat stress-exposed chickens. Chickens were fed a control diet or diet supplemented with 1% or 2.5% GOS (6 days prior to and during a temperature challenge for 5 days (38-39°C, 8h per day. The parameters measured in different parts of the intestines included the genes (qPCR HSF1, HSF3, HSP70, HSP90, E-cadherin, claudin-1, claudin-5, ZO-1, occludin, TLR-2, TLR-4, IL-6, IL-8, HO-1, HIF-1α and their associated proteins HSP70, HSP90 and pan-cadherin (western blots. In addition, IL-6 and IL-8 plasma concentrations were measured by ELISA. In the jejunum, HSF3, HSP70, HSP90, E-cadherin, claudin-5, ZO-1, TLR-4, IL-6 and IL-8 mRNA expression and HSP70 protein expression were increased after heat stress exposure and a more pronounced increase in gene expression was observed in ileum after heat stress exposure, and in addition HSF1, claudin-1 and HIF-1α mRNA levels were upregulated. Furthermore, the IL-8 plasma levels were decreased in chickens exposed to heat stress. Interestingly, the heat stress-related effects in the jejunum were prevented in chickens fed a GOS diet, while dietary GOS did not alter these effects in ileum. In conclusion, our results demonstrate the differences in susceptibility to heat stress along the intestine, where the most obvious modification in gene expression is observed in ileum, while dietary GOS only prevent the heat stress-related changes in jejunum.

  19. Comparative analysis of physical stress responses in soybean seedlings using cloned heat shock cDNAs.

    Science.gov (United States)

    Czarnecka, E; Edelman, L; Schöffl, F; Key, J L

    1984-01-01

    Soybean seedlings were subjected to a wide range of physical (abiotic) or environmental stresses. Cloned cDNAs to heat shock (hs)-induced mRNAs were used to assess whether these diverse stresses induced the accumulation of poly(A)RNAs in common with those induced by hs. Northern blot hybridization analyses indicated that a wide range of stress agents lead to the accumulation of detectable levels of several of the hs-induced poly(A)RNAs; the relative concentration of those RNAs 'induced' by the wide range of stress agents (e.g. water stress, salt stress, anaerobiosis, high concentrations of hormones, etc.), was generally in the order of 100-fold lower than that induced by hs. There are two notable exceptions to that pattern of response to the stress agents. First, arsenite treatment resulted in accumulation of the 'hs poly(A)RNAs' to levels similar to those induced by hs. Cadmium also induced a somewhat normal spectrum of the 'hs poly(A)RNAs', but generally lower levels accumulated than in hs- and arsenite0treated tissues. Second, one set of poly(A)RNAs which are present at low and variable levels in control (non-stressed tissue) tissue, and which are increased some 5- to 10-fold by hs, increased in relative concentration in response to a wide range of the stress agents similarly to the response to hs. The physiological significance of the accumulation of this set of poly(A)RNAs (which translate into four electrophoretically different 27 kd proteins) is not known, but they certainly seem to serve as a monitor (or barometer) of physiological stress conditions. Cadmium treatment results in the accumulation of those same poly(A)RNAs and an additional band of higher molecular weight poly(A)RNA homologous to the same hs cDNA clone (clone pCE 54). Ethylene seems to have no obvious causal relationship to the hs response, even though hs-treated seedlings display some symptoms similar to those exhibited by ethylene-treated seedlings.

  20. Heat sink welding of austenitic stainless steel pipes to control distortion and residual stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    Construction of India's Prototype Fast Breeder Reactor (PFBR) involves extensive welding of austenitic stainless steels pipes of different dimensions. Due to high thermal expansion coefficient and poor thermal conductivity of this class of steels, welding can result in significant distortion of these pipes. Attempts to arrest this distortion can lead to high levels of residual stresses in the welded parts. Heat sink welding is one of the techniques often employed to minimize distortion and residual stress in austenitic stainless steel pipe welding. This technique has also been employed to repair welding of the piping of the Boiling Water Reactors (BWRs) subjected to radiation induced intergranular stress corrosion cracking (IGSCC). In the present study, a comparison of the distortion in two pipe welds, one made with heat sink welding and another a normal welds. Pipes of dimensions 350{phi} x 250(L) x 8(t) mm was fabricated from 316LN plates of dimensions 1100 x 250 x 8 mm by bending and long seam (L-seam) welding by SMAW process. Two fit ups with a root gap of 2 mm, land height of 1mm and a groove angle of 70 were prepared using these pipes for circumferential seam (C-seam) welding. Dimensions at predetermined points in the fit up were made before and after welding to check the variation in radius, circumference and and ovality of the pipes. Root pass for both the pipe fit up were carried out using conventional GTAW process with 1.6 mm AWS ER 16-8-2 as consumables. Welding of one of the pipe fit ups were completed using conventions GTAW process while the other was completed using heat sink welding. For second and subsequent layers of welding using this process, water was sprayed at the root side of the joint while welding was in progress. Flow rate of the water was {proportional_to}6 1/minute. Welding parameters employed were same as those used for the other pipe weld. Results of the dimensional measurements showed that there is no circumferential shrinkage in