Computing Instantaneous Frequency by normalizing Hilbert Transform
Huang, Norden E.
2005-05-31
This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.
Power Spectral Density and Hilbert Transform
2016-12-01
there is 1.3 W of power. How much bandwidth does a pure sine wave require? The bandwidth of an ideal sine wave is 0 Hz. How do you represent a 1-W...the Hilbert transform. 2.3 Hilbert Transform The Hilbert transform is a math function used to convert a real function into an analytic signal...The math operation minus 2 means to move 2 steps back on the number line. For minus –2, we move 2 steps backwards from –2, which is the same as
Noise properties of Hilbert transform evaluation
Czech Academy of Sciences Publication Activity Database
Pavlíček, Pavel; Svak, V.
2015-01-01
Roč. 26, č. 8 (2015), s. 085207 ISSN 0957-0233 R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : Hilbert transform * noise * measurement uncertainty * white -light interferometry * fringe-pattern analysis Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.492, year: 2015
Uniform sparse bounds for discrete quadratic phase Hilbert transforms
Kesler, Robert; Arias, Darío Mena
2017-09-01
For each α \\in T consider the discrete quadratic phase Hilbert transform acting on finitely supported functions f : Z → C according to H^{α }f(n):= \\sum _{m ≠ 0} e^{iα m^2} f(n - m)/m. We prove that, uniformly in α \\in T , there is a sparse bound for the bilinear form for every pair of finitely supported functions f,g : Z→ C . The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Hölder classes.
Noise properties of Hilbert transform evaluation
International Nuclear Information System (INIS)
Pavliček, Pavel; Svak, Vojtěch
2015-01-01
The Hilbert transform is a standard method for the calculation of the envelope and phase of a modulated signal in optical measurement methods. Usually, the intensity of light is converted into an electric signal at a detector. Therefore the actual spatially or temporally sampled signal is always affected by noise. Because the noise values of individual samples are independent, the noise can be considered as white. If the envelope and phase are calculated from the noised signal, they will also be affected by the noise. We calculate the variance and spectral density of both the envelope noise and the phase noise. We determine which parameters influence the variance and spectral density of both the envelope noise and the phase noise. Finally, we determine the influence of the noise on the measurement uncertainty in white-light interferometry and fringe-pattern analysis. (paper)
Wavelet Based Hilbert Transform with Digital Design and Application to QCM-SS Watermarking
Directory of Open Access Journals (Sweden)
S. P. Maity
2008-04-01
Full Text Available In recent time, wavelet transforms are used extensively for efficient storage, transmission and representation of multimedia signals. Hilbert transform pairs of wavelets is the basic unit of many wavelet theories such as complex filter banks, complex wavelet and phaselet etc. Moreover, Hilbert transform finds various applications in communications and signal processing such as generation of single sideband (SSB modulation, quadrature carrier multiplexing (QCM and bandpass representation of a signal. Thus wavelet based discrete Hilbert transform design draws much attention of researchers for couple of years. This paper proposes an (i algorithm for generation of low computation cost Hilbert transform pairs of symmetric filter coefficients using biorthogonal wavelets, (ii approximation to its rational coefficients form for its efficient hardware realization and without much loss in signal representation, and finally (iii development of QCM-SS (spread spectrum image watermarking scheme for doubling the payload capacity. Simulation results show novelty of the proposed Hilbert transform design and its application to watermarking compared to existing algorithms.
Measurement of vibration mode shape by using Hilbert transform
International Nuclear Information System (INIS)
Kang, Min Sig
2001-01-01
This paper concerns on modal analysis of mechanical structures by using a continuous scanning laser Doppler vibrometer. In modal analysis the Hilbert transform based approach is superior to the Fourier transform based approach because of its fine accuracy and its flexible experimental settings. In this paper the Hilbert transform based approach is extended to measure area mode shape data of a structure by simply modifying the scanning pattern ranging the entire surface of the structure. The effectiveness of this proposed method is illustrated along with results of numerical simulation for a rectangular plate
Integrated reconfigurable photonic filters based on interferometric fractional Hilbert transforms.
Sima, C; Cai, B; Liu, B; Gao, Y; Yu, Y; Gates, J C; Zervas, M N; Smith, P G R; Liu, D
2017-10-01
In this paper, we present integrated reconfigurable photonic filters using fractional Hilbert transformers (FrHTs) and optical phase tuning structure within the silica-on-silicon platform. The proposed structure, including grating-based FrHTs, an X-coupler, and a pair of thermal tuning filaments, is fabricated through the direct UV grating writing technique. The thermal tuning effect is realized by the controllable microheaters located on the two arms of the X-coupler. We investigate the 200 GHz maximum bandwidth photonic FrHTs based on apodized planar Bragg gratings, and analyze the reflection spectrum responses. Through device integration and thermal modulation, the device could operate as photonic notch filters with 5 GHz linewidth and controllable single sideband suppression filters with measured 12 dB suppression ratio. A 50 GHz instantaneous frequency measuring system using this device is also schematically proposed and analyzed with potential 3 dB measurement improvement. The device could be configured with these multiple functions according to need. The reconfigurable structure has great potential in ultrafast all-optical signal processing fields.
Time average vibration fringe analysis using Hilbert transformation
International Nuclear Information System (INIS)
Kumar, Upputuri Paul; Mohan, Nandigana Krishna; Kothiyal, Mahendra Prasad
2010-01-01
Quantitative phase information from a single interferogram can be obtained using the Hilbert transform (HT). We have applied the HT method for quantitative evaluation of Bessel fringes obtained in time average TV holography. The method requires only one fringe pattern for the extraction of vibration amplitude and reduces the complexity in quantifying the data experienced in the time average reference bias modulation method, which uses multiple fringe frames. The technique is demonstrated for the measurement of out-of-plane vibration amplitude on a small scale specimen using a time average microscopic TV holography system.
International Roughness Index (IRI) measurement using Hilbert-Huang transform
Zhang, Wenjin; Wang, Ming L.
2018-03-01
International Roughness Index (IRI) is an important metric to measure condition of roadways. This index is usually used to justify the maintenance priority and scheduling for roadways. Various inspection methods and algorithms are used to assess this index through the use of road profiles. This study proposes to calculate IRI values using Hilbert-Huang Transform (HHT) algorithm. In particular, road profile data is provided using surface radar attached to a vehicle driving at highway speed. Hilbert-Huang transform (HHT) is used in this study because of its superior properties for nonstationary and nonlinear data. Empirical mode decomposition (EMD) processes the raw data into a set of intrinsic mode functions (IMFs), representing various dominating frequencies. These various frequencies represent noises from the body of the vehicle, sensor location, and the excitation induced by nature frequency of the vehicle, etc. IRI calculation can be achieved by eliminating noises that are not associated with the road profile including vehicle inertia effect. The resulting IRI values are compared favorably to the field IRI values, where the filtered IMFs captures the most characteristics of road profile while eliminating noises from the vehicle and the vehicle inertia effect. Therefore, HHT is an effect method for road profile analysis and for IRI measurement. Furthermore, the application of HHT method has the potential to eliminate the use of accelerometers attached to the vehicle as part of the displacement measurement used to offset the inertia effect.
International Nuclear Information System (INIS)
Chau Ling-Lie; Ge Mo-Lin; Teh, Rosy.
1984-09-01
The Baecklund Transformations and the hidden symmetry algebra for Self-Dual Yang-Mills Equations, Landau-Lifshitz equations and the Extended Super Yang-Mills fields (N>2) are discussed on the base of the Regular Riemann-Hilbert Transform and the linearization equations. (author)
Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.
Ashrafi, Reza; Azaña, José
2012-07-01
A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.
Directory of Open Access Journals (Sweden)
Majewski M.
2015-06-01
Full Text Available The parametric OMI (Optimization in Multiple Intervals, the Yoshida-Magalas (YM and a novel Hilbert-twin (H-twin methods are advocated for computing the logarithmic decrement in the field of internal friction and mechanical spectroscopy of solids. It is shown that dispersion in experimental points results mainly from the selection of the computing methods, the number of oscillations, and noise. It is demonstrated that conventional Hilbert transform method suffers from high dispersion in internal friction values. It is unequivocally demonstrated that the Hilbert-twin method, which yields a ‘true envelope’ for exponentially damped harmonic oscillations is superior to conventional Hilbert transform method. The ‘true envelope’ of free decaying strain signals calculated from the Hilbert-twin method yields excellent estimation of the logarithmic decrement in metals, alloys, and solids.
Phase difference estimation method based on data extension and Hilbert transform
International Nuclear Information System (INIS)
Shen, Yan-lin; Tu, Ya-qing; Chen, Lin-jun; Shen, Ting-ao
2015-01-01
To improve the precision and anti-interference performance of phase difference estimation for non-integer periods of sampling signals, a phase difference estimation method based on data extension and Hilbert transform is proposed. Estimated phase difference is obtained by means of data extension, Hilbert transform, cross-correlation, auto-correlation, and weighted phase average. Theoretical analysis shows that the proposed method suppresses the end effects of Hilbert transform effectively. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of phase difference estimation and has better performance of phase difference estimation than the correlation, Hilbert transform, and data extension-based correlation methods, which contribute to improving the measurement precision of the Coriolis mass flowmeter. (paper)
Application of Hilbert-Huang Transform in Generating Spectrum-Compatible Earthquake Time Histories
Ni, Shun-Hao; Xie, Wei-Chau; Pandey, Mahesh
2011-01-01
Spectrum-compatible earthquake time histories have been widely used for seismic analysis and design. In this paper, a data processing method, Hilbert-Huang transform, is applied to generate earthquake time histories compatible with the target seismic design spectra based on multiple actual earthquake records. Each actual earthquake record is decomposed into several components of time-dependent amplitude and frequency by Hilbert-Huang transform. The spectrum-compatible earthquake time history ...
Infinite conformal symmetries and Riemann-Hilbert transformation in super principal chiral model
International Nuclear Information System (INIS)
Hao Sanru; Li Wei
1989-01-01
This paper shows a new symmetric transformation - C transformation in super principal chiral model and discover an infinite dimensional Lie algebra related to the Virasoro algebra without central extension. By using the Riemann-Hilbert transformation, the physical origination of C transformation is discussed
Seizure classification in EEG signals utilizing Hilbert-Huang transform
Directory of Open Access Journals (Sweden)
Abdulhay Enas W
2011-05-01
Full Text Available Abstract Background Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG signals. Method Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. Results The t-test results in a P-value Conclusion An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool.
Seizure classification in EEG signals utilizing Hilbert-Huang transform.
Oweis, Rami J; Abdulhay, Enas W
2011-05-24
Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. The t-test results in a P-value with respect to its fast response and ease to use. An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool.
Majewski M.; Magalas L.B.
2015-01-01
The parametric OMI (Optimization in Multiple Intervals), the Yoshida-Magalas (YM) and a novel Hilbert-twin (H-twin) methods are advocated for computing the logarithmic decrement in the field of internal friction and mechanical spectroscopy of solids. It is shown that dispersion in experimental points results mainly from the selection of the computing methods, the number of oscillations, and noise. It is demonstrated that conventional Hilbert transform method suffers from high dispersion in in...
Hilbert transform and optical tomography for anisotropic edge enhancement of phase objects
International Nuclear Information System (INIS)
Montes-Perez, Areli; Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo
2011-01-01
In phase object tomography a slice reconstruction is related to distribution of refractive index. Typically, this is obtained by applying the filtered back-projection algorithm to the set of projections (sinogram) obtained experimentally, which are sequentially obtained by calculating the phase of the wave emerging from the slice of the object at different angles. In this paper, based on optical implementation of the Hilbert-transform in a 4f Fourier operator, the Hilbert transform of the projections leaving of the object are obtained numerically. When these projection data are captured for a set of viewing angles an unconventional sinogram is eventually obtained, we have called it as an Hilbert-sinogram. The reconstruction obtained by applying the filtered back-projection algorithm is proportional to the Hilbert transform of the distribution of refractive index of the slice and the obtained image shows a typical isotropic edge enhancement. In this manuscript, the theoretical analysis and the numerical implementation of the Hilbert-transform, mathematical model of the edge enhancement reconstructed are extensively detailed.
Cutting force response in milling of Inconel: analysis by wavelet and Hilbert-Huang Transforms
Directory of Open Access Journals (Sweden)
Grzegorz Litak
Full Text Available We study the milling process of Inconel. By continuously increasing the cutting depth we follow the system response and appearance of oscillations of larger amplitude. The cutting force amplitude and frequency analysis has been done by means of wavelets and Hilbert-Huang transform. We report that in our system the force oscillations are closely related to the rotational motion of the tool and advocate for a regenerative mechanism of chatter vibrations. To identify vibrations amplitudes occurrence in time scale we apply wavelet and Hilbert-Huang transforms.
Methods for detection and characterization of signals in noisy data with the Hilbert-Huang transform
International Nuclear Information System (INIS)
Stroeer, Alexander; Cannizzo, John K.; Camp, Jordan B.; Gagarin, Nicolas
2009-01-01
The Hilbert-Huang transform is a novel, adaptive approach to time series analysis that does not make assumptions about the data form. Its adaptive, local character allows the decomposition of nonstationary signals with high time-frequency resolution but also renders it susceptible to degradation from noise. We show that complementing the Hilbert-Huang transform with techniques such as zero-phase filtering, kernel density estimation and Fourier analysis allows it to be used effectively to detect and characterize signals with low signal-to-noise ratios.
International Nuclear Information System (INIS)
Furdea, A; Wilson, J D; Eswaran, H; Lowery, C L; Govindan, R B; Preissl, H
2009-01-01
We propose a multi-stage approach using Wavelet and Hilbert transforms to identify uterine contraction bursts in magnetomyogram (MMG) signals measured using a 151 magnetic sensor array. In the first stage, we decompose the MMG signals by wavelet analysis into multilevel approximate and detail coefficients. In each level, the signals are reconstructed using the detail coefficients followed by the computation of the Hilbert transform. The Hilbert amplitude of the reconstructed signals from different frequency bands (0.1–1 Hz) is summed up over all the sensors to increase the signal-to-noise ratio. Using a novel clustering technique, affinity propagation, the contractile bursts are distinguished from the noise level. The method is applied on simulated MMG data, using a simple stochastic model to determine its robustness and to seven MMG datasets
Sima, Chaotan; Gates, J C; Holmes, C; Mennea, P L; Zervas, M N; Smith, P G R
2013-09-01
Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated.
Zhuang, L.; Khan, M.R.H.; Beeker, Willem; Beeker, W.P.; Leinse, Arne; Heideman, Rene; Roeloffzen, C.G.H.
2012-01-01
We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonatorbased optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance
Analysis of the Cofrentes instability with the Hilbert-Huang transform
International Nuclear Information System (INIS)
Blazquez, J.; Galindo, A.
2010-01-01
The most obvious application of the Hilbert-Huang transform is the denoising (signal isolation). In this article, the dynamic system is the power of a BWR reactor that undergoes instability. The signal and the dynamic systems are described, which in this case corresponds to a current incident in a commercial BWR reactor (Cofrentes). Finally, empirical modes are calculated and the results are analyzed.
Directory of Open Access Journals (Sweden)
Isti Qomah
2017-01-01
Full Text Available Kerusakan batang rotor merupakan salah satu jenis kerusakan pada motor induksi yang dapat menyebabkan masalah serius. Kerusakan tersebut dapat mencapai 5% - 10% dari seluruh kasus gangguan motor induksi. Oleh karena itu, perlu adanya diagnosis awal yang mendeteksi adanya gangguan pada rotor motor induksi, agar dapat dilakukan perbaikan lebih cepat dan tanggap sebelum terjadi gangguan yang lebih besar. Tugas Akhir ini membahas terkait teknik deteksi kerusakan batang rotor pada motor induksi dengan menggunakan analisis arus mula. Sistem yang digunakan berbasis decomposition wavelet transform terlebih dahulu kemudian dilanjutkan dengan analisis berbasis hilbert transform sebagai perangkat pengolahan sinyal sehingga mampu mendeteksi motor dalam keadaan sehat atau mengalami kerusakan. Pengujian sistem dilakukan dalam beberapa kondisi, yaitu kondisi tanpa beban dan berbeban. Selain itu, kondisi yang diberikan adalah kecacatan mulai dai 1BRB hingga 3BRB. Hasil pengujian membuktikan bahwa decomposition wavelet transform dan Hilbert transform mampu mendeteksi perbedaan kondisi pada motor induksi normal ataupun rusak pada batang rotor.
DEFF Research Database (Denmark)
Vincent, Claire Louise; Giebel, Gregor; Pinson, Pierre
2010-01-01
a 4-yr time series of 10-min wind speed observations. An adaptive spectral analysis method called the Hilbert–Huang transform is chosen for the analysis, because the nonstationarity of time series of wind speed observations means that they are not well described by a global spectral analysis method...... such as the Fourier transform. The Hilbert–Huang transform is a local method based on a nonparametric and empirical decomposition of the data followed by calculation of instantaneous amplitudes and frequencies using the Hilbert transform. The Hilbert–Huang transformed 4-yr time series is averaged and summarized...
Asghari, Mohammad H; Azaña, José
2009-02-01
A simple all-fiber design for implementing an all-optical temporal Hilbert transformer is proposed and numerically demonstrated. We show that an all-optical Hilbert transformer can be implemented using a uniform-period fiber Bragg grating (FBG) with a properly designed amplitude-only grating apodization profile incorporating a single pi phase shift in the middle of the grating length. All-optical Hilbert transformers capable of processing arbitrary optical waveforms with bandwidths up to a few hundreds of gigahertz can be implemented using feasible FBGs.
Treatment of electrochemical noise data by the Hilbert-Huang transform
International Nuclear Information System (INIS)
Rahier, A.
2009-01-01
Most of the classical approaches for treating electro-chemical noise (ECN) data suffer from the non-linear and non steady-state character of the delivered signal. Very often, the link between time and the local corrosion events supposedly responsible for ECN data signatures is lost during treatment, as is obvious when using the classical Fourier Transform (FT), followed by an analysis of the response in the frequency domain. In this particular case, the information directly related to the corrosion events is distributed into the full spectra, thereby preventing the operator to derive clear and precise conclusions. In 2005, we suggested an alternative data treatment based on the Hilbert-Huang transform (HHT). The latter keeps track of the time variable and copes with non-linear and non steady-state behaviours of the system under examination. In 2006, we demonstrated the applicability of the newly proposed data treatment in the case of ECN data collected under BWR (Boiling Water Reactor) conditions. In 2007, we collected additional ECN data and started a preliminary investigation of two mathematical restrictions that are susceptible to impair the interpretation of the results. We discovered a possible modification of the Hilbert transform allowing generating controlled phase shifts that are different from pi/2 as is always the case for the Hilbert transform
Empirical mode decomposition and Hilbert transforms for analysis of oil-film interferograms
International Nuclear Information System (INIS)
Chauhan, Kapil; Ng, Henry C H; Marusic, Ivan
2010-01-01
Oil-film interferometry is rapidly becoming the preferred method for direct measurement of wall shear stress in studies of wall-bounded turbulent flows. Although being widely accepted as the most accurate technique, it does have inherent measurement uncertainties, one of which is associated with determining the fringe spacing. This is the focus of this paper. Conventional analysis methods involve a certain level of user input and thus some subjectivity. In this paper, we consider empirical mode decomposition (EMD) and the Hilbert transform as an alternative tool for analyzing oil-film interferograms. In contrast to the commonly used Fourier-based techniques, this new method is less subjective and, as it is based on the Hilbert transform, is superior for treating amplitude and frequency modulated data. This makes it particularly robust to wide differences in the quality of interferograms
Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform
Zheng, Yang; Chen, Xihao; Zhu, Rui
2017-07-01
Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.
Bazargani, Hamed Pishvai; Burla, Maurizio; Chrostowski, Lukas; Azaña, José
2016-11-01
We experimentally demonstrate high-performance integer and fractional-order photonic Hilbert transformers based on laterally apodized Bragg gratings in a silicon-on-insulator technology platform. The sub-millimeter-long gratings have been fabricated using single-etch electron beam lithography, and the resulting HT devices offer operation bandwidths approaching the THz range, with time-bandwidth products between 10 and 20.
International Nuclear Information System (INIS)
Liu, Yangqing; Tan, Yi; Xie, Huiqiao; Wang, Wenhao; Gao, Zhe
2014-01-01
An improved Hilbert-Huang transform method is developed to the time-frequency analysis of non-stationary signals in tokamak plasmas. Maximal overlap discrete wavelet packet transform rather than wavelet packet transform is proposed as a preprocessor to decompose a signal into various narrow-band components. Then, a correlation coefficient based selection method is utilized to eliminate the irrelevant intrinsic mode functions obtained from empirical mode decomposition of those narrow-band components. Subsequently, a time varying vector autoregressive moving average model instead of Hilbert spectral analysis is performed to compute the Hilbert spectrum, i.e., a three-dimensional time-frequency distribution of the signal. The feasibility and effectiveness of the improved Hilbert-Huang transform method is demonstrated by analyzing a non-stationary simulated signal and actual experimental signals in fusion plasmas
A two-step Hilbert transform method for 2D image reconstruction
International Nuclear Information System (INIS)
Noo, Frederic; Clackdoyle, Rolf; Pack, Jed D
2004-01-01
The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fan-beam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained
Directory of Open Access Journals (Sweden)
Magalas L.B.
2015-06-01
Full Text Available In this work, we present a novel Hilbert-twin method to compute an envelope and the logarithmic decrement, δ, from exponentially damped time-invariant harmonic strain signals embedded in noise. The results obtained from five computing methods: (1 the parametric OMI (Optimization in Multiple Intervals method, two interpolated discrete Fourier transform-based (IpDFT methods: (2 the Yoshida-Magalas (YM method and (3 the classic Yoshida (Y method, (4 the novel Hilbert-twin (H-twin method based on the Hilbert transform, and (5 the conventional Hilbert transform (HT method are analyzed and compared. The fundamental feature of the Hilbert-twin method is the efficient elimination of intrinsic asymmetrical oscillations of the envelope, aHT (t, obtained from the discrete Hilbert transform of analyzed signals. Excellent performance in estimation of the logarithmic decrement from the Hilbert-twin method is comparable to that of the OMI and YM for the low- and high-damping levels. The Hilbert-twin method proved to be robust and effective in computing the logarithmic decrement and the resonant frequency of exponentially damped free decaying signals embedded in experimental noise. The Hilbert-twin method is also appropriate to detect nonlinearities in mechanical loss measurements of metals and alloys.
Li, Xuelong; Li, Zhonghui; Wang, Enyuan; Feng, Junjun; Chen, Liang; Li, Nan; Kong, Xiangguo
2016-09-01
This study provides a new research idea concerning rock burst prediction. The characteristics of microseismic (MS) waveforms prior to and during the rock burst were studied through the Hilbert-Huang transform (HHT). In order to demonstrate the advantage of the MS features extraction based on HHT, the conventional analysis method (Fourier transform) was also used to make a comparison. The results show that HHT is simple and reliable, and could extract in-depth information about the characteristics of MS waveforms. About 10 days prior to the rock burst, the main frequency of MS waveforms transforms from the high-frequency to low-frequency. What's more, the waveforms energy also presents accumulation characteristic. Based on our study results, it can be concluded that the MS signals analysis through HHT could provide valuable information about the coal or rock deformation and fracture.
Pairs of dual Gabor frames generated by functions of Hilbert-Schmidt type
DEFF Research Database (Denmark)
Christiansen, Lasse Hjuler
2015-01-01
where each member may be written as a linear combination of integer translates of any B-spline. We introduce functions of Hilbert-Schmidt type along with a new method which allows us to associate to certain such functions finite families of recursively defined dual windows of arbitrary smoothness...
Bearing fault detection utilizing group delay and the Hilbert-Huang transform
International Nuclear Information System (INIS)
Jin, Shuai; Lee, Sang-Kwon
2017-01-01
Vibration signals measured from a mechanical system are useful to detect system faults. Signal processing has been used to extract fault information in bearing systems. However, a wide vibration signal frequency band often affects the ability to obtain the effective fault features. In addition, a few oscillation components are not useful at the entire frequency band in a vibration signal. By contrast, useful fatigue information can be embedded in the noise oscillation components. Thus, a method to estimate which frequency band contains fault information utilizing group delay was proposed in this paper. Group delay as a measure of phase distortion can indicate the phase structure relationship in the frequency domain between original (with noise) and denoising signals. We used the empirical mode decomposition of a Hilbert-Huang transform to sift the useful intrinsic mode functions based on the results of group delay after determining the valuable frequency band. Finally, envelope analysis and the energy distribution after the Hilbert transform were used to complete the fault diagnosis. The practical bearing fault data, which were divided into inner and outer race faults, were used to verify the efficiency and quality of the proposed method
Discrete Hilbert transformation and its application to estimate the wind speed in Hong Kong
Energy Technology Data Exchange (ETDEWEB)
Zhu, Zuojin [Department of Thermal Science and Energy Engineering, Institute of Engineering Science, University of Science and Technology of China, Hefei, Anhui (China); Yang, Hongxing [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (Hong Kong)
2002-01-01
Discrete Hilbert Transform (DHT) has been applied to estimate the wind speed with the sample data sequence selected from the data record observed by the observatory in Hong Kong in June 1989, during which the data pertain to deep valleys and sharp crests due to manifold weather conditions in this region. To confirm the performance of the discrete Hilbert transformer, two harmonic input sequences were used to inspect the output signals, whether good agreement with the theoretical results is obtained. It was found that the energy spectrum and the outputs for the two different harmonic discrete waves are certainly correct. After the inspection of the DHT filter, the sample data for wind speed in Hong Kong were used for wind speed forecasting. For zero mean input sequence, the variance of the output is the same as that of the input signals, and so is the energy spectrum. The DHT of an individual input sample can really reflect the local variation performance, since it is the convolution with the reciprocal of time and the input data sequence, but there exists phase shift. For harmonic signals, the output signal holds a 90 phase delay.
International Nuclear Information System (INIS)
Wang, Zuo-Cai; Ren, Wei-Xin; Chen, Gen-Da
2012-01-01
This paper presents a recursive Hilbert transform method for the time-varying property identification of large-scale shear-type buildings with limited sensor deployments. An observer technique is introduced to estimate the building responses from limited available measurements. For an n-story shear-type building with l measurements (l ≤ n), the responses of other stories without measurements can be estimated based on the first r mode shapes (r ≤ l) as-built conditions and l measurements. Both the measured responses and evaluated responses and their Hilbert transforms are then used to track any variation of structural parameters of a multi-story building over time. Given floor masses, both the stiffness and damping coefficients of the building are identified one-by-one from the top to the bottom story. When variations of parameters are detected, a new developed branch-and-bound technique can be used to update the first r mode shapes with the identified parameters. A 60-story shear building with abruptly varying stiffness at different floors is simulated as an example. The numerical results indicate that the proposed method can detect variations of the parameters of large-scale shear-type buildings with limited sensor deployments at appropriate locations. (paper)
Prediction of unknown deep foundation lengths using the Hilbert Huang Transform (HHT
Directory of Open Access Journals (Sweden)
Ahmed T.M. Farid
2012-08-01
Full Text Available Prediction of unknown deep foundation embedment depth is a great deal nowadays, especially in case of upgrading or rehabilitation of old structures. Many old bridges and marine or pier structures in the United States are established using deep foundations system of timber piles and their foundation records do not exist. Non-Destructive Testing (NDT or Non-Destructive Evaluation (NDE method for a great variety of materials and structures has become an integral part of many tests. However, the process of testing long piles, deeply embedded in the ground, is more complex than (NDT of the other structural materials. This paper summarizes some of the most common non-destructive test methods for deep foundations and presents a new method called the Hilbert Huang Transform (HHT. This Hilbert Huang Transform (HHT method is used now by a wide range in a different health monitoring of many systems. In this paper, some field tests on the timber Piles of one bridge at North Carolina was performed to verify the using the (HHT method for predicting the embedded depth of the unknown piles. Percentage of the accuracy achieved using HHT method for pile length compared to the actual pile length data was performed. Finally, a recommendation is presented for the limitation of using this new method as a new non-destructive method for deep foundations.
Bearing fault detection utilizing group delay and the Hilbert-Huang transform
Energy Technology Data Exchange (ETDEWEB)
Jin, Shuai; Lee, Sang-Kwon [Inha University, Incheon (Korea, Republic of)
2017-03-15
Vibration signals measured from a mechanical system are useful to detect system faults. Signal processing has been used to extract fault information in bearing systems. However, a wide vibration signal frequency band often affects the ability to obtain the effective fault features. In addition, a few oscillation components are not useful at the entire frequency band in a vibration signal. By contrast, useful fatigue information can be embedded in the noise oscillation components. Thus, a method to estimate which frequency band contains fault information utilizing group delay was proposed in this paper. Group delay as a measure of phase distortion can indicate the phase structure relationship in the frequency domain between original (with noise) and denoising signals. We used the empirical mode decomposition of a Hilbert-Huang transform to sift the useful intrinsic mode functions based on the results of group delay after determining the valuable frequency band. Finally, envelope analysis and the energy distribution after the Hilbert transform were used to complete the fault diagnosis. The practical bearing fault data, which were divided into inner and outer race faults, were used to verify the efficiency and quality of the proposed method.
Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform.
Huang, Yongxiang; Biferale, Luca; Calzavarini, Enrico; Sun, Chao; Toschi, Federico
2013-04-01
The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions C(i)(t) and of their instantaneous frequency ω(i)(t). On the basis of this decomposition we define the ω-conditioned statistical moments of the C(i) modes, named q-order Hilbert spectra (HS). We show that such quantities have enhanced scaling properties as compared to traditional Fourier transform- or correlation-based (structure functions) statistical indicators, thus providing better insights into the turbulent energy transfer process. We present clear empirical evidence that the energylike quantity, i.e., the second-order HS, displays a linear scaling in time in the inertial range, as expected from a dimensional analysis. We also measure high-order moment scaling exponents in a direct way, without resorting to the extended self-similarity procedure. This leads to an estimate of the Lagrangian structure function exponents which are consistent with the multifractal prediction in the Lagrangian frame as proposed by Biferale et al. [Phys. Rev. Lett. 93, 064502 (2004)].
Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings.
Cheng, Rui; Chrostowski, Lukas
2018-03-01
Multichannel photonic Hilbert transformers (MPHTs) are reported. The devices are based on single compact spiral integrated Bragg gratings on silicon with coupling coefficients precisely modulated by the phase of each grating period. MPHTs with up to nine wavelength channels and a single-channel bandwidth of up to ∼625 GHz are achieved. The potential of the devices for multichannel single-sideband signal generation is suggested. The work offers a new possibility of utilizing wavelength as an extra degree of freedom in designing radio-frequency photonic signal processors. Such multichannel processors are expected to possess improved capacities and a potential to greatly benefit current widespread wavelength division multiplexed systems.
THz-bandwidth photonic Hilbert transformers based on fiber Bragg gratings in transmission.
Fernández-Ruiz, María R; Wang, Lixian; Carballar, Alejandro; Burla, Maurizio; Azaña, José; LaRochelle, Sophie
2015-01-01
THz-bandwidth photonic Hilbert transformers (PHTs) are implemented for the first time, to the best of our knowledge, based on fiber Bragg grating (FBG) technology. To increase the practical bandwidth limitation of FBGs (typically <200 GHz), a superstructure based on two superimposed linearly-chirped FBGs operating in transmission has been employed. The use of a transmission FBG involves first a conversion of the non-minimum phase response of the PHT into a minimum-phase response by adding an anticipated instantaneous component to the desired system temporal impulse response. Using this methodology, a 3-THz-bandwidth integer PHT and a fractional (order 0.81) PHT are designed, fabricated, and successfully characterized.
Trusiak, Maciej; Patorski, Krzysztof; Wielgus, Maciej
2012-10-08
Presented method for fringe pattern enhancement has been designed for processing and analyzing low quality fringe patterns. It uses a modified fast and adaptive bidimensional empirical mode decomposition (FABEMD) for the extraction of bidimensional intrinsic mode functions (BIMFs) from an interferogram. Fringe pattern is then selectively reconstructed (SR) taking the regions of selected BIMFs with high modulation values only. Amplitude demodulation and normalization of the reconstructed image is conducted using the spiral phase Hilbert transform (HS). It has been tested using computer generated interferograms and real data. The performance of the presented SR-FABEMD-HS method is compared with other normalization techniques. Its superiority, potential and robustness to high fringe density variations and the presence of noise, modulation and background illumination defects in analyzed fringe patterns has been corroborated.
On using the Hilbert transform for blind identification of complex modes: A practical approach
Antunes, Jose; Debut, Vincent; Piteau, Pilippe; Delaune, Xavier; Borsoi, Laurent
2018-01-01
The modal identification of dynamical systems under operational conditions, when subjected to wide-band unmeasured excitations, is today a viable alternative to more traditional modal identification approaches based on processing sets of measured FRFs or impulse responses. Among current techniques for performing operational modal identification, the so-called blind identification methods are the subject of considerable investigation. In particular, the SOBI (Second-Order Blind Identification) method was found to be quite efficient. SOBI was originally developed for systems with normal modes. To address systems with complex modes, various extension approaches have been proposed, in particular: (a) Using a first-order state-space formulation for the system dynamics; (b) Building complex analytic signals from the measured responses using the Hilbert transform. In this paper we further explore the latter option, which is conceptually interesting while preserving the model order and size. Focus is on applicability of the SOBI technique for extracting the modal responses from analytic signals built from a set of vibratory responses. The novelty of this work is to propose a straightforward computational procedure for obtaining the complex cross-correlation response matrix to be used for the modal identification procedure. After clarifying subtle aspects of the general theoretical framework, we demonstrate that the correlation matrix of the analytic responses can be computed through a Hilbert transform of the real correlation matrix, so that the actual time-domain responses are no longer required for modal identification purposes. The numerical validation of the proposed technique is presented based on time-domain simulations of a conceptual physical multi-modal system, designed to display modes ranging from normal to highly complex, while keeping modal damping low and nearly independent of the modal complexity, and which can prove very interesting in test bench
Pseudopotential transformation of correlated-pair equations
International Nuclear Information System (INIS)
Szasz, L.; Brown, L.
1975-01-01
A pseudopotential transformation for correlated-pair equations is derived that yields solutions that are pseudowavefunctions, i.e., they do not have to be orthogonal to the core functions. The approximate solutions for the transformation will be much simpler to compute, but they do not involve a loss of accuracy
Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris
2012-11-19
We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.
International Nuclear Information System (INIS)
Antonino-Daviu, J.; Rodriguez, P. Jover; Riera-Guasp, M.; Arkkio, A.; Roger-Folch, J.; Perez, R.B.
2009-01-01
The identification and extraction of characteristic patterns are proposed in this work for the diagnosis and evaluation of mixed eccentricities in induction electrical machines with parallel stator branches. Whereas the classical diagnosis approaches, deeply spread in the industrial environment, are based on the Fourier analysis of the steady-state current, the basis of the proposed methodology consist of analysing the current demanded by the machine during the connection process (startup transient); the objective is to extract the characteristic evolution during the transient of some harmonic components created by the fault; this evolution is caused by the dependence of these components on the slip (s), a quantity varying during the startup transient from 1 to almost 0. For this feature extraction, the Hilbert-Huang Transform (HHT) is proposed. An analysis of the behaviour of this transform in comparison with another time-frequency approach used in other works, the Discrete Wavelet Transform (DWT), is also presented in the paper. The results show the usefulness of the methodology for the reliable diagnosis of the mixed eccentricity fault and for the correct discrimination against other types of failures.
Searching the beginning of BWR power instability events with the Hilbert Huang transform
International Nuclear Information System (INIS)
Blázquez, Juan; Montalvo, Cristina; García-Berrocal, Agustín; Balbás, Miguel
2013-01-01
Highlights: ► The report of the instability is enriched by including its beginning and its end. ► The Hilbert Huang transform (HHT) is used for indentifying both. ► The first Intrinsic Mode Function (IMF) detects both. ► The methodology is applied to neutron detector signals from two plants. ► The Decay Ratio of IMF 1 is calculated. - Abstract: When a BWR instability takes place, the Regulator usually demands a report which must include many aspects such as the initial time of the instability and also the measurements adopted by the operator at that time. This initial time normally is difficult to know from the available data. In this work, a methodology is proposed to determine accurately when the instability began based on the Hilbert–Huang transform. The Empirical Mode Decomposition is applied to neutron detector signals coming from two plants which have recorded them during real instability events. The first intrinsic mode function shows sharply the beginning and the end of the incident. Besides, through the instantaneous amplitude and frequency of the first mode a kind of Decay Ratio can be assigned allowing us to obtain a sharper description of the instability
Multiple Harmonics Fitting Algorithms Applied to Periodic Signals Based on Hilbert-Huang Transform
Directory of Open Access Journals (Sweden)
Hui Wang
2013-01-01
Full Text Available A new generation of multipurpose measurement equipment is transforming the role of computers in instrumentation. The new features involve mixed devices, such as kinds of sensors, analog-to-digital and digital-to-analog converters, and digital signal processing techniques, that are able to substitute typical discrete instruments like multimeters and analyzers. Signal-processing applications frequently use least-squares (LS sine-fitting algorithms. Periodic signals may be interpreted as a sum of sine waves with multiple frequencies: the Fourier series. This paper describes a new sine fitting algorithm that is able to fit a multiharmonic acquired periodic signal. By means of a “sinusoidal wave” whose amplitude and phase are both transient, the “triangular wave” can be reconstructed on the basis of Hilbert-Huang transform (HHT. This method can be used to test effective number of bits (ENOBs of analog-to-digital converter (ADC, avoiding the trouble of selecting initial value of the parameters and working out the nonlinear equations. The simulation results show that the algorithm is precise and efficient. In the case of enough sampling points, even under the circumstances of low-resolution signal with the harmonic distortion existing, the root mean square (RMS error between the sampling data of original “triangular wave” and the corresponding points of fitting “sinusoidal wave” is marvelously small. That maybe means, under the circumstances of any periodic signal, that ENOBs of high-resolution ADC can be tested accurately.
Directory of Open Access Journals (Sweden)
Roque A. Osornio-Rios
2013-04-01
Full Text Available Power quality disturbance (PQD monitoring has become an important issue due to the growing number of disturbing loads connected to the power line and to the susceptibility of certain loads to their presence. In any real power system, there are multiple sources of several disturbances which can have different magnitudes and appear at different times. In order to avoid equipment damage and estimate the damage severity, they have to be detected, classified, and quantified. In this work, a smart sensor for detection, classification, and quantification of PQD is proposed. First, the Hilbert transform (HT is used as detection technique; then, the classification of the envelope of a PQD obtained through HT is carried out by a feed forward neural network (FFNN. Finally, the root mean square voltage (Vrms, peak voltage (Vpeak, crest factor (CF, and total harmonic distortion (THD indices calculated through HT and Parseval’s theorem as well as an instantaneous exponential time constant quantify the PQD according to the disturbance presented. The aforementioned methodology is processed online using digital hardware signal processing based on field programmable gate array (FPGA. Besides, the proposed smart sensor performance is validated and tested through synthetic signals and under real operating conditions, respectively.
Hilbert-Huang transform analysis of long-term solar magnetic activity
Deng, Linhua
2018-04-01
Astronomical time series analysis is one of the hottest and most important problems, and becomes the suitable way to deal with the underlying dynamical behavior of the considered nonlinear systems. The quasi-periodic analysis of solar magnetic activity has been carried out by various authors during the past fifty years. In this work, the novel Hilbert-Huang transform approach is applied to investigate the yearly numbers of polar faculae in the time interval from 1705 to 1999. The detected periodicities can be allocated to three components: the first one is the short-term variations with periods smaller than 11 years, the second one is the mid- term variations with classical periods from 11 years to 50 years, and the last one is the long-term variations with periods larger than 50 years. The analysis results improve our knowledge on the quasi-periodic variations of solar magnetic activity and could be provided valuable constraints for solar dynamo theory. Furthermore, our analysis results could be useful for understanding the long-term variations of solar magnetic activity, providing crucial information to describe and forecast solar magnetic activity indicators.
NINJA data analysis with a detection pipeline based on the Hilbert-Huang transform
International Nuclear Information System (INIS)
Stroeer, Alexander; Camp, Jordan
2009-01-01
The NINJA data analysis challenge allowed the study of the sensitivity of data analysis pipelines to binary black hole numerical relativity waveforms in simulated Gaussian noise at the design level of the LIGO observatory and the VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert-Huang transform, utilizing a detection stage and a characterization stage: detection is performed by triggering on excess instantaneous power, characterization is performed by displaying the kernel density enhanced (KD) time-frequency trace of the signal. Using the simulated data based on the two LIGO detectors, we were able to detect 77 signals out of 126 above signal-to-noise ratio, SNR 5 in coincidence, with 43 missed events characterized by SNR < 10. Characterization of the detected signals revealed the merger part of the waveform in high time and frequency resolution, free from time-frequency uncertainty. We estimated the timelag of the signals between the detectors based on the optimal overlap of the individual KD time-frequency maps, yielding estimates accurate within a fraction of a millisecond for half of the events. A coherent addition of the data sets according to the estimated timelag eventually was used in a final characterization of the event.
Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection
Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan
2018-03-01
X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400 × 400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.
Directory of Open Access Journals (Sweden)
P Bhattacharya
2016-09-01
Full Text Available The wind resource varies with of the day and the season of the year and even some extent from year to year. Wind energy has inherent variances and hence it has been expressed by distribution functions. In this paper, we present some methods for estimating Weibull parameters in case of a low wind speed characterization, namely, shape parameter (k, scale parameter (c and characterize the discrete wind data sample by the discrete Hilbert transform. We know that the Weibull distribution is an important distribution especially for reliability and maintainability analysis. The suitable values for both shape parameter and scale parameters of Weibull distribution are important for selecting locations of installing wind turbine generators. The scale parameter of Weibull distribution also important to determine whether a wind farm is good or not. Thereafter the use of discrete Hilbert transform (DHT for wind speed characterization provides a new era of using DHT besides its application in digital signal processing. Basically in this paper, discrete Hilbert transform has been applied to characterize the wind sample data measured on College of Engineering and Management, Kolaghat, East Midnapore, India in January 2011.
Hilbert-Huang transform based instrumental assessment of intention tremor in multiple sclerosis
Carpinella, Ilaria; Cattaneo, Davide; Ferrarin, Maurizio
2015-08-01
Objective. This paper describes a method to extract upper limb intention tremor from gyroscope data, through the Hilbert-Huang transform (HHT), a technique suitable for the study of nonlinear and non-stationary processes. The aims of the study were to: (i) evaluate the method’s ability to discriminate between healthy controls and MS subjects; (ii) validate the proposed procedure against clinical tremor scores assigned using Fahn’s tremor rating scale (FTRS); and (iii) compare the performance of the HHT-based method with that of linear band-pass filters. Approach. HHT was applied on gyroscope data collected on 20 MS subjects and 13 healthy controls (CO) during finger-to-nose tests (FNTs) instrumented with an inertial sensor placed on the hand. The results were compared to those obtained after traditional linear filtering. The tremor amplitude was quantified with instrumental indexes (TIs) and clinical FTRS ratings. Main results. The TIs computed after HHT-based filtering discriminated between CO and MS subjects with clinically-detected intention tremor (MS_T). In particular, TIs were significantly higher in the final part of the movement (TI2) with respect to the first part (TI1), and, for all components (X, Y, Z), MST showed a TI2 significantly higher than in CO subjects. Moreover, the HHT detected subtle alterations not visible from clinical ratings, as TI2 (Z-component) was significantly increased in MS subjects without clinically-detected tremor (MS_NT). The method’s validity was demonstrated by significant correlations between clinical FTRS scores and TI2 related to X (rs = 0.587, p = 0.006) and Y (rs = 0.682, p < 0.001) components. Contrarily, fewer differences among the groups and no correlation between instrumental and clinical indexes emerged after traditional filtering. Significance. The present results supported the use of the HHT-based procedure for a fully-automated quantitative and objective measure of intention tremor in MS, which can overcome
Trusiak, Maciej; Służewski, Łukasz; Patorski, Krzysztof
2016-02-22
Hybrid single shot algorithm for accurate phase demodulation of complex fringe patterns is proposed. It employs empirical mode decomposition based adaptive fringe pattern enhancement (i.e., denoising, background removal and amplitude normalization) and subsequent boosted phase demodulation using 2D Hilbert spiral transform aided by the Principal Component Analysis method for novel, correct and accurate local fringe direction map calculation. Robustness to fringe pattern significant noise, uneven background and amplitude modulation as well as local fringe period and shape variations is corroborated by numerical simulations and experiments. Proposed automatic, adaptive, fast and comprehensive fringe analysis solution compares favorably with other previously reported techniques.
Martins, Luis Gustavo Nogueira; Stefanello, Michel Baptistella; Degrazia, Gervásio Annes; Acevedo, Otávio Costa; Puhales, Franciano Scremin; Demarco, Giuliano; Mortarini, Luca; Anfossi, Domenico; Roberti, Débora Regina; Costa, Felipe Denardin; Maldaner, Silvana
2016-11-01
In this study we analyze natural complex signals employing the Hilbert-Huang spectral analysis. Specifically, low wind meandering meteorological data are decomposed into turbulent and non turbulent components. These non turbulent movements, responsible for the absence of a preferential direction of the horizontal wind, provoke negative lobes in the meandering autocorrelation functions. The meandering characteristic time scales (meandering periods) are determined from the spectral peak provided by the Hilbert-Huang marginal spectrum. The magnitudes of the temperature and horizontal wind meandering period obtained agree with the results found from the best fit of the heuristic meandering autocorrelation functions. Therefore, the new method represents a new procedure to evaluate meandering periods that does not employ mathematical expressions to represent observed meandering autocorrelation functions.
Directory of Open Access Journals (Sweden)
Lili Chen
2017-01-01
Full Text Available Preterm birth (PTB is the leading cause of perinatal mortality and long-term morbidity, which results in significant health and economic problems. The early detection of PTB has great significance for its prevention. The electrohysterogram (EHG related to uterine contraction is a noninvasive, real-time, and automatic novel technology which can be used to detect, diagnose, or predict PTB. This paper presents a method for feature extraction and classification of EHG between pregnancy and labour group, based on Hilbert-Huang transform (HHT and extreme learning machine (ELM. For each sample, each channel was decomposed into a set of intrinsic mode functions (IMFs using empirical mode decomposition (EMD. Then, the Hilbert transform was applied to IMF to obtain analytic function. The maximum amplitude of analytic function was extracted as feature. The identification model was constructed based on ELM. Experimental results reveal that the best classification performance of the proposed method can reach an accuracy of 88.00%, a sensitivity of 91.30%, and a specificity of 85.19%. The area under receiver operating characteristic (ROC curve is 0.88. Finally, experimental results indicate that the method developed in this work could be effective in the classification of EHG between pregnancy and labour group.
Shahoei, Hiva; Dumais, Patrick; Yao, Jianping
2014-05-01
We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index contrast of 3.8% is fabricated. The use of the fabricated MRR for the implementation of a tunable FHT with tunable orders at 1, 0.85, 0.95, 1.05, and 1.13 for a Gaussian pulse with the temporal full width at half-maximum of 80 ps is experimentally demonstrated.
Chen, Lili; Hao, Yaru
2017-01-01
Preterm birth (PTB) is the leading cause of perinatal mortality and long-term morbidity, which results in significant health and economic problems. The early detection of PTB has great significance for its prevention. The electrohysterogram (EHG) related to uterine contraction is a noninvasive, real-time, and automatic novel technology which can be used to detect, diagnose, or predict PTB. This paper presents a method for feature extraction and classification of EHG between pregnancy and labour group, based on Hilbert-Huang transform (HHT) and extreme learning machine (ELM). For each sample, each channel was decomposed into a set of intrinsic mode functions (IMFs) using empirical mode decomposition (EMD). Then, the Hilbert transform was applied to IMF to obtain analytic function. The maximum amplitude of analytic function was extracted as feature. The identification model was constructed based on ELM. Experimental results reveal that the best classification performance of the proposed method can reach an accuracy of 88.00%, a sensitivity of 91.30%, and a specificity of 85.19%. The area under receiver operating characteristic (ROC) curve is 0.88. Finally, experimental results indicate that the method developed in this work could be effective in the classification of EHG between pregnancy and labour group.
DEFF Research Database (Denmark)
Israelsen, Niels Møller; Maria, Michael; Feuchter, Thomas
2018-01-01
-linearities lead together to an unknown chirp of the detected interferogram. One method to compensate for the chirp is to perform a pixel-wavenumber calibration versus phase that requires numerical extraction of the phase. Typically a Hilbert transform algorithm is employed to extract the optical phase versus...... wavenumber for calibration and dispersion compensation. In this work we demonstrate UHR-OCT at 1300 nm using a Super continuum source and highlight the resolution constraints in using the Hilbert transform algorithm when extracting the optical phase for calibration and dispersion compensation. We demonstrate...... that the constraints cannot be explained purely by the numerical errors in the data processing module utilizing the Hilbert transform but must be dictated by broadening mechanisms originating from the experimentally obtained interferograms....
Space Inside a Liquid Sphere Transforms into De Sitter Space by Hilbert Radius
Rabounski, Dmitri; Borissova, Larissa
2010-04-01
Consider space inside a sphere of incompressible liquid, and space surrounding a mass-point. Metrics of the spaces were deduced in 1916 by Karl Schwarzschild. 1) Our calculation shows that a liquid sphere can be in the state of gravitational collapse (g00 = 0) only if its mass and radius are close to those of the Universe (M = 8.7x10^55 g, a = 1.3x10^28 cm). However if the same mass is presented as a mass-point, the radius of collapse rg (Hilbert radius) is many orders lesser: g00 = 0 realizes in a mass-point's space by other conditions. 2) We considered a liquid sphere whose radius meets, formally, the Hilbert radius of a mass-point bearing the same mass: a = rg, however the liquid sphere is not a collapser (see above). We show that in this case the metric of the liquid sphere's internal space can be represented as de Sitter's space metric, wherein λ = 3/a^2 > 0: physical vacuum (due to the λ-term) is the same as the field of an ideal liquid where ρ0 0 (the mirror world liquid). The gravitational redshift inside the sphere is produced by the non-Newtonian force of repulsion (which is due to the λ-term, λ = 3/a^2 > 0); it is also calculated.
The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal
Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis
2016-08-01
The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.
Xu, Huile; Liu, Jinyi; Hu, Haibo; Zhang, Yi
2016-12-02
Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT) or wavelet transform (WT). However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT) for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA) and instantaneous frequency (IF) by means of empirical mode decomposition (EMD), as well as instantaneous energy density (IE) and marginal spectrum (MS) derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works.
Directory of Open Access Journals (Sweden)
Huile Xu
2016-12-01
Full Text Available Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT or wavelet transform (WT. However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA and instantaneous frequency (IF by means of empirical mode decomposition (EMD, as well as instantaneous energy density (IE and marginal spectrum (MS derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works.
General form of Darboux transformations for Lax pairs
International Nuclear Information System (INIS)
Zhou Zixiang.
1988-03-01
In this paper, the author finds all the Darboux transformations for general Lax pair with coefficients analytic to spectral parameter. The auto-Baecklund property of these Darboux transformations for n x n system is also verified. (author). 7 refs
Tan, Zhixiang; Zhang, Yi; Zeng, Deping; Wang, Hua
2015-04-01
We proposed a research of a heart sound envelope extraction system in this paper. The system was implemented on LabVIEW based on the Hilbert-Huang transform (HHT). We firstly used the sound card to collect the heart sound, and then implemented the complete system program of signal acquisition, pretreatment and envelope extraction on LabVIEW based on the theory of HHT. Finally, we used a case to prove that the system could collect heart sound, preprocess and extract the envelope easily. The system was better to retain and show the characteristics of heart sound envelope, and its program and methods were important to other researches, such as those on the vibration and voice, etc.
Directory of Open Access Journals (Sweden)
Unger Laura Anna
2015-09-01
Full Text Available This work aimed at the detection of rotor centers within the atrial cavity during atrial fibrillation on the basis of phase singularities. A voxel based method was established which employs the Hilbert transform and the phase of unipolar electrograms. The method provides a 3D overview of phase singularities at the endocardial surface and within the blood volume. Mapping those phase singularities from the inside of the atria at the endocardium yielded rotor center trajectories. We discuss the results for an unstable and a more stable rotor. The side length of the areas covered by the trajectories varied from 1.5 mm to 10 mm. These results are important for cardiologists who target rotors with RF ablation in order to cure atrial fibrillation.
Paired Straight Hearth Furnace - Transformational Ironmaking Process
Energy Technology Data Exchange (ETDEWEB)
Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)
2014-11-19
The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.
Cai, Jianhua
2017-05-01
The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.
Assessment of vocal cord nodules: a case study in speech processing by using Hilbert-Huang Transform
Civera, M.; Filosi, C. M.; Pugno, N. M.; Silvestrini, M.; Surace, C.; Worden, K.
2017-05-01
Vocal cord nodules represent a pathological condition for which the growth of unnatural masses on vocal folds affects the patients. Among other effects, changes in the vocal cords’ overall mass and stiffness alter their vibratory behaviour, thus changing the vocal emission generated by them. This causes dysphonia, i.e. abnormalities in the patients’ voice, which can be analysed and inspected via audio signals. However, the evaluation of voice condition through speech processing is not a trivial task, as standard methods based on the Fourier Transform, fail to fit the non-stationary nature of vocal signals. In this study, four audio tracks, provided by a volunteer patient, whose vocal fold nodules have been surgically removed, were analysed using a relatively new technique: the Hilbert-Huang Transform (HHT) via Empirical Mode Decomposition (EMD); specifically, by using the CEEMDAN (Complete Ensemble EMD with Adaptive Noise) algorithm. This method has been applied here to speech signals, which were recorded before removal surgery and during convalescence, to investigate specific trends. Possibilities offered by the HHT are exposed, but also some limitations of decomposing the signals into so-called intrinsic mode functions (IMFs) are highlighted. The results of these preliminary studies are intended to be a basis for the development of new viable alternatives to the softwares currently used for the analysis and evaluation of pathological voice.
Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao
2014-12-01
Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.
Assessment of vocal cord nodules: a case study in speech processing by using Hilbert-Huang Transform
International Nuclear Information System (INIS)
Civera, M; Surace, C; Filosi, C M; Silvestrini, M; Pugno, N M; Worden, K
2017-01-01
Vocal cord nodules represent a pathological condition for which the growth of unnatural masses on vocal folds affects the patients. Among other effects, changes in the vocal cords’ overall mass and stiffness alter their vibratory behaviour, thus changing the vocal emission generated by them. This causes dysphonia, i.e. abnormalities in the patients’ voice, which can be analysed and inspected via audio signals. However, the evaluation of voice condition through speech processing is not a trivial task, as standard methods based on the Fourier Transform, fail to fit the non-stationary nature of vocal signals. In this study, four audio tracks, provided by a volunteer patient, whose vocal fold nodules have been surgically removed, were analysed using a relatively new technique: the Hilbert-Huang Transform (HHT) via Empirical Mode Decomposition (EMD); specifically, by using the CEEMDAN (Complete Ensemble EMD with Adaptive Noise) algorithm. This method has been applied here to speech signals, which were recorded before removal surgery and during convalescence, to investigate specific trends. Possibilities offered by the HHT are exposed, but also some limitations of decomposing the signals into so-called intrinsic mode functions (IMFs) are highlighted. The results of these preliminary studies are intended to be a basis for the development of new viable alternatives to the softwares currently used for the analysis and evaluation of pathological voice. (paper)
Sun, Shuping; Jiang, Zhongwei; Wang, Haibin; Fang, Yu
2014-05-01
This paper proposes a novel automatic method for the moment segmentation and peak detection analysis of heart sound (HS) pattern, with special attention to the characteristics of the envelopes of HS and considering the properties of the Hilbert transform (HT). The moment segmentation and peak location are accomplished in two steps. First, by applying the Viola integral waveform method in the time domain, the envelope (E(T)) of the HS signal is obtained with an emphasis on the first heart sound (S1) and the second heart sound (S2). Then, based on the characteristics of the E(T) and the properties of the HT of the convex and concave functions, a novel method, the short-time modified Hilbert transform (STMHT), is proposed to automatically locate the moment segmentation and peak points for the HS by the zero crossing points of the STMHT. A fast algorithm for calculating the STMHT of E(T) can be expressed by multiplying the E(T) by an equivalent window (W(E)). According to the range of heart beats and based on the numerical experiments and the important parameters of the STMHT, a moving window width of N=1s is validated for locating the moment segmentation and peak points for HS. The proposed moment segmentation and peak location procedure method is validated by sounds from Michigan HS database and sounds from clinical heart diseases, such as a ventricular septal defect (VSD), an aortic septal defect (ASD), Tetralogy of Fallot (TOF), rheumatic heart disease (RHD), and so on. As a result, for the sounds where S2 can be separated from S1, the average accuracies achieved for the peak of S1 (AP₁), the peak of S2 (AP₂), the moment segmentation points from S1 to S2 (AT₁₂) and the cardiac cycle (ACC) are 98.53%, 98.31% and 98.36% and 97.37%, respectively. For the sounds where S1 cannot be separated from S2, the average accuracies achieved for the peak of S1 and S2 (AP₁₂) and the cardiac cycle ACC are 100% and 96.69%. Copyright © 2014 Elsevier Ireland Ltd. All
International Nuclear Information System (INIS)
Iwamoto, Hiroyuki; Tanaka, Nobuo; Hill, Simon G
2010-01-01
This paper concerns the active vibration control of a rectangular panel using smart sensors from the viewpoint of an active wave control theory. The objective of this paper is to present a new type of filter which enables the measurement of the wave amplitude of a rectangular panel in real time for the application of an adaptive feedforward control system which inactivates vibration modes. Firstly, a novel wave filtering method using smart PVDF sensors is proposed. It is found that the shaping function of smart sensors is a complex function. To realize the smart sensor in a practical situation, a Hilbert transformer is utilized to implement a phase shifter of 90° for broadband frequencies. Then, from the viewpoint of a numerical analysis, the characteristics of the proposed wave filter and the performance of the adaptive feedforward control system using the wave filter are discussed. Finally, experiments implementing the active wave control theory which uses the proposed wave filter are conducted, demonstrating the validity of the proposed method in suppressing the vibration of a rectangular panel
International Nuclear Information System (INIS)
Englman, R.
2016-01-01
The recent phase shift data of Takada et al. (Phys. Rev. Lett. 113 (2014) 126601) for a two level system are reconstructed from their current intensity curves by the method of Hilbert transform, for which the underlying Physics is the principle of causality. An introductory algebraic model illustrates pedagogically the working of the method and leads to newly derived relationships involving phenomenological parameters, in particular for the sign of the phase slope between the resonance peaks. While the parametrization of the experimental current intensity data in terms of a few model parameters shows only a qualitative agreement for the phase shift, due to the strong impact of small, detailed variations in the experimental intensity curve on the phase behavior, the numerical Hilbert transform yields a satisfactory reproduction of the phase.
Directory of Open Access Journals (Sweden)
Wei-Ren Chuang
2010-01-01
Full Text Available Effects of continuous low-dose epidural bupivacaine (0.05-0.1% infusion on the Doppler velocimetry for labor analgesia have been well documented. The aim of this study was to monitor the activity of the autonomic nervous system (ANS for women in labor based on Hilbert Huang transform (HHT, which performs signal processing for nonlinear systems, such as human cardiac systems. Thirteen pregnant women were included in the experimental group for labor analgesia. They received continuous epidural bupivacaine 0.075% infusion. The normal-to-normal intervals (NN-interval were downloaded from an ECG holter. Another 20 pregnant women in non-anesthesia labor (average gestation age was 38.6 weeks were included in the comparison group. In this study, HHT was used to decompose components of ECG signals, which reflect three different frequency bands of a person's heart rate spectrum (viz. high frequency (HF, low frequency (LF and very low frequency (VLF. It was found that the change of energy in subjects without anesthesia was more active than that with continuous epidural bupivacaine 0.075% infusion. The energy values of the experimental group (i.e., labor analgesia of HF and LF of ANS activities were significantly lower (P < 0.05 than the values of the comparison group (viz. labor without analgesia, but the trend of energy ratio of LF/HF was opposite. In conclusion, the sympathetic and parasympathetic components of ANS are all suppressed by continuous low-dose epidural bupivacaine 0.075% infusion, but parasympathetic power is suppressed more than sympathetic power.
Lax Pairs for Discrete Integrable Equations via Darboux Transformations
International Nuclear Information System (INIS)
Cao Ce-Wen; Zhang Guang-Yao
2012-01-01
A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)
Directory of Open Access Journals (Sweden)
Morteza Behnam
2015-08-01
Full Text Available Seizure detection using brain signal (EEG analysis is the important clinical methods in drug therapy and the decisions before brain surgery. In this paper, after signal conditioning using suitable filtering, the Gamma frequency band has been extracted and the other brain rhythms, ambient noises and the other bio-signal are canceled. Then, the wavelet transform of brain signal and the map of wavelet transform in multi levels are computed. By dividing the color map to different epochs, the histogram of each sub-image is obtained and the statistics of it based on statistical momentums and Negentropy values are calculated. Statistical feature vector using Principle Component Analysis (PCA is reduced to one dimension. By EMD algorithm and sifting procedure for analyzing the data by Intrinsic Mode Function (IMF and computing the residues of brain signal using spectrum of Hilbert transform and Hilbert – Huang spectrum forming, one spatial feature based on the Euclidian distance for signal classification is obtained. By K-Nearest Neighbor (KNN classifier and by considering the optimal neighbor parameter, EEG signals are classified in two classes, seizure and non-seizure signal, with the rate of accuracy 76.54% and with variance of error 0.3685 in the different tests.
Directory of Open Access Journals (Sweden)
Wenzhu Huang
2015-04-01
Full Text Available Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs. However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs. The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.
Pair frames in Hilbert -modules
Indian Academy of Sciences (India)
M Mirzaee Azandaryani
2018-04-24
Apr 24, 2018 ... inner product 〈., .〉 : E × E −→ 2 such that. (i) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉, for each α, β ∈ C and x, y, z ∈ E;. (ii) 〈ax, y〉 = a〈x, y〉, for each a ...
Plymen, Roger; Robinson, Paul
1995-01-01
Infinite-dimensional Clifford algebras and their Fock representations originated in the quantum mechanical study of electrons. In this book, the authors give a definitive account of the various Clifford algebras over a real Hilbert space and of their Fock representations. A careful consideration of the latter's transformation properties under Bogoliubov automorphisms leads to the restricted orthogonal group. From there, a study of inner Bogoliubov automorphisms enables the authors to construct infinite-dimensional spin groups. Apart from assuming a basic background in functional analysis and operator algebras, the presentation is self-contained with complete proofs, many of which offer a fresh perspective on the subject.
Continuous unitary transformation approach to pairing interactions in statistical physics
Directory of Open Access Journals (Sweden)
T.Domański
2008-06-01
Full Text Available We apply the flow equation method to the study of the fermion systems with pairing interactions which lead to the BCS instability signalled by the appearance of the off-diagonal order parameter. For this purpose we rederive the continuous Bogoliubov transformation in a fashion of renormalization group procedure where the low and high energy sectors are treated subsequently. We further generalize this procedure to the case of fermions interacting with the discrete boson mode. Andreev-type interactions are responsible for developing a gap in the excitation spectrum. However, the long-range coherence is destroyed due to strong quantum fluctuations.
International Nuclear Information System (INIS)
Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.
2012-01-01
The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI
Frames and bases in tensor products of Hilbert spaces and Hilbert C ...
Indian Academy of Sciences (India)
[14] Heil C E and Walnut D F, Continuous and discrete wavelet transforms, SIAM Review 31. (1989) 628–666. [15] Khosravi A and Asgari M S, Frames and bases in tensor product of Hilbert spaces, Int. J. Math. 4(6) (2003) 527–538. [16] Lance E C, Hilbert C. ∗. -modules – a toolkit for operator algebraists, London Math. Soc.
Frames in super Hilbert modules
Directory of Open Access Journals (Sweden)
Mehdi Rashidi-Kouchi
2018-01-01
Full Text Available In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
Directory of Open Access Journals (Sweden)
Rui Guo
2015-01-01
Full Text Available Objective. This research provides objective and quantitative parameters of the traditional Chinese medicine (TCM pulse conditions for distinguishing between patients with the coronary heart disease (CHD and normal people by using the proposed classification approach based on Hilbert-Huang transform (HHT and random forest. Methods. The energy and the sample entropy features were extracted by applying the HHT to TCM pulse by treating these pulse signals as time series. By using the random forest classifier, the extracted two types of features and their combination were, respectively, used as input data to establish classification model. Results. Statistical results showed that there were significant differences in the pulse energy and sample entropy between the CHD group and the normal group. Moreover, the energy features, sample entropy features, and their combination were inputted as pulse feature vectors; the corresponding average recognition rates were 84%, 76.35%, and 90.21%, respectively. Conclusion. The proposed approach could be appropriately used to analyze pulses of patients with CHD, which can lay a foundation for research on objective and quantitative criteria on disease diagnosis or Zheng differentiation.
Wang, Yiqin; Yan, Hanxia; Yan, Jianjun; Yuan, Fengyin; Xu, Zhaoxia; Liu, Guoping; Xu, Wenjie
2015-01-01
Objective. This research provides objective and quantitative parameters of the traditional Chinese medicine (TCM) pulse conditions for distinguishing between patients with the coronary heart disease (CHD) and normal people by using the proposed classification approach based on Hilbert-Huang transform (HHT) and random forest. Methods. The energy and the sample entropy features were extracted by applying the HHT to TCM pulse by treating these pulse signals as time series. By using the random forest classifier, the extracted two types of features and their combination were, respectively, used as input data to establish classification model. Results. Statistical results showed that there were significant differences in the pulse energy and sample entropy between the CHD group and the normal group. Moreover, the energy features, sample entropy features, and their combination were inputted as pulse feature vectors; the corresponding average recognition rates were 84%, 76.35%, and 90.21%, respectively. Conclusion. The proposed approach could be appropriately used to analyze pulses of patients with CHD, which can lay a foundation for research on objective and quantitative criteria on disease diagnosis or Zheng differentiation. PMID:26180536
International Nuclear Information System (INIS)
Roulier, Remy; Humeau, Anne; Flatley, Thomas P; Abraham, Pierre
2005-01-01
A significant transient increase in laser Doppler flowmetry (LDF) signals is observed in response to a local and progressive cutaneous pressure application on healthy subjects. This reflex may be impaired in diabetic patients. The work presents a comparison between two signal processing methods that provide a clarification of this phenomenon. Analyses by the scalogram and the Hilbert-Huang transform (HHT) of LDF signals recorded at rest and during a local and progressive cutaneous pressure application are performed on healthy and type 1 diabetic subjects. Three frequency bands, corresponding to myogenic, neurogenic and endothelial related metabolic activities, are studied at different time intervals in order to take into account the dynamics of the phenomenon. The results show that both the scalogram and the HHT methods lead to the same conclusions concerning the comparisons of the myogenic, neurogenic and endothelial related metabolic activities-during the progressive pressure and at rest-in healthy and diabetic subjects. However, the HHT shows more details that may be obscured by the scalogram. Indeed, the non-locally adaptative limitations of the scalogram can remove some definition from the data. These results may improve knowledge on the above-mentioned reflex as well as on non-stationary biomedical signal processing methods
Directory of Open Access Journals (Sweden)
Juwei Zhang
2017-03-01
Full Text Available Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance.
Directory of Open Access Journals (Sweden)
Xiao Yu
2015-11-01
Full Text Available Because roller element bearings (REBs failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC to select salient features from the marginal spectrum of vibration signals by Hilbert–Huang Transform (HHT. In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS into window spectrums, following which Rand Index (RI criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs. Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines. The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU. The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500–800 and a m range of 50–300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault
Image reconstruction from pairs of Fourier-transform magnitude
International Nuclear Information System (INIS)
Hunt, B.R.; Overman, T.L.; Gough, P.
1998-01-01
The retrieval of phase information from only the magnitude of the Fourier transform of a signal remains an important problem for many applications. We present an algorithm for phase retrieval when there exist two related sets of Fourier-transform magnitude data. The data are assumed to come from a single object observed in two different polarizations through a distorting medium, so the phase component of the Fourier transform of the object is corrupted. Phase retrieval is accomplished by minimization of a suitable criterion function, which can take three different forms. copyright 1998 Optical Society of America
Nested Hilbert schemes on surfaces: Virtual fundamental class
DEFF Research Database (Denmark)
Gholampour, Amin; Sheshmani, Artan; Yau, Shing-Tung
We construct natural virtual fundamental classes for nested Hilbert schemes on a nonsingular projective surface S. This allows us to define new invariants of S that recover some of the known important cases such as Poincare invariants of Durr-Kabanov-Okonek and the stable pair invariants of Kool......-Thomas. In the case of the nested Hilbert scheme of points, we can express these invariants in terms of integrals over the products of Hilbert scheme of points on S, and relate them to the vertex operator formulas found by Carlsson-Okounkov. The virtual fundamental classes of the nested Hilbert schemes play a crucial...
2013-01-01
David Hilbert was one of the great mathematicians who expounded the centrality of their subject in human thought. In this collection of essays, Wilfried Sieg frames Hilbert's foundational work, from 1890 to 1939, in a comprehensive way and integrates it with modern proof theoretic investigations. Ten essays are devoted to the analysis of classical as well as modern proof theory; three papers on the mathematical roots of Hilbert's work precede the analytical core, and three final essays exploit an open philosophical horizon for reflection on the nature of mathematics in the 21st century.
Means of Hilbert space operators
Hiai, Fumio
2003-01-01
The monograph is devoted to a systematic study of means of Hilbert space operators by a unified method based on the theory of double integral transformations and Peller's characterization of Schur multipliers. General properties on means of operators such as comparison results, norm estimates and convergence criteria are established. After some general theory, special investigations are focused on three one-parameter families of A-L-G (arithmetic-logarithmic-geometric) interpolation means, Heinz-type means and binomial means. In particular, norm continuity in the parameter is examined for such means. Some necessary technical results are collected as appendices.
Lax-pair operators for squared eigenfunctions in the inverse scattering transformations
International Nuclear Information System (INIS)
Iino, Kazuhiro; Ichikawa, Yoshihiko.
1982-05-01
Modification of the algorithm of Chen, Lee and Liu enables us to construct alternative Lax-pair operators for the Korteweg-de Vries equation and the modified Korteweg-de Vries equation. These Lax-pair operators stand as the Lax-pair operators for the squared eigenfunction and the sum of squared eigenfunctions of the Ablowitz-Kaup-Newell-Segur inverse scattering transformation for these celebrated nonlinear evolution equations. (author)
Alternative structures and bi-Hamiltonian systems on a Hilbert space
International Nuclear Information System (INIS)
Marmo, G; Scolarici, G; Simoni, A; Ventriglia, F
2005-01-01
We discuss transformations generated by dynamical quantum systems which are bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on an infinite-dimensional complex Hilbert space. We introduce the notion of Hermitian structures in generic relative position. We provide a few necessary and sufficient conditions for two Hermitian structures to be in generic relative position to better illustrate the relevance of this notion. The group of bi-unitary transformations is considered in both the generic and the non-generic case. Finally, we generalize the analysis to real Hilbert spaces and extend to infinite dimensions results already available in the framework of finite-dimensional linear bi-Hamiltonian systems
Yuji, NAKAWAKI; Azuma, TANAKA; Kazuhiko, OZAKI; Division of Physics and Mathematics, Faculty of Engineering Setsunan University; Junior College of Osaka Institute of Technology; Faculty of General Education, Osaka Institute of Technology
1994-01-01
Gauge Equivalence of the A_3=0 (axial) gauge to the Coulomb gauge is directly verified in QED. For that purpose a pair of conjugate zero-norm fields are introduced. This enables us to construct a canonical formulation in the axial gauge embedded in the indefinite metric Hilbert space in such a way that the Feynman rules are not altered. In the indefinite metric Hilbert space we can implement a gauge transformation, which otherwise has to be carried out only by hand, as main parts of a canonic...
Analysis of errors in spectral reconstruction with a Laplace transform pair model
International Nuclear Information System (INIS)
Archer, B.R.; Bushong, S.C.
1985-01-01
The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)
Potoček, Václav; Miatto, Filippo M; Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Liapis, Andreas C; Oi, Daniel K L; Boyd, Robert W; Jeffers, John
2015-10-16
In 1924 David Hilbert conceived a paradoxical tale involving a hotel with an infinite number of rooms to illustrate some aspects of the mathematical notion of "infinity." In continuous-variable quantum mechanics we routinely make use of infinite state spaces: here we show that such a theoretical apparatus can accommodate an analog of Hilbert's hotel paradox. We devise a protocol that, mimicking what happens to the guests of the hotel, maps the amplitudes of an infinite eigenbasis to twice their original quantum number in a coherent and deterministic manner, producing infinitely many unoccupied levels in the process. We demonstrate the feasibility of the protocol by experimentally realizing it on the orbital angular momentum of a paraxial field. This new non-Gaussian operation may be exploited, for example, for enhancing the sensitivity of NOON states, for increasing the capacity of a channel, or for multiplexing multiple channels into a single one.
Ab initio pair potentials for FCC metals: An application of the method of Moebius transform
International Nuclear Information System (INIS)
Mookerjee, A.; Chen Nanxian; Kumar, V.; Satter, M.A.
1991-10-01
We use the method of Moebius transform introduced by one of us (Chen, Phys. Rev. Lett. 64, 1193 (1990)) to obtain pair potentials for fcc metals from first principles total energy calculations. The derivation is exact for radial potentials and it converges much faster than the earlier reported method of Carlsson-Gelatt-Ehrenreich. We have tested this formulation for Cu using the tight binding representation of the linear muffin tin orbital method. Our results agree with those obtained by Carlsson et al. and qualitatively with the other Morse-type pair potentials derived from effective medium theories. (author). 18 refs, 3 figs, 3 tabs
Application of a Laplace transform pair model for high-energy x-ray spectral reconstruction.
Archer, B R; Almond, P R; Wagner, L K
1985-01-01
A Laplace transform pair model, previously shown to accurately reconstruct x-ray spectra at diagnostic energies, has been applied to megavoltage energy beams. The inverse Laplace transforms of 2-, 6-, and 25-MV attenuation curves were evaluated to determine the energy spectra of these beams. The 2-MV data indicate that the model can reliably reconstruct spectra in the low megavoltage range. Experimental limitations in acquiring the 6-MV transmission data demonstrate the sensitivity of the model to systematic experimental error. The 25-MV data result in a physically realistic approximation of the present spectrum.
Grekova, A. D.; Gordeeva, L. G.
2018-04-01
Adsorption heat transformation is an energy and environment saving technology for cooling/heating driven by renewable energy sources. Each specific cycle of adsorption heat transformer (AHT) makes particular requirements to the properties of the sorption material, depending on the climatic zone in which the AHT is used, the type of application (cooling, heating and heat storage), and energy source used for regenerating the sorbent. Therefore, the effective operation of AHT can be realized only if the working pair "adsorbent-adsorbate" is intelligently selected in accordance with the requirements of a particular working cycle. One of the most important factors influencing the choice of a working pair is the climatic conditions in which the AHT will operate. In this paper, the climatic conditions of various regions of Russian Federation (RF) were analyzed. For each considered zone, the boundary potentials of Polanyi corresponding to different AHT cycles are calculated. The sorption equilibrium data of various sorbents with water and methanol presented in the literature are summarized, and characteristic sorption curves are plotted in coordinates "sorption - the Polanyi potential". The characteristic adsorption curves found are approximated by analytic expressions, which allow the analysis of working pairs applicability for different AHT cycles. The recommendations of using the discussed sorption pairs under conditions of determined climatic zones are given for the AHT applications.
Hilbert-type inequalities for Hilbert space operators | Krnic ...
African Journals Online (AJOL)
In this paper we establish a general form of the Hilbert inequality for positive invertible operators on a Hilbert space. Special emphasis is given to such inequalities with homogeneous kernels. In some general cases the best possible constant factors are also derived. Finally, we obtain the improvement of previously deduced ...
Frames and bases in tensor products of Hilbert spaces and Hilbert C ...
Indian Academy of Sciences (India)
In this article, we study tensor product of Hilbert *-modules and Hilbert spaces. We show that if is a Hilbert -module and is a Hilbert -module, then tensor product of frames (orthonormal bases) for and produce frames (orthonormal bases) for Hilbert A ⊗ B -module E ⊗ F , and we get more results. For Hilbert ...
Diagonalization of Bounded Linear Operators on Separable Quaternionic Hilbert Space
International Nuclear Information System (INIS)
Feng Youling; Cao, Yang; Wang Haijun
2012-01-01
By using the representation of its complex-conjugate pairs, we have investigated the diagonalization of a bounded linear operator on separable infinite-dimensional right quaternionic Hilbert space. The sufficient condition for diagonalizability of quaternionic operators is derived. The result is applied to anti-Hermitian operators, which is essential for solving Schroedinger equation in quaternionic quantum mechanics.
Coherent states on Hilbert modules
International Nuclear Information System (INIS)
Ali, S Twareque; Bhattacharyya, T; Roy, S S
2011-01-01
We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.
Topological freeness for Hilbert bimodules
DEFF Research Database (Denmark)
Kwasniewski, Bartosz
2014-01-01
It is shown that topological freeness of Rieffel’s induced representation functor implies that any C*-algebra generated by a faithful covariant representation of a Hilbert bimodule X over a C*-algebra A is canonically isomorphic to the crossed product A ⋊ X ℤ. An ideal lattice description...
International Nuclear Information System (INIS)
Exner, P.; Kolerov, G.I.
1980-01-01
A Hilbert space of paths, the elements of which are determined by trigonometric series, was proposed and used recently by Truman. This space is shown to consist precisely of all absolutely continuous paths ending in the origin with square-integrable derivatives
Teleportation schemes in infinite dimensional Hilbert spaces
International Nuclear Information System (INIS)
Fichtner, Karl-Heinz; Freudenberg, Wolfgang; Ohya, Masanori
2005-01-01
The success of quantum mechanics is due to the discovery that nature is described in infinite dimension Hilbert spaces, so that it is desirable to demonstrate the quantum teleportation process in a certain infinite dimensional Hilbert space. We describe the teleportation process in an infinite dimensional Hilbert space by giving simple examples
Von Neuman representations on self-dual Hilbert W* moduli
International Nuclear Information System (INIS)
Frank, M.
1987-01-01
Von Neumann algebras M of bounded operators on self-dual Hilbert W* moduli H possessing a cyclic-separating element x-bar in H are considered. The close relation of them to certain real subspaces of H is established. Under the supposition that the underlying W*-algebra is commutative, a Tomita-Takesaki type theorem is stated. The natural cone in H arising from the pair (M, x-bar) is investigated and its properties are obtained
Liquid identification by Hilbert spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lyatti, M; Divin, Y; Poppe, U; Urban, K, E-mail: M.Lyatti@fz-juelich.d, E-mail: Y.Divin@fz-juelich.d [Forschungszentrum Juelich, 52425 Juelich (Germany)
2009-11-15
Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- T{sub c} Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.
Liquid identification by Hilbert spectroscopy
Lyatti, M.; Divin, Y.; Poppe, U.; Urban, K.
2009-11-01
Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- Tc Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.
Liquid identification by Hilbert spectroscopy
International Nuclear Information System (INIS)
Lyatti, M; Divin, Y; Poppe, U; Urban, K
2009-01-01
Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- T c Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.
Weaving Hilbert space fusion frames
Neyshaburi, Fahimeh Arabyani; Arefijamaal, Ali Akbar
2018-01-01
A new notion in frame theory, so called weaving frames has been recently introduced to deal with some problems in signal processing and wireless sensor networks. Also, fusion frames are an important extension of frames, used in many areas especially for wireless sensor networks. In this paper, we survey the notion of weaving Hilbert space fusion frames. This concept can be had potential applications in wireless sensor networks which require distributed processing using different fusion frames...
International Nuclear Information System (INIS)
Al Khawaja, U.
2010-01-01
We derive the integrability conditions of nonautonomous nonlinear Schroedinger equations using the Lax pair and similarity transformation methods. We present a comparative analysis of these integrability conditions with those of the Painleve method. We show that while the Painleve integrability conditions restrict the dispersion, nonlinearity, and dissipation/gain coefficients to be space independent and the external potential to be only a quadratic function of position, the Lax Pair and the similarity transformation methods allow for space-dependent coefficients and an external potential that is not restricted to the quadratic form. The integrability conditions of the Painleve method are retrieved as a special case of our general integrability conditions. We also derive the integrability conditions of nonautonomous nonlinear Schroedinger equations for two- and three-spacial dimensions.
Fourier transform infrared spectroscopy of azide and cyanate ion pairs in AOT reverse micelles
Owrutsky, Jeffrey C.; Pomfret, Michael B.; Barton, David J.; Kidwell, David A.
2008-07-01
Evidence for ion pair formation in aqueous bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles (RMs) was obtained from infrared spectra of azide and cyanate with Li+, Na+, K+, and NH4+ counterions. The anions' antisymmetric stretching bands near 2000 cm-1 are shifted to higher frequency (blueshifted) in LiAOT and to a lesser extent in NaAOT, but they are very similar to those in bulk water with K+ and NH4+ as the counterions. The shifts are largest for low values of wo=[water]/[AOT] and approach the bulk value with increasing wo. The blueshifts are attributed to ion pairing between the anions and the counterions. This interpretation is reinforced by the similar trend (Li+>Na+>K+) for producing contact ion pairs with the metal cations in bulk dimethyl sulfoxide (DMSO) solutions. We find no evidence of ion pairs being formed in NH4AOT RMs, whereas ammonium does form ion pairs with azide and cyanate in bulk DMSO. Studies are also reported for the anions in formamide-containing AOT RMs, in which blueshifts and ion pair formation are observed more than in the aqueous RMs. Ion pairs are preferentially formed in confined RM systems, consistent with the well established ideas that RMs exhibit reduced polarity and a disrupted hydrogen bonding network compared to bulk water and that ion-specific effects are involved in mediating the structure of species at interfaces.
Exponential Hilbert series of equivariant embeddings
Johnson, Wayne A.
2018-01-01
In this article, we study properties of the exponential Hilbert series of a $G$-equivariant projective variety, where $G$ is a semisimple, simply-connected complex linear algebraic group. We prove a relationship between the exponential Hilbert series and the degree and dimension of the variety. We then prove a combinatorial identity for the coefficients of the polynomial representing the exponential Hilbert series. This formula is used in examples to prove further combinatorial identities inv...
Clustering in Hilbert simplex geometry
Nielsen, Frank
2017-04-03
Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.
Structure of Hilbert space operators
Jiang, Chunlan
2006-01-01
This book exposes the internal structure of non-self-adjoint operators acting on complex separable infinite dimensional Hilbert space, by analyzing and studying the commutant of operators. A unique presentation of the theorem of Cowen-Douglas operators is given. The authors take the strongly irreducible operator as a basic model, and find complete similarity invariants of Cowen-Douglas operators by using K -theory, complex geometry and operator algebra tools. Sample Chapter(s). Chapter 1: Background (153 KB). Contents: Jordan Standard Theorem and K 0 -Group; Approximate Jordan Theorem of Opera
Rigged Hilbert spaces for chaotic dynamical systems
International Nuclear Information System (INIS)
Suchanecki, Z.; Antoniou, I.; Bandtlow, O.F.
1996-01-01
We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps. copyright 1996 American Institute of Physics
Quantum theory in complex Hilbert space
International Nuclear Information System (INIS)
Sharma, C.S.
1988-01-01
The theory of complexification of a real Hilbert space as developed by the author is scrutinized with the aim of explaining why quantum theory should be done in a complex Hilbert space in preference to real Hilbert space. It is suggested that, in order to describe periodic motions in stationary states of a quantum system, the mathematical object modelling a state of a system should have enough points in it to be able to describe explicit time dependence of a periodic motion without affecting the probability distributions of observables. Heuristic evidence for such an assumption comes from Dirac's theory of interaction between radiation and matter. If the assumption is adopted as a requirement on the mathematical model for a quantum system, then a real Hilbert space is ruled out in favour of a complex Hilbert space for a possible model for such a system
Friedrichs systems in a Hilbert space framework: Solvability and multiplicity
Antonić, N.; Erceg, M.; Michelangeli, A.
2017-12-01
The Friedrichs (1958) theory of positive symmetric systems of first order partial differential equations encompasses many standard equations of mathematical physics, irrespective of their type. This theory was recast in an abstract Hilbert space setting by Ern, Guermond and Caplain (2007), and by Antonić and Burazin (2010). In this work we make a further step, presenting a purely operator-theoretic description of abstract Friedrichs systems, and proving that any pair of abstract Friedrichs operators admits bijective extensions with a signed boundary map. Moreover, we provide sufficient and necessary conditions for existence of infinitely many such pairs of spaces, and by the universal operator extension theory (Grubb, 1968) we get a complete identification of all such pairs, which we illustrate on two concrete one-dimensional examples.
Extensions of Bessel sequences to dual pairs of frames
DEFF Research Database (Denmark)
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
2013-01-01
Tight frames in Hilbert spaces have been studied intensively for the past years. In this paper we demonstrate that it often is an advantage to use pairs of dual frames rather than tight frames. We show that in any separable Hilbert space, any pairs of Bessel sequences can be extended to a pair of...... be extended to a pair of dual frames. © 2012 Elsevier Inc. All rights reserved....
A constructive presentation of rigged Hilbert spaces
International Nuclear Information System (INIS)
Celeghini, Enrico
2015-01-01
We construct a rigged Hilbert space for the square integrable functions on the line L2(R) adding to the generators of the Weyl-Heisenberg algebra a new discrete operator, related to the degree of the Hermite polynomials. All together, continuous and discrete operators, constitute the generators of the projective algebra io(2). L 2 (R) and the vector space of the line R are shown to be isomorphic representations of such an algebra and, as both these representations are irreducible, all operators defined on the rigged Hilbert spaces L 2 (R) or R are shown to belong to the universal enveloping algebra of io(2). The procedure can be extended to orthogonal and pseudo-orthogonal spaces of arbitrary dimension by tensorialization.Circumventing all formal problems the paper proposes a kind of toy model, well defined from a mathematical point of view, of rigged Hilbert spaces where, in contrast with the Hilbert spaces, operators with different cardinality are allowed. (paper)
Hilbert space methods in partial differential equations
Showalter, Ralph E
1994-01-01
This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.
Theory of linear operators in Hilbert space
Akhiezer, N I
1993-01-01
This classic textbook by two mathematicians from the USSR's prestigious Kharkov Mathematics Institute introduces linear operators in Hilbert space, and presents in detail the geometry of Hilbert space and the spectral theory of unitary and self-adjoint operators. It is directed to students at graduate and advanced undergraduate levels, but because of the exceptional clarity of its theoretical presentation and the inclusion of results obtained by Soviet mathematicians, it should prove invaluable for every mathematician and physicist. 1961, 1963 edition.
A Proof of the Hilbert-Smith Conjecture
McAuley, Louis F.
2001-01-01
The Hilbert-Smith Conjecture states that if G is a locally compact group which acts effectively on a connected manifold as a topological transformation group, then G is a Lie group. A rather straightforward proof of this conjecture is given. The motivation is work of Cernavskii (``Finite-to-one mappings of manifolds'', Trans. of Math. Sk. 65 (107), 1964.) His work is generalized to the orbit map of an effective action of a p-adic group on compact connected n-manifolds with the aid of some new...
Explicit signal to noise ratio in reproducing kernel Hilbert spaces
DEFF Research Database (Denmark)
Gomez-Chova, Luis; Nielsen, Allan Aasbjerg; Camps-Valls, Gustavo
2011-01-01
This paper introduces a nonlinear feature extraction method based on kernels for remote sensing data analysis. The proposed approach is based on the minimum noise fraction (MNF) transform, which maximizes the signal variance while also minimizing the estimated noise variance. We here propose...... an alternative kernel MNF (KMNF) in which the noise is explicitly estimated in the reproducing kernel Hilbert space. This enables KMNF dealing with non-linear relations between the noise and the signal features jointly. Results show that the proposed KMNF provides the most noise-free features when confronted...
International Nuclear Information System (INIS)
Zhang Xiaodong; Hu Dapeng
2012-01-01
The performance simulation of a single-stage absorption heat transformer using a new working pair composed of ionic liquids, 1-ethyl-3-methylimidazolium dimethylphosphate, and water (H 2 O + [EMIM][DMP]), was performed based on the thermodynamic properties of the new working pair and on the mass and energy balance for each component of the system. In order to evaluate the new working pair, the simulation results were compared with those of aqueous solution of lithium bromide (H 2 O + LiBr), Trifluoroethanol (TFE) + tetraethylenglycol dimethylether (E181). The results indicate that when generation, evaporation, condensing and absorption temperatures are 90 °C, 90 °C, 35 °C and 130 °C, the coefficients of performance of the single-stage absorption heat transformer using H 2 O + LiBr, H 2 O + [EMIM][DMP] and TFE + E181 as working pairs will reach 0.494, 0.481 and 0.458 respectively. And the corresponding exergy efficiency will reach 0.64, 0.62 and 0.59, respectively. Meanwhile the available heat outputs for per unit mass of refrigerant are 2466 kJ/kg, 2344 kJ/kg and 311 kJ/kg, respectively. The above excellent cycle performance together with the advantages of negligible vapor pressure, no crystallization and more weak corrosion tendency to iron-steel materials may make the new working pair better suited for the industrial absorption heat transformer. - Highlights: ► The cycle performance of the single-stage absorption heat transformer was simulated. ► Water and 1-ethyl-3-methylimidazolium dimethylphosphate was used as new working pair. ► Water and 1-ethyl-3-methylimidazolium dimethylphosphate are entirely miscible. ► The COP and exergy efficiency for this new working pairs were 0.481 and 0.62. ► The new working pairs has potential application to absorption heat transformer.
Trusiak, Maciej; Patorski, Krzysztof
2015-02-23
Gram-Schmidt orthonormalization is a very fast and efficient method for the fringe pattern phase demodulation. It requires only two arbitrarily phase-shifted frames. Images are treated as vectors and upon orthogonal projection of one fringe vector onto another the quadrature fringe pattern pair is obtained. Orthonormalization process is very susceptible, however, to noise, uneven background and amplitude modulation fluctuations. The Hilbert-Huang transform based preprocessing is proposed to enhance fringe pattern phase demodulation by filtering out the spurious noise and background illumination and performing fringe normalization. The Gram-Schmidt orthonormalization process error analysis is provided and its filtering-expanded capabilities are corroborated analyzing DSPI fringes and performing amplitude demodulation of Bessel fringes. Synthetic and experimental fringe pattern analyses presented to validate the proposed technique show that it compares favorably with other pre-filtering schemes, i.e., Gaussian filtering and continuous wavelet transform.
Applications of Hilbert Spectral Analysis for Speech and Sound Signals
Huang, Norden E.
2003-01-01
A new method for analyzing nonlinear and nonstationary data has been developed, and the natural applications are to speech and sound signals. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time, which give sharp identifications of imbedded structures. This method invention can be used to process all acoustic signals. Specifically, it can process the speech signals for Speech synthesis, Speaker identification and verification, Speech recognition, and Sound signal enhancement and filtering. Additionally, as the acoustical signals from machinery are essentially the way the machines are talking to us. Therefore, the acoustical signals, from the machines, either from sound through air or vibration on the machines, can tell us the operating conditions of the machines. Thus, we can use the acoustic signal to diagnosis the problems of machines.
The role of the rigged Hilbert space in quantum mechanics
International Nuclear Information System (INIS)
Madrid, Rafael de la
2005-01-01
There is compelling evidence that, when a continuous spectrum is present, the natural mathematical setting for quantum mechanics is the rigged Hilbert space rather than just the Hilbert space. In particular, Dirac's braket formalism is fully implemented by the rigged Hilbert space rather than just by the Hilbert space. In this paper, we provide a pedestrian introduction to the role the rigged Hilbert space plays in quantum mechanics, by way of a simple, exactly solvable example. The procedure will be constructive and based on a recent publication. We also provide a thorough discussion on the physical significance of the rigged Hilbert space
Transverse entanglement migration in Hilbert space
International Nuclear Information System (INIS)
Chan, K. W.; Torres, J. P.; Eberly, J. H.
2007-01-01
We show that, although the amount of mutual entanglement of photons propagating in free space is fixed, the type of correlations between the photons that determine the entanglement can dramatically change during propagation. We show that this amounts to a migration of entanglement in Hilbert space, rather than real space. For the case of spontaneous parametric down-conversion, the migration of entanglement in transverse coordinates takes place from modulus to phase of the biphoton state and back again. We propose an experiment to observe this migration in Hilbert space and to determine the full entanglement
Spectral Theory of Operators on Hilbert Spaces
Kubrusly, Carlos S
2012-01-01
This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Space is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathemat
Hilbert schemes of points and Heisenberg algebras
International Nuclear Information System (INIS)
Ellingsrud, G.; Goettsche, L.
2000-01-01
Let X [n] be the Hilbert scheme of n points on a smooth projective surface X over the complex numbers. In these lectures we describe the action of the Heisenberg algebra on the direct sum of the cohomologies of all the X [n] , which has been constructed by Nakajima. In the second half of the lectures we study the relation of the Heisenberg algebra action and the ring structures of the cohomologies of the X [n] , following recent work of Lehn. In particular we study the Chern and Segre classes of tautological vector bundles on the Hilbert schemes X [n] . (author)
nth roots with Hilbert-Schmidt defect operator of normal contractions
International Nuclear Information System (INIS)
Duggal, B.P.
1992-08-01
Let T be a normal contraction (on a complex separable Hilbert space H into itself) with an nth root A such that the defect operator D A =(1-A*A) 1/2 is of the Hilbert-Schmidt class C 2 . Then either A is normal or A is similar to a normal contraction. In the case in which T is hyponormal, A n =T and D A is an element of C 2 , A is a ''coupling'' of a contraction similar to a normal contraction and a contraction which is the quasi-affine transform of a unilateral shift. These results are applied to prove a (Putnam-Fuglede type) commutatively theorem for operator valued roots of commutative analytic functions and hyponormal contractions T which have an nth root with Hilbert-Schmidt defect operator. 23 refs
Schmitz, Gunnar; Hättig, Christof
2016-12-21
We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.
Quantum Hilbert matrices and orthogonal polynomials
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Berg, Christian
2009-01-01
Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...
Hilbert's Grand Hotel with a series twist
Wijeratne, Chanakya; Mamolo, Ami; Zazkis, Rina
2014-08-01
This paper presents a new twist on a familiar paradox, linking seemingly disparate ideas under one roof. Hilbert's Grand Hotel, a paradox which addresses infinite set comparisons is adapted and extended to incorporate ideas from calculus - namely infinite series. We present and resolve several variations, and invite the reader to explore his or her own variations.
Reproducing kernel Hilbert spaces of Gaussian priors
Vaart, van der A.W.; Zanten, van J.H.; Clarke, B.; Ghosal, S.
2008-01-01
We review definitions and properties of reproducing kernel Hilbert spaces attached to Gaussian variables and processes, with a view to applications in nonparametric Bayesian statistics using Gaussian priors. The rate of contraction of posterior distributions based on Gaussian priors can be described
Invariant Hilbert spaces of holomorphic functions
Faraut, J; Thomas, EGF
1999-01-01
A Hilbert space of holomorphic functions on a complex manifold Z, which is invariant under a group G of holomorphic automorphisms of Z, can be decomposed into irreducible subspaces by using Choquet theory. We give a geometric condition on Z and G which implies that this decomposition is multiplicity
κ-Minkowski representations on Hilbert spaces
International Nuclear Information System (INIS)
Agostini, Alessandra
2007-01-01
The algebra of functions on κ-Minkowski noncommutative space-time is studied as algebra of operators on Hilbert spaces. The representations of this algebra are constructed and classified. This new approach leads to a natural construction of integration in κ-Minkowski space-time in terms of the usual trace of operators
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
Hilbert space; Koopman–von Neumann theory; classical electrodynamics. PACS No. 03.50. ... The paper is divided into four sections. Section 2 .... construction of Sudarshan is to be contrasted with that of Koopman and von Neumann. ..... ture from KvN and [16] in this formulation is to define new momentum and coordinate.
Vertical integration from the large Hilbert space
Erler, Theodore; Konopka, Sebastian
2017-12-01
We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.
Notes on Hilbert and Cauchy Matrices
Czech Academy of Sciences Publication Activity Database
Fiedler, Miroslav
2010-01-01
Roč. 432, č. 1 (2010), s. 351-356 ISSN 0024-3795 Institutional research plan: CEZ:AV0Z10300504 Keywords : Hilbert matrix * Cauchy matrix * combined matrix * AT-property Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2010
A relative Hilbert-Mumford criterion
DEFF Research Database (Denmark)
Gulbrandsen, Martin G.; Halle, Lars Halvard; Hulek, Klaus
2015-01-01
We generalize the classical Hilbert-Mumford criteria for GIT (semi-)stability in terms of one parameter subgroups of a linearly reductive group G over a field k, to the relative situation of an equivariant, projective morphism X -> Spec A to a noetherian k-algebra A. We also extend the classical...
The use of Wigner transformation for the description of the classical aspects of the quantum systems
International Nuclear Information System (INIS)
Baran, V.
1990-01-01
The mutual relation between the classical phase space and the Hilbert space of operators are explicitly written down.In particular, the Wigner transformation maps the Hilbert space onto the classical space of functions defined on two dimensional manifold. (Author)
Convexity Of Inversion For Positive Operators On A Hilbert Space
International Nuclear Information System (INIS)
Sangadji
2001-01-01
This paper discusses and proves three theorems for positive invertible operators on a Hilbert space. The first theorem gives a comparison of the generalized arithmetic mean, generalized geometric mean, and generalized harmonic mean for positive invertible operators on a Hilbert space. For the second and third theorems each gives three inequalities for positive invertible operators on a Hilbert space that are mutually equivalent
Commentaries on Hilbert's Basis Theorem | Apine | Science World ...
African Journals Online (AJOL)
The famous basis theorem of David Hilbert is an important theorem in commutative algebra. In particular the Hilbert's basis theorem is the most important source of Noetherian rings which are by far the most important class of rings in commutative algebra. In this paper we have used Hilbert's theorem to examine their unique ...
Compact Hilbert Curve Index Algorithm Based on Gray Code
Directory of Open Access Journals (Sweden)
CAO Xuefeng
2016-12-01
Full Text Available Hilbert curve has best clustering in various kinds of space filling curves, and has been used as an important tools in discrete global grid spatial index design field. But there are lots of redundancies in the standard Hilbert curve index when the data set has large differences between dimensions. In this paper, the construction features of Hilbert curve is analyzed based on Gray code, and then the compact Hilbert curve index algorithm is put forward, in which the redundancy problem has been avoided while Hilbert curve clustering preserved. Finally, experiment results shows that the compact Hilbert curve index outperforms the standard Hilbert index, their 1 computational complexity is nearly equivalent, but the real data set test shows the coding time and storage space decrease 40%, the speedup ratio of sorting speed is nearly 4.3.
Apisa, Paul
2017-01-01
We show that all GL(2, R)-equivariant point markings over orbit closures of primitive genus two translation surfaces arise from marking pairs of points exchanged by the hyperelliptic involution, Weierstrass points, or the golden points in the golden eigenform locus. As corollaries, we classify the holomorphically varying families of points over orbifold covers of genus two Hilbert modular surfaces, solve the finite blocking problem on genus two translation surfaces, and show that there is at ...
Semiclassical propagation: Hilbert space vs. Wigner representation
Gottwald, Fabian; Ivanov, Sergei D.
2018-03-01
A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.
Elements of Hilbert spaces and operator theory
Vasudeva, Harkrishan Lal
2017-01-01
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compressio...
Resonances, scattering theory and rigged Hilbert spaces
International Nuclear Information System (INIS)
Parravicini, G.; Gorini, V.; Sudarshan, E.C.G.
1979-01-01
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free, in, and out eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian; the singularities of the out eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of complete sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the out eigenvectors. The free, in and out eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee-Friedrichs model. 48 references
Zhao, Xue-Hui; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Sun, Yan; Guo, Yong-Jiang
2018-04-01
Under investigation in this paper is a (2+1)-dimensional Davey-Stewartson system, which describes the transformation of a wave-packet on water of finite depth. By virtue of the bell polynomials, bilinear form, Bäcklund transformation and Lax pair are got. One- and two-soliton solutions are obtained via the symbolic computation and Hirota method. Velocity and amplitude of the one-soliton solutions are relevant with the wave number. Graphical analysis indicates that soliton shapes keep unchanged and maintain their original directions and amplitudes during the propagation. Elastic overtaking and head-on interactions between the two solitons are described.
Experimental validation of a structural damage detection method based on marginal Hilbert spectrum
Banerji, Srishti; Roy, Timir B.; Sabamehr, Ardalan; Bagchi, Ashutosh
2017-04-01
Structural Health Monitoring (SHM) using dynamic characteristics of structures is crucial for early damage detection. Damage detection can be performed by capturing and assessing structural responses. Instrumented structures are monitored by analyzing the responses recorded by deployed sensors in the form of signals. Signal processing is an important tool for the processing of the collected data to diagnose anomalies in structural behavior. The vibration signature of the structure varies with damage. In order to attain effective damage detection, preservation of non-linear and non-stationary features of real structural responses is important. Decomposition of the signals into Intrinsic Mode Functions (IMF) by Empirical Mode Decomposition (EMD) and application of Hilbert-Huang Transform (HHT) addresses the time-varying instantaneous properties of the structural response. The energy distribution among different vibration modes of the intact and damaged structure depicted by Marginal Hilbert Spectrum (MHS) detects location and severity of the damage. The present work investigates damage detection analytically and experimentally by employing MHS. The testing of this methodology for different damage scenarios of a frame structure resulted in its accurate damage identification. The sensitivity of Hilbert Spectral Analysis (HSA) is assessed with varying frequencies and damage locations by means of calculating Damage Indices (DI) from the Hilbert spectrum curves of the undamaged and damaged structures.
Xu, Wenjun; Tang, Chen; Su, Yonggang; Li, Biyuan; Lei, Zhenkun
2018-02-01
In this paper, we propose an image decomposition model Shearlet-Hilbert-L 2 with better performance for denoising in electronic speckle pattern interferometry (ESPI) fringe patterns. In our model, the low-density fringes, high-density fringes, and noise are, respectively, described by shearlet smoothness spaces, adaptive Hilbert space, and L 2 space and processed individually. Because the shearlet transform has superior directional sensitivity, our proposed Shearlet-Hilbert-L 2 model achieves commendable filtering results for various types of ESPI fringe patterns, including uniform density fringe patterns, moderately variable density fringe patterns, and greatly variable density fringe patterns. We evaluate the performance of our proposed Shearlet-Hilbert-L 2 model via application to two computer-simulated and nine experimentally obtained ESPI fringe patterns with various densities and poor quality. Furthermore, we compare our proposed model with windowed Fourier filtering and coherence-enhancing diffusion, both of which are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. We also compare our proposed model with the previous image decomposition model BL-Hilbert-L 2 .
Open superstring field theory on the restricted Hilbert space
International Nuclear Information System (INIS)
Konopka, Sebastian; Sachs, Ivo
2016-01-01
It appears that the formulation of an action for the Ramond sector of open superstring field theory requires to either restrict the Hilbert space for the Ramond sector or to introduce auxiliary fields with picture −3/2. The purpose of this note is to clarify the relation of the restricted Hilbert space with other approaches and to formulate open superstring field theory entirely in the small Hilbert space.
Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M
1986-01-01
The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)
Eigenfunction expansions and scattering theory in rigged Hilbert spaces
Energy Technology Data Exchange (ETDEWEB)
Gomez-Cubillo, F [Dpt. de Analisis Matematico, Universidad de Valladolid. Facultad de Ciencias, 47011 Valladolid (Spain)], E-mail: fgcubill@am.uva.es
2008-08-15
The work reviews some mathematical aspects of spectral properties, eigenfunction expansions and scattering theory in rigged Hilbert spaces, laying emphasis on Lippmann-Schwinger equations and Schroedinger operators.
Unstable quantum states and rigged Hilbert spaces
International Nuclear Information System (INIS)
Gorini, V.; Parravicini, G.
1978-10-01
Rigged Hilbert space techniques are applied to the quantum mechanical treatment of unstable states in nonrelativistic scattering theory. A method is discussed which is based on representations of decay amplitudes in terms of expansions over complete sets of generalized eigenvectors of the interacting Hamiltonian, corresponding to complex eigenvalues. These expansions contain both a discrete and a continuum contribution. The former corresponds to eigenvalues located at the second sheet poles of the S matrix, and yields the exponential terms in the survival amplitude. The latter arises from generalized eigenvectors associated to complex eigenvalues on background contours in the complex plane, and gives the corrections to the exponential law. 27 references
Hilbert W*-modules and coherent states
International Nuclear Information System (INIS)
Bhattacharyya, T; Roy, S Shyam
2012-01-01
Hilbert C*-module valued coherent states was introduced earlier by Ali, Bhattacharyya and Shyam Roy. We consider the case when the underlying C*-algebra is a W*-algebra. The construction is similar with a substantial gain. The associated reproducing kernel is now algebra valued, rather than taking values in the space of bounded linear operators between two C*-algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
Concerning the Hilbert 16th problem
Ilyashenko, Yu; Il'yashenko, Yu
1995-01-01
This book examines qualitative properties of vector fields in the plane, in the spirit of Hilbert's Sixteenth Problem. Two principal topics explored are bifurcations of limit cycles of planar vector fields and desingularization of singular points for individual vector fields and for analytic families of such fields. In addition to presenting important new developments in this area, this book contains an introductory paper which outlines the general context and describes connections between the papers in the volume. The book will appeal to researchers and graduate students working in the qualit
Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.
2012-01-01
By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.
International Nuclear Information System (INIS)
Frazzica, Andrea; Sapienza, Alessio; Freni, Angelo
2014-01-01
This paper presents a novel experimental protocol for the evaluation of the thermodynamic performance of working pairs for application in adsorption heat pumps and chillers. The proposed approach is based on the experimental measurements of the main thermo-physical parameters of adsorbent pairs, by means of a DSC/TG apparatus modified to work under saturated vapour conditions, able to measure the ads-/desorption isobars and heat flux as well as the adsorbent specific heat under real boundary conditions. Such kind of activity allows to characterize the thermodynamic performance of an adsorbent pair allowing the estimation of the thermal Coefficient Of Performance (COP) both for heating and cooling applications, only relying on experimental values. The experimental uncertainty of the method has been estimated to be around 2%, for the COP evaluation. In order to validate the proposed procedure, a first test campaign has been carried out on the commercial adsorbent material, AQSOA-Z02, produced by MPI (Mitsubishi Plastics Inc.), while water was used as refrigerant. The proposed experimental methodology will be applied on several other adsorbent materials, either already on the market or still under investigation, in order to get an easy and reliable method to compare thermodynamic performance of adsorptive working pairs
Seizure classification in EEG signals utilizing Hilbert-Huang transform
Oweis, Rami J; Abdulhay, Enas W
2011-01-01
Abstract Background Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Method Discrimination in this ...
Spectral analysis and Hilbert transform of aeromagnetic data over ...
African Journals Online (AJOL)
depth source model. ... The highest depth to the shallower magnetic source model is 830m and represents intrusive/extrusive bodies within the tectonic evolution and the preliminary assessment of the hydrocarbon generation and maturation ...
A note on tensor fields in Hilbert spaces
Directory of Open Access Journals (Sweden)
LEONARDO BILIOTTI
2002-06-01
Full Text Available We discuss and extend to infinite dimensional Hilbert spaces a well-known tensoriality criterion for linear endomorphisms of the space of smooth vector fields in n.Discutimos e estendemos para espaços de Hilbert um critério de tensorialidade para endomorfismos do espaço dos campos vetoriais em Rpot(n.
ON STRONG AND WEAK CONVERGENCE IN n-HILBERT SPACES
Directory of Open Access Journals (Sweden)
Agus L. Soenjaya
2014-03-01
Full Text Available We discuss the concepts of strong and weak convergence in n-Hilbert spaces and study their properties. Some examples are given to illustrate the concepts. In particular, we prove an analogue of Banach-Saks-Mazur theorem and Radon-Riesz property in the case of n-Hilbert space.
Bulk entanglement gravity without a boundary: Towards finding Einstein's equation in Hilbert space
Cao, ChunJun; Carroll, Sean M.
2018-04-01
We consider the emergence from quantum entanglement of spacetime geometry in a bulk region. For certain classes of quantum states in an appropriately factorized Hilbert space, a spatial geometry can be defined by associating areas along codimension-one surfaces with the entanglement entropy between either side. We show how radon transforms can be used to convert these data into a spatial metric. Under a particular set of assumptions, the time evolution of such a state traces out a four-dimensional spacetime geometry, and we argue using a modified version of Jacobson's "entanglement equilibrium" that the geometry should obey Einstein's equation in the weak-field limit. We also discuss how entanglement equilibrium is related to a generalization of the Ryu-Takayanagi formula in more general settings, and how quantum error correction can help specify the emergence map between the full quantum-gravity Hilbert space and the semiclassical limit of quantum fields propagating on a classical spacetime.
Hilbert schemes of points and infinite dimensional Lie algebras
Qin, Zhenbo
2018-01-01
Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes X^{[n]} of collections of n points (zero-dimensional subschemes) in a smooth algebraic surface X. Schemes X^{[n]} turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others. This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and presents in detail an example of Hilbert schemes of points on the projective plane. Then the author turns to the study of cohomology of X^{[n]}, including the construction of the action of infinite dimensional Lie algebras on this cohomology, the ring structure of cohomology, equivariant cohomology of X^{[n]} a...
Quantum holonomy theory and Hilbert space representations
Energy Technology Data Exchange (ETDEWEB)
Aastrup, Johannes [Mathematisches Institut, Universitaet Hannover (Germany); Moeller Grimstrup, Jesper [QHT Gruppen, Copenhagen Area (Denmark)
2016-11-15
We present a new formulation of quantum holonomy theory, which is a candidate for a non-perturbative and background independent theory of quantum gravity coupled to matter and gauge degrees of freedom. The new formulation is based on a Hilbert space representation of the QHD(M) algebra, which is generated by holonomy-diffeomorphisms on a 3-dimensional manifold and by canonical translation operators on the underlying configuration space over which the holonomy-diffeomorphisms form a non-commutative C*-algebra. A proof that the state that generates the representation exist is left for later publications. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Matter tensor from the Hilbert variational principle
International Nuclear Information System (INIS)
Pandres, D. Jr.
1976-01-01
We consider the Hilbert variational principle which is conventionally used to derive Einstein's equations for the source-free gravitational field. We show that at least one version of the equivalence principle suggests an alternative way of performing the variation, resulting in a different set of Einstein equations with sources automatically present. This illustrates a technique which may be applied to any theory that is derived from a variational principle and that admits a gauge group. The essential point is that, if one first imposes a gauge condition and then performs the variation, one obtains field equations with source terms which do not appear if one first performs the variation and then imposes the gauge condition. A second illustration is provided by the variational principle conventionally used to derive Maxwell's equations for the source-free electromagnetic field. If one first imposes the Lorentz gauge condition and then performs the variation, one obtains Maxwell's equations with sources present
Multipliers for continuous frames in Hilbert spaces
International Nuclear Information System (INIS)
Balazs, P; Bayer, D; Rahimi, A
2012-01-01
In this paper, we examine the general theory of continuous frame multipliers in Hilbert space. These operators are a generalization of the widely used notion of (discrete) frame multipliers. Well-known examples include anti-Wick operators, STFT multipliers or Calderón–Toeplitz operators. Due to the possible peculiarities of the underlying measure spaces, continuous frames do not behave quite as their discrete counterparts. Nonetheless, many results similar to the discrete case are proven for continuous frame multipliers as well, for instance compactness and Schatten-class properties. Furthermore, the concepts of controlled and weighted frames are transferred to the continuous setting. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
Quantum mechanics in an evolving Hilbert space
Artacho, Emilio; O'Regan, David D.
2017-03-01
Many basis sets for electronic structure calculations evolve with varying external parameters, such as moving atoms in dynamic simulations, giving rise to extra derivative terms in the dynamical equations. Here we revisit these derivatives in the context of differential geometry, thereby obtaining a more transparent formalization, and a geometrical perspective for better understanding the resulting equations. The effect of the evolution of the basis set within the spanned Hilbert space separates explicitly from the effect of the turning of the space itself when moving in parameter space, as the tangent space turns when moving in a curved space. New insights are obtained using familiar concepts in that context such as the Riemann curvature. The differential geometry is not strictly that for curved spaces as in general relativity, a more adequate mathematical framework being provided by fiber bundles. The language used here, however, will be restricted to tensors and basic quantum mechanics. The local gauge implied by a smoothly varying basis set readily connects with Berry's formalism for geometric phases. Generalized expressions for the Berry connection and curvature are obtained for a parameter-dependent occupied Hilbert space spanned by nonorthogonal Wannier functions. The formalism is applicable to basis sets made of atomic-like orbitals and also more adaptative moving basis functions (such as in methods using Wannier functions as intermediate or support bases), but should also apply to other situations in which nonorthogonal functions or related projectors should arise. The formalism is applied to the time-dependent quantum evolution of electrons for moving atoms. The geometric insights provided here allow us to propose new finite-difference time integrators, and also better understand those already proposed.
Iseda, Kazuya
2018-01-01
Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717
Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki
2018-03-01
In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.
DEFF Research Database (Denmark)
Bock, Lars Nicolai
2011-01-01
Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....
Energy Technology Data Exchange (ETDEWEB)
LACKS,S.A.
2003-10-09
Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).
Baker, W.R.
1959-08-25
Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.
Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space.
Stępień, Grzegorz
2018-03-17
The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems-interior and exterior orientation of sensors-to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins) and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data). The accuracy of the results in the laboratory test is on the level of 10 -6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author's 2017 Total Free Station (TFS) transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation-MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.
An explicit formula for the Hilbert symbol for Honda groups in a multidimensional local field
International Nuclear Information System (INIS)
Vostokov, S V; Lorenz, F
2003-01-01
Based on the pairing on Cartier curves explicitly constructed in the previous paper of the authors, an explicit formula for the Hilbert symbol is constructed in a multidimensional local field of characteristic zero with residue field of positive characteristic on the formal module of a one-dimensional Honda formal group. In the proof a Shafarevich basis on the formal module is constructed, and so-called integer μ-modules in two-dimensional local rings of a special form ( μ-rings) are studied
Hilbert schemes of points on some classes surface singularities
Gyenge, Ádám
2016-01-01
We study the geometry and topology of Hilbert schemes of points on the orbifold surface [C^2/G], respectively the singular quotient surface C^2/G, where G is a finite subgroup of SL(2,C) of type A or D. We give a decomposition of the (equivariant) Hilbert scheme of the orbifold into affine space strata indexed by a certain combinatorial set, the set of Young walls. The generating series of Euler characteristics of Hilbert schemes of points of the singular surface of type A or D is computed in...
Hilbert space, Poincare dodecahedron and golden mean transfiniteness
International Nuclear Information System (INIS)
El Naschie, M.S.
2007-01-01
A rather direct connection between Hilbert space and E-infinity theory is established via an irrational-transfinite golden mean topological probability. Subsequently the ramifications for Kleinian modular spaces and the cosmological Poincare Dodecahedron proposals are considered
Introduction to Hilbert space and the theory of spectral multiplicity
Halmos, Paul R
2017-01-01
Concise introductory treatment consists of three chapters: The Geometry of Hilbert Space, The Algebra of Operators, and The Analysis of Spectral Measures. A background in measure theory is the sole prerequisite. 1957 edition.
Lectures on Hilbert schemes of points on surfaces
Nakajima, Hiraku
1999-01-01
This beautifully written book deals with one shining example: the Hilbert schemes of points on algebraic surfaces ... The topics are carefully and tastefully chosen ... The young person will profit from reading this book. --Mathematical Reviews The Hilbert scheme of a surface X describes collections of n (not necessarily distinct) points on X. More precisely, it is the moduli space for 0-dimensional subschemes of X of length n. Recently it was realized that Hilbert schemes originally studied in algebraic geometry are closely related to several branches of mathematics, such as singularities, symplectic geometry, representation theory--even theoretical physics. The discussion in the book reflects this feature of Hilbert schemes. One example of the modern, broader interest in the subject is a construction of the representation of the infinite-dimensional Heisenberg algebra, i.e., Fock space. This representation has been studied extensively in the literature in connection with affine Lie algebras, conformal field...
Isometric Reflection Vectors and Characterizations of Hilbert Spaces
Directory of Open Access Journals (Sweden)
Donghai Ji
2014-01-01
Full Text Available A known characterization of Hilbert spaces via isometric reflection vectors is based on the following implication: if the set of isometric reflection vectors in the unit sphere SX of a Banach space X has nonempty interior in SX, then X is a Hilbert space. Applying a recent result based on well-known theorem of Kronecker from number theory, we improve this by substantial reduction of the set of isometric reflection vectors needed in the hypothesis.
Quantum computation via local control theory: Direct sum vs. direct product Hilbert spaces
International Nuclear Information System (INIS)
Sklarz, Shlomo E.; Tannor, David J.
2006-01-01
The central objective in any quantum computation is the creation of a desired unitary transformation; the mapping that this unitary transformation produces between the input and output states is identified with the computation. In [S.E. Sklarz, D.J. Tannor, arXiv:quant-ph/0404081 (submitted to PRA) (2004)] it was shown that local control theory can be used to calculate fields that will produce such a desired unitary transformation. In contrast with previous strategies for quantum computing based on optimal control theory, the local control scheme maintains the system within the computational subspace at intermediate times, thereby avoiding unwanted decay processes. In [S.E. Sklarz et al.], the structure of the Hilbert space had a direct sum structure with respect to the computational register and the mediating states. In this paper, we extend the formalism to the important case of a direct product Hilbert space. The final equations for the control algorithm for the two cases are remarkably similar in structure, despite the fact that the derivations are completely different and that in one case the dynamics is in a Hilbert space and in the other case the dynamics is in a Liouville space. As shown in [S.E. Sklarz et al.], the direct sum implementation leads to a computational mechanism based on virtual transitions, and can be viewed as an extension of the principles of Stimulated Raman Adiabatic Passage from state manipulation to evolution operator manipulation. The direct product implementation developed here leads to the intriguing concept of virtual entanglement - computation that exploits second-order transitions that pass through entangled states but that leaves the subsystems nearly separable at all intermediate times. Finally, we speculate on a connection between the algorithm developed here and the concept of decoherence free subspaces
Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space
Directory of Open Access Journals (Sweden)
Grzegorz Stępień
2018-03-01
Full Text Available The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems—interior and exterior orientation of sensors—to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data. The accuracy of the results in the laboratory test is on the level of 10−6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author’s 2017 Total Free Station (TFS transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation—MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.
Hilbert and Blaschke phases in the temporal coherence function of stationary broadband light.
Fernández-Pousa, Carlos R; Maestre, Haroldo; Torregrosa, Adrián J; Capmany, Juan
2008-10-27
We show that the minimal phase of the temporal coherence function gamma (tau) of stationary light having a partially-coherent symmetric spectral peak can be computed as a relative logarithmic Hilbert transform of its amplitude with respect to its asymptotic behavior. The procedure is applied to experimental data from amplified spontaneous emission broadband sources in the 1.55 microm band with subpicosecond coherence times, providing examples of degrees of coherence with both minimal and non-minimal phase. In the latter case, the Blaschke phase is retrieved and the position of the Blaschke zeros determined.
The kinematical Hilbert space of loop quantum gravity from BF theories
International Nuclear Information System (INIS)
Cianfrani, Francesco
2011-01-01
In this work, it is demonstrated how the kinematical Hilbert space of loop quantum gravity (LQG) can be inferred from the configuration space of BF theories via the imposition of the Hamiltonian constraints. In particular, it is outlined how the projection to the representations associated with Ashtekar-Barbero connections provides the correct procedure to implement second-class constraints and the corresponding nontrivial induced symplectic structure. Then, the reduction to SU(2) invariant intertwiners is analyzed and the properties of LQG states under Lorentz transformations are discussed.
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through c...
Multicomplementary operators via finite Fourier transform
International Nuclear Information System (INIS)
Klimov, Andrei B; Sanchez-Soto, Luis L; Guise, Hubert de
2005-01-01
A complete set of d + 1 mutually unbiased bases exists in a Hilbert space of dimension d, whenever d is a power of a prime. We discuss a simple construction of d + 1 disjoint classes (each one having d - 1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail
DEFF Research Database (Denmark)
Christensen, Ole; Goh, Say Song
2012-01-01
The time–frequency analysis of a signal is often performed via a series expansion arising from well-localized building blocks. Typically, the building blocks are based on frames having either Gabor or wavelet structure. In order to calculate the coefficients in the series expansion, a dual frame...... is needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients...
Improved specimen reconstruction by Hilbert phase contrast tomography.
Barton, Bastian; Joos, Friederike; Schröder, Rasmus R
2008-11-01
The low signal-to-noise ratio (SNR) in images of unstained specimens recorded with conventional defocus phase contrast makes it difficult to interpret 3D volumes obtained by electron tomography (ET). The high defocus applied for conventional tilt series generates some phase contrast but leads to an incomplete transfer of object information. For tomography of biological weak-phase objects, optimal image contrast and subsequently an optimized SNR are essential for the reconstruction of details such as macromolecular assemblies at molecular resolution. The problem of low contrast can be partially solved by applying a Hilbert phase plate positioned in the back focal plane (BFP) of the objective lens while recording images in Gaussian focus. Images recorded with the Hilbert phase plate provide optimized positive phase contrast at low spatial frequencies, and the contrast transfer in principle extends to the information limit of the microscope. The antisymmetric Hilbert phase contrast (HPC) can be numerically converted into isotropic contrast, which is equivalent to the contrast obtained by a Zernike phase plate. Thus, in-focus HPC provides optimal structure factor information without limiting effects of the transfer function. In this article, we present the first electron tomograms of biological specimens reconstructed from Hilbert phase plate image series. We outline the technical implementation of the phase plate and demonstrate that the technique is routinely applicable for tomography. A comparison between conventional defocus tomograms and in-focus HPC volumes shows an enhanced SNR and an improved specimen visibility for in-focus Hilbert tomography.
Distributional Watson transforms
Dijksma, A.; Snoo, H.S.V. de
1974-01-01
For all Watson transforms W in L2(R+) a triple of Hilbert space LG ⊂ L2(R+) ⊂ L'G is constructed such that W may be extended to L'G. These results allow the construction of a triple L ⊂ L2(R+) ⊂ L', where L is a Gelfand-Fréchet space. This leads to a theory of distributional Watson transforms.
Frames and outer frames for Hilbert C^*-modules
Arambašić, Ljiljana; Bakić, Damir
2015-01-01
The goal of the present paper is to extend the theory of frames for countably generated Hilbert $C^*$-modules over arbitrary $C^*$-algebras. In investigating the non-unital case we introduce the concept of outer frame as a sequence in the multiplier module $M(X)$ that has the standard frame property when applied to elements of the ambient module $X$. Given a Hilbert $\\A$-module $X$, we prove that there is a bijective correspondence of the set of all adjointable surjections from the generalize...
Four-dimensional hilbert curves for R-trees
DEFF Research Database (Denmark)
Haverkort, Herman; Walderveen, Freek van
2011-01-01
Two-dimensional R-trees are a class of spatial index structures in which objects are arranged to enable fast window queries: report all objects that intersect a given query window. One of the most successful methods of arranging the objects in the index structure is based on sorting the objects...... according to the positions of their centers along a two-dimensional Hilbert space-filling curve. Alternatively, one may use the coordinates of the objects' bounding boxes to represent each object by a four-dimensional point, and sort these points along a four-dimensional Hilbert-type curve. In experiments...
A New Method for Non-linear and Non-stationary Time Series Analysis:
The Hilbert Spectral Analysis
CERN. Geneva
2000-01-01
A new method for analysing non-linear and non-stationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero crossing and extreme, and also having symmetric envelopes defined by the local maximal and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Classical non-l...
Lectures on Hilbert modular varieties and modular forms
Goren, Eyal Z
2001-01-01
This book is devoted to certain aspects of the theory of p-adic Hilbert modular forms and moduli spaces of abelian varieties with real multiplication. The theory of p-adic modular forms is presented first in the elliptic case, introducing the reader to key ideas of N. M. Katz and J.-P. Serre. It is re-interpreted from a geometric point of view, which is developed to present the rudiments of a similar theory for Hilbert modular forms. The theory of moduli spaces of abelian varieties with real multiplication is presented first very explicitly over the complex numbers. Aspects of the general theory are then exposed, in particular, local deformation theory of abelian varieties in positive characteristic. The arithmetic of p-adic Hilbert modular forms and the geometry of moduli spaces of abelian varieties are related. This relation is used to study q-expansions of Hilbert modular forms, on the one hand, and stratifications of moduli spaces on the other hand. The book is addressed to graduate students and non-exper...
Generalized noncommutative Hardy and Hardy-Hilbert type inequalities
DEFF Research Database (Denmark)
Hansen, Frank; Krulic, Kristina; Pecaric, Josip
2010-01-01
We extend and unify several Hardy type inequalities to functions whose values are positive semi-definite operators. In particular, our methods lead to the operator versions of Hardy-Hilbert's and Godunova's inequalities. While classical Hardy type inequalities hold for parameter values p > 1, it ...
On Some Fractional Stochastic Integrodifferential Equations in Hilbert Space
Directory of Open Access Journals (Sweden)
Hamdy M. Ahmed
2009-01-01
Full Text Available We study a class of fractional stochastic integrodifferential equations considered in a real Hilbert space. The existence and uniqueness of the Mild solutions of the considered problem is also studied. We also give an application for stochastic integropartial differential equations of fractional order.
Ad Hoc Physical Hilbert Spaces in Quantum Mechanics
Czech Academy of Sciences Publication Activity Database
Fernandez, F. M.; Garcia, J.; Semorádová, Iveta; Znojil, Miloslav
2015-01-01
Roč. 54, č. 12 (2015), s. 4187-4203 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : quantum mechanics * physical Hilbert spaces * ad hoc inner product * singular potentials regularized * low lying energies Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015
Clifford coherent state transforms on spheres
Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao
2018-01-01
We introduce a one-parameter family of transforms, U(m)t,t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.
The method of moments and nested Hilbert spaces in quantum mechanics
International Nuclear Information System (INIS)
Adeniyi Bangudu, E.
1980-08-01
It is shown how the structures of a nested Hilbert space Hsub(I), associated with a given Hilbert space Hsub(O), may be used to simplify our understanding of the effects of parameters, whose values have to be chosen rather than determined variationally, in the method of moments. The result, as applied to non-relativistic quartic oscillator and helium atom, is to associate the parameters with sequences of Hilbert spaces, while the error of the method of moments relative to the variational method corresponds to a nesting operator of the nested Hilbert space. Difficulties hindering similar interpretations in terms of rigged Hilbert space structures are highlighted. (author)
A Riemann-Hilbert formulation for the finite temperature Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Cornagliotto, Martina [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mattelliano, Massimo; Tateo, Roberto [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy)
2015-06-03
Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.
T^{\\sigma}_{\\rho}(G) Theories and Their Hilbert Series
Cremonesi, Stefano; Mekareeya, Noppadol; Zaffaroni, Alberto
2015-01-01
We give an explicit formula for the Higgs and Coulomb branch Hilbert series for the class of 3d N=4 superconformal gauge theories T^{\\sigma}_{\\rho}(G) corresponding to a set of D3 branes ending on NS5 and D5-branes, with or without O3 planes. Here G is a classical group, \\sigma is a partition of G and \\rho a partition of the dual group G^\\vee. In deriving such a formula we make use of the recently discovered formula for the Hilbert series of the quantum Coulomb branch of N=4 superconformal theories. The result can be expressed in terms of a generalization of a class of symmetric functions, the Hall-Littlewood polynomials, and can be interpreted in mathematical language in terms of localization. We mainly consider the case G=SU(N) but some interesting results are also given for orthogonal and symplectic groups.
The Hilbert Series of the One Instanton Moduli Space
Benvenuti, Sergio; Mekareeya, Noppadol; 10.1007
2010-01-01
The moduli space of k G-instantons on R^4 for a classical gauge group G is known to be given by the Higgs branch of a supersymmetric gauge theory that lives on Dp branes probing D(p + 4) branes in Type II theories. For p = 3, these (3 + 1) dimensional gauge theories have N = 2 supersymmetry and can be represented by quiver diagrams. The F and D term equations coincide with the ADHM construction. The Hilbert series of the moduli spaces of one instanton for classical gauge groups is easy to compute and turns out to take a particularly simple form which is previously unknown. This allows for a G invariant character expansion and hence easily generalisable for exceptional gauge groups, where an ADHM construction is not known. The conjectures for exceptional groups are further checked using some new techniques like sewing relations in Hilbert Series. This is applied to Argyres-Seiberg dualities.
The Hilbert-Schmidt method for nucleon-deuteron scattering
International Nuclear Information System (INIS)
Moeller, K.; Narodetskii, I.M.
1984-01-01
The Hilbert-Schmidt technique is used for computing the divergent multiple-scattering series for scattering of nucleons by deuterons at energies above the deuteron breakup. We have found that for each partial amplitude a series of s-channel resonances diverges because of the logarithmic singularities which reflect the t-channel singularities of the total amplitude. However, the convergence of the Hilbert-Schmidt series may be improved by iterating the Faddeev equations thereby extracting the most strong logarithmic singularities. We show that the series for the amplitudes with the first two iteration subtracted converges rapidly. Our final results are in excellent agreement with exact results obtained by a direct matrix technique. (orig.)
Hilbert-Schmidt method for nucleon-deuteron scattering
International Nuclear Information System (INIS)
Moeller, K.; Narodetskij, I.M.
1983-01-01
The Hilbert-Schmidt technique is used for computing the divergent multiple-scattering series for scattering of nucleons by deuterons at energies above the deuteron breakup. It is found that for each partial amplitude a series of s-channel resonances diverges because of the logarithmic singularities which reflect the t-channel singularities of the total amplitude. However, the convergence of the Hilbert-Schmidt series may be improved by iterating the Faddeev equations thereby extracting the most strong logarithmic singularities. It is shown that the series for the amplitudes with first two iterations subtracted converges rapidly. Final results are in excellent agreement with exact results obtained by a direct matrix technique
Geometry and experience: Einstein's 1921 paper and Hilbert's axiomatic system
International Nuclear Information System (INIS)
De Gandt, Francois
2006-01-01
In his 1921 paper Geometrie und Erfahrung, Einstein decribes the new epistemological status of geometry, divorced from any intuitive or a priori content. He calls that 'axiomatics', following Hilbert's theoretical developments on axiomatic systems, which started with the stimulus given by a talk by Hermann Wiener in 1891 and progressed until the Foundations of geometry in 1899. Difficult questions arise: how is a theoretical system related to an intuitive empirical content?
Some means inequalities for positive operators in Hilbert spaces
Directory of Open Access Journals (Sweden)
Jin Liang
2017-01-01
Full Text Available Abstract In this paper, we obtain two refinements of the ordering relations among Heinz means with different parameters via the Taylor series of some hyperbolic functions and by the way, we derive new generalizations of Heinz operator inequalities. Moreover, we establish a matrix version of Heinz inequality for the Hilbert-Schmidt norm. Finally, we introduce a weighted multivariate geometric mean and show that the weighted multivariate operator geometric mean possess several attractive properties and means inequalities.
6th Hilbert's problem and S.Lie's infinite groups
International Nuclear Information System (INIS)
Konopleva, N.P.
1999-01-01
The progress in Hilbert's sixth problem solving is demonstrated. That became possible thanks to the gauge field theory in physics and to the geometrical treatment of the gauge fields. It is shown that the fibre bundle spaces geometry is the best basis for solution of the problem being discussed. This talk has been reported at the International Seminar '100 Years after Sophus Lie' (Leipzig, Germany)
Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces
Yukawa, Masahiro
2014-01-01
We propose a novel adaptive learning algorithm based on iterative orthogonal projections in the Cartesian product of multiple reproducing kernel Hilbert spaces (RKHSs). The task is estimating/tracking nonlinear functions which are supposed to contain multiple components such as (i) linear and nonlinear components, (ii) high- and low- frequency components etc. In this case, the use of multiple RKHSs permits a compact representation of multicomponent functions. The proposed algorithm is where t...
How were the Hilbert-Einstein equations discovered?
International Nuclear Information System (INIS)
Logunov, Anatolii A; Mestvirishvili, Mirian A; Petrov, Vladimir A
2004-01-01
The ways in which Albert Einstein and David Hilbert independently arrived at the gravitational field equations are traced. A critical analysis is presented of a number of papers in which the history of the derivation of the equations is viewed in a way that 'radically differs from the standard point of view'. The conclusions of these papers are shown to be totally unfounded. (from the history of physics)
The Einstein-Hilbert gravitation with minimum length
Louzada, H. L. C.
2018-05-01
We study the Einstein-Hilbert gravitation with the deformed Heisenberg algebra leading to the minimum length, with the intention to find and estimate the corrections in this theory, clarifying whether or not it is possible to obtain, by means of the minimum length, a theory, in D=4, which is causal, unitary and provides a massive graviton. Therefore, we will calculate and analyze the dispersion relationships of the considered theory.
Frame transforms, star products and quantum mechanics on phase space
International Nuclear Information System (INIS)
Aniello, P; Marmo, G; Man'ko, V I
2008-01-01
Using the notions of frame transform and of square integrable projective representation of a locally compact group G, we introduce a class of isometries (tight frame transforms) from the space of Hilbert-Schmidt operators in the carrier Hilbert space of the representation into the space of square integrable functions on the direct product group G x G. These transforms have remarkable properties. In particular, their ranges are reproducing kernel Hilbert spaces endowed with a suitable 'star product' which mimics, at the level of functions, the original product of operators. A 'phase space formulation' of quantum mechanics relying on the frame transforms introduced in the present paper, and the link of these maps with both the Wigner transform and the wavelet transform are discussed
Moretti, Valter; Oppio, Marco
As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the
Sagan, Bruce E.; Savage, Carla D.
2012-01-01
We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...
Real analysis measure theory, integration, and Hilbert spaces
Stein, Elias M
2005-01-01
Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After
Geometry of quantum dynamics in infinite-dimensional Hilbert space
Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana
2018-04-01
We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.
On convergence of nuclear and correlation operators in Hilbert space
International Nuclear Information System (INIS)
Kubrusly, C.S.
1985-01-01
The convergence of sequences of nuclear operators on a separable Hilbert space is studied. Emphasis is given to trace-norm convergence, which is a basic property in stochastic systems theory. Obviously trace-norm convergence implies uniform convergence. The central theme of the paper focus the opposite way, by investigating when convergence in a weaker topology turns out to imply convergence in a stronger topology. The analysis carried out here is exhaustive in the following sense. All possible implications within a selected set of asymptotic properties for sequences of nuclear operators are established. The special case of correlation operators is also considered in detail. (Author) [pt
Perturbation for Frames for a Subspace of a Hilbert Space
DEFF Research Database (Denmark)
Christensen, Ole; deFlicht, C.; Lennard, C.
1997-01-01
We extend a classical result stating that a sufficiently small perturbation$\\{ g_i \\}$ of a Riesz sequence $\\{ f_i \\}$ in a Hilbert space $H$ is again a Riesz sequence. It turns out that the analog result for a frame does not holdunless the frame is complete. However, we are able to prove a very...... similarresult for frames in the case where the gap between the subspaces$\\overline{span} \\{f_i \\}$ and $\\overline{span} \\{ g_i \\}$ is small enough. We give a geometric interpretation of the result....
Multisymplectic unified formalism for Einstein-Hilbert gravity
Gaset, Jordi; Román-Roy, Narciso
2018-03-01
We present a covariant multisymplectic formulation for the Einstein-Hilbert model of general relativity. As it is described by a second-order singular Lagrangian, this is a gauge field theory with constraints. The use of the unified Lagrangian-Hamiltonian formalism is particularly interesting when it is applied to these kinds of theories, since it simplifies the treatment of them, in particular, the implementation of the constraint algorithm, the retrieval of the Lagrangian description, and the construction of the covariant Hamiltonian formalism. In order to apply this algorithm to the covariant field equations, they must be written in a suitable geometrical way, which consists of using integrable distributions, represented by multivector fields of a certain type. We apply all these tools to the Einstein-Hilbert model without and with energy-matter sources. We obtain and explain the geometrical and physical meaning of the Lagrangian constraints and we construct the multimomentum (covariant) Hamiltonian formalisms in both cases. As a consequence of the gauge freedom and the constraint algorithm, we see how this model is equivalent to a first-order regular theory, without gauge freedom. In the case of the presence of energy-matter sources, we show how some relevant geometrical and physical characteristics of the theory depend on the type of source. In all the cases, we obtain explicitly multivector fields which are solutions to the gravitational field equations. Finally, a brief study of symmetries and conservation laws is done in this context.
Hilbert-Schmidt quantum coherence in multi-qudit systems
Maziero, Jonas
2017-11-01
Using Bloch's parametrization for qudits ( d-level quantum systems), we write the Hilbert-Schmidt distance (HSD) between two generic n-qudit states as an Euclidean distance between two vectors of observables mean values in R^{Π_{s=1}nds2-1}, where ds is the dimension for qudit s. Then, applying the generalized Gell-Mann's matrices to generate SU(ds), we use that result to obtain the Hilbert-Schmidt quantum coherence (HSC) of n-qudit systems. As examples, we consider in detail one-qubit, one-qutrit, two-qubit, and two copies of one-qubit states. In this last case, the possibility for controlling local and non-local coherences by tuning local populations is studied, and the contrasting behaviors of HSC, l1-norm coherence, and relative entropy of coherence in this regard are noticed. We also investigate the decoherent dynamics of these coherence functions under the action of qutrit dephasing and dissipation channels. At last, we analyze the non-monotonicity of HSD under tensor products and report the first instance of a consequence (for coherence quantification) of this kind of property of a quantum distance measure.
Aveiro method in reproducing kernel Hilbert spaces under complete dictionary
Mai, Weixiong; Qian, Tao
2017-12-01
Aveiro Method is a sparse representation method in reproducing kernel Hilbert spaces (RKHS) that gives orthogonal projections in linear combinations of reproducing kernels over uniqueness sets. It, however, suffers from determination of uniqueness sets in the underlying RKHS. In fact, in general spaces, uniqueness sets are not easy to be identified, let alone the convergence speed aspect with Aveiro Method. To avoid those difficulties we propose an anew Aveiro Method based on a dictionary and the matching pursuit idea. What we do, in fact, are more: The new Aveiro method will be in relation to the recently proposed, the so called Pre-Orthogonal Greedy Algorithm (P-OGA) involving completion of a given dictionary. The new method is called Aveiro Method Under Complete Dictionary (AMUCD). The complete dictionary consists of all directional derivatives of the underlying reproducing kernels. We show that, under the boundary vanishing condition, bring available for the classical Hardy and Paley-Wiener spaces, the complete dictionary enables an efficient expansion of any given element in the Hilbert space. The proposed method reveals new and advanced aspects in both the Aveiro Method and the greedy algorithm.
Theory and experiments on Peano and Hilbert curve RFID tags
McVay, John; Hoorfar, Ahmad; Engheta, Nader
2006-05-01
Recently, there has been considerable interest in the area of Radio Frequency Identification (RFID) and Radio Frequency Tagging (RFTAG). This emerging area of interest can be applied for inventory control (commercial) as well as friend/foe identification (military) to name but a few. The current technology can be broken down into two main groups, namely passive and active RFID tags. Utilization of Space-Filling Curve (SFC) geometries, such as the Peano and Hilbert curves, has been recently investigated for use in completely passive RFID applications [1, 2]. In this work, we give an overview of our work on the space-filling curves and the potential for utilizing the electrically small, resonant characteristics of these curves for use in RFID technologies with an emphasis on the challenging issues involved when attempting to tag conductive objects. In particular, we investigate the possible use of these tags in conjunction with high impedance ground-planes made of Hilbert or Peano curve inclusions [3, 4] to develop electrically small RFID tags that may also radiate efficiently, within close proximity of large conductive objects [5].
International Nuclear Information System (INIS)
Luks, A.; Perinova, V.
1993-01-01
A suitable ordering of phase exponential operators has been compared with the antinormal ordering of the annihilation and creation operators of a single mode optical field. The extended Wigner function for number and phase in the enlarged Hilbert space has been used for the derivation of the Wigner function for number and phase in the original Hilbert space. (orig.)
Differentiable absorption of Hilbert C*-modules, connections and lifts of unbounded operators
DEFF Research Database (Denmark)
Kaad, Jens
2017-01-01
. The differentiable absorption theorem is then applied to construct densely defined connections (or correpondences) on Hilbert C∗C∗-modules. These connections can in turn be used to define selfadjoint and regular "lifts" of unbounded operators which act on an auxiliary Hilbert C∗C∗-module....
Integral transformations applied to image encryption
International Nuclear Information System (INIS)
Vilardy, Juan M.; Torres, Cesar O.; Perez, Ronal
2017-01-01
In this paper we consider the application of the integral transformations for image encryption through optical systems, a mathematical algorithm under Matlab platform using fractional Fourier transform (FrFT) and Random Phase Mask (RPM) for digital images encryption is implemented. The FrFT can be related to others integral transforms, such as: Fourier transform, Sine and Cosine transforms, Radial Hilbert transform, fractional Sine transform, fractional Cosine transform, fractional Hartley transform, fractional Wavelet transform and Gyrator transform, among other transforms. The encryption scheme is based on the use of the FrFT, the joint transform correlator and two RPMs, which provide security and robustness to the implemented security system. One of the RPMs used during encryption-decryption and the fractional order of the FrFT are the keys to improve security and make the system more resistant against security attacks. (paper)
Convex analysis and monotone operator theory in Hilbert spaces
Bauschke, Heinz H
2017-01-01
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, ma...
Hamiltonian and physical Hilbert space in polymer quantum mechanics
International Nuclear Information System (INIS)
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A
2007-01-01
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so-called polymer representation of the Heisenberg-Weyl (HW) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed
Public channel cryptography: chaos synchronization and Hilbert's tenth problem.
Kanter, Ido; Kopelowitz, Evi; Kinzel, Wolfgang
2008-08-22
The synchronization process of two mutually delayed coupled deterministic chaotic maps is demonstrated both analytically and numerically. The synchronization is preserved when the mutually transmitted signals are concealed by two commutative private filters, a convolution of the truncated time-delayed output signals or some powers of the delayed output signals. The task of a passive attacker is mapped onto Hilbert's tenth problem, solving a set of nonlinear Diophantine equations, which was proven to be in the class of NP-complete problems [problems that are both NP (verifiable in nondeterministic polynomial time) and NP-hard (any NP problem can be translated into this problem)]. This bridge between nonlinear dynamics and NP-complete problems opens a horizon for new types of secure public-channel protocols.
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Matsumoto, Atsushi; Tobias, Irwin; Olson, Wilma K
2005-01-01
Fine structural and energetic details embedded in the DNA base sequence, such as intrinsic curvature, are important to the packaging and processing of the genetic material. Here we investigate the internal dynamics of a 200 bp closed circular molecule with natural curvature using a newly developed normal-mode treatment of DNA in terms of neighboring base-pair "step" parameters. The intrinsic curvature of the DNA is described by a 10 bp repeating pattern of bending distortions at successive base-pair steps. We vary the degree of intrinsic curvature and the superhelical stress on the molecule and consider the normal-mode fluctuations of both the circle and the stable figure-8 configuration under conditions where the energies of the two states are similar. To extract the properties due solely to curvature, we ignore other important features of the double helix, such as the extensibility of the chain, the anisotropy of local bending, and the coupling of step parameters. We compare the computed normal modes of the curved DNA model with the corresponding dynamical features of a covalently closed duplex of the same chain length constructed from naturally straight DNA and with the theoretically predicted dynamical properties of a naturally circular, inextensible elastic rod, i.e., an O-ring. The cyclic molecules with intrinsic curvature are found to be more deformable under superhelical stress than rings formed from naturally straight DNA. As superhelical stress is accumulated in the DNA, the frequency, i.e., energy, of the dominant bending mode decreases in value, and if the imposed stress is sufficiently large, a global configurational rearrangement of the circle to the figure-8 form takes place. We combine energy minimization with normal-mode calculations of the two states to decipher the configurational pathway between the two states. We also describe and make use of a general analytical treatment of the thermal fluctuations of an elastic rod to characterize the
Quantum number theoretic transforms on multipartite finite systems.
Vourdas, A; Zhang, S
2009-06-01
A quantum system composed of p-1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg-Weyl group in this context is also discussed.
International Nuclear Information System (INIS)
Bonora, Loriano; Bytsenko, Andrey; Elizalde, Emilio
2012-01-01
This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)
Regularization methods for ill-posed problems in multiple Hilbert scales
International Nuclear Information System (INIS)
Mazzieri, Gisela L; Spies, Ruben D
2012-01-01
Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed. (paper)
Hilbert-Schmidt expansion for the nucleon-deuteron scattering amplitude
International Nuclear Information System (INIS)
Moeller, K.; Narodetskii, I.M.
1983-01-01
The Hilbert-Schmidt method is used to sum the divergent iterative series for the partial amplitudes of nucleon-deuteron scattering in the energy region above the deuteron breakup threshold. It is observed that the Hilbert-Schmidt series for the partial amplitudes themselves diverges, which is due to the closeness of the logarithmic singularities. But if the first iterations in the series for multiple scattering are subtracted from the amplitude, the Hilbert-Schmidt series for the remainder converges rapidly. The final answer obtained in the present paper is in excellent agreement with the results obtained in exact calculations
Application of Arbitrary-Order Hilbert Spectral Analysis to Passive Scalar Turbulence
International Nuclear Information System (INIS)
Huang, Y X; Lu, Z M; Liu, Y L; Schmitt, F G; Gagne, Y
2011-01-01
In previous work [Huang et al., PRE 82, 26319, 2010], we found that the passive scalar turbulence field maybe less intermittent than what we believed before. Here we apply the same method, namely arbitrary-order Hilbert spectral analysis, to a passive scalar (temperature) time series with a Taylor's microscale Reynolds number Re λ ≅ 3000. We find that with increasing Reynolds number, the discrepancy of scaling exponents between Hilbert ξ θ (q) and Kolmogorov-Obukhov-Corrsin (KOC) theory is increasing, and consequently the discrepancy between Hilbert and structure function could disappear at infinite Reynolds number.
Dual pairs of gabor frames for trigonometric generators without the partition of unity property
DEFF Research Database (Denmark)
Christensen, Ole; Jakobsen, Mads Sielemann
2011-01-01
Frames is a strong tool to obtain series expansions in Hilbert spaces under less restrictive conditions than imposed by orthonormal bases. In order to apply frame theory it is necessary to construct a pair of so called dual frames. The goal of the article is to provide explicit constructions...... of dual pairs of frames having Gabor structure. Unlike the results presented in the literature we do not base the constructions on a generator satisfying the partition of unity constraint....
International Nuclear Information System (INIS)
Arik, M.
1991-01-01
It is shown that the differential calculus of Wess and Zumino for the quantum hyperplane is intimately related to the q-difference operator acting on the n-dimensional complex space C n . An explicit transformation relates the variables and the q-difference operators on C n to the variables and the quantum derivatives on the quantum hyperplane. For real values of the quantum parameter q, the consideration of the variables and the derivatives as hermitean conjugates yields a quantum deformation of the Bargmann-Segal Hilbert space of analytic functions on C n . Physically such a system can be interpreted as the quantum deformation of the n dimensional harmonic oscillator invariant under the unitary quantum group U q (n) with energy eigenvalues proportional to the basic integers. Finally, a construction of the variables and quantum derivatives on the quantum hyperplane in terms of variables and ordinary derivatives on C n is presented. (orig.)
Generalized Polar Decompositions for Closed Operators in Hilbert Spaces and Some Applications
Gesztesy, Fritz; Malamud, Mark; Mitrea, Marius; Naboko, Serguei
2008-01-01
We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.
Positive-definite functions and unitary representations of locally compact groups in a Hilbert space
International Nuclear Information System (INIS)
Gali, I.M.; Okb el-Bab, A.S.; Hassan, H.M.
1977-08-01
It is proved that the necessary and sufficient condition for the existence of an integral representation of a group of unitary operators in a Hilbert space is that it is positive-definite and continuous in some topology
On the minimizers of calculus of variations problems in Hilbert spaces
Gomes, Diogo A.
2014-01-19
The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.
On the minimizers of calculus of variations problems in Hilbert spaces
Gomes, Diogo A.; Nurbekyan, Levon
2014-01-01
The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.
Continuous Slice Functional Calculus in Quaternionic Hilbert Spaces
Ghiloni, Riccardo; Moretti, Valter; Perotti, Alessandro
2013-04-01
The aim of this work is to define a continuous functional calculus in quaternionic Hilbert spaces, starting from basic issues regarding the notion of spherical spectrum of a normal operator. As properties of the spherical spectrum suggest, the class of continuous functions to consider in this setting is the one of slice quaternionic functions. Slice functions generalize the concept of slice regular function, which comprises power series with quaternionic coefficients on one side and that can be seen as an effective generalization to quaternions of holomorphic functions of one complex variable. The notion of slice function allows to introduce suitable classes of real, complex and quaternionic C*-algebras and to define, on each of these C*-algebras, a functional calculus for quaternionic normal operators. In particular, we establish several versions of the spectral map theorem. Some of the results are proved also for unbounded operators. However, the mentioned continuous functional calculi are defined only for bounded normal operators. Some comments on the physical significance of our work are included.
Characterizing sequential isomorphisms on Hilbert-space effect algebras
International Nuclear Information System (INIS)
Hou Jinchuan; He Kan; Qi Xiaofei
2010-01-01
Let * be any sequential product on the Hilbert-space effect algebra E(H) with dim H≥2, and Φ:E(H)→E(H) be a bijective map. We show that if Φ satisfies Φ(A*B) = Φ(A)*Φ(B) for A,B element of E(H), then there is either a unitary or an anti-unitary operator U such that Φ(A) = UAU† for every A element of E(H). Let g:[0,1]→{λ|λ element of C, |λ|=0 or 1} be a Borel function satisfying g(0) = 0, g(1) = 1 and let us define a binary operation lozenge g on E(H) by A lozenge g B = A 1/2 g(A)Bg(A)†A 1/2 , where T† denotes the conjugate of the operator T. We also show that a bijective map Φ:E(H)→E(H) satisfies Φ(A lozenge g B) = Φ(A) lozenge g Φ(B) for A,B element of E(H) if and only if there is either a unitary or an anti-unitary operator U such that Φ(A) = UAU† for every A element of E(H).
An introduction of gauge field by the Lie-isotopic lifting of the Hilbert space
International Nuclear Information System (INIS)
Nishioka, M.
1984-01-01
It is introduced the gauge field by the Lie-isotopic lifting of the Hilbert space. Our method is different from other's in that the commutator between the isotropic element and the generators of the Lie algebra does not vanish in our case, but vanishes in other cases. Our method uses the Lie-isotopic lifting of the Hilbert space, but others do not use it
Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields
International Nuclear Information System (INIS)
Albeverio, S.; Brzezniak, Z.
1994-01-01
We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)
Hilbert's 'Foundations of Physics': Gravitation and electromagnetism within the axiomatic method
Brading, K. A.; Ryckman, T. A.
2008-01-01
In November and December 1915, Hilbert presented two communications to the Göttingen Academy of Sciences under the common title 'The Foundations of Physics'. Versions of each eventually appeared in the Nachrichten of the Academy. Hilbert's first communication has received significant reconsideration in recent years, following the discovery of printer's proofs of this paper, dated 6 December 1915. The focus has been primarily on the 'priority dispute' over the Einstein field equations. Our contention, in contrast, is that the discovery of the December proofs makes it possible to see the thematic linkage between the material that Hilbert cut from the published version of the first communication and the content of the second, as published in 1917. The latter has been largely either disregarded or misinterpreted, and our aim is to show that (a) Hilbert's two communications should be regarded as part of a wider research program within the overarching framework of 'the axiomatic method' (as Hilbert expressly stated was the case), and (b) the second communication is a fine and coherent piece of work within this framework, whose principal aim is to address an apparent tension between general invariance and causality (in the precise sense of Cauchy determination), pinpointed in Theorem I of the first communication. This is not the same problem as that found in Einstein's 'hole argument'-something that, we argue, never confused Hilbert.
Comments on the interacting Einstein-Hilbert drop
International Nuclear Information System (INIS)
Khanal, U.
2004-12-01
The bosonic internal co-ordinates of the Einstein-Hilbert drop is complexified to include U(1) gauge interaction. The equations of motion of the gauge fields are Maxwell equations. The EOM of the internal co-ordinates are elliptic under matter domination and hyperbolic under vacuum domination. These equations take on the familiar form of the wave equation of the interacting massless scalar field in any world spacetime that has the sum of its energy-momentum and Einstein tensors proportional to the induced metric. The reparametrization invariance of the worldtime can be used to identify it with the internal time. This results in a gauge condition that relates time to the curvature, gauge potential and energy-momentum. In gaussian normal co-ordinates of a constant curvature worldspace with real time, this condition translates into vanishing pressure, allowing a solution for the time dependence of the time-component of the vector potential. This potential has a simple pole at the origin of the complex time-plane, and another at a point on the imaginary axis. The singularity at the origin occurs only in the imaginary part of the potential. This potential in turn makes it possible to solve for the time dependence of the internal co-ordinates. Real internal co-ordinates have to be linear in worldtime. The complex internal co-ordinate also has two simple poles: one is at the same point on the imaginary axis as the potential; the other at infinity occurs only in the imaginary part. The origin turns out to be a regular point. (author)
Soft and hard classification by reproducing kernel Hilbert space methods.
Wahba, Grace
2002-12-24
Reproducing kernel Hilbert space (RKHS) methods provide a unified context for solving a wide variety of statistical modelling and function estimation problems. We consider two such problems: We are given a training set [yi, ti, i = 1, em leader, n], where yi is the response for the ith subject, and ti is a vector of attributes for this subject. The value of y(i) is a label that indicates which category it came from. For the first problem, we wish to build a model from the training set that assigns to each t in an attribute domain of interest an estimate of the probability pj(t) that a (future) subject with attribute vector t is in category j. The second problem is in some sense less ambitious; it is to build a model that assigns to each t a label, which classifies a future subject with that t into one of the categories or possibly "none of the above." The approach to the first of these two problems discussed here is a special case of what is known as penalized likelihood estimation. The approach to the second problem is known as the support vector machine. We also note some alternate but closely related approaches to the second problem. These approaches are all obtained as solutions to optimization problems in RKHS. Many other problems, in particular the solution of ill-posed inverse problems, can be obtained as solutions to optimization problems in RKHS and are mentioned in passing. We caution the reader that although a large literature exists in all of these topics, in this inaugural article we are selectively highlighting work of the author, former students, and other collaborators.
Quantized Bogoliubov transformations
International Nuclear Information System (INIS)
Geyer, H.B.
1984-01-01
The boson mapping of single fermion operators in a situation dominated by the pairing force gives rise to a transformation that can be considered a quantized version of the Bogoliubov transformation. This transformation can also be obtained as an exact special case of operators constructed from an approximate treatment of particle number projection, suggesting a method of obtaining the boson mapping in cases more complicated than that of pairing force domination
Analyzing nonstationary financial time series via hilbert-huang transform (HHT)
Huang, Norden E. (Inventor)
2008-01-01
An apparatus, computer program product and method of analyzing non-stationary time varying phenomena. A representation of a non-stationary time varying phenomenon is recursively sifted using Empirical Mode Decomposition (EMD) to extract intrinsic mode functions (IMFs). The representation is filtered to extract intrinsic trends by combining a number of IMFs. The intrinsic trend is inherent in the data and identifies an IMF indicating the variability of the phenomena. The trend also may be used to detrend the data.
Qomah, Isti; Asfani, Dimas Anton; Riawan, Dedet Candra
2016-01-01
Kerusakan batang rotor merupakan salah satu jenis kerusakan pada motor induksi yang dapat menyebabkan masalah serius. Kerusakan tersebut dapat mencapai 5% - 10% dari seluruh kasus gangguan motor induksi. Oleh karena itu, perlu adanya diagnosis awal yang mendeteksi adanya gangguan pada rotor motor induksi, agar dapat dilakukan perbaikan lebih cepat dan tanggap sebelum terjadi gangguan yang lebih besar. Tugas Akhir ini membahas terkait teknik deteksi kerusakan batang rotor pada motor induksi de...
Alabiso, Carlo
2015-01-01
This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...
Advances in delimiting the Hilbert-Schmidt separability probability of real two-qubit systems
International Nuclear Information System (INIS)
Slater, Paul B
2010-01-01
We seek to derive the probability-expressed in terms of the Hilbert-Schmidt (Euclidean or flat) metric-that a generic (nine-dimensional) real two-qubit system is separable, by implementing the well-known Peres-Horodecki test on the partial transposes (PTs) of the associated 4 x 4 density matrices (ρ). But the full implementation of the test-requiring that the determinant of the PT be nonnegative for separability to hold-appears to be, at least presently, computationally intractable. So, we have previously implemented-using the auxiliary concept of a diagonal-entry-parameterized separability function (DESF)-the weaker implied test of nonnegativity of the six 2 x 2 principal minors of the PT. This yielded an exact upper bound on the separability probability of 1024/135π 2 ∼0.76854. Here, we piece together (reflection-symmetric) results obtained by requiring that each of the four 3 x 3 principal minors of the PT, in turn, be nonnegative, giving an improved/reduced upper bound of 22/35∼0.628571. Then, we conclude that a still further improved upper bound of 1129/2100∼0.537619 can be found by similarly piecing together the (reflection-symmetric) results of enforcing the simultaneous nonnegativity of certain pairs of the four 3 x 3 principal minors. Numerical simulations-as opposed to exact symbolic calculations-indicate, on the other hand, that the true probability is certainly less than 1/2 . Our analyses lead us to suggest a possible form for the true DESF, yielding a separability probability of 29/64∼0.453125, while the absolute separability probability of (6928-2205π)/(2 9/2 )∼0.0348338 provides the best exact lower bound established so far. In deriving our improved upper bounds, we rely repeatedly upon the use of certain integrals over cubes that arise. Finally, we apply an independence assumption to a pair of DESFs that comes close to reproducing our numerical estimate of the true separability function.
Analytic discrete cosine harmonic wavelet transform based OFDM ...
Indian Academy of Sciences (India)
ADCHWT_OFDM) has been proposed in this paper. Analytic DCHWT has been realized by applying DCHWT to the original signal and to its Hilbert transform. ADCHWT has been found to be computationally efficient and very effective in improving ...
Experimental Investigation of a Direct Methanol Fuel Cell with Hilbert Fractal Current Collectors
Directory of Open Access Journals (Sweden)
Jing-Yi Chang
2014-01-01
Full Text Available The Hilbert curve is a continuous type of fractal space-filling curve. This fractal curve visits every point in a square grid with a size of 2×2, 4×4, or any other power of two. This paper presents Hilbert fractal curve application to direct methanol fuel cell (DMFC current collectors. The current collectors are carved following first, second, and third order Hilbert fractal curves. These curves give the current collectors different free open ratios and opening perimeters. We conducted an experimental investigation into DMFC performance as a function of the free open ratio and opening perimeter on the bipolar plates. Nyquist plots of the bipolar plates are made and compared using electrochemical impedance spectroscopy (EIS experiments to understand the phenomena in depth. The results obtained in this paper could be a good reference for future current collector design.
H-SLAM: Rao-Blackwellized Particle Filter SLAM Using Hilbert Maps
Directory of Open Access Journals (Sweden)
Guillem Vallicrosa
2018-05-01
Full Text Available Occupancy Grid maps provide a probabilistic representation of space which is important for a variety of robotic applications like path planning and autonomous manipulation. In this paper, a SLAM (Simultaneous Localization and Mapping framework capable of obtaining this representation online is presented. The H-SLAM (Hilbert Maps SLAM is based on Hilbert Map representation and uses a Particle Filter to represent the robot state. Hilbert Maps offer a continuous probabilistic representation with a small memory footprint. We present a series of experimental results carried both in simulation and with real AUVs (Autonomous Underwater Vehicles. These results demonstrate that our approach is able to represent the environment more consistently while capable of running online.
An efficient quantum mechanical method for radical pair recombination reactions.
Lewis, Alan M; Fay, Thomas P; Manolopoulos, David E
2016-12-28
The standard quantum mechanical expressions for the singlet and triplet survival probabilities and product yields of a radical pair recombination reaction involve a trace over the states in a combined electronic and nuclear spin Hilbert space. If this trace is evaluated deterministically, by performing a separate time-dependent wavepacket calculation for each initial state in the Hilbert space, the computational effort scales as O(Z 2 logZ), where Z is the total number of nuclear spin states. Here we show that the trace can also be evaluated stochastically, by exploiting the properties of spin coherent states. This results in a computational effort of O(MZlogZ), where M is the number of Monte Carlo samples needed for convergence. Example calculations on a strongly coupled radical pair with Z>10 6 show that the singlet yield can be converged to graphical accuracy using just M=200 samples, resulting in a speed up by a factor of >5000 over a standard deterministic calculation. We expect that this factor will greatly facilitate future quantum mechanical simulations of a wide variety of radical pairs of interest in chemistry and biology.
On the discovery of the gravitational field equations by Einstein and Hilbert: new materials
International Nuclear Information System (INIS)
Vizgin, Vladimir P
2001-01-01
This article describes the history of discovery of the equations of gravitational field by Albert Einstein and David Hilbert in November 1915. The proof sheet of Hilbert's lecture report, made on 20 November 1915 and published in March 1916, rediscovered in 1997 in the archive of the university of Goettingen, throws new light on the history of this discovery. We also discuss the early history of the general theory of relativity that led to the expression of the general covariant equations of gravitational field. (from the history of physics)
Directory of Open Access Journals (Sweden)
Marcos Moshinsky
2008-07-01
Full Text Available For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.
A New General Iterative Method for a Finite Family of Nonexpansive Mappings in Hilbert Spaces
Directory of Open Access Journals (Sweden)
Singthong Urailuk
2010-01-01
Full Text Available We introduce a new general iterative method by using the -mapping for finding a common fixed point of a finite family of nonexpansive mappings in the framework of Hilbert spaces. A strong convergence theorem of the purposed iterative method is established under some certain control conditions. Our results improve and extend the results announced by many others.
Hilbert scheme of points on cyclic quotient singularities of type (p,1)
Gyenge, Ádám
2016-01-01
In this note we investigate the generating series of the Euler characteristics of Hilbert scheme of points on cyclic quotient singularities of type (p,1). We link the appearing combinatorics to p-fountains, a generalization of the notion of fountain of coins. We obtain a representation of the generating series as coefficient of a two variable generating series.
Heterotic reduction of Courant algebroid connections and Einstein–Hilbert actions
Energy Technology Data Exchange (ETDEWEB)
Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Prague 186 75 (Czech Republic); Vysoký, Jan, E-mail: vysoky@math.cas.cz [Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, Prague 115 67 (Czech Republic); Mathematical Sciences Institute, Australian National University, Acton ACT 2601 (Australia)
2016-08-15
We discuss Levi-Civita connections on Courant algebroids. We define an appropriate generalization of the curvature tensor and compute the corresponding scalar curvatures in the exact and heterotic case, leading to generalized (bosonic) Einstein–Hilbert type of actions known from supergravity. In particular, we carefully analyze the process of the reduction for the generalized metric, connection, curvature tensor and the scalar curvature.
Heterotic reduction of Courant algebroid connections and Einstein–Hilbert actions
International Nuclear Information System (INIS)
Jurčo, Branislav; Vysoký, Jan
2016-01-01
We discuss Levi-Civita connections on Courant algebroids. We define an appropriate generalization of the curvature tensor and compute the corresponding scalar curvatures in the exact and heterotic case, leading to generalized (bosonic) Einstein–Hilbert type of actions known from supergravity. In particular, we carefully analyze the process of the reduction for the generalized metric, connection, curvature tensor and the scalar curvature.
Hilbert's sixth problem: between the foundations of geometry and the axiomatization of physics.
Corry, Leo
2018-04-28
The sixth of Hilbert's famous 1900 list of 23 problems was a programmatic call for the axiomatization of the physical sciences. It was naturally and organically rooted at the core of Hilbert's conception of what axiomatization is all about. In fact, the axiomatic method which he applied at the turn of the twentieth century in his famous work on the foundations of geometry originated in a preoccupation with foundational questions related with empirical science in general. Indeed, far from a purely formal conception, Hilbert counted geometry among the sciences with strong empirical content, closely related to other branches of physics and deserving a treatment similar to that reserved for the latter. In this treatment, the axiomatization project was meant to play, in his view, a crucial role. Curiously, and contrary to a once-prevalent view, from all the problems in the list, the sixth is the only one that continually engaged Hilbet's efforts over a very long period of time, at least between 1894 and 1932.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Two New Iterative Methods for a Countable Family of Nonexpansive Mappings in Hilbert Spaces
Directory of Open Access Journals (Sweden)
Hu Changsong
2010-01-01
Full Text Available We consider two new iterative methods for a countable family of nonexpansive mappings in Hilbert spaces. We proved that the proposed algorithms strongly converge to a common fixed point of a countable family of nonexpansive mappings which solves the corresponding variational inequality. Our results improve and extend the corresponding ones announced by many others.
Hilbert space representation of the SOq(N)-covariant Heisenberg algebra
International Nuclear Information System (INIS)
Hebecker, A.; Weich, W.
1993-01-01
The differential calculus on SO q (N)-covariant quantum planes is rewritten in polar co-ordinates. Thus a Hilbert space formulation of q-deformed quantum mechanics can be developed particularly suitable for spherically symmetric potentials. The simplest case of a free particle is solved showing a discrete energy spectrum. (orig.)
Hilbert's sixth problem: between the foundations of geometry and the axiomatization of physics
Corry, Leo
2018-04-01
The sixth of Hilbert's famous 1900 list of 23 problems was a programmatic call for the axiomatization of the physical sciences. It was naturally and organically rooted at the core of Hilbert's conception of what axiomatization is all about. In fact, the axiomatic method which he applied at the turn of the twentieth century in his famous work on the foundations of geometry originated in a preoccupation with foundational questions related with empirical science in general. Indeed, far from a purely formal conception, Hilbert counted geometry among the sciences with strong empirical content, closely related to other branches of physics and deserving a treatment similar to that reserved for the latter. In this treatment, the axiomatization project was meant to play, in his view, a crucial role. Curiously, and contrary to a once-prevalent view, from all the problems in the list, the sixth is the only one that continually engaged Hilbet's efforts over a very long period of time, at least between 1894 and 1932. This article is part of the theme issue `Hilbert's sixth problem'.
The classes of the quasihomogeneous Hilbert schemes of points on the plane
Buryak, A.
2012-01-01
Abstract: In this paper we give a formula for the classes (in the Grothendieck ring of complex quasi-projective varieties) of irreducible components of -quasi-homogeneous Hilbert schemes of points on the plane. We find a new simple geometric interpretation of the -Catalan numbers. Finally, we
Weighted Traffic Equilibrium Problem in Non Pivot Hilbert Spaces with Long Term Memory
International Nuclear Information System (INIS)
Giuffre, Sofia; Pia, Stephane
2010-01-01
In the paper we consider a weighted traffic equilibrium problem in a non-pivot Hilbert space and prove the equivalence between a weighted Wardrop condition and a variational inequality with long term memory. As an application we show, using recent results of the Senseable Laboratory at MIT, how wireless devices can be used to optimize the traffic equilibrium problem.
A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function.
Wang, Aizhen; Yang, Bicheng
2017-01-01
By means of the weight functions, the technique of real analysis and Hermite-Hadamard's inequality, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of logarithmic function and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions, the reverses and some particular cases are also considered.
A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function
Directory of Open Access Journals (Sweden)
Aizhen Wang
2017-06-01
Full Text Available Abstract By means of the weight functions, the technique of real analysis and Hermite-Hadamard’s inequality, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of logarithmic function and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions, the reverses and some particular cases are also considered.
Asymptotic behaviour of unbounded trajectories for some non-autonomous systems in a Hilbert space
International Nuclear Information System (INIS)
Djafari Rouhani, B.
1990-07-01
The asymptotic behaviour of unbounded trajectories for non expansive mappings in a real Hilbert space and the extension to more general Banach spaces and to nonlinear contraction semi-group have been studied by many authors. In this paper we study the asymptotic behaviour of unbounded trajectories for a quasi non-autonomous dissipative systems. 26 refs
Effective realistic interactions for low momentum Hilbert spaces
International Nuclear Information System (INIS)
Weber, Dennis
2012-01-01
method to calculate the operator representation is applied to different effective realistic potentials. In a first application the Argonne V18 potential, transformed by means of the Unitary Correlation Operator Method (UCOM), is considered. As second application an operator representation of the Similarity Renormalization Group (SRG) transformed Argonne potential is obtained. Finally an operator representation of the JISP16 interaction, which is specifically designed for the harmonic oscillator basis, is derived by using the same ansatz as for the SRG transformed Argonne potential.Summing up, there is no general set of operators which can be used to describe all the different effective interactions by just adjusting the particular radial functions. However, it is possible to find a suitable operator representation, even for effective operators that are specifically designed for numerical feasibility and are treating each partial wave separately.
Energy Technology Data Exchange (ETDEWEB)
Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)
1996-12-31
Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.
International Nuclear Information System (INIS)
Hallenga, K.
1991-01-01
This paper discusses the concept of Fourier transformation one of the many precious legacies of the French mathematician Jean Baptiste Joseph Fourier, essential for understanding the link between continuous-wave (CW) and Fourier transform (FT) NMR. Although in modern FT NMR the methods used to obtain a frequency spectrum from the time-domain signal may vary greatly, from the efficient Cooley-Tukey algorithm to very elaborate iterative least-square methods based other maximum entropy method or on linear prediction, the principles for Fourier transformation are unchanged and give invaluable insight into the interconnection of many pairs of physical entities called Fourier pairs
Entanglement between total intensity and polarization for pairs of coherent states
Sanchidrián-Vaca, Carlos; Luis, Alfredo
2018-04-01
We examine entanglement between number and polarization, or number and relative phase, in pair coherent states and two-mode squeezed vacuum via linear entropy and covariance criteria. We consider the embedding of the two-mode Hilbert space in a larger space to get a well-defined factorization of the number-phase variables. This can be regarded as a kind of protoentanglement that can be extracted and converted into real particle entanglement via feasible experimental procedures. In particular this reveals interesting entanglement properties of pairs of coherent states.
Gear Fault Detection Based on Teager-Huang Transform
Directory of Open Access Journals (Sweden)
Hui Li
2010-01-01
Full Text Available Gear fault detection based on Empirical Mode Decomposition (EMD and Teager Kaiser Energy Operator (TKEO technique is presented. This novel method is named as Teager-Huang transform (THT. EMD can adaptively decompose the vibration signal into a series of zero mean Intrinsic Mode Functions (IMFs. TKEO can track the instantaneous amplitude and instantaneous frequency of the Intrinsic Mode Functions at any instant. The experimental results provide effective evidence that Teager-Huang transform has better resolution than that of Hilbert-Huang transform. The Teager-Huang transform can effectively diagnose the fault of the gear, thus providing a viable processing tool for gearbox defect detection and diagnosis.
Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment
International Nuclear Information System (INIS)
El Naschie, M.S.
2006-01-01
On the one hand, a rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space and as we move to the second quantization, a Fock space. On the other hand, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we utilize some novel reinterpretations of basic E (∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. Proceeding in this way, we gain a better understanding of the physico-mathematical structure of quantum spacetime which is at the heart of the paradoxical and non-intuitive outcome of the famous quantum two-slit gedanken experiment
Hilbert Series and Mixed Branches of T[SU(N)] theories
Energy Technology Data Exchange (ETDEWEB)
Carta, Federico [Departamento de Física Teórica and Instituto de Física Teórica UAM-CSIC,Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Hayashi, Hirotaka [Departamento de Física Teórica and Instituto de Física Teórica UAM-CSIC,Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Tokai University,4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)
2017-02-07
We consider mixed branches of 3dN=4T[SU(N)] theory. We compute the Hilbert series of the Coulomb branch part of the mixed branch from a restriction rule acting on the Hilbert series of the full Coulomb branch that will truncate the magnetic charge summation only to the subset of BPS dressed monopole operators that arise in the Coulomb branch sublocus where the mixed branch stems. This restriction can be understood directly from the type IIB brane picture by a relation between the magnetic charges of the monopoles and brane position moduli. We also apply the restriction rule to the Higgs branch part of a given mixed branch by exploiting 3d mirror symmetry. Both cases show complete agreement with the results calculated by different methods.
International Nuclear Information System (INIS)
Mei Jianwei
2012-01-01
We suggest a way to study possible conformal symmetries on black hole horizons. We do this by carrying out a Kaluza-Klein-like reduction of the Einstein-Hilbert action along the ignorable coordinates of stationary and axisymmetric black holes. Rigid diffeomorphism invariance of the m-ignorable coordinates then becomes a global SL(m, R) gauge symmetry of the reduced action. Related to each non-vanishing angular velocity, there is a particular SL(2, R) subgroup, which can be extended to the Witt algebra on the black hole horizons. The classical Einstein-Hilbert action thus has k-copies of infinite-dimensional conformal symmetries on a given black hole horizon, with k being the number of non-vanishing angular velocities of the black hole. (paper)
States in the Hilbert space formulation and in the phase space formulation of quantum mechanics
International Nuclear Information System (INIS)
Tosiek, J.; Brzykcy, P.
2013-01-01
We consider the problem of testing whether a given matrix in the Hilbert space formulation of quantum mechanics or a function considered in the phase space formulation of quantum theory represents a quantum state. We propose several practical criteria for recognising states in these two versions of quantum physics. After minor modifications, they can be applied to check positivity of any operators acting in a Hilbert space or positivity of any functions from an algebra with a ∗-product of Weyl type. -- Highlights: ► Methods of testing whether a given matrix represents a quantum state. ► The Stratonovich–Weyl correspondence on an arbitrary symplectic manifold. ► Criteria for checking whether a function on a symplectic space is a Wigner function
Explicit solution of Riemann-Hilbert problems for the Ernst equation
Klein, C.; Richter, O.
1998-01-01
Riemann-Hilbert problems are an important solution technique for completely integrable differential equations. They are used to introduce a free function in the solutions which can be used at least in principle to solve initial or boundary value problems. But even if the initial or boundary data can be translated into a Riemann-Hilbert problem, it is in general impossible to obtain explicit solutions. In the case of the Ernst equation, however, this is possible for a large class because the matrix problem can be shown to be gauge equivalent to a scalar one on a hyperelliptic Riemann surface that can be solved in terms of theta functions. As an example we discuss the rigidly rotating dust disk.
Energy Technology Data Exchange (ETDEWEB)
Degroote, M. [Rice Univ., Houston, TX (United States); Henderson, T. M. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)
2018-01-03
We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.
Controlled G-Frames and Their G-Multipliers in Hilbert spaces
Rahimi, Asghar; Fereydooni, Abolhassan
2012-01-01
Multipliers have been recently introduced by P. Balazs as operators for Bessel sequences and frames in Hilbert spaces. These are operators that combine (frame-like) analysis, a multiplication with a fixed sequence (called the symbol) and synthesis. Weighted and controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator Also g-frames are the most popular generalization of frames that include almost all of the frame extens...
A simple proof to an extension of a theorem of A. Pazy in Hilbert space
International Nuclear Information System (INIS)
Djafari Rouhani, B.
1990-08-01
We prove that if (x n ) n≥0 is a non expansive sequence in a Hilbert space H, the sequence ( n x n ) n≥1 converges strongly in H to the element of minimum norm in the closed convex hull of the sequence (x n+1 -x n ) n≥0 . This result was previously proved; the proof we give here is even much simpler and can be extended to a Banach space. 29 refs
Response to the Comment by G. Emch on projective group representations in quaternionic Hilbert space
International Nuclear Information System (INIS)
Adler, S.L.
1996-01-01
We discuss the differing definitions of complex and quaternionic projective group representations employed by us and by Emch. The definition of Emch (termed here a strong projective representation) is too restrictive to accommodate quaternionic Hilbert space embeddings of complex projective representations. Our definition (termed here a weak projective representation) encompasses such embeddings, and leads to a detailed theory of quaternionic, as well as complex, projective group representations. copyright 1996 American Institute of Physics
DEFF Research Database (Denmark)
Truelsen, Jimi Lee
W. Luo and P. Sarnak have proved quantum unique ergodicity for Eisenstein series on $PSL(2,Z) \\backslash H$. We extend their result to Eisenstein series on $PSL(2,O) \\backslash H^n$, where $O$ is the ring of integers in a totally real field of degree $n$ over $Q$ with narrow class number one, using...... the Eisenstein series considered by I. Efrat. We also give an expository treatment of the theory of Hecke operators on non-holomorphic Hilbert modular forms....
Wiener-Hopf operators on spaces of functions on R+ with values in a Hilbert space
Petkova, Violeta
2006-01-01
A Wiener-Hopf operator on a Banach space of functions on R+ is a bounded operator T such that P^+S_{-a}TS_a=T, for every positive a, where S_a is the operator of translation by a. We obtain a representation theorem for the Wiener-Hopf operators on a large class of functions on R+ with values in a separable Hilbert space.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
Energy Technology Data Exchange (ETDEWEB)
Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
International Nuclear Information System (INIS)
Agaltsov, A. D.; Novikov, R. G.
2014-01-01
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given
Nonrelativistic multichannel quantum scattering theory in a two Hilbert space formulation
International Nuclear Information System (INIS)
Chandler, C.
1977-08-01
A two-Hilbert-space form of an abstract scattering theory specifically applicable to multichannel quantum scattering problems is outlined. General physical foundations of the theory are reviewed. Further topics discussed include the invariance principle, asymptotic completeness of the wave operators, representations of the scattering operator in terms of transition operators and fundamental equations that these transition operators satisfy. Outstanding problems, including the difficulties of including Coulomb interactions in the theory, are pointed out. (D.P.)
Vertex operators, non-abelian orbifolds and the Riemann-Hilbert problem
International Nuclear Information System (INIS)
Gato, B.; Massachusetts Inst. of Tech., Cambridge
1990-01-01
We show how to construct the oscillator part of vertex operators for the bosonic string moving on non-abelian orbifolds, using the conserved charges method. When the three-string vertices are twisted by non-commuting group elements, the construction of the conserved charges becomes the Riemann-Hilbert problem with monodromy matrices given by the twists. This is solvable for any given configuration and any non-abelian orbifold. (orig.)
Approximately dual frames in Hilbert spaces and applications to Gabor frames
Christensen, Ole; Laugesen, Richard S.
2011-01-01
Approximately dual frames are studied in the Hilbert space setting. Approximate duals are easier to construct than classical dual frames, and can be tailored to yield almost perfect reconstruction. Bounds on the deviation from perfect reconstruction are obtained for approximately dual frames constructed via perturbation theory. An alternative bound is derived for the rich class of Gabor frames, by using the Walnut representation of the frame operator to estimate the deviation from equality in...
Estimates of solutions of certain classes of second-order differential equations in a Hilbert space
International Nuclear Information System (INIS)
Artamonov, N V
2003-01-01
Linear second-order differential equations of the form u''(t)+(B+iD)u'(t)+(T+iS)u(t)=0 in a Hilbert space are studied. Under certain conditions on the (generally speaking, unbounded) operators T, S, B and D the correct solubility of the equation in the 'energy' space is proved and best possible (in the general case) estimates of the solutions on the half-axis are obtained
Limit distribution function of inhomogeneities in regions with random boundary in the Hilbert space
International Nuclear Information System (INIS)
Rasulova, M.Yu.; Tashpulatov, S.M.
2004-10-01
The interaction of charged particle systems with a membrane consisting of nonhomogeneities which are randomly distributed by the same law in the vicinity of appropriate sites of a planax crystal lattice is studied. A system of equations for the self-consistent potential U 1 (x,ξ 0 ,..., ξ N ,...) and the density of induced charges σ(x,ξ 0 ,...,ξ N ,...) is solved on Hilbert space. (author)
Hilbert spaces contractively included in the Hardy space of the bidisk
Alpay, D.; Bolotnikov, V.; Dijksma, A.; Sadosky, C.
We study the reproducing kernel Hilbert spaces h(D-2,S) with kernels of the form I-S(z(1),z(2)>)S(w(1),w(2))*/(1-z(1)w(1)*) (1-z(2)w(2)*) where S(z(1),z(2)) is a Schur function of two variables z(1),z(2)is an element of D. They are analogs of the spaces h(D,S) with reproducing kernel
INFORMATIVE ENERGY METRIC FOR SIMILARITY MEASURE IN REPRODUCING KERNEL HILBERT SPACES
Directory of Open Access Journals (Sweden)
Songhua Liu
2012-02-01
Full Text Available In this paper, information energy metric (IEM is obtained by similarity computing for high-dimensional samples in a reproducing kernel Hilbert space (RKHS. Firstly, similar/dissimilar subsets and their corresponding informative energy functions are defined. Secondly, IEM is proposed for similarity measure of those subsets, which converts the non-metric distances into metric ones. Finally, applications of this metric is introduced, such as classification problems. Experimental results validate the effectiveness of the proposed method.
Quantum limits to information about states for finite dimensional Hilbert space
International Nuclear Information System (INIS)
Jones, K.R.W.
1990-01-01
A refined bound for the correlation information of an N-trial apparatus is developed via an heuristic argument for Hilbert spaces of arbitrary finite dimensionality. Conditional upon the proof of an easily motivated inequality it was possible to find the optimal apparatus for large ensemble quantum Inference, thereby solving the asymptotic optimal state determination problem. In this way an alternative inferential uncertainty principle, is defined which is then contrasted with the usual Heisenberg uncertainty principle. 6 refs
Monopole operators and Hilbert series of Coulomb branches of 3 d = 4 gauge theories
Cremonesi, Stefano; Hanany, Amihay; Zaffaroni, Alberto
2014-01-01
This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.
Directory of Open Access Journals (Sweden)
George Isac
2004-01-01
Full Text Available In the first part of this paper we present a representation theorem for the directional derivative of the metric projection operator in an arbitrary Hilbert space. As a consequence of the representation theorem, we present in the second part the development of the theory of projected dynamical systems in infinite dimensional Hilbert space. We show that this development is possible if we use the viable solutions of differential inclusions. We use also pseudomonotone operators.
Alpay, Daniel
2015-01-01
This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.
Endocrine factors of pair bonding.
Stárka, L
2007-01-01
Throughout literature--fiction and poetry, fine arts and music--falling in love and enjoying romantic love plays a central role. While several psychosocial conceptions of pair attachment consider the participation of hormones, human endocrinology has dealt with this theme only marginally. According to some authors in addictology, falling in love shows some signs of hormonal response to stressors with changes in dopamine and serotonin signalling and neurotrophin (transforming growth factor b) concentration. Endorphins, oxytocin and vasopressin may play a role during the later phases of love. However, proof of hormonal events associated with love in humans has, until recently, been lacking.
Directory of Open Access Journals (Sweden)
Juan Ospina
2006-12-01
Full Text Available Hypercomputers compute functions or numbers, or more generally solve problems or carry out tasks, that cannot be computed or solved by a Turing machine. An adaptation of Tien D. Kieu¿s quantum hypercomputational algorithm is carried out for the dynamical algebra su(1, 1 of the Poschl-Teller potentials. The classically incomputable problem that is resolved with this hypercomputational algorithm is Hilbert¿s tenth problem. We indicated that an essential mathematical condition of these algorithms is the existence of infinitedimensional unitary irreducible representations of low dimensional dynamical algebras that allow the construction of coherent states of the Barut-Girardello type. In addition, we presented as a particular case of our hypercomputational algorithm on Poschl-Teller potentials, the hypercomputational algorithm on an infinite square well presented previously by the authors.Los hipercomputadores computan funciones o números, o en general solucionan problemas que no pueden ser computados o solucionados por una máquina de Turing. Se presenta una adaptación del algoritmo cuántico hipercomputacional propuesto por Tien D. Kieu, al álgebra dinámica su(1, 1 realizada en los potenciales Pöschl-Teller. El problema clásicamente incomputable que se resuelve con este algoritmo hipercomputacional es el d´ecimo problema de Hilbert. Se señala que una condición matemática fundamental para estos algoritmos es la existencia de una representación unitaria infinito dimensional irreducible de álgebras de baja dimensión que admitan la construcción de estados coherentes del tipo Barut-Girardello. Adicionalmente se presenta como caso límite del algoritmo propuesto sobre los potenciales Pöschl-Teller, el algoritmo hipercomputacional sobre la caja de potencial infinita construido previamente por los autores.
Energy Technology Data Exchange (ETDEWEB)
Xin, Zhou [Wisconsin Univ., Madison (USA). Dept. of Mathematics
1990-03-01
For the direct-inverse scattering transform of the time dependent Schroedinger equation, rigorous results are obtained based on an operator-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution. (orig.).
International Nuclear Information System (INIS)
Zhou Xin
1990-01-01
For the direct-inverse scattering transform of the time dependent Schroedinger equation, rigorous results are obtained based on an operator-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution. (orig.)
The Fourier transform for certain hyperkähler fourfolds
Shen, Mingmin
2016-01-01
Using a codimension-1 algebraic cycle obtained from the PoincarÃ© line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \\mathrm{CH}^*(A). By using a codimension-2 algebraic cycle representing the Beauvilleâe"Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of HyperkÃ¤hler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.
Pairing correlations in nuclei
International Nuclear Information System (INIS)
Baba, C.V.K.
1988-01-01
There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs
Directory of Open Access Journals (Sweden)
Ali Hadi Abdulwahid
2016-12-01
Full Text Available Nowadays, the use of distributed generation (DG has increased because of benefits such as increased reliability, reduced losses, improvement in the line capacity, and less environmental pollution. The protection of microgrids, which consist of generation sources, is one of the most crucial concerns of basic distribution operators. One of the key issues in this field is the protection of microgrids against permanent and temporary failures by improving the safety and reliability of the network. The traditional method has a number of disadvantages. The reliability and stability of a power system in a microgrid depend to a great extent on the efficiency of the protection scheme. The application of Artificial Intelligence approaches was introduced recently in the protection of distribution networks. The fault detection method depends on differential relay based on Hilbert Space-Based Power (HSBP theory to achieve fastest primary protection. It is backed up by a total harmonic distortion (THD detection method that takes over in case of a failure in the primary method. The backup protection would be completely independent of the main protection. This is rarely attained in practice. This paper proposes a new algorithm to improve protection performance by adaptive network-based fuzzy inference system (ANFIS. The protection can be obtained in a novel way based on this theory. An advantage of this algorithm is that the protection system operates in fewer than two cycles after the occurrence of the fault. Another advantage is that the error detection is not dependent on the selection of threshold values, and all types of internal fault can identify and show that the algorithm operates correctly for all types of faults while preventing unwanted tripping, even if the data were distorted by current transformer (CT saturation or by data mismatches. The simulation results show that the proposed circuit can identify the faulty phase in the microgrid quickly and
Construction of rigged Hilbert spaces to describe resonances and virtual states
International Nuclear Information System (INIS)
Gadella, M.
1983-01-01
In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t > 0 and the other for t < 0, hence showing the irreversibility of the decaying process
Classical and quantum contents of solvable game theory on Hilbert space
International Nuclear Information System (INIS)
Cheon, Taksu; Tsutsui, Izumi
2006-01-01
A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation
Strong Convergence of Hybrid Algorithm for Asymptotically Nonexpansive Mappings in Hilbert Spaces
Directory of Open Access Journals (Sweden)
Juguo Su
2012-01-01
Full Text Available The hybrid algorithms for constructing fixed points of nonlinear mappings have been studied extensively in recent years. The advantage of this methods is that one can prove strong convergence theorems while the traditional iteration methods just have weak convergence. In this paper, we propose two types of hybrid algorithm to find a common fixed point of a finite family of asymptotically nonexpansive mappings in Hilbert spaces. One is cyclic Mann's iteration scheme, and the other is cyclic Halpern's iteration scheme. We prove the strong convergence theorems for both iteration schemes.
Tang, Shaojie; Yang, Yi; Tang, Xiangyang
2012-01-01
Interior tomography problem can be solved using the so-called differentiated backprojection-projection onto convex sets (DBP-POCS) method, which requires a priori knowledge within a small area interior to the region of interest (ROI) to be imaged. In theory, the small area wherein the a priori knowledge is required can be in any shape, but most of the existing implementations carry out the Hilbert filtering either horizontally or vertically, leading to a vertical or horizontal strip that may be across a large area in the object. In this work, we implement a practical DBP-POCS method with radial Hilbert filtering and thus the small area with the a priori knowledge can be roughly round (e.g., a sinus or ventricles among other anatomic cavities in human or animal body). We also conduct an experimental evaluation to verify the performance of this practical implementation. We specifically re-derive the reconstruction formula in the DBP-POCS fashion with radial Hilbert filtering to assure that only a small round area with the a priori knowledge be needed (namely radial DBP-POCS method henceforth). The performance of the practical DBP-POCS method with radial Hilbert filtering and a priori knowledge in a small round area is evaluated with projection data of the standard and modified Shepp-Logan phantoms simulated by computer, followed by a verification using real projection data acquired by a computed tomography (CT) scanner. The preliminary performance study shows that, if a priori knowledge in a small round area is available, the radial DBP-POCS method can solve the interior tomography problem in a more practical way at high accuracy. In comparison to the implementations of DBP-POCS method demanding the a priori knowledge in horizontal or vertical strip, the radial DBP-POCS method requires the a priori knowledge within a small round area only. Such a relaxed requirement on the availability of a priori knowledge can be readily met in practice, because a variety of small
Directory of Open Access Journals (Sweden)
Mourad Kerboua
2014-12-01
Full Text Available We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlinear differential equations of Sobolev type in Hilbert spaces. We use Hölder's inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional stochastic control system to be approximately controllable. An example is given to illustrate the abstract results.
Construction of rigged Hilbert spaces to describe resonances and virtual states
International Nuclear Information System (INIS)
Gadella, M.
1984-01-01
In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t>0 and the other for t<0, hence showing the irreversibility of the decaying process. (orig.)
Vogt, Dominik Walter; Leonhardt, Rainer
2017-07-10
We report on data processing for continuous wave (CW) terahertz (THz) spectroscopy measurements based on a Hilbert spectral analysis to achieve MHz resolution. As an example we investigate the spectral properties of a whispering gallery mode (WGM) THz bubble resonator at critical coupling. The experimental verification clearly demonstrates the significant advantages in relative frequency resolution and required acquisition time of the proposed method over the traditional data analysis. An effective frequency resolution, only limited by the precision and stability of the laser beat signal, can be achieved without complex extensions to a standard commercially available CW THz spectrometer.
DEFF Research Database (Denmark)
Truelsen, Jimi Lee
2011-01-01
W. Luo and P. Sarnak have proved the quantum unique ergodicity property for Eisenstein series on PSL(2, )\\. Their result is quantitative in the sense that they find the precise asymptotics of the measure considered. We extend their result to Eisenstein series on , where is the ring of integers...... in a totally real field of degree n over with narrow class number one, using the Eisenstein series considered by I. Efrat. We also give an expository treatment of the theory of Hecke operators on non-holomorphic Hilbert modular forms....
On knottings in the physical Hilbert space of LQG as given by the EPRL model
International Nuclear Information System (INIS)
Bahr, Benjamin
2011-01-01
We consider the EPRL spin foam amplitude for arbitrary embedded two-complexes. Choosing a definition of the face- and edge amplitudes which lead to spin foam amplitudes invariant under trivial subdivisions, we investigate invariance properties of the amplitude under consistent deformations, which are deformations of the embedded two-complex where faces are allowed to pass through each other in a controlled way. Using this surprising invariance, we are able to show that the physical Hilbert space, as defined by the sum over all spin foams, contains no information about knotting classes of graphs anymore.
Recipes for stable linear embeddings from Hilbert spaces to R^m
Puy, Gilles; Davies, Michael; Gribonval, Remi
2017-01-01
We consider the problem of constructing a linear map from a Hilbert space H (possibly infinite dimensional) to Rm that satisfies a restricted isometry property (RIP) on an arbitrary signal model, i.e., a subset of H. We present a generic framework that handles a large class of low-dimensional subsets but also unstructured and structured linear maps. We provide a simple recipe to prove that a random linear map satisfies a general RIP with high probability. We also describe a generic technique ...
Recipes for stable linear embeddings from Hilbert spaces to R^m
Puy, Gilles; Davies, Mike; Gribonval, Rémi
2015-01-01
We consider the problem of constructing a linear map from a Hilbert space $\\mathcal{H}$ (possibly infinite dimensional) to $\\mathbb{R}^m$ that satisfies a restricted isometry property (RIP) on an arbitrary signal model $\\mathcal{S} \\subset \\mathcal{H}$. We present a generic framework that handles a large class of low-dimensional subsets but also unstructured and structured linear maps. We provide a simple recipe to prove that a random linear map satisfies a general RIP on $\\mathcal{S}$ with h...
Diagonalization of a self-adjoint operator acting on a Hilbert module
Directory of Open Access Journals (Sweden)
Parfeny P. Saworotnow
1985-01-01
Full Text Available For each bounded self-adjoint operator T on a Hilbert module H over an H*-algebra A there exists a locally compact space m and a certain A-valued measure μ such that H is isomorphic to L2(μ⊗A and T corresponds to a multiplication with a continuous function. There is a similar result for a commuting family of normal operators. A consequence for this result is a representation theorem for generalized stationary processes.
An Hilbert space approach for a class of arbitrage free implied volatilities models
Brace, A.; Fabbri, G.; Goldys, B.
2007-01-01
We present an Hilbert space formulation for a set of implied volatility models introduced in \\cite{BraceGoldys01} in which the authors studied conditions for a family of European call options, varying the maturing time and the strike price $T$ an $K$, to be arbitrage free. The arbitrage free conditions give a system of stochastic PDEs for the evolution of the implied volatility surface ${\\hat\\sigma}_t(T,K)$. We will focus on the family obtained fixing a strike $K$ and varying $T$. In order to...
A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line
Its, A.; Sukhanov, V.
2016-05-01
The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.
Four-nucleon problem in terms of scattering of Hilbert-Schmidt resonances
International Nuclear Information System (INIS)
Narodetsky, I.M.
1974-01-01
The four-body integral equations are written in terms of the scattering amplitudes for the Hilbert-Schmidt resonances corresponding to the 3*1 and 2*2 subsystems. As a result, the four-body problem is reduced to the many channel two-body problem. A simple diagram technique is introduced which is the generalization of the usual time-ordered nonrelativistic one. The connection between the amplitudes of the two-body reactions and the scattering amplitudes for the resonances is obtained
Riemann-Hilbert approach to the time-dependent generalized sine kernel
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K.
2010-12-15
We derive the leading asymptotic behavior and build a new series representation for the Fredholm determinant of integrable integral operators appearing in the representation of the time and distance dependent correlation functions of integrable models described by a six-vertex R-matrix. This series representation opens a systematic way for the computation of the long-time, long-distance asymptotic expansion for the correlation functions of the aforementioned integrable models away from their free fermion point. Our method builds on a Riemann-Hilbert based analysis. (orig.)
Secure pairing with biometrics
Buhan, I.R.; Boom, B.J.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.
Secure pairing enables two devices that share no prior context with each other to agree upon a security association, which they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping and to a
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.
2011-01-01
Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and
International Nuclear Information System (INIS)
Balantekin, A. B.; Pehlivan, Y.
2007-01-01
We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators
International Nuclear Information System (INIS)
Shimizu, Yoshifumi
2009-01-01
Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)
International Nuclear Information System (INIS)
Valles, James
2008-01-01
Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2015-01-01
pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...
Strong Convergence Theorems for a Pair of Strictly Pseudononspreading Mappings
Directory of Open Access Journals (Sweden)
Bin-Chao Deng
2013-01-01
Full Text Available Let H be a real Hilbert space. Let T1,T2:H→H be k1-, k2-strictly pseudononspreading mappings; let αn and βn be two real sequences in (0,1. For given x0∈H, the sequence xn is generated iteratively by xn+1=βnxn+1-βnTw1αnγfxn+I-μαnBTw2xn, ∀n∈N, where Twi=1−wiI+wiTi with i=1,2 and B:H→H is strongly monotone and Lipschitzian. Under some mild conditions on parameters αn and βn, we prove that the sequence xn converges strongly to the set FixT1∩FixT2 of fixed points of a pair of strictly pseudononspreading mappings T1 and T2.
The solution of the sixth Hilbert problem: the ultimate Galilean revolution
D'Ariano, Giacomo Mauro
2018-04-01
I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: `physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as `clock', `rigid rod', `force', `inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory. This article is part of the theme issue `Hilbert's sixth problem'.
Energy Technology Data Exchange (ETDEWEB)
Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
2014-11-15
This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.
Directory of Open Access Journals (Sweden)
Yaqeen S Mezaal
Full Text Available This paper presents new Wide Bandpass Filter (WBPF and Narrow Bandstop Filter (NBSF incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, -28 dB return loss and -0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, -0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems.
International Nuclear Information System (INIS)
Huang, Xianjun; Hu, Zhirun; Liu, Peiguo
2014-01-01
This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications
The solution of the sixth Hilbert problem: the ultimate Galilean revolution.
D'Ariano, Giacomo Mauro
2018-04-28
I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: 'physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as 'clock', 'rigid rod', 'force', 'inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Lie-algebra expansions, Chern-Simons theories and the Einstein-Hilbert Lagrangian
International Nuclear Information System (INIS)
Edelstein, Jose D.; Hassaine, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge
2006-01-01
Starting from gravity as a Chern-Simons action for the AdS algebra in five dimensions, it is possible to modify the theory through an expansion of the Lie algebra that leads to a system consisting of the Einstein-Hilbert action plus non-minimally coupled matter. The modified system is gauge invariant under the Poincare group enlarged by an Abelian ideal. Although the resulting action naively looks like general relativity plus corrections due to matter sources, it is shown that the non-minimal couplings produce a radical departure from GR. Indeed, the dynamics is not continuously connected to the one obtained from Einstein-Hilbert action. In a matter-free configuration and in the torsionless sector, the field equations are too strong a restriction on the geometry as the metric must satisfy both the Einstein and pure Gauss-Bonnet equations. In particular, the five-dimensional Schwarzschild geometry fails to be a solution; however, configurations corresponding to a brane-world with positive cosmological constant on the worldsheet are admissible when one of the matter fields is switched on. These results can be extended to higher odd dimensions
From Kant to Hilbert a source book in the foundations of mathematics
Ewald, William Bragg
1996-01-01
This two-volume work brings together a comprehensive selection of mathematical works from the period 1707-1930. During this time the foundations of modern mathematics were laid, and From Kant to Hilbert provides an overview of the foundational work in each of the main branches of mathmeatics with narratives showing how they were linked. Now available as a separate volume. - ;Immanuel Kant''s Critique of Pure Reason is widely taken to be the starting point of the modern period of mathematics while David Hilbert was the last great mainstream mathematician to pursue important nineteenth cnetury ideas. This two-volume work provides an overview of this important era of mathematical research through a carefully chosen selection of articles. They provide an insight into the foundations of each of the main branches of mathematics--algebra, geometry, number. theory, analysis, logic and set theory--with narratives to show how they are linked. Classic works by Bolzano, Riemann, Hamilton, Dedekind, and Poincare are repro...
Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations
Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana
2018-05-01
The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.
Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform.
Pang, Bin; Tang, Guiji; Tian, Tian; Zhou, Chong
2018-04-14
When rolling bearing failure occurs, vibration signals generally contain different signal components, such as impulsive fault feature signals, background noise and harmonic interference signals. One of the most challenging aspects of rolling bearing fault diagnosis is how to inhibit noise and harmonic interference signals, while enhancing impulsive fault feature signals. This paper presents a novel bearing fault diagnosis method, namely an improved Hilbert time-time (IHTT) transform, by combining a Hilbert time-time (HTT) transform with principal component analysis (PCA). Firstly, the HTT transform was performed on vibration signals to derive a HTT transform matrix. Then, PCA was employed to de-noise the HTT transform matrix in order to improve the robustness of the HTT transform. Finally, the diagonal time series of the de-noised HTT transform matrix was extracted as the enhanced impulsive fault feature signal and the contained fault characteristic information was identified through further analyses of amplitude and envelope spectrums. Both simulated and experimental analyses validated the superiority of the presented method for detecting bearing failures.
Thermodynamics of pairing phase transition in nuclei
International Nuclear Information System (INIS)
Karim, Afaque; Ahmad, Shakeb
2014-01-01
The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied
Signal transforms in dynamic measurements
Layer, Edward
2015-01-01
This book is devoted to the analysis of measurement signals which requires specific mathematical operations like Convolution, Deconvolution, Laplace, Fourier, Hilbert, Wavelet or Z transform which are all presented in the present book. The different problems refer to the modulation of signals, filtration of disturbance as well as to the orthogonal signals and their use in digital form for the measurement of current, voltage, power and frequency are also widely discussed. All the topics covered in this book are presented in detail and illustrated by means of examples in MathCad and LabVIEW. This book provides a useful source for researchers, scientists and engineers who in their daily work are required to deal with problems of measurement and signal processing and can also be helpful to undergraduate students of electrical engineering.
Mesoscopic pairing without superconductivity
Hofmann, Johannes
2017-12-01
We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.
Investigations into nuclear pairing
International Nuclear Information System (INIS)
Clark, R.M.
2006-01-01
This paper is divided in two main sections focusing on different aspects of collective nuclear behavior. In the first section, solutions are considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes. The second section focuses on the experimental search for the Giant Pairing Vibration (GPV) in nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88-Inch Cyclotron of LBNL to test the idea. (Author)
Asymmetric information capacities of reciprocal pairs of quantum channels
Rosati, Matteo; Giovannetti, Vittorio
2018-05-01
Reciprocal pairs of quantum channels are defined as completely positive transformations which admit a rigid, distance-preserving, yet not completely positive transformation that allows one to reproduce the outcome of one from the corresponding outcome of the other. From a classical perspective these transmission lines should exhibit the same communication efficiency. This is no longer the case in the quantum setting: explicit asymmetric behaviors are reported studying the classical communication capacities of reciprocal pairs of depolarizing and Weyl-covariant channels.
Slater, Paul B.
2018-04-01
We begin by investigating relationships between two forms of Hilbert-Schmidt two-rebit and two-qubit "separability functions"—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas-Andai framework, the independent variable ɛ \\in [0,1] is the ratio σ (V) of the singular values of the 2 × 2 matrix V=D_2^{1/2} D_1^{-1/2} formed from the two 2 × 2 diagonal blocks (D_1, D_2) of a 4 × 4 density matrix D= ||ρ _{ij}||. In the Slater setting, the independent variable μ is the diagonal-entry ratio √{ρ _{11} ρ _ {44}/ρ _ {22 ρ _ {33}}}—with, of central importance, μ =ɛ or μ =1/ɛ when both D_1 and D_2 are themselves diagonal. Lovas and Andai established that their two-rebit "separability function" \\tilde{χ }_1 (ɛ ) (≈ ɛ ) yields the previously conjectured Hilbert-Schmidt separability probability of 29/64. We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and "two-octo[nionic]-bit" counterparts, \\tilde{χ _2}(ɛ ) =1/3 ɛ ^2 ( 4-ɛ ^2) , \\tilde{χ _4}(ɛ ) =1/35 ɛ ^4 ( 15 ɛ ^4-64 ɛ ^2+84) and \\tilde{χ _8} (ɛ )= 1/1287ɛ ^8 ( 1155 ɛ ^8-7680 ɛ ^6+20160 ɛ ^4-25088 ɛ ^2+12740) . These immediately lead to predictions of Hilbert-Schmidt separability/PPT-probabilities of 8/33, 26/323 and 44482/4091349, in full agreement with those of the "concise formula" (Slater in J Phys A 46:445302, 2013), and, additionally, of a "specialized induced measure" formula. Then, we find a Lovas-Andai "master formula," \\tilde{χ _d}(ɛ )= ɛ ^d Γ (d+1)^3 _3\\tilde{F}_2( -{d/2,d/2,d;d/2+1,3 d/2+1;ɛ ^2) }/{Γ ( d/2+1) ^2}, encompassing both even and odd values of d. Remarkably, we are able to obtain the \\tilde{χ _d}(ɛ ) formulas, d=1,2,4, applicable to full (9-, 15-, 27-) dimensional sets of
Multi-dimensional Laplace transforms and applications
International Nuclear Information System (INIS)
Mughrabi, T.A.
1988-01-01
In this dissertation we establish new theorems for computing certain types of multidimensional Laplace transform pairs from known one-dimensional Laplace transforms. The theorems are applied to the most commonly used special functions and so we obtain many two and three dimensional Laplace transform pairs. As applications, some boundary value problems involving linear partial differential equations are solved by the use of multi-dimensional Laplace transformation. Also we establish some relations between the Laplace transformation and other integral transformation in two variables
[Paired kidneys in transplant].
Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús
2009-02-01
Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.
International Nuclear Information System (INIS)
Khrennikov, A.
2005-01-01
We constructed the representation of contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function can be considered as Hilbert space projection of realistic dynamics in a pre space. The basic condition for representing the pre space-dynamics is the law of statistical conservation of energy-conservation of probabilities. The construction of the dynamical representation is an important step in the development of contextual statistical viewpoint of quantum processes. But the contextual statistical model is essentially more general than the quantum one. Therefore in general the Hilbert space projection of the pre space dynamics can be nonlinear and even irreversible (but it is always unitary). There were found conditions of linearity and reversibility of the Hilbert space dynamical projection. We also found conditions for the conventional Schrodinger dynamics (including time-dependent Hamiltonians). We remark that in general even the Schrodinger dynamics is based just on the statistical conservation of energy; for individual systems the law of conservation of energy can be violated (at least in our theoretical model)
The physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory
International Nuclear Information System (INIS)
Ding You; Rovelli, Carlo
2010-01-01
A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In this paper we reconsider the implementation of the constraints that defines the model. We define in a simple way the boundary Hilbert space of the theory, introducing a slight modification of the embedding of the SU(2) representations into the SL(2,C) ones. We then show directly that all constraints vanish on this space in a weak sense. The vanishing is exact (and not just in the large quantum number limit). We also generalize the definition of the volume operator in the spin-foam model to the Lorentzian signature and show that it matches the one of loop quantum gravity, as in the Euclidean case.
Differential Galois theory through Riemann-Hilbert correspondence an elementary introduction
Sauloy, Jacques
2017-01-01
Differential Galois theory is an important, fast developing area which appears more and more in graduate courses since it mixes fundamental objects from many different areas of mathematics in a stimulating context. For a long time, the dominant approach, usually called Picard-Vessiot Theory, was purely algebraic. This approach has been extensively developed and is well covered in the literature. An alternative approach consists in tagging algebraic objects with transcendental information which enriches the understanding and brings not only new points of view but also new solutions. It is very powerful and can be applied in situations where the Picard-Vessiot approach is not easily extended. This book offers a hands-on transcendental approach to differential Galois theory, based on the Riemann-Hilbert correspondence. Along the way, it provides a smooth, down-to-earth introduction to algebraic geometry, category theory and tannakian duality. Since the book studies only complex analytic linear differential equat...
3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries
DEFF Research Database (Denmark)
Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah
2014-01-01
The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA...
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
Regularization in Hilbert space under unbounded operators and general source conditions
International Nuclear Information System (INIS)
Hofmann, Bernd; Mathé, Peter; Von Weizsäcker, Heinrich
2009-01-01
The authors study ill-posed equations with unbounded operators in Hilbert space. This setup has important applications, but only a few theoretical studies are available. First, the question is addressed and answered whether every element satisfies some general source condition with respect to a given self-adjoint unbounded operator. This generalizes a previous result from Mathé and Hofmann (2008 Inverse Problems 24 015009). The analysis then proceeds to error bounds for regularization, emphasizing some specific points for regularization under unbounded operators. The study finally reviews two examples within the light of the present study, as these are fractional differentiation and some Cauchy problems for the Helmholtz equation, both studied previously and in more detail by U Tautenhahn and co-authors
Directory of Open Access Journals (Sweden)
Lajmert Paweł
2018-01-01
Full Text Available In the paper a cutting stability in the milling process of nickel based alloy Inconel 625 is analysed. This problem is often considered theoretically, but the theoretical finding do not always agree with experimental results. For this reason, the paper presents different methods for instability identification during real machining process. A stability lobe diagram is created based on data obtained in impact test of an end mill. Next, the cutting tests were conducted in which the axial cutting depth of cut was gradually increased in order to find a stability limit. Finally, based on the cutting force measurements the stability estimation problem is investigated using the recurrence plot technique and Hilbert vibration decomposition method.
Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†
Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.
2010-01-01
Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506
Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.
Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S
2009-11-26
Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.
Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Cho Yeol
2011-01-01
Full Text Available Abstract In this paper, the existing theorems and methods for finding solutions of systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces are studied. To overcome the difficulties, due to the presence of a proper convex lower semi-continuous function, φ and a mapping g, which appeared in the considered problem, we have used some applications of the resolvent operator technique. We would like to point out that although many authors have proved results for finding solutions of the systems of nonlinear set-valued (mixed variational inequalities problems, it is clear that it cannot be directly applied to the problems that we have considered in this paper because of φ and g. 2000 AMS Subject Classification: 47H05; 47H09; 47J25; 65J15.
Noether Current of the Surface Term of Einstein-Hilbert Action, Virasoro Algebra, and Entropy
Directory of Open Access Journals (Sweden)
Bibhas Ranjan Majhi
2013-01-01
Full Text Available A derivation of Noether current from the surface term of Einstein-Hilbert action is given. We show that the corresponding charge, calculated on the horizon, is related to the Bekenstein-Hawking entropy. Also using the charge, the same entropy is found based on the Virasoro algebra and Cardy formula approach. In this approach, the relevant diffeomorphisms are found by imposing a very simple physical argument: diffeomorphisms keep the horizon structure invariant. This complements similar earlier results (Majhi and Padmanabhan (2012 (arXiv:1204.1422 obtained from York-Gibbons-Hawking surface term. Finally we discuss the technical simplicities and improvements over the earlier attempts and also various important physical implications.
The Schrödinger–Robinson inequality from stochastic analysis on a complex Hilbert space
International Nuclear Information System (INIS)
Khrennikov, Andrei
2013-01-01
We explored the stochastic analysis on a complex Hilbert space to show that one of the cornerstones of quantum mechanics (QM), namely Heisenberg's uncertainty relation, can be derived in the classical probabilistic framework. We created a new mathematical representation of quantum averages: as averages with respect to classical random fields. The existence of a classical stochastic model matching with Heisenberg's uncertainty relation makes the connection between classical and quantum probabilistic models essentially closer. In real physical situations, random fields are valued in the L 2 -space. Hence, although we model QM and not QFT, the classical systems under consideration have an infinite number of degrees of freedom. And in our modeling, infinite-dimensional stochastic analysis is the basic mathematical tool. (comment)
Fano, Guido
2017-01-01
This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic vectors, used to construct spinors, and on conceptual problems associated with measurement, superposition, and decoherence in quantum systems. Here, due attention is paid to Bell’s inequality and the possible existence of hidden variables. Finally, progression toward quantum computation is examined in detail: if quantum computers can be made practicable, enormous enhancements in computing power, artificial intelligence, and secure communication will result...
Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira
2014-06-01
Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
Energy Technology Data Exchange (ETDEWEB)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at [University of Innsbruck, Department of Mathematics (Austria); Tuffaha, Amjad, E-mail: atufaha@aus.edu [American University of Sharjah, Department of Mathematics (United Arab Emirates)
2017-06-15
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solution of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.
Scattering analysis of asymmetric metamaterial resonators by the Riemann-Hilbert approach
DEFF Research Database (Denmark)
Kaminski, Piotr Marek; Ziolkowski, Richard W.; Arslanagic, Samel
2016-01-01
This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell with an ap......This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell...... with an aperture. Exact analytical solution of the problem is derived; it is based on the n-series approach which is casted into the equivalent Riemann-Hilbert problem. The examined configuration leads to large enhancements of the radiated field and to steerable Huygens-like directivity patterns. Particularly...
Tensor algebra over Hilbert space: Field theory in classical phase space
International Nuclear Information System (INIS)
Matos Neto, A.; Vianna, J.D.M.
1984-01-01
It is shown using tensor algebras, namely Symmetric and Grassmann algebras over Hilbert Space that it is possible to introduce field operators, associated to the Liouville equation of classical statistical mechanics, which are characterized by commutation (for Symmetric) and anticommutation (for Grassmann) rules. The procedure here presented shows by construction that many-particle classical systems admit an algebraic structure similar to that of quantum field theory. It is considered explicitly the case of n-particle systems interacting with an external potential. A new derivation of Schoenberg's result about the equivalence between his field theory in classical phase space and the usual classical statistical mechanics is obtained as a consequence of the algebraic structure of the theory as introduced by our method. (Author) [pt
Blanchard, Philippe
2015-01-01
The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods. The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...
Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering
Pelinovsky, Dmitry E.; Sulem, Catherine
A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.
Junctionless Cooper pair transistor
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)
2017-02-15
Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.
2013-01-01
We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of
Energy Technology Data Exchange (ETDEWEB)
Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)
2001-02-01
Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es
Estimating Eulerian spectra from pairs of drifters
LaCasce, Joe
2017-04-01
GPS-tracked surface drifters offer the possibility of sampling energetic variations at the ocean surface on scales of only 10s of meters, much less than that resolved by satellite. Here we investigate whether velocity differences between pairs of drifters can be used to estimate kinetic energy spectra. Theoretical relations between the spectrum and the second-order longitudinal structure function for 2D non-divergent flow are derived. The structure function is a natural statistic for particle pairs and is easily calculated. However it integrates contributions across wavenumber, and this tends to obscure the spectral dependencies when turbulent inertial ranges are of finite extent. Nevertheless, the transform from spectrum to structure function is robust, as illustrated with Eulerian data collected from aircraft. The inverse transform, from structure function to spectrum, is much less robust, yielding poor results in particular at large wavenumbers. This occurs because the transform involves a filter function which magnifies contributions from large pair separations, which tend to be noisy. Fitting the structure function to a polynomial improves the spectral estimate, but not sufficiently to distinguish correct inertial range dependencies. Thus with Lagrangian data, it is appears preferable to focus on structure functions, despite their shortcomings.
Lax pairs: a novel type of separability
International Nuclear Information System (INIS)
Fokas, A S
2009-01-01
An attempt is made to place into historical context the fundamental concept of Lax pairs. For economy of presentation, emphasis is placed on the effectiveness of Lax pairs for the analysis of integrable nonlinear evolution PDEs. It is argued that Lax pairs provide a deeper type of separability than the classical separation of variables. Indeed, it is shown that: (a) the solution of the Cauchy problem of evolution equations is based on the derivation of a nonlinear Fourier transform pair, and this is achieved by employing the spectral analysis of one of the two eigenvalue equations forming a Lax pair; thus, although this methodology still follows the reverent philosophy of the classical separation of variables and transform methods, it can be applied to a class of nonlinear PDEs. (b) The solution of initial-boundary-value problems of evolution equations is based on the simultaneous spectral analysis of both equations forming a Lax pair and hence, in a sense, it employs the synthesis instead of the separation of variables; this methodology does not have a direct classical analogue, however, it can be considered as the nonlinearization of a method which combines Green's function classical integral representations with an analogue of the method of images, but which are now formulated in the spectral (Fourier) instead of the physical space. In addition to presenting a general methodology for analysing initial- and initial-boundary-value problems for nonlinear integrable evolution equations in one and two spatial variables, recent progress is reviewed for the derivation and the solution of integrable nonlinear evolution PDEs formulated in higher than two spatial dimensions. (topical review)
Multi-pair states in electron–positron pair creation
Energy Technology Data Exchange (ETDEWEB)
Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.
2016-09-10
Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Multi-pair states in electron–positron pair creation
International Nuclear Information System (INIS)
Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.
2016-01-01
Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Exploring Function Transformations Using the Common Core
Hall, Becky; Giacin, Rich
2013-01-01
When examining transformations of the plane in geometry, teachers typically have students experiment with transformations of polygons. Students are usually quick to notice patterns with ordered pairs. The Common Core State Standard, Geometry, Congruence 2 (G-CO.2), requires students to describe transformations as functions that take points in the…
General n-dimensional quadrature transform and its application to interferogram demodulation.
Servin, Manuel; Quiroga, Juan Antonio; Marroquin, Jose Luis
2003-05-01
Quadrature operators are useful for obtaining the modulating phase phi in interferometry and temporal signals in electrical communications. In carrier-frequency interferometry and electrical communications, one uses the Hilbert transform to obtain the quadrature of the signal. In these cases the Hilbert transform gives the desired quadrature because the modulating phase is monotonically increasing. We propose an n-dimensional quadrature operator that transforms cos(phi) into -sin(phi) regardless of the frequency spectrum of the signal. With the quadrature of the phase-modulated signal, one can easily calculate the value of phi over all the domain of interest. Our quadrature operator is composed of two n-dimensional vector fields: One is related to the gradient of the image normalized with respect to local frequency magnitude, and the other is related to the sign of the local frequency of the signal. The inner product of these two vector fields gives us the desired quadrature signal. This quadrature operator is derived in the image space by use of differential vector calculus and in the frequency domain by use of a n-dimensional generalization of the Hilbert transform. A robust numerical algorithm is given to find the modulating phase of two-dimensional single-image closed-fringe interferograms by use of the ideas put forward.
Cyclic transformation of orbital angular momentum modes
International Nuclear Information System (INIS)
Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton
2016-01-01
The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states. (paper)
International Nuclear Information System (INIS)
Bach, A.
1981-01-01
A representation of quantum mechanics in terms of classical probability theory by means of integration in Hilbert space is discussed. This formal hidden-variables representation is analysed in the context of impossibility proofs concerning hidden-variables theories. The structural analogy of this formulation of quantum theory with classical statistical mechanics is used to elucidate the difference between classical mechanics and quantum mechanics. (author)
SUR UNE CERTAINE CLASSE D’OPERATEURS A SPECTRE CONCENTRE EN UN POINT DANS UN ESPACE DE HILBERT
Directory of Open Access Journals (Sweden)
B BENDOUKHA
2000-12-01
Full Text Available Le présent travail est consacré à l'étude de certaines classes d’opérateurs qui sont parfaitement définis par leur spectre. Pour ces opérateurs (définis dans des espaces de Hilbert abstraits, on donnera une représentation explicite et uniquement à l’aide du spectre dans l’espace des fonctions à carrés intégrables.
Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces
International Nuclear Information System (INIS)
Höhn, Philipp A.
2014-01-01
A temporally varying discretization often features in discrete gravitational systems and appears in lattice field theory models subject to a coarse graining or refining dynamics. To better understand such discretization changing dynamics in the quantum theory, an according formalism for constrained variational discrete systems is constructed. While this paper focuses on global evolution moves and, for simplicity, restricts to flat configuration spaces R N , a Paper II [P. A. Höhn, “Quantization of systems with temporally varying discretization. II. Local evolution moves,” J. Math. Phys., e-print http://arxiv.org/abs/arXiv:1401.7731 [gr-qc].] discusses local evolution moves. In order to link the covariant and canonical picture, the dynamics of the quantum states is generated by propagators which satisfy the canonical constraints and are constructed using the action and group averaging projectors. This projector formalism offers a systematic method for tracing and regularizing divergences in the resulting state sums. Non-trivial coarse graining evolution moves lead to non-unitary, and thus irreversible, projections of physical Hilbert spaces and Dirac observables such that these concepts become evolution move dependent on temporally varying discretizations. The formalism is illustrated in a toy model mimicking a “creation from nothing.” Subtleties arising when applying such a formalism to quantum gravity models are discussed
A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space
International Nuclear Information System (INIS)
Kaplitskii, V M
2014-01-01
The function Ψ(x,y,s)=e iy Φ(−e iy ,s,x), where Φ(z,s,v) is Lerch's transcendent, satisfies the following two-dimensional formally self-adjoint second-order hyperbolic differential equation, where s=1/2+iλ. The corresponding differential expression determines a densely defined symmetric operator (the minimal operator) on the Hilbert space L 2 (Π), where Π=(0,1)×(0,2π). We obtain a description of the domains of definition of some symmetric extensions of the minimal operator. We show that formal solutions of the eigenvalue problem for these symmetric extensions are represented by functional series whose structure resembles that of the Fourier series of Ψ(x,y,s). We discuss sufficient conditions for these formal solutions to be eigenfunctions of the resulting symmetric differential operators. We also demonstrate a close relationship between the spectral properties of these symmetric differential operators and the distribution of the zeros of some special analytic functions analogous to the Riemann zeta function. Bibliography: 15 titles
Low-derivative operators of the Standard Model effective field theory via Hilbert series methods
Energy Technology Data Exchange (ETDEWEB)
Lehman, Landon; Martin, Adam [Department of Physics, University of Notre Dame,Nieuwland Science Hall, Notre Dame, IN 46556 (United States)
2016-02-12
In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N{sub f}=1 operators.
Parallel magnetic resonance imaging as approximation in a reproducing kernel Hilbert space
International Nuclear Information System (INIS)
Athalye, Vivek; Lustig, Michael; Martin Uecker
2015-01-01
In magnetic resonance imaging data samples are collected in the spatial frequency domain (k-space), typically by time-consuming line-by-line scanning on a Cartesian grid. Scans can be accelerated by simultaneous acquisition of data using multiple receivers (parallel imaging), and by using more efficient non-Cartesian sampling schemes. To understand and design k-space sampling patterns, a theoretical framework is needed to analyze how well arbitrary sampling patterns reconstruct unsampled k-space using receive coil information. As shown here, reconstruction from samples at arbitrary locations can be understood as approximation of vector-valued functions from the acquired samples and formulated using a reproducing kernel Hilbert space with a matrix-valued kernel defined by the spatial sensitivities of the receive coils. This establishes a formal connection between approximation theory and parallel imaging. Theoretical tools from approximation theory can then be used to understand reconstruction in k-space and to extend the analysis of the effects of samples selection beyond the traditional image-domain g-factor noise analysis to both noise amplification and approximation errors in k-space. This is demonstrated with numerical examples. (paper)
Low-derivative operators of the Standard Model effective field theory via Hilbert series methods
International Nuclear Information System (INIS)
Lehman, Landon; Martin, Adam
2016-01-01
In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N_f=1 operators.
International Nuclear Information System (INIS)
Hrasko, P.; Foeldy, L.; Toth, A.
1986-07-01
Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)
Pairing correlations around scission
International Nuclear Information System (INIS)
Krappe, H.J.; Fadeev, S.
2001-01-01
To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler-box potential with a δ-function diaphragm to mimic scission
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2016-01-01
Ethnographers are increasingly making use of Facebook to acquire access and general acquaintance with their field of study. However, little has been written on how Facebook is used methodologically in research that does not have social media sites as the main focus of interest. This article argues...... the au pairs resist and embrace such dominant representations, and on how such representations are ascribed different meanings in the transnational social fields of which the migrant are a part. The article is based on ethnographic fieldwork conducted between 2010 and 2014 in Denmark, the Philippines...
2012-03-01
graphical user interface (GUI) called ALPINE© [18]. Then, it will be converted into a 10 MAT-file that can be read into MATLAB®. At this point...breathing [3]. For comparison purposes, Balocchi et al. recorded the respiratory signal simultaneously with the tachogram (or EKG ) signal. As previously...primary authors, worked to create his own code for implementing the method proposed by Rilling et al. Through reading the BEMD paper and proceeding to
Assessing Intimacy: The Pair Inventory.
Schaefer, Mark T.; Olson, David H.
1981-01-01
Personal Assessment of Intimacy in Relationships (PAIR) provides systematic information in five types of intimacy: emotional, social, sexual, intellectual and recreational. PAIR can be used with couples in marital therapy and enrichment groups. (Author)
QSO Pairs across Active Galaxies
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs ...
International Nuclear Information System (INIS)
Chela-Flores, J.
1981-08-01
A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)
Wang, Victor C. X.; Cranton, Patricia
2011-01-01
The theory of transformative learning has been explored by different theorists and scholars. However, few scholars have made an attempt to make a comparison between transformative learning and Confucianism or between transformative learning and andragogy. The authors of this article address these comparisons to develop new and different insights…
International Nuclear Information System (INIS)
Greiter, M.
1992-01-01
This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8
Laplace transforms and the American straddle
Directory of Open Access Journals (Sweden)
G. Alobaidi
2002-01-01
partial Laplace transform techniques due to Evans et al. (1950 to derive a pair of integral equations giving the locations of the optimal exercise boundaries for an American straddle option with a constant dividend yield.
Backlund transformations as canonical transformations
International Nuclear Information System (INIS)
Villani, A.; Zimerman, A.H.
1977-01-01
Toda and Wadati as well as Kodama and Wadati have shown that the Backlund transformations, for the exponential lattice equation, sine-Gordon equation, K-dV (Korteweg de Vries) equation and modifies K-dV equation, are canonical transformation. It is shown that the Backlund transformation for the Boussinesq equation, for a generalized K-dV equation, for a model equation for shallow water waves and for the nonlinear Schroedinger equation are also canonical transformations [pt
Multi-pair states in electron–positron pair creation
Directory of Open Access Journals (Sweden)
Anton Wöllert
2016-09-01
Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Pair potentials in liquid metals
International Nuclear Information System (INIS)
Faber, T.E.
1980-01-01
The argument which justifies the use of a pair potential to describe the structure-dependent term in the energy of liquid metals is briefly reviewed. Because there is an additional term in the energy which depends upon volume rather than structure, and because the pair potential itself is volume-dependent, the relationship between pair potential and observable properties such as pressure, bulk modulus and pair distribution function is more complicated for liquid metals than it is for molecular liquids. Perhaps for this reason, the agreement between pair potentials inferred from observable properties and pair potentials calculated by means of pseudo-potential theory is still far from complete. The pair potential concept is applicable only to simple liquid metals, in which the electron-ion interaction is weak. No attempt is made to discuss liquid transition and rare-earth metals, which are not simple in this sense. (author)
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Wigner function and tomogram of the pair coherent state
International Nuclear Information System (INIS)
Meng, Xiang-Guo; Wang, Ji-Suo; Fan, Hong-Yi
2007-01-01
Using the entangled state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner function of the pair coherent state is derived. The variations of the Wigner function with the parameters α and q in the ρ-γ phase space are discussed. The physical meaning of the Wigner function for the pair coherent state is given by virtue of its marginal distributions. The tomogram of the pair coherent state is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 ,η 2 ,τ 1 ,τ 2 >
Contextuality for preparations, transformations, and unsharp measurements
International Nuclear Information System (INIS)
Spekkens, R.W.
2005-01-01
The Bell-Kochen-Specker theorem establishes the impossibility of a noncontextual hidden variable model of quantum theory, or equivalently, that quantum theory is contextual. In this paper, an operational definition of contextuality is introduced which generalizes the standard notion in three ways: (i) it applies to arbitrary operational theories rather than just quantum theory (ii) it applies to arbitrary experimental procedures rather than just sharp measurements, and (iii) it applies to a broad class of ontological models of quantum theory rather than just deterministic hidden variable models. We derive three no-go theorems for ontological models, each based on an assumption of noncontextuality for a different sort of experimental procedure; one for preparation procedures, another for unsharp measurement procedures (that is, measurement procedures associated with positive-operator valued measures), and a third for transformation procedures. All three proofs apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs of contextuality
Agaian, Sos; Egiazarian, Karen; Astola, Jaakko
2011-01-01
The Hadamard matrix and Hadamard transform are fundamental problem-solving tools in a wide spectrum of scientific disciplines and technologies, such as communication systems, signal and image processing (signal representation, coding, filtering, recognition, and watermarking), digital logic (Boolean function analysis and synthesis), and fault-tolerant system design. Hadamard Transforms intends to bring together different topics concerning current developments in Hadamard matrices, transforms, and their applications. Each chapter begins with the basics of the theory, progresses to more advanced
Directory of Open Access Journals (Sweden)
Zhou Yinying
2014-01-01
Full Text Available We introduce a hybrid iterative scheme for finding a common element of the set of common fixed points for a family of infinitely nonexpansive mappings, the set of solutions of the varitional inequality problem and the equilibrium problem in Hilbert space. Under suitable conditions, some strong convergence theorems are obtained. Our results improve and extend the corresponding results in (Chang et al. (2009, Min and Chang (2012, Plubtieng and Punpaeng (2007, S. Takahashi and W. Takahashi (2007, Tada and Takahashi (2007, Gang and Changsong (2009, Ying (2013, Y. Yao and J. C. Yao (2007, and Yong-Cho and Kang (2012.
Directory of Open Access Journals (Sweden)
Dang-Oh Kim
2012-01-01
Full Text Available A triple-band flexible loop antenna is proposed for WLAN/WiMAX applications in this paper. The proposed antenna is formed by the third-order Hilbert-curve and bending type structure which provides flexible characteristics. Even though the radius of the curvature for bending antennas is changed, a triple-band feature still remains in the proposed antenna. Moreover, the antenna exhibits the characteristics of omnidirectional radiation pattern and circular polarization. To verify the receiving performance of antenna, a simulation on the antenna factor was conducted by an EM simulator. Based on these results, the suggested antenna makes a noteworthy performance over typical loop antennas.
International Nuclear Information System (INIS)
Reznik, Benni; Groisman, Berry; Aharonov, Yakir
2002-01-01
We present a systematic simple method for constructing deterministic remote operations on single and multiple systems of arbitrary discrete dimensionality. These operations include remote rotations, remote interactions, and measurements. The resources needed for an operation on a two-level system are one ebit and a bidirectional communication of two cbits, and for an n-level system, a pair of entangled n-level particles and two classical 'nits'. In the latter case, there are n-1 possible distinct operations per n-level entangled pair. Similar results apply for generating interaction between a pair of remote systems, while for remote measurements only one-directional classical communication is needed. We further consider remote operations on N spatially distributed systems, and show that the number of possible distinct operations increases here exponentially, with the available number of entangled pairs that are initially distributed between the systems. Our results follow from the properties of a hybrid state-operator object (stator), which describes quantum correlations between states and operations
Probability of primordial black hole pair creation in a modified gravitational theory
International Nuclear Information System (INIS)
Paul, B. C.; Paul, Dilip
2006-01-01
We compute the probability for quantum creation of an inflationary universe with and without a pair of black holes in a modified gravity. The action of the modified theory of gravity contains αR 2 and δR -1 terms in addition to a cosmological constant (Λ) in the Einstein-Hilbert action. The probabilities for the creation of universe with a pair of black holes have been evaluated considering two different kinds of spatial sections, one which accommodates a pair of black holes and the other without black hole. We adopt a technique prescribed by Bousso and Hawking to calculate the above creation probability in a semiclassical approximation using the Hartle-Hawking boundary condition. We note a class of new and physically interesting instanton solutions characterized by the parameters in the action. These instantons may play an important role in the creation of the early universe. We also note that the probability of creation of a universe with a pair of black holes is strongly suppressed with a positive cosmological constant when δ=(4Λ 2 /3) for α>0 but it is more probable for α<-(1/6Λ). In the modified gravity considered here instanton solutions are permitted even without a cosmological constant when one begins with a negative δ
DEFF Research Database (Denmark)
Pedersen, Pia
2012-01-01
Transformation, defined as the step of extracting, arranging and simplifying data into visual form (M. Neurath, 1974), was developed in connection with ISOTYPE (International System Of TYpographic Picture Education) and might well be the most important legacy of Isotype to the field of graphic...... design. Recently transformation has attracted renewed interest because of the book The Transformer written by Robin Kinross and Marie Neurath. My on-going research project, summarized in this paper, identifies and depicts the essential principles of data visualization underlying the process...... of transformation with reference to Marie Neurath’s sketches on the Bilston Project. The material has been collected at the Otto and Marie Neurath Collection housed at the University of Reading, UK. By using data visualization as a research method to look directly into the process of transformation, the project...
Kramers Pairs in configuration interaction
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2003-01-01
The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total ...
International Nuclear Information System (INIS)
Gallego-Castillo, Cristobal; Bessa, Ricardo; Cavalcante, Laura; Lopez-Garcia, Oscar
2016-01-01
Wind power probabilistic forecast is being used as input in several decision-making problems, such as stochastic unit commitment, operating reserve setting and electricity market bidding. This work introduces a new on-line quantile regression model based on the Reproducing Kernel Hilbert Space (RKHS) framework. Its application to the field of wind power forecasting involves a discussion on the choice of the bias term of the quantile models, and the consideration of the operational framework in order to mimic real conditions. Benchmark against linear and splines quantile regression models was performed for a real case study during a 18 months period. Model parameter selection was based on k-fold crossvalidation. Results showed a noticeable improvement in terms of calibration, a key criterion for the wind power industry. Modest improvements in terms of Continuous Ranked Probability Score (CRPS) were also observed for prediction horizons between 6 and 20 h ahead. - Highlights: • New online quantile regression model based on the Reproducing Kernel Hilbert Space. • First application to operational probabilistic wind power forecasting. • Modest improvements of CRPS for prediction horizons between 6 and 20 h ahead. • Noticeable improvements in terms of Calibration due to online learning.
International Nuclear Information System (INIS)
Shirbisheh, Vahid
2012-01-01
As the first step towards developing noncommutative geometry over Hecke C ∗ -algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the subgroup H in a Hecke pair (G, H) is finite, we show that the Hecke pair (G, H) has (RD) if and only if G has (RD). This provides us with a family of examples of Hecke pairs with property (RD). We also adapt Paul Jolissant’s works in Jolissaint (J K-Theory 2:723–735, 1989; Trans Amer Math Soc 317(1):167–196, 1990) to the setting of Hecke C ∗ -algebras and show that when a Hecke pair (G, H) has property (RD), the algebra of rapidly decreasing functions on the set of double cosets is closed under holomorphic functional calculus of the associated (reduced) Hecke C ∗ -algebra. Hence they have the same K 0 -groups.
Instability of vortex pair leapfrogging
DEFF Research Database (Denmark)
Tophøj, Laust; Aref, Hassan
2013-01-01
Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...
Thermo field dynamics in the treatment of the nuclear pairing problem at finite temperature
International Nuclear Information System (INIS)
Civitarese, O.; DePaoli, A.L.
1993-01-01
The use of the thermo field dynamics, in dealing with the study of nuclear properties at finite temperature, is discussed for the case of a nuclear Hamiltonian which includes a single-particle term and a monopole pairing residual two-body interaction. The rules of the thermo fields dynamics are applied to double the Hilbert space, thus accounting for the thermal occupation of single-particle states, and to construct dual spaces, both for single-particle (BCS) and collective (RPA) degrees of freedom. It is shown that the rules of the thermo field dynamics yield to a temperature dependence of the equations describing quasiparticle and phonon excitations which is similar to the one found in the more conventional finite temperature Wick's theorem approach, namely: By dealing with thermal averages. (orig.)
On transforms between Gabor frames and wavelet frames
DEFF Research Database (Denmark)
Christensen, Ole; Goh, Say Song
2013-01-01
We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....
Zhou, Xin
1990-03-01
For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.
On a Hilbert-Type Operator with a Symmetric Homogeneous Kernel of Ã¢ÂˆÂ’1-Order and Applications
Directory of Open Access Journals (Sweden)
Bicheng Yang
2007-10-01
Full Text Available Some character of the symmetric homogenous kernel of Ã¢ÂˆÂ’1-order in Hilbert-type operator T:lrÃ¢Â†Â’lrÃ‚Â (r>1 is obtained. Two equivalent inequalities with the symmetric homogenous kernel of Ã¢ÂˆÂ’ÃŽÂ»-order are given. As applications, some new Hilbert-type inequalities with the best constant factors and the equivalent forms as the particular cases are established.
Pair distribution function and structure factor of spherical particles
International Nuclear Information System (INIS)
Howell, Rafael C.; Proffen, Thomas; Conradson, Steven D.
2006-01-01
The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed
Characterization of Oblique Dual Frame Pairs
DEFF Research Database (Denmark)
Christensen, Ole; Eldar, Yonina
2006-01-01
Given a frame for a subspace W of a Hilbert space H, we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace V. In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative characteriz...... for the case of shift-invariant spaces with a single generator. The theory is also adapted to the standard frame setting in which the original and dual frames are defined on the same space. Copyright (C) 2006 Hindawi Publishing Corporation. All rights reserved.......Given a frame for a subspace W of a Hilbert space H, we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace V. In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative...
Characterization of Oblique Dual Frame Pairs
Directory of Open Access Journals (Sweden)
Christensen Ole
2006-01-01
Full Text Available Given a frame for a subspace of a Hilbert space , we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace . In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative characterization which in some cases can be computationally more efficient. We first treat the case of a general frame on an arbitrary Hilbert space, and then specialize the results to shift-invariant frames with multiple generators. In particular, we present explicit versions of our general conditions for the case of shift-invariant spaces with a single generator. The theory is also adapted to the standard frame setting in which the original and dual frames are defined on the same space.
National Research Council Canada - National Science Library
Metz, Steven
2003-01-01
... adjustment. With American military forces engaged around the world in both combat and stabilization operations, the need for rigorous and critical analysis of security transformation has never been greater...
DEFF Research Database (Denmark)
Munck Petersen, Rikke
2005-01-01
Seminaroplæg fra forskere. Faglige seminarer på KA, forår 2005. Belyser transformation af det danske landskab fysisk som holdningsmæssigt, samt hvordan phd-arbejdets egen proces håndterer den.......Seminaroplæg fra forskere. Faglige seminarer på KA, forår 2005. Belyser transformation af det danske landskab fysisk som holdningsmæssigt, samt hvordan phd-arbejdets egen proces håndterer den....
Kisil, Vladimir V.
2010-01-01
The paper develops theory of covariant transform, which is inspired by the wavelet construction. It was observed that many interesting types of wavelets (or coherent states) arise from group representations which are not square integrable or vacuum vectors which are not admissible. Covariant transform extends an applicability of the popular wavelets construction to classic examples like the Hardy space H_2, Banach spaces, covariant functional calculus and many others. Keywords: Wavelets, cohe...
Hall, Anndee
2017-01-01
Abstract: Transforming Anatomy Studying historic books allows people to witness the transformation of the world right before their very eyes. The Bruxellensis Icones Anatomicae[1] by Andreas Vesalius is a vital piece of evidence in the movement from a more rudimentary understanding of the human body into the more complex and accurate development of modern anatomy. Vesalius’ research worked to both refute and confirm findings of his predecessor, the great historical Greek philosopher, Galen...
Lax-pair operators for squared-sum and squared-difference eigenfunctions
International Nuclear Information System (INIS)
Ichikawa, Yoshihiko; Iino, Kazuhiro.
1984-10-01
Inter-relationship between various representations of the inverse scattering transformation is established by examining eigenfunctions of Lax-pair operators of the sine-Gordon equation and the modified Korteweg-de Vries equation. In particular, it is shown explicitly that there exists Lax-pair operators for the squared-sum and squared-difference eigenfunctions of the Ablowitz-Kaup-Newell-Segur inverse scattering transformation. (author)
International Nuclear Information System (INIS)
Gessner, W.; Ernst, V.
1980-01-01
The indefinite metric space O/sub M/ of the covariant form of the quantized Maxwell field M is analyzed in some detail. S/sub M/ contains not only the pre-Hilbert space X 0 of states of transverse photons which occurs in the Gupta--Bleuler formalism of the free M, but a whole rosette of continuously many, isomorphic, complete, pre-Hilbert spaces L/sup q/ disjunct up to the zero element o of S/sub M/. The L/sup q/ are the maximal subspaces of S/sub M/ which allow the usual statistical interpretation. Each L/sup q/ corresponds uniquely to one square integrable, spatial distribution j/sup o/(x) of the total charge Q=0. If M is in any state from L/sup q/, the bare charge j 0 (x) appears to be inseparably dressed by the quantum equivalent of its proper, classical Coulomb field E(x). The vacuum occurs only in the state space L 0 of the free Maxwell field. Each L/sup q/ contains a secondary rosette of continuously many, up to o disjunct, isomorphic Hilbert spaces H/sub g//sup q/ related to different electromagnetic gauges. The space H/sub o//sup q/, which corresponds to the Coulomb gauge within the Lorentz gauge, plays a physically distinguished role in that only it leads to the usual concept of energy. If M is in any state from H/sub g//sup q/, the bare 4-current j 0 (x), j(x), where j(x) is any square integrable, transverse current density in space, is endowed with its proper 4-potential which depends on the chosen gauge, and with its proper, gauge independent, Coulomb--Oersted field E(x), B(x). However, these fields exist only in the sense of quantum mechanical expectation values equipped with the corresponding field fluctuations. So they are basically different from classical electromagnetic fields
REMOTELY SENSEDC IMAGE COMPRESSION BASED ON WAVELET TRANSFORM
Directory of Open Access Journals (Sweden)
Heung K. Lee
1996-06-01
Full Text Available In this paper, we present an image compression algorithm that is capable of significantly reducing the vast mount of information contained in multispectral images. The developed algorithm exploits the spectral and spatial correlations found in multispectral images. The scheme encodes the difference between images after contrast/brightness equalization to remove the spectral redundancy, and utilizes a two-dimensional wavelet trans-form to remove the spatial redundancy. The transformed images are than encoded by hilbert-curve scanning and run-length-encoding, followed by huffman coding. We also present the performance of the proposed algorithm with KITSAT-1 image as well as the LANDSAT MultiSpectral Scanner data. The loss of information is evaluated by peak signal to noise ratio (PSNR and classification capability.
On the fermion pair production in the process of metastable vacuum decay
International Nuclear Information System (INIS)
Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G.
1985-01-01
Production of fermion pairs during the tunneling process leading to the decay of metastable vacuum is considered. The technique based on non-unitary Bogolyubov transformations is developed and formulae for fermionic spectrum are obtained. As an example, the spectrum of fermionic pairs produced during the homogeneous decay of metastable vacuum is evaluated
Lax pairs and conservation laws for two differential-difference systems
International Nuclear Information System (INIS)
Li Chunxia
2003-01-01
A coupled extended Lotka-Volterra lattice and a special Toda lattice are derived from the existing bilinear equations. Starting from the corresponding bilinear Baecklund transformation, Lax pairs for these two differential-difference systems are obtained. Furthermore, an infinite number of conservation laws for the differential-difference equations are deduced from the Lax pairs in a systematic way
One Monopole-Antimonopole Pair Solutions
International Nuclear Information System (INIS)
Teh, Rosy; Wong, K.-M.
2009-01-01
We present new classical generalized one monopole-antimonopole pair solutions of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that in general the one monopole-antimonopole solution need not be solved by imposing mθ-winding number to be integer greater than one. We also show that this solution can be solved when m = 1 by transforming the large distance asymptotic solutions to general solutions that depend on a parameter p. Secondly we show that these large distance asymptotic solutions can be further generalized to the Jacobi elliptic functions. We focus our numerical calculation on the Jacobi elliptic functions solution when the nφ-winding number is one and show that this generalized Jacobi elliptic 1-MAP solution possesses lower energy. All these solutions are numerical finite energy non-BPS solutions of the Yang-Mills-Higgs field theory.
Power transformation for enhancing responsiveness of quality of life questionnaire.
Zhou, YanYan Ange
2015-01-01
We investigate the effect of power transformation of raw scores on the responsiveness of quality of life survey. The procedure maximizes the paired t-test value on the power transformed data to obtain an optimal power range. The parallel between the Box-Cox transformation is also investigated for the quality of life data.
Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb field
Khalilov, V. R.
2017-12-01
Creation of charged fermion pair from a vacuum in so-called supercritical Coulomb potential is examined for the case when fermions can move only in the same (one) plane. In which case, quantum dynamics of charged massive or massless fermions can be described by the two-dimensional Dirac Hamiltonians with an usual (-a/r) Coulomb potential. These Hamiltonians are singular and require the additional definition in order for them to be treated as self-adjoint quantum-mechanical operators. We construct the self-adjoint two-dimensional Dirac Hamiltonians with a Coulomb potential and determine the quantum-mechanical states for such Hamiltonians in the corresponding Hilbert spaces of square-integrable functions. We determine the scattering amplitude in which the self-adjoint extension parameter is incorporated and then obtain equations implicitly defining possible discrete energy spectra of the self-adjoint Dirac Hamiltonians with a Coulomb potential. It is shown that this quantum system becomes unstable in the presence of a supercritical Coulomb potential which manifests in the appearance of quasi-stationary states in the lower (negative) energy continuum. The energy spectrum of those states is quasi-discrete, consists of broadened levels with widths related to the inverse lifetimes of the quasi-stationary states as well as the probability of creation of charged fermion pair by a supercritical Coulomb field. Explicit analytical expressions for the creation probabilities of charged (massive or massless) fermion pair are obtained in a supercritical Coulomb field.
DEFF Research Database (Denmark)
Andersen, Nicolai Bo
This paper is about sustainable transformation with a particular focus on listed buildings. It is based on the notion that sustainability is not just a question of energy conditions, but also about the building being robust. Robust architecture means that the building can be maintained and rebuilt......, that it can be adapted to changing functional needs, and that it has an architectural and cultural value. A specific proposal for a transformation that enhances the architectural qualities and building heritage values of an existing building forms the empirical material, which is discussed using different...... theoretical lenses. It is proposed that three parameters concerning the ꞌtransformabilityꞌ of the building can contribute to a more nuanced understanding of sustainable transformation: technical aspects, programmatic requirements and narrative value. It is proposed that the concept of ꞌsustainable...
DEFF Research Database (Denmark)
Neergaard, Helle; Robinson, Sarah; Jones, Sally
, as well as the resources they have when they come to the classroom. It also incorporates perspectives from (ii) transformational learning and explores the concept of (iii) nudging from a pedagogical viewpoint, proposing it as an important tool in entrepreneurship education. The study incorporates......This paper develops the concept of ‘pedagogical nudging’ and examines four interventions in an entrepreneurship classroom and the potential it has for student identity transformation. Pedagogical nudging is positioned as a tool, which in the hands of a reflective, professional......) assists students in straddling the divide between identities, the emotions and tensions this elicits, and (iv) transform student understanding. We extend nudging theory into a new territory. Pedagogical nudging techniques may be able to unlock doors and bring our students beyond the unacknowledged...
Sinha, Shriprakash
2017-12-04
Ever since the accidental discovery of Wingless [Sharma R.P., Drosophila information service, 1973, 50, p 134], research in the field of Wnt signaling pathway has taken significant strides in wet lab experiments and various cancer clinical trials, augmented by recent developments in advanced computational modeling of the pathway. Information rich gene expression profiles reveal various aspects of the signaling pathway and help in studying different issues simultaneously. Hitherto, not many computational studies exist which incorporate the simultaneous study of these issues. This manuscript ∙ explores the strength of contributing factors in the signaling pathway, ∙ analyzes the existing causal relations among the inter/extracellular factors effecting the pathway based on prior biological knowledge and ∙ investigates the deviations in fold changes in the recently found prevalence of psychophysical laws working in the pathway. To achieve this goal, local and global sensitivity analysis is conducted on the (non)linear responses between the factors obtained from static and time series expression profiles using the density (Hilbert-Schmidt Information Criterion) and variance (Sobol) based sensitivity indices. The results show the advantage of using density based indices over variance based indices mainly due to the former's employment of distance measures & the kernel trick via Reproducing kernel Hilbert space (RKHS) that capture nonlinear relations among various intra/extracellular factors of the pathway in a higher dimensional space. In time series data, using these indices it is now possible to observe where in time, which factors get influenced & contribute to the pathway, as changes in concentration of the other factors are made. This synergy of prior biological knowledge, sensitivity analysis & representations in higher dimensional spaces can facilitate in time based administration of target therapeutic drugs & reveal hidden biological information within
Pairing induced superconductivity in holography
Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad
2014-09-01
We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.
DEFF Research Database (Denmark)
Andersen, Nicolai Bo
This paper is about sustainable transformation with a particular focus on listed buildings. It is based on the notion that sustainability is not just a question of energy conditions, but also about the building being robust. Robust architecture means that the building can be maintained and rebuil...
Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad
2008-01-01
A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side
Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad
2010-01-01
A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side
International Nuclear Information System (INIS)
Murphy, J.H.
1982-01-01
A superconducting transformer having a winding arrangement that provides for current limitation when subjected to a current transient as well as more efficient utilization of radial spacing and winding insulation. Structural innovations disclosed include compressed conical shaped winding layers and a resistive matrix to promote rapid switching of current between parallel windings
Transformation & Metamorphosis
Lott, Debra
2009-01-01
The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…
DEFF Research Database (Denmark)
Enemark, Stig; Dahl Højgaard, Pia
2017-01-01
, was a result of transforming society from a feudal system to a capitalistic and market based economy. This story is interesting in itself - but it also provides a key to understanding the cadastral system of today. The system has evolved over time and now serves a whole range of functions in society. The paper...
Seniority bosons from similarity transformations
International Nuclear Information System (INIS)
Geyer, H.B.
1986-01-01
The requirement of associating in the boson space seniority with twice the number of non-s bosons defines a similarity transformation which re-expresses the Dyson pair boson images in terms of seniority bosons. In particular the fermion S-pair creation operator is mapped onto an operator which, unlike the pair boson image, does not change the number of non-s bosons. The original results of Otsuka, Arima and Iachello are recovered by this procedure while at the same time they are generalized to include g-bosons or even bosons with J>4 as well as any higher order boson terms. Furthermore the seniority boson images are valid for an arbitrary number of d- or g-bosons - a result which is not readily obtainable within the framework of the usual Marumori- or OAI-method
Nuclear scissors mode with pairing
International Nuclear Information System (INIS)
Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.
2008-01-01
The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.
Pairing mechanism in oxide superconductors
International Nuclear Information System (INIS)
Hirsch, J.E.
1988-01-01
A useful way to learn about the pairing mechanism that is responsible for high T c superconductivity is to study properties of model Hamiltonians on small systems. The goal is to find the simplest model that can describe the essential physics of high T c superconductivity. The authors have used Monte Carlo simulation and exact diagonalization techniques to study properties of systems of up to 64 sites. Their results show that spin fluctuations and other spin related mechanisms induced by a Hubbard on-site repulsion U are not likely to give rise to pairing, neither in one nor in multiple band models. In contrast, charge fluctuations in a model with both strong U and V (repulsion between Cu and O) are shown to give rise to pairing and it is suggested that this model provides a plausible mechanism for high T c superconductivity
QCD pairing in primordial nuggets
Lugones, G.; Horvath, J. E.
2003-08-01
We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.
Exclusive electroproduction of pion pairs
International Nuclear Information System (INIS)
Warkentin, N.; Schaefer, A.; Diehl, M.; Ivanov, D. Yu.
2007-01-01
We investigate electroproduction of pion pairs on the nucleon in the framework of QCD factorization for hard exclusive processes. We extend previous analyses by taking the hard-scattering coefficients at next-to-leading order in α s . The dynamics of the produced pion pair is described by two-pion distribution amplitudes, for which we perform a detailed theoretical and phenomenological analysis. In particular, we obtain constraints on these quantities by comparing our results with measurements of angular observables that are sensitive to the interference between two-pion production in the isoscalar and isovector channels. (orig.)
Instantons in lepton pair production
International Nuclear Information System (INIS)
Brandenburg, A.; Ringwald, A.; Utermann, A.
2006-05-01
We consider QCD instanton-induced contributions to lepton pair production in hadron-hadron collisions. We relate these contributions to those known from deep inelastic scattering and demonstrate that they can be calculated reliably for sufficiently large momentum transfer. We observe that the instanton contribution to the angular distribution of the lepton pairs at finite momentum transfer strongly violates the Lam-Tung relation - a relation between coefficient functions of the angular distribution which is valid within the framework of ordinary perturbation theory. The drastic violation of this relation, as seen in experimental data, might be related to such instanton-induced effects. (Orig.)
Nonlinear Fourier transforms for the sine-Gordon equation in the quarter plane
Huang, Lin; Lenells, Jonatan
2018-03-01
Using the Unified Transform, also known as the Fokas method, the solution of the sine-Gordon equation in the quarter plane can be expressed in terms of the solution of a matrix Riemann-Hilbert problem whose definition involves four spectral functions a , b , A , B. The functions a (k) and b (k) are defined via a nonlinear Fourier transform of the initial data, whereas A (k) and B (k) are defined via a nonlinear Fourier transform of the boundary values. In this paper, we provide an extensive study of these nonlinear Fourier transforms and the associated eigenfunctions under weak regularity and decay assumptions on the initial and boundary values. The results can be used to determine the long-time asymptotics of the sine-Gordon quarter-plane solution via nonlinear steepest descent techniques.
Firth, Jean M
1992-01-01
The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...
The Peak Pairs algorithm for strain mapping from HRTEM images
Energy Technology Data Exchange (ETDEWEB)
Galindo, Pedro L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)], E-mail: pedro.galindo@uca.es; Kret, Slawomir [Institute of Physics, PAS, AL. Lotnikow 32/46, 02-668 Warsaw (Poland); Sanchez, Ana M. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Laval, Jean-Yves [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, Paris (France); Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Ben, Teresa; Molina, Sergio I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)
2007-11-15
Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.
Directory of Open Access Journals (Sweden)
Felician ALECU
2012-04-01
Full Text Available XSLT style sheets are designed to transform the XML documents into something else. The two most popular parsers of the moment are the Document Object Model (DOM and the Simple API for XML (SAX. DOM is an official recommendation of the W3C (available at http://www.w3.org/TR/REC-DOM-Level-1, while SAX is a de facto standard. A good parser should be fast, space efficient, rich in functionality and easy to use.
Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.
1979-01-01
There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.
DEFF Research Database (Denmark)
Majgaard, Klaus
The purpose of this paper is to enhance the conceptual understanding of the mediatory relationship between paradoxes on an organizational and an individual level. It presents a concept of agency that comprises and mediates between a structural and individual pole. The constitution of this agency ...... is achieved through narrative activity that oscillates between the poles and transforms paradoxes through the configuration of plots and metaphors. Empirical cases are introduced in order to illustrate the implications of this understanding....
Guanidinium Pairing Facilitates Membrane Translocation
Czech Academy of Sciences Publication Activity Database
Allolio, Christoph; Baxová, Katarína; Vazdar, M.; Jungwirth, Pavel
2016-01-01
Roč. 120, č. 1 (2016), s. 143-153 ISSN 1520-6106 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * guanidinium * like charge pairing * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016
Pairing Linguistic and Music Intelligences
DiEdwardo, MaryAnn Pasda
2005-01-01
This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…
Conjugal Pairing in Escherichia Coli
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...
DEFF Research Database (Denmark)
Martinez Peñas, Umberto; Pellikaan, Ruud
2017-01-01
Error-correcting pairs were introduced as a general method of decoding linear codes with respect to the Hamming metric using coordinatewise products of vectors, and are used for many well-known families of codes. In this paper, we define new types of vector products, extending the coordinatewise ...
'Leonard pairs' in classical mechanics
International Nuclear Information System (INIS)
Zhedanov, Alexei; Korovnichenko, Alyona
2002-01-01
Leonard pairs (LP) are matrices with the property of mutual tri-diagonality. We introduce and study a classical analogue of LP. We show that corresponding classical 'Leonard' dynamical variables satisfy non-linear relations of the AW-type with respect to Poisson brackets. (author)
Canonically conjugate pairs and phase operators
International Nuclear Information System (INIS)
Schoenhammer, K.
2002-01-01
For quantum mechanics on a lattice the position ('particle number') operator and the quasimomentum ('phase') operator obey canonical commutation relations (CCRs) only on a dense set of the Hilbert space. We compare exact numerical results for a particle in a linear and a quadratic potential on the lattice with the expectations, when the CCRs are assumed to be strictly obeyed. Only for sufficiently smooth eigenfunctions does this lead to reasonable results. In the long time limit the use of the CCRs can lead to a qualitatively wrong dynamics even if the initial state is in the dense set
Electrical transformer handbook
Energy Technology Data Exchange (ETDEWEB)
Hurst, R.W.; Horne, D. (eds.)
2005-07-01
This handbook is a valuable user guide intended for electrical engineering and maintenance personnel, electrical contractors and electrical engineering students. It provides current information on techniques and technologies that can help extend the life of transformers. It discusses transformer testing, monitoring, design, commissioning, retrofitting and other elements involved in keeping electrical transformers in safe and efficient operation. It demonstrates how a power transformer can be put to use and common problems faced by owners. In addition to covering control techniques, testing and maintenance procedures, this handbook covers the power transformer; control electrical power transformer; electrical power transformer; electrical theory transformer; used electrical transformer; down electrical step transformer; electrical manufacturer transformer; electrical picture transformer; electrical transformer work; electrical surplus transformer; current transformer; step down transformer; voltage transformer; step up transformer; isolation transformer; low voltage transformer; toroidal transformer; high voltage transformer; and control power transformer. The handbook includes articles from leading experts on overcurrent protection of transformers; ventilated dry-type transformers; metered load factors for low-voltage, and dry-type transformers in buildings. The maintenance of both dry-type or oil-filled transformers was discussed with reference to sealing, gaskets, oils, moisture and testing. The adoption of dynamic load practices was also discussed along with the reclamation or recycling of used lube oil, transformer dielectric fluids and aged solid insulation. A buyer's guide and directory of transformer manufacturers and suppliers was also included. refs., tabs., figs.
The Mehler-Fock Transform in Signal Processing
Directory of Open Access Journals (Sweden)
Reiner Lenz
2017-06-01
Full Text Available Many signals can be described as functions on the unit disk (ball. In the framework of group representations it is well-known how to construct Hilbert-spaces containing these functions that have the groups SU(1,N as their symmetry groups. One illustration of this construction is three-dimensional color spaces in which chroma properties are described by points on the unit disk. A combination of principal component analysis and the Perron-Frobenius theorem can be used to show that perspective projections map positive signals (i.e., functions with positive values to a product of the positive half-axis and the unit ball. The representation theory (harmonic analysis of the group SU(1,1 leads to an integral transform, the Mehler-Fock-transform (MFT, that decomposes functions, depending on the radial coordinate only, into combinations of associated Legendre functions. This transformation is applied to kernel density estimators of probability distributions on the unit disk. It is shown that the transform separates the influence of the data and the measured data. The application of the transform is illustrated by studying the statistical distribution of RGB vectors obtained from a common set of object points under different illuminants.
Usher, P. D.
1997-12-01
William Shakespeare's Hamlet has much evidence to suggest that the Bard was aware of the cosmological models of his time, specifically the geocentric bounded Ptolemaic and Tychonic models, and the infinite Diggesian. Moreover, Shakespeare describes how the Ptolemaic model is to be transformed to the Diggesian. Hamlet's "transformation" is the reason that Claudius, who personifies the Ptolemaic model, summons Rosencrantz and Guildenstern, who personify the Tychonic. Pantometria, written by Leonard Digges and his son Thomas in 1571, contains the first technical use of the word "transformation." At age thirty, Thomas Digges went on to propose his Perfit Description, as alluded to in Act Five where Hamlet's age is given as thirty. In Act Five as well, the words "bore" and "arms" refer to Thomas' vocation as muster-master and his scientific interest in ballistics. England's leading astronomer was also the father of the poet whose encomium introduced the First Folio of 1623. His oldest child Dudley became a member of the Virginia Company and facilitated the writing of The Tempest. Taken as a whole, such manifold connections to Thomas Digges support Hotson's contention that Shakespeare knew the Digges family. Rosencrantz and Guildenstern in Hamlet bear Danish names because they personify the Danish model, while the king's name is latinized like that of Claudius Ptolemaeus. The reason Shakespeare anglicized "Amleth" to "Hamlet" was because he saw a parallel between Book Three of Saxo Grammaticus and the eventual triumph of the Diggesian model. But Shakespeare eschewed Book Four, creating this particular ending from an infinity of other possibilities because it "suited his purpose," viz. to celebrate the concept of a boundless universe of stars like the Sun.
Wolfgang, F.; Nicol, J.
1962-11-01
Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)
McLyman, Colonel Wm. T.
1996-01-01
None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
Statistical deprojection of galaxy pairs
Nottale, Laurent; Chamaraux, Pierre
2018-06-01
Aims: The purpose of the present paper is to provide methods of statistical analysis of the physical properties of galaxy pairs. We perform this study to apply it later to catalogs of isolated pairs of galaxies, especially two new catalogs we recently constructed that contain ≈1000 and ≈13 000 pairs, respectively. We are particularly interested by the dynamics of those pairs, including the determination of their masses. Methods: We could not compute the dynamical parameters directly since the necessary data are incomplete. Indeed, we only have at our disposal one component of the intervelocity between the members, namely along the line of sight, and two components of their interdistance, i.e., the projection on the sky-plane. Moreover, we know only one point of each galaxy orbit. Hence we need statistical methods to find the probability distribution of 3D interdistances and 3D intervelocities from their projections; we designed those methods under the term deprojection. Results: We proceed in two steps to determine and use the deprojection methods. First we derive the probability distributions expected for the various relevant projected quantities, namely intervelocity vz, interdistance rp, their ratio, and the product rp v_z^2, which is involved in mass determination. In a second step, we propose various methods of deprojection of those parameters based on the previous analysis. We start from a histogram of the projected data and we apply inversion formulae to obtain the deprojected distributions; lastly, we test the methods by numerical simulations, which also allow us to determine the uncertainties involved.
International Nuclear Information System (INIS)
Manakov, S V; Santini, P M
2008-01-01
We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking
Energy Technology Data Exchange (ETDEWEB)
Manakov, S V [Landau Institute for Theoretical Physics, Moscow (Russian Federation); Santini, P M [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , and Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Piazz.le Aldo Moro 2, I-00185 Rome (Italy)
2008-02-08
We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking.
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
International Nuclear Information System (INIS)
Hibberd, K.E.; Dunning, C.; Links, J.
2006-01-01
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane
International Nuclear Information System (INIS)
Hermann, M.R.; Langhoff, P.W.
1983-01-01
Explicit Hilbert-space techniques are reported for construction of the discrete and continuum Schroedinger states required in atomic and molecular photoexcitation and/or photoionization studies. These developments extend and clarify previously described moment-theory methods for determinations of photoabsorption cross sections from discrete basis-set calculations to include explicit construction of underlying wave functions. The appropriate Stieltjes-Tchebycheff excitation and ionization functions of nth order are defined as Radau-type eigenstates of an appropriate operator in an n-term Cauchy-Lanczos basis. The energies of these states are the Radau quadrature points of the photoabsorption cross section, and their (reciprocal) norms provide the corresponding quadrature weights. Although finite-order Stieltjes-Tchebycheff functions are L 2 integrable, and do not have asymptotic spatial tails in the continuous spectrum, the Radau quadrature weights nevertheless provide information for normalization in the conventional Dirac delta-function sense. Since one Radau point can be placed anywhere in the spectrum, appropriately normalized convergent approximations to any of the discrete or continuum Schroedinger states are obtained from the development. Connections with matrix partitioning methods are established, demonstrating that nth-order Stieltjes-Tchebycheff functions are optical-potential solutions of the matrix Schroedinger equation in the full Cauchy-Lanczos basis
National Aeronautics and Space Administration — In physics, interference is a phenomenon in which two waves superimpose to form a new complex wave and fringes are observed wherever the two or more waves overlap....
International Nuclear Information System (INIS)
Schroer, Bert; FU-Berlin
2012-02-01
Massive quantum matter of prescribed spin permits infinitely many possibilities of covariantization in terms of spinorial (undotted/dotted) pointlike fields, whereas massless nite helicity representations lead to large gap in this spinorial spectrum which for s=1 excludes vector potentials. Since the nonexistence of such pointlike generators is the result of a deep structural clash between modular localization and the Hilbert space setting of QT, there are two ways out: gauge theory which sacrifices the Hilbert space and keeps the pointlike formalism and the use of string like potentials which allows to preserve the Hilbert space. The latter setting contains also string-localized charge-carrying operators whereas the gauge theoretic formulation is limited to point-like generated observables. This description also gives a much better insight into the Higgs mechanism which leads to a revival of the more physical 'Schwinger-Higgs' screening idea. The new formalism is not limited to m=0, s=1, it leads to renormalizable inter- actions in the sense of power-counting for all s in massless representations. The existence of string like vector potentials is preempted by the Aharonov-Bohm effect in QFT; it is well-known that the use of pointlike vector potentials in Stokes theorem would with lead to wrong results. Their use in Maxwell's equations is known to lead to zero Maxwell charge. The role of string-localization in the problem behind the observed invisibility and confinement of gluons and quarks leads to new questions and problems. (author)
International Nuclear Information System (INIS)
Beer, G.
2003-01-01
State forestry company Lesy, s.p., Banska Bystrica have chosen Austrian state forestry company to operate as their restructuring advisor. 20 million Sk (0.142 mn Euro) were assigned to transformation of Lesy SR from a state enterprise to a state-owned joint-stock company. The whole process should take two years. The joint-stock company should be established at the beginning of next year. 'What we have to do first is to define the objectives and perspectives of this restructuring,' claims new director, Karol Vins. The new boss recalled all directors of the 26 branches. They were given a lot of freedom to trade with wood. The new management wants to establish a profit-making company. At the moment the company has total claims of 600 million Sk (14.59 million Eur) it will have to provision for
Jones, Patricia S; Zhang, Xinwei Esther; Meleis, Afaf I
2003-11-01
Asian American immigrant women engaged in filial caregiving are at special risk for health problems due to complex contextual factors related to immigration, cultural traditions, and role transition. This study examines the experience of two groups of immigrant Asian American women who are caring for older parents. A total of 41 women (22 Chinese American and 19 Filipino American) were interviewed in a study based on Strauss and Corbin's grounded theory methodology. The women were determined to be loyal to their traditional culture, which included strong filial values, while adapting to a new culture. Through the struggle of meeting role expectations and coping with paradox, the women mobilized personal and family resources to transform vulnerability into strength and well-being.
Rutherford, Ernest
2012-01-01
Radioactive Transformations describes Ernest Rutherford's Nobel Prize-winning investigations into the mysteries of radioactive matter. In this historic work, Rutherford outlines the scientific investigations that led to and coincided with his own research--including the work of Wilhelm Rӧntgen, J. J. Thomson, and Marie Curie--and explains in detail the experiments that provided a glimpse at special relativity, quantum mechanics, and other concepts that would shape modern physics. This new edition features a comprehensive introduction by Nobel Laureate Frank Wilczek which engagingly explains how Rutherford's early research led to a better understanding of topics as diverse as the workings of the atom's nucleus, the age of our planet, and the fusion in stars.
A Top-Down Account of Linear Canonical Transforms
Directory of Open Access Journals (Sweden)
Kurt Bernardo Wolf
2012-06-01
Full Text Available We contend that what are called Linear Canonical Transforms (LCTs should be seen as a part of the theory of unitary irreducible representations of the '2+1' Lorentz group. The integral kernel representation found by Collins, Moshinsky and Quesne, and the radial and hyperbolic LCTs introduced thereafter, belong to the discrete and continuous representation series of the Lorentz group in its parabolic subgroup reduction. The reduction by the elliptic and hyperbolic subgroups can also be considered to yield LCTs that act on functions, discrete or continuous in other Hilbert spaces. We gather the summation and integration kernels reported by Basu and Wolf when studiying all discrete, continuous, and mixed representations of the linear group of 2×2 real matrices. We add some comments on why all should be considered canonical.
Hyponormal quantization of planar domains exponential transform in dimension two
Gustafsson, Björn
2017-01-01
This book exploits the classification of a class of linear bounded operators with rank-one self-commutators in terms of their spectral parameter, known as the principal function. The resulting dictionary between two dimensional planar shapes with a degree of shade and Hilbert space operators turns out to be illuminating and beneficial for both sides. An exponential transform, essentially a Riesz potential at critical exponent, is at the heart of this novel framework; its best rational approximants unveil a new class of complex orthogonal polynomials whose asymptotic distribution of zeros is thoroughly studied in the text. Connections with areas of potential theory, approximation theory in the complex domain and fluid mechanics are established. The text is addressed, with specific aims, at experts and beginners in a wide range of areas of current interest: potential theory, numerical linear algebra, operator theory, inverse problems, image and signal processing, approximation theory, mathematical physics.
Charge Aspects of Composite Pair Superconductivity
Flint, Rebecca
2014-03-01
Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.
Kinetic equations with pairing correlations
International Nuclear Information System (INIS)
Fauser, R.
1995-12-01
The Gorkov equations are derived for a general non-equilibrium system. The Gorkov factorization is generalized by the cumulant expansion of the 2-particle correlation and by a generalized Wick theorem in the case of a perturbation expansion. A stationary solution for the Green functions in the Schwinger-Keldysh formalism is presented taking into account pairing correlations. Especially the effects of collisional broadening on the spectral functions and Green functions is discussed. Kinetic equations are derived in the quasi-particle approximation and in the case of particles with width. Explicit expressions for the self-energies are given. (orig.)
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2016-01-01
Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial interdep......Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial...
International Nuclear Information System (INIS)
Kirchner, Barbara; Malberg, Friedrich; Firaha, Dzmitry S; Hollóczki, Oldamur
2015-01-01
In the present article we briefly review the extensive discussion in literature about the presence or absence of ion pair-like aggregates in ionic liquids. While some experimental studies point towards the presence of neutral subunits in ionic liquids, many other experiments cannot confirm or even contradict their existence. Ion pairs can be detected directly in the gas phase, but no direct method is available to observe such association behavior in the liquid, and the corresponding indirect experimental proofs are based on such assumptions as unity charges at the ions. However, we have shown by calculating ionic liquid clusters of different sizes that assuming unity charges for ILs is erroneous, because a substantial charge transfer is taking place between the ionic liquid ions that reduce their total charge. Considering these effects might establish a bridge between the contradicting experimental results on this matter. Beside these results, according to molecular dynamics simulations the lifetimes of ion–ion contacts and their joint motions are far too short to verify the existence of neutral units in these materials. (topical review)
Some advances in pairing theory
International Nuclear Information System (INIS)
Rowe, D.J.
2001-01-01
Two advances are reviewed in the application of pairing-force theory in the nuclear shell model. The first exploits a discovery that a wide range of two-nucleon interactions conserve seniority as a good quantum number. As a consequence, the eigenstates of a Hamiltonian with such an interaction belong to irreducible representations of a compact unitary-symplectic group. This makes it possible to extend the simply-solvable models with J=0 pairing forces to a much richer set of models and still obtain states uniquely classified by their seniority and angular momentum quantum numbers. Moreover, many of the low-lying energy levels of such models can be obtained algebraically; in technical terms, the models are in some cases completely solvable and in other cases partially solvable by algebraic methods. The second advance exploits the discovery that, in a coherent state representation, states of good nucleon number can be projected analytically from BCS vacuum and excited quasiparticle states. This makes it possible to perform calculations in a number-projected BCS basis without losing much of the advantage of working of the quasiparticle scheme. (Author)
CsI Calorimeter for a Compton-Pair Telescope
Grove, Eric J.
We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk
Directory of Open Access Journals (Sweden)
Kan Li
2018-04-01
Full Text Available This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM speech processing as well as neuromorphic implementations based on spiking neural network (SNN, yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR regime.
Li, Kan; Príncipe, José C
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.
Kanter, Rosabeth Moss
2008-01-01
Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.
Analysis model for forecasting extreme temperature using refined rank set pair
Directory of Open Access Journals (Sweden)
Qiao Ling-Xia
2013-01-01
Full Text Available In order to improve the precision of forecasting extreme temperature time series, a refined rank set pair analysis model with a refined rank transformation function is proposed to improve precision of its prediction. The measured values of the annual highest temperature of two China’s cities, Taiyuan and Shijiazhuang, in July are taken to examine the performance of a refined rank set pair model.
PandA : pairings and arithmetic
Chuengsatiansup, C.; Naehrig, M.; Ribarski, P.; Schwabe, P.; Cao, Z.; Zhang, F.
2014-01-01
This paper introduces PandA, a software framework for Pairings and Arithmetic. It is designed to bring together advances in the efficient computation of cryptographic pairings and the development and implementation of pairing-based protocols. The intention behind the PandA framework is to give
Dynamical pairing correlations in rotating nuclei
International Nuclear Information System (INIS)
Szymanski, Z.
1985-01-01
When the atomic nucleus rotates fast enough the static pair correlations may be destroyed. In this situation the pair-vibrations become an important manifestation of the short-range attractive pairing force. The influence of this effect on nuclear properties at high spin is discussed. (orig.)
Pair interaction of bilayer-coated nanoscopic particles
International Nuclear Information System (INIS)
Qi-Yi, Zhang
2009-01-01
The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery. (condensed matter: structure, thermal and mechanical properties)