Sample records for hii galaxy ii

  1. ISO spectroscopy of compact HII regions in the Galaxy - II. Ionization and elemental abundances

    NARCIS (Netherlands)

    Martin-Hernandez, NL; Peeters, E; Morisset, C; Tielens, AGGM; Cox, P; Roelfsema, PR; Baluteau, JP; Schaerer, D; Mathis, JS; Damour, F; Churchwell, E; Kessler, MF

    Based on the ISO spectral catalogue of compact H II regions by Peeters et al. (2002), we present a first analysis of the hydrogen recombination and atomic fine-structure lines originated in the ionized gas. The sample consists of 34 H II regions located at galactocentric distances between R-Gal = 0

  2. Concept of H-II orbiting plane, HOPE (United States)

    Akimoto, Toshio; Ito, Tetsuichi; Miyaba, Hiroshi

    An unmanned winged vehicle to be lauched by the H-II rocket, the H-II Orbiting Plane (HOPE), is described. HOPE will be launched into a 250-km altitude orbit, will remain in space for 1 to 3 days (performing experiments or rendezvous and docking to the space station), and will then return to land on a runway automatically. A double delta wing design was selected, along with tip fins for the tail. Trade-off studies were performed for airframe structural materials, thermal protection system materials, the guidance, navigation, and control system, and the development of fuel cells.

  3. Narrow-band {H}β images of star-formation regions in HII galaxies (United States)

    Lagos, P.; Telles, E.; Melnick, J.


    Aims:Create a catalog of images of HII galaxies and their individual star-formation regions in order to study the distribution of the gas emission and their underlying stellar continuum. Methods: We have used Hβ narrow-band images of 43 selected HII galaxies obtained at ESO NTT 3.58 m telescope using the SUSI2 camera. Results: Surface photometric Hβ fluxes and equivalent widths for all objects and star-formation regions are presented in this catalog. A myriad of filamentary structure were found in the pure Hβ emission-line or continuum-subtracted images, probably attributed to expanding shells as a consequence of the star-formation activity. Our results indicate that the number of regions with high Hβ equivalent width or young regions increase with the instrumental resolution, showing that the instrumental resolution is a bias to determine the cluster ages. Therefore, we showed that some of the observed giant HII regions may have been formed by ensembles of unresolved star forming regions or candidates to host Super Star Clusters. Pure Hβ emission-line images, continuum contours and EW(Hβ) maps showing the morphology of the gaseous and stellar emission in HII galaxies and their individual star-formation regions were obtained. All calibrated continuum and Hβ emission line fluxes and the derived Hβ equivalent width images are available in fits format from Based on observations made with ESO NTT 3.5 m Telescope at the La Silla Observatory under programmen ID and . Tables [see full textsee full textsee full textsee full text], [see full textsee full textsee full textsee full text] and Figs. [see full textsee full textsee full textsee full text], [see full textsee full textsee full textsee full text] are only available in electronic form at

  4. Galaxy S II

    CERN Document Server

    Gralla, Preston


    Unlock the potential of Samsung's outstanding smartphone with this jargon-free guide from technology guru Preston Gralla. You'll quickly learn how to shoot high-res photos and HD video, keep your schedule, stay in touch, and enjoy your favorite media. Every page is packed with illustrations and valuable advice to help you get the most from the smartest phone in town. The important stuff you need to know: Get dialed in. Learn your way around the Galaxy S II's calling and texting features.Go online. Browse the Web, manage email, and download apps with Galaxy S II's 3G/4G network (or create you

  5. Current status of the H-II Orbiting Plane-Experimental (HOPE-X) development (United States)

    Fukui, Toshio; Miho, Kazuyuki; Nakano, Eiichiro


    The objective of the H-II Orbiting Plane-Experimental(HOPE-X) project is to develop the major technologies necessary for two-way space transportation systems on the bases of precursor elemental flight experiments such as OREX, HYFLEX and ALFLEX and to demonstrate them through the flight experiment of an operational size vehicle. At present, the HOPE-X project is in the development phase and various efforts for system design and fundamental technologies are being conducted through the co-operational works between the National Aerospace Laboratory (NAL) and the National Space Development Agency of Japan (NASDA). Moreover the plan to improve the HOPE-X vehicle after the flight experiment and to use it for practical missions is investigated.

  6. Integral field spectroscopy of the two complexes of HII regions in the main galaxy of the minor merger AM2306-721 (United States)

    Hernandez-Jimenez, J. A.; Pastoriza, G.; Sanmartim, D.; Winge, C.; Bonatto, C.; Krabbe, A. C.; Rodrigues, I.


    We present a study of two complexes of HII regions in the main galaxy of minor merger AM 2306-721. The observations were obtained with the GMOS-IFU on the Gemini South telescope. By using different discrimination criteria, we determined that shock-ionized gas fraction ranges between 0% and 35%, which are in good agreement with numerical models. Thus, we conclude that almost all the mechanical energy from stellar winds and supernovae is being irradiated.

  7. Unit cell structure of water-filled monoolein into inverted hexagonal (H(II)) mesophase modeled by molecular dynamics. (United States)

    Kolev, Vesselin L; Ivanova, Anela N; Madjarova, Galia K; Aserin, Abraham; Garti, Nissim


    The study investigates the unit cell structure of inverted hexagonal (H(II)) mesophase composed of monoolein (1-monoolein, GMO) and water using atomistic molecular dynamics methods without imposing any restraints on lipid and water molecules. Statistically meaningful and very contrast images of the radial mass density distribution, scrutinizing also the separate components water, monoolein, the polar headgroups of the lipids, the double bond, and the termini of the hydrocarbon chain (the tail), are obtained. The lipid/water interface structure is analyzed based on the obtained water density distribution, on the estimated number of hydrogen bonds per monoolein headgroup, and on the headgroup-water radial distribution functions. The headgroup mass density distribution demonstrates hexagonal shape of the monoolein/water interface that is well-defined at higher water/monoolein ratios. Water interacts with the headgroups by forming a three-layer diffusive mass density distribution, and each layer's shape is close to hexagonal, which is an indication of long-range structural interactions. It is found that the monoolein headgroups form a constant number of hydrogen bonds leaving an excessive amount of water molecules outside the first lipid coordination sphere. Furthermore, the quantity of water at the monoolein/water interface increases steadily upon extension of the unit cell, so the interface should have a very dynamic structure. Investigation of the hydrocarbon residues reveals high compression and well-expressed structuring of the tails. The tails form a very compressed and constrained structure of defined layers across the unit cell with properties corresponding to a more densely packed nonpolar liquid (oil). Due to the hexagonal shape the 2D packing frustration is constant and does not depend on the water content. All reported structural features are based on averaging of the atomic coordinates over the time-length of the simulation trajectories. That kind of

  8. A Complete Census of the ~7000 Milky Way HII Regions (United States)

    Armentrout, William Paul; Anderson, Loren Dean; Wenger, Trey; Bania, Thomas; Balser, Dana; Dame, Thomas; Dickey, John M.; Dawson, Joanne; Jordan, Christopher H.; McClure-Griffiths, Naomi M.; Andersen, Morten


    HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (, but only 2000 of these are confirmed HII regions to date.To bring us closer to a complete census of high-mass star formation regions in the Milky Way, we have several ongoing observational campaigns. These efforts include (1) Green Bank Telescope radio recombination line (RRL) observations as part of the HII Region Discovery Survey (HRDS); (2) Australia Telescope Compact Array observations of southern HII region candidates in the Southern HII Region Discovery Survey (SHRDS); (3) Green Bank and Gemini North Telescope observations of star formation regions thought to reside at the edge of the star forming disk in the Outer Scutum-Centaurus Arm (OSC); and (4) Very Large Array continuum observations of the faintest HII region candidates in the second and third Galactic quadrants.Together, these observations will detect the RRL emission from all Galactic HII regions with peak cm-wavelength flux densities > 60mJy, establish the outer edge of Galactic high-mass star formation, and determine the number of HII regions in the Galaxy. The HRDS and SHRDS surveys have more than doubled the known population of Galactic HII regions. We use the OSC observations to determine the properties of high-mass star formation in the extreme outer Galaxy and our VLA observations to determine how many of our faint candidates are indeed HII regions. We combine the completeness limits we obtain through these HII region surveys with an HII region population synthesis model to estimate the total number of Galactic HII regions. From this, we

  9. The spatially resolved [C II] Cooling line deficit in galaxies

    NARCIS (Netherlands)

    Smith, J. D T; Croxall, Kevin; Draine, Bruce; Looze, Ilse De; Sandstrom, Karin; Armus, Lee; Beirão, Pedro; Bolatto, Alberto; Boquien, Mederic; Brandl, B.R.; Crocker, Alison; Dale, Daniel A.; Galametz, Maud; Groves, Brent; Helou, George; Herrera-Camus, Rodrigo; Hunt, Leslie; Kennicutt, Robert; Walter, Fabian; Wolfire, Mark


    We present [C ii] 158 μm measurements from over 15,000 resolved regions within 54 nearby galaxies of the Kingfish program to investigate the so-called [C ii] "line-cooling deficit" long known to occur in galaxies with different luminosities. The [C ii]/TIR ratio ranges from above 1% to below 0.1%

  10. The Galactic HII Region Luminosity Function at Infrared and Radio Wavelengths (United States)

    Mascoop, Joshua; Anderson, Loren; Sandor Makai, Zoltan; Armentrout, William Paul


    HII regions are the clearest indicators of ongoing high-mass star formation. The HII region luminosity function (LF) therefore probes present global star formation properties, and its shape has been related to HII region properties and galaxy Hubble types. Most HII region LF studies to date have been conducted in external galaxies; due to observational difficulties, there have been relatively few studies of the Milky Way HII region LF. Using ~600 HII regions from the WISE Catalog of Galactic HII Regions, we examine the Galactic LF in the first quadrant. Our high-resolution view of Galactic star formation regions allows us to separate nearby sources, and our sample is complete for all HII regions ionized by single O9.5 stars.We analyze the Galactic LF at six infrared wavelengths - where the emission is due to dust - and also at 20 cm, where the emission is from ionized gas. All LFs have a similar shape, showing that infrared LFs can be used in place of ionized gas tracers. All LFs can be described by a single power law with an index of approximately -2, in agreement with previous studes. We find no compelling evidence of a break or "knee" in the LF. Moreover, we see no significant variation in the form of the LF as a function of heliocentric distance, HII region size, or Galactocentric radius.

  11. A Complete VLA Census of the ~7000 Milky Way HII Regions (United States)

    Armentrout, William Paul; Anderson, Loren; Wenger, Trey V.; Balser, Dana; Bania, Thomas


    How many HII regions are in the Milky Way? Even with the success of recent surveys, we still do not have an adequate answer to this fundamental question. HII regions are the archetypical tracers of Galactic high-mass star formation, but population synthesis modeling indicates that their detection throughout the Galaxy is incomplete, biased toward the most luminous and nearby complexes. Using mid-infrared (MIR) data from the WISE satellite, we identified over 8000 HII regions and candidates, all of which share the characteristic morphology of 12 micron emission enveloping a core of 22 micron emission. Of these, nearly 4000 candidates have no detectable radio continuum emission from Galactic plane surveys and therefore their classification is unknown. These “radio quiet” candidates could represent a significant population of faint HII regions which are ionized by B-stars and/or are especially distant, or they might not be HII regions at all.We present here a survey of radio quiet HII regions in the second and third Galactic quadrants with the Very Large Array. This was the first systematic study of radio quiet HII region candidates. Nearly 60% of the 145 sources observed were detected by the VLA at X-band (10 GHz) to sub-mJy sensitivities. Coupled with their MIR morphologies, detection of continuum strongly indicate they are HII regions. If 60% of radio quiet candidates throughout the Galaxy prove to be HII regions, the number of expected HII regions in the Milky Way would more than double. Constraining the total number of HII regions within the Milky Way will feed back into stellar population synthesis modeling, informing both the high-mass tail of the Galactic star formation rate and the role of high-mass stars in the evolution of the ISM. We estimate there are between 6500 and 7000 HII regions in Milky Way created by a star of type B2 or earlier.

  12. The Infrared and Radio Flux Densities of Galactic HII Regions (United States)

    Sandor Makai, Zoltan; Anderson, Loren Dean; Mascoop, Josh L.; Johnstone, Brittany


    We derive infrared and radio flux densities of all ~1000 known Galactic HII regions in the Galactic longitude range 17.5 = 0 and log10(F70/F12) >= 1.2, and log10(F24/F12) >= 0 and log10(F160/F70) =population is uncertain. Comparing with a sample of IR color indices from star-forming galaxies, HII regions show higher log10(F70/F12) ratios. We find a weak trend of decreasing infrared to ~20 cm flux density ratios with increasing Rgal, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.We are using these flux densities to compute the total luminosity of the Milky Way. To achieve this, we sum the luminosity contributions from HII regions, point sources, diffuse thermal, and diffuse non-thermal emission at infrared and radio wavelengths. We compare our results with those from external galaxies to place the luminosity of the Milky Way into a galactic context.

  13. Probing outflows in z = 1 ∼ 2 galaxies through Fe II/Fe II* multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yuping; Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Guo, Yicheng [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kurk, Jaron, E-mail: [Max-Planck-Institut für Extraterrestrial Physik, Gießenbachstrasse, D-85748 Garching bei München (Germany)


    We report on a study of the 2300-2600 Å Fe II/Fe II* multiplets in the rest-UV spectra of star-forming galaxies at 1.0 < z < 2.6 as probes of galactic-scale outflows. We extracted a mass-limited sample of 97 galaxies at z ∼ 1.0-2.6 from ultra-deep spectra obtained during the GMASS spectroscopic survey in the GOODS South field with the Very Large Telescope and FORS2. We obtain robust measures of the rest equivalent width of the Fe II absorption lines down to a limit of W{sub r} > 1.5 Å and of the Fe II* emission lines to W{sub r} > 0.5 Å. Whenever we can measure the systemic redshift of the galaxies from the [O II] emission line, we find that both the Fe II and Mg II absorption lines are blueshifted, indicating that both species trace gaseous outflows. We also find, however, that the Fe II gas has generally lower outflow velocity relative to that of Mg II. We investigate the variation of Fe II line profiles as a function of the radiative transfer properties of the lines, and find that transitions with higher oscillator strengths are more blueshifted in terms of both line centroids and line wings. We discuss the possibility that Fe II lines are suppressed by stellar absorptions. The lower velocities of the Fe II lines relative to the Mg II doublet, as well as the absence of spatially extended Fe II* emission in two-dimensional stacked spectra, suggest that most clouds responsible for Fe II absorption lie close (3 ∼ 4 kpc) to the disks of galaxies. We show that the Fe II/Fe II* multiplets offer unique probes of the kinematic structure of galactic outflows.

  14. Properties of the HII Regions Derived Using Integral Field Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian F. Sánchez


    Full Text Available Here we review some of our more recent results on the observed properties of HII regions using Integral Field Spectroscopy. In particular, we illustrate the use of this technique to study in detail the ionization conditions across the nebulae for galactic HII regions (focused on the Orion Nebula and the statistical study of large samples of extragalactic HII regions. We review the reported new scaling relation between the local mass density and the oxygen abundance across the disk galaxies and the recently discovered universal gradient for oxygen abundances. We update our previous results the lack of a dependence of the Mass-Metallicity relation with the starformation rate, including new unpublished data. Finally we discuss on the relation between the ionization conditions in the nebulae and the underlying stellar population. All together our results indicate that disk galaxies present a chemical enrichment dominated by an inside-out growth scenario, with a less evident effect of radial migrations and/or outflows.

  15. The HIX galaxy survey II: HI kinematics of HI eXtreme galaxies (United States)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.


    By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in HIX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The H I content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.

  16. Mg II-Absorbing Galaxies in the UltraVISTA Survey (United States)

    Stroupe, Darren; Lundgren, Britt


    Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.

  17. NGC628 with SITELLE : I. Imaging Spectroscopy of 4285 HII region candidates. (United States)

    Rousseau-Nepton, L.; Robert, C.; Martin, R. P.; Drissen, L.; Martin, T.


    This is the first paper of a series dedicated to nebular physics and the chemical evolution of nearby galaxies by investigating large samples of HII regions with the CFHT imaging spectrograph SITELLE. We present a technique adapted to imaging spectroscopy to identify and extract parameters from 4285 HII region candidates found in the disc of NGC 628. Using both the spatial and spectral capabilities of SITELLE, our technique enables the extraction of the position, dust extinction, velocity, Hα profile, diffuse ionized gas (DIG) background, luminosity, size, morphological type, and the emission line fluxes for individual spaxels and the integrated spectrum for each region. We have produced a well-sampled HII region luminosity function and studied its variation with galactocentric radius and level of the DIG background. We found a slope α of -1.12 ±0.03 with no evidence of a break at high luminosity. Based on the width of the region profile, bright regions are rather compact, while faint regions are seen over a wide range of sizes. The radius function reveals a slope of -1.81 ±0.02. BPT diagrams of the individual spaxels and integrated line ratios confirm that most detections are HII regions. Also, maps of the line ratios show complex variations of the ionisation conditions within HII regions. All this information is compiled in a new catalogue for HII regions. The objective of this database is to provide a complete sample which will be used to study the whole parameter space covered by the physical conditions in active star-forming regions.

  18. The remnant of a merger between two dwarf galaxies in Andromeda II. (United States)

    Amorisco, N C; Evans, N W; van de Ven, G


    Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way or Andromeda. At similar mass scales, around 10(11) solar masses in stars, further evidence of merging activity is also ample. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation, but have hitherto not been seen for galaxies with less than about 10(9) solar masses in stars. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 10(7) solar masses in stars. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales.

  19. Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe (United States)

    Favole, Ginevra; Rodríguez-Torres, Sergio A.; Comparat, Johan; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Montero-Dorta, Antonio D.


    We study the galaxy clustering dependence on the [O II] emission line luminosity in the SDSS DR7 Main galaxy sample at mean redshift z ˜ 0.1. We select volume-limited samples of galaxies with different [O II] luminosity thresholds and measure their projected, monopole and quadrupole two-point correlation functions. We model these observations using the 1 h-1 Gpc MultiDark-Planck cosmological simulation and generate light cones with the SUrvey GenerAtoR algorithm. To interpret our results, we adopt a modified (Sub)Halo Abundance Matching scheme, accounting for the stellar mass incompleteness of the emission line galaxies. The satellite fraction constitutes an extra parameter in this model and allows to optimize the clustering fit on both small and intermediate scales (I.e. rp ≲ 30 h-1 Mpc), with no need of any velocity bias correction. We find that, in the local Universe, the [O II] luminosity correlates with all the clustering statistics explored and with the galaxy bias. This latter quantity correlates more strongly with the SDSS r-band magnitude than [O II] luminosity. In conclusion, we propose a straightforward method to produce reliable clustering models, entirely built on the simulation products, which provides robust predictions of the typical ELG host halo masses and satellite fraction values. The SDSS galaxy data, MultiDark mock catalogues and clustering results are made publicly available.

  20. The Origins of [C ii] Emission in Local Star-forming Galaxies (United States)

    Croxall, K. V.; Smith, J. D.; Pellegrini, E.; Groves, B.; Bolatto, A.; Herrera-Camus, R.; Sandstrom, K. M.; Draine, B.; Wolfire, M. G.; Armus, L.; Boquien, M.; Brandl, B.; Dale, D.; Galametz, M.; Hunt, L.; Kennicutt, R., Jr.; Kreckel, K.; Rigopoulou, D.; van der Werf, P.; Wilson, C.


    The [C ii] 158 μm fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C+ can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μm fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μm. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel) and Beyond the Peak Herschel programs, we show that 60%-80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.

  1. The Origins of [C II] Emission in Local Star-forming Galaxies

    NARCIS (Netherlands)

    Croxall, K. V.; Smith, J. D T; Pellegrini, E.; Groves, Brent; Bolatto, Alberto; Herrera-Camus, Rodrigo; Sandstrom, K. M.; Draine, Bruce; Wolfire, M. G.; Armus, Lee; Boquien, Mederic; Brandl, B.R.; Dale, Daniel A.; Galametz, Maud; Hunt, L. K.; Kennicutt, R. C.; Kreckel, K.; Rigopoulou, D.; van der werf, p; Wilson, C


    The [C ii] 158 μm fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect.

  2. Studying the Interstellar Medium of H II/BCD Galaxies Using IFU Spectroscopy

    Directory of Open Access Journals (Sweden)

    Patricio Lagos


    Full Text Available We review the results from our studies, and previous published work, on the spatially resolved physical properties of a sample of H ii/BCD galaxies, as obtained mainly from integral-field unit spectroscopy with Gemini/GMOS and VLT/VIMOS. We confirm that, within observational uncertainties, our sample galaxies show nearly spatially constant chemical abundances similar to other low-mass starburst galaxies. They also show He ii  λ4686 emission with the properties being suggestive of a mix of excitation sources and with Wolf-Rayet stars being excluded as the primary ones. Finally, in this contribution, we include a list of all H ii/BCD galaxies studied thus far with integral-field unit spectroscopy.


    Energy Technology Data Exchange (ETDEWEB)

    Li Zhaoyu [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Peng, Chien Y. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)


    The Carnegie-Irvine Galaxy Survey (CGS) is a comprehensive investigation of the physical properties of a complete, representative sample of 605 bright (B{sub T} {<=} 12.9 mag) galaxies in the southern hemisphere. This contribution describes the isophotal analysis of the broadband (BVRI) optical imaging component of the project. We pay close attention to sky subtraction, which is particularly challenging for some of the large galaxies in our sample. Extensive crosschecks with internal and external data confirm that our calibration and sky subtraction techniques are robust with respect to the quoted measurement uncertainties. We present a uniform catalog of one-dimensional radial profiles of surface brightness and geometric parameters, as well as integrated colors and color gradients. Composite profiles highlight the tremendous diversity of brightness distributions found in disk galaxies and their dependence on Hubble type. A significant fraction of S0 and spiral galaxies exhibit non-exponential profiles in their outer regions. We perform Fourier decomposition of the isophotes to quantify non-axisymmetric deviations in the light distribution. We use the geometric parameters, in conjunction with the amplitude and phase of the m = 2 Fourier mode, to identify bars and quantify their size and strength. Spiral arm strengths are characterized using the m = 2 Fourier profiles and structure maps. Finally, we utilize the information encoded in the m = 1 Fourier profiles to measure disk lopsidedness. The databases assembled here and in Paper I lay the foundation for forthcoming scientific applications of CGS.

  4. Made-to-measure galaxy models - II Elliptical and Lenticular Galaxies


    Long, R. J.; Mao, Shude


    We take a sample of 24 elliptical and lenticular galaxies previously analysed by the SAURON project using three-integral dynamical models created with Schwarzschild's method, and re-analyse them using the made-to-measure (M2M) method of dynamical modelling. We obtain good agreement between the two methods in determining the dynamical mass-to-light (M/L) ratios for the galaxies with over 80% of ratios differing by < 10% and over 95% differing by < 20%. We show that (M/L)_M2M is approximately e...

  5. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. II. Implications for understanding galaxy evolution

    NARCIS (Netherlands)

    Tolstoy, E; Venn, KA; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    We have used the Ultraviolet Visual-Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies (dSph's) : Sculptor, Fornax, Carina, and Leo I. We measure the abundance variations of

  6. A massive, quiescent, population II galaxy at a redshift of 2.1. (United States)

    Kriek, Mariska; Conroy, Charlie; van Dokkum, Pieter G; Shapley, Alice E; Choi, Jieun; Reddy, Naveen A; Siana, Brian; van de Voort, Freeke; Coil, Alison L; Mobasher, Bahram


    Unlike spiral galaxies such as the Milky Way, the majority of the stars in massive elliptical galaxies were formed in a short period early in the history of the Universe. The duration of this formation period can be measured using the ratio of magnesium to iron abundance ([Mg/Fe]) in spectra, which reflects the relative enrichment by core-collapse and type Ia supernovae. For local galaxies, [Mg/Fe] probes the combined formation history of all stars currently in the galaxy, including younger and metal-poor stars that were added during late-time mergers. Therefore, to directly constrain the initial star-formation period, we must study galaxies at earlier epochs. The most distant galaxy for which [Mg/Fe] had previously been measured is at a redshift of z ≈ 1.4, with [Mg/Fe] = . A slightly earlier epoch (z ≈ 1.6) was probed by combining the spectra of 24 massive quiescent galaxies, yielding an average [Mg/Fe] = 0.31 ± 0.12 (ref. 7). However, the relatively low signal-to-noise ratio of the data and the use of index analysis techniques for both of these studies resulted in measurement errors that are too large to allow us to form strong conclusions. Deeper spectra at even earlier epochs in combination with analysis techniques based on full spectral fitting are required to precisely measure the abundance pattern shortly after the major star-forming phase (z > 2). Here we report a measurement of [Mg/Fe] for a massive quiescent galaxy at a redshift of z = 2.1, when the Universe was three billion years old. With [Mg/Fe] = 0.59 ± 0.11, this galaxy is the most Mg-enhanced massive galaxy found so far, having twice the Mg enhancement of similar-mass galaxies today. The abundance pattern of the galaxy is consistent with enrichment exclusively by core-collapse supernovae and with a star-formation timescale of 0.1 to 0.5 billion years-characteristics that are similar to population II stars in the Milky Way. With an average past star

  7. nIFTy galaxy cluster simulations II: radiative models

    CSIR Research Space (South Africa)

    Sembolini, F


    Full Text Available We have simulated the formation of a massive galaxy cluster (M(supcrit)(sub200) = 1.1×10(sup15)h(sup-1)M) in a CDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with full radiative...

  8. Deep spectroscopy of nearby galaxy clusters - II. The Hercules cluster (United States)

    Agulli, I.; Aguerri, J. A. L.; Diaferio, A.; Dominguez Palmero, L.; Sánchez-Janssen, R.


    We carried out the deep spectroscopic observations of the nearby cluster A 2151 with AF2/WYFFOS@WHT. The caustic technique enables us to identify 360 members brighter than Mr = -16 and within 1.3R200. We separated the members into subsamples according to photometrical and dynamical properties such as colour, local environment and infall time. The completeness of the catalogue and our large sample allow us to analyse the velocity dispersion and the luminosity functions (LFs) of the identified populations. We found evidence of a cluster still in its collapsing phase. The LF of the red population of A 2151 shows a deficit of dwarf red galaxies. Moreover, the normalized LFs of the red and blue populations of A 2151 are comparable to the red and blue LFs of the field, even if the blue galaxies start dominating 1 mag fainter and the red LF is well represented by a single Schechter function rather than a double Schechter function. We discuss how the evolution of cluster galaxies depends on their mass: bright and intermediate galaxies are mainly affected by dynamical friction and internal/mass quenching, while the evolution of dwarfs is driven by environmental processes that need time and a hostile cluster environment to remove the gas reservoirs and halt the star formation.


    Energy Technology Data Exchange (ETDEWEB)

    Rhode, Katherine L.; Salzer, John J.; Haurberg, Nathalie C.; Van Sistine, Angela; Young, Michael D. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Giovanelli, Riccardo; Adams, Elizabeth A. K. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, Saint Paul, MN 55105 (United States); Skillman, Evan D.; McQuinn, Kristen B. W., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States)


    We present results from ground-based optical imaging of a low-mass dwarf galaxy discovered by the ALFALFA 21 cm H I survey. Broadband (BVR) data obtained with the WIYN 3.5 m telescope at Kitt Peak National Observatory (KPNO) are used to construct color-magnitude diagrams of the galaxy's stellar population down to V{sub o} {approx} 25. We also use narrowband H{alpha} imaging from the KPNO 2.1 m telescope to identify a H II region in the galaxy. We use these data to constrain the distance to the galaxy to be between 1.5 and 2.0 Mpc. This places Leo P within the Local Volume but beyond the Local Group. Its properties are extreme: it is the lowest-mass system known that contains significant amounts of gas and is currently forming stars.

  10. The Extended Northern ROSAT Galaxy Cluster Survey (NORAS II). I. Survey Construction and First Results

    Energy Technology Data Exchange (ETDEWEB)

    Böhringer, Hans; Chon, Gayoung; Trümper, Joachim [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching (Germany); Retzlaff, Jörg [ESO, D-85748 Garching (Germany); Meisenheimer, Klaus [Max-Planck-Institut für Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schartel, Norbert [ESAC, Camino Bajo del Castillo, Villanueva de la Cañada, E-28692 Madrid (Spain)


    As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10{sup −12} erg s{sup −1} cm{sup −2} (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS II cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z  = 0.102. We provide a number of statistical functions, including the log N –log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ {sub 8} and Ω{sub m}, yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.

  11. A representative survey of the dynamics and energetics of FR II radio galaxies (United States)

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Mingo, B.


    We report the first large, systematic study of the dynamics and energetics of a representative sample of Fanaroff-Riley type II (FR II) radio galaxies with well-characterized group/cluster environments. We used X-ray inverse-Compton and radio synchrotron measurements to determine the internal radio-lobe conditions, and these were compared with external pressures acting on the lobes, determined from measurements of the thermal X-ray emission of the group/cluster. Consistent with previous work, we found that FR II radio lobes are typically electron dominated by a small factor relative to equipartition, and are overpressured relative to the external medium in their outer parts. These results suggest that there is typically no energetically significant proton population in the lobes of FR II radio galaxies (unlike for FR Is), and so for this population, inverse-Compton modelling provides an accurate way of measuring total energy content and estimating jet power. We estimated the distribution of Mach numbers for the population of expanding radio lobes, finding that at least half of the radio galaxies are currently driving strong shocks into their group/cluster environments. Finally, we determined a jet power-radio luminosity relation for FR II radio galaxies based on our estimates of lobe internal energy and Mach number. The slope and normalization of this relation are consistent with theoretical expectations, given the departure from equipartition and environmental distribution for our sample.

  12. A Chemical Confirmation of the Faint Boötes II Dwarf Spheroidal Galaxy (United States)

    Koch, Andreas; Rich, R. Michael


    We present a chemical abundance study of the brightest confirmed member star of the ultra-faint dwarf galaxy Boötes II from Keck/HIRES high-resolution spectroscopy at moderate signal-to-noise ratios. At [Fe/H] = -2.93 ± 0.03(stat.) ± 0.17(sys.), this star chemically resembles metal-poor halo field stars and the signatures of other faint dwarf spheroidal galaxies at the same metallicities in that it shows enhanced [α/Fe] ratios, Solar Fe-peak element abundances, and low upper limits on the neutron-capture element Ba. Moreover, this star shows no chemical peculiarities in any of the eight elements we were able to measure. This implies that the chemical outliers found in other systems remain outliers pertaining to the unusual enrichment histories of the respective environments, while Boo II appears to have experienced an enrichment history typical of its very low mass. We also re-calibrated previous measurements of the galaxy's metallicity from the calcium triplet (CaT) and find a much lower value than reported before. The resulting broad metallicity spread, in excess of one dex, the very metal-poor mean, and the chemical abundance patterns of the present star imply that Boötes II is a low-mass, old, metal-poor dwarf galaxy and not an overdensity associated with the Sagittarius Stream as has been previously suggested based on its sky position and kinematics. The low, mean CaT metallicity of -2.7 dex falls right on the luminosity-metallicity relation delineated over four orders of magnitude from the more luminous to the faintest galaxies. Thus Boötes II's chemical enrichment appears representative of the galaxy's original mass, while tidal stripping and other mass loss mechanisms were probably not significant as for other low-mass satellites.

  13. The Southern HII Region Discovery Survey: The Bright Catalog (United States)

    Wenger, Trey V.; Dickey, John M.; Jordan, Christopher H.; Balser, Dana; Armentrout, William Paul; Anderson, Loren; Bania, Thomas; Dawson, Joanne; McClure-Griffiths, Naomi M.; Shea, Jeanine


    HII regions, the zones of ionized gas surrounding recently formed high-mass stars, are the archetypical tracers of Galactic structure. The census of Galactic HII regions in the Southern sky is vastly incomplete due to a lack of sensitive radio recombination line (RRL) surveys. The Southern HII Region Discovery Survey (SHRDS) is a 900-hour Australia Telescope Compact Array cm-wavelength RRL and continuum emission survey of hundreds of third and fourth quadrant Galactic HII region candidates. These candidates are identified in the Widefield Infrared Survey Explorer (WISE) Catalog of Galactic HII Regions based on coincident 10 micron (WISE) and 20 cm (Southern Galactic Plane Survey) emission. The SHRDS is an extension of HII Region Discovery Surveys in the Northern sky with the Green Bank Telescope and Arecibo Telescope which discovered ~800 new HII regions. In the first 500 hours of the SHRDS, we targeted the 249 brightest HII region candidates and 33 previously known HII regions. We discuss the data reduction, analysis, and preliminary results from this first stage of the survey.

  14. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies (United States)

    Kauffmann, Guinevere


    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  15. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lampeitl, Hubert; /Portsmouth U., ICG; Smith, Mathew; /Cape Town U. /Portsmouth U., ICG; Nichol, Robert C.; /Portsmouth U., ICG; Bassett, Bruce; /South African Astron. Observ. /Cape Town U.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Foley, Ryan J.; /Harvard-Smithsonian Ctr. Astrophys.; Frieman, Joshua A.; /Chicago U. /Fermilab; Garnavich, Peter M.; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway


    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  16. Interstellar matter in early-type galaxies. II - The relationship between gaseous components and galaxy types (United States)

    Bregman, Joel N.; Hogg, David E.; Roberts, Morton S.


    Interstellar components of early-type galaxies are established by galactic type and luminosity in order to search for relationships between the different interstellar components and to test the predictions of theoretical models. Some of the data include observations of neutral hydrogen, carbon monoxide, and radio continuum emission. An alternative distance model which yields LX varies as LB sup 2.45, a relation which is in conflict with simple cooling flow models, is discussed. The dispersion of the X-ray luminosity about this regression line is unlikely to result from stripping. The striking lack of clear correlations between hot and cold interstellar components, taken together with their morphologies, suggests that the cold gas is a disk phenomenon while the hot gas is a bulge phenomenon, with little interaction between the two. The progression of galaxy type from E to Sa is not only a sequence of decreasing stellar bulge-to-disk ratio, but also of hot-to-cold-gas ratio.

  17. Hubble Space Telescope Hx Imaging of Star-forming Galaxies at z approximately equal to 1-1.5: Evolution in the Size and Luminosity of Giant H II Regions (United States)

    Livermore, R. C.; Jones, T.; Richard, J.; Bower, R. G.; Ellis, R. S.; Swinbank, A. M.; Rigby, J. R.; Smail, Ian; Arribas, S.; Rodriguez-Zaurin, J.; hide


    We present Hubble Space Telescope/Wide Field Camera 3 narrow-band imaging of the Ha emission in a sample of eight gravitationally lensed galaxies at z = 1-1.5. The magnification caused by the foreground clusters enables us to obtain a median source plane spatial resolution of 360 pc, as well as providing magnifications in flux ranging from approximately 10× to approximately 50×. This enables us to identify resolved star-forming HII regions at this epoch and therefore study their Ha luminosity distributions for comparisons with equivalent samples at z approximately 2 and in the local Universe. We find evolution in the both luminosity and surface brightness of HII regions with redshift. The distribution of clump properties can be quantified with an HII region luminosity function, which can be fit by a power law with an exponential break at some cut-off, and we find that the cut-off evolves with redshift. We therefore conclude that 'clumpy' galaxies are seen at high redshift because of the evolution of the cut-off mass; the galaxies themselves follow similar scaling relations to those at z = 0, but their HII regions are larger and brighter and thus appear as clumps which dominate the morphology of the galaxy. A simple theoretical argument based on gas collapsing on scales of the Jeans mass in a marginally unstable disc shows that the clumpy morphologies of high-z galaxies are driven by the competing effects of higher gas fractions causing perturbations on larger scales, partially compensated by higher epicyclic frequencies which stabilize the disc.

  18. Inner Lindblad resonance in galaxies Nonlinear theory II Bars

    CERN Document Server

    Contopoulos, George


    For pt.I see Astrophys. J., vol.201, no.3, p.566 (1975). The properties of the orbits in a galaxy composed of an axisymmetric background and a weak bar are derived theoretically, by means of a new integral besides the Hamiltonian. Inside the inner Lindblad resonance (ILR) there is only one periodic orbit, while outside the resonance there are one unstable and two stable periodic orbits. The non periodic orbits surround one of the stable periodic orbits, or both of them. Unless the amplitude of the wave increases considerably inwards the orbits inside the ILR are oriented perpendicularly to the bar; the majority of the orbits outside the ILR and inside corotation are elongated along the bar, and the orbits outside corotation and inside the outer Lindblad resonance are oriented mainly perpendicularly to the bar. A comparison with numerical calculations of orbits in various models shows very good agreement. (8 refs).

  19. The Frequency of Active and Quiescent Galaxies with Companions


    Schmitt, Henrique R.


    We study the percentage of active, HII and quiescent galaxies with companions in the Palomar survey. We find that when we separate the galaxies by their morphological types (ellipticals or spirals), to avoid morphology-density effects, there is no difference in the percentage of galaxies with companions among the different activity types.

  20. Biochemical characterization of RNase HII from Aeropyrum pernix

    National Research Council Canada - National Science Library

    Jingli Hou Yufen Liu Zheng Lu Xipeng Liu Jiarthua Liu


    Aeropyrum pernix contains one homolog of ribonuclease H (RNase H), A. pernix RNase HII (Ape-RNase HII). Activity characterization showed that Ape-RNase HII exhibited the highest activity in the presence of 5 mM Mn...

  1. Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Peterson, B. M.


    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability...... of the optical Fe II emission is 50% - 75% that of Hbeta and the ultraviolet Fe II emission varies with an even larger amplitude than Hbeta. However, accurate measurement of the flux in these blends proves to be very difficult even using excellent Fe II templates to fit the spectra. We are able to constrain only...... weakly the optical Fe II emission-line response timescale to a value less than several weeks; this upper limit exceeds all the reliably measured emission-line lags in this source so it is not particularly meaningful. Nevertheless, the fact that the optical Fe II and continuum flux variations...


    Energy Technology Data Exchange (ETDEWEB)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Casey, Andrew R., E-mail: [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)


    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  3. [C II] 158-micrometer Observations of a Sample of Late-type Galaxies from the Virgo Cluster (United States)

    Leech, K. J.; Volk, H. J.; Heinrichsen, I.; Hippelein, H.; Metcalfe, L.; Pierini, D.; Popescu, C. C.; Tuffs, R. J.; Xu, C.


    We have observed 19 Virgo cluster spiral galaxies with the Long Wavelength Spectrometer (LWS) onboard ESAs Infrared Space Observatory (ISO) obtaining spectral around the (C II) 157.741-micrometer fine structure line.

  4. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: II. Control of the H II Region Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A; Leitherer, C


    We examine from a theoretical viewpoint how the physical parameters of H II regions are controlled both in normal galaxies and in starburst environments. These parameters are the H II region luminosity function, the time-dependent size, the covering fraction of molecular clouds, the pressure in the ionized gas and the ionization parameter. The factors which control them are the initial mass function of the exciting stars, the cluster mass function, the metallicity and the mean pressure in the surrounding interstellar medium. We investigate the sensitivity of the H{alpha} luminosity to the IMF, and find that this can translate to about 30% variation in derived star formation rates. The molecular cloud dissipation timescale is estimated from a case study of M17 to be {approx} 1 Myr. Based upon H II luminosity function fitting for nearby galaxies, we propose that the cluster mass function has a log-normal form peaking at {approx} 185M{sub {circle_dot}}. This suggests that the cluster mass function is the continuation of the stellar IMF to higher mass. The pressure in the H II regions is controlled by the mechanical luminosity flux from the central cluster. Since this is closely related to the ionizing photon flux, we show that the ionization parameter is not a free variable, and that the diffuse ionized medium may be composed of many large, faint and old H II regions. Finally, we derive theoretical probability distributions for the ionization parameter as a function of metallicity and compare these to those derived for SDSS galaxies.

  5. The scaling relation of early-type galaxies in clusters II. Spectroscopic data for galaxies in eight nearby clusters

    DEFF Research Database (Denmark)

    Bettoni, D.; Moles, M.; Fasano, G.


    Galaxies: elliptical and lenticulars, cD, distances and redshifts - clusters: general Udgivelsesdato: June......Galaxies: elliptical and lenticulars, cD, distances and redshifts - clusters: general Udgivelsesdato: June...

  6. Ultracompact HII regions associated with massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D.O.S.


    This dissertation establishes the physical properties of ultracompact (UC) HII regions and investigates their interaction with the interstellar medium. UC HII regions are small photoionized nebulae produced by massive stars embedded in clouds of molecular gas and dust. New observations have been made using the Very Large Array (VLA) at cm wavelengths and single dish telescopes at mm wavelengths. Data were also collected from the Infrared Astronomical Satellite (IRAS) and from the literature. It is shown that UC HII regions have electron densities {approx gt} 10{sup 4} cm{sup {minus}3}, emission measures {approx gt} 10{sup 7} pc cm{sup {minus}6} and diameters {approx lt} .01 pc. The VLA was used at 2 and 6 cm to identify 75 UC HII regions. Radio continuum brightness distributions with 0.4 inch resolution are presented in the form of contour plots. At high angular resolution five different morphologies were seen: spherical or unresolved (43%), cometary (20%), core-halo (16%), shell (4%) and irregular or multiply peaked (17%). Cometary UC HII regions may be produced by the bow shock of a star moving supersonically through the molecular gas. The total number of UC HII regions found is inconsistent with a UC HII region lifetime of <3 {times} 10{sup 4} years. It is shown that UC HII regions have a characteristic FIR flux density distribution that is very different from typical entries in the IRAS Point Source Catalog. A two-color selection criterion based on the known UC HII regions is developed and when applied to the entire PSC a total of 1708 embedded OB star candidates are found.

  7. GALICS. II: the [ α/Fe] -mass relation in elliptical galaxies (United States)

    Pipino, A.; Devriendt, J. E. G.; Thomas, D.; Silk, J.; Kaviraj, S.


    Aims: We test whether the mass- and σ-[α/Fe] relations in the stellar populations of early-type galaxies can be reproduced by a cosmologically motivated assembly history for spheroids. Methods: We implement a detailed treatment for the chemical evolution of H, He, O, and Fe in GalICS, a semi-analytical model for galaxy formation that successfully reproduces basic low- and high-redshift galaxy properties. We take the contribution of supernovae into account (both type Ia and II), as well as low- and intermediate-mass stars, to chemical feedback. The model predictions are compared with the most recent observational results. Results: We find that the model shows significant improvement at the highest masses with respect to previous work, where the most massive galaxies were also the most α-depleted. In fact the predicted [ α/Fe] ratios in this regime are now marginally consistent with observed values. We show that this result comes from the implementation of AGN quenching of star formation in massive haloes. However, this does not help with the creation of the mass-metallicity relation. Instead, at intermediate masses, the scatter in the predicted [ α/Fe] ratios is much larger than the observed dispersion. This problem is related to inadequacies of the model in treating satellite galaxies. In particular, we find an excess of low-mass strongly α-enhanced satellites. Conclusions: The final stellar [ α/Fe] of a single galaxy is determined by the star formation history summed over all the progenitors. In particular, a longer duration the integrated star formation history leads to a lower α-enhancement, as might be expected from the results of closed box chemical evolution models. However, non-negligible differences between closed box and hierarchical model predictions are found, due to processes such as dry mergers and hot gas-phase metal recycling in the latter case. These processes help to build up the galactic mass while keeping the α element abundance in the

  8. Deconstructing dwarf galaxies: a Suprime-Cam survey of Andromeda II (United States)

    McConnachie, Alan W.; Arimoto, Nobuo; Irwin, Mike


    We present deep, subhorizontal-branch, multicolour photometry of the Andromeda II dwarf spheroidal (And II dSph) taken with the Subaru Suprime-Cam wide-field camera. We identify a red clump population in this galaxy, the first time this feature has been detected in an M31 dSph, which are normally characterized as having no significant intermediate-age populations. We construct radial profiles for the various stellar populations and show that the horizontal branch (HB) has a nearly constant density spatial distribution out to large radius, whereas the reddest red giant branch stars are centrally concentrated in an exponential profile. We argue that these populations trace two distinct structural components in And II, and show that this assumption provides a good match to the overall radial profile of this galaxy. The extended component dominates the stellar populations at large radius, whereas the exponential component dominates the inner few arcminutes. By examining colour-magnitude diagrams in these regions, we show that the two components have very different stellar populations; the exponential component has an average age of ~7-10 Gyr, is relatively metal-rich ([Fe/H] ~ -1) but with a significant tail to low metallicities, and possesses a red clump. The extended component, on the other hand, is ancient (~13 Gyr), metal-poor ([Fe/H] ~ -1.5) with a narrower dispersion σ[Fe/H] ~= 0.28, and has a well-developed blue HB. The extended component contains approximately three-quarters of the light of And II and its unusual density profile is unique in Local Group dwarf galaxies. This suggests that its formation and/or evolution may have been quite different from other dwarf galaxies. The obvious chemodynamical complexity of And II lends further support to the accumulating body of evidence which shows that the evolutionary histories of faint dSph galaxies can be every bit as complicated as their brighter and more massive counterparts. Based on data collected at Subaru

  9. Optical/Near-IR spatially resolved study of the H II galaxy Tol 02★ (United States)

    Torres-Campos, A.; Terlevich, E.; Rosa-González, D.; Terlevich, R.; Telles, E.; Díaz, A. I.


    The main goal of this study is to characterize the stellar populations in very low-metallicity galaxies. We have obtained broad U, B, R, I, J, H, K, intermediate Strömgren y and narrow H α and [O III] deep images of the Wolf-Rayet, blue compact dwarf, H II galaxy Tol 02. We have analysed the low surface brightness component, the stellar cluster complexes and the H II regions. The stellar populations in the galaxy have been characterized by comparing the observed broad-band colours with those of single stellar population models. The main results are consistent with Tol 02 being formed by a 1.5 Gyr old disc component at the centre of which a group of eight massive (>104 M⊙) stellar cluster clumps is located. Six of these clumps are 10 Myr old and their near-infrared colours suggest that their light is dominated by Red Supergiant (RSG) stars, the other two are young Wolf-Rayet cluster candidates of ages 3 and 5 Myr, respectively. 12 H II regions in the star-forming region of the galaxy are also identified. These are immersed in a diffuse H α and [O III] emission that spreads towards the north and south covering the old stellar disc. Our spatial-temporal analysis shows that star formation is more likely stochastic and simultaneous within short time-scales. The mismatch between observations and models cannot be attributed alone to a mistreat of the RSG phase and still needs to be further investigated.

  10. The Infrared and Radio Fluxes Densities of Galactic HII Regions


    Makai, Z.; Anderson, L. D.; Mascoop, J. L.; Johnstone, B.


    We derive infrared and radio flux densities of all ~1000 known Galactic HII regions in the Galactic longitude range 17.5 < l < 65 degree. Our sample comes from the Wide-Field Infrared Survey Explorer (WISE) catalog of Galactic \\hii regions \\citep{anderson2014}. We compute flux densities at six wavelengths in the infrared (GLIMPSE 8 microns, WISE 12 microns and 22 microns, MIPSGAL 24 microns, and Hi-GAL 70 microns and 160 microns) and two in the radio (MAGPIS 20 cm and VGPS 21 cm). All HII reg...

  11. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Linden, Tim


    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  12. On The gamma-ray emission from Reticulum II and other dwarf galaxies (United States)

    Hooper, Dan; Linden, Tim


    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  13. Biochemical characterization of RNase HII from Aeropyrum pernix. (United States)

    Hou, Jingli; Liu, Yufen; Lu, Zheng; Liu, Xipeng; Liu, Jianhua


    Aeropyrum pernix contains one homolog of ribonuclease H (RNase H), A. pernix RNase HII (Ape-RNase HII). Activity characterization showed that Ape-RNase HII exhibited the highest activity in the presence of 5 mM Mn(2+), 1 mM Co(2+), or 10 mM Mg(2+), respectively; however, its cleavage efficiencies at different cleavage sites for Mn(2+) and Mg(2+) were different. Ape-RNase HII cleaved 12-bp RNA/DNA substrates at multiple sites and the optimum pH value was 11.0. Moreover, 16-bp DNA-r4-DNA/DNA and 13-bp DNA-r1-DNA/DNA chimeric substrates were cleaved at DNA-RNA junction. Ape-RNase HII was thermostable and the stabilization was enhanced with increased salt concentration. This work is believed to be the first in vitro functional study of Ape-RNase HII and the results should contribute to the analysis of RNase H of other archaeal species.


    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Kimberly A. [Penn State Mont Alto, 1 Campus Drive, Mont Alto, PA 17237 (United States); Hunter, Deidre A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Elmegreen, Bruce G., E-mail:, E-mail:, E-mail: [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)


    In this second paper of a series, we explore the B  −  V , U  −  B , and FUV−NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ∼1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (−9 >  M{sub B}  > −14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (−14 >  M{sub B}  > −19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1−2  M {sub ⊙} pc{sup −2} for Type II dwarfs but higher at 5.9  M {sub ⊙} pc{sup −2} or 27  M {sub ⊙} pc{sup −2} for

  15. Reconstructing the galaxy density field with photometric redshifts - II. Environment-dependent galaxy evolution since z ≃ 3 (United States)

    Malavasi, Nicola; Pozzetti, Lucia; Cucciati, Olga; Bardelli, Sandro; Ilbert, Olivier; Cimatti, Andrea


    Although extensively investigated, the role of the environment in galaxy formation is still not well understood. In this context, the galaxy stellar mass function (GSMF) is a powerful tool to understand how environment relates to galaxy mass assembly and the quenching of star formation. In this work, we make use of the high-precision photometric redshifts of the UltraVISTA Survey to study the GSMF in different environments up to z ˜ 3, on physical scales from 0.3 to 2 Mpc, down to masses of M ˜ 1010 M⊙. We witness the appearance of environmental signatures for both quiescent and star-forming galaxies. We find that the shape of the GSMF of quiescent galaxies is different in high- and low-density environments up to z ˜ 2 with the high-mass end (M ≳ 1011 M⊙) being enhanced in high-density environments. On the contrary, for star-forming galaxies, a difference between the GSMF in high- and low-density environments is present for masses M ≲ 1011 M⊙. Star-forming galaxies in this mass range appear to be more frequent in low-density environments up to z 2. Our results, in terms of general trends in the shape of the GSMF, are in agreement with a scenario in which galaxies are quenched when they enter hot gas-dominated massive haloes that are preferentially in high-density environments.

  16. How to bend galaxy disc profiles - II. Stars surfing the bar in Type-III discs (United States)

    Herpich, J.; Stinson, G. S.; Rix, H.-W.; Martig, M.; Dutton, A. A.


    The radial profiles of stars in disc galaxies are observed to be either purely exponential (Type-I), truncated (Type-II) or antitruncated (Type-III) exponentials. Controlled formation simulations of isolated galaxies can reproduce all of these profile types by varying a single parameter, the initial halo spin. In this paper, we examine these simulations in more detail in an effort to identify the physical mechanism that leads to the formation of Type-III profiles. The stars in the antitruncated outskirts of such discs are now on eccentric orbits, but were born on near-circular orbits at much smaller radii. We show that, and explain how, they were driven to the outskirts via non-linear interactions with a strong and long-lived central bar, which greatly boosted their semimajor axis but also their eccentricity. While bars have been known to cause radial heating and outward migration to stellar orbits, we link this effect to the formation of Type-III profiles. This predicts that the antitruncated parts of galaxies have unusual kinematics for disc-like stellar configurations: high radial velocity dispersions and slow net rotation. Whether such discs exist in nature, can be tested by future observations.

  17. SARCS strong-lensing galaxy groups. II. Mass-concentration relation and strong-lensing bias (United States)

    Foëx, G.; Motta, V.; Jullo, E.; Limousin, M.; Verdugo, T.


    Aims: Various studies have shown a lensing bias in the mass-concentration relation of cluster-scale structures that is the result of an alignment of the major axis and the line of sight. In this paper, we aim to study this lensing bias through the mass-concentration relation of galaxy groups, thus extending observational constraints to dark matter haloes of mass ~1013-1014 M⊙. Methods: Our work is based on the stacked weak-lensing analysis of a sample of 80 strong-lensing galaxy groups. By combining several lenses, we significantly increase the signal-to-noise ratio of the lensing signal, thus providing constraints on the mass profile that cannot be obtained for individual objects. The resulting shear profiles were fitted with various mass models, among them the Navarro-Frank-White (NFW) profile, which provides an estimate of the total mass and of the concentration of the composite galaxy groups. Results: The main results of our analysis are the following: (i) the lensing signal does not allow us to firmly distinguish between a simple singular isothermal sphere mass distribution and the expected NFW mass profile; (ii) we obtain an average concentration c200 = 8.6-1.3+2.1 that is much higher than the value expected from numerical simulations for the corresponding average mass M200 = 0.73-0.10+0.11 × 1014 M⊙; (iii) the combination of our results with those at larger mass scales gives a mass-concentration relation c(M) of more than two decades in mass, whose slope disagrees with predictions from numerical simulations using unbiased populations of dark matter haloes; (iv) our combined c(M) relation matches results from simulations that only used haloes with a large strong-lensing cross-section, that is, elongated with a major axis close to the line of sight; (v) for the simplest case of prolate haloes, we estimate a lower limit on the minor-to-major axis ratio a/c = 0.5 for the average SARCS galaxy group with a toy model. Conclusions: Our analysis based on galaxy

  18. Nearby Spiral Galaxy Globular Cluster Systems. II. Globular Cluster Metallicities in NGC 300 (United States)

    Nantais, Julie B.; Huchra, John P.; Barmby, Pauline; Olsen, Knut A. G.


    We present new metallicity estimates for globular cluster (GC) candidates in the Sd spiral NGC 300, one of the nearest spiral galaxies outside the Local Group. We have obtained optical spectroscopy for 44 Sculptor Group GC candidates with the Boller and Chivens (B&C) spectrograph on the Baade Telescope at Las Campanas Observatory. There are two GCs in NGC 253 and 12 objects in NGC 300 with globular-cluster-like spectral features, nine of which have radial velocities above 0 km s-1. The remaining three, due to their radial velocities being below the expected 95% confidence limit for velocities of NGC 300 halo objects, are flagged as possible foreground stars. The non-cluster-like candidates included 13 stars, 15 galaxies, and an H II region. One GC, four galaxies, two stars, and the H II region from our sample were identified in archival Hubble Space Telescope images. For the GCs, we measure spectral indices and estimate metallicities using an empirical calibration based on Milky Way GCs. The GCs of NGC 300 appear similar to those of the Milky Way. Excluding possible stars and including clusters from the literature, the GC system (GCS) has a velocity dispersion of 68 km s-1 and has no clear evidence of rotation. The mean metallicity for our full cluster sample plus one literature object is [Fe/H] = -0.94, lying above the relationship between mean GC metallicity and overall galaxy luminosity. Excluding the three low-velocity candidates, we obtain a mean [Fe/H] = -0.98, still higher than expected, raising the possibility of significant foreground star contamination even in this sample. Visual confirmation of genuine GCs using high-resolution space-based imagery could greatly reduce the potential problem of interlopers in small samples of GCSs in low-radial-velocity galaxies. Data for this project were obtained at the Baade 6.5 m telescope, Las Campanas Observatory, Chile. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint

  19. The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II (United States)

    Spencer, Meghin E.; Mateo, Mario; Walker, Matthew G.; Olszewski, Edward W.; McConnachie, Alan W.; Kirby, Evan N.; Koch, Andreas


    We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from {0.30}-0.10+0.09 to {0.34}-0.11+0.11, depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (˜0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s-1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.

  20. Galaxy interactions in compact groups - II. Abundance and kinematic anomalies in HCG 91c (United States)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Borthakur, Sanchayeeta; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Yun, Min S.; Chambers, Kenneth C.


    Galaxies in Hickson Compact Group 91 (HCG 91) were observed with the WiFeS integral field spectrograph as part of our ongoing campaign targeting the ionized gas physics and kinematics inside star-forming members of compact groups. Here, we report the discovery of H II regions with abundance and kinematic offsets in the otherwise unremarkable star-forming spiral HCG 91c. The optical emission line analysis of this galaxy reveals that at least three H II regions harbour an oxygen abundance ˜0.15 dex lower than expected from their immediate surroundings and from the abundance gradient present in the inner regions of HCG 91c. The same star-forming regions are also associated with a small kinematic offset in the form of a lag of 5-10 km s-1 with respect to the local circular rotation of the gas. H I observations of HCG 91 from the Very Large Array and broad-band optical images from Pan-STARRS (Panoramic Survey Telescope And Rapid Response System) suggest that HCG 91c is caught early in its interaction with the other members of HCG 91. We discuss different scenarios to explain the origin of the peculiar star-forming regions detected with WiFeS, and show that evidence points towards infalling and collapsing extraplanar gas clouds at the disc-halo interface, possibly as a consequence of long-range gravitational perturbations of HCG 91c from the other group members. As such, HCG 91c provides evidence that some of the perturbations possibly associated with the early phase of galaxy evolution in compact groups impact the star-forming disc locally, and on sub-kpc scales.

  1. Rotation in [C II]-emitting gas in two galaxies at a redshift of 6.8 (United States)

    Smit, Renske; Bouwens, Rychard J.; Carniani, Stefano; Oesch, Pascal A.; Labbé, Ivo; Illingworth, Garth D.; van der Werf, Paul; Bradley, Larry D.; Gonzalez, Valentino; Hodge, Jacqueline A.; Holwerda, Benne W.; Maiolino, Roberto; Zheng, Wei


    The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this ‘epoch of reionization’ involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C II] λ = 157.74 μm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C II] luminosities than would be expected from local scaling relations, and searches for the [C II] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C II] λ = 157.74 μm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C II] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C II] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation

  2. Escape of ionizing radiation from star-forming regions in Young galaxies

    DEFF Research Database (Denmark)

    Razoumov, A; Sommer-Larsen, Jesper


    Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10......Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10...

  3. Towards a library of synthetic galaxy spectra and preliminary results of classification and parametrization of unresolved galaxies for Gaia. II (United States)

    Tsalmantza, P.; Kontizas, M.; Rocca-Volmerange, B.; Bailer-Jones, C. A. L.; Kontizas, E.; Bellas-Velidis, I.; Livanou, E.; Korakitis, R.; Dapergolas, A.; Vallenari, A.; Fioc, M.


    Aims: This paper is the second in a series, implementing a classification system for Gaia observations of unresolved galaxies. Our goals are to determine spectral classes and estimate intrinsic astrophysical parameters via synthetic templates. Here we describe (1) a new extended library of synthetic galaxy spectra; (2) its comparison with various observations; and (3) first results of classification and parametrization experiments using simulated Gaia spectrophotometry of this library. Methods: Using the PÉGASE.2 code, based on galaxy evolution models that take account of metallicity evolution, extinction correction, and emission lines (with stellar spectra based on the BaSeL library), we improved our first library and extended it to cover the domain of most of the SDSS catalogue. Our classification and regression models were support vector machines (SVMs). Results: We produce an extended library of 28 885 synthetic galaxy spectra at zero redshift covering four general Hubble types of galaxies, over the wavelength range between 250 and 1050 nm at a sampling of 1 nm or less. The library is also produced for 4 random values of redshift in the range of 0-0.2. It is computed on a random grid of four key astrophysical parameters (infall timescale and 3 parameters defining the SFR) and, depending on the galaxy type, on two values of the age of the galaxy. The synthetic library was compared and found to be in good agreement with various observations. The first results from the SVM classifiers and parametrizers are promising, indicating that Hubble types can be reliably predicted and several parameters estimated with low bias and variance.

  4. Galaxy-Wide Shocks in the H$\\alpha$ Emission of Nearby Galaxy Mergers (United States)

    Mortazavi, S. Alireza; Lotz, Jennifer M.


    We examine the properties of shocked gas produced as a result of binary galaxy interactions, using H$\\alpha$ emission in a sample 22 mergers observed with SparsePak Integral Field Unit (IFU) at Kitt Peak National Observatory (KPNO). Our sample consists of major and minor tidally interacting galaxies (mass ratio $1error of the fit parameters, and use the F-test to determine the best number of kinematic components for each fiber. We use both [N II]/H$\\alpha$ ratio and velocity dispersion of components to separate star-forming (HII) regions from shock-heated gas. We estimate the fraction of shocked H$\\alpha$ emission to the total H$\\alpha$ flux, $\\text{f}_\\text{shocked}$, and examine the spatial distribution of shocks. We find that close galaxy pairs have, on average, a higher shock fraction than wide pairs, and our coalesced mergers have the highest average $\\text{f}_\\text{shocked}$. Additionally, we find for the first time, correlations between mass ratio, mass of the companion, and $\\text{f}_\\text{shocked}$ in tidally interacting galaxy pairs. Among the non-coalesced systems in our sample, the galaxy pairs with more equal light ratio (stellar mass ratio) tend to have a higher average $\\text{f}_\\text{shocked}$. Also, the primary (more massive) companions are on average slightly more shocked than the secondary (less massive) ones. Utilizing dynamical models in the literature and this work, we inspect trends between $\\text{f}_\\text{shocked}$ and the reconstructed encounter parameters. In this very limited sample, we find that the orbital pericentric separation is correlated with shock fraction, consistent with shocks being produced by the chain of events caused by the tidal impulse during the first passage. These results lay a basis for furture analysis using the higher statistics provided by the on-going and future IFU galaxy surveys.

  5. ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion? (United States)

    Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano


    The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.

  6. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: III. Emission Line Diagnostics of Ensembles of H II Regions

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Leitherer, C; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A


    We have built, as far as possible, fully self-consistent models of H II regions around aging clusters of stars. These produce strong emission line diagnostics applicable to either individual H II regions in galaxies, or to the integrated emission line spectra of disk or starburst galaxies. The models assume that the expansion and internal pressure of individual H II regions is driven by the net input of mechanical energy from the central cluster, be it through winds or supernova events. This eliminates the ionization parameter as a free variable, replacing it with a parameter which depends on the ratio of the cluster mass to the pressure in the surrounding interstellar medium. These models explain why H II regions with low abundances have high excitation, and demonstrate that at least part of the warm ionized medium is the result of overlapping faint, old, large, and low pressure H II regions. We present a number of line ratios (at both optical and IR wavelengths) that provide reliable abundance diagnostics for either single H II regions or for integrated galaxy spectra, and others that are sensitive to the age of the cluster stars exciting individual H II regions.

  7. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    NARCIS (Netherlands)

    Martin, Nicolas F.; Nidever, David L.; Besla, Gurtina; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Gruendl, Robert A.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Blum, Robert D.; Saha, Abhijit; Conn, Blair C.; Bell, Eric F.; Chu, You-Hua; Cioni, Maria-Rosa L.; de Boer, Thomas J. L.; Gallart, Carme; Jin, Shoko; Kunder, Andrea; Majewski, Steven R.; Martinez-Delgado, David; Monachesi, Antonela; Monelli, Matteo; Monteagudo, Lara; Noël, Noelia E. D.; Olszewski, Edward W.; Stringfellow, Guy S.; van der Marel, Roeland P.; Zaritsky, Dennis

    We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact ({{r}h}=68 ± 11 pc) and faint ({{M}V}=-4.8 ± 0.3),

  8. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Lau, Erwin T.; Rudd, Douglas H., E-mail: [Department of Physics, Yale University, New Haven, CT 06520 (United States)


    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  9. X-Ray bright active galactic nuclei in massive galaxy clusters - II. The fraction of galaxies hosting active nuclei

    DEFF Research Database (Denmark)

    Ehlert, S.; von der Linden, A.; Allen, S. W.


    regions of the clusters that is~3 times lower than the field value. This fraction increases with clustercentric distance before becoming consistent with the field at ~2.5r500. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies...

  10. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - II. The sample and surface mass density profiles (United States)

    Riffel, R. A.; Storchi-Bergmann, T.; Riffel, R.; Davies, R.; Bianchin, M.; Diniz, M. R.; Schönell, A. J.; Burtscher, L.; Crenshaw, M.; Fischer, T. C.; Dahmer-Hahn, L. G.; Dametto, N. Z.; Rosario, D.


    We present and characterize a sample of 20 nearby Seyfert galaxies selected for having BAT 14-195 keV luminosities LX ≥ 1041.5 erg s-1, redshift z ≤ 0.015, being accessible for observations with the Gemini Near-Infrared Field Spectrograph (NIFS) and showing extended [O III]λ5007 emission. Our goal is to study Active Galactic Nucleus (AGN) feeding and feedback processes from near-infrared integral-field spectra, which include both ionized (H II) and hot molecular (H2) emission. This sample is complemented by other nine Seyfert galaxies previously observed with NIFS. We show that the host galaxy properties (absolute magnitudes MB, MH, central stellar velocity dispersion and axial ratio) show a similar distribution to those of the 69 BAT AGN. For the 20 galaxies already observed, we present surface mass density (Σ) profiles for H II and H2 in their inner ˜500 pc, showing that H II emission presents a steeper radial gradient than H2. This can be attributed to the different excitation mechanisms: ionization by AGN radiation for H II and heating by X-rays for H2. The mean surface mass densities are in the range (0.2 ≤ ΣH II ≤ 35.9) M⊙ pc-2, and (0.2 ≤ ΣH2 ≤ 13.9)× 10-3 M⊙ pc-2, while the ratios between the H II and H2 masses range between ˜200 and 8000. The sample presented here will be used in future papers to map AGN gas excitation and kinematics, providing a census of the mass inflow and outflow rates and power as well as their relation with the AGN luminosity.

  11. Formation des etoiles massives dans les galaxies spirales (United States)

    Lelievre, Mario

    Le but de cette thèse est de décrire la formation des étoiles massives dans les galaxies spirales appartenant à divers types morphologiques. L'imagerie Hα profonde combinée à une robuste méthode d'identification des régions HII ont permis de détecter et de mesurer les propriétés (position, taille, luminosité, taux de formation d'étoiles) de plusieurs régions HII situées dans le disque interne (R produire dans les galaxies.

  12. A Multi-epoch Kinematic Study of the Remote Dwarf Spheroidal Galaxy Leo II (United States)

    Spencer, Meghin E.; Mateo, Mario; Walker, Matthew G.; Olszewski, Edward W.


    We conducted a large spectroscopic survey of 336 red giants in the direction of the Leo II dwarf galaxy using Hectochelle on the Multiple Mirror Telescope, and we conclude that 175 of them are members based on their radial velocities and surface gravities. Of this set, 40 stars have never before been observed spectroscopically. The systemic velocity of the dwarf is 78.3 ± 0.6 km s-1 with a velocity dispersion of 7.4 ± 0.4 km s-1. We identify one star beyond the tidal radius of Leo II but find no signatures of uniform rotation, kinematic asymmetries, or streams. The stars show a strong metallicity gradient of -1.53 ± 0.10 dex kpc-1 and have a mean metallicity of -1.70 ± 0.02 dex. There is also evidence of two different chemodynamic populations, but the signal is weak. A larger sample of stars would be necessary to verify this feature. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  13. A Multi-epoch Kinematic Study of the Remote Dwarf Spheroidal Galaxy Leo II

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Meghin E.; Mateo, Mario [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Walker, Matthew G. [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA (United States); Olszewski, Edward W., E-mail: [Steward Observatory, The University of Arizona, Tucson, AZ (United States)


    We conducted a large spectroscopic survey of 336 red giants in the direction of the Leo II dwarf galaxy using Hectochelle on the Multiple Mirror Telescope, and we conclude that 175 of them are members based on their radial velocities and surface gravities. Of this set, 40 stars have never before been observed spectroscopically. The systemic velocity of the dwarf is 78.3 ± 0.6 km s{sup −1} with a velocity dispersion of 7.4 ± 0.4 km s{sup −1}. We identify one star beyond the tidal radius of Leo II but find no signatures of uniform rotation, kinematic asymmetries, or streams. The stars show a strong metallicity gradient of −1.53 ± 0.10 dex kpc{sup −1} and have a mean metallicity of −1.70 ± 0.02 dex. There is also evidence of two different chemodynamic populations, but the signal is weak. A larger sample of stars would be necessary to verify this feature.

  14. ALMA Reveals Strong [C II] Emission in a Galaxy Embedded in a Giant Lyα Blob at z = 3.1

    NARCIS (Netherlands)

    Umehata, Hideki; Matsuda, Yuichi; Tamura, Yoichi; Kohno, Kotaro; Smail, Ian; Ivison, R. J.; Steidel, Charles C.; Chapman, Scott C.; Geach, James E.; Hayes, Matthew; Nagao, Tohru; Ao, Yiping; Kawabe, Ryohei; Yun, Min S.; Hatsukade, Bunyo; Kubo, Mariko; Kato, Yuta; Saito, Tomoki; Ikarashi, Soh; Nakanishi, Kouichiro; Lee, Minju; Izumi, Takuma; Mori, Masao; Ouchi, Masami


    We report the result from observations conducted with the Atacama Large Millimeter/submillimeter Array (ALMA) to detect [C II] 158 μm fine structure line emission from galaxies embedded in one of the most spectacular Lyα blobs (LABs) at z = 3.1, SSA22-LAB1. Of three dusty star-forming galaxies

  15. Optical observations of the nearby galaxy IC342 with narrow band [SII] and Hα filters. I

    Directory of Open Access Journals (Sweden)

    Vučetić M.M.


    Full Text Available We present observations of a portion of the nearby spiral galaxy IC342 using narrow band [SII] and Hα filters. These observations were carried out in November 2011 with the 2m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper we report coordinates, diameters, Hα and [SII] fluxes for 203 HII regions detected in two fields of view in IC342 galaxy. The number of detected HII regions is 5 times higher than previously known in these two parts of the galaxy. [Projekat Ministarstva nauke Republike Srbije, br. 176005: Emission nebulae: structure and evolution

  16. VizieR Online Data Catalog: FIRST catalog of FR II radio galaxies (Capetti+, 2017) (United States)

    Capetti, A.; Massaro, F.; Baldi, R. D.


    We searched for FR II radio galaxies in the sample of 18,286 radio sources built by Best & Heckman (2012, Cat. J/MNRAS/421/1569; hereafter the BH12 sample) by limiting our search to the subsample of objects in which, according to these authors, the radio emission is produced by an active nucleus. They cross-matched the optical spectroscopic catalogs produced by the group from the Max Planck Institute for Astrophysics and Johns Hopkins University (Brinchmann et al. 2004MNRAS.351.1151B; Tremonti et al. 2004ApJ...613..898T) based on data from the data release 7 of the Sloan Digital Sky Survey (DR7/SDSS; Abazajian et al. 2009ApJS..182..543A),1 with the National Radio Astronomy Observatory Very Large Array Sky Survey (NVSS; Condon et al. 1998AJ....115.1693C, Cat. VIII/65) and the Faint Images of the Radio Sky at Twenty centimeters survey (FIRST; Becker et al. 1995ApJ...450..559B; Helfand et al. 2015ApJ...801...26H, Cat. VIII/92) adopting a radio flux density limit of 5 mJy in the NVSS. We focused on the sources with redshift z<0.15. The majority (107) of the selected FR IIs are classified as LEG, but there are also 14 HEG and just one source that cannot be classified spectroscopically because of the lack of emission lines, namely J1446+2142. (1 data file).

  17. Galaxies: The Long Wavelength View

    National Research Council Canada - National Science Library

    Fischer, J


    ... (more than 2 orders of magnitude) in the [C II]/FIR ratios in galaxies extending from blue compact dwarfs, to normal and starburst galaxies, down to elliptical and ultraluminous galaxies (ULICs...

  18. Galactic winds with MUSE: A direct detection of Fe II* emission from a z = 1.29 galaxy (United States)

    Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Epinat, Benoît; Bacon, Roland; Brinchmann, Jarle; Cantalupo, Sebastiano; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael; Richard, Johan; Schroetter, Ilane; Verhamme, Anne; Weilbacher, Peter M.; Wendt, Martin; Wisotzki, Lutz


    Emission signatures from galactic winds provide an opportunity to directly map the outflowing gas, but this is traditionally challenging because of the low surface brightness. Using very deep observations (27 h) of the Hubble Deep Field South with the Multi Unit Spectroscopic Explorer (MUSE) instrument, we identify signatures of an outflow in both emission and absorption from a spatially resolved galaxy at z = 1.29 with a stellar mass M⋆ = 8 × 109M⊙, star formation rate SFR = 77+40-25 M⊙ yr-1, and star formation rate surface brightness ΣSFR = 1.6M⊙ kpc-2 within the [Oii] λλ3727,3729 half-light radius R1/2, [OII] = 2.76 ± 0.17 kpc. From a component of the strong resonant Mg II and Fe II absorptions at -350 km s-1, we infer a mass outflow rate that is comparable to the star formation rate. We detect non-resonant Fe II* emission, at λ2365, λ2396, λ2612, and λ2626, at 1.2-2.4-1.5-2.7 × 10-18 erg s-1 cm-2 respectively. The flux ratios are consistent with the expectations for optically thick gas. By combining the four non-resonant Fe II* emission lines, we spatially map the Fe II* emission from an individual galaxy for the first time. The Fe II* emission has an elliptical morphology that is roughly aligned with the galaxy minor kinematic axis, and its integrated half-light radius, R1/2, Fe II ∗ =4.1 ± 0.4 kpc, is 70% larger than the stellar continuum (R1/2,⋆ ≃2.34 ± 0.17) or the [Oii] nebular line. Moreover, the Fe II* emission shows a blue wing extending up to -400 km s-1, which is more pronounced along the galaxy minor kinematic axis and reveals a C-shaped pattern in a p-v diagram along that axis. These features are consistent with a bi-conical outflow. Based on observations of the Hubble Deep Field South made with ESO telescopes at the La Silla Paranal Observatory under program ID 60.A-9100(C). Advanced data products are available at science

  19. Dark influences II. Gas and star formation in minor mergers of dwarf galaxies with dark satellites

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.; Sales, L. V.


    Context. It has been proposed that mergers induce starbursts and lead to important morphological changes in galaxies. Most studies so far have focused on large galaxies, but dwarfs might also experience such events, since the halo mass function is scale-free in the concordance cosmological model.

  20. On the population of remnant Fanaroff-Riley type II radio galaxies and implications for radio source dynamics (United States)

    Godfrey, L. E. H.; Morganti, R.; Brienza, M.


    The purpose of this work is two-fold: (1) to quantify the occurrence of ultrasteep spectrum remnant Fanaroff-Riley type II (FRII) radio galaxies in a 74 MHz flux-limited sample, and (2) perform Monte Carlo simulations of the population of active and remnant FRII radio galaxies to confront models of remnant lobe evolution, and to provide guidance for further investigation of remnant radio galaxies. We find that fewer than 2 per cent of FRII radio galaxies with S74 MHz > 1.5 Jy are candidate ultrasteep spectrum remnants, where we define ultrasteep spectrum as α _74 MHz^1400 MHz > 1.2. Our Monte Carlo simulations demonstrate that models involving Sedov-like expansion in the remnant phase, resulting in rapid adiabatic energy losses, are consistent with this upper limit, and predict the existence of nearly twice as many remnants with normal (not ultrasteep) spectra in the observed frequency range as there are ultrasteep spectrum remnants. This model also predicts an ultrasteep remnant fraction approaching 10 per cent at redshifts z studies of the remnant population.

  1. Northern dwarf and low surface brightness galaxies. II - The Green Bank neutral hydrogen survey (United States)

    Schneider, Stephen E.; Thuan, Trinh X.; Mangum, Jeffrey G.; Miller, John


    The paper reports neutral hydrogen observations of a large sample of dwarf and other low surface brightness galaxies. A detailed discussion and error analysis of the observations are presented, and spectra are displayed for 329 galaxies detected for the first time, or detected with substantially better signal-to-noise ratios than achieved previously. The positions on the sky of 667 galaxies meeting the present selection criteria north of delta = 38 deg are shown. The distribution of the redshifts of galaxies detected at Green Bank is illustrated. The Green Bank detections tapered off strongly below the median H I flux of 3.7 Jy km/s detected at Arecibo: only 12 percent of the Green Bank sample was detected with smaller fluxes.

  2. C II 158 ??bservations of a Sample of Late-type Galaxies from the Virgo Cluster (United States)

    Leech, K.; Volk, H.; Heinrichsen, I.; Hippelein, H.; Metcalfe, L.; Pierini, D.; Popescu, C.; Tuffs, R.; Xu, C.


    We have observed 19 Virgo cluster spiral galaxies with the Long Wavelength Spectrometer (LWS) onboard ESAs Infrared Space Observatory (ISO) obtaining spectra around the [CII] 157.741 ??ine structure line.

  3. Study of galaxies in the Lynx-Cancer void. II. Element abundances (United States)

    Pustilnik, S. A.; Tepliakova, A. L.; Kniazev, A. Yu.


    In the framework of study of the evolutionary status of galaxies in the nearby Lynx-Cancer void, we present the results of the SAO RAS 6-m telescope spectroscopy for 20 objects in this region. The principal faint line [O iii]λ4363 Å, used to determine the electron temperature and oxygen abundance (O/H) by the classicalmethod, is clearly detected in only about 2/3 of the studied objects. For the remaining galaxies this line is either faint or undetected. To obtain the oxygen abundances in these galaxies we as well apply the semi-empirical method by Izotov and Thuan, and/or the empirical methods of Pilyugin et al., which are only employing the intensities of sufficiently strong lines. We also present our O/H measurements for 22 Lynx-Cancer void galaxies, for which the suitable Sloan Digital Sky Survey (SDSS) spectra are available. In total, we present the combined O/H data for 48 Lynx-Cancer void galaxies, including the data adopted from the literature and our own earlier results. We make a comparison of their locations on the (O/H)-MB diagram with those of the dwarf galaxies of the Local Volume in the regions with denser environment. We infer that the majority of galaxies from this void on the average reveal an about 30% lower metallicity. In addition, a substantial fraction (not less than 10%) of the void dwarf galaxies have a much larger O/H deficiency (up to a factor of 5). Most of them belong to the tiny group of objects with the gas metallicity Z galaxies (Z galaxy samples in the Hamburg-SAO and the SDSS surveys. We discuss possible implications of these results for the galaxy evolution models.

  4. Exploring the expansion dynamics of the universe from galaxy cluster surveys (United States)

    Wang, Deng; Meng, Xin-He


    To understand the expansion dynamics of the universe from galaxy cluster scales, using the angular diameter distance (ADD) data from two different galaxy cluster surveys, we constrain four cosmological models to explore the underlying value of H0 and employ the model-independent Gaussian Processes to investigate the evolution of the equation of state of dark energy. The ADD data in the X-ray bands consists of two samples covering the redshift ranges [0.023, 0.784] and [0.14, 0.89], respectively. We find that: (i) For these two samples, the obtained values of H0 are more consistent with the recent local observation by Riess et al. than the global measurement by the Planck Collaboration, and the ΛCDM model is still preferred utilizing the information criterions; (ii) For the first sample, there is no evidence of dynamical dark energy (DDE) at the 2 σ confidence level (CL); (iii) For the second one, the reconstructed equation of state of dark energy exhibits a phantom-crossing behavior in the relatively low redshift range over the 2 σ CL, which gives a hint that the late-time universe may be actually dominated by the DDE from galaxy cluster scales; (iv) By adding a combination of Type Ia Supernovae, cosmic chronometers and Planck-2015 shift parameter and HII galaxy measurements into both ADD samples, the DDE exists evidently over the 2 σ CL.

  5. Star formation around the HII region Sh2-235


    Kirsanova, M. S.; Sobolev, A. M.; Thomasson, M.; Wiebe, D. S.; Johansson, L. E. B.; Seleznev, A. F.


    We present a picture of star formation around the HII region Sh2-235 (S235) based upon data on the spatial distribution of young stellar clusters and the distribution and kinematics of molecular gas around S235. We observed 13CO(1-0) and CS(2-1) emission toward S235 with the Onsala Space Observatory 20-m telescope and analysed the star density distribution with archival data from the 2MASS survey. Dense molecular gas forms a shell-like structure at the south-eastern part of S235. The young cl...

  6. OMEGA - OSIRIS Mapping of Emission-line Galaxies in A901/2 - II. Environmental influence on integrated star formation properties and AGN activity (United States)

    Rodríguez del Pino, Bruno; Aragón-Salamanca, Alfonso; Chies-Santos, Ana L.; Weinzirl, Tim; Bamford, Steven P.; Gray, Meghan E.; Böhm, Asmus; Wolf, Christian; Maltby, David T.


    We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ˜ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [N II] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies. Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass. We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation. We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible.

  7. The MICE Grand Challenge lightcone simulation - II. Halo and galaxy catalogues (United States)

    Crocce, M.; Castander, F. J.; Gaztañaga, E.; Fosalba, P.; Carretero, J.


    This is the second in a series of three papers in which we present an end-to-end simulation from the MICE collaboration, the MICE Grand Challenge (MICE-GC) run. The N-body contains about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume spanning five orders of magnitude in dynamical range. Here, we introduce the halo and galaxy catalogues built upon it, both in a wide (5000 deg2) and deep (z snapshots. Haloes were resolved down to few 1011 h-1 M⊙. This allowed us to model galaxies down to absolute magnitude Mr amplitude of poorly resolved haloes at the ≲5 per cent level, and their three-pt correlation function. We find a characteristic scale-dependent bias of ≲6 per cent across the BAO feature for haloes well above M⋆ ˜ 1012 h-1 M⊙ and for luminous red galaxy like galaxies. For haloes well below M⋆ the scale dependence at 100 h-1 Mpc is ≲2 per cent. Lastly, we discuss the validity of the large-scale Kaiser limit across redshift and departures from it towards non-linear scales. We make the current version of the lightcone halo and galaxy catalogue (MICECATv1.0) publicly available through a dedicated web portal to help develop and exploit the new generation of astronomical surveys.

  8. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC /Stockholm U.; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.


    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are

  9. Biochemical characterization and functional complementation of ribonuclease HII and ribonuclease HIII from Chlamydophila pneumoniae AR39. (United States)

    Liang, Rubing; Liu, Xipeng; Pei, Dongli; Liu, Jianhua


    Chlamydophila pneumoniae AR39 contains two different ORFs (CP0654 and CP0782) encoding ribonuclease H (RNase H) homologues, Cpn-RNase HII and Cpn-RNase HIII. Sequence alignments show that the two homologues both contain the conserved motifs of type 2 RNase H, and Cpn-RNase HII has the conserved active-site motif (DEDD) of RNase HII. Cpn-RNase HIII also contains a unique active-site motif (DEDE), common to other RNase HIIIs. Complementation assays indicated that Cpn-RNase HII can complement both Escherichia coli RNase HII and RNase HI, but Cpn-RNase HIII can only complement the latter. In vitro enzyme activity experiments showed that neither Cpn-RNase HII nor Cpn-RNase HIII is thermostable and their optimum pH values were 9.0 and 10.0, respectively. Cpn-RNase HII cleaves a 12 bp RNA-DNA substrate at multiple sites, but Cpn-RNase HIII at only one site. When a 35 bp DNA-RNA-DNA/DNA chimeric substrate was used, cleavage was only observed with Cpn-RNase HII. These results indicate that the RNase H combination of C. pneumoniae AR39 is not simple substitution of E. coli RNase H, perhaps representing a more primordial type. This is believed to be the first in vivo functional study of Chlamydophila RNase Hs and the results should contribute to the analysis of RNase Hs of other parasite species.


    NARCIS (Netherlands)


    The HII complex W3 has been observed at four different frequencies (325 MHz, 1.4 GHz, 4.9 GHz and 14.7 GHz) in the radio continuum and in a number of different radio recombination lines of hydrogen, helium and carbon. From these observations the global properties of the 9 main HII components have

  11. GMRT and VLA Observations at 49 cm and 20 cm of the HII Region ...

    Indian Academy of Sciences (India)

    We also report detection of hydrogen recombination lines from the HII region at = 24.8° and = 0.1° at all observed frequencies near = 100 km s-1. We model the observed integrated line flux density as arising in the diffuse HII region and find that the best fitting model has an electron density comparable to that ...

  12. Supermassive black holes and their host galaxies. II. The correlation with near-infrared luminosity revisited

    Energy Technology Data Exchange (ETDEWEB)

    Läsker, Ronald; Van de Ven, Glenn [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Ferrarese, Laura [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E2E7 (Canada); Shankar, Francesco, E-mail: [GEPI Observatoire de Paris, CNRS, Univ. Paris Diderot, 5 Place Jules Janssen, F-92195 Meudon (France)


    We present an investigation of the scaling relations between supermassive black hole (SMBH) masses, M {sub •}, and their host galaxies' K-band bulge (L {sub bul}) and total (L {sub tot}) luminosities. The wide-field WIRCam imager at the Canada-France-Hawaii-Telescope was used to obtain the deepest and highest resolution near-infrared images available for a sample of 35 galaxies with securely measured M {sub •}, selected irrespective of Hubble type. For each galaxy, we derive bulge and total magnitudes using a two-dimensional image decomposition code that allows us to account, if necessary, for large- and small-scale disks, cores, bars, nuclei, rings, envelopes, and spiral arms. We find that the present-day M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations have consistent intrinsic scatter, suggesting that M {sub •} correlates equally well with bulge and total luminosity of the host. Our analysis provides only mild evidence of a decreased scatter if the fit is restricted to elliptical galaxies. The log-slopes of the M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations are 0.75 ± 0.10 and 0.92 ± 0.14, respectively. However, while the slope of the M {sub •}-L {sub bul} relation depends on the detail of the image decomposition, the characterization of M {sub •}-L {sub tot} does not. Given the difficulties and ambiguities of decomposing galaxy images into separate components, our results indicate that L {sub tot} is more suitable as a tracer of SMBH mass than L {sub bul}, and that the M {sub •}-L {sub tot} relation should be used when studying the co-evolution of SMBHs and galaxies.

  13. Leaking Photons from the HII Region NGC 7538 (United States)

    Luisi, Matteo; Anderson, Loren D.; Balser, Dana S.; Bania, Thomas M.; Wenger, Trey


    Using data from the NRAO Green Bank Telescope and the INT Photometric H-Alpha Survey of the Northern Galactic Plane (IPHAS), we analyze the ionizing radiation that is escaping the photo-dissociation region (PDR) boundary of the HII region NGC 7538. We find extended radio continuum and radio recombination line (RRL) emission outside the PDR toward the north and east of the region. This suggests that a non-uniform PDR morphology is affecting the amount of radiation "leaking" through the PDR. We quantify the leaking photon fraction along the line of sight, and use a numerical model to estimate the leaking photon fraction in three dimensions of both radio continuum and H-alpha emission. We detect carbon RRL emission near the PDR and find a decrease in the helium-to-hydrogen ionic abundance ratio with increasing distance from the central position. This indicates a softening of the radiation field within the PDR. Using Herschel Space Observatory data, we create a dust temperature map of the region and show that small dust temperature enhancements to the north and east of NGC 7538 coincide with extended radio emission. We discuss implications for maintaining the ionization of the warm interstellar medium by HII regions.

  14. The chemical abundances of the stellar populations in the Leo I and II dSph galaxies (United States)

    Bosler, Tammy L.; Smecker-Hane, Tammy A.; Stetson, Peter B.


    We have obtained calcium abundances and radial velocities for 102 red giant branch (RGB) stars in the Leo I dwarf spheroidal galaxy (dSph) and 74 RGB stars in the Leo II dSph using the low-resolution spectrograph (LRIS) on the Keck I 10-m telescope. We report on the calcium abundances [Ca/H] derived from the strengths of the CaII triplet absorption lines at 8498, 8542 and 8662 Å in the stellar spectra using a new empirical CaII triplet calibration to [Ca/H]. The two galaxies have different average [Ca/H] values of -1.34 +/- 0.02 for Leo I and -1.65 +/- 0.02 for Leo II with intrinsic abundance dispersions of 1.2 and 1.0 dex, respectively. The typical random and total errors in derived abundances are 0.10 and 0.17 dex per star. For comparison to the existing literature, we also converted our CaII measurements to [Fe/H] on the scale of Carretta and Gratton (1997) though we discuss why this may not be the best determinant of metallicity; Leo I has a mean [Fe/H] = -1.34 and Leo II has a mean [Fe/H] = -1.59. The metallicity distribution function of Leo I is approximately Gaussian in shape with an excess at the metal-rich end, while that of Leo II shows an abrupt cut-off at the metal-rich end. The lower mean metallicity of Leo II is consistent with the fact that it has a lower luminosity, hence lower the total mass than Leo I; thus, the evolution of Leo II may have been affected more by mass lost in galactic winds. Our direct and independent measurement of the metallicity distributions in these dSph will allow a more accurate star-formation histories to be derived from future analysis of their colour-magnitude diagrams(CMDs). Data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. E

  15. Wide-Field Survey around Local Group Dwarf Spheroidal Galaxy Leo II: Spatial Distribution of Stellar Content (United States)

    Komiyama, Yutaka; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Imi, Katsumi; Kimura, Masahiko; Miyazaki, Satoshi; Nakata, Fumiaki; Okada, Norio; Okamura, Sadanori; Ouchi, Masami; Sekiguchi, Maki; Shimasaku, Kazuhiro; Yagi, Masafumi; Yasuda, Naoki


    We carried out a wide-field V, I imaging survey of the Local Group dwarf spheroidal galaxy Leo II using the Subaru Prime Focus Camera on the 8.2 m Subaru Telescope. The survey covered an area of 26.67×26.67 arcmin2, far beyond the tidal radius of Leo II (8.63'), down to the limiting magnitude of V~=26, which is roughly 1 mag deeper than the turnoff point of the main-sequence stars of Leo II. Radial number density profiles of bright and faint red giant branch (RGB) stars were found to change their slopes at around the tidal radius, and extend beyond the tidal radius with shallower slopes. A smoothed surface brightness map of Leo II suggests the existence of a small substructure (4×2.5 arcmin2, 270×170 pc 2 in physical size) of globular cluster luminosity beyond the tidal radius. We investigated the properties of the stellar population by means of a color-magnitude diagram. The horizontal branch (HB) morphology index shows a radial gradient in which red HB stars are more concentrated than blue HB stars, which is common to many Local Group dwarf spheroidal galaxies. The color distribution of RGB stars around the mean RGB sequence shows a larger dispersion at the center than in the outskirts, indicating a mixture of stellar populations at the center and a more homogeneous population in the outskirts. Based on the age estimation using subgiant branch stars, we found that although the major star formation took place ~8 Gyr ago, a considerable stellar population younger than 8 Gyr is found at the center; such a younger population is insignificant in the outskirts. The following star formation history is suggested for Leo II. Star-forming activity occurred more than ~8 Gyr ago throughout the galaxy at a modest star formation rate. The star-forming region gradually shrank from the outside toward the center, and star-forming activity finally dropped to ~0 by ~4 Gyr ago, except for the center, where a small population younger than 4 Gyr is present. Based on data collected

  16. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.


    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  17. ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03

    DEFF Research Database (Denmark)

    Hansen, Lene; Jørgensen, H.E.; Nørgaard-Nielsen, Hans Ulrik


    In a series of papers we investigate far-infrared emission from rich galaxy clusters. Maps have been obtained by ISO at 60 mu m, 100 mu m, 135 mu m, and 200 mu m using the PHT-C camera. Ground based imaging and spectroscopy were also acquired. Here we present the results for the cooling flow...


    Energy Technology Data Exchange (ETDEWEB)

    Brüggen, Marcus [Universität Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029, Hamburg (Germany); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States)


    We explore the impact of electron thermal conduction on the evolution of radiatively cooled cold clouds embedded in flows of hot and fast material as it occurs in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much longer disruption times that are set by a balance between impinging thermal energy and evaporation. We provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clouds to present a small cross-section to the ambient flow. This means that either magnetic fields must suppress thermal conduction, or that the cold clouds observed in galaxy outflows are not formed of cold material carried out from the galaxy.

  19. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems (United States)

    Henkel, C.; Javanmardi, B.; Martínez-Delgado, D.; Kroupa, P.; Teuwen, K.


    The connection between the bulge mass or bulge luminosity in disk galaxies and the number, spatial and phase space distribution of associated dwarf galaxies is a discriminator between cosmological simulations related to galaxy formation in cold dark matter and generalised gravity models. Here, a nearby sample of isolated Milky Way-class edge-on galaxies is introduced, to facilitate observational campaigns to detect the associated families of dwarf galaxies at low surface brightness. Three galaxy pairs with at least one of the targets being edge-on are also introduced. Approximately 60% of the catalogued isolated galaxies contain bulges of different size, while the remaining objects appear to be bulgeless. Deep images of NGC 3669 (small bulge, with NGC 3625 at the edge of the image) and NGC 7814 (prominent bulge), obtained with a 0.4 m aperture, are also presented, resulting in the discovery of two new dwarf galaxy candidates, NGC 3669-DGSAT-3 and NGC 7814-DGSAT-7. Eleven additional low surface brightness galaxies are identified, previously notified with low quality measurement flags in the Sloan Digital Sky Survey (SDSS). Integrated magnitudes, surface brightnesses, effective radii, Sersic indices, axis ratios, and projected distances to their putative major hosts are displayed. At least one of the galaxies, NGC 3625-DGSAT-4, belongs with a surface brightness of μr ≈ 26 mag arcsec-2 and effective radius >1.5 kpc to the class of ultra-diffuse galaxies (UDGs). NGC 3669-DGSAT-3, the galaxy with the lowest surface brightness in our sample, may also be an UDG.

  20. HICOSMO: cosmology with a complete sample of galaxy clusters - II. Cosmological results (United States)

    Schellenberger, G.; Reiprich, T. H.


    The X-ray bright, hot gas in the potential well of a galaxy cluster enables systematic X-ray studies of samples of galaxy clusters to constrain cosmological parameters. HIFLUGCS consists of the 64 X-ray brightest galaxy clusters in the Universe, building up a local sample. Here, we utilize this sample to determine, for the first time, individual hydrostatic mass estimates for all the clusters of the sample and, by making use of the completeness of the sample, we quantify constraints on the two interesting cosmological parameters, Ωm and σ8. We apply our total hydrostatic and gas mass estimates from the X-ray analysis to a Bayesian cosmological likelihood analysis and leave several parameters free to be constrained. We find Ωm = 0.30 ± 0.01 and σ8 = 0.79 ± 0.03 (statistical uncertainties, 68 per cent credibility level) using our default analysis strategy combining both a mass function analysis and the gas mass fraction results. The main sources of biases that we correct here are (1) the influence of galaxy groups (incompleteness in parent samples and differing behaviour of the Lx-M relation), (2) the hydrostatic mass bias, (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other physical effects (non-negligible neutrino mass). We find that galaxy groups introduce a strong bias, since their number density seems to be over predicted by the halo mass function. On the other hand, incorporating baryonic effects does not result in a significant change in the constraints. The total (uncorrected) systematic uncertainties (∼20 per cent) clearly dominate the statistical uncertainties on cosmological parameters for our sample.

  1. Narrow-line Seyfert galaxies with permitted Fe II emission Markarian 507, 5C 3.100, and I Zw 1 (United States)

    Halpern, J. P.; Oke, J. B.


    Optical, X-ray and and/or IR spectra of Mrk 507, 5C 3.100 and I Zw 1 are compared in a discussion of the bases for classifications of Seyfert 1 and 2 galaxies. Einstein Observatory X ray data indicate that the Seyfert designation requires a continuum extending to X-rays in order to account for permitted Fe II lines observed in Seyfert galaxies. It is suggested that the IR luminosity of I Zw 1, which exceeds the X-ray luminosity by two orders of magnitude, may be accounted for by interaction between companion galaxies. The presence or absence of dense clouds such as those in I Zw 1 is identified as the factor which separates Seyfert galaxies into two mutually exclusive ranges in X-ray luminosity.

  2. Redshifts for fainter galaxies in the first CfA survey slice. II (United States)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Geller, Margaret J.; Huchra, John P.


    Redshifts were measured for 96 galaxies in right ascension alpha between 8h and 17h declination delta between 30 and 31 deg, and with m(Zwicky) in the range 15.6-15.7. These correspond to 94 of the 96 entries in the Zwicky-Nilson merged catalog. The declination range delta between 29 deg and 31 deg is now complete to m(Zwicky) = 15.7. The structures in the first 6-deg-wide slice of the Center for Astrophysics redshift survey slice (delta between 26.5 and 32.5 deg are clearly defined in the 2-deg-wide slightly deeper sample; the fainter galaxies trace the structures defined by the brighter ones.

  3. The Westerbork HI survey of spiral and irregular galaxies - II. R-band surface photometry of late-type dwarf galaxies

    NARCIS (Netherlands)

    Swaters, RA; Balcells, M

    R-band surface photometry is presented for 171 late-type dwarf and irregular galaxies. For a subsample of 46 galaxies B-band photometry is presented as well. We present surface brightness profiles as well as isophotal and photometric parameters including magnitudes, diameters and central surface

  4. Dynamics of cD clusters of galaxies. II: Analysis of seven Abell clusters (United States)

    Oegerle, William R.; Hill, John M.


    We have investigated the dynamics of the seven Abell clusters A193, A399, A401, A1795, A1809, A2063, and A2124, based on redshift data reported previously by us (Hill & Oegerle, (1993)). These papers present the initial results of a survey of cD cluster kinematics, with an emphasis on studying the nature of peculiar velocity cD galaxies and their parent clusters. In the current sample, we find no evidence for significant peculiar cD velocities, with respect to the global velocity distribution. However, the cD in A2063 has a significant (3 sigma) peculiar velocity with respect to galaxies in the inner 1.5 Mpc/h, which is likely due to the merger of a subcluster with A2063. We also find significant evidence for subclustering in A1795, and a marginally peculiar cD velocity with respect to galaxies within approximately 200 kpc/h of the cD. The available x-ray, optical, and galaxy redshift data strongly suggest that a subcluster has merged with A1795. We propose that the subclusters which merged with A1795 and A2063 were relatively small, with shallow potential wells, so that the cooling flows in these clusters were not disrupted. Two-body gravitational models of the A399/401 and A2063/MKW3S systems indicate that A399/401 is a bound pair with a total virial mass of approximately 4 x 10(exp 15) solar mass/h, while A2063 and MKW3S are very unlikely to be bound.

  5. Cosmic reionization on computers. II. Reionization history and its back-reaction on early galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kaurov, Alexander A., E-mail:, E-mail: [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)


    We compare the results from several sets of cosmological simulations of cosmic reionization, produced under the Cosmic Reionization On Computers project, with existing observational data on the high-redshift Lyα forest and the abundance of Lyα emitters. We find good consistency with the observational measurements and previous simulation work. By virtue of having several independent realizations for each set of numerical parameters, we are able to explore the effect of cosmic variance on observable quantities. One unexpected conclusion we are forced into is that cosmic variance is unusually large at z > 6, with both our simulations and, most likely, observational measurements still not fully converged for even such basic quantities as the average Gunn-Peterson optical depth or the volume-weighted neutral fraction. We also find that reionization has little effect on the early galaxies or on global cosmic star formation history, because galaxies whose gas content is affected by photoionization contain no molecular (i.e., star-forming) gas in the first place. In particular, measurements of the faint end of the galaxy luminosity function by the James Webb Space Telescope are unlikely to provide a useful constraint on reionization.

  6. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)


    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  7. The Cosmic Dance of Distant Galaxies (United States)


    exquisite spectral resolution, GIRAFFE also allows for the first time to study the distribution of gas as a function of its density in such distant galaxies. The most spectacular results reveal a possible outflow of gas and energy driven by the intense star-formation within the galaxy and a giant region of very hot gas (HII region) in a galaxy in equilibrium that produces many stars. "Such a technique can be expanded to obtain maps of many physical and chemical characteristics of distant galaxies, enabling us to study in detail how they assembled their mass during their entire life," said François Hammer. "In many respects, GIRAFFE and its multi-integral field mode gives us a first flavour of what will be achieved with future extremely large telescopes." Notes [1]: The team comprises: François Hammer, Hector Flores, Mathieu Puech, Chantal Balkowski (GEPI - Observatoire de Paris), Philippe Amram (LAM - Observatoire Astronomique Marseille-Provence), Göran Östlin (Stockholm Observatory), Thomas Marquart (Dept. of Astronomy and Space Physics - Uppsala, Sweden) and Matthew D. Lehnert (MPE, Germany). [2]: This complex and unique instrument allows obtaining high-quality spectra of a large variety of celestial objects, from individual stars in the Milky Way and other nearby galaxies, to very distant galaxies. It functions by means of multiple optical fibres that guide the light from the telescope's focal plane into the entry slit of the spectrograph. Here the light is dispersed into its different colours. GIRAFFE and these fibres are an integral part of the advanced Fibre Large Array Multi-Element Spectrograph (FLAMES) facility which also includes the OzPoz positioner and an optical field corrector. It is the outcome of a collaboration between ESO, Observatoire de Paris-Meudon, Observatoire de Genève-Lausanne and the Anglo Australian Observatory (AAO). More details are available in ESO PR 01/02. The principle of this instrument involves the positioning in the telescope's focal

  8. Star formation and the interstellar medium in low surface brightness galaxies - I. Oxygen abundances and abundance gradients in low surface brightness disk galaxies

    NARCIS (Netherlands)

    de Blok, WJG; van der Hulst, JM

    We present measurements of the oxygen abundances in 64 HII regions in 12 LSB galaxies. We find that oxygen abundances are low. No regions with solar abundance have been found, and most have oxygen abundances similar to 0.5 to 0.1 solar. The oxygen abundance appears to be constant as a function of

  9. The AGORA High-resolution Galaxy Simulations Comparison Project. II. Isolated Disk Test (United States)

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain; Butler, Michael J.; Ceverino, Daniel; Choi, Jun-Hwan; Feldmann, Robert; Keller, Ben W.; Lupi, Alessandro; Quinn, Thomas; Revaz, Yves; Wallace, Spencer; Gnedin, Nickolay Y.; Leitner, Samuel N.; Shen, Sijing; Smith, Britton D.; Thompson, Robert; Turk, Matthew J.; Abel, Tom; Arraki, Kenza S.; Benincasa, Samantha M.; Chakrabarti, Sukanya; DeGraf, Colin; Dekel, Avishai; Goldbaum, Nathan J.; Hopkins, Philip F.; Hummels, Cameron B.; Klypin, Anatoly; Li, Hui; Madau, Piero; Mandelker, Nir; Mayer, Lucio; Nagamine, Kentaro; Nickerson, Sarah; O'Shea, Brian W.; Primack, Joel R.; Roca-Fàbrega, Santi; Semenov, Vadim; Shimizu, Ikkoh; Simpson, Christine M.; Todoroki, Keita; Wadsley, James W.; Wise, John H.; AGORA Collaboration


    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ˜3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.

  10. The MUSIC of galaxy clusters - II. X-ray global properties and scaling relations (United States)

    Biffi, V.; Sembolini, F.; De Petris, M.; Valdarnini, R.; Yepes, G.; Gottlöber, S.


    We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) data set. We focus on a sub-sample of 179 clusters at redshift z ˜ 0.11, with 3.2 × 1014 h-1 M⊙ MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving TX. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting TX and, particularly, LX.

  11. H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223 (United States)

    Sluse, D.; Sonnenfeld, A.; Rumbaugh, N.; Rusu, C. E.; Fassnacht, C. D.; Treu, T.; Suyu, S. H.; Wong, K. C.; Auger, M. W.; Bonvin, V.; Collett, T.; Courbin, F.; Hilbert, S.; Koopmans, L. V. E.; Marshall, P. J.; Meylan, G.; Spiniello, C.; Tewes, M.


    Galaxies located in the environment or along the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of H0 from the time-delay technique. We present the results of a systematic spectroscopic identification of the galaxies in the field of view of the lensed quasar HE 0435-1223 using the W. M. Keck, Gemini and ESO-Very Large telescopes. Our new catalogue triples the number of known galaxy redshifts in the direct vicinity of the lens, expanding to 102 the number of measured redshifts for galaxies separated by less than 3 arcmin from the lens. We complement our catalogue with literature data to gather redshifts up to 15 arcmin from the lens, and search for galaxy groups or clusters projected towards HE 0435-1223. We confirm that the lens is a member of a small group that includes at least 12 galaxies, and find 8 other group candidates near the line of sight of the lens. The flexion shift, namely the shift of lensed images produced by high-order perturbation of the lens potential, is calculated for each galaxy/group and used to identify which objects produce the largest perturbation of the lens potential. This analysis demonstrates that (i) at most three of the five brightest galaxies projected within 12 arcsec of the lens need to be explicitly used in the lens models, and (ii) the groups can be treated in the lens model as an external tidal field (shear) contribution.

  12. ALMA [N ii] 205 μ m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Nanyao; Xu, C. Kevin; Zhu, Lei [National Astronomical Observatories, Chinese Academy of Sciences (CAS), Beijing 100012 (China); Zhao, Yinghe [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Díaz-Santos, Tanio [Nucleo de Astronomia de la Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito Libertador 441, Santiago (Chile); Charmandaris, Vassilis [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Gao, Yu [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van der Werf, Paul P. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Privon, George C. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Inami, Hanae [Centre de Recherche Astrophysique de Lyon (CRAL), Observatoire de Lyon, CNRS, UMR5574, F-69230, Saint-Genis-Laval (France); Rigopoulou, Dimitra [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Sanders, David B., E-mail: [University of Hawaii, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)


    We present the results from Atacama Large Millimeter/submillimeter Array imaging in the [N ii] 205 μ m fine-structure line (hereafter [N ii]) and the underlying continuum of BRI 1202-0725, an interacting galaxy system at z = 4.7, consisting of a quasi-stellar object (QSO), a submillimeter galaxy (SMG), and two Ly α emitters, all within ∼25 kpc of the QSO. We detect the QSO and SMG in both [N ii] and continuum. At the ∼1″ (or 6.6 kpc) resolution, both the QSO and SMG are resolved in [N ii], with the de-convolved major axes of ∼9 and ∼14 kpc, respectively. In contrast, their continuum emissions are much more compact and unresolved even at an enhanced resolution of ∼0.″7. The ratio of the [N ii] flux to the existing CO(7−6) flux is used to constrain the dust temperature ( T {sub dust}) for a more accurate determination of the FIR luminosity L {sub FIR}. Our best estimated T {sub dust} equals 43 (±2) K for both galaxies (assuming an emissivity index β = 1.8). The resulting L {sub CO(7−6)}/ L {sub FIR} ratios are statistically consistent with that of local luminous infrared galaxies, confirming that L {sub CO(7−6)} traces the star formation (SF) rate (SFR) in these galaxies. We estimate that the ongoing SF of the QSO (SMG) has an SFR of 5.1 (6.9) × 10{sup 3} M {sub ⊙} yr{sup −1} (±30%) assuming Chabrier initial mass function, takes place within a diameter (at half maximum) of 1.3 (1.5) kpc, and will consume the existing 5 (5) × 10{sup 11} M {sub ⊙} of molecular gas in 10 (7) × 10{sup 7} years.

  13. Emission-line Diagnostics of Nearby HII Regions Including Supernova Hosts (United States)

    Xiao, Lin; Eldridge, J. J.; Stanway, Elizabeth; Galbany, L.


    We present a new model of the optical nebular emission from HII regions by combining the results of the Binary Population and Spectral Synthesis (bpass) code with the photoionization code cloudy (Ferland et al. 1998). We explore a variety of emission-line diagnostics of these star-forming HII regions and examine the effects of metallicity and interacting binary evolution on the nebula emission-line production. We compare the line emission properties of HII regions with model stellar populations, and provide new constraints on their stellar populations and supernova progenitors. We find that models including massive binary stars can successfully match all the observational constraints and provide reasonable age and mass estimation of the HII regions and supernova progenitors.

  14. Investigation of the PAH size distribution in a compact HII region (United States)

    Ohsawa, Ryou


    Polycyclic aromatic hydrocarbons (PAHs) are excited by absorbing UV photons and emit the strong emission features in the infrared. The PAH emission features can be a good estimator of star formation rates (SFRs). On the other hand, PAHs are destroyed in harsh environments like HII regions. Two mechanisms are suggested for PAH destruction; sputtering and photo-dissociation. It is not observationally investigated which process is dominant in HII regions. We invent a method to identify the dominating destruction process in terms of the size distribution of PAHs. We propose the near-infrared imaging observations of a compact HII region M1-78 with the Gemini/NIRI. We investigate the variation in the PAH size distribution in M1-78 and discuss which destruction process is dominant in HII regions.

  15. Relativistic jet feedback II: Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies (United States)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole PH


    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilize cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low frequency power laws inferred from the radio observations. These new computational models replace the power-law model for the free-free optical depth in the (Bicknell et al. 1997) model by a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low frequency spectra discovered by Callingham et al. (2018) may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure and distribution of gas in the host galaxy.

  16. The Neutral Gas Properties of Extremely Isolated Early-type Galaxies. II. (United States)

    Ashley, Trisha; Marcum, Pamela M.; Fanelli, Michael N.


    As part of an ongoing study of isolated early-type galaxies (IEG), we present neutral hydrogen (H I) observations of six IEGs obtained with the Green Bank Telescope. Two of the six IEGs presented in this paper have detected H I emission (KIG 870 and SDSS J102145.89+383249.8). KIG 870 has an H I emission profile that is strongly asymmetric about the optical systemic velocity with a redshifted double-horned profile and a blueshifted single-peaked component. KIG 870 is likely an advanced merger system. SDSS J102145.89+383249.8 has a Gaussian-like profile, indicating that the H I is not strongly rotating, is in a face-on disk, or is in a thick-disk similar to a dwarf galaxy. Our parent sample of H I observations is composed of 12 IEGs, 7 of which have now been detected in H I. The dwarf and luminous IEGs in our parent sample have median H I-mass-to-blue-luminosity ratios that are each three times larger than that of their non-cluster ETG counterparts, indicating that IEGs in our sample are significantly more gas rich than non-cluster ETGs.

  17. GMRT and VLA Observations at 49 cm and 20 cm of the HII Region ...

    Indian Academy of Sciences (India)


    Mar 8, 2007 ... from polycylic aromatic hydrocarbons (PAH), is also detected from this region. The physical properties of this HII region estimated from its continuum strength are listed in Table 3. G24.71−0.13: This is another shell-like HII region. The size of the shell is about. 7 pc similar to that of G24.83+0.10. G24.71−0.13 ...

  18. Searching gravitational microlensing events in the galaxy spiral arms by EROS II; Recherche d'evenements de microlentille gravitationnelle dans les bras spiraux de la galaxie avec EROS II

    Energy Technology Data Exchange (ETDEWEB)

    Derue, Frederic [Paris-11 Univ., 91 Orsay (France)


    The EROS II experiment is searching for microlensing events due to compact massive objects passing through the line-of-sight of luminous stars. These objects are candidates to explain the baryonic component of Dark Matter in our Galaxy. EROS II was dedicated to different lines-of-sight: Small and Large Magellanic Clouds, Galactic Centre and 4 directions towards the Spiral Arms of the Galaxy. This thesis presents the first search for microlensing towards these last lines-of-sight (about 9 million stars). Simple criteria based on the search for significant fluctuations allowed one to discover a low noise sample of 7 candidates to the microlensing effect, with an average timescale of 50 days. A detailed analysis of the light curve of one candidate allows us to give a confidence interval on its mass 2.7 x 10{sup -3} < M/M{sub 0} < 0.84 at 95% CL. The amplification curve of another candidate shows a modulation which can be interpreted as a microlensing effect acting on a binary source, with an orbital period of P{sub 0} = 50 {+-} 3 days. To improve the knowledge of the distance of the target stars, we have combined observations of EROS II with bibliographic sources on associations of stars linked with the spiral arm features, and we have developed a program to find variable stars. Ten cepheids have thus been found. Distances obtained with different methods are in rough agreement with each other. The average optical depth measured towards the four directions is {tau}-bar = 0.45{sub 0.11}{sup +0.23} x 10{sup -6}. It is compatible with expectations from simple galactic models. The long duration of most events favours interpretation of lensing by objects belonging to the disk instead of the halo. It also seems that some events due to bulge lenses have influenced measurements towards the line-of-sight which is closest to the Galactic Centre. Observation continue towards spiral arms. More accurate measurements should be obtained with increase of statistics, allowing one to

  19. Fueling the central engine of radio galaxies. II. The footprints of AGN feedback on the ISM of 3C 236 (United States)

    Labiano, A.; García-Burillo, S.; Combes, F.; Usero, A.; Soria-Ruiz, R.; Tremblay, G.; Neri, R.; Fuente, A.; Morganti, R.; Oosterloo, T.


    Context. There is growing observational evidence of active galactic nuclei (AGN) feedback on the interstellar medium (ISM) of radio-quiet and radio-loud galaxies. While AGN feedback is expected to be more common at high-redshift objects, studying local universe galaxies helps to better characterize the different manifestations of AGN feedback. Aims: Molecular line observations can be used to quantify the mass and energy budget of the gas affected by AGN feedback. We study the emission of molecular gas in 3C 236, a Faranoff-Riley type 2 (FR II) radio source at z ~ 0.1, and search for the footprints of AGN feedback. The source 3C 236 shows signs of a reactivation of its AGN triggered by a recent minor merger episode. Observations have also previously identified an extreme H i outflow in this source. Methods: The IRAM Plateau de Bure interferometer (PdBI) was used to study the distribution and kinematics of molecular gas in 3C 236 by imaging with high spatial resolution (0.6″) the emission of the 2-1 line of 12CO in the nucleus of the galaxy. We searched for outflow signatures in the CO map. We also derived the star-formation rate (SFR) in 3C 236 using data available from the literature at UV, optical, and IR wavelengths, to determine the star-formation efficiency (SFE) of molecular gas. Results: The CO emission in 3C 236 comes from a spatially resolved ~1.4″(2.6 kpc-) diameter disk characterized by a regular rotating pattern. Within the limits imposed by the sensitivity and velocity coverage of the CO data, we do not detect any outflow signatures in the cold molecular gas. The disk has a cold gas mass M(H2) ~ 2.1 × 109 M⊙. Based on CO we determine a new value for the redshift of the source zCO = 0.09927 ± 0.0002. The similarity between the CO and H i profiles indicates that the deep H i absorption in 3C 236 can be accounted for by a rotating H i structure. This restricts the evidence of H i outflow to only the most extreme velocities. In the light of the new

  20. Forming a Primordial Star in a Relic HII Region

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, Brian


    There has been considerable theoretical debate over whether photoionization and supernova feedback from the first Population III stars facilitate or suppress the formation of the next generation of stars. We present results from an Eulerian adaptive mesh refinement simulation demonstrating the formation of a primordial star within a region ionized by an earlier nearby star. Despite the higher temperatures of the ionized gas and its flow out of the dark matter potential wells, this second star formed within 23 million years of its neighbor's death. The enhanced electron fraction within the HII region catalyzes rapid molecular hydrogen formation that leads to faster cooling in the subsequent star forming halos than in the first halos. This ''second generation'' primordial protostar has a much lower accretion rate because, unlike the first protostar, it forms in a rotationally supported disk of {approx} 10-100 M{center_dot}. In contrast to unpreprocessed regions, such configurations may allow binaries or multiple systems of lower mass stars to form. These first high resolution calculations offer insight into the impact of feedback upon subsequent populations of stars and clearly demonstrate how primordial chemistry promotes the formation of subsequent generations of stars even in the presence of the entropy injected by the first stars into the IGM.


    Energy Technology Data Exchange (ETDEWEB)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Grogin, Norman A.; Dahlen, Tomas; Noeske, Kai G.; Bellini, Andrea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21210 (United States); Malhotra, Sangeeta; Rhoads, James E.; Cohen, Seth H.; Mechtley, Matthew; Windhorst, Rogier A. [School of Earth And Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Meurer, Gerhardt R. [International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Walsh, Jeremy R. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Hathi, Nimish P. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Holwerda, Benne W. [ESA-ESTEC, Keplerlaan 1, 2200 AG, Noordwijk (Netherlands); Straughn, Amber N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)


    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitess grism spectroscopic data obtained with the Advanced Camera for Surveys on board Hubble Space Telescope. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random survey of galaxies, as well as the availability of a wide variety of ancillary observations complemented by the spectroscopic results. Using the PEARS data, we are able to identify star-forming galaxies (SFGs) within the redshift volume 0 < z < 1.5. Star-forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allows us to detect the presence of multiple emission-line regions (ELRs) within a single galaxy. We identified a total of 1162 H{alpha}, [O III], and/or [O II] emission lines in the PEARS sample of 906 galaxies to a limiting flux of {approx}10{sup -18} erg s{sup -1} cm{sup -2}. The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis, we find three key results: (1) the computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; (2) the star-forming systems show evidence of complex morphologies with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass. (3) Also, the number density of SFGs with M{sub *} {>=} 10{sup 9} M{sub Sun} decreases by an order of magnitude at z {<=} 0.5 relative to the number at 0.5 < z < 0.9, supporting the argument of galaxy downsizing.

  2. Relationship among FR-I, FR-II(Q) and FR-II(G) Radio Galaxies R. S. ...

    Indian Academy of Sciences (India)

    )/log(νR/νV). 2. Results. The average values of the K-correcting radio and optical luminosities are as follows: For FR-I, log νL178 MHz. R. = 40.92±1.05 erg s. −1. , log νL0.54 μm. V. = 43.92±0.36 erg s. −1 . For FR-II(G), log νL178 MHz. R.

  3. Stellar Populations and Structural Properties of Ultra Faint Dwarf Galaxies, Canes Venatici I, Boötes I, Canes Venatici II, and Leo IV (United States)

    Okamoto, Sakurako; Arimoto, Nobuo; Yamada, Yoshihiko; Onodera, Masato


    We take deep images of four ultra faint dwarf (UFD) galaxies, Canes Venatici I (CVn I), Boötes I (Boö I), Canes Venatici II (CVn II), and Leo IV, using the Suprime-Cam on the Subaru Telescope. Color-magnitude diagrams (CMDs) extend below main-sequence turnoffs (MSTOs) and yield measurements of the ages of stellar populations. The stellar populations of three faint galaxies, the Boö I, CVn II, and Leo IV dwarf spheroidal galaxies (dSphs), are estimated to be as old as the Galactic globular cluster M92. We confirm that Boö I dSph has no intrinsic color spread in the MSTO and no spatial difference in the CMD morphology, which indicates that Boö I dSph is composed of an old single stellar population. One of the brightest UFDs, CVn I dSph, shows a relatively younger age (~12.6 Gyr) with respect to Boö I, CVn II, and Leo IV dSphs, and the distribution of red horizontal branch (HB) stars is more concentrated toward the center than that of blue HB stars, suggesting that the galaxy contains complex stellar populations. Boö I and CVn I dSphs show the elongated and distorted shapes. CVn II dSph has the smallest tidal radius of a Milky Way satellite and has a distorted shape, while Leo IV dSph shows a less concentrated spherical shape. The simple stellar population of faint UFDs indicates that the gases in their progenitors were removed more effectively than those of brighter dSphs at the occurrence of their initial star formation. This is reasonable if the progenitors of UFDs belong to less massive halos than those of brighter dSphs. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  4. Dust Properties of C II Detected z ˜ 5.5 Galaxies: New HST/WFC3 Near-IR Observations (United States)

    Barisic, I.; Faisst, A. L.; Capak, P. L.; Pavesi, R.; Riechers, D. A.; Scoville, N. Z.; Cooke, K.; Kartaltepe, J. S.; Casey, C. M.; Smolcic, V.


    We examine the rest-frame ultraviolet (UV) properties of 10 [C II]λ158 μm-detected galaxies at z ˜ 5.5 in COSMOS using new Hubble Space Telescope/Wide Field Camera 3 near-infrared imaging. Together with pre-existing 158 μm continuum and [C II] line measurements by the Atacama Large Millimeter/submillimeter Array, we study their dust attenuation properties on the IRX-β diagram, which connects the total dust emission (\\propto {IRX}={log}({L}{FIR}/{L}1600)) to the line-of-sight dust column (∝ β). We find systematically bluer UV continuum spectral slopes (β) compared to previous low-resolution ground-based measurements, which relieves some of the tension between models of dust attenuation and observations at high redshifts. While most of the galaxies are consistent with local starburst or Small Magellanic Cloud-like dust properties, we find galaxies with low IRX values and a large range in β that cannot be explained by models of a uniform dust distribution well mixed with stars. A stacking analysis of Keck/DEIMOS optical spectra indicates that these galaxies are metal-poor with young stellar populations that could significantly alter their spatial dust distribution.

  5. Broad-band properties of the CfA Seyfert Galaxies. II - Infrared to millimeter properties (United States)

    Edelson, R. A.; Malkan, M. A.; Rieke, G. H.


    IR and mm observations of the 48 Seyfert 1 and 2 galaxies (SG1s and SG2s) of the CfA sample (Huchra and Berg, 1987) are reported. Data obtained (1) in the NIR using the 1.55-m reflector at Stewart Observatory and the 3-m IRTF during 1984-1986, (2) in the FIR with IRAS, and (3) at 1.3 mm using the 12-m NRAO telescope at KPNO in June 1984 are presented in extensive tables and graphs and characterized in detail. None of the objects was detected at 1.3 mm, and the IR spectra of the SG2s are found to be significantly steeper (indicating thermal emission) than those of SG1s and QSOs (nonthermal emission). Turnover in the IR emission below 100 microns (in half of the objects detected at three or more IRAS wavelengths) is shown to be consistent with an accretion disk in dust-free SG1s and with unusually warm (35-65 K) dust in SG2s. It is inferred that a 60-100-micron cool excess is masking turnover in the other SGs, so that a general association of SG nuclei with strong star formation can be confirmed.

  6. Massive Star Formation in NGC4038/4039: HII Regions and Supernova Remnants in "The Antennae" (United States)

    Neff, S. G.; Ulvestad, J. S.; Fisher, Richard (Technical Monitor)


    The nearest merger, NGC4038/4039 ("The Antennae, Arp244), is undergoing a starburst apparently triggered and driven by the ongoing interaction. The system provides an excellent laboratory to study star formation processes because well-studied and nearby (21 Mpc assumed here). Models of the interaction suggest that the interaction's first periapse occurred 200 Myr ago, and that final coalescence will occur in another 100 Myr. Blue and H alpha images show a continuous loop of bright knots around the NGC4038 (northern) nucleus, continuing down through the NGC4039 (southern) nucleus. Recent HST V and I images resolve the star-forming knots into several thousand blue compact clusters, with ages 5Myr for the youngest clusters. Far Ultraviolet (lambda 1500A) observations directly detect O and B stars in regions of low extinction; the total mass of young stars so observed is approximately 8 x 10 (exp 5) solar mass. FIR observations imply a star formation rate of approximately 5 M (sub 0) dot yr (sup -1) or greater. We used the VLA at 6 and 4 cm to obtain high resolution radio images of the star-formation regions in NGC4038/4038. We used high resolution imaging to identify compact radio emitting regions and spectral indices of the compact regions to differentiate between thermal sources such as HII regions (flat spectra) and supernova, remnants (steep spectra). We found that compact radio sources produce approximately 12% and/sim 25 strongest radio emission occurs between the galaxies, at an optically unremarkable location near but not coincident with an extremely red cluster. The radio peak is at a location of intense star formation (as detected in the mid-IR, reference?) and of dense molecular gas. We identify 115 individual compact 6cm radio sources and 63 individual 4 cm sources in the system, to a limiting luminosity of approximately 2 x 10 (exp 1) 8 W Hz (sup -1) (or /sim4x the luminosity of Cas A). Of the strongest sources, for which the h flux densities are large

  7. Study of the Sextans dwarf spheroidal galaxy from the DART Ca II triplet survey

    NARCIS (Netherlands)

    Battaglia, G.; Tolstoy, E.; Helmi, A.; Irwin, M.; Parisi, P.; Hill, V.; Jablonka, P.

    We use Very Large Telescope (VLT)/Fibre Large Array Multi Element Spectrograph (FLAMES) intermediate-resolution (R˜ 6500) spectra of individual red giant branch stars in the near-infrared Ca II triplet (CaT) region to investigate the wide-area metallicity properties and internal kinematics of the

  8. The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II). VII. The mass function of galaxy clusters (United States)

    Böhringer, Hans; Chon, Gayoung; Fukugita, Masataka


    The mass function of galaxy clusters is a sensitive tracer of the gravitational evolution of the cosmic large-scale structure and serves as an important census of the fraction of matter bound in large structures. We obtain the mass function by fitting the observed cluster X-ray luminosity distribution from the REFLEX galaxy cluster survey to models of cosmological structure formation. We marginalise over uncertainties in the cosmological parameters as well as those of the relevant galaxy cluster scaling relations. The mass function is determined with an uncertainty of less than 10% in the mass range 3 × 1012 to 5 × 1014M⊙. For the cumulative mass function we find a slope at the low-mass end consistent with a value of - 1, while the mass-rich end cut-off is milder than a Schechter function with an exponential term exp( - Mδ) with δ smaller than 1. Changing the Hubble parameter in the range H0 = 67 - 73 km s-1 Mpc-1 or allowing the total neutrino mass to have a value in the range 0 - 0.4 eV causes variations less than the uncertainties. We estimate the fraction of mass locked up in galaxy clusters: about 4.4% of the matter in the Universe is bound in clusters (inside r200) with a mass larger than 1014M⊙ and 14% to clusters and groups with a mass larger than 1013M⊙ at the present Universe. We also discuss the evolution of the galaxy cluster population with redshift. Our results imply that there is hardly any clusters with a mass ≥1015M⊙ above a redshift of z = 1.

  9. ISO Mid-Infrared Observations of Giant HII Regions in M33 (United States)

    Skelton, B. P.; Waller, W. H.; Hodge, P. W.; Boulanger, F.; Cornett, R. H.; Fanelli, M. N.; Lequeux, J.; Stecher, T. P.; Viallefond, F.; Hui, Y.


    We present Infrared Space Observatory Camera (ISOCAM) Circular Variable Filter scans of three giant HII regions in M33. IC 133, NGC 595, and CC 93 span a wide range of metallicity, luminosity, nebular excitation, and infrared excess; three other emission regions (CC 43, CC 99, and a region to the northeast of the core of NGC 595) are luminous enough in the mid-infrared to be detected in the observed fields. ISOCAM CVF observations provide spatially resolved observations (5'') of 151 wavelengths between 5.1 and 16.5 microns with a spectral resolution R = 35 to 50. We observe atomic emission lines ([Ne II], [Ne III], and [S IV]), several "unidentified infrared bands" (UIBs; 6.2, 7.7, 8.6, 11.3, 12.0, and 12.7 microns), and in some cases a continuum which rises steeply at longer wavelengths. We conclude that the spectra of these three GHRs are well explained by combinations of ionized gas, PAHs, and very small grains in various proportions and with different spatial distributions. Comparisons between observed ratios of the various UIBs with model ratios indicate that the PAHs in all three of the GHRs are dehydrogenated and that the small PAHs have been destroyed in IC 133 but have survived in NGC 595 and CC 93. The [Ne III]/[Ne II] ratios observed in IC 133 and NGC 595 are consistent with their ages of 5 and 4.5 Myr, respectively; the deduced ionization parameter is higher in IC 133, consistent with its more compact region of emission.

  10. A GMOS-N IFU study of the central H ii region in the blue compact dwarf galaxy NGC 4449: kinematics, nebular metallicity and star formation (United States)

    Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.


    We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H ii region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H ii region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H ii region metallicity derived here with those of H ii regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.

  11. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.


    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.


    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L.; Rolph, Kristina A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Peacock, Sarah; Barman, Travis S., E-mail:, E-mail:, E-mail:, E-mail: [Department of Planetary Sciences and Lunar and Planetary Laboratory University of Arizona, Tucson AZ 85721 (United States)


    A star's ultraviolet (UV) emission can greatly affect the atmospheric chemistry and physical properties of closely orbiting planets with the potential for severe mass loss. In particular, the Lyα emission line at 1216 Å, which dominates the far-ultraviolet (FUV) spectrum, is a major source of photodissociation of important atmospheric molecules such as water and methane. The intrinsic flux of Lyα, however, cannot be directly measured due to the absorption of neutral hydrogen in the interstellar medium and contamination by geocoronal emission. To date, reconstruction of the intrinsic Lyα line based on Hubble Space Telescope spectra has been accomplished for 46 FGKM nearby stars, 28 of which have also been observed by the Galaxy Evolution Explorer (GALEX). Our investigation provides a correlation between published intrinsic Lyα and GALEX far- and near-ultraviolet (NUV) chromospheric fluxes for K and M stars. The negative correlations between the ratio of the Lyα to the GALEX fluxes reveal how the relative strength of Lyα compared to the broadband fluxes weakens as the FUV and NUV excess flux increase. We also correlate GALEX fluxes with the strong NUV Mg II h+k spectral emission lines formed at lower chromospheric temperatures than Lyα. The reported correlations provide estimates of intrinsic Lyα and Mg II fluxes for the thousands of K and M stars in the archived GALEX all-sky surveys. These will constrain new stellar upper atmosphere models for cool stars and provide realistic inputs to models describing exoplanetary photochemistry and atmospheric evolution in the absence of UV spectroscopy.

  13. Properties of molecular gas in galaxies in the early and mid stages of interaction. II. Molecular gas fraction (United States)

    Kaneko, Hiroyuki; Kuno, Nario; Iono, Daisuke; Tamura, Yoichi; Tosaki, Tomoka; Nakanishi, Kouichiro; Sawada, Tsuyoshi


    We have investigated properties of the interstellar medium in interacting galaxies in early and mid stages using mapping data of 12CO(J = 1-0) and H i. Assuming the standard CO-H2 conversion factor, we found no difference in molecular gas mass, atomic gas mass, and total gas mass (the sum of atomic and molecular gas mass) between interacting galaxies and isolated galaxies. However, interacting galaxies have a higher global molecular gas fraction f_{mol}^{global} (the ratio of molecular gas mass to total gas mass averaged over a whole galaxy) at 0.71 ± 0.15 than isolated galaxies (0.52 ± 0.18). The distribution of the local molecular gas fraction fmol, the ratio of the surface density of molecular gas to that of the total gas, is different from the distribution in typical isolated galaxies. By a pixel-to-pixel comparison, isolated spiral galaxies show a gradual increase in fmol along the surface density of total gas until it is saturated at 1.0, while interacting galaxies show no clear relation. We performed pixel-to-pixel theoretical model fits by varying metallicity and external pressure. According to the model fitting, external pressure can explain the trend of fmol in the interacting galaxies. Assuming half of the standard CO-H2 conversion factor for interacting galaxies, the results of pixel-to-pixel theoretical model fitting get worse than adopting the standard conversion factor, although f_{mol}^{global} of interacting galaxies (0.62 ± 0.17) becomes the same as in isolated galaxies. We conclude that external pressure occurs due to the shock prevailing over a whole galaxy or due to collisions between giant molecular clouds even in the early stage of the interaction. The external pressure accelerates an efficient transition from atomic gas to molecular gas. Regarding the chemical timescale, high fmol can be achieved at the very early stage of interaction even if the shock induced by the collision of galaxies ionizes interstellar gas.

  14. VizieR Online Data Catalog: Kinematic study of the Leo II dwarf galaxy (Spencer+, 2017) (United States)

    Spencer, M. E.; Mateo, M.; Walker, M. G.; Olszewski, E. W.


    We used the 90prime imager on the 2.3m Bok telescope at Steward Observatory in Arizona to collect photometry of Leo II. Stars were observed in the Washington M and I filters during 2006 February. We calibrated these instrumental M and I magnitudes by transposing them to apparent g and i magnitudes of the Sloan Digital Sky Survey (SDSS). Spectroscopic observations were obtained with the Multiple Mirror Telescope (MMT) using Hectochelle. Spectra were taken on five different runs between 2006 and 2013. (2 data files).

  15. Fueling the central engine of radio galaxies. II. The footprints of AGN feedback on the ISM of 3C 236

    NARCIS (Netherlands)

    Labiano, A.; Garcia-Burillo, S.; Combes, F.; Usero, A.; Soria-Ruiz, R.; Tremblay, G.; Neri, R.; Fuente, A.; Morganti, R.; Oosterloo, T.

    Context. There is growing observational evidence of active galactic nuclei (AGN) feedback on the interstellar medium (ISM) of radio-quiet and radio-loud galaxies. While AGN feedback is expected to be more common at high-redshift objects, studying local universe galaxies helps to better characterize

  16. Galactic rings revisited. II. Dark gaps and the locations of resonances in early-to-intermediate-type disc galaxies (United States)

    Buta, Ronald J.


    Dark gaps are commonly seen in early-to-intermediate-type barred galaxies having inner and outer rings or related features. In this paper, the morphologies of 54 barred and oval ringed galaxies have been examined with the goal of determining what the dark gaps are telling us about the structure and evolution of barred galaxies. The analysis is based mainly on galaxies selected from the Galaxy Zoo 2 data base and the Catalogue of Southern Ringed Galaxies. The dark gaps between inner and outer rings are of interest because of their likely association with the L4 and L5 Lagrangian points that would be present in the gravitational potential of a bar or oval. Since the points are theoretically expected to lie very close to the corotation resonance (CR) of the bar pattern, the gaps provide the possibility of locating corotation in some galaxies simply by measuring the radius rgp of the gap region and setting rCR=rgp. With the additional assumption of generally flat rotation curves, the locations of other resonances can be predicted and compared with observed morphological features. It is shown that this `gap method' provides remarkably consistent interpretations of the morphology of early-to-intermediate-type barred galaxies. The paper also brings attention to cases where the dark gaps lie inside an inner ring, rather than between inner and outer rings. These may have a different origin compared to the inner/outer ring gaps.

  17. The BaLROG project - II. Quantifying the influence of bars on the stellar populations of nearby galaxies

    NARCIS (Netherlands)

    Seidel, M. K.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Sánchez-Blázquez, P.; Pérez, I.; Peletier, R.; Vazdekis, A.


    We continue the exploration of the BaLROG (Bars in Low Redshift Optical Galaxies) sample: 16 large mosaics of barred galaxies observed with the integral field unit Spectrographic Areal Unit for Research on Optical Nebulae. We quantify the influence of bars on the composition of the stellar

  18. Mapping stellar content to dark matter haloes - II. Halo mass is the main driver of galaxy quenching (United States)

    Zu, Ying; Mandelbaum, Rachel


    We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in Sloan Digital Sky Survey. Building on the iHOD framework developed by Zu & Mandelbaum, we consider two quenching scenarios: (1) a `halo' quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and (2) a `hybrid' quenching model in which the quenched fraction of galaxies depends on their stellar mass, while the satellite quenching has an extra dependence on halo mass. The two best-fitting models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above 1011 h-2 M⊙. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed M*, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (˜1.5 × 1012 h-1 M⊙), hinting at a uniform quenching mechanism for both, e.g. the virial shock heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter haloes rather than the properties of their stellar components.

  19. Beyond the Solar Circle - Tracing Trends in Massive Star Formation for the Inner and Outer Galaxy (United States)

    Djordjevic, Julie; Thompson, Mark; Urquhart, James


    Observations towards nearby galaxies are biased towards massive stars, affecting simulations and typically overestimating models for galactic evolution and star formation rates. The Milky Way provides an ideal template for studying the key factors that affect these massive star formation rates and efficiencies at high resolution, fine-tuning those models. We examine trends in massive star formation through the Galactic distribution of compact and ultracompact HII regions (UC HII regions) identified and confirmed as genuine via multi-wavelength inspection of submillimeter, radio, and infrared survey data. Previous catalogs focused on the inner Galaxy (RGC ≤ 8.5 kpc) but results from the recently completed SASSy 850 µm survey with JCMT’s SCUBA-2 show potential star forming clumps out to ~20 kpc. We follow a similar approach to Urquhart et at. (2013) who compiled a catalog of UC HII regions by cross matching CORNISH 5 GHz data with ATLASGAL 870 µm and GLIMPSE 3-color images. The CORNISH survey, however, was limited to the range 10° doubled the sample size of the CORNISH study, finding a grand total of 539 embedded UC HII regions across the Galaxy. We derive their properties and also look at the parameters of the host clumps to determine the implications for massive star formation rates and efficiencies as a function of galactocentric radius. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. However, many of the potentially star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. This begs the question whether there really is less star formation in this area or whether simply a lack of available data. Hence, we also present early results from follow-up radio observations with the VLA on selected SASSy clumps.


    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Sutherland, Ralph [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S. [Indian Institute of Astrophysics, Koramangala 2 B Block, Bangalore 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, CNRS, UMR 8112, 61 Avenue de l’Observatoire, F-75014 Paris (France); Jin, Chichuan [Qian Xuesen Laboratory for Space Technology, Beijing (China); Banfield, Julie [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW, 1710 Australia (Australia); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square South, New York, NY 10012 (United States); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Srivastava, Shweta, E-mail: [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)


    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530–710 nm), and R = 3000 in the blue (340–560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  1. Constraints on the Evolution of the Galaxy Stellar Mass Function. II. The Quenching Timescale of Galaxies and Its Implication for Their Star Formation Rates (United States)

    Contini, E.; Kang, X.; Romeo, A. D.; Xia, Q.; Yi, S. K.


    We study the connection between the observed star formation rate–stellar mass (SFR–M *) relation and the evolution of the stellar mass function (SMF) by means of a subhalo abundance matching technique coupled to merger trees extracted from an N-body simulation. Our approach consists of forcing the model to match the observed SMF at redshift z∼ 2.3, and letting it evolve down to z∼ 0.3 according to a τ model, an exponentially declining functional form that describes the star formation rate decay of both satellite and central galaxies. In this study, we use three different sets of SMFs: ZFOURGE data from Tomczak et al., UltraVISTA data from Ilbert et al., and COSMOS data from Davidzon et al. We also build a mock survey combining UltraVISTA with ZFOURGE. Our modeling of quenching timescales is consistent with the evolution of the SMF down to z∼ 0.3, with different accuracy depending on the particular survey used for calibration. We tested our model against the observed SMFs at low redshift, and it predicts residuals (observation versus model) within 1σ observed scatter along most of the stellar mass range investigated, and with mean residuals below 0.1 dex in the range ∼ [{10}8.7{--}{10}11.7]{M}ȯ . We then compare the SFR–M * relation predicted by the model with the observed one at different redshifts. The predicted SFR–M * relation underpredicts the median SFR at fixed stellar mass relative to observations at all redshifts. Nevertheless, the shapes are consistent with the observed relations up to intermediate-mass galaxies, followed by a rapid decline for massive galaxies.

  2. Environmental Effects on Galaxy Evolution. II. Quantifying the Tidal Features in NIR Images of the Cluster Abell 85 (United States)

    Venkatapathy, Y.; Bravo-Alfaro, H.; Mayya, Y. D.; Lobo, C.; Durret, F.; Gamez, V.; Valerdi, M.; Granados-Contreras, A. P.; Navarro-Poupard, F.


    This work is part of a series of papers devoted to investigating the evolution of cluster galaxies during their infall. In the present article, we image in NIR a selected sample of galaxies throughout the massive cluster Abell 85 (z = 0.055). We obtain (JHK‧) photometry for 68 objects, reaching ˜1 mag arcsec-2 deeper than 2MASS. We use these images to unveil asymmetries in the outskirts of a sample of bright galaxies and develop a new asymmetry index, {α }{An}, which allows us to quantify the degree of disruption by the relative area occupied by the tidal features on the plane of the sky. We measure the asymmetries for a subsample of 41 large-area objects, finding clear asymmetries in 10 galaxies; most of these are in groups and pairs projected at different clustercentric distances, and some of them are located beyond R 500. Combining information on the H I gas content of blue galaxies and the distribution of substructures across Abell 85 with the present NIR asymmetry analysis, we obtain a very powerful tool to confirm that tidal mechanisms are indeed present and are currently affecting a fraction of galaxies in Abell 85. However, when comparing our deep NIR images with UV blue images of two very disrupted (jellyfish) galaxies in this cluster, we discard the presence of tidal interactions down to our detection limit. Our results suggest that ram-pressure stripping is at the origin of such spectacular disruptions. We conclude that across a complex cluster like Abell 85, environmental mechanisms, both gravitational and hydrodynamical, are playing an active role in driving galaxy evolution.

  3. Dynamic UC HII regions in Sgr B2: Flickering and Ionized Flows (United States)

    De Pree, Christopher G.; Wilner, D. J.; Goss, M.; Mac Low, M.; Peters, T.; Klessen, R.; Keto, E. R.; Galvan-Madrid, R.; Banerjee, R.


    The Sgr B2 star forming region contains a large sample of ultracompact (UC) and hypercompact (HC) HII regions. The diversity of morphologies and number of unusual broad line sources make it an ideal laboratory for testing theories of UC HII region evolution. Recent high-resolution simulations that include heating from ionizing and non-ionizing radiation show that the dense, rotating, accretion flows required to form massive stars quickly become gravitationally unstable (Peters et al. 2010a). The orbits of these dense clumps and filaments near newly born massive stars irregularly trap and expose their ionizing radiation (Peters et al. 2010b). The resulting HII region flickers between HC and UC sizes throughout the main accretion phase, rather than monotonically expanding. Peters et al. (2010b) show that this model can solve the UC HII lifetime problem (Wood & Churchwell 1989), since accretion continues ten times longer than the free expansion timescale for an HII region. Imaged at 1.3 cm, the Sgr B2 region contains 49 regions, 25 of which are hypercompact, with physical diameters < 5000 AU (Gaume et al. 1995). In the past year, we have observed this large sample of UC HII regions in the Sgr B2 region with the EVLA in the three hybrid arrays in the 1.3-cm continuum and H66α and H68α lines with a resolution of 0.25''. We have also made continuum and RRL (H53α) observations at 7 mm in the BnA configuration to obtain morphological and line information at the highest available angular resolution of 0.06'' (650 AU). These new observations of Sgr B2 will allow us to: (1) Determine the frequency and magnitude of UC HII flux and size fluctuations over a 22 year time baseline (1989 to 2011) in one of the most source-rich massive star forming regions in the Milky Way, (2) Constrain and test the theoretical models described in Peters et al. (2010a, 2010b), (3) Observe recombination lines with the improved spectral resolution and bandwidth of the new EVLA correlator, and

  4. SÍGAME Simulations of the [{\\rm{C}}\\,{\\rm{II}}], [{\\rm{O}}\\,{\\rm{I}}], and [{\\rm{O}}\\,{\\rm{III}}] Line Emission from Star-forming Galaxies at z\\simeq 6 (United States)

    Olsen, Karen; Greve, Thomas R.; Narayanan, Desika; Thompson, Robert; Davé, Romeel; Niebla Rios, Luis; Stawinski, Stephanie


    Of the almost 40 star-forming galaxies at z≳ 5 (not counting quasi-stellar objects) observed in [{{C}} {{II}}] to date, nearly half are either very faint in [{{C}} {{II}}] or not detected at all, and fall well below expectations based on locally derived relations between star formation rate and [{{C}} {{II}}] luminosity. This has raised questions as to how reliable [{{C}} {{II}}] is as a tracer of star formation activity at these epochs and how factors such as metallicity might affect the [{{C}} {{II}}] emission. Combining cosmological zoom simulations of galaxies with SÍGAME (SImulator of GAlaxy Millimeter/submillimeter Emission), we modeled the multiphased interstellar medium (ISM) and its emission in [{{C}} {{II}}], as well as in [O I] and [O III], from 30 main-sequence galaxies at z≃ 6 with star formation rates ˜3-23 {M}⊙ {{yr}}-1, stellar masses ˜ (0.7{--}8)× {10}9 {M}⊙ , and metallicities ˜ (0.1{--}0.4)× {Z}⊙ . The simulations are able to reproduce the aforementioned [{{C}} {{II}}] faintness of some normal star-forming galaxy sources at z≥slant 5. In terms of [O I] and [O III], very few observations are available at z≳ 5, but our simulations match two of the three existing z≳ 5 detections of [O III] and are furthermore roughly consistent with the [O I] and [O III] luminosity relations with star formation rate observed for local starburst galaxies. We find that the [{{C}} {{II}}] emission is dominated by the diffuse ionized gas phase and molecular clouds, which on average contribute ˜66% and ˜27%, respectively. The molecular gas, which constitutes only ˜ 10 % of the total gas mass, is thus a more efficient emitter of [{{C}} {{II}}] than the ionized gas, which makes up ˜85% of the total gas mass. A principal component analysis shows that the [{{C}} {{II}}] luminosity correlates with the star formation activity of a galaxy as well as its average metallicity. The low metallicities of our simulations together with their low molecular gas

  5. The stellar content, metallicity and ionization structure of HII regions

    NARCIS (Netherlands)

    Martin-Hernandez, NL; Vermeij, R; Tielens, AGGM; van der Hulst, JM; Peeters, E

    Observations of infrared fine-structure lines provide direct information on the metallicity and ionization structure of H II regions and indirectly on the hardness of the radiation field ionizing these nebulae. We have analyzed a sample of Galactic and Magellanic Cloud H II regions observed by the

  6. MUSE sneaks a peek at extreme ram-pressure events. III. Tomography of UGC 6697, a massive galaxy falling into Abell 1367 (United States)

    Consolandi, G.; Gavazzi, G.; Fossati, M.; Fumagalli, M.; Boselli, A.; Yagi, M.; Yoshida, M.


    We present the MUSE observations of UGC 6697, a giant (M∗ ≈ 1010M⊙) spiral galaxy infalling in the nearby cluster Abell 1367. During its high-velocity transit through the intracluster medium (ICM), the hydrodynamical interactions with the ICM produce a ≈ 100 kpc tail of ionized gas that we map with a mosaic of five MUSE pointings up to 60 kpc from the galaxy. CGCG 97087N, a small companion that lies at few arcminutes in projection from UGC 6697, is also showing signs of the hydrodynamic action of the ICM of the cluster. Along the whole extent of the tail, we detect diffuse Hα emission, and to a lesser extent, Hβ, [OIII]λ5007, and [OI]λ6300. By comparing the kinematics and distribution of gas and stars (as traced by the CaII triplet) for both galaxies, we separate the ionized gas, as traced by the Hα line, into a component that is still bound to the galaxy and a component that is stripped. We find that the bound component shows a low-velocity dispersion and line ratios consistent with photoionization by hot stars. The stripped gas is more turbulent, with velocity dispersions up to ≳100 km s-1, and is excited by shocks, as traced by high values of [OI]/Hα and [NII]/Hα ratio. In the tail of UGC 6697, we identify numerous bright compact knots with line ratios typical of HII regions. These are distributed along the only streams of stripped gas that retain low-velocity dispersions (≲35 km s-1). Despite being in the stripped gas, their physical properties are not different from normal HII regions in galactic disks. We find evidence of a past fast encounter between the two galaxies in the form of a double tail emerging from CGCG 97087N that connects with UGC 6697. This encounter might have increased the efficiency of the stripping process, leaving the stellar distribution and kinematics unaltered. The composite data cube is only available at the CDS via anonymous ftp to ( or via http://cdsarc

  7. Optical observations of M81 galaxy group in narrow band [SII] and Hα filters: Holmberg IX

    Directory of Open Access Journals (Sweden)

    Arbutina B.


    Full Text Available We present observations of the nearby tidal dwarf galaxy Holmberg IX in M81 galaxy group in narrow band [SII] and Hα filters, carried out in March and November 2008 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for resident supernova remnants (identified as sources with enhanced [SII] emission relative to their Hα emission in this galaxy yielded no sources of this kind, besides M&H 10-11 or HoIX X-1. Nevertheless, we found a number of objects with significant H® emission that probably represent uncatalogued HII regions.

  8. The hELENa project - II. Abundance distribution trends of early-type galaxies: from dwarfs to giants (United States)

    Sybilska, A.; Kuntschner, H.; van de Ven, G.; Vazdekis, A.; Falcón-Barroso, J.; Peletier, R. F.; Lisker, T.


    In this second paper of The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) series we study [Mg/Fe] abundance distribution trends of early-type galaxies observed with the SAURON integral field unit, spanning a wide range in mass and local environment densities: 20 low-mass early-types (dEs) of Sybilska et al. (2017) and 258 massive early types (ETGs) of the ATLAS3D project, all homogeneously reduced and analyzed. We show that the [Mg/Fe] ratios scale with velocity dispersion (σ) at fixed [Fe/H] and that they evolve with [Fe/H] along similar paths for all early-types, grouped in bins of increasing local and global σ, as well as the second velocity moment Vrms, indicating a common inside-out formation pattern. We then place our dEs on the [Mg/Fe] vs. [Fe/H] diagram of Local Group galaxies and show that dEs occupy the same region and show a similar trend line slope in the diagram as the high-metallicity stars of the Milky Way and the Large Magellanic Cloud. This finding extends the similar trend found for dwarf spheroidal vs. dwarf irregular galaxies and supports the notion that dEs have evolved from late-type galaxies that have lost their gas at a point of their evolution, which likely coincided with them entering denser environments.

  9. Physical properties of simulated galaxy populations at z = 2 - II. Effects of cosmology, reionization and ISM physics (United States)

    Haas, Marcel R.; Schaye, Joop; Booth, C. M.; Dalla Vecchia, Claudio; Springel, Volker; Theuns, Tom; Wiersma, Robert P. C.


    We use hydrodynamical simulations from the OverWhelmingly Large Simulations project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on the assumed star formation law, the equation of state imposed on the unresolved interstellar medium, the stellar initial mass function, the reionization history and the assumed cosmology. This work complements that of Paper I, where we studied the effects of varying models for galactic winds driven by star formation and active galactic nucleus. The normalization of the matter power spectrum strongly affects the galaxy mass function, but has a relatively small effect on the physical properties of galaxies residing in haloes of a fixed mass. Reionization suppresses the stellar masses and gas fractions of low-mass galaxies, but by z = 2 the results are insensitive to the timing of reionization. The stellar initial mass function mainly determines the physical properties of galaxies through its effect on the efficiency of the feedback, while changes in the recycled mass and metal fractions play a smaller role. If we use a recipe for star formation that reproduces the observed star formation law independently of the assumed equation of state of the unresolved interstellar medium, then the latter is unimportant. The star formation law, i.e. the gas consumption time-scale as a function of surface density, determines the mass of dense, star-forming gas in galaxies, but affects neither the star formation rate nor the stellar mass. This can be understood in terms of self-regulation: the gas fraction adjusts until the outflow rate balances the inflow rate.

  10. Addressing Ionization and Depletion in the ISM of Nearby Star-Forming Galaxies (United States)

    Aloisi, Alessandra


    Measuring galaxy metallicity with cosmic time is of paramount importance to understand galaxy formation. ISM abundances are typically determined using emission-line spectroscopy of HII regions. However, HII regions may be self-enriched and not typical of the whole galaxy. This is particularly true for star-forming galaxies (SFGs) where the bulk of metals may be in the neutral gas. Quantifying metals in the ISM is thus important to assess how reliably HII regions trace galaxy abundances at any redshift. We were awarded 34 HST orbits (Cycle 17) to measure abundances in the neutral ISM of 9 nearby SFGs using absorption lines in the COS G130M/1291 spectra of bright UV background sources within the galaxy itself. We found metallicities that differ by up to 2 dex depending on the element. These variations could be real or due to observational effects. Here we request 22 orbits in the new G130M/1222 and in G160M/1623 to access new FUV spectral transitions that will help us characterize ionized-gas contamination and dust depletion, and ultimately nail down the abundances of the different elements. These new data will nicely complement our Cycle 17 COS and Gemini/GMOS IFU programs, the latter aimed at deriving nebular abundances along the same COS sightlines. This first detailed and spatially-accurate comparison between neutral- and ionized-gas abundances in local (z 0) SFGs will provide crucial insights into the metallicity of galaxies at any redshift. If this UV spectroscopic study is not undertaken before HST ceases operation, the (in)homogeneity of the ISM in galaxies of the local Universe will continue to remain uncertain for at least another decade.

  11. VizieR Online Data Catalog: MgII/FeII absorption profile for 0.3galaxies (Rubin+, 2014) (United States)

    Rubin, K. H. R.; Prochaska, J. X.; Koo, D. C.; Phillips, A. C.; Martin, C. L.; Winstrom, L. O.


    In this work, we use rest-frame near-UV spectroscopy of a sample of 105 galaxies at 0.3~9.6 down to a SFR limit>~2 Msun/yr at z~0.5, permitting exploration of outflow properties over the entire breadth of the star-forming sequence at z>0.3 for the first time. Our galaxy sample is drawn from pre-existing photometric and spectroscopic redshift surveys in fields with deep imaging taken with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). (3 data files).

  12. Condições físicas em galáxias HII (United States)

    Kehrig, C.; Telles, E.; Cuisinier, F.


    Galáxias HII são galáxias anãs de baixa luminosidade que apresentam alta taxa de formação estelar. Seus espectros são dominados por intensas linhas de emissão devido à fotoionização pela presença de um grande número de estrelas do tipo O e B. Nós apresentamos um catálogo espectrofotométrico de 111 galáxias HII observadas no telescópio 1.52m do ESO com o espectrógrafo Boller & Chivens. Determinamos propriedades estatísticas da amostra e derivamos condições físicas (temperatura eletrônica, densidade eletrônica) e abundâncias químicas. Para algumas galáxias, fomos também capazes de resolver espacialmente regiões de formação estelar individuais e determinar propriedades espectroscópicas para estas regiões separadamente, o que nos permitiu avaliar as flutuações das condições físico-químicas dentro das galáxias HII. Em particular, vimos que apesar das galáxias HII apresentarem formação estelar espalhada ao longo do corpo da galáxia, são objetos quimicamente homogêneos. A fim de estudar a evolução temporal dos objetos durante o tempo de vida das estrelas ionizantes construimos também alguns diagramas relacionando razões de linhas de emissão com a largura equivalente de Hb (EW(Hb)). Para interpretar tais diagramas utilizamos modelos de fotoionização para populações estelares integradas. Concluímos que as galáxias HII não correspondem a simples idéia de um burst instantâneo envolvido por um gás opaco aos fótons ionizantes e com densidade constante. As relações observadas entre razões de linhas e EW(Hb) podem ser melhor compreendidas se as galáxias HII apresentarem populações estelares mais velhas, que contribuem para o contínuo óptico observado.

  13. The sloan lens acs survey. II. Stellar populations and internal structure of early-type lens galaxies

    NARCIS (Netherlands)

    Treu, Tommaso; Koopmans, Léon V.; Bolton, Adam S.; Burles, Scott; Moustakas, Leonidas A.


    We use HST images to derive effective radii and effective surface brightnesses of 15 early-type (E+S0) lens galaxies identified by the SLACS Survey. Our measurements are combined with stellar velocity dispersions from the SDSS database to investigate for the first time the distribution of lens

  14. Using the CaII triplet to trace abundance variations in individual red giant branch stars in three nearby galaxies

    NARCIS (Netherlands)

    Tolstoy, E; Irwin, MJ; Cole, AA; Pasquini, L; Gilmozzi, R; Gallagher, JS


    Spectroscopic abundance determinations for stars spanning a Hubble time in age are necessary in order to determine unambiguously the evolutionary histories of galaxies. Using FORS I in multi-object spectroscopy mode on ANTU (UT1) at the ESO VLT on Paranal, we have obtained near-infrared spectra from

  15. Spectroscopic survey of the Galaxy with Gaia - II. The expected science yield from the Radial Velocity Spectrometer

    NARCIS (Netherlands)

    Wilkinson, MI; Vallenari, A; Turon, C; Munari, U; Katz, D; Bono, G; Cropper, M; Helmi, A; Robichon, N; Thevenin, F; Vidrih, S; Zwitter, T; Arenou, F; Baylac, MO; Bertelli, G; Bijaoui, A; Boschi, F; Castelli, F; Crifo, F; David, M; Gomboc, A; Gomez, A; Haywood, M; Jauregi, U; de Laverny, P; Lebreton, Y; Marrese, P; Marsh, T; Mignot, S; Morin, D; Pasetto, S; Perryman, M; Prsa, A; Recio-Blanco, A; Royer, F; Sellier, A; Siviero, A; Sordo, R; Soubiran, C; Tomasella, L; Viala, Y


    The Gaia mission is designed as a Galaxy explorer, and will measure simultaneously, in a survey mode, the five or six phase-space parameters of all stars brighter than 20th magnitude, as well as providing a description of their astrophysical characteristics. These measurements are obtained by

  16. A CFH12k lensing survey of X-ray luminous galaxy clusters - II. Weak lensing analysis and global correlations

    NARCIS (Netherlands)

    Bardeau, S.; Soucail, G.; Kneib, J.-P.; Czoske, O.; Ebeling, H.; Hudelot, P.; Smail, I.; Smith, G. P.

    Aims. We present a wide-field multi-color survey of a homogeneous sample of eleven clusters of galaxies for which we measure total masses and mass distributions from weak lensing. This sample, spanning a small range in both X-ray luminosity and redshift, is ideally suited to determining the

  17. High-lying OH Absorption, [C II] Deficits, and Extreme L FIR/M H2 Ratios in Galaxies

    NARCIS (Netherlands)

    González-Alfonso, E.; Fischer, J.; Sturm, E.; Graciá-Carpio, J.; Veilleux, S.; Meléndez, M.; Lutz, D.; Poglitsch, A.; Aalto, S.; Falstad, N.; Spoon, H. W. W.; Farrah, D.; Blasco, A.; Henkel, C.; Contursi, A.; Verma, A.; Spaans, M.; Smith, H. A.; Ashby, M. L. N.; Hailey-Dunsheath, S.; García-Burillo, S.; Martín-Pintado, J.; van der Werf, P.; Meijerink, R.; Genzel, R.

    Herschel/PACS observations of 29 local (ultra)luminous infrared galaxies, including both starburst and active galactic nucleus (AGN) dominated sources as diagnosed in the mid-infrared/optical, show that the equivalent width of the absorbing OH 65 μm Π3/2 J = 9/2-7/2 line (W eq(OH65)) with lower

  18. Emission-Line Galaxies from the HST PEARS Grism Survey Southern Fields (United States)

    Straughn, Amber; Pirzkal, N.; Meurer, G.; Cohen, S.; Windhorst, R.; Malhotra, S.; Gardner, J.; Rhoads, J.; Hathi, N.; Xu, C.


    We have detected a sample of emission-line galaxies (ELGs) from the PEARS (Probing Evolution And Reionization Spectroscopically) HST/ACS grism survey Southern Fields. The PEARS Southern Fields consist of five ACS pointings (including the Hubble Ultra Deep Field) with the G800L grism for a total of 120 orbits, revealing thousands of faint object spectra in the GOODS-South region of the sky. Using a 2-dimensional detection and extraction procedure, we find 320 emission lines orginating from 230 galaxy ``knots'' within 203 individual galaxies. Line identification results in 118 new grism-spectroscopic redshifts for galaxies in the GOODS-South Field. Our detection method has allowed us to observe emission lines from distinct giant star-forming regions across individual galaxies at redshifts z 0.5. We find that the radial distances of these HII regions generally reside near the galaxies' optical continuum half-light radii, similar to those of giant HII regions in local galaxies.


    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)


    We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet

  20. A multiwavelength study of star formation in the vicinity of Galactic HII region Sh2-100


    Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Ghosh, S.K.; Kulkarni, V. K.; Kusakabe, N.; Tamura, M; Bhatt, B. C.; Thompson, M.A.; Sagar, R


    We present multiwavelength investigation of morphology, physical-environment, stellar contents and star formation activity in the vicinity of star-forming region Sh 2-100. It is found that the Sh 2-100 region contains seven HII regions of ultracompact and compact nature. The present estimation of distance for three HII regions, along with the kinematic distance for others, suggests that all of them belong to the same molecular cloud complex. Using NIR photometry, we identified the most probab...

  1. A SCUBA imaging survey of ultracompact HII regions. The environments of massive star formation (United States)

    Thompson, M. A.; Hatchell, J.; Walsh, A. J.; MacDonald, G. H.; Millar, T. J.


    We present a SCUBA submillimetre (450 and 850 μm) survey of the environment of 105 IRAS point sources, selected from the Wood & Churchwell (1989a) and Kurtz et al. (1994) radio ultracompact (UC) Hii region surveys. We detected a total of 155 sub-mm clumps associated with the IRAS point sources and identified three distinct types of object: ultracompact cm-wave sources that are not associated with any sub-mm emission (sub-mm quiet objects), sub-mm clumps that are associated with ultracompact cm-wave sources (radio-loud clumps); and sub-mm clumps that are not associated with any known ultracompact cm-wave sources (radio-quiet clumps). 90% of the sample of IRAS point sources were found to be associated with strong sub-mm emission. We consider the sub-mm colours, morphologies and distance-scaled fluxes of the sample of sub-mm clumps and show that the sub-mm quiet objects are unlikely to represent embedded UC Hii regions unless they are located at large heliocentric distances. Many of the 2.5 arcmin SCUBA fields contain more than one sub-mm clump, with an average number of companions (the companion clump fraction) of 0.90. The clumps are more strongly clustered than other candidate HMPOs and the mean clump surface density exhibits a broken power-law distribution with a break at 3 pc. We demonstrate that the sub-mm and cm-wave fluxes of the majority of radio-loud clumps are in excellent agreement with the standard model of ultracompact Hii regions. We speculate on the nature of the radio-quiet sub-mm clumps and, whilst we do not yet have sufficient data to conclude that they are in a pre-UC Hii region phase, we argue that their characteristics are suggestive of such a stage.

  2. The II Zw 40 Supernebula: 30 Doradus on Steroids (United States)

    Leitherer, Claus


    We propose COS G140L spectroscopy of the enigmatic nearby blue compact dwarf galaxy II Zw 40. The galaxy hosts a nuclear super star cluster with a luminosity 10 times that of 30 Doradus, the most powerful giant HII region in the Local Group. The super star cluster has been suggested to be the ionizing source of a supernebula detected via its free-free radiation in the radio. The physical conditions, however, are much more complex, as demonstrated by the detection of the nebular He II and the mid-infrared line of [O IV] 25.9. These lines are unlikely to be related to hot stars and require a different powering source. II Zw 40 shares many similarities with the related blue compact dwarfs NGC 5253 and Henize 2-10, both of which have been studied extensively with HST, yet no ultraviolet spectroscopy has ever been obtained for II Zw 40. This small 4-orbit proposal will provide the necessary UV data to study the massive-star content directly. We will determine reddening, age, and the stellar initial mass function and perform a comparison with the local benchmark 30 Doradus. In particular we will investigate whether the hot stars are able to power the supernebula and the nebular high-excitation lines. Our modeling will utilize the latest generation of stellar evolutionary tracks with and without stellar rotation. If the stars fall short in terms of spectral hardness and luminosity, II Zw 40 may become the second candidate for a central black hole in a young starburst after Henize 2-10.

  3. A small-scale dynamo in feedback-dominated galaxies - II. The saturation phase and the final magnetic configuration (United States)

    Rieder, Michael; Teyssier, Romain


    Magnetic fields in galaxies are believed to be the result of dynamo amplification of initially weak seed fields, reaching equipartition strength inside the interstellar medium. The small-scale dynamo (SSD) appears to be a viable mechanism to explain observations of strong magnetic fields in present-day and high-redshift galaxies, considering the extreme weakness of viable seed fields. Performing high-resolution adaptive mesh magnetohydrodynamic simulations of a small-mass, isolated cooling halo with an initial magnetic seed field strength well below equipartition, we follow the SSD amplification from supernova-induced turbulence up to saturation of the field. We find that saturation occurs when the average magnetic pressure reaches only 3 per cent of the turbulent pressure. The magnetic energy growth transitions from exponential to linear, and finally comes to halt. The saturation level increases slightly with grid resolution. These results are in good agreement with theoretical predictions for magnetic Prandtl numbers of the order ofPm ˜ 1 and turbulent Mach numbers of the order of M ˜ 10. When we suppress supernova feedback after our simulation has reached saturation, we find that turbulence decays and that the gas falls back on to a thin disc with the magnetic field in local equipartition in most of the dense gas arms. We propose a scenario in which galactic magnetic fields are amplified from weak seed fields in the early stages of the Universe to sub-equipartition fields, owing to the turbulent environment of feedback-dominated galaxies at high redshift, and are evolved further in a later stage up to equipartition, as galaxies transformed into more quiescent, large spiral discs.

  4. Structure and dynamics of galaxies with a low surface-brightness disc - II. Stellar populations of bulges (United States)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.; Cesetti, M.


    We present the radial profiles of the Hβ, Mg and Fe line-strength indices for a sample of eight spiral galaxies with a low-surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent with those known for early-type galaxies and bulges of high-surface-brightness galaxies. The age, metallicity and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, ongoing star formation and a solar α/Fe enhancement. Their metallicity spans from high to subsolar values. No significant gradient in age and α/Fe enhancement is measured, whereas a negative metallicity gradient is found only in a few cases. These properties suggest that a pure dissipative collapse cannot explain the formation of all the sample bulges and that other phenomena, such as mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and the gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low-surface-brightness discs share many properties with those of high-surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that, in spite of being hosted by discs with extremely different properties, the bulges of low- and high-surface-brightness discs are remarkably similar. Based on observations made with European Southern Observatory telescopes at the La Silla Paranal Observatory under programmes 76.B-0375 and 80.B-00754.

  5. Estudo da região HII galática NGC 2579 (United States)

    Riffel, R.; Copetti, M. V. F.


    Desde a descoberta dos gradientes de abundância química em galáxias espirais, as regiões HII galáticas têm sido intensamente estudadas com o objetivo de determinar a forma do gradiente de abundância química na Via-Láctea. Entretanto, a forma do gradiente galático continua controversa e existem muitas regiões HII que continuam inexploradas. A região HII galática NGC 2579 é um objeto que aparece em imagens Ha, como uma pequena mancha brilhante de aproximadamente 2 segundos de arco de diâmetro a 20 segundos de arco ao leste de RCW 20, sendo NGC 2579 muitas vezes confundida com esta última. Apesar de seu alto brilho superficial, NGC 2579 é um objeto pouco estudado provavelmente por problemas de identificação deste objeto. Como parte de um projeto de reavaliação dos gradientes de abundância química das regiões HII na Via-Láctea, estamos realizando um estudo extensivo das propriedades físicas básicas como temperatura eletrônica, densidade eletrônica e composição química da região HII galática NGC 2579. Analisamos dados espectrofotométricos de fenda longa na faixa de 3700Å a 7750Å obtidos com o telescópio de 1.52 m do ESO, Chile, em 2002. Determinamos a temperatura eletrônica usando a razão entre as linhas do [OIII] (l4959+l5007/l4363) e a densidade eletrônica pela razão entre as linhas do [SII] (l6716/l6731). As abundâncias químicas do O, N, Cl, S, Ne e He foram determinadas. Realizamos um estudo de imagens fotométricas nas bandas UBVRI obtidas em 2000 no observatório astronômico San Pedro Mártir, México, para identificar e classificar as estrelas ionizantes de NGC 2579 e determinar a distância deste objeto.

  6. Optical Observations of M81 Galaxy Group in Narrow Band [SII] and H_alpha Filters: Holmberg IX

    Directory of Open Access Journals (Sweden)

    Arbutina, B.


    Full Text Available We present observations of the nearby tidal dwarf galaxy Holmberg IX in M81 galaxy group in narrow band [SII] and H$alpha$ filters, carried out in March and November 2008 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for resident supernova remnants (identified as sources with enhanced [SII] emission relative to their H$alpha$ emission in this galaxy yielded no sources of this kind, besides M&H 10-11 or HoIX X-1. Nevertheless, we found a number of objects with significant H$alpha$ emission that probably represent uncatalogued HII regions.

  7. Extended far-infrared emission and star formation in Seyfert galaxies (United States)

    Marston, A. P.


    An investigation into the extended distribution of far-infrared (FIR) emission associated with nearby Seyfert galaxies is made using a set of MEM reconstructions of IRAS Chopped Photometric Channel (CPC) data (Marston 1993). The data is compared to a set of HII/starburst galaxy images similarly processed in order to compare distributions and FIR color properties. It is shown that the central 1 kpc or so of Seyfert galaxies show extended FIR emission. FIR colors suggest that the bulk of this emission is not directly associated with an active nucleus. They further suggest that the origins of the majority of the emission is from heated dust associated with star formation surrounding the nucleus rather than dust heated by the active nucleus. Nearby Seyfert galaxies are shown to have a higher concentration of far-infrared emission from their centers than the HII/starburst galaxies and a number appear to reside in disk galaxies with relatively low ongoing star formation in their disks. An example of this is NGC 7582 which has a smooth disk but an active nucleus/starbust center.

  8. X-ray Galaxy Clusters & Cosmology (United States)

    Ettori, Stefano


    I present a summary of the four lectures given on these topics: (i) Galaxy Clusters in a cosmological context: an introduction; (ii) Galaxy Clusters in X-ray: how and what we observe, limits and prospects; (iii) X-ray Galaxy Clusters and Cosmology: total mass, gas mass & systematics; (iv) Properties of the ICM: scaling laws and metallicity.

  9. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. II. AGN power indicators and unification

    Energy Technology Data Exchange (ETDEWEB)

    Dicken, D. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Tadhunter, C. [University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morganti, R. [ASTRON, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Axon, D.; Robinson, A.; Magagnoli, M. [Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Kharb, P. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Ramos Almeida, C. [Instituto de Astrofisica de Canarias (IAC), C/V ia Lactea, s/n, E-38205 La Laguna, Tenerife (Spain); Mingo, B. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Hardcastle, M. [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Nesvadba, N. P. H.; Singh, V. [Institut d' Astrophysique Spatiale, CNRS, Université Paris Sud, F-91405 Orsay (France); Kouwenhoven, M. B. N. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Rose, M.; Spoon, H. [224 Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Inskip, K. J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Holt, J., E-mail: [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)


    It remains uncertain which continuum and emission line diagnostics best indicate the bolometric powers of active galactic nuclei (AGNs), especially given the attenuation caused by the circumnuclear material and the possible contamination by components related to star formation. Here we use mid-IR spectra along with multiwavelength data to investigate the merit of various diagnostics of AGN radiative power, including the mid-IR [Ne III] λ25.89 μm and [O IV] λ25.89 μm fine-structure lines, the optical [O III] λ5007 forbidden line, and mid-IR 24 μm, 5 GHz radio, and X-ray continuum emission, for complete samples of 46 2Jy radio galaxies (0.05 < z < 0.7) and 17 3CRR FRII radio galaxies (z < 0.1). We find that the mid-IR [O IV] line is the most reliable indicator of AGN power for powerful radio-loud AGNs. By assuming that the [O IV] is emitted isotropically, and comparing the [O III] and 24 μm luminosities of the broad- and narrow-line AGNs in our samples at fixed [O IV] luminosity, we show that the [O III] and 24 μm emission are both mildly attenuated in the narrow-line compared to the broad-line objects by a factor of ≈2. However, despite this attenuation, the [O III] and 24 μm luminosities are better AGN power indicators for our sample than either the 5 GHz radio or the X-ray continuum luminosities. We also detect the mid-IR 9.7 μm silicate feature in the spectra of many objects but not ubiquitously: at least 40% of the sample shows no clear evidence for these features. We conclude that, for the majority of powerful radio galaxies, the mid-IR lines are powered by AGN photoionization.

  10. Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass--Richness Relation

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, David E.; Sheldon, Erin S.; Wechsler, Risa H.; Rozo, Eduardo; Koester, Benjamin P.; Frieman, Joshua A.; McKay, Timothy A.; Evrard, August E.; Becker, Matthew; Annis, James


    We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. (2007). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. Since the mean cluster density profile is proportional to the cluster-mass correlation function, the mean profile is spherically symmetric by the assumptions of large-scale homogeneity and isotropy. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of {approx} 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions from N-body simulations of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys.

  11. The Hubble Space Telescope Cluster Supernova Survey. II. The Type Ia Supernova Rate in High-redshift Galaxy Clusters (United States)

    Barbary, K.; Aldering, G.; Amanullah, R.; Brodwin, M.; Connolly, N.; Dawson, K. S.; Doi, M.; Eisenhardt, P.; Faccioli, L.; Fadeyev, V.; Fakhouri, H. K.; Fruchter, A. S.; Gilbank, D. G.; Gladders, M. D.; Goldhaber, G.; Goobar, A.; Hattori, T.; Hsiao, E.; Huang, X.; Ihara, Y.; Kashikawa, N.; Koester, B.; Konishi, K.; Kowalski, M.; Lidman, C.; Lubin, L.; Meyers, J.; Morokuma, T.; Oda, T.; Panagia, N.; Perlmutter, S.; Postman, M.; Ripoche, P.; Rosati, P.; Rubin, D.; Schlegel, D. J.; Spadafora, A. L.; Stanford, S. A.; Strovink, M.; Suzuki, N.; Takanashi, N.; Tokita, K.; Yasuda, N.; Supernova Cosmology Project


    We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 z z > 0.9 SNe. Finding 8 ± 1 cluster SNe Ia, we determine an SN Ia rate of 0.50+0.23 -0.19 (stat) +0.10 -0.09 (sys) h 2 70 SNuB (SNuB ≡ 10-12 SNe L -1 ⊙, B yr-1). In units of stellar mass, this translates to 0.36+0.16 -0.13 (stat) +0.07 -0.06 (sys) h 2 70 SNuM (SNuM ≡ 10-12 SNe M -1 ⊙ yr-1). This represents a factor of ≈5 ± 2 increase over measurements of the cluster rate at z influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555. The observations are associated with program GO-10496.

  12. The BaLROG project - II. Quantifying the influence of bars on the stellar populations of nearby galaxies (United States)

    Seidel, M. K.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Sánchez-Blázquez, P.; Pérez, I.; Peletier, R.; Vazdekis, A.


    We continue the exploration of the BaLROG (Bars in Low Redshift Optical Galaxies) sample: 16 large mosaics of barred galaxies observed with the integral field unit Spectrographic Areal Unit for Research on Optical Nebulae. We quantify the influence of bars on the composition of the stellar component. We derive line-strength indices of H β, Fe5015 and Mgb. Based on single stellar population (SSP) models, we calculate ages, metallicities and [Mg/Fe] abundances and their gradients along the bar major and minor axes. The high spatial resolution of our data allows us to identify breaks among index and SSP profiles, commonly at 0.13 ± 0.06 bar length, consistent with kinematic features. Inner gradients are about 10 times steeper than outer gradients and become larger when there is a central rotating component, implying that the gradients are not independent of dynamics and orbits. Central ages appear to be younger for stronger bars. Yet, the bar regions are usually old. We find a flattening of the iron (Fe5015) and magnesium (Mgb) outer gradients along the bar major axis, translating into a flattening of the metallicity gradient. This gradient is found to be 0.03 ± 0.07 dex kpc-1 along the bar major axis while the mean value of the bar minor axis compares well with that of an unbarred control sample and is significantly steeper, namely -0.20 ± 0.04 dex kpc-1. These results confirm recent simulations and discern the important localized influence of bars. The elevated [Mg/Fe] abundances of bars and bulges compared to the lower values of discs suggest an early formation, in particular for early-type galaxies.

  13. High-resolution emission-line imaging of Seyfert galaxies. I - Observations. II - Evidence for anisotropic ionizing radiation (United States)

    Haniff, Christopher A.; Wilson, Andrew S.; Ward, Martin J.


    A CCD direct imaging survey of 11 Seyfert galaxies with a mean seeing of 1.3 arcsec FWHM is presented. It is found that the major axes and spatial scales of the circumnuclear emission-line gas are very similar to those of the radio continuum sources. In the second part, this close connection between thermal and relativistic gases is examined. A scenario is proposed in which the radio jets and plasmoids shock, accelerate, and compress ambient and entrained gas, with the dominant source of ionization being the nonstellar nuclear UV continuum.

  14. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the goals sample

    Energy Technology Data Exchange (ETDEWEB)

    Stierwalt, S.; Armus, L.; Diaz-Santos, T.; Marshall, J.; Haan, S.; Howell, J.; Murphy, E. J.; Inami, H.; Petric, A. O. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Charmandaris, V. [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Iwasawa, K. [INAF-Observatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Kim, D. C. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rich, J. A. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Spoon, H. W. W. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); U, V., E-mail: [Department of Physics and Astronomy, University of California, Riverside, CA 92507 (United States)


    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ{sub 9.7μm}, τ{sub ice}, neon line ratios, and PAH feature ratios). However, as their EQW{sub 6.2{sub μm}} decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L{sub IR}/L{sub 8{sub μm}}) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ∼6% of the sample but only in the most obscure sources (s{sub 9.7{sub μm}} < –1.24). Ice absorption features are observed in ∼11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H{sub 2})/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H{sub 2})/L

  15. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift (United States)

    de Barros, S.; Schaerer, D.; Stark, D. P.


    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (affected by strong emission lines. Other arguments favouring episodic star formation and relatively short star formation timescales are also discussed. Considering nebular emission generally leads to a younger age, lower stellar mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The SED models, which include nebular

  16. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof......Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  17. Active Galaxies

    DEFF Research Database (Denmark)

    Kilerci Eser, Ece

    one is related to the mass estimates of supermassive black holes (SMBHs). Mass estimates of SMBHs are important to understand the formation and evolution of SMBHs and their host galaxies. Black hole masses in Type 1 AGN are measured with the reverberation mapping (RM) technique. Reverberation mapping......Galaxy formation and evolution is one of the main research themes of modern astronomy. Active galaxies such as Active Galactic Nuclei (AGN) and Ultraluminous Infrared Galaxies (ULIRGs) are important evolutionary stages of galaxies. The ULIRG stage is mostly associated with galaxy mergers...... and interactions. During the interactions of gas-rich galaxies, the gas inflows towards the centers of the galaxies and can trigger both star formation and AGN activity. The ULIRG stage includes rapid star formation activity and fast black hole growth that is enshrouded by dust. Once the AGN emission...

  18. High-velocity blueshifted Fe II absorption in the dwarf star-forming galaxy PHL 293B: evidence for a wind driven supershell? (United States)

    Terlevich, Roberto; Terlevich, Elena; Bosch, Guillermo; Díaz, Ángeles; Hägele, Guillermo; Cardaci, Mónica; Firpo, Verónica


    X-shooter and WHT-ISIS spectra of the star-forming galaxy PHL 293B also known as A2228-00 and SDSS J223036.79-000636.9 are presented in this paper. We find broad (FWHM = 1000 km s-1) and very broad (FWZI = 4000 km s-1) components in the Balmer lines, narrow absorption components in the Balmer series blueshifted by 800 km s-1, previously undetected Fe II multiplet (42) absorptions also blueshifted by 800 km s-1, IR Ca II triplet stellar absorptions consistent with [Fe/H] historical records, we found no optical variability at the 5σ level of 0.02 mag between 2005 and 2013 and no optical variability at the level of 0.1 mag for the past 24 yr. The lack of variability rules out transient phenomena like luminous blue variables or Type IIn supernovae as the origin of the blueshifted absorptions of H I and Fe II. The evidence points to either a young and dense expanding supershell or a stationary cooling wind, in both cases driven by the young cluster wind.

  19. Galaxy Clusters in the Swift/BAT era II: 10 more Clusters detected above 15 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; /SLAC /KIPAC, Menlo Park; Rebusco, P.; /KIPAC, Menlo Park; Cappelluti, N.; /Garching, Max Planck Inst., MPE /Maryland U., Baltimore County; Reimer, O.; /SLAC /Palermo Observ.; Boehringer, H.; /Garching, Max Planck Inst., MPE; La Parola, V.; Cusumano, G.; /Palermo Observ.


    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/BAT all-sky survey. Among the newly BAT-discovered clusters there are: Bullet, Abell 85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and Abell 3667) we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law like, component with a 20-100 keV flux of 3.4 x 10{sup -12} erg cm{sup -2} s{sup -1} as detected in previous studies. For Abell 3667 the excess emission can be successfully modeled as a hot component (kT = {approx}13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely thermal origin.

  20. Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey - II. Size-luminosity relations and the deficit of bulge-dominated galaxies in Illustris at low mass (United States)

    Bottrell, Connor; Torrey, Paul; Simard, Luc; Ellison, Sara L.


    The interpretive power of the newest generation of large-volume hydrodynamical simulations of galaxy formation rests upon their ability to reproduce the observed properties of galaxies. In this second paper in a series, we employ bulge+disc decompositions of realistic dust-free galaxy images from the Illustris simulation in a consistent comparison with galaxies from the Sloan Digital Sky Survey (SDSS). Examining the size-luminosity relations of each sample, we find that galaxies in Illustris are roughly twice as large and 0.7 mag brighter on average than galaxies in the SDSS. The trend of increasing slope and decreasing normalization of size-luminosity as a function of bulge fraction is qualitatively similar to observations. However, the size-luminosity relations of Illustris galaxies are quantitatively distinguished by higher normalizations and smaller slopes than for real galaxies. We show that this result is linked to a significant deficit of bulge-dominated galaxies in Illustris relative to the SDSS at stellar masses log M_{\\star }/M_{⊙}≲ 11. We investigate this deficit by comparing bulge fraction estimates derived from photometry and internal kinematics. We show that photometric bulge fractions are systematically lower than the kinematic fractions at low masses, but with increasingly good agreement as the stellar mass increases.

  1. Galaxies into the Dark Ages (United States)

    Carilli, C. L.; Murphy, E. J.; Ferrara, A.; Dayal, P.


    We consider the capabilities of current and future large facilities operating at 2-3 mm wavelength to detect and image the [C II] 158 μm line from galaxies into the cosmic “dark ages” (z ˜ 10-20). The [C II] line may prove to be a powerful tool in determining spectroscopic redshifts, and galaxy dynamics, for the first galaxies. We emphasize that the nature, and even existence, of such extreme redshift galaxies, remains at the frontier of open questions in galaxy formation. In 40 hr, the Atacama Large Millimeter Array has the sensitivity to detect the integrated [C II] line emission from a moderate metallicity, active star-forming galaxy [{Z}A=0.2 {Z}⊙ ; star formation rate ({SFR})=5 {M}⊙ yr-1], at z = 10 at a significance of 6σ. The next-generation Very Large Array (ngVLA) will detect the integrated [C II] line emission from a Milky Way-like SFR galaxy ({Z}A=0.2 {Z}⊙ , {SFR}=1 {M}⊙ yr-1), at z = 15 at a significance of 6σ. Imaging simulations show that the ngVLA can determine rotation dynamics for active star-forming galaxies at z˜ 15, if they exist. Based on our very limited knowledge of the extreme redshift universe, we calculate the count rate in blind, volumetric surveys for [C II] emission at z˜ 10-20. The detection rates in blind surveys will be slow (of the order of unity per 40 hr pointing). However, the observations are well suited to commensal searches. We compare [C II] with the [O III] 88 μm line, and other ancillary information in high z galaxies that would aid these studies.

  2. A SCUBA imaging survey of ultracompact HII regions: The environments of massive star formation


    Thompson, M. A.; Hatchell, J.; Walsh, A. J.; Macdonald, G. H.; Millar, T. J.


    We present a SCUBA submillimetre (450 & 850 micron) survey of the environment of 105 IRAS point sources, selected from the Wood & Churchwell (1989a) and Kurtz, Churchwell & Wood (1994) radio ultracompact (UC) HII region surveys. We detected a total of 155 sub-mm clumps associated with the IRAS point sources and identified three distinct types of object: ultracompact cm-wave sources that are not associated with any sub-mm emission (sub-mm quiet objects), sub-mm clumps that are associated with ...

  3. The Re-Entry Safety of H-II Transfer Vehicle(HTV) (United States)

    Ozawa, Masayuki; Sasaki, Hiroshi; Yoshihara, Toru


    JAXA has recently established own regulation for the controlled reentry in addition to the existing requirements applicable to the natural reentry. This regulation added the requirements which addresses the safety control philosophy, the definition of the control system, the trajectory deviation to be considered, the criterion of the expected number of casualties(Ec) and other related requirements / processes. This paper introduces the contents of this regulation and the first application result to the HTV-1 reentry. The safety evaluation result for the HTV-1 reentry is also summarized.


    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail:, E-mail: [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)


    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  5. Populações estelares em galáxias HII (United States)

    Westera, P.; Cuisinier, F.; Telles, E.; Kehrig, C.


    Analisamos o conteúdo estelar de 74 galáxias HII a partir do contínuo observado nos espectros ópticos dessas galáxias, utilizando métodos de síntese de população estelar. Descobrimos que todas as galáxias para as quais encontramos soluções contêm uma população estelar velha que domina a massa estelar, e numa maioria dessas também encontramos evidência de uma população de idade intermediaria além da geração jovem que está se formando agora. Concluímos que a formação estelar dessas galáxias se realiza em surtos individuais, Esses surtos são interrompidos por longos períodos de inatividade, com os primeiros consumindo a maior parte do gás. Sugerimos, portanto, que as galáxias HII sejam galáxias anãs normais flagradas em um período de surto.

  6. Inside-Out or Outside-In? Metallicity Gradients in Low Surface Brightness Galaxies in the MUSCEL Program (United States)

    Young, Jason; Kuzio de Naray, Rachel; Xuesong Wang, Sharon


    We present the metallicity profiles of three low surface brightness (LSB) galaxies as clues to the formation of these galaxies. This easily overlooked class of galaxy comprises up to half of the galaxy population with masses spanning that of the Milky Way, making them cosmologically significant baryon repositories. LSB galaxies are also very different from the more familiar archetypal galaxies in that they have unusually high gas fractions, up to 95%. Yet, they do not represent a distinct class of galaxy, but are simply on the low surface brightness end of a continuum.We have observed a sample of low surface brightness galaxies with the VIRUS-P integral field spectrograph as part of the MUSCEL program (MUltiwavelength observations of the Structure, Chemistry, and Evolution of LSB galaxies). Our program aims to fully characterize the formation histories of these galaxies by using these data in tandem with Spitzer, Galex, and Swift observations.Optical emission lines contained within the VIRUS-P spectra have allowed us to determined the metallicities of HII regions within these galaxies via emission-line ratio diagnostics. Because ISM metallicities are directly linked to the competing effects of star formation and gas accretion, the distribution of metals is a significant clue to the formation of these galaxies.

  7. Measuring galaxy [O ii] emission line doublet with future ground-based wide-field spectroscopic surveys (United States)

    Comparat, Johan; Kneib, Jean-Paul; Bacon, Roland; Mostek, Nick J.; Newman, Jeffrey A.; Schlegel, David J.; Yèche, Christophe


    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7 ≤ z ≤ 2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [Oii] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [Oii] (λλ 3727, 3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies for the choice of the resolution for future spectrographs for BAO surveys. For bright [Oii] emitter surveys ([Oii] flux ~30 × 10-17 erg cm-2 s-1 like SDSS-IV/eBOSS), a resolution of R ~ 3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [Oii] emitter surveys ([Oii] flux ~10 × 10-17 erg cm-2 s-1 like DESi), the detection improves continuously with resolution, so we recommend the highest possible resolution, the limit being given by the number of pixels (4k by 4k) on the detector and the number of spectroscopic channels (2 or 3).

  8. He II emitters in the VIMOS VLT Deep Survey: Population III star formation or peculiar stellar populations in galaxies at 2 < z < 4.6? (United States)

    Cassata, P.; Le Fèvre, O.; Charlot, S.; Contini, T.; Cucciati, O.; Garilli, B.; Zamorani, G.; Adami, C.; Bardelli, S.; Le Brun, V.; Lemaux, B.; Maccagni, D.; Pollo, A.; Pozzetti, L.; Tresse, L.; Vergani, D.; Zanichelli, A.; Zucca, E.


    Aims: The aim of this work is to identify He II emitters at 2 1200 km s-1), 3 active galactic nuclei (AGN), and an additional 12 possible He II emitters. The properties of the individual broad emitters are in agreement with expectations from a Wolf-Rayet (W-R) model. Instead, the properties of the narrow emitters are not compatible with this model, nor with predictions of gravitational cooling radiation produced by gas accretion, unless this is severely underestimated by current models by more than two orders of magnitude. Rather, we find that the EW of the narrow He II line emitters are in agreement with expectations for a Population III (PopIII) star formation, if the episode of star formation is continuous, and we calculate that a PopIII star formation rate (SFR) of 0.1-10 M⊙ yr-1 alone is enough to sustain the observed He II flux. Conclusions: We conclude that narrow He II emitters are powered either by the ionizing flux from a stellar population rare at z ~ 0 but much more common at z ~ 3, or by PopIII star formation. As proposed by Tornatore and collaborators, incomplete interstellar medium mixing may leave some small pockets of pristine gas at the periphery of galaxies from which PopIII may form, even down to z ~ 2 or lower. If this interpretation is correct, we measure at z ~ 3 a star formation rate density in PopIII stars of 10-6 M⊙ yr-1 Mpc-3, higher than, but qualitatively comparable to the value predicted by Tornatore and collaborators. Figures 2-8, and 12 are available in electronic form at http://www.aanda.orgBased on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programs 070.A-9007 and 177.A-0837. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche

  9. The rnhB gene encoding RNase HII of Streptococcus pneumoniae and evidence of conserved motifs in eucaryotic genes. (United States)

    Zhang, Y B; Ayalew, S; Lacks, S A


    A single RNase H enzyme was detected in extracts of Streptococcus pneumoniae. The gene encoding this enzyme was cloned and expressed in Escherichia coli, as demonstrated by its ability to complement a double-mutant rnhA recC strain. Sequence analysis of the cloned DNA revealed an open reading frame of 290 codons that encodes a polypeptide of 31.9 kDa. The predicted protein exhibits a low level of homology (19% identity of amino acid residues) to RNase HII encoded by rnhB of E. coli. Identification of the S. pneumoniae RNase HII translation start site by amino-terminal sequencing of the protein and of mRNA start sites by primer extension with reverse transcriptase showed that the major transcript encoding rnhB begins at the protein start site. Comparison of the S. pneumoniae and E. coli RNase HII sequences and sequences of other, putative bacterial rnhB gene products surmised from sequencing data revealed three conserved motifs. Use of these motifs to search for homologous genes in eucaryotes demonstrated the presence of rnhB genes in a yeast and a roundworm. Partial rnhB gene sequences were detected among expressed sequences of mouse and human cells. From these data, it appears that RNase HII is universally present in living cells.

  10. The Galaxy Evolution Probe (United States)

    Glenn, Jason; Galaxy Evolution Probe Team


    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  11. Galaxy Disks

    NARCIS (Netherlands)

    van der Kruit, P. C.; Freeman, K. C.

    The disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The

  12. Probing the Galactic Structure of the Milky Way with H II Regions (United States)

    Red, Wesley Alexander; Wenger, Trey V.; Balser, Dana; Anderson, Loren; Bania, Thomas


    Mapping the structure of the Milky Way is challenging since we reside within the Galactic disk and distances are difficult to determine. Elemental abundances provide important constraints on theories of the formation and evolution of the Milky Way. HII regions are the brightest objects in the Galaxy at radio wavelengths and are detected across the entire Galactic disk. We use the Jansky Very Large Array (VLA) to observe the radio recombination line (RRL) and continuum emission of 120 Galactic HII regions located across the Galactic disk. In thermal equilibrium, metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the metallicity of HII regions using an empirical relation between an HII region's radio recombination line-to-continuum ratio and nebular metallicity. Here we focus on a subset of 20 HII regions from our sample that have been well studied with the Green Bank Telescope (GBT) to test our data reduction pipeline and analysis methods. Our goal is to expand this study to the Southern skies with the Australia Telescope Compact Array and create a metallicity map of the entire Galactic disk.


    Energy Technology Data Exchange (ETDEWEB)

    David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia; Riddle, Reed L. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Stauffer, John; Rebull, L. M. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Mountain View, CA 94035 (United States); Conroy, Kyle; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pope, Benjamin; Aigrain, Suzanne; Gillen, Ed [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Barrado, David [Centro de Astrobiología, INTA-CSIC, Dpto. Astrofísica, ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Isaacson, Howard; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Ziegler, Carl; Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Baranec, Christoph, E-mail: [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States)


    The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M{sub ⊙} and R/R{sub ⊙} values with stellar evolutionary models. We also demonstrate that the system is likely to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.

  14. Imaging of star clusters in unperturbed spiral galaxies with the Advanced Camera for Surveys. II. A comparison of star cluster systems in five late type spirals

    NARCIS (Netherlands)

    Mora, M.D.; Larsen, S.S.; Kissler-Patig, M.; Brodie, J.P.; Richtler, T.


    Aims. Our goal is to investigate the formation of star clusters in relatively unperturbed environments. To do this, we studied the five nearby spiral galaxies: NGC 45, NGC 1313, NGC 4395, NGC 5236, and NGC 7793. Methods. We obtained images of the galaxies and their star cluster systems in using the


    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)


    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  16. Perfis de temperatura eletrônica em regiões HII (United States)

    Copetti, M. V. F.


    As flutuações de temperatura eletrônica em regiões HII, inicialmente propostas para explicar as discrepâncias entre os valores de temperatura obtidos por diferentes métodos, têm sido apontadas como a causa mais provável das enormes diferenças encontradas entre as abundâncias químicas medidas através de linhas excitadas colisionalmente e de linhas de recombinação. Recentemente têm sido reportadas tentativas de detecção e quantificação diretas das flutuações de temperatura eletrônica através de medidas ponto a ponto, obtidas por meio de espectroscopia de fenda longa, das razões de linhas [OIII]l4263/l5007 e [NII]l5755/l6584, principais sensores de temperatura. Neste trabalho, utilizamos o código numérico de fotoionização Cloudy para avaliar a confiabilidade desse procedimento. Concluímos que, para valores de densidade eletrônica e de temperatura efetiva da estrela ionizante típicos das regiões HII, os perfis superficiais de temperatura obtidos via medidas do sensor [OIII]l4263/l5007 são bons traçadores dos gradientes internos de temperatura eletrônica. Já os perfis de temperatura eletrônica medidos por meio da razão [NII]l5755/l6584 não reproduzem os gradientes verdadeiros de temperatura.


    Energy Technology Data Exchange (ETDEWEB)

    González-Alfonso, E.; Blasco, A. [Universidad de Alcalá, Departamento de Física y Matemáticas, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Fischer, J. [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Sturm, E.; Graciá-Carpio, J.; Lutz, D.; Poglitsch, A.; Contursi, A. [Max-Planck-Institute for Extraterrestrial Physics (MPE), Giessenbachstraße 1, D-85748 Garching (Germany); Veilleux, S.; Meléndez, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Aalto, S.; Falstad, N. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Spoon, H. W. W. [Cornell University, Astronomy Department, Ithaca, NY 14853 (United States); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Henkel, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany); Verma, A. [University of Oxford, Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Spaans, M. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Smith, H. A.; Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hailey-Dunsheath, S. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); and others


    Herschel/PACS observations of 29 local (ultra)luminous infrared galaxies, including both starburst and active galactic nucleus (AGN) dominated sources as diagnosed in the mid-infrared/optical, show that the equivalent width of the absorbing OH 65 μm Π{sub 3/2} J = 9/2-7/2 line (W {sub eq}(OH65)) with lower level energy E {sub low} ≈ 300 K, is anticorrelated with the [C II]158 μm line to far-infrared luminosity ratio, and correlated with the far-infrared luminosity per unit gas mass and with the 60-to-100 μm far-infrared color. While all sources are in the active L {sub IR}/M {sub H2} > 50L {sub ☉}/M {sub ☉} mode as derived from previous CO line studies, the OH65 absorption shows a bimodal distribution with a discontinuity at L {sub FIR}/M {sub H2} ≈ 100 L {sub ☉}/M {sub ☉}. In the most buried sources, OH65 probes material partially responsible for the silicate 9.7 μm absorption. Combined with observations of the OH 71 μm Π{sub 1/2} J = 7/2-5/2 doublet (E {sub low} ≈ 415 K), radiative transfer models characterized by the equivalent dust temperature, T {sub dust}, and the continuum optical depth at 100 μm, τ{sub 100}, indicate that strong [C II]158 μm deficits are associated with far-IR thick (τ{sub 100} ≳ 0.7, N {sub H} ≳ 10{sup 24} cm{sup –2}), warm (T {sub dust} ≳ 60 K) structures where the OH 65 μm absorption is produced, most likely in circumnuclear disks/tori/cocoons. With their high L {sub FIR}/M {sub H2} ratios and columns, the presence of these structures is expected to give rise to strong [C II] deficits. W {sub eq}(OH65) probes the fraction of infrared luminosity arising from these compact/warm environments, which is ≳ 30%-50% in sources with high W {sub eq}(OH65). Sources with high W {sub eq}(OH65) have surface densities of both L {sub IR} and M {sub H2} higher than inferred from the half-light (CO or UV/optical) radius, tracing coherent structures that represent the most buried/active stage of (circum)nuclear starburst

  18. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies (United States)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.


    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z ( or via

  19. Evolution of Compact Extreme Starburst Galaxies (United States)

    Lowenthal, James; Bershady, Matthew; Gallego, Jesus; Guzman, Rafael; Hameed, Salman; Koo, David


    The global SFR was tenfold greater at z=1 than at z=0, and "downsizing" scenarios of galaxy formation maintain that the strong evolution in SFR progresses from high- to low-mass systems with time. Meanwhile, large reservoirs of star formation previously hidden from the optical by obscuring dust are being uncovered in the IR and submm in diverse populations of galaxies over a wide range of redshift. We propose deep IRAC imaging and MIPS photometry of a unique sample of well-studied 26 extreme starburst galaxies, half of them nearby HII galaxies and the other half luminous compact blue galaxies (LCBGs) at redshift z~0.5. These intensely starforming but mostly low-mass systems, like their massive cousins the ultraluminous infrared galaxies (ULIRGs), apparently evolve significantly: they can account for as much as 40% of the increase in global SFR observed between z=0 and z=1. They may also include local analogs of Lyman break galaxies at z~3, and are probably the same class of UV-bright starbursts recently observed in the local universe with GALEX. Coverage of our sample has two significant advantages over other multiwavelength surveys: spatially resolved HST/STIS-UV and optical imaging and spectroscopy, and high spectral and spatial resolution 2D spectroscopy with Keck/HIRES. Thus we can measure important physical parameters that are unavailable with the FLS, EGSS, GOODS, and other surveys. Our main science goal is (1) to use the mid- and far-IR emission to measure optically obscured star formation from z~1 to z=0 as a function of dynamical mass and rest-UV size and morphology; this will directly address inconsistencies in our current downsizing picture of galaxy evolution and the role of compact extreme starbursts. We also plan (2) to compare the SEDs of our samples to those of LBGs, to test the hypothesis that LCBGs include local analogs of LBGs; and (3) to measure the starbursts' stellar masses in the rest-NIR, which is necessary for analysis of SFH, b parameter

  20. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S


    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  1. Evolution of the extinction curves in galaxies


    Asano, Ryosuke S.; Takeuchi, Tsutomu T.; Hirashita, Hiroyuki; Nozawa, Takaya


    We investigate the evolution of extinction curves in galaxies based on our evolution model of grain size distribution. In this model, we considered various processes: dust formation by SNe II and AGB stars, dust destruction by SN shocks in the ISM, metal accretion onto the surface of grains (referred to as grain growth), shattering and coagulation. We find that the extinction curve is flat in the earliest stage of galaxy evolution. As the galaxy is enriched with dust, shattering becomes effec...

  2. The relation between radio flux density and ionizing ultra-violet flux for HII regions and supernova remnants in the Large Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Filipović M.D.


    Full Text Available We present a comparison between the Parkes radio surveys (Filipović et al 1995 and Vacuum Ultra-Violet (VUV surveys (Smith et al. 1987 of the Large Magellanic Clouds (LMC. We have found 72 sources in common in the LMC which are known HII regions (52 and supernova remnants (SNRs (19. Some of these radio sources are associated with two or more UV stellar associations. A comparison of the radio flux densities and ionizing UV flux for HII regions shows a very good correlation, as expected from theory. Many of the Magellanic Clouds (MCs SNRs are embedded in HII regions, so there is also a relation between radio and UV which we attribute to the surrounding HII regions.

  3. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z ≤ 6.8 (United States)

    Matsuoka, Yoshiki; Onoue, Masafusa; Kashikawa, Nobunari; Iwasawa, Kazushi; Strauss, Michael A.; Nagao, Tohru; Imanishi, Masatoshi; Lee, Chien-Hsiu; Akiyama, Masayuki; Asami, Naoko; Bosch, James; Foucaud, Sébastien; Furusawa, Hisanori; Goto, Tomotsugu; Gunn, James E.; Harikane, Yuichi; Ikeda, Hiroyuki; Izumi, Takuma; Kawaguchi, Toshihiro; Kikuta, Satoshi; Kohno, Kotaro; Komiyama, Yutaka; Lupton, Robert H.; Minezaki, Takeo; Miyazaki, Satoshi; Morokuma, Tomoki; Murayama, Hitoshi; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Ouchi, Masami; Price, Paul A.; Sameshima, Hiroaki; Schulze, Andreas; Shirakata, Hikari; Silverman, John D.; Sugiyama, Naoshi; Tait, Philip J.; Takada, Masahiro; Takata, Tadafumi; Tanaka, Masayuki; Tang, Ji-Jia; Toba, Yoshiki; Utsumi, Yousuke; Wang, Shiang-Yu


    We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 galaxies, two [O III] emitters at z ˜ 0.8, and 15 Galactic brown dwarfs. The new quasars have considerably lower luminosity (M1450 ˜ -25 to -22 mag) than most of the previously known high-z quasars. Several of these quasars have luminous (>1043 erg s-1) and narrow (galaxies have extremely high luminosities (M1450 ˜ -24 to -22 mag) compared to other galaxies found at similar redshifts. With the discovery of these new classes of objects, we are opening up new parameter spaces in the high-z Universe. Further survey observations and follow-up studies of the identified objects, including the construction of the quasar luminosity function at z ˜ 6, are ongoing.


    Energy Technology Data Exchange (ETDEWEB)

    Law, David R. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Steidel, Charles C. [Department of Astronomy, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Shapley, Alice E.; Nagy, Sarah R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Reddy, Naveen A. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Erb, Dawn K., E-mail:, E-mail:, E-mail:, E-mail: [Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)


    We analyze rest-frame optical morphologies and gas-phase kinematics as traced by rest-frame far-UV and optical spectra for a sample of 204 star-forming galaxies in the redshift range z {approx} 2-3 drawn from the Keck Baryonic Structure Survey. We find that spectroscopic properties and gas-phase kinematics are closely linked to morphology: compact galaxies with semimajor axis radii r {approx}< 2 kpc are substantially more likely than their larger counterparts to exhibit Ly{alpha} in emission. Although Ly{alpha} emission strength varies widely within galaxies of a given morphological type, all but one of 19 galaxies with Ly{alpha} equivalent width W {sub Ly{alpha}} > 20 A have compact and/or multiple-component morphologies with r {<=} 2.5 kpc. The velocity structure of absorption lines in the galactic continuum spectra also varies as a function of morphology. Galaxies of all morphological types drive similarly strong outflows (as traced by the blue wing of interstellar absorption line features), but the outflows of larger galaxies are less highly ionized and exhibit larger optical depth at the systemic redshift that may correspond to a decreasing efficiency of feedback in evacuating gas from the galaxy. This v {approx} 0 km s{sup -1} gas is responsible both for shifting the mean absorption line redshift and attenuating W {sub Ly{alpha}} (via a longer resonant scattering path) in galaxies with larger rest-optical half-light radii. In contrast to galaxies at lower redshifts, there is no evidence for a correlation between outflow velocity and inclination, suggesting that outflows from these puffy and irregular systems may be poorly collimated. Our observations are broadly consistent with theoretical models of inside-out growth of galaxies in the young universe, in which typical z {approx} 2-3 star-forming galaxies are predominantly unstable, dispersion-dominated, systems fueled by rapid gas accretion that later form extended rotationally supported disks when stabilized


    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)


    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  6. Morphologies of Ultracompact HII Regions in W49A and Sgr B2: Prevalence of Shells and a Modified Classification Scheme


    De Pree, C. G.; Wilner, D. J.; Deblasio, J.; Mercer, A. J.; Davis, L. E.


    We have used Very Large Array (VLA) observations of the massive star forming regions W49A and Sgr B2, obtained with resolutions from 2\\farcs0 to 0\\farcs04, to classify the morphologies of nearly 100 ultracompact HII regions. These high resolution, multi-frequency, multi-configuration VLA observations motivate several modifications of the existing morphological classification scheme for UC HII regions. In this work, we describe the modified morphology scheme and the criteria used in source cla...

  7. Blueberry Galaxies: The Lowest Mass Young Starbursts (United States)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian


    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O III]/[O II] ˜ 10-60). They also have some of the lowest stellar masses ({log}(M/{M}⊙ )˜ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  8. AGN and Starbursts in Dusty Galaxy Mergers: Insights from the Great Observatories All-sky LIRG Survey (United States)

    Mazzarella, Joseph M.


    The Great Observatories All-sky LIRG Survey (GOALS) is combining imaging and spectroscopic data from the Herschel, Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes augmented with extensive ground-based observations in a multiwavelength study of approximately 180 Luminous Infrared Galaxies (LIRGs) and 20 Ultraluminous Infrared Galaxies (ULIRGs) that comprise a statistically complete subset of the 60μm-selected IRAS Revised Bright Galaxy Sample. The objects span the full range of galaxy environments (giant isolated spirals, wide and close pairs, minor and major mergers, merger remnants) and nuclear activity types (Seyfert 1, Seyfert 2, LINER, starburst/HII), with proportions that depend strongly on the total infrared luminosity. I will review the science motivations and present highlights of recent results selected from over 25 peer-reviewed journal articles published recently by the GOALS Team. Statistical investigations include detection of high-ionization Fe K emission indicative of deeply embedded AGN, comparison of UV and far-IR properties, investigations of the fraction of extended emission as a function of wavelength derived from mid-IR spectroscopy, mid-IR spectral diagnostics and spectral energy distributions revealing the relative contributions of AGN and starbursts to powering the bolometric luminosity, and quantitative structure analyses that delineate the evolution of stellar bars and nuclear stellar cusps during the merger process. Multiwavelength dissections of individual systems have unveiled large populations of young star clusters and heavily obscured AGN in early-stage (II Zw 96), intermediate-stage (Mrk 266, Mrk 273), and late-stage (NGC 2623, IC 883) mergers. A recently published study that matches numerical simulations to the observed morphology and gas kinematics in mergers has placed four systems on a timeline spanning 175-260 million years after their first passages, and modeling of additional (U)LIRGs is underway. A very

  9. VCC 2062: an old tidal dwarf galaxy in the Virgo cluster? (United States)

    Duc, P.-A.; Braine, J.; Lisenfeld, U.; Brinks, E.; Boquien, M.


    Context: Numerical simulations predict the existence of old Tidal Dwarf Galaxies (TDGs) that would have survived several Gyr after the collision lying at their origin. Such survivors, which would by now have become independent relaxed galaxies, would be ideal laboratories, if nearby enough, to tackle a number of topical issues, including the distribution of Dark Matter in and around galaxies. However finding old dwarf galaxies with a confirmed tidal origin is an observational challenge. Aims: A dwarf galaxy in the nearby Virgo Cluster, VCC 2062, exhibits several unusual properties that are typical of a galaxy made out of recycled material. We discuss whether it may indeed be a TDG. Methods: We analysed multi-wavelength observations of VCC 2062, including a CO map acquired with the IRAM 30 m dish, an optical spectrum of its HII regions, GALEX ultraviolet and archival broad-band and narrow-band optical images as well as a VLA HI datacube, originally obtained as part of the VIVA project. Results: VCC 2062 appears to be the optical, low surface brightness counterpart of a kinematically detached, rotating condensation that formed within an HI tail apparently physically linked to the disturbed galaxy NGC 4694. In contrast to its faint optical luminosity, VCC 2062 is characterised by strong CO emission and a high oxygen abundance more typical of spiral disks. Its dynamical mass however, is that of a dwarf galaxy. Conclusions: VCC 2062 was most likely formed within a pre-enriched gaseous structure expelled from a larger galaxy as a result of a tidal interaction. The natural provider for the gaseous tail is NGC 4694 or rather a former companion which subsequently has been accreted by the massive galaxy. According to that scenario, VCC 2062 has been formed by a past tidal encounter. Since its parent galaxies have most probably already totally merged, it qualifies as an old Tidal Dwarf Galaxy.

  10. A Distributed Public Key Infrastructure Based on Threshold Cryptography for the HiiMap Next Generation Internet Architecture


    Oliver Hanka; Michael Eichhorn; Martin Pfannenstein; Jörg Eberspächer; Eckehard Steinbach


    In this article, a security extension for the HiiMap Next Generation Internet Architecture is presented. We regard a public key infrastructure which is integrated into the mapping infrastructure of the locator/identifier-split addressing scheme. The security approach is based on Threshold Cryptography which enables a sharing of keys among the mapping servers. Hence, a more trustworthy and fair approach for a Next Generation Internet Architecture as compared to the state of the art approach is...

  11. Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5 ≤ z < 3 (United States)

    Guo, Yicheng; Rafelski, Marc; Bell, Eric F.; Conselice, Christopher J.; Dekel, Avishai; Faber, S. M.; Giavalisco, Mauro; Koekemoer, Anton M.; Koo, David C.; Lu, Yu; Mandelker, Nir; Primack, Joel R.; Ceverino, Daniel; de Mello, Duilia F.; Ferguson, Henry C.; Hathi, Nimish; Kocevski, Dale; Lucas, Ray A.; Pérez-González, Pablo G.; Ravindranath, Swara; Soto, Emmaris; Straughn, Amber; Wang, Weichen


    Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed “clumps” in distant galaxies are the same phenomenon that is seen in simulations. In this paper, as a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed “clumps” in the literature. This sample contains 3193 clumps detected from 1270 galaxies at 0.5≤slant zmethod of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U ‑ V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semimajor axis of galaxies) changes with redshift and {M}* of the host galaxies: at a fixed {M}* , the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with {M}* . Based on our SED fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B ‑ V) gradient, and a positive specific SFR gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. Correspondingly, the radial gradients of the derived physical properties of clumps are different from those of the diffuse component or intra-clump regions.


    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han; Bradač, Maruša; Hoag, Austin; Cain, Benjamin; Lubin, L. M.; Knight, Robert I. [University of California Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Lemaux, Brian C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ryan, R. E. Jr.; Brammer, Gabriel B. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Castellano, Marco; Amorin, Ricardo; Fontana, Adriano; Merlin, Emiliano [INAF—Osservatorio Astronomico di Roma Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Schmidt, Kasper B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Schrabback, Tim [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Treu, Tommaso [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Linden, Anja von der, E-mail:, E-mail: [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305 (United States)


    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios  ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ∼1.2–5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M{sub 1600} are between −21.2 and −18.9 mag, while their intrinsic stellar masses are between 2 × 10{sup 8}M{sub ⊙} and 2.9 × 10{sup 9}M{sub ⊙}. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at z{sub Lyα} = 6.76 (in RXJ 1347) and one at z{sub Lyα} = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]–[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  13. S0 galaxies in Formax

    DEFF Research Database (Denmark)

    Bedregal...[], A. G.; Aragón-Salamanca, A.; Merrifield, M. R.


    Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1......Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1...

  14. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai


    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution...... by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic...... errors in the current set of reverberation measurements from which we determine the form of the R BLR-L relationship....

  15. Emission-line Galaxies from the Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) Grism Survey. II. The Complete Sample (United States)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Malhotra, Sangeeta; Rhoads, James E.; Grogin, Norman A.; Dahlen, Tomas; Noeske, Kai G.; Meurer, Gerhardt R.; Walsh, Jeremy R.; Hathi, Nimish P.; Cohen, Seth H.; Bellini, Andrea; Holwerda, Benne W.; Straughn, Amber N.; Mechtley, Matthew; Windhorst, Rogier A.


    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitess grism spectroscopic data obtained with the Advanced Camera for Surveys on board Hubble Space Telescope. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random survey of galaxies, as well as the availability of a wide variety of ancillary observations complemented by the spectroscopic results. Using the PEARS data, we are able to identify star-forming galaxies (SFGs) within the redshift volume 0 = 109 M ⊙ decreases by an order of magnitude at z <= 0.5 relative to the number at 0.5 < z < 0.9, supporting the argument of galaxy downsizing.

  16. The many lives of active galactic nuclei-II: The formation and evolution of radio jets and their impact on galaxy evolution (United States)

    Raouf, Mojtaba; Shabala, Stanislav S.; Croton, Darren J.; Khosroshahi, Habib G.; Bernyk, Maksym


    We describe new efforts to model radio active galactic nuclei (AGN) in a cosmological context using the Semi-Analytic Galaxy Evolution (SAGE) semi-analytic galaxy model. Our new method tracks the physical properties of radio jets in massive galaxies including the evolution of radio lobes and their impact on the surrounding gas. This model also self consistently follows the gas cooling-heating cycle that significantly shapes star formation and the life and death of many galaxy types. Adding jet physics to SAGE adds new physical properties to the model output, which in turn allows us to make more detailed predictions for the radio AGN population. After calibrating the model to a set of core observations we analyse predictions for jet power, radio cocoon size, radio luminosity and stellar mass. We find that the model is able to match the stellar mass-radio luminosity relation at z ∼ 0 and the radio luminosity function out to z ∼ 1. This updated model will make possible the construction of customised AGN-focused mock survey catalogues to be used for large-scale observing programs.

  17. Planck intermediate results: II. Comparison of sunyaev-zeldovich measurements from planck and from the arcminute microkelvin imager for 11 galaxy clusters

    DEFF Research Database (Denmark)

    Bucher, M.; Delabrouille, J.; Fromenteau, S.


    A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk and White (GNFW) model for the cluster gas press...

  18. Hα Velocity Fields and Galaxy Interaction in the Quartet of Galaxies ...

    Indian Academy of Sciences (India)


    Oct 7, 2015 ... of SN is in good agreement with the known correlations of core-collapse (Types Ibc and II) SNe with star formation in galaxies (e.g. James & Anderson 2006; Hakobyan et al. 2008), including also star formation induced by an interaction with neighbor galaxies (e.g. Nazaryan et al. 2013; Hakobyan et al.

  19. True Chemical Abundances of Galaxies in the Nearby Universe: A Comparison of Abundance Methods, Interstellar Processes, and Galaxy Types (United States)

    Berg, Danielle Amanda


    Peeples et al. (2008) identified low-mass, high oxygen abundance outliers from the mass-metallicity (M-Z) relationship. We present new MMT spectroscopy of four of these dwarf galaxy outliers. We re-examined these anomalous spectra and compared to the parameter space for which standard strong-line methods are calibrated. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the "Wolf-Rayet galaxy" phase. To address the issue of securing the low-luminosity end of the M-Z relationship, we present MMT spectroscopic observations of HII regions in 42 low-luminosity galaxies in the Spitzer LVL survey. Direct oxygen abundances were determined based on the temperature sensitive [O III] lambda4363 line, measured at a strength of 4sigma or greater, for 31 of the 42 galaxies in our sample. Combining our results with previous direct abundance studies, we present a further refined sample, requiring reliable distance determinations. We characterize the direct L-Z and M-Z relationships at low-luminosity using the resulting 38 object sample. We show that the luminosity of a low-luminosity galaxy is often a better indicator of metallicity than strong-line methods. Additionally, our results provide the first direct estimates of oxygen abundance for 19 local volume dwarf galaxies. Properties of the ISM of spiral galaxies are known to show radial variations. Motivated by the need to place gradients on the same scale for comparisons amongst galaxies, we present direct oxygen abundance gradients of the nearby spiral galaxies NGC 628 and NGC 2403. A bi-modal N/O gradient pattern is measured for NGC 628. Notably, the N/O ratio plateaus beyond R25, demonstrating that primary nitrogen production is the dominant mechanism in the outer disk. The outer disk beyond R 25 was not

  20. MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis. (United States)

    Murdeshwar, Maya S; Chatterji, Dipankar


    In the noninfectious soil saprophyte Mycobacterium smegmatis, intracellular levels of the stress alarmones guanosine tetraphosphate and guanosine pentaphosphate, together termed (p)ppGpp, are regulated by the enzyme Rel(Msm). This enzyme consists of a single, bifunctional polypeptide chain that is capable of both synthesizing and hydrolyzing (p)ppGpp. The rel(Msm) knockout strain of M. smegmatis (Δrel(Msm)) is expected to show a (p)ppGpp null [(p)ppGpp(0)] phenotype. Contrary to this expectation, the strain is capable of synthesizing (p)ppGpp in vivo. In this study, we identify and functionally characterize the open reading frame (ORF), MSMEG_5849, that encodes a second functional (p)ppGpp synthetase in M. smegmatis. In addition to (p)ppGpp synthesis, the 567-amino-acid-long protein encoded by this gene is capable of hydrolyzing RNA·DNA hybrids and bears similarity to the conventional RNase HII enzymes. We have classified this protein as actRel(Msm) in accordance with the recent nomenclature proposed and have named it MS_RHII-RSD, indicating the two enzymatic activities present [RHII, RNase HII domain, originally identified as domain of unknown function 429 (DUF429), and RSD, RelA_SpoT nucleotidyl transferase domain, the SYNTH domain responsible for (p)ppGpp synthesis activity]. MS_RHII-RSD is expressed and is constitutively active in vivo and behaves like a monofunctional (p)ppGpp synthetase in vitro. The occurrence of the RNase HII and (p)ppGpp synthetase domains together on the same polypeptide chain is suggestive of an in vivo role for this novel protein as a link connecting the essential life processes of DNA replication, repair, and transcription to the highly conserved stress survival pathway, the stringent response.

  1. The SCUBA-2 Cosmology Legacy Survey: The EGS deep field - II. Morphological transformation and multi-wavelength properties of faint submillimetre galaxies (United States)

    Zavala, J. A.; Aretxaga, I.; Dunlop, J. S.; Michałowski, M. J.; Hughes, D. H.; Bourne, N.; Chapin, E.; Cowley, W.; Farrah, D.; Lacey, C.; Targett, T.; van der Werf, P.


    We present a multi-wavelength analysis of galaxies selected at 450 and 850 {μ m} from the deepest SCUBA-2 observations in the Extended Groth Strip (EGS) field, which have an average depth of σ450 = 1.9 and σ _850=0.46 mJy beam^{-1} over ˜70 arcmin2. The final sample comprises 95 sources: 56 (59 %) are detected at both wavelengths, 31 (33 %) are detected only at 850 {μ m}, and 8 (8 %) are detected only at 450 {μ m}. We identify counterparts for 75 % of the whole sample. The redshift distributions of the 450 and 850 {μ m} samples peak at different redshifts with median values of \\bar{z}=1.66± 0.18 and \\bar{z}=2.30± 0.20, respectively. However, the two populations have similar IR luminosities, SFRs, and stellar masses, with mean values of 1.5 ± 0.2 × 1012 L⊙, 150 ± 20 M⊙/yr, and 9.0 ± 0.6 × 1010 M⊙, respectively. This places most of our sources (≳ 85 %) on the high-mass end of the `main-sequence' of star-forming galaxies. Exploring the IR excess vs UV-slope (IRX-β) relation we find that the most luminous galaxies are consistent with the Meurer law, while the less luminous galaxies lie below this relation. Using the results of a two-dimensional modelling of the HST H160-band imaging, we derive a median Sérsic index of n=1.4^{+0.3}_{-0.1} and a median half-light radius of r1/2 = 4.8 ± 0.4 kpc. Based on a visual-like classification in the same band, we find that the dominant component for most of the galaxies at all redshifts is a disk-like structure, although there is a transition from irregular disks to disks with a spheroidal component at z ˜ 1.4, which morphologically supports the scenario of SMGs as progenitors of massive elliptical galaxies.

  2. The ESO-Spitzer Imaging extragalactic Survey (ESIS). II. VIMOS I, z wide field imaging of ELAIS-S1 and selection of distant massive galaxies (United States)

    Berta, S.; Rubele, S.; Franceschini, A.; Held, E. V.; Rizzi, L.; Rodighiero, G.; Cimatti, A.; Dias, J. E.; Feruglio, C.; La Franca, F.; Lonsdale, C. J.; Maiolino, R.; Matute, I.; Rowan-Robinson, M.; Sacchi, N.; Zamorani, G.


    Context: The ESO-Spitzer Imaging extragalactic Survey (ESIS) is the optical follow up of the Spitzer Wide-area Infra-Red Extragalactic survey (SWIRE) in the ELAIS-S1 region of the sky. Aims: In the era of observational cosmology, the main efforts are focused on the study of galaxy evolution and its environmental dependence. Wide area, multiwavelength, extragalactic surveys are needed in order to probe sufficiently large volumes, minimize cosmic variance and find significant numbers of rare objects. Methods: We present VIMOS I and z band imaging belonging to the ESIS survey. A total of ~4 deg2 was targeted in I and ~1 deg2 in z. Accurate data processing includes removal of fringing, and mosaicking of the complex observing pattern. Completeness levels and photometric uncertainties are estimated through simulations. The multi-wavelength data available in the area are exploited to identify high-redshift galaxies, using the IR-peak technique. Results: More than 300 000 galaxies have been detected in the I band and ~50 000 in the z band. Object coordinates are defined within an uncertainty of ~0.2 arcsec rms, with respect to GSC 2.2. We reach a 90% average completeness at 23.1 and 22.5 mag (Vega) in the I and z bands, respectively. On the basis of IRAC colors, we identify galaxies having the 1.6 μm stellar peak shifted to z = 1-3. The new I, z band data provide reliable constraints to help avoid low-redshift interlopers and reinforce this selection. Roughly 1000 galaxies between z = 2-3 are identified over the ESIS ~4 deg^2, at the SWIRE 5.8 μm depth (25.8 μJy at 3σ). These are the best galaxy candidates to dominate the massive tail (M > 1011 M_⊙) of the z > 2 mass function. Based on observations collected at the European Southern Observatory, Chile, ESO No. 168.A-0322(A). ESIS web page: Appendix A, Tables 4 and 5 are only available at The full I and z band catalogs (see Table [see full textsee full textsee full

  3. Are star formation rates of galaxies bimodal? (United States)

    Feldmann, Robert


    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (i) the discrete nature of star formation, (ii) the presence of 'dead' galaxies with zero SFRs and (iii) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  4. A Distributed Public Key Infrastructure Based on Threshold Cryptography for the HiiMap Next Generation Internet Architecture

    Directory of Open Access Journals (Sweden)

    Oliver Hanka


    Full Text Available In this article, a security extension for the HiiMap Next Generation Internet Architecture is presented. We regard a public key infrastructure which is integrated into the mapping infrastructure of the locator/identifier-split addressing scheme. The security approach is based on Threshold Cryptography which enables a sharing of keys among the mapping servers. Hence, a more trustworthy and fair approach for a Next Generation Internet Architecture as compared to the state of the art approach is fostered. Additionally, we give an evaluation based on IETF AAA recommendations for security-related systems.

  5. Dwarf spheroidal galaxies: Keystones of galaxy evolution (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.


    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  6. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy. (United States)

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin


    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  7. GASP. II. A MUSE View of Extreme Ram-Pressure Stripping along the Line of Sight: Kinematics of the Jellyfish Galaxy JO201 (United States)

    Bellhouse, C.; Jaffé, Y. L.; Hau, G. K. T.; McGee, S. L.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Fasano, G.; D'Onofrio, M.; Fritz, J.; Omizzolo, A.; Sheen, Y.-K.; Vulcani, B.


    This paper presents a spatially resolved kinematic study of the jellyfish galaxy JO201, one of the most spectacular cases of ram-pressure stripping (RPS) in the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey. By studying the environment of JO201, we find that it is moving through the dense intracluster medium of Abell 85 at supersonic speeds along our line of sight, and that it is likely accompanied by a small group of galaxies. Given the density of the intracluster medium and the galaxy’s mass, projected position, and velocity within the cluster, we estimate that JO201 must so far have lost ˜50% of its gas during infall via RPS. The MUSE data indeed reveal a smooth stellar disk accompanied by large projected tails of ionized ({{H}}α ) gas, composed of kinematically cold (velocity dispersion 100 km s-1) diffuse emission, that extend out to at least ˜ 50 {kpc} from the galaxy center. The ionized {{H}}α -emitting gas in the disk rotates with the stars out to ˜6 kpc but, in the disk outskirts, it becomes increasingly redshifted with respect to the (undisturbed) stellar disk. The observed disturbances are consistent with the presence of gas trailing behind the stellar component resulting from intense face-on RPS along the line of sight. Our kinematic analysis is consistent with the estimated fraction of lost gas and reveals that stripping of the disk happens outside-in, causing shock heating and gas compression in the stripped tails.

  8. The HST/ACS Grism Parallel Survey: II. First Results and a Catalog of Faint Emission-Line Galaxies at z < 1.6


    Drozdovsky, Igor; Yan, Lin; Chen, Hsiao-Wen; Stern, Daniel; Kennicutt Jr., Robert; Spinrad, Hyron; Dawson, Steve


    We present the first results from the HST/ACS Grism Parallel Survey, a large program obtaining deep, slitless ACS grism spectroscopy of high-latitude HST parallel fields. We report on 11 high Galactic latitude fields here, each with grism integration times >12 ks. We identify 601 compact emission line galaxies at z 5 E-18 ergs/cm^2/s (3 sigma). We determine redshifts by cross correlation of the target spectra with template spectra, followed ...


    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Martha L.; Sonneborn, George [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street SE, University of Minnesota, Minneapolis, MN 55455 (United States); Barmby, Pauline [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Bonanos, Alceste Z. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece); Gordon, Karl D.; Meixner, Margaret [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Groenewegen, M. A. T. [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Lagadec, Eric [Laboratoire Lagrange, UMR7293, Univ. Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06300 Nice (France); Lennon, Daniel [ESA-European Space Astronomy Centre, Apdo. de Correo 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Marengo, Massimo [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); McDonald, Iain; Zijlstra, Albert [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Sloan, G. C. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Van Loon, Jacco Th., E-mail: [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom)


    The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 μm imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called ''extreme'' or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < –1.5 and 12 are in galaxies with [Fe/H] < –2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of ≈30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.

  10. The SAMI Galaxy Survey: disc-halo interactions in radio-selected star-forming galaxies (United States)

    Leslie, S. K.; Bryant, J. J.; Ho, I.-T.; Sadler, E. M.; Medling, A. M.; Groves, B.; Kewley, L. J.; Bland-Hawthorn, J.; Croom, S. M.; Wong, O. I.; Brough, S.; Tescari, E.; Sweet, S. M.; Sharp, R.; Green, A. W.; López-Sánchez, Á. R.; Allen, J. T.; Fogarty, L. M. R.; Goodwin, M.; Lawrence, J. S.; Konstantopoulos, I. S.; Owers, M. S.; Richards, S. N.


    In this paper, we compare the radio emission at 1.4 GHz with optical outflow signatures of edge-on galaxies. We report observations of six edge-on star-forming galaxies in the Sydney-AAO Multiobject Integral-field spectrograph Galaxy Survey with 1.4 GHz luminosities >1 × 1021 W Hz-1. Extended minor axis optical emission is detected with enhanced [N II]/H α line ratios and velocity dispersions consistent with galactic winds in three of six galaxies. These galaxies may host outflows driven by a combination of thermal and cosmic ray processes. We find that galaxies with the strongest wind signatures have extended radio morphologies. Our results form a baseline for understanding the driving mechanisms of galactic winds.

  11. Galaxy Formation through Filamentary Accretion at z = 6.1 (United States)

    Jones, G. C.; Willott, C. J.; Carilli, C. L.; Ferrara, A.; Wang, R.; Wagg, J.


    We present Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [C II] 158 μm line emission from the z = 6.0695 Lyman-Break Galaxy (LBG) WMH5. These observations at 0.″3 spatial resolution show a compact (˜3 kpc) main galaxy in dust and [C II] emission, with a “tail” of emission extending to the east by about 5 kpc (in projection). The [C II] tail is comprised predominantly of two distinct sub-components in velocity, separated from the core by ˜100 and 250 km s-1, with narrow intrinsic widths of about 80 km s-1, which we call “sub-galaxies.” The sub-galaxies themselves are extended east-west by about 3 kpc in individual channel images. The [C II] tail joins smoothly into the main galaxy velocity field. The [C II] line to continuum ratios are comparable for the main and sub-galaxy positions, within a factor two. In addition, these ratios are comparable to z˜ 5.5 LBGs. We conjecture that the WMH5 system represents the early formation of a galaxy through the accretion of smaller satellite galaxies, embedded in a smoother gas distribution, along a possibly filamentary structure. The results are consistent with current cosmological simulations of early galaxy formation and support the idea of very early enrichment with dust and heavy elements of the accreting material.

  12. H-alpha LEGUS: Insights into the Field OB Star Population in Nearby Galaxies (United States)

    Lee, Janice; Thilker, David; Kayitesi, Bridget; Chandar, Rupali; Halpha LEGUS Team


    The question of whether O-stars can form in isolation, without attendant clusters or associations of lower mass stars, is a topic of interest because the answer to the question can distinguish between models of star formation. To begin to investigate whether such isolated O-stars can be identified in nearby galaxies beyond the Local Group, we identify candidate field OB-stars in NGC 1313, NGC 4395 and NGC 7793, the three nearest spiral galaxies in the HST Legacy ExtraGalactic Ultraviolet Survey (LEGUS). Candidates are selected using a technique based on: (1) a reddening-free Q parameter, adapted for photometry in HST filters covering the NUV, U, & B bands; (2) isolation based on projected distance from the nearest young cluster and candidate OB star, and (3) the presence of an HII region, identified based on HST H-alpha narrowband imaging. Our catalogs enable a range of follow-up studies on massive stars, and in particular provide targets for future spectroscopic observation and analysis. We describe the candidate OB star sample, the spatial distribution of the stars, and their HII region properties, with special focus on the most isolated objects in the sample.

  13. Determining the Halo Mass Scale Where Galaxies Lose Their Gas (United States)

    Rudnick, Gregory; Jablonka, Pascale; Moustakas, John; Aragón-Salamanca, Alfonso; Zaritsky, Dennis; Jaffé, Yara L.; De Lucia, Gabriella; Desai, Vandana; Halliday, Claire; Just, Dennis; Milvang-Jensen, Bo; Poggianti, Bianca


    A major question in galaxy formation is how the gas supply that fuels activity in galaxies is modulated by their environment. We use spectroscopy of a set of well-characterized clusters and groups at 0.4 10.4) of these old galaxies with weak [O II] emission. We use line ratios and compare to studies of local early-type galaxies to conclude that this gas is likely excited by post-AGB stars and hence represents a diffuse gas component in the galaxies. For cluster and group galaxies the fraction with EW([O II]) > 5 Å is f [O II] = {0.08}-0.02+0.03 and f [O II] = {0.06}-0.04+0.07, respectively. For field galaxies we find f [O II] = {0.27}-0.06+0.07, representing a 2.8σ difference between the [O II] fractions for old galaxies between the different environments. We conclude that a population of old galaxies in all environments has ionized gas that likely stems from stellar mass loss. In the field galaxies also experience gas accretion from the cosmic web, and in groups and clusters these galaxies have had their gas accretion shut off by their environment. Additionally, galaxies with emission preferentially avoid the virialized region of the cluster in position-velocity space. We discuss the implications of our results, among which is that gas accretion shutoff is likely effective at group halo masses (log { M }/{{ M }}⊙ > 12.8) and that there are likely multiple gas removal processes happening in dense environments. Based on observations obtained at the European Southern Observatory using the ESO Very Large Telescope on Cerro Paranal through ESO program 166.A-0162.

  14. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; hide


    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36 or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  15. LBT observations of compact star-forming galaxies with extremely high [O III]/[O II] flux ratios: He I emission-line ratios as diagnostics of Lyman continuum leakage (United States)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.


    We present Large Binocular Telescope spectrophotometric observations of five low-redshift (z logO/H = 7.46-7.79 and low masses M⋆ ˜ 106-107 M⊙, much lower than the M⋆ for known low-redshift LyC leaking galaxies, but probably more typical of the hypothetical population of low-luminosity dwarf LyC leakers at high redshifts. A broad H α emission line is detected in the spectra of all CSFGs, possibly related to expansion motions of supernova remnants. Such rapid ionized gas motions would facilitate the escape of the resonant Ly α emission from the galaxy. We show that a high O32 may not be a sufficient condition for LyC leakage and propose new diagnostics based on the He I λ3889/λ6678 and λ7065/λ6678 emission-line flux ratios. Using these diagnostics, we find that three CSFGs in our sample are likely to have density-bounded H II regions and are thus leaking large amounts of LyC radiation. The amount of leaking LyC radiation is probably much lower in the other two CSFGs.

  16. Characterizing the Interstellar and Circumgalactic Medium in Star-forming Galaxies (United States)

    Du, Xinnan; Shapley, Alice; Crystal Martin, Alison Coil, Charles Steidel, Tucker Jones, Daniel Stark, Allison Strom


    Rest-frame UV and optical spectroscopy provide valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies, including both the systemic interstellar component originating from HII regions, and the multi-phase outflowing component associated with star-formation feedback. My thesis focuses on both the systemic and outflowing ISM in star-forming galaxies at redshift z ~ 1-4. With an unprecedented sample at z~1 with the rest-frame near-UV coverage, we examined how the kinematics of the warm and cool phrases of gas, probed by the interstellar CIV and low-ionization features, respectively, relate to each other. The spectral properties of CIV strongly correlate with the current star-formation rate, indicating a distinct nature of highly-ionized outflowing gas being driven by massive star formation. Additionally, we used the same set of z~1 galaxies to study the properties of the systemic ISM in HII regions by analyzing the nebular CIII] emission. CIII] emission tends to be stronger in lower-mass, bluer, and fainter galaxies with lower metallicity, suggesting that the strong CIII] emitters at lower redshifts can be ideal analogs of young, bursty galaxies at z > 6, which are possibly responsible for reionizing the universe. We are currently investigating the redshift evolution of the neutral, circumgalactic gas in a sample of ~1100 Lyman Break Galaxies at z ~ 2-4. The negative correlation between Lya emission and low-ionization interstellar absorption line strengths appears to be universal across different redshifts, but the fine-structure line emitting regions are found to be more compact for higher-redshift galaxies. With the detailed observational constraints provided by the rest-UV and rest-optical spectroscopy, our study sheds light on how the interstellar and circumgalactic gas components and different phases of gas connect to each other, and therefore provides a comprehensive picture of the overall

  17. Probing the Circumgalactic Gas around High Redshift Galaxies with VUDS (United States)

    Méndez-Hernández, Hugo; Cassata, Paolo; Ibar, Eduardo


    We probe the CGM of high redshift galaxies belonging to VIMOS Ultra Deep Survey. We used deep spectroscopy of different lines-of-sight around foreground galaxies to get useful information on the overall kinematics, chemical abundances, and (in some cases) estimates of the mass flux of cool material entrained in an in-outflow.We have selected a sample of 1244 close (0 150 kpc) galaxy pairs from the Vimos Ultra-Deep Survey (VUDS) to probe the circumgalactic medium (CGM) around galaxies at 2CIV, OISiII, CIV, AlII) out to galactocentric radii of ˜150 kpc on stacked spectra, and found that the CGM of galaxies at 2< z <5 are rich in metals even at ˜150 kpc away from the galaxies.

  18. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59 (United States)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; hide


    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  19. Results from the Heavy Ions In Space (HIIS) experiment on the ionic charge state of solar energetic particles (United States)

    Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.; Kleis, Thomas


    It has long been known that low-energy solar energetic particles (SEP's) are partially-ionized. For example, in large, so-called 'gradual' solar energetic particle events, at approximately 1 MeV/nucleon the measured mean ionic charge state, Q, of Fe ions is 14.1 +/- 0.2, corresponding to a plasma temperature of approximately 2 MK in the coronal or solar-wind source material. Recent studies, which have greatly clarified the origin of solar energetic particles and their relation to solar flares, suggest that ions in these SEP events are accelerated not at a flare site, but by shocks propagating through relatively low-density regions in the interplanetary medium. As a result, the partially-ionized states observed at low energies are expected to continue to higher energies. However, up to now there have been no high-energy measurements of ionic charge states to confirm this notion. We report here HIIS observations of Fe-group ions at 50-600 MeV/nucleon, at energies and fluences which cannot be explained by fully-ionized galactic cosmic rays, even in the presence of severe geomagnetic cutoff suppression. Above approximately 200 MeV/nucleon, all features of our data -- fluence, energy spectrum, elemental composition, and arrival directions -- can be explained by the large SEP events of October 1989, provided that the mean ionic charge state at these high energies is comparable to the measured value at approximately 1 MeV/nucleon. By comparing the HIIS observations with measurements in interplanetary space in October 1989, we determine the mean ionic charge state of SEP Fe ions at approximately 200-600 MeV/nucleon to be Q = 13.4 plus or minus 1.0, in good agreement with the observed value at approximately 1 MeV/nucleon. The source of the ions below approximately 200 MeV/nucleon is not yet clear. Partially-ionized ions are less effectively deflected by the Earth's magnetic field than fully-ionized cosmic rays and therefore have greatly enhanced access to low-Earth orbit

  20. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngsoo [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krause, Elisabeth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Jain, Bhuvnesh [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Amara, Adam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Becker, Matt [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bridle, Sarah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Clampitt, Joseph [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crocce, Martin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gaztanaga, Enrique [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sanchez, Carles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wechsler, Risa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  1. Morphology of Seyfert Galaxies


    Chen, Yen-Chen; Hwang, Chorng-Yuan


    We probed the relation between properties of Seyfert nuclei and morphology of their host galaxies. We selected Seyfert galaxies from the Sloan Digital Sky Survey with redshifts less 0.2 identified by the V\\'{e}ron Catalog (13th). We used the "{\\it{FracDev}}" parameter from SDSS galaxy fitting models to represent the bulge fractions of the Seyfert host galaxies. We found that the host galaxies of Seyfert 1 and Seyfert 2 are dominated by large bulge fractions, and Seyfert 2 galaxies are more li...

  2. Angular momentum evolution of galaxies in EAGLE (United States)

    Lagos, Claudia del P.; Theuns, Tom; Stevens, Adam R. H.; Cortese, Luca; Padilla, Nelson D.; Davis, Timothy A.; Contreras, Sergio; Croton, Darren


    We use the EAGLE cosmological hydrodynamic simulation suite to study the specific angular momentum of galaxies, j, with the aims of (i) investigating the physical causes behind the wide range of j at fixed mass and (ii) examining whether simple, theoretical models can explain the seemingly complex and non-linear nature of the evolution of j. We find that j of the stars, jstars, and baryons, jbar, are strongly correlated with stellar and baryon mass, respectively, with the scatter being highly correlated with morphological proxies such as gas fraction, stellar concentration, (u-r) intrinsic colour, stellar age and the ratio of circular velocity to velocity dispersion. We compare with available observations at z = 0 and find excellent agreement. We find that jbar follows the theoretical expectation of an isothermal collapsing halo under conservation of specific angular momentum to within ≈50 per cent, while the subsample of rotation-supported galaxies are equally well described by a simple model in which the disc angular momentum is just enough to maintain marginally stable discs. We extracted evolutionary tracks of the stellar spin parameter of EAGLE galaxies and found that the fate of their jstars at z = 0 depends sensitively on their star formation and merger histories. From these tracks, we identified two distinct physical channels behind low jstars galaxies at z = 0: (i) galaxy mergers, and (ii) early star formation quenching. The latter can produce galaxies with low jstars and early-type morphologies even in the absence of mergers.

  3. A Zoo of Galaxies (United States)

    Masters, Karen L.


    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (; starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  4. Optical spectrophotometry of Wolf-Rayet galaxies (United States)

    Vacca, William D.; Conti, Peter S.


    We have obtained long-slit optical spectra of 10 Wolf-Rayet galaxies and four other starburst galaxies. Using the nebular emission lines we have determined the electron temperatures, electron densities, extinctions, oxygen abundances, mass of ionized hydrogen, and numbers of ionizing photons due to hot stars in these galaxies. The various forbidden line ratios clearly indicate a stellar origin for the emission-line spectrum. From the flux of the broad He II 4686 A emission feature we have estimated the number of Wolf-Rayet stars present. We have accounted for the contribution of these stars to the total ionizing flux and have calculated the ratio of the number of these stars to the number of O stars. Wolf-Rayet galaxies are among the youngest examples of the starburst phenomenon, which we observed at a propitious moment.

  5. Orbits of massive satellite galaxies - II. Bayesian estimates of the Milky Way and Andromeda masses using high-precision astrometry and cosmological simulations (United States)

    Patel, Ekta; Besla, Gurtina; Mandel, Kaisey


    In the era of high-precision astrometry, space observatories like the Hubble Space Telescope (HST) and Gaia are providing unprecedented 6D phase-space information of satellite galaxies. Such measurements can shed light on the structure and assembly history of the Local Group, but improved statistical methods are needed to use them efficiently. Here we illustrate such a method using analogues of the Local Group's two most massive satellite galaxies, the Large Magellanic Cloud (LMC) and Triangulum (M33), from the Illustris dark-matter-only cosmological simulation. We use a Bayesian inference scheme combining measurements of positions, velocities and specific orbital angular momenta (j) of the LMC/M33 with importance sampling of their simulated analogues to compute posterior estimates of the Milky Way (MW) and Andromeda's (M31) halo masses. We conclude that the resulting host halo mass is more susceptible to bias when using measurements of the current position and velocity of satellites, especially when satellites are at short-lived phases of their orbits (i.e. at pericentre). Instead, the j value of a satellite is well conserved over time and provides a more reliable constraint on host mass. The inferred virial mass of the MW (M31) using j of the LMC (M33) is {{M}}_{vir, MW} = 1.02^{+0.77}_{-0.55} × 10^{12} M⊙ ({{M}}_{vir, M31} = 1.37^{+1.39}_{-0.75} × 10^{12} M⊙). Choosing simulated analogues whose j values are consistent with the conventional picture of a previous (<3 Gyr ago), close encounter (<100 kpc) of M33 about M31 results in a very low virial mass for M31 (˜1012 M⊙). This supports the new scenario put forth in Patel, Besla & Sohn, wherein M33 is on its first passage about M31 or on a long-period orbit. We conclude that this Bayesian inference scheme, utilizing satellite j, is a promising method to reduce the current factor of 2 spread in the mass range of the MW and M31. This method is easily adaptable to include additional satellites as new 6D

  6. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View (United States)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide


    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  7. The Unexpected Past of a Dwarf Galaxy (United States)


    New Light on Cannibalism in the Local Group of Galaxies The Local Group of Galaxies consists of a few large spiral galaxies - for instance the Milky Way galaxy in which we live, and the Andromeda galaxy that is visible to the unaided eye in the northern constellation of the same name - as well as two dozen much smaller galaxies of mostly irregular shape. Whereas the larger galaxies have extended halos of very old stars, no such halos have ever been seen around the smaller ones. Now, however, Dante Minniti and Albert Zijlstra [1], working at the ESO 3.5-metre New Technology Telescope (NTT), have found a large halo of old and metal-poor stars around one of the dwarf galaxies in the Local Group. This finding is quite unexpected. It revises our understanding of star formation in these galaxies and provides important information about the past evolution of galaxies [2]. Galaxy halos The Milky Way galaxy is surrounded by a large, roughly spherical halo of old stars. The diameter is about 100,000 light years and the stars therein, known as Population II stars, are among the oldest known, with ages of 10 billion years or even more. They also differ from the younger stars nearer to the main plane of the Milky Way (in which our 4.7 billion year old Sun is located) by being very metal-poor. Many of the halo stars consist almost solely of hydrogen and helium, reflecting the composition of matter in the young Universe. This halo is important for our understanding of the processes that led to the formation of the Milky Way galaxy. It is believed that many of the halo stars and those of the same type found in globular clusters existed already before the Milky Way had fully formed. Galaxy cannibalism Many astronomers suspect that galaxies evolve and gradually grow larger and heavier by practising cannibalism on their own kind. In this picture, when two galaxies collide in space, the stars and nebulae in the smaller one will disperse and soon be taken over by the larger one, which

  8. Hubble's Menagerie of Galaxies

    Indian Academy of Sciences (India)


    typ es form an evolutionary sequence: does one type of galaxy evolve into another? 1. T he D iscovery of G alaxies. A stronom ers began to ponder these issues only after they discovered w hat w as m eant by a galaxy. It w as in the 1920s that astronom ers realised that w e live in a separate galaxy, and that other galaxies w ...


    Energy Technology Data Exchange (ETDEWEB)

    Roediger, Joel C.; Courteau, Stephane [Department of Physics, Engineering Physics and Astronomy, Queen' s University, Kingston, Ontario (Canada); Sanchez-Blazquez, Patricia [Deptartamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); McDonald, Michael, E-mail:, E-mail:, E-mail:, E-mail: [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology Cambridge, MA (United States)


    We present new stellar age profiles, derived from well-resolved optical and near-infrared images of 64 Virgo cluster disk galaxies, whose analysis poses a challenge for current disk galaxy formation models. Our ability to break the age-metallicity degeneracy and the significant size of our sample represent key improvements over complementary studies of field disk galaxies. Our results can be summarized as follows: first, and contrary to observations of disk galaxies in the field, these cluster galaxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically significant inversions ({sup U}-shapes{sup )} in the age profiles of all three disk galaxy types, reminiscent of predictions from high-resolution simulations of classically truncated Type II disks in the field. These features characterize the age profiles for only about a third ({<=}36%) of each disk galaxy type in our sample. An even smaller fraction of cluster disks ({approx}11% of the total sample) exhibit age profiles that decrease outward (i.e., negative age gradients). Instead, flat and/or positive age gradients prevail ({>=}50%) within our Type I, II, and III subsamples. These observations thus suggest that while stellar migrations and inside-out growth can play a significant role in the evolution of all disk galaxy types, other factors contributing to the evolution of galaxies can overwhelm the predicted signatures of these processes. We interpret our observations through a scenario whereby Virgo cluster disk galaxies formed initially like their brethren in the field but which, upon falling into the cluster, were transformed into their present state through external processes linked to the environment (e.g., ram-pressure stripping and harassment). Current disk galaxy formation models, which have largely

  10. Accretion by the Galaxy

    NARCIS (Netherlands)

    Binney, J.; Fraternali, F.; Reylé, C.; Robin, A.; Schultheis, M.

    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated

  11. Physical Conditions of the Interstellar Medium in Star-forming Galaxies at z1.5 (United States)

    Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki


    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at z approximately equal to 1.5 in the Subaru Deep Field. These galaxies are selected as [O II] lambda 3727 emitters at z approximately equal to 1.47 and 1.62 from narrow-band imaging. We detect H alpha emission line in 115 galaxies, [O III] lambda 5007 emission line in 45 galaxies, and H Beta, [N II] lambda 6584, and [S II]lambda lambda 6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at z approximately equal to 1.5. We find a tight correlation between H alpha and [O II], which suggests that [O II] can be a good star formation rate (SFR) indicator for galaxies at z approximately equal to 1.5. The line ratios of H alpha / [O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.

  12. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca


    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  13. A search for candidate radio supernova remnants in the nearby irregular starburst galaxies NGC 4214 and NGC 4395

    Directory of Open Access Journals (Sweden)

    Vukotić B.


    Full Text Available We present the results of a search for new candidate radio su­pernova remnants (SNRs in the nearby starburst irregular galaxies NGC 4214 and NGC 4395 using archived radio observations made with the Very Large Array (VLA at the wavelengths of 3.5 cm, 6 cm and 20 cm for NGC 4214 and 6 cm and 20 cm for NGC 4395. These observations were analyzed as part of our ongoing search for candidate radio SNRs in nearby galaxies: the goal of this search is to prepare a large sample of candidate radio SNRs for the purpose of a robust statistical study of the properties of these sources. Based on our analysis, we have confirmed the nonthermal nature of the discrete radio sources α and β in NGC 4214 and classify these sources as candidate radio SNRs based on their positional coincidences with HII regions in that galaxy. We have measured the flux densities of the two candidate radio SNRs at each wavelength and calculated corresponding spectral indices: we have also measured flux densities of two other discrete radio sources in these galaxies - ρ in NGC 4214 and #3 in NGC 4395 which we suspect to be additional candidate radio SNRs based on their positional coincidences with other HII regions in these galaxies. However, the radio data presently available for these sources can­not confirm such a classification and additional observations are needed. We have also calculated the radio luminosities Lradio at the wavelength of 20 cm for these two candidate radio SNRs as well as the corresponding values for the minimum total energy Emin required to power these radio sources via synchrotron emission and the corresponding magnetic field strength Bmin. We have compared our mean calculated values for these properties with the mean values for populations of candidate radio SNRs in other starburst galaxies: while the values for Lradio and Bmin are roughly comparable to the values seen in other starburst galaxies, the mean value for Emin is higher than the mean value of any

  14. Gas and Dust Properties in Dwarf Irregular Galaxies (United States)

    Jones, A. P.; Madden, S. C.; Colgan, S. W. J.; Geis, N.; Haas, M.; Maloney, P.; Nikola, T.; Poglitsch, A.


    We present a study of the 158 (micron)meter [C II] fine structure emission line from a sample of 11 low metallicity irregular galaxies using the NASA Kuiper Airborne Observatory (KAO). Our preliminary results demonstrate that the ratio of the 158 (micron)meter [C II] emission to the CO-12(1 yields 0) emission ranges from 6,000 to 46,000. These ratios are significantly enhanced relative to clouds within the Galaxy and to normal metallicity galaxies, which typically have values in the range 2,000 to 6,300. We also find that the [C II] emission in dwarf irregular galaxies can be up to 5% of the far-infrared (FIR) emission, a higher fraction of the FIR than in normal metallicity galaxies. We discuss these results for the dwarf irregular galaxies and compare them to those observed in normal metallicity galaxies. The enhanced 158 (micron)meter [C II] emission relative to CO-12(1 yields 0) emission can be understood in terms of the increased penetration depth of ultraviolet (UV) photons into the clouds in low metallicity environments.

  15. The new Basel high-latitude field star survey of the Galaxy. II. The thick disk component: density structure, luminosity function, and metallicity distribution (United States)

    Buser, Roland; Rong, Jianxiang; Karaali, Salih


    smooth physical entity described by the model. Still, pending the analysis of the second catalog of homogeneous RGU data in seven additional directions, the present data marginally favor an accretion model of the origin of the thick disk as a major episode in the merger history of formation of the larger Galaxy.

  16. Star formation history and chemical enrichment in the early Universe: clues from the rest-optical and rest-UV spectra of z~2-3 star-forming galaxies in the Keck Baryonic Structure Survey (United States)

    Strom, Allison L.


    Galaxies at the peak of cosmic star formation (z~2-3) exhibit significantly higher star formation rates and gas fractions at fixed stellar mass than nearby galaxies. These z~2-3 galaxies are also distinct in terms of their nebular spectra, reflecting important differences not only in the physical conditions of their interstellar medium (e.g., electron density and gas-phase metallicity), but also in the details of their massive stellar populations, especially their ionizing radiation fields. Jointly observing galaxies' HII regions, at rest-UV and rest-optical wavelengths, and massive stars, at rest-UV wavelengths, is central to constructing a framework for understanding the differences between z~2-3 and z~0 star-forming galaxies and for self-consistently explaining the trends observed in the high-redshift population. My thesis is based on data from the Keck Baryonic Structure Survey (KBSS), which uniquely combines observations of individual galaxies in these two bandpasses. In total, the near-infrared component of the KBSS includes spectra of >700 z~2-3 galaxies obtained with Keck/MOSFIRE. I will present these results along with a detailed analysis of the full rest-optical (3600-7000 Ang) nebular spectra of ~400 galaxies, showing that high-redshift galaxies exhibit uniformly high degrees of ionization and excitation with respect to most z~0 galaxies. Combined with observations of the same galaxies' rest-UV spectra (obtained with Keck/LRIS) and photoionization model predictions, these results suggest that the disparity arises from differences in the shape of the ionizing radiation field at fixed gas-phase oxygen abundance, most likely due to the effects of Fe-poor massive binary stars. My comprehensive spectroscopic study of an unprecedentedly large sample of z~2-3 galaxies offers compelling evidence that the distinct chemical abundance patterns observed in these galaxies are the result of systematic differences in their star formation histories.

  17. Companions of Bright Barred Shapley Ames Galaxies


    Garcia-Barreto, J. Antonio; Carrillo, Rene; Vera-Villamizar, Nelson


    Companion galaxy environment for a subset of 78 bright and nearby barred galaxies from the Shapley Ames Catalog is presented. Among spiral barred galaxies there are Seyfert galaxies, galaxies with circumnuclear structures, galaxies not associated with any large scale galaxy cloud structure, galaxies with peculiar disk morphology (crooked arms) and galaxies with normal disk morphology; the list includes all Hubble types. The companion galaxy list includes number of companion galaxies within 20...

  18. Enrichment of nutritional value of Phyllanthus emblica fruit juice using the probiotic bacterium, Lactobacillus paracasei HII01 mediated fermentation

    Directory of Open Access Journals (Sweden)

    Sartjin PEERAJAN


    Full Text Available The fermented herbal juices are capable of curing and preventing diseases and reducing the aging progress. The present study was performed to investigate the fermentation of Phyllanthus emblica fruit by Lactobacillus paracasei HII01 with respect to carbon sources, polyphenols, and antioxidant properties. The physical changes, for instance, color, odor, taste, turbidity and gas formation, throughout the fermentation process was manually monitored. The fermented product was rich in polyphenolic content. The acid content and pH of the product were under the norms of Thai community product standards. Antioxidant properties of the fermented product were proved using ABTS, and FRAP assays. Chelation based study suggested that fermented P. emblica fruit juices are healthy enough to stabilize the oxidized form of the metal ion. The optimum fermentation period was 15 days. All the results supported that studied carbon sources did not interfere with the quality of the product. This report is the prelude study on the use of probiotic starter culture for the production of P. emblica fruit based lactic acid bacteria fermented beverages (LAFB enriched with bioactive compounds. Further research on the impact of different carbon sources and upstream processes on the quality of LAFB is currently in progress.

  19. On the morphological dichotomies observed in the powerful radio galaxies (United States)

    Miraghaei, H.; Best, P. N.


    We study environment and host galaxy properties of powerful radio galaxies with different radio morphologies from compact sources to very extended double lobed radio galaxies and with different optical spectra classified as high excitation (HERG; quasar-mode) and low excitation (LERG; jet-mode) radio galaxies. We use a complete sample of morphologically classified radio sources from [1] and perform three different analyses: i) we compare compact radio sources with the extended sources from the same class of excitation. ii) we compare HERGs with the LERGs using a combined sample of compact and extended sources. iii) we investigate the origin of different morphologies observed in the very extended powerful radio galaxies, historically classified as Fanaroff-Riley (FR) radio galaxies of type I and type II by comparing a sample of FRIs with the FRIIs from the same excitation class. We discuss the results and what causes the differences in each comparison. The role of host galaxy and the central super massive black hole, and the galaxy interactions are all investigated.

  20. Revisiting The First Galaxies: The Epoch of Population III Stars (United States)

    Muratov, Alexander; Gnedin, O. Y.; Gnedin, N. Y.; Zemp, M. K.


    We study the formation of the first galaxies using new hydrodynamic cosmological simulations with the ART code. Our simulations feature a recently developed model for dust-based formation of molecular gas. Here, we develop and implement a new recipe for the formation of metal-free Pop III stars. We reach a spatial resolution of 2 pc at z=10 and resolve star-forming galaxies with the masses above 10^6 solar masses. We find the epoch during which Pop III stars dominate the energy and metal budget of the universe to be short-lived. While these stars seed their host galaxies with metals, they cannot drive significant outflows to enrich the IGM in our simulations. Feedback from pair instability supernovae causes Pop III star formation to self-terminate within their host galaxies, but is not strong enough to suppress star formation in external galaxies. Within any individual galaxy, Pop II stars overtake Pop III stars within ~50-150 Myr. A threshold of M = 3 * 10^6 solar masses separates galaxies that lose a significant fraction of their baryons due to Pop III feedback from those that do not. Understanding the nature of the transition between Pop III and Pop II star formation is of key importance for studying the dawn of galaxy formation.

  1. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon


    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  2. Classic Galaxy with Glamour (United States)


    This color composite image of nearby NGC 300 combines the visible-light pictures from Carnegie Institution of Washington's 100-inch telescope at Las Campanas Observatory (colored red and yellow), with ultraviolet views from NASA's Galaxy Evolution Explorer. Galaxy Evolution Explorer detectors image far ultraviolet light (colored blue). This composite image traces star formation in progress. Young hot blue stars dominate the outer spiral arms of the galaxy, while the older stars congregate in the nuclear regions which appear yellow-green. Gases heated by hot young stars and shocks due to winds from massive stars and supernova explosions appear in pink, as revealed by the visible-light image of the galaxy. Located nearly 7 million light years away, NGC 300 is a member of a nearby group of galaxies known as the Sculptor Group. It is a spiral galaxy like our own Milky Way.

  3. Galaxy evolution. Galactic paleontology. (United States)

    Tolstoy, Eline


    Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.


    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Foerster Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Shapiro Griffin, Kristen [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, Padova I-35122 (Italy); Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie [Institute of Astronomy, Department of Physics, Eidgenoessische Technische Hochschule, ETH Zuerich CH-8093 (Switzerland); Bouche, Nicolas [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Burkert, Andreas [Universitaets-Sternwarte Ludwig-Maximilians-Universitaet (USM), Scheinerstr. 1, Muenchen D-81679 (Germany); Cresci, Giovanni [Istituto Nazionale di Astrofisica Osservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hicks, Erin K. S. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Naab, Thorsten, E-mail: [Max-Planck Institute for Astrophysics, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others


    We analyze the spectra, spatial distributions, and kinematics of H{alpha}, [N II], and [S II] emission in a sample of 38, z {approx} 2.2 UV/optically selected star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, 34 of which were observed in the adaptive optics mode of SINFONI and 30 of those contain data presented for the first time here. This is supplemented by kinematic data from 43 z {approx} 1-2.5 galaxies from the literature. None of these 81 galaxies is an obvious major merger. We find that the kinematic classification of high-z SFGs as ''dispersion dominated'' or ''rotation dominated'' correlates most strongly with their intrinsic sizes. Smaller galaxies are more likely ''dispersion-dominated'' for two main reasons: (1) the rotation velocity scales linearly with galaxy size but intrinsic velocity dispersion does not depend on size or may even increase in smaller galaxies, and as such, their ratio is systematically lower for smaller galaxies, and (2) beam smearing strongly decreases large-scale velocity gradients and increases observed dispersion much more for galaxies with sizes at or below the resolution. Dispersion-dominated SFGs may thus have intrinsic properties similar to ''rotation-dominated'' SFGs, but are primarily more compact, lower mass, less metal enriched, and may have higher gas fractions, plausibly because they represent an earlier evolutionary state.

  5. The effect of environment on the structure of disc galaxies (United States)

    Pranger, Florian; Trujillo, Ignacio; Kelvin, Lee S.; Cebrián, María


    We study the influence of environment on the structure of disc galaxies, using imfit to measure the g- and r-band structural parameters of the surface-brightness profiles for ˜700 low-redshift (z < 0.063) cluster and field disc galaxies with intermediate stellar mass (0.8 × 1010 M⊙ < M⋆ < 4 × 1010 M⊙) from the Sloan Digital Sky Survey, DR7. Based on this measurement, we assign each galaxy to a surface-brightness profile type (Type I ≡ single-exponential, Type II ≡ truncated, Type III ≡ antitruncated). In addition, we measure (g - r) rest frame colour for disc regions separated by the break radius. Cluster disc galaxies (at the same stellar mass) have redder (g - r) colour by ˜0.2 mag than field galaxies. This reddening is slightly more pronounced outside the break radius. Cluster disc galaxies also show larger global Sérsic-indices and are more compact than field discs, both by ˜15 per cent. This change is connected to a flattening of the (outer) surface-brightness profile of Type I and - more significantly - of Type III galaxies by ˜8 per cent and ˜16 per cent, respectively, in the cluster environment compared to the field. We find fractions of Type I, Type II and Type III of (6 ± 2) per cent, (66 ± 4) per cent and (29 ± 4) per cent in the field and (15_{-4}^{+7}) per cent, (56 ± 7) per cent and (29 ± 7) per cent in the cluster environment, respectively. We suggest that the larger abundance of Type I galaxies in clusters (matched by a corresponding decrease in the Type II fraction) could be the signature of a transition between Type II and Type I galaxies produced/enhanced by environment-driven mechanisms.

  6. The performance of customised APACHE II and SAPS II in predicting mortality of mixed critically ill patients in a Thai medical intensive care unit. (United States)

    Khwannimit, B; Bhurayanontachai, R


    The aim of this study was to evaluate and compare the performance of customised Acute Physiology and Chronic Health Evaluation HII (APACHE II) and Simplified Acute Physiology Score HII (SAPS II) in predicting hospital mortality of mixed critically ill Thai patients in a medical intensive care unit. A prospective cohort study was conducted over a four-year period. The subjects were randomly divided into calibration and validation groups. Logistic regression analysis was used for customisation. The performance of the scores was evaluated by the discrimination, calibration and overall fit in the overall group and across subgroups in the validation group. Two thousand and forty consecutive intensive care unit admissions during the study period were split into two groups. Both customised models showed excellent discrimination. The area under the receiver operating characteristic curve of the customised APACHE II was greater than the customised SAPS II (0.925 and 0.892, P APACHE II in overall populations and various subgroups but insufficient calibration for the customised SAPS II. The customised SAPS II showed good calibration in only the younger, postoperative and sepsis patients subgroups. The overall performance of the customised APACHE II was better than the customised SAPS II (Brier score 0.089 and 0.109, respectively). Our results indicate that the customised APACHE II shows better performance than the customised SAPS II in predicting hospital mortality and could be used to predict mortality and quality assessment in our unit or other intensive care units with a similar case mix.

  7. Lopsided spiral galaxies

    Indian Academy of Sciences (India)

    Lopsided spiral galaxies · Outline of the talk: · Collaborators · Background : · Lopsided distribution highlighted first: Baldwin, Lynden-Bell, & Sancisi (1980) · Lopsidedness also seen in an edge-on galaxy : NGC 891 · Slide 7 · Origin of m=1 disk distribution? Early Theoretical models: · Disk response to a lopsided halo ...

  8. Galaxies in Fligh t

    Indian Academy of Sciences (India)

    In the constellation of Corona Borealis, for example, there is a cluster containing some 400 galaxies. Our Milky Way is a member of a small cluster which embraces among others, the Andromeda Nebula and the two galaxies known as the Magellanic Clouds, which are of a relatively rare type that has no well- defined shape.



    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  10. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel


    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  11. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC


    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  12. The galaxy ancestor problem (United States)

    Disney, M. J.; Lang, R. H.


    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  13. Star formation in blue compact dwarf galaxies: Mkn 104 and I Zw 97 (United States)

    Ramya, S.; Sahu, D. K.; Prabhu, T. P.


    Two blue compact dwarf galaxies, Mkn 104 and I Zw 97, are studied photometrically and spectroscopically. Mkn 104 is found to contain three distinct bright star-forming regions, whereas I Zw 97 is found to contain three bright and two faint star-forming regions. Medium-resolution spectra of three bright HII regions in the two galaxies were obtained. Estimation of oxygen abundance in these regions yields a value equal to log(O/H) + 12 = 8.5 (Z = Zsolar/2.7). Star-formation rates in these star-forming regions are estimated. The highest star-formation rate for I Zw 97 is found to be 0.04Msolaryr-1, and for Mkn 104 it is 0.02Msolaryr-1. I Zw 97 is realized to be a cometary blue compact dwarf galaxy undergoing a strong burst of star formation. A U - B versus V - I colour-colour mixed population model is created using the Starburst99 evolutionary model curves. The spectrum of the bright star-forming knot of I Zw 97 does not show any strong signature of an underlying relatively older stellar population, but the U - B versus V - I two-colour diagram indicates the strong contribution of a ~500Myr population. A spectrum of the central region of Mkn 104 gives a hint about the underlying old stellar population. The age of this underlying population using the U - B versus V - I two-colour diagram is estimated to be ~ 500Myr. Surface-brightness profiles and colour profiles for these galaxies are presented. The surface-brightness profile of both the galaxies can be represented well by a two-component Sérsic profile consisting of a near-exponential distribution and a Gaussian nuclear starburst. To conclude, neither of these galaxies is a young system; instead they are undergoing episodic star formation superposed on a faint older component. I Zw 97 is a cometary blue compact dwarf galaxy where the underlying low-surface-brightness (LSB) galaxy is a dwarf irregular observed during a major stochastic enhancement of its otherwise moderate star-formation activity, a phenomenon widely

  14. Revisiting The First Galaxies: The epoch of Population III stars

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC


    We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars in 20-200 Myr, depending on galaxy mass.

  15. Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones. (United States)

    Puller, Christian; Haverkamp, Silke; Neitz, Maureen; Neitz, Jay


    The functional roles and synaptic features of horizontal cells in the mammalian retina are still controversial. Evidence exists for feedback signaling from horizontal cells to cones and feed-forward signaling from horizontal cells to bipolar cells, but the details of the latter remain elusive. Here, immunohistochemistry and confocal microscopy were used to analyze the expression patterns of the SNARE protein syntaxin-4, the GABA receptor subunits α1 and ρ, and the cation-chloride cotransporters NKCC and KCC2 in the outer plexiform layer of primate retina. In macaque retina, as observed previously in other species, syntaxin-4 was expressed on dendrites and axon terminals of horizontal cells at cone pedicles and rod spherules. At cones, syntaxin-4 appeared densely clustered in two bands, at horizontal cell dendritic tips and at the level of desmosome-like junctions. Interestingly, in the lower band where horizontal cells may synapse directly onto bipolar cells, syntaxin-4 was highly enriched beneath short-wavelength sensitive (S) cones and colocalized with calbindin, a marker for HII horizontal cells. The enrichment at S-cones was not observed in either mouse or ground squirrel. Furthermore, high amounts of both GABA receptor and cation-chloride cotransporter subunits were found beneath primate S-cones. Finally, while syntaxin-4 was expressed by both HI and HII horizontal cell types, the intense clustering and colocalization with calbindin at S-cones indicated an enhanced expression in HII cells. Taken together, GABA receptors beneath cone pedicles, chloride transporters, and syntaxin-4 are putative constituents of a synaptic set of proteins which would be required for a GABA-mediated feed-forward pathway via horizontal cells carrying signals directly from cones to bipolar cells.

  16. Probing the intra-group medium of a z = 0.28 galaxy group (United States)

    Bielby, R.; Crighton, N. H. M.; Fumagalli, M.; Morris, S. L.; Stott, J. P.; Tejos, N.; Cantalupo, S.


    We present new MUSE observations of a galaxy group probed by a background quasar. The quasar sightline passes between multiple z = 0.28 galaxies, whilst showing at the same redshift low-ionized metal line species, including Ca II, Mg I, Mg II and Fe II. Based on the galaxy redshifts measured from the MUSE data, we estimate the galaxies to be part of a small galaxy group with a halo mass of ≈6 × 1012 M⊙. We use the MUSE data to reveal the two-dimensional dynamical properties of the gas and stars in the group galaxies, and relate these to the absorber kinematics. With these data, we consider a number of scenarios for the nature of the gas probed by the sightline absorbers: a corotating gas halo associated with a single galaxy within the group; outflowing material from a single group member powered by recent star-formation; and cool dense gas associated with an intra-group medium. We find that the dynamics, galaxy impact parameters, star formation rates and the absorber strength suggest that the cool gas cannot be clearly associated with any single galaxy within the group. Instead, we find that the observations are consistent with a superposition of cool gas clouds originating with the observed galaxies as they fall into the group potential, and are now likely in the process of forming the intra-group medium.

  17. An Empirical Ultraviolet Iron Spectrum Template Applicable to Active Galaxies

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Wilkes, B. J.


    Iron emission is often a severe contaminant in optical-ultraviolet spectra of active galaxies. Its presence complicates emission line studies. A viable solution, already successfully applied at optical wavelengths, is to use an empirical iron emission template. We have generated FeII and Fe......III templates for ultraviolet active galaxy spectra based on HST archival 1100 - 3100 A spectra of IZw1. Their application allows fitting and subtraction of the iron emission in active galaxy spectra. This work has shown that in particular CIII] lambda 1909 can be heavily contaminated by other line emission...

  18. The gravitational dynamics of galaxies

    Indian Academy of Sciences (India)

    one could arrive at the number of galaxies of this size in the observable Universe – again around 1011. A few galaxies are bigger and brighter than our own, but many more are smaller, going down to dwarf galaxies which could be ten thousand times less luminous. Nevertheless, galaxies do form a distinct and unique unit ...

  19. The Evolution of Neutral Hydrogen in Galaxy Groups (United States)

    Sanderson, Kelly Nicole; Wilcots, Eric; Hess, Kelley M.


    The Illustris suite of simulations is held as the standard of large scale gravitational and hydro-dynamical simulations and allows us to make a better comparisons with physical processes at the gaseous level by providing a higher mass resolution than previously available through the Millenium-II simulation. We present a comparison of an analysis on the HI content and distribution of galaxies in groups as a function of their group dark matter halo to the results of a large scale cosmological simulation. From the simulation we select optical group members above a Mr=-18 r-band magnitude and HI group members with HI above 109.5M⊙. We find that 74% of the HI detected galaxies are in groups or clusters and 84% of the optically detected galaxies are in groups or clusters. In the Hess & Wilcots (2013) paper it was found that as group membership, or group dark matter halo mass, increased, the fraction of galaxies detected in HI decreased and the spatial distribution of galaxies in these groups increased. We show the spatial distributions of galaxies, HI and optically detected, in order to reproduce these results. We find that Illustris qualitatively reproduces these trends, however, the simulation seems to be overestimating the mass of HI gas in all of its galaxies as well as the number of galaxies above the 109.5M⊙ limit.


    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W., E-mail:, E-mail:, E-mail:, E-mail: [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); and others


    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  1. Mysterious Blob Galaxies Revealed (United States)


    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3 This image composite shows a giant galactic blob (red, figure 2) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow, figure 3). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images like the one shown in figure 2, reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together (figure 3). Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile.

  2. Dwarf galaxies : Important clues to galaxy formation

    NARCIS (Netherlands)

    Tolstoy, E


    The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous

  3. ACS Nearby Galaxy Survey (United States)

    Dalcanton, Julianne


    Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST's lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to 3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to 1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR 10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for 100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

  4. Accretion by the Galaxy

    Directory of Open Access Journals (Sweden)

    Binney J.


    Full Text Available Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of Hi increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic Hi. The values of the model’s parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies “red and dead.”

  5. Updated Nearby Galaxy Catalog


    Karachentsev, Igor D.; Makarov, Dmitry I.; Kaisina, Elena I.


    We present an all-sky catalog of 869 nearby galaxies, having individual distance estimates within 11 Mpc or corrected radial velocities V_{LG} < 600 km/s. The catalog is a renewed and expanded version of the "Catalog of Neighboring Galaxies" by Karachentsev et al. (2004). It collects data on the following observables for the galaxies: angular diameters, apparent magnitudes in FUV-, B-, and K_s- bands, H_alpha and HI fluxes, morphological types, HI-line widths, radial velocities and distance e...

  6. Growing Galaxies Gently (United States)


    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  7. A Catalog of Edge-on Disk Galaxies: From Galaxies with a Bulge to Superthin Galaxies


    Kautsch, S. J.; Grebel, E. K.; Barazza, F. D.; Gallagher, J. S.


    The formation and evolution of disk-dominated galaxies is difficult to explain, yet these objects exist. We therefore embarked on a study aimed at a better understanding of these enigmatic objects. We used data from the SDSS DR1 in order to identify edge-on galaxies with disks in a uniform, reproducible, automated fashion. We identified 3169 edge-on disk galaxies, which we subdivided into disk galaxies with bulge, intermediate types, and simple disk galaxies without any obvious bulge componen...

  8. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459. II. What is Missed at the Normal Resolution of the Hubble Space Telescope? (United States)

    Rigby, J. R.; Johnson, T. L.; Sharon, K.; Whitaker, K.; Gladders, M. D.; Florian, M.; Lotz, J.; Bayliss, M.; Wuyts, E.


    For lensed galaxy SGAS J111020.0+645950.8 at redshift z = 2.481, which is magnified by a factor of 28 ± 8, we analyze the morphology of star formation, as traced by rest-frame ultraviolet emission, in both the highly magnified source plane and simulations of how this galaxy would appear without lensing magnification. Were this galaxy not lensed, but rather drawn from a Hubble Space Telescope deep field, we would conclude that almost all its star formation arises from an exponential disk (Sérsic index of 1.0 ± 0.4) with an effective radius of {r}e=2.7+/- 0.3 {kpc} measured from two-dimensional fitting to F606W using Galfit, and {r}e=1.9+/- 0.1 {kpc} measured by fitting a radial profile to F606W elliptical isophotes. At the normal spatial resolution of the deep fields, there is no sign of clumpy star formation within SGAS J111020.0+645950.8. However, the enhanced spatial resolution enabled by gravitational lensing tells a very different story; much of the star formation arises in two dozen clumps with sizes of r = 30-50 pc spread across the 7 kpc length of the galaxy. The color and spatial distribution of the diffuse component suggests that still-smaller clumps are unresolved. Despite this clumpy, messy morphology, the radial profile is still well-characterized by an exponential profile. In this lensed galaxy, stars are forming in complexes with sizes well below 100 pc such sizes are wholly unexplored by surveys of galaxy evolution at 1< z< 3.

  9. Which Galaxies Are the Most Habitable? (United States)

    Kohler, Susanna


    Habitable zones are a hot topic in exoplanet studies: where, around a given star, could a planet exist that supports life? But if you scale this up, you get a much less common question: which type of galaxy is most likely to host complex life in the universe? A team of researchers from the UK believes it has the answer.Criteria for HabitabilityLed by Pratika Dayal of the University of Durham, the authors of this study set out to estimate the habitability of a large population of galaxies. The first step in this process is to determine what elements contribute to a galaxys habitability. The authors note three primary factors:Total number of starsMore stars means more planets!Metallicity of the starsPlanets are more likely to form in stellar vicinities with higher metallicities, since planet formation requires elements heavier than iron.Likelihood of Type II supernovae nearbyPlanets that are located out of range of supernovae have a higher probability of being habitable, since a major dose of cosmic radiation is likely to cause mass extinctions or delay evolution of complex life. Galaxies supernova rates can be estimated from their star formation rates (the two are connected via the initial mass function).Hospitable Cosmic GiantsLower panel: the number of Earth-like habitable planets (given by the color bar, which shows the log ratio relative to the Milky Way) increases in galaxies with larger stellar mass and lower star formation rates. Upper panel: the larger stellar-mass galaxies tend to be elliptical (blue line) rather than spiral (red line). Click for larger view. [Dayal et al. 2015]Interestingly, these three conditions have previously been shown to be linked via something termed the fundamental metallicity relation, which relates the total stellar masses, metallicities, and star formation rates of galaxies. By using this relation, the authors were able to create predictions for the number of habitable planets in more than 100,000 galaxies in the local universe


    Energy Technology Data Exchange (ETDEWEB)

    Cigan, Phil; Young, Lisa [Physics Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Cormier, Diane [Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Lebouteiller, Vianney; Madden, Suzanne [Laboratoire AIM, CEA/DSM—CNRS—Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Hunter, Deidre [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Brinks, Elias [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Elmegreen, Bruce [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Hts., NY 10598 (United States); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Heesen, Volker, E-mail: [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Collaboration: LITTLE THINGS Team


    We present far-infrared (FIR) spectral line observations of five galaxies from the Little Things sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [C ii] 158 μm, [O i] 63 μm, [O iii] 88 μm, and [N ii] 122 μm emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the FIR properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate photodissociation regions (PDRs) in some of the regions we observed. Our systems have widespread [C ii] emission that is bright relative to continuum, averaging near 0.5% of the total infrared (TIR) budget—higher than in solar-metallicity galaxies of other types. [N ii] is weak, suggesting that the [C ii] emission in our galaxies comes mostly from PDRs instead of the diffuse ionized interstellar medium (ISM). These systems exhibit efficient cooling at low dust temperatures, as shown by ([O i]+[C ii])/TIR in relation to 60 μm/100 μm, and low [O i]/[C ii] ratios which indicate that [C ii] is the dominant coolant of the ISM. We observe [O iii]/[C ii] ratios in our galaxies that are lower than those published for other dwarfs, but similar to levels noted in spirals.

  11. 'Nomadic' nuclei of galaxies (United States)

    Silchenko, O. K.; Lipunov, V. M.


    In this paper the authors discuss observational and theoretical arguments in favour of hypothesis on "nomad life" of active nuclei inside and outside galaxies as well as its consequences. It may be the anisotropic collapse of a supermassive star, or the disruption of a supermassive binary system after the collapse of one companion that would give birth to such nuclei. The authors predict the existence of veritable quasi-stellar active objects without any ghost galaxies.

  12. Dark matter in galaxies


    Zasov, A. V.; Saburova, A. S.; Khoperskov, A. V.; Khoperskov, S. A.


    Dark matter in galaxies, its abundance, and its distribution remain a subject of long-standing discussion, especially in view of the fact that neither dark matter particles nor dark matter bodies have yet been found. Experts' opinions range from a very large number of completely dark galaxies exist to nonbaryonic dark matter does not exist at all in any significant amounts. We discuss astronomical evidence for the existence of dark matter and its connection with visible matter and examine att...

  13. Galaxies at High Redshift (United States)

    Bauer, F. E.


    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  14. A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. II. Quantifying morphological k-correction in the COSMOS field at 1 < z < 2: Ks band vs. I band (United States)

    Huertas-Company, M.; Tasca, L.; Rouan, D.; Pelat, D.; Kneib, J. P.; Le Fèvre, O.; Capak, P.; Kartaltepe, J.; Koekemoer, A.; McCracken, H. J.; Salvato, M.; Sanders, D. B.; Willott, C.


    Context: Morphology is the most accessible tracer of galaxies physical structure, but its interpretation in the framework of galaxy evolution still remains problematic. Its quantification at high redshift requires deep high-angular resolution imaging, which is why space data (HST) are usually employed. At z > 1, the HST visible cameras however probe the UV flux, which is dominated by the emission of young stars, which could bias the estimated morphologies towards late-type systems. Aims: In this paper we quantify the effects of this morphological k-correction at 1 Methods: In Paper I we presented a new non-parametric method of quantifying morphologies of galaxies on seeing-limited images based on support vector machines. Here we use this method to classify ~50 000 Ks selected galaxies in the COSMOS area observed with WIRCam at CFHT. We use a 10-dimensional volume, including 5 morphological parameters, and other characteristics of galaxies such as luminosity and redshift. The obtained classification is used to investigate the redshift distributions and number counts per morphological type up to z ~ 2 and to compare them to the results obtained with HST/ACS in the I-band on the same objects. We associate to every galaxy with Ks find less early-type galaxies than the Ks-band one by a factor ~1.5, which might be a consequence of morphological k-correction effects. Conclusions: We argue therefore that studies based on I-band HST/ACS classifications at z > 1 could be underestimating the elliptical population. Using our method in a Ks ≤ 21.5 magnitude-limited sample, we observe that the fraction of the early-type population is (21.9% ± 8%) at z ~ 1.5-2 and (32.0% ± 5%) at the present time. We will discuss the evolution of the fraction of galaxies in types from volume-limited samples in a forthcoming paper. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des

  15. Dwarf elliptical galaxies (United States)

    Ferguson, Henry C.; Binggeli, Bruno


    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.


    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Sayers, Jack; Bridge, Carrie [Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, LE1 7RH Leicester (United Kingdom); Petty, Sara; Lake, Sean [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Bussmann, Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS78, Cambridge, MA 02138 (United States); Comerford, Julia M.; Evans, Neal J. II [Department of Astronomy, University of Texas, Austin, TX 78731 (United States); Lonsdale, Carol [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rho, Jeonghee [SETI Institute, 189 BERNARDO Avenue, Mountain View, CA 94043 (United States); Stanford, S. Adam, E-mail: [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others


    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  17. Matching Supernovae to Galaxies (United States)

    Kohler, Susanna


    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  18. A Study of Galaxies and Quasars in the Background of the Andromeda Galaxy (United States)

    Dhara, Atirath; McConnell, Kaela; Guhathakurta, Puragra; Roy, Namrata; Waite, Jurij


    The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo) survey is based on wide-field ground-based optical images (KPNO 4-m/Mosaic, CFHT 3.6-m/MegaCam imager, and Subaru 8-m/Suprime-Cam), deep Hubble Space Telescope ultraviolet/optical/near infrared images (ACS and WFC3), and medium resolution spectra (Keck II 10-m/DEIMOS). The SPLASH survey data set contains two main categories of (non-M31) contaminants (SPLASH trash, if you will): foreground Milky Way stars and compact background galaxies/quasars. In this poster, we present the discovery and characterization of galaxies and quasars behind M31. Such objects were identified based on the presence of redshifted emission lines and other galaxy/quasar spectral features (e.g., Ca H+K absorption and IGM absorption). The redshift of each galaxy was measured by cross-correlating its spectrum against an emission line galaxy spectral template. The cross-correlation results (spectrum and best-fit template) were visually inspected to identify cases of incorrect matching of emission lines. Many of these incorrect redshift estimates were corrected by using the second or third highest cross-correlation peak. Quasar redshifts were determined based on cross-correlation against a quasar spectral template. Most of the galaxies in our sample are star forming galaxies with strong emission lines. We analyze their emission line flux ratios in a BPT diagram to learn more about the ionization source and metallicity. Finally, the properties of these compact galaxies behind M31 are compared to those of galaxies selected in a more standard way in the DEEP2 redshift survey to explore the effects of morphological pre-selection (compact vs. extended) on the properties of the resulting galaxy sample.This research was supported by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.

  19. H1 in RSA galaxies (United States)

    Richter, OTTO-G.


    The original Revised Shapley-Ames (RSA) galaxy sample of almost 1300 galaxies has been augmented with further bright galaxies from the RSA appendix as well as newer galaxy catalogs. A complete and homogeneous, strictly magnitude-limited all-sky sample of 2345 galaxies brighter than 13.4 in apparent blue magnitude was formed. New 21 cm H1 line observations for more than 600 RSA galaxies have been combined with all previously available H1 data from the literature. This new extentise data act allows detailed tests of widely accepted 'standard' reduction and analysis techniques.

  20. Galaxy and Mass Assembly (GAMA): active galactic nuclei in pairs of galaxies (United States)

    Gordon, Yjan A.; Owers, Matt S.; Pimbblet, Kevin A.; Croom, Scott M.; Alpaslan, Mehmet; Baldry, Ivan K.; Brough, Sarah; Brown, Michael J. I.; Cluver, Michelle E.; Conselice, Christopher J.; Davies, Luke J. M.; Holwerda, Benne W.; Hopkins, Andrew M.; Gunawardhana, Madusha L. P.; Loveday, Jonathan; Taylor, Edward N.; Wang, Lingyu


    There exist conflicting observations on whether or not the environment of broad- and narrow-line active galatic nuclei (AGN) differ and this consequently questions the validity of the AGN unification model. The high spectroscopic completeness of the Galaxy and Mass Assembly (GAMA) survey makes it ideal for a comprehensive analysis of the close environment of galaxies. To exploit this, and conduct a comparative analysis of the environment of broad- and narrow-line AGN within GAMA, we use a double-Gaussian emission line fitting method to model the more complex line profiles associated with broad-line AGN. We select 209 type 1 (I.e. unobscured), 464 type 1.5-1.9 (partially obscured), and 281 type 2 (obscured) AGN within the GAMA II data base. Comparing the fractions of these with neighbouring galaxies out to a pair separation of 350 kpc h-1 and Δz except at separations less than 20 kpc h-1 where our observations suggest an excess of type 2 AGN in close pairs. We analyse the properties of the galaxies neighbouring our AGN and find no significant differences in colour or the star formation activity of these galaxies. Further to this, we find that Σ5 is also consistent between broad- and narrow-line AGN. We conclude that the observations presented here are consistent with AGN unification.

  1. Herschel Extreme Lensing Line Observations: [CII] Variations in Galaxies at Redshifts z=1-3* (United States)

    Malhotra, Sangeeta; Rhoads, James E.; Finkelstein, K.; Yang, Huan; Carilli, Chris; Combes, Francoise; Dassas, Karine; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; hide


    We observed the [C II] line in 15 lensed galaxies at redshifts 1 less than z less than 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3sigma or better. High magnifications enable even modestly luminous galaxies to be detected in [C II] with Herschel. The [C II] luminosity in this sample ranges from 8 × 10(exp 7) solar luminosity to 3.7 × 10(exp 9) solar luminosity (after correcting for magnification), confirming that [C II] is a strong tracer of the ISM at high redshifts. The ratio of the [C II] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C II]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C II]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C II]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C II]/FIR correlates most strongly with dust temperature. The [C II] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  2. Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-type Galaxies from the SMAKCED Project. II. The Survey and a Systematic Analysis of Kinematic Anomalies and Asymmetries

    NARCIS (Netherlands)

    Toloba, E.; Guhathakurta, P.; Peletier, R. F.; Boselli, A.; Lisker, T.; Falcón-Barroso, J.; Simon, J. D.; van de Ven, G.; Paudel, S.; Emsellem, E.; Janz, J.; den Brok, M.; Gorgas, J.; Hensler, G.; Laurikainen, E.; Niemi, S.-M.; Ryś, A.; Salo, H.


    We present spatially resolved kinematics and global stellar populations and mass-to-light ratios for a sample of 39 dwarf early-type (dE) galaxies in the Virgo cluster studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. This sample is representative of the

  3. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. II. Star formation rates and metallicities at z < 1 (United States)

    Japelj, J.; Vergani, S. D.; Salvaterra, R.; D'Avanzo, P.; Mannucci, F.; Fernandez-Soto, A.; Boissier, S.; Hunt, L. K.; Atek, H.; Rodríguez-Muñoz, L.; Scodeggio, M.; Cristiani, S.; Le Floc'h, E.; Flores, H.; Gallego, J.; Ghirlanda, G.; Gomboc, A.; Hammer, F.; Perley, D. A.; Pescalli, A.; Petitjean, P.; Puech, M.; Rafelski, M.; Tagliaferri, G.


    Aims: Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (zextinction, star formation rate (SFR), and nebular metallicity (Z) of the hosts and supplemented the data set with previously measured stellar masses M⋆. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M⋆ relations) are compared to samples of field star-forming galaxies. Results: We find that LGRB hosts at zmass-metallicity relation at similar mean redshift and stellar masses. The cutoff against high metallicities (and high masses) can explain the low SFR values of LGRB hosts. We find a hint of an increased incidence of starburst galaxies in the Swift/BAT6 zmasses. Nevertheless, the limits on the completeness and metallicity availability of current surveys, coupled with the limited number of LGRB host galaxies, prevents us from investigating more quantitatively whether the starburst incidence is such as expected after taking into account the high-metallicity aversion of LGRB host galaxies. Based on observations at ESO, Program IDs: 077.D-0425, 177.A-0591, 080.D-0526, 081.A-0856, 082.D-0276, 083.D-0069, 084.A-0303, 084.A-0260, 086.A-0644, 086.B-0954, 089.A-0868, 090.A-0760, 095.D-0560.The reduced spectra are available in the ESO archive as Phase 3 data products and in the GTC archive.

  4. Discovery of a group of star-forming dwarf galaxies in A1367

    NARCIS (Netherlands)

    Sakai, S; Kennicutt, RC; van der Hulst, JM; Moss, C


    We describe the properties of a remarkable group of actively star-forming dwarf galaxies and H II galaxies in the A1367 cluster, which were discovered in a large-scale Halpha imaging survey of the cluster. Approximately 30 Halpha-emitting knots were identified in a region approximately 150 kpc

  5. Cold gas & mergers: fundamental difference in HI properties of different types of radio galaxies?

    NARCIS (Netherlands)

    Emonts, Bjorn; Morganti, Raffaella; Oosterloo, Tom; van Gorkom, Jacqueline


    We present results of a study of large-scale neutral hydrogen (HI) gas in nearby radio galaxies. We find that the early-type host galaxies of different types of radio sources (compact, FR-I and FR-II) appear to contain fundamentally different large-scale HI properties: enormous regular rotating

  6. The FMOS-COSMOS survey of star-forming galaxies at z ∼ 1.6. II. The mass-metallicity relation and the dependence on star formation rate and dust extinction

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Sanders, D. B.; Chu, J.; Hasinger, G. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 (Japan); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan); Kewley, L. J. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Renzini, A. [INAF Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Rodighiero, G. [Dipartimento di Astronomia, Università di Padova, vicolo dell Osservatorio 3, I-35122 Padova (Italy); Nagao, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Lilly, S. J.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Maier, C. [Vienna University, Department of Astrophysics, Tuerkenschanzstrasse 17, 1180 Vienna (Austria); Geller, M. J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Capak, P. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Ilbert, O. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 13388, Marseille (France); Kajisawa, M., E-mail: [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Collaboration: COSMOS Team; and others


    We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate (SFR), and dust content of star-forming galaxies at z ∼ 1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity (MZ) relation at z ∼ 1.6 is steeper than the relation observed in the local universe. The steeper MZ relation at z ∼ 1.6 is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at z ∼ 1.6. The most massive galaxies at z ∼ 1.6 (∼10{sup 11} M {sub ☉}) are enriched to the level observed in massive galaxies in the local universe. The MZ relation we measure at z ∼ 1.6 supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and SFR for galaxies at a fixed stellar mass at z ∼ 1.6, which is similar to trends observed in the local universe. We do not find a relation between stellar mass, metallicity, and SFR that is independent of redshift; rather, our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity, and dust extinction, and find that at a fixed stellar mass, dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs, and dust extinctions, we conclude that stellar mass is most closely related to dust extinction.

  7. Seeing Baby Dwarf Galaxies (United States)


    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way. The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light. The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light. Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The Leo Ring visible image (left

  8. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš


    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  9. Star formation in low density HI gas around the elliptical galaxy NGC 2865 (United States)

    Urrutia-Viscarra, F.; Torres-Flores, S.; Mendes de Oliveira, C.; Carrasco, E. R.; de Mello, D.; Arnaboldi, M.


    Context. Interacting galaxies surrounded by Hi tidal debris are ideal sites for the study of young clusters and tidal galaxy formation. The process that triggers star formation in the low-density environments outside galaxies is still an open question. New clusters and galaxies of tidal origin are expected to have high metallicities for their luminosities. Spectroscopy of such objects is, however, at the limit of what can be done with existing 8-10 m class telescopes, which has prevented statistical studies of these objects. Aims: NGC 2865 is a UV-bright merging elliptical galaxy with shells and extended Hi tails. In this work we aim to observe regions previously detected using multi-slit imaging spectroscopy. Methods: We obtained new multi-slit spectroscopy of six young star-forming regions around NGC 2865, to determine their redshifts and metallicities. Results: The six emission-line regions are located 16-40 kpc from NGC 2865 and they have similar redshifts. They have ages of 10 Myr and an average metallicity of 12 +log (O/H) 8.6, suggesting a tidal origin for the regions. We note that they coincide with an extended Hi tail, which has projected density of NHI< 1019 cm-2, and displays a low surface brightness counterpart. These regions may represent the youngest of the three populations of star clusters already identified in NGC 2865. Conclusions: The high, nearly-solar, oxygen abundances found for the six regions in the vicinity of NGC 2865 suggest that they were formed by pre-enriched material from the parent galaxy, from gas removed during the most recent major merger. Given the mass and the location of the Hii regions, we can speculate that these young star-forming regions are potential precursors of globular clusters that will be part of the halo of NGC 2865 in the future. Our result supports the use of the multi-slit imaging spectroscopy as a useful tool for finding nearly-formed stellar systems around galaxies.

  10. Galaxy clusters: Falling into line (United States)

    Sifón, Cristóbal


    Analysis of Hubble Space Telescope observations shows that the well-known alignment between the central galaxy of a galaxy cluster and its host cluster has been in place for at least ten billion years.

  11. Velocity-metallicity correlation for high-z DLA galaxies

    DEFF Research Database (Denmark)

    Ledoux, C.; Petitjean, P.; Fynbo, J.P.U.


    Galaxies: halos, galaxies: high-redshift, galaxies: ISM, quasars: absorption lines, cosmology: observations Udgivelsesdato: Oct.......Galaxies: halos, galaxies: high-redshift, galaxies: ISM, quasars: absorption lines, cosmology: observations Udgivelsesdato: Oct....

  12. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M




    Energy Technology Data Exchange (ETDEWEB)

    Toloba, E.; Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Peletier, R. F. [Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen (Netherlands); Boselli, A. [Laboratoire d' Astrophysique de Marseille-LAM, Université d' Aix-Marseille and CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13 (France); Lisker, T. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Falcón-Barroso, J.; Ryś, A. [Instituto de Astrofísica de Canarias, Vía Láctea s/n, La Laguna, Tenerife (Spain); Simon, J. D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Van de Ven, G. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Paudel, S. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Emsellem, E. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Janz, J. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Den Brok, M. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Gorgas, J. [Departamento de Astrofísica y Física de la Atmósfera, Universidad Complutense de Madrid, E-28040, Madrid (Spain); Hensler, G. [Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna (Austria); Laurikainen, E.; Salo, H. [Division of Astronomy, Department of Physics, PO Box 3000, FI-90014 University of Oulu (Finland); Niemi, S.-M., E-mail: [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)


    We present spatially resolved kinematics and global stellar populations and mass-to-light ratios for a sample of 39 dwarf early-type (dE) galaxies in the Virgo cluster studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. This sample is representative of the early-type population in the Virgo cluster in the absolute magnitude range –19.0 < M{sub r} < –16.0 and of all morphological subclasses found in this galaxy population. For each dE, we measure the rotation curve and velocity dispersion profile and fit an analytic function to the rotation curve. We study the significance of the departure of the rotation curve from the best-fit analytic function (poorly fit) and of the difference between the approaching and receding sides of the rotation curve (asymmetry). Our sample includes two dEs with kinematically decoupled cores that have been previously reported. We find that 62 ± 8% (23 out of the 39) of the dEs have a significant anomaly in their rotation curve. Analysis of the images reveals photometric anomalies for most galaxies. However, there is no clear correlation between the significance of the photometric and kinematic anomalies. We measure age-sensitive (H{sub β} and H{sub γA}) and metallicity sensitive (Fe4668 and Mgb) Lick spectral indices in the LIS-5 Å system. This population of galaxies exhibits a wide range of ages and metallicities; we also find that 4 dEs show clear evidence of emission partially filling in the Balmer absorption lines. Finally, we estimate the total masses and dark matter fractions of the dEs and plot them in the mass-size, the mass-velocity dispersion, and the fundamental plane scaling relations. The dEs seem to be the bridge between massive early-type galaxies and dSphs, and have a median total mass within the R{sub e} of log M{sub e} = 9.1 ± 0.2 and a median dark matter fraction within the R{sub e} of f {sub DM} = 46 ± 18%. Any formation model for the dE galaxy class must account for this

  14. PEARS Emission Line Galaxies (United States)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide


    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 = 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  15. Double-Barred Galaxies


    Erwin, Peter


    I present a brief review of what is known about double-barred galaxies, where a small ("inner") bar is nested inside a larger ("outer") bar; the review is focused primarily on their demographics and photometric properties. Roughly 20% of S0--Sb galaxies are double-barred; they may be rarer in later Hubble types. Inner bars are typically ~ 500 pc in radius (~ 12% the size of outer bars), but sizes range from ~ 100 pc to > 1 kpc. The structure of at least some inner bars appears very similar to...

  16. Strong magnetic fields in normal galaxies at high redshift (United States)

    Bernet, Martin L.; Miniati, Francesco; Lilly, Simon J.; Kronberg, Philipp P.; Dessauges-Zavadsky, Miroslava


    The origin and growth of magnetic fields in galaxies is still something of an enigma. It is generally assumed that seed fields are amplified over time through the dynamo effect, but there are few constraints on the timescale. It was recently demonstrated that field strengths as traced by rotation measures of distant (and hence ancient) quasars are comparable to those seen today, but it was unclear whether the high fields were in the unusual environments of the quasars themselves or distributed along the lines of sight. Here we report high-resolution spectra that demonstrate that the quasars with strong MgII absorption lines are unambiguously associated with larger rotation measures. Because MgII absorption occurs in the haloes of normal galaxies along the sightlines to the quasars, this association requires that organized fields of surprisingly high strengths are associated with normal galaxies when the Universe was only about one-third of its present age.

  17. On the Role of Minor Galaxy Mergers in the Formation of Active Galactic Nuclei. (United States)



    The large-scale ( approximately 100 kpc) environments of Seyfert galaxies are not significantly different from those of non-Seyfert galaxies. In the context of the interaction model of the formation of active galactic nuclei (AGNs), it has thus been proposed that AGNs form via "minor mergers" of large disk galaxies with smaller companions. We test this hypothesis by comparing the nuclear spectra of 105 bright nearby galaxies with measurements of their R- or r-band morphological asymmetries at three successive radii. We find no significant differences between these asymmetries among the 13 Seyfert galaxies in the sample and galaxies having other nuclear spectral types (absorption, H ii region-like, LINER), nor is there strong qualitative evidence that such mergers have occurred among any of the Seyfert galaxies or LINERs. Thus, either any minor mergers began greater, similar1 Gyr ago and are essentially complete, or they did not occur at all, and AGNs form independently of any type of interaction. Support for the latter interpretation is provided by the growing evidence that supermassive black holes exist in the cores of most elliptical and early-type spiral galaxies, which in turn suggests that nuclear activity represents a normal phase in the evolution of the bulges of massive galaxies. Galaxy mergers may increase the luminosity of Seyfert nuclei to the level of QSOs, which could explain why the latter objects appear to be found in rich environments and in interacting systems.

  18. What Are S0 Galaxies?


    Bergh, Sidney van den


    The data collected in the Shapley-Ames catalog of bright galaxies show that lenticular (S0) galaxies are typically about a magnitude fainter than both elliptical (E) and early spiral (Sa) galaxies. Hubble (1936) was therefore wrong to regard S0 galaxies as being intermediate between morphological types E and Sa. The observation that E5-E7 galaxies are significantly fainter than objects of sub-types E0-E5 suggests that many of the flattest 'ellipticals' may actually be misclassified lenticular...

  19. A Portrait of One Hundred Thousand and One Galaxies (United States)


    very different research projects nowadays can make effective use of the same observations for their programmes . The idea to exploit one and the same data set is not new, but thanks to rapid technological developments it has recently developed into a very powerful tool for the astronomers in their continued quest to understand the Universe. This kind of work has now become very efficient with the advent of a fully searchable data archive from which observational data can then - after the expiry of a nominal one-year proprietary period for the observers - be made available to other astronomers. The ESO Science Data Archive was established some years ago and now encompasses more than 15 Terabyte [3]. Normally, the identification of specific data sets in such a large archive would be a very difficult and time-consuming task. However, effective projects and software "tools" like ASTROVIRTEL and Querator now allow the users quickly to "filter" large amounts of data and extract those of their specific interest. Indeed, "Archival Astronomy" has already led to many important discoveries, cf. the ASTROVIRTEL list of publications. There is no doubt that "Virtual Astronomical Observatories" will play an increasingly important role in the future, cf. ESO PR 26/01. The present wide-field images of NGC 300 provide an impressive demonstration of the enormous potential of this innovative approach. Some of the ways they were used are explained below. Cepheids in NGC 300 and the cosmic distance scale ESO PR Photo 18b/02 ESO PR Photo 18b/02 [Preview - JPEG: 468 x 400 pix - 112k] [Full-Res - JPEG: 1258 x 1083 pix - 1.6M] Caption : PR Photo 18b/02 shows some of the Cepheid type stars in the spiral galaxy NGC 300 (at the centre of the markers), as they were identified by Wolfgang Gieren and collaborators during the research programme for which the WFI images of NGC 300 were first obtained. In this area of NGC 300, there is also a huge cloud of ionized hydrogen (a "HII shell"). It measures

  20. Featured Image: Identifying Weird Galaxies (United States)

    Kohler, Susanna


    Hoags Object, an example of a ring galaxy. [NASA/Hubble Heritage Team/Ray A. Lucas (STScI/AURA)]The above image (click for the full view) shows PanSTARRSobservationsof some of the 185 galaxies identified in a recent study as ring galaxies bizarre and rare irregular galaxies that exhibit stars and gas in a ring around a central nucleus. Ring galaxies could be formed in a number of ways; one theory is that some might form in a galaxy collision when a smaller galaxy punches through the center of a larger one, triggering star formation around the center. In a recent study, Ian Timmis and Lior Shamir of Lawrence Technological University in Michigan explore ways that we may be able to identify ring galaxies in the overwhelming number of images expected from large upcoming surveys. They develop a computer analysis method that automatically finds ring galaxy candidates based on their visual appearance, and they test their approach on the 3 million galaxy images from the first PanSTARRS data release. To see more of the remarkable galaxies the authors found and to learn more about their identification method, check out the paper below.CitationIan Timmis and Lior Shamir 2017 ApJS 231 2. doi:10.3847/1538-4365/aa78a3

  1. The Hooked Galaxy (United States)


    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook

  2. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    tended regions of emission. These jets, which occur across the electromagnetic spectrum, are powered by supermassive black holes in the centres of the host galaxies. Jets are seen on the scale of parsecs in the nuclear regions to those which power the giant radio sources extending over several mega- parsecs. These jets ...

  3. Formation of Triaxial Galaxy

    Directory of Open Access Journals (Sweden)

    Jang-Hyeon Park


    Full Text Available Results of N-body simulation of dissipationless cold collapse of spherical gravitating system are presented. We compared the results with properties of elliptical galaxies. The system gradually evolved to triaxial system. The projected density profile is in good agreement with observations. In addition to triaxial instability, it seems that there is another instability.

  4. Outskirts of galaxies

    CERN Document Server

    Lee, Janice; Paz, Armando


    This book consists of invited reviews written by world-renowned experts on the subject of the outskirts of galaxies, an upcoming field which has been understudied so far. These regions are faint and hard to observe, yet hide a tremendous amount of information on the origin and early evolution of galaxies. They thus allow astronomers to address some of the most topical problems, such as gaseous and satellite accretion, radial migration, and merging. The book is published in conjunction with the celebration of the end of the four-year DAGAL project, an EU-funded initial training network, and with a major international conference on the topic held in March 2016 in Toledo. It thus reflects not only the views of the experts, but also the scientific discussions and progress achieved during the project and the meeting. The reviews in the book describe the most modern observations of the outer regions of our own Galaxy, and of galaxies in the local and high-redshift Universe. They tackle disks, haloes, streams, and a...

  5. The Mutable Galaxies -10 ...

    Indian Academy of Sciences (India)

    Perhaps one could then compare this with what is observed in galaxies. Let us find out how this can be quantified in order to be able to compare with observations. The second type of stars tend to 'lock up' a fraction of mass since they do not recycle their processed material. Let us call this fraction the 'lock-up fraction', 0:. Let.

  6. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.


    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...

  7. Green valley galaxies

    Directory of Open Access Journals (Sweden)

    Salim S.


    Full Text Available The “green valley” is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin (Caltech, in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u−r, are insensitive. It corresponds to massive galaxies below the star-forming, “main” sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to (predominantly disk morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the “green valley” using optical colors. We review various evolutionary scenarios and we present evidence for a new one, the quasi-static view of the green valley, in which the majority (but not all of galaxies currently in the green valley were only partially quenched in the distant past and now participate in a slow cosmic decline of star formation, which also drives down the activity on the main sequence, presumably as a result of the dwindling accretion/cooling onto galaxy disks. This emerging synthetic picture is based on the findings from Fang et al. (2012, Salim et al. (2012 and Martin et al. (2007, as well as other results.

  8. A galaxy-halo model for multiple cosmological tracers (United States)

    Bull, Philip


    The information extracted from large galaxy surveys with the likes of DES, DESI, Euclid, LSST, SKA, and WFIRST will be greatly enhanced if the resultant galaxy catalogues can be cross-correlated with one another. Predicting the nature of the information gain, and developing the tools to realize it, depends on establishing a consistent model of how the galaxies detected by each survey trace the same underlying matter distribution. Existing analytic methods, such as halo occupation distribution modelling, are not well suited for this task, and can suffer from ambiguities and tuning issues when applied to multiple tracers. In this paper, we take the first step towards constructing an alternative that provides a common model for the connection between galaxies and dark matter haloes across a wide range of wavelengths (and thus tracer populations). This is based on a chain of parametrized statistical distributions that model the connection between (I) halo mass and bulk physical properties of galaxies, such as star formation rate; and (II) those same physical properties and a variety of emission processes. The result is a flexible parametric model that allows analytic halo model calculations of one-point functions to be carried out for multiple tracers, as well as providing semi realistic galaxy properties for fast mock catalogue generation.

  9. Outflows in low-mass galaxies at z >1 (United States)

    Maseda, Michael V.; MUSE GTO Consortium


    Star formation histories of local dwarf galaxies, derived through resolved stellar populations, appear complex and varied. The general picture derived from hydrodynamical simulations is one of cold gas accretion and bursty star formation, followed by feedback from supernovae and winds that heat and eject the central gas reservoirs. This ejection halts star formation until the material cools and re-accretes, resulting in an episodic SFH, particularly at stellar masses below ~ 109 M⊙. Such feedback has often been cited as the driving force behind the observed slowly-rising rotation curves in local dwarfs, due to an under-density of dark matter compared to theoretical models, which is one of the primary challenges to LCDM cosmology. However, these events have not yet been directly observed at high-redshift. Recently, using HST imaging and grism spectroscopy, we have uncovered an abundant population of low-mass galaxies (M* < 109 M⊙) at z = 1 - 2 that are undergoing strong bursts of star formation, in agreement with the theoretical predictions. These Extreme Emission Line Galaxies, with high specific SFRs and shallow gravitational potential wells, are ideal places to test the theoretical prediction of strong feedback-driven outflows. Here we use deep MUSE spectroscopy to search these galaxies for signatures of outflowing material, namely kinematic offsets between absorption lines (in the restframe optical and UV), which trace cool gas, and the nebular emission lines, which define the systemic redshift of the galaxy. Although the EELGs are intrinsically very faint, stacked spectra reveal blueshifted velocity centroids for Fe II absorption, which is indicative of outflowing cold gas. This represents the first constraint on outflows in M* < 109 M⊙ galaxies at z = 1 - 2. These outflows should regulate the star formation histories of low-mass galaxies at early cosmic times and thus play a crucial role in galaxy growth and evolution.

  10. wft4galaxy: a workflow testing tool for galaxy. (United States)

    Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi


    Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at under the Academic Free License v3.0.

  11. Biases in Metallicity Measurements from Global Galaxy Spectra: The Effects of Flux Weighting and Diffuse Ionized Gas Contamination (United States)

    Sanders, Ryan L.; Shapley, Alice E.; Zhang, Kai; Yan, Renbin


    Galaxy metallicity scaling relations provide a powerful tool for understanding galaxy evolution, but obtaining unbiased global galaxy gas-phase oxygen abundances requires proper treatment of the various line-emitting sources within spectroscopic apertures. We present a model framework that treats galaxies as ensembles of H II and diffuse ionized gas (DIG) regions of varying metallicities. These models are based upon empirical relations between line ratios and electron temperature for H II regions, and DIG strong-line ratio relations from SDSS-IV MaNGA IFU data. Flux-weighting effects and DIG contamination can significantly affect properties inferred from global galaxy spectra, biasing metallicity estimates by more than 0.3 dex in some cases. We use observationally motivated inputs to construct a model matched to typical local star-forming galaxies, and quantify the biases in strong-line ratios, electron temperatures, and direct-method metallicities as inferred from global galaxy spectra relative to the median values of the H II region distributions in each galaxy. We also provide a generalized set of models that can be applied to individual galaxies or galaxy samples in atypical regions of parameter space. We use these models to correct for the effects of flux-weighting and DIG contamination in the local direct-method mass-metallicity and fundamental metallicity relations, and in the mass-metallicity relation based on strong-line metallicities. Future photoionization models of galaxy line emission need to include DIG emission and represent galaxies as ensembles of emitting regions with varying metallicity, instead of as single H II regions with effective properties, in order to obtain unbiased estimates of key underlying physical properties.

  12. TANGO I: Interstellar medium in nearby radio galaxies. Molecular gas (United States)

    Ocaña Flaquer, B.; Leon, S.; Combes, F.; Lim, J.


    Context. Powerful radio-AGN are hosted by massive elliptical galaxies that are usually very poor in molecular gas. Nevertheless, gas is needed at their very center to feed the nuclear activity. Aims: We study the molecular gas properties (i.e., mass, kinematics, distribution, origin) of these objects, and compare them with results for other known samples. Methods: At the IRAM-30m telescope, we performed a survey of the CO(1-0) and CO(2-1) emission from the most powerful radio galaxies of the Local Universe, selected only on the basis of their radio continuum fluxes. Results: The main result of our survey is that the molecular gas content of these galaxies is very low compared to spiral or FIR-selected galaxies. The median value of the molecular gas mass, including detections and upper limits, is 2.2 × 108 M⊙. When separated into FR-I and FR-II types, a difference in their H2 masses is found. The median value of FR-I galaxies is about 1.9 × 108 M⊙ and higher for FR-II galaxies, at about 4.5 × 108 M⊙. Which is probably entirely because of a Malmquist bias. Our results contrast with those of previous surveys, whose targets were mainly selected by means of their FIR emission, implying that we measure higher observed masses of molecular gas. Moreover, the shape of CO spectra suggest that a central molecular gas disk exists in 30% of these radio galaxies, a lower rate than in other active galaxy samples. Conclusions: We find a low level of molecular gas in our sample of radio-selected AGNs, indicating that galaxies do not need much molecular gas to host an AGN. The presence of a molecular gas disk in some galaxies and the wide range of molecular gas masses may be indicative of different origins for the gas, which we can not exclude at present (e.g., minor/major mergers, stellar mass loss, or accretion). Appendices and Figure 15 are only available in electronic form at

  13. The Nature of Optically-Luminous Stellar Clusters in a Large Sample of Luminous Infrared Galaxies (United States)

    Vavilkin, Tatjana


    to LIRGs. However, a weak correlation of specific luminosity TL(F435W)--SFR(far-UV) is apparent. No clear trend of SC properties with the merger stage of the LIRG is observed; although in late merger stages the degree of the extended star formation diminishes and the centrally concentrated nuclear starburst or an AGN dominate the energy output of the LIRG. Galaxies with HII-region like (i.e., starburst like) nuclear spectra exhibit higher specific frequency TN, specific luminosity TL and Mmax (F435W) values compared to galaxies where an AGN is present. In a sub-sample of the 15 most cluster-rich LIRG systems, auto-correlation functions reveal a hierarchical spatial distribution of SCs; correlation functions with GALEX near-UV and Spitzer IRAC 8μm images show an overlap of near-UV emission and locations of optically visible clusters and no ap! parent correlation with mid-IR emission (i.e., embedded star formation ). Thus, optically visible young SCs and UV emission represent un-obscured star formation which appears to be unassociated with the bulk of the star formation that takes place in dusty central regions of LIRGs.

  14. Chandra Survey of Nearby Galaxies: A Significant Population of Candidate Central Black Holes in Late-type Galaxies (United States)

    She, Rui; Ho, Luis C.; Feng, Hua


    Based on the Chandra data archive as of 2016 March, we have identified 314 candidate active galactic nuclei in 719 galaxies located closer than 50 Mpc, among them late-type galaxies (Hubble types Sc and later) that previously had been classified from optical observations as containing star-forming (H II) nuclei. These late-type galaxies comprise a valuable subsample to search for low-mass (≲ {10}6 {M}⊙ ) central black holes. For the sample as a whole, the overall dependence of the fraction of active nuclei on galaxy type and nuclear spectral classification is consistent with previous results based on optical surveys. We detect 51 X-ray cores among the 163 H II nuclei and estimate that, very conservatively, ˜74% of them with luminosities above 1038 {erg} {{{s}}}-1 are not contaminated by X-ray binaries; the fraction increases to ˜92% for X-ray cores with a luminosity of 1039 {erg} {{{s}}}-1 or higher. This allows us to estimate a black hole occupation fraction of ≳ 21% in these late-type galaxies, many of which are bulgeless.

  15. Forming disc galaxies in major mergers - III. The effect of angular momentum on the radial density profiles of disc galaxies (United States)

    Peschken, N.; Athanassoula, E.; Rodionov, S. A.


    We study the effect of angular momentum on the surface density profiles of disc galaxies, using high-resolution simulations of major mergers whose remnants have downbending radial density profiles (type II). As described in the previous papers of this series, in this scenario, most of the disc mass is acquired after the collision via accretion from a hot gaseous halo. We find that the inner and outer disc scalelengths, as well as the break radius, correlate with the total angular momentum of the initial merging system, and are larger for high-angular momentum systems. We follow the angular momentum redistribution in our simulated galaxies, and find that like the mass, the disc angular momentum is acquired via accretion, I.e. to the detriment of the gaseous halo. Furthermore, high-angular momentum systems give more angular momentum to their discs, which directly affects their radial density profile. Adding simulations of isolated galaxies to our sample, we find that the correlations are valid also for disc galaxies evolved in isolation. We show that the outer part of the disc at the end of the simulation is populated mainly by inside-out stellar migration, and that in galaxies with higher angular momentum, stars travel radially further out. This, however, does not mean that outer disc stars (in type II discs) were mostly born in the inner disc. Indeed, generally the break radius increases over time, and not taking this into account leads to overestimating the number of stars born in the inner disc.

  16. The Arecibo Galaxy Environment Survey IX: the isolated galaxy sample

    Czech Academy of Sciences Publication Activity Database

    Minchin, R.F.; Auld, R.; Davies, J.I.; Karachentsev, I.D.; Keenan, O.; Momjian, E.; Rodriguez, R.; Taber, T.; Taylor, Rhys


    Roč. 455, č. 4 (2016), s. 3430-3435 ISSN 0035-8711 R&D Projects: GA MŠk LG14013; GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : individual galaxies NGC 1156 * individual galaxies NGC 5523 * individual galaxies UGC 2082 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  17. Observational hints of radial migration in disc galaxies from CALIFA (United States)

    Ruiz-Lara, T.; Pérez, I.; Florido, E.; Sánchez-Blázquez, P.; Méndez-Abreu, J.; Sánchez-Menguiano, L.; Sánchez, S. F.; Lyubenova, M.; Falcón-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Cáceres, A.; Catalán-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; Husemann, B.; Kehrig, C.; Márquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegler, B.; Califa Team


    Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important, galaxies with different surface brightness (SB) profiles must display differences in their stellar population properties. Aims: We investigate the role of radial migration in the light distribution and radial stellar content by comparing the inner colour, age, and metallicity gradients for galaxies with different SB profiles. We define these inner parts, avoiding the bulge and bar regions and up to around three disc scale lengths (type I, pure exponential) or the break radius (type II, downbending; type III, upbending). Methods: We analysed 214 spiral galaxies from the CALIFA survey covering different SB profiles. We made use of GASP2D and SDSS data to characterise the light distribution and obtain colour profiles of these spiral galaxies. The stellar age and metallicity profiles were computed using a methodology based on full-spectrum fitting techniques (pPXF, GANDALF, and STECKMAP) to the Integral Field Spectroscopic CALIFA data. Results: The distributions of the colour, stellar age, and stellar metallicity gradients in the inner parts for galaxies displaying different SB profiles are unalike as suggested by Kolmogorov-Smirnov and Anderson-Darling tests. We find a trend in which type II galaxies show the steepest profiles of all, type III show the shallowest, and type I display an intermediate behaviour. Conclusions: These results are consistent with a scenario in which radial migration is more efficient for type III galaxies than for type I systems, where type II galaxies present the lowest radial migration efficiency. In such a scenario, radial migration mixes the stellar content, thereby flattening the radial stellar properties and shaping different SB profiles. However

  18. Radio Galaxy Zoo: A Search for Hybrid Morphology Radio Galaxies (United States)

    Kapińska, A. D.; Terentev, I.; Wong, O. I.; Shabala, S. S.; Andernach, H.; Rudnick, L.; Storer, L.; Banfield, J. K.; Willett, K. W.; de Gasperin, F.; Lintott, C. J.; López-Sánchez, Á. R.; Middelberg, E.; Norris, R. P.; Schawinski, K.; Seymour, N.; Simmons, B.


    Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a large-scale search of these sources within the international citizen science project, Radio Galaxy Zoo (RGZ). Here, we present 25 new candidate hybrid morphology radio galaxies. Our selected candidates are moderate power radio galaxies ({L}{median}=4.7× {10}24 W Hz-1 sr-1) at redshifts 0.14 1 Mpc) radio galaxies, one resides at the center of a galaxy cluster, and one is hosted by a rare green bean galaxy. Although the origin of the hybrid morphology radio galaxies is still unclear, this type of radio source starts depicting itself as a rather diverse class. We discuss hybrid radio morphology formation in terms of the radio source environment (nurture) and intrinsically occurring phenomena (nature; activity cessation and amplification), showing that these peculiar radio galaxies can be formed by both mechanisms. While high angular resolution follow-up observations are still necessary to confirm our candidates, we demonstrate the efficacy of the RGZ in the pre-selection of these sources from all-sky radio surveys, and report the reliability of citizen scientists in identifying and classifying complex radio sources.

  19. Occurrence of LINER galaxies within the galaxy group environment (United States)

    Coldwell, Georgina V.; Pereyra, Luis; Alonso, Sol; Donoso, Emilio; Duplancic, Fernanda


    We study the properties of a sample of 3967 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR7, with respect to their proximity to galaxy groups. The host galaxies of LINERs have been analysed and compared with a well-defined control sample of 3841 non-LINER galaxies matched in redshift, luminosity, colour, morphology, age and stellar mass content. We find no difference between LINER and control galaxies in terms of the colour and age of stellar population as a function of the virial mass and distance to the geometric centre of the group. However, we find that LINERs are more likely to populate low-density environments in spite of their morphology, which is typical of high-density regions such as rich galaxy clusters. For rich (poor) galaxy groups, the occurrence of LINERs is approximately two times lower (higher) than the occurrence of matched, non-LINER galaxies. Moreover, LINER hosts do not seem to follow the expected morphology-density relation in groups of high virial mass. The high frequency of LINERs in low-density regions could be due to the combination of a sufficient gas reservoir to power the low-ionization emission and/or enhanced galaxy interaction rates benefiting the gas flow towards their central regions.

  20. Morphology of the 12 Micron Seyfert Galaxies. I. Hubble Types, Axial Ratios, Bars, and Rings (United States)

    Hunt, L. K.; Malkan, M. A.


    We have compared the morphological characteristics of the 891 galaxies in the Extended 12 μm Galaxy Sample (E12GS) and assessed the effect of the 12 μm selection criterion on galaxy properties. The normal spirals in the E12GS have the same axial ratios, morphological types, and bar and ring fractions as other normal spirals. The H II/starburst galaxies have a higher incidence of bars and more than twice the normal rate of ``peculiar'' morphologies, both of which are attributable to relatively recent disturbances. The 12 μm Seyfert galaxies show a small (10%) deficiency of edge-on disks. This is caused by extinction but is a much less severe effect than in optically selected samples. There is a similar modest deficit of highly inclined H II/starburst galaxies in the 12 μm sample. The galaxies with active nuclei (Seyfert galaxies and LINERs) have the same incidence of bars as normal spirals but show rings significantly more often than normal galaxies or starbursts. The LINERs have elevated rates of inner rings, while the Seyfert galaxies have outer ring fractions several times those in normal galaxies. The different formation times of bars and rings suggest an interpretation of these differences. Bars form relatively quickly and indicate that material is recently being transported (by redistribution of angular momentum) to the center of the galaxy, where it is likely to trigger a short (e.g., mass transfer to reach the center and raise the black hole accretion rate, by which time the bar has dissolved or has begun to do so. Inner rings form before outer ones, with a formation time more comparable to bars. Thus, it may be that after an interaction or instability triggers an infall of gas, the galaxy in the earliest stage is likely to show enhanced star formation in its center, while later it is more likely to show LINER activity, and still later it is likely to be a Seyfert galaxy. The trends we find with morphology and nuclear activity are not biased either by

  1. The SAMI Galaxy Survey: Spatially Resolving the Main Sequence of Star Formation (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus


    We present the ˜800 star formation rate maps for the SAMI Galaxy Survey based on Hα emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/Hβ, [N II]/Hα, [S II]/Hα, and [O I]/Hα line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main sequence population has centrally-concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  2. Galaxy clusters and cosmology

    CERN Document Server

    White, S


    Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...

  3. Galaxy mapping the cosmos

    CERN Document Server

    Geach, James


    Each night, we are able to gaze up at the night sky and look at the thousands of stars that stretch to the end of our individual horizons. But the stars we see are only those that make up our own Milky Way galaxy-but one of hundreds of billions in the whole of the universe, each separated  by inconceivably huge tracts of empty space. In this book, astronomer James Geach tells the rich stories of both the evolution of galaxies and our ability to observe them, offering a fascinating history of how we've come to realize humanity's tiny place in the vast universe.             Taking us on a compel

  4. The Anatomy of Galaxies (United States)

    D'Onofrio, Mauro; Rampazzo, Roberto; Zaggia, Simone; Longair, Malcolm S.; Ferrarese, Laura; Marziani, Paola; Sulentic, Jack W.; van der Kruit, Pieter C.; Laurikainen, Eija; Elmegreen, Debra M.; Combes, Françoise; Bertin, Giuseppe; Fabbiano, Giuseppina; Giovanelli, Riccardo; Calzetti, Daniela; Moss, David L.; Matteucci, Francesca; Djorgovski, Stanislav George; Fraix-Burnet, Didier; Graham, Alister W. McK.; Tully, Brent R.

    Just after WWII Astronomy started to live its "Golden Age", not differently to many other sciences and human activities, especially in the west side countries. The improved resolution of telescopes and the appearance of new efficient light detectors (e.g. CCDs in the middle eighty) greatly impacted the extragalactic researches. The first morphological analysis of galaxies were rapidly substituted by "anatomic" studies of their structural components, star and gas content, and in general by detailed investigations of their properties. As for the human anatomy, where the final goal was that of understanding the functionality of the organs that are essential for the life of the body, galaxies were dissected to discover their basic structural components and ultimately the mystery of their existence.

  5. The Galaxy's Eating Habits (United States)

    Putman, M. E.; Thom, C.; Gibson, B. K.; Staveley-Smith, L.


    The possibility of a gaseous halo stream which was stripped from the Sagittarius dwarf galaxy is presented. The total mass of the neutral hydrogen along the orbit of the Sgr dwarf in the direction of the Galactic Anti-Center is 4 - 10 × 106 M⊙ (at 36 kpc, the distance to the stellar debris in this region). Both the stellar and gaseous components have negative velocities in this part of the sky, but the gaseous component extends to higher negative velocities. We suggest this gaseous stream was stripped from the main body of the dwarf 0.2 - 0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10-4 cm-3. The gas would then represent the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5-2 Gyr ago.

  6. Black holes and galaxy formation

    CERN Document Server

    Propst, Raphael J


    Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.

  7. A Century of Galaxy Spectroscopy (United States)

    Rubin, Vera C.


    The first successful spectrum of a galaxy, M31, was obtained in 1898 and published in a two-page paper in the young Astrophysical Journal (Scheiner 1899). Thus the first century of galaxy spectroscopy and the first century of the Astrophysical Journal are almost coincident; I celebrate both in this paper. I describe the very early history of the determination of internal kinematics in spiral galaxies, often by quoting the astronomers' own published words. By mid-century, observations with improved optical and radio telescopes offered evidence that much of the matter in a galaxy is dark. As the century ends, research interests have enlarged to include study of spheroidal and disk galaxies with complex nuclear (and other) kinematics. These complicated velocity patterns are understood as the result of interactions, acquisitions, and mergers, and offer clear evidence of the important role of gravitational effects in galaxy evolution.

  8. Galaxies in the Early Universe

    DEFF Research Database (Denmark)

    Krogager, Jens-Kristian

    in Chapter 3 is found to be a young, star-forming galaxy with evidence for strong outflows of gas. This suggests that the more evolved and metal-rich DLAs overlap with the faint end of the luminosity selected galaxies in terms of mass, metallicity, star formation rate, and age. DLAs are generally observed......Understanding how galaxies evolved from the early Universe through cosmic time is a fundamental part of modern astrophysics. In order to study this evolution it is important to sample the galaxies at various times in a consistent way through time. In regular luminosity selected samples, our...... analyses are biased towards the brightest galaxies at all times (as these are easier to observe and identify). A complementary method relies on the absorption imprint from neutral gas in galaxies, the so-called damped Ly absorbers (DLAs) seen towards distant bright objects. This thesis seeks to understand...

  9. Dust in External Galaxies


    Calzetti, Daniela


    Existing (Spitzer Space Telescope) and upcoming (Herschel Space Telescope) facilities are deepening our understanding of the role of dust in tracing the energy budget and chemical evolution of galaxies. The tools we are developing while exploring the local Universe will in turn become pivotal in the interpretation of the high redshift Universe when near--future facilities (the Atacama Large Millimeter Array [ALMA], the Sub--Millimeter Array [SMA], the Large Millimeter Telescope [LMT], the Jam...

  10. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.


    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  11. ARCHANGEL: Galaxy Photometry System (United States)

    Schombert, James


    ARCHANGEL is a Unix-based package for the surface photometry of galaxies. While oriented for large angular size systems (i.e. many pixels), its tools can be applied to any imaging data of any size. The package core contains routines to perform the following critical galaxy photometry functions: sky determination; frame cleaning; ellipse fitting; profile fitting; and total and isophotal magnitudes. The goal of the package is to provide an automated, assembly-line type of reduction system for galaxy photometry of space-based or ground-based imaging data. The procedures outlined in the documentation are flux independent, thus, these routines can be used for non-optical data as well as typical imaging datasets. ARCHANGEL has been tested on several current OS's (RedHat Linux, Ubuntu Linux, Solaris, Mac OS X). A tarball for installation is available at the download page. The main routines are Python and FORTRAN based, therefore, a current installation of Python and a FORTRAN compiler are required. The ARCHANGEL package also contains Python hooks to the PGPLOT package, an XML processor and network tools which automatically link to data archives (i.e. NED, HST, 2MASS, etc) to download images in a non-interactive manner.

  12. Robust automatic photometry of local galaxies from SDSS. Dissecting the color magnitude relation with color profiles (United States)

    Consolandi, Guido; Gavazzi, Giuseppe; Fumagalli, Michele; Dotti, Massimo; Fossati, Matteo


    We present an automatic procedure to perform reliable photometry of galaxies on SDSS images. We selected a sample of 5853 galaxies in the Coma and Virgo superclusters. For each galaxy, we derive Petrosian g and I magnitudes, surface brightness and color profiles. Unlike the SDSS pipeline, our procedure is not affected by the well known shredding problem and efficiently extracts Petrosian magnitudes for all galaxies. Hence we derived magnitudes even from the population of galaxies missed by the SDSS which represents ~25% of all local supercluster galaxies and ~95% of galaxies with g inner (r ≤ 1 kpc), intermediate (0.2RPet ≤ r ≤ 0.3RPet) and outer, disk-dominated (r ≥ 0.35RPet)) zone; and (II), we compute template color profiles, discussing the dependences of the templates on the galaxy masses and on their morphological type. The two analyses consistently lead to a picture where elliptical galaxies show no color gradients, irrespective of their masses. Spirals, instead, display a steeper gradient in their color profiles with increasing mass, which is consistent with the growing relevance of a bulge and/or a bar component above 1010 M⊙. Full Table A.1 is only available at the CDS via anonymous ftp to ( or via

  13. NCBI BLAST+ integrated into Galaxy


    Cock, Peter J.A.; John M. Chilton; Gr?ning, Bj?rn; James E. Johnson; Soranzo, Nicola


    Background The NCBI BLAST suite has become ubiquitous in modern molecular biology and is used for small tasks such as checking capillary sequencing results of single PCR products, genome annotation or even larger scale pan-genome analyses. For early adopters of the Galaxy web-based biomedical data analysis platform, integrating BLAST into Galaxy was a natural step for sequence comparison workflows. Findings The command line NCBI BLAST+ tool suite was wrapped for use within Galaxy. Appropriate...

  14. Chandra Survey of Nearby Galaxies: The Catalog

    Energy Technology Data Exchange (ETDEWEB)

    She, Rui; Feng, Hua [Department of Engineering Physics and Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100087 (China)


    We searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H ii nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 10{sup 37} erg s{sup −1} on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.

  15. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo


    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  16. An Exploration of Dusty Galaxies (United States)

    Kohler, Susanna


    Submillimeter galaxies i.e., galaxies that we detect in the submillimeter wavelength range are mysterious creatures. Its only within the last couple decades that weve had telescope technology capable of observing them, and were only now getting to the point where angular resolution limits allow us to examine them closely. A new study has taken advantage of new capabilities to explore the properties of a sample of 52 of thesegalaxies.Dusty Star FormationSubmillimeter galaxies are generally observed in the early universe. Though theyre faint in other wavebands, theyre extremely luminous in infrared and submillimeter their infrared luminosities are typically trillions of times the Suns luminosity. This is thought to be because these galaxies are very actively forming stars at rates of hundreds of times that of the Milky Way!Example 10 10 true-color images of ten submillimeter galaxies in the authors ALMA-identified sample. [Simpson et al. 2017]Submillimeter galaxies are also extremely dusty, so we dont see their star formation directly in optical wavelengths. Instead, we see the stellar light after its been absorbed and reemitted by interstellar dust lanes were indirectly observing heavily obscured star formation.Why look for submillimeter galaxies? Studying them can help us to learn about galaxy and star formation early in our universes history, and help us to understand how the universe has evolved into what we see locally today.Submillimeter StrugglesDue to angular resolution limitations in the past, we often couldnt pin down the exact locations of submillimeter galaxies, preventing us from examining them properly. But now a team of scientists has used the Atacama Large Millimeter/submillimeter array (ALMA) to precisely locate 52 submillimeter galaxies identified by the Submillimeter Common-User Bolometer Array (SCUBA-2) in the UKIDSS Ultra Deep Survey field.The precise locations made possible by ALMA allowed the team led by James Simpson (University of Edinburgh

  17. The Star Formation Histories of Sculptor Group Dwarf Galaxies. I. Current Star Formation Rates and Oxygen Abundances (United States)

    Miller, Bryan W.


    We present Hα and [O III] imaging and nebular spectroscopy of H II regions in Sculptor Group dwarf galaxies. Of the eight galaxies in the sample, only two, E471 -006 and A143, have detected H II regions. The H II region luminosity and size distributions for A143 are consistent with those seen in other dwarf galaxies. Electron densities, filling factors and emission measures are similar to those measured in other galaxies at similar distances but vary significantly from compact H II regions in the Magellanic clouds. Oxygen line ratios are used to determine the oxygen abundances and ionization parameters. The oxygen abundances are typically ~0.1 solar and are consistent with the O/H, M_B_ relation. Comparison of the star formation timescales in Sculptor, M81, and Local Groups shows that the higher density M81 Group has many more galaxies forming stars at an above average rate. This is evidence that local galaxy density can have a measurable effect on current star formation. However, a single O/H, M_B_ relation seems to hold for all environments, so galaxy mass still appears to be the primary factor governing a galaxy's chemical evolution.


    Energy Technology Data Exchange (ETDEWEB)

    Ge Junqiang; Hu Chen; Wang Jianmin; Zhang Shu [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Bai Jinming, E-mail: [Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)


    Recently, much attention has been paid to double-peaked narrow emission-line (NEL) galaxies, some of which are suggested to be related to merging galaxies. We make a systematic search to build the largest sample of these sources from Data Release 7 of the Sloan Digital Sky Survey (SDSS). With reasonable criteria for fluxes, FWHMs of the emission lines, and separations of the peaks, we select 3030 double-peaked NEL galaxies. In light of the existence of broad Balmer lines and the locations of the two components of double-peaked NELs distinguished by the Kauffmann et al. criteria in the Baldwin-Phillips-Terlevich diagram, we find that there are 81 Type I active galactic nuclei (AGNs), 837 double Type II AGNs (2-Type II), 708 galaxies with double star-forming components (2-SF), 400 with mixed star-forming and Type II AGN components (Type II + SF), and 1004 unknown-type objects. As a by-product, a sample of galaxies (12,582) with asymmetric or top-flat profiles of emission lines is established. After visually inspecting the SDSS images of the two samples, we find 54 galaxies with dual cores. The present samples can be used to study the dynamics of merging galaxies, the triggering mechanism of black hole activity, the hierarchical growth of galaxies, and the dynamics of narrow line regions driven by outflows and a rotating disk.

  19. The Resolved Structure and Dynamics of an Isolated Dwarf Galaxy: A VLT and Keck Spectroscopic Survey of WLM

    NARCIS (Netherlands)

    Leaman, Ryan; Venn, Kim A.; Brooks, Alyson M.; Battaglia, Giuseppina; Cole, Andrew A.; Ibata, Rodrigo A.; Irwin, Mike J.; McConnachie, Alan W.; Mendel, J. Trevor; Tolstoy, Eline

    We present spectroscopic data for 180 red giant branch (RGB) stars in the isolated dwarf irregular galaxy Wolf-Lundmark-Mellote (WLM). Observations of the calcium II triplet lines in spectra of RGB stars covering the entire galaxy were obtained with FORS2 at the Very Large Telescope and DEIMOS on

  20. The Resolved Structure and Dynamics of an Isolated Dwarf Galaxy : A VLT and Keck Spectroscopic Survey of WLM

    NARCIS (Netherlands)

    Leaman, Ryan; Venn, Kim A.; Brooks, Alyson M.; Battaglia, Giuseppina; Cole, Andrew A.; Ibata, Rodrigo A.; Irwin, Mike J.; McConnachie, Alan W.; Mendel, J. Trevor; Tolstoy, Eline

    We present spectroscopic data for 180 red giant branch (RGB) stars in the isolated dwarf irregular galaxy Wolf-Lundmark-Mellote (WLM). Observations of the calcium II triplet lines in spectra of RGB stars covering the entire galaxy were obtained with FORS2 at the Very Large Telescope and DEIMOS on

  1. The luminosity function of field galaxies


    Mahtessian, A. P.


    Schmidt's method for construction of luminosity function of galaxies is generalized by taking into account the dependence of density of galaxies from the distance in the near Universe. The logarithmical luminosity function (LLF) of field galaxies depending on morphological type is constructed. We show that the LLF for all galaxies, and also separately for elliptical and lenticular galaxies can be presented by Schechter function in narrow area of absolute magnitudes. The LLF of spiral galaxies...

  2. Understanding Galaxy Shapes Across Cosmic Time Using The IllustrisTNG Simulation (United States)

    Genel, Shy


    Legacy HST observations have enabled groundbreaking measurements of galaxy structure over cosmic time, measurements that still require theoretical interpretation in the context of a comprehensive galaxy evolution model. This proposed research aims at significantly promoting our understanding of the shapes of galaxies as quantified by their principal axes ratios. The main tool we propose to use is IllustrisTNG, a suite consisting of two of the largest cosmological hydrodynamical simulations run to date, which contain resolved galaxy populations (thousands of L* galaxies) that represent a state-of-the-art match to observed galaxies. In Part I of the program, we will use the simulations to create mock images and study the dependence of projected shape measurements on various factors: shape estimator, observed band, the presence of dust, radial and surface brightness cuts, and noise. We will then perform apples-to-apples comparison with observations (including HST), and provide predictions for archival as well as future observations. Further, we will quantify the intrinsic, three-dimensional, shape distribution of galaxies as a function of various galaxy parameters: redshift, mass, color, and size. In Part II of the program, we will develop theoretical insights into the physical mechanisms driving these results. We will study how galaxy shapes relate to angular momentum and merger history, and will follow the shape evolution of individual galaxies over time, looking for correlations to the evolution of other galaxy properties, e.g. size and SFR. We will also study galaxy shape relations to dark matter halo shape, thereby providing input for high-precision cosmic shear models.

  3. Constraints on the star formation histories of galaxies from z ~ 1 to 0 (United States)

    Chen, Yan-Mei; Wild, Vivienne; Kauffmann, Guinevere; Blaizot, Jérémy; Davis, Marc; Noeske, Kai; Wang, Jian-Min; Willmer, Christopher


    We present a new method to estimate the average star formation rate per unit stellar mass (SSFR) of a stacked population of galaxies. We combine the spectra of 600-1000 galaxies with similar stellar masses and parametrize the star formation history of this stacked population using a set of exponentially declining functions. The strength of the hydrogen Balmer absorption-line series in the rest-frame wavelength range 3750-4150 Å is used to constrain the SSFR by comparing with a library of models generated using the BC03 stellar population code. Our method, based on a principal component analysis, can be applied in a consistent way to spectra drawn from local galaxy surveys and from surveys at z ~ 1, and is only weakly influenced by attenuation due to dust. We apply our method to galaxy samples drawn from Sloan Digital Sky Survey and DEEP2 to study the mass-dependent growth of galaxies from z ~ 1 to 0. We find that (i) high-mass galaxies have lower SSFRs than low-mass galaxies and (ii) the average SSFR has decreased from z = 1 to 0 by a factor of ~3-4, independent of galaxy mass. Additionally, at z ~ 1, our average SSFRs are a factor of 2-2.5 lower than those derived from multiwavelength photometry using similar data sets. We then compute the average time [in units of the Hubble time, tH(z)] needed by galaxies of a given mass to form their stars at their current rate. At both z = 0 and 1, this time-scale decreases strongly with stellar mass from values close to unity for galaxies with masses ~1010Msolar, to more than 10 for galaxies more massive than 1011Msolar. Our results are in good agreement with models in which active galactic nuclei feedback is more efficient at preventing gas from cooling and forming stars in high-mass galaxies.

  4. The dwarf galaxy population of nearby galaxy clusters

    NARCIS (Netherlands)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass

  5. Local anti-correlation between star-formation rate and gas-phase metallicity in disk galaxies (United States)

    Sánchez Almeida, J.; Caon, N.; Muñoz-Tuñón, C.; Filho, M.; Cerviño, M.


    Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anti-correlation between the index N2 ≡ log ([NII]λ6583/Hα) and the Hα flux. These two quantities are commonly employed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to Hα relation may reflect the existence of an anti-correlation between the metallicity of the gas forming stars and the SFR it induces. Such an anti-correlation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anti-correlation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of HII regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disk galaxies does not produce the correlation either.

  6. Optical nebulosity in X-ray-selected, early type galaxies (United States)

    Shields, Joseph C.


    This paper presents the results of an H-alpha + N II forbidden line narrowband imaging survey of X-ray-selected E and S0 galaxies. A novel technique is described for objectively optimizing the removal of stellar continuum light while providing well-defined estimates of systematic errors. The procedure has the additional benefit of eliminating sky contamination, specifically in image regions occupied by galaxy light. Consideration of the measured spectral energy distributions is included in the flux calibration procedure, and emission-line luminosities (or upper limits), corrected for Galactic foreground extinction, are tabulated for metric apertures. No connection is found between the 'boxiness' or 'diskiness' of stellar isophotes and emission-line or far-infrared luminosity. It is suggested that optical nebulosity in early-type galaxies contains a significant multiparameter dependence on active Galactic nuclei behavior, accretion from the hot interstellar medium, and mass injection from external sources.

  7. GOLDRUSH. II. Clustering of galaxies at z ˜ 4-6 revealed with the half-million dropouts over the 100 deg2 area corresponding to 1 Gpc3 (United States)

    Harikane, Yuichi; Ouchi, Masami; Ono, Yoshiaki; Saito, Shun; Behroozi, Peter; More, Surhud; Shimasaku, Kazuhiro; Toshikawa, Jun; Lin, Yen-Ting; Akiyama, Masayuki; Coupon, Jean; Komiyama, Yutaka; Konno, Akira; Lin, Sheng-Chieh; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Shibuya, Takatoshi; Silverman, John


    We present clustering properties from 579492 Lyman-break galaxies (LBGs) at z ˜ 4-6 over the 100 deg2 sky (corresponding to a 1.4 Gpc3 volume) identified in early data of the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. We derive angular correlation functions (ACFs) for the HSC LBGs with unprecedentedly high statistical accuracies at z ˜ 4-6, and compare them with the halo occupation distribution (HOD) models. We clearly identify significant ACF excesses in 10″ physical properties including the star formation rate (SFR), the stellar-to-halo mass ratio (SHMR), and the dark matter accretion rate (\\dot{M}_{ h}) over a wide mass range of Mh/M⊙ = 4 × 1010-4 × 1012. We find that the SHMR increases from z ˜ 4 to 7 by a factor of ˜4 at Mh ≃ 1 × 1011 M⊙ , while the SHMR shows no strong evolution in the similar redshift range at Mh ≃ 1 × 1012 M⊙ . Interestingly, we identify a tight relation of SFR/\\dot{M}_{ h}-Mh showing no significant evolution beyond 0.15 dex in this wide mass range over z ˜ 4-7. This weak evolution suggests that the SFR/\\dot{M}_{ h}-Mh relation is a fundamental relation in high-redshift galaxy formation whose star formation activities are regulated by the dark matter mass assembly. Assuming this fundamental relation, we calculate the cosmic star formation rate densities (SFRDs) over z = 0-10 (a.k.a. the Madau-Lilly plot). The cosmic SFRD evolution based on the fundamental relation agrees with the one obtained by observations, suggesting that the cosmic SFRD increase from z ˜ 10 to 4 - 2 (decrease from z ˜ 4-2 to 0) is mainly driven by the increase of the halo abundance (the decrease of the accretion rate).

  8. Properties of Luminous Blue Compact Galaxies at z< 1 and the Global Star Formation Rate Density (United States)

    Lowenthal, James; Bershady, Matthew; Guzman, Rafael; Gallego, Jesus


    Luminous blue compact galaxies (LBCGs) are important to understand because they are implicated as significant contributers both to the high global SFR density observed at z~1 and to the strong evolution of field galaxies between z=1 and the present. However, we do not yet have a good measure of their SFRs - both individual and global. Are LBCGs at redshifts z> 0.4 the analogs of local H II galaxies or even of Lyman break galaxies at z~3? What are their metallicity and dust extinction properties? Access to Hα, the best SFR measure, is problematic for intermediate redshift. Here we propose to address the above questions by obtaining near-IR spectra with FLAMINGOS of a well- selected sample of LBCGs to measure Hα fluxes directly. With fluxes in hand, we will: (1) measure SFRs using the most direct indicator available; (2) compare Hα to O II SFRs to calibrate O II estimators for other samples; (3) calculate the contribution of our sample to the global SFR density; (4) use Hα/Hβ ratios to measure dust extinction; (5) combine EW(Hα) and K magnitudes to compute stellar masses; and (6) synthesize the above to investigate the putative link connecting H II galaxies today, LBCGs at moderate redshift, and LBGs at z~3. Our sample is selected from our ongoing studies of compact star-forming galaxies in the HDF-N and three other fields with deep HST, Keck, and optical spectroscopic data in hand.

  9. Imaging the mass structure of distant lens galaxies (United States)

    Koopmans, Leon


    The surface brightness distribution of extended gravitationally lensed arcs and Einstein rings contains super-resolved information about the lensed object, and, more excitingly, about the smooth and clumpy mass distribution of the lens galaxies. The source and lens information can non-parametrically be separated, resulting in a direct "gravitational-mass image" of the inner mass-distribution of cosmologically-distant galaxies {Koopmans 2005}.With this goal in mind, we propose deep HST ACS-F555W/F814W and NICMOS-F160W imaging of 15 gravitational-lens systems with spatially resolved lensed sources, selected from the 17 new lens systems discovered by the Sloan Lens ACS Survey {Bolton et al. 2004}. Each system has been selected from the SDSS and confirmed in a time-efficient HST-ACS snapshot program {cycle-13}; they show highly-magnified arcs or Einstein rings, lensed by a massive early-type lens galaxy. High-fidelity multi-color HST images are required {not delivered by the 420-sec snapshot images} to isolate these lensed images {properly cleaned, dithered and extinction-corrected} from the lens galaxy surface brightness distribution, and apply our "gravitational-mass imaging" technique.The sample of galaxy mass distributions - determined through this method from the arcs and Einstein ring HST images - will be studied to: {i} measure the smooth mass distribution of the lens galaxies {Dark and luminous mass are separated using the HST images and the stellar M/L values derived from a joint stellar-dynamical analysis of each system}; {ii} quantify statistically and individually the incidence of mass-substructure {with or without obvious luminous counter-parts such as dwarf galaxies}. Since dark-matter substructure should be considerably more prevalent at higher redshift, both results provide a direct test of this prediction of the CDM hierarchical structure-formation model.

  10. Galaxy collisions: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Smith, B.F.


    Collisions of spherical galaxies were studied in a series of numerical experiments to see what happens when galaxies collide. Each experiment starts with two model galaxies, each consisting of 50,000 stars, moving toward each other along a specified orbit. Th series of experiments provides a systematic sampling of the parameter space spanned by the initial orbital energy and the initial angular momentum. Deeply penetrating collisions are emphasized. The collisions reported here scale to relative velocities as great as 500 km s/sup -1/, well into the range for collisions within clusters of galaxies. We find: (1) The galaxies contract momentarily to about half their original sizes shortly after close passage. This means that (a) the galaxies have ample time to respond dynamically during close passage; (b) energy first transfers into coherent mass flows within each galaxy; (c) in turn, (a) means that the impulsive and restricted three-body approximations, in which the response is ignored, are not valid for collisions of 1000 km s/sup -1/ or less. (2) The initial galaxies blend into a single dynamical system while they are near each other. This means that concepts such as energy transfer from orbital motion to internal degrees of freedom are not well defined until long after close approach, when two density maxima are well separated and each has settled down to a reasonably steady state.

  11. Nuclear activity in nearby galaxies

    NARCIS (Netherlands)

    Filho, Mercedes Esteves


    The main focus of this thesis has been the search for and study of low luminosity AGN. We have detected severa low luminosity AGN in nearby galaxies, revealing that this type of activity can occur in a broad range of galaxy types and powers. Furthermore, we have been able to establish importan

  12. Red galaxies at high redshift

    NARCIS (Netherlands)

    Wuyts, Stijn Elisabeth Raphaël


    From its origin at the center of a star to the edge, through the surrounding gas and dust in the distant galaxy, through the intergalactic medium, traveling billions of light years only to be reflected by a mirror and captured by a detector; the little amount of light observed from galaxies in the

  13. Squelched Galaxies and Dark Halos

    NARCIS (Netherlands)

    Tully, R. Brent; Somerville, Rachel S.; Trentham, Neil; Verheijen, Marc A. W.


    There is accumulating evidence that the faint end of the galaxy luminosity function might be very different in different locations. The luminosity function might be rising in rich clusters and flat in regions of low density. If galaxies form according to the model of hierarchical clustering, then

  14. Dust tori in radio galaxies

    NARCIS (Netherlands)

    van der Wolk, G.; Barthel, P. D.; Peletier, R. F.; Pel, J. W.

    Aims. We investigate the quasar - radio galaxy unification scenario and detect dust tori within radio galaxies of various types. Methods. Using VISIR on the VLT, we acquired sub-arcsecond (similar to 0.40 '') resolution N-band images, at a wavelength of 11.85 mu m, of the nuclei of a sample of 27

  15. Three types of galaxy disks

    NARCIS (Netherlands)

    Pohlen, M.; Erwin, P.; Trujillo, I.; Beckman, J. E.; Knapen, JH; Mahoney, TJ; Vazdekis, A


    We present our new scheme for the classification of radial stellar surface brightness profiles for disk galaxies. We summarize the current theoretical attempts to understand their origin and give an example of an application by comparing local galaxies with their counterparts at high redshift (z

  16. The gravitational dynamics of galaxies

    Indian Academy of Sciences (India)

    called spheroidal or elliptical galaxies form a class more amenable to idealized models, we also have many disc .... use the apparent elliptical outline to infer the angle of inclination between the plane of the galaxy and the plane ..... of f along the trajectory of a given particle in phase space. The dynamical friction term clearly.

  17. Galaxy cluster's rotation (United States)

    Manolopoulou, M.; Plionis, M.


    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  18. Luminosity-Distances of IUE observed Active Galaxies (United States)

    Doddamani, Vijayakumar H.; Vedavathi, P.


    Active galaxies are the most luminous objects observed in the Universe and are believed to be powered by mass accretion processes taking place in the vicinity of the central Super massive black hole (M BH >= 108M sun ). However, the details of the power generation mechanisms are not understood well yet. In this paper, we are presenting a comparative study of luminosity-distance estimations for the complete sample of active galaxies observed by IUE satellite by different methods. IUE has made UV spectroscopic observations of nearly 400 active galaxies comprising mostly Seyfert 1 galaxies and quasars. We have chosen all the active galaxies observed by IUE satellite for the study of luminosity-distance with redshift. The luminosity-distances (D L ) have been calculated using the Hubbles law under non-relativistic and relativistic limits with H0 = 73 Km/sec/Mpc and Terrell (1979) also. We have found that all D L estimations are consistent with each other for z = 1. The results of cosmological calulator I and II are found to consistent with each other and higher by several factors over cosmological calculator IV and the predictions of the Hubble's law under relativistic case. We observe a kind bimodal distributions in D L for z <= 3.5.

  19. Galaxy NGC 1850 (United States)


    By spying on a neighboring galaxy, NASA's Hubble Space Telescope has captured an image of a young, globular-like star cluster -- a type of object unknown in our Milky Way Galaxy. The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at and The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The double cluster NGC 1850 lies in a neighboring satellite galaxy, the Large Magellanic Cloud. It has two relatively young components. The main, globular-like cluster is in the center. A smaller cluster is seen below and to the right, composed of extremely hot, blue stars and fainter red T-Tauri stars. The main cluster is about 50 million years old; the smaller one is 4 million years old. A filigree pattern of diffuse gas surrounds NGC 1850. Scientists believe the pattern formed millions of years ago when massive stars in the main cluster exploded as supernovas. Hubble can observe a range of star types in NGC 1850, including the faint, low-mass T-Tauri stars, which are difficult to distinguish with ground-based telescopes. Hubble's fine angular resolution can pick out these stars, even in other galaxies. Massive stars of the OB type emit large amounts of energetic ultraviolet radiation, which is absorbed by the Earth's atmosphere. From Hubble's position above the atmosphere, it can detect this ultraviolet light. NGC 1850, the brightest star cluster in the Large Magellanic Cloud, is in the southern constellation of Dorado, called the Goldfish or the Swordfish. This image was created from five archival exposures taken by the Wide Field Planetary Camera 2 between April 3, 1994 and February 6, 1996. More information about the Hubble Space Telescope is online at More information about the Wide Field and Planetary Camera 2 is at The Space Telescope Science Institute, Baltimore, Md., manages space

  20. Creating lenticular galaxies with mergers (United States)

    Querejeta, Miguel; Eliche-Moral, M. Carmen; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo; Zamorano, Jaime; Gallego, Jesús


    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular galaxies (e.g. photometric bulge-disc coupling) seemed to rule out a potential merger origin. Here, we summarise our recent work in which we have shown, through N-body numerical simulations, that disc-dominated lenticulars can emerge from major mergers of spiral galaxies, in good agreement with observational photometric scaling relations. Moreover, we show that mergers simultaneously increase the light concentration and reduce the angular momentum relative to their spiral progenitors. This explains the mismatch in angular momentum and concentration between spirals and lenticulars recently revealed by CALIFA observations, which is hard to reconcile with simple fading mechanisms (e.g. ram-pressure stripping).

  1. Observing and Simulating Galaxy Evolution

    DEFF Research Database (Denmark)

    Olsen, Karen Pardos

    , but 50% smaller _CO factors, with the latter decreasing towards the center of each model galaxy. In a second study, SÍGAME is adapted to model the fine-structure line of singly ionized carbon, [CII] at 158 _m, the most powerful emission line of neutral ISM. Applying SÍGAME to the same type of galaxies......It remains a quest for modern astronomy to answer what main mechanisms set the star formation rate (SFR) of galaxies. Massive galaxies present a good starting point for such a quest due to their relatively easy detection at every redshift. Since stars form out of cold and dense gas, a comprehensive...... model for galaxy evolution should explain any observed connection between SFR and the amount and properties of the molecular gas of the interstellar medium (ISM). In proposed models of that kind, an active galactic nucleus (AGN) phase is often invoked as the cause for the decrease or cease of star...

  2. Relic galaxies: where are they? (United States)

    Peralta de Arriba, L.; Quilis, V.; Trujillo, I.; Cebrián, M.; Balcells, M.


    The finding that massive galaxies grow with cosmic time fired the starting gun for the search of objects which could have survived up to the present day without suffering substantial changes (neither in their structures, neither in their stellar populations). Nevertheless, and despite the community efforts, up to now only one firm candidate to be considered one of these relics is known: NGC 1277. Curiously, this galaxy is located at the centre of one of the most rich near galaxy clusters: Perseus. Is its location a matter of chance? Should relic hunters focus their search on galaxy clusters? In order to reply this question, we have performed a simultaneous and analogous analysis using simulations (Millennium I-WMAP7) and observations (New York University Value-Added Galaxy Catalogue). Our results in both frameworks agree: it is more probable to find relics in high density environments.

  3. Large-scale galaxy bias (United States)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian


    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  4. The chemical evolution of dwarf spheroidal galaxies : dissecting the inner regions and their stellar populations

    NARCIS (Netherlands)

    Marcolini, A.; D'Ercole, A.; Battaglia, G.; Gibson, B. K.


    Using three-dimensional hydrodynamical simulations of isolated dwarf spheroidal galaxies (dSphs), we undertake an analysis of the chemical properties of their inner regions, identifying the respective roles played by Type Ia supernovae (SNe Ia) and Type II supernovae (SNe II). The effect of

  5. Confronting semi-analytic galaxy models with galaxy-matter correlations observed by CFHTLenS (United States)

    Saghiha, Hananeh; Simon, Patrick; Schneider, Peter; Hilbert, Stefan


    Testing predictions of semi-analytic models of galaxy evolution against observations helps to understand the complex processes that shape galaxies. We compare predictions from the Garching and Durham models implemented on the Millennium Simulation (MS) with observations of galaxy-galaxy lensing (GGL) and galaxy-galaxy-galaxy lensing (G3L) for various galaxy samples with stellar masses in the range 0.5 ≤ M∗/ 1010M⊙ Durham models are strongly excluded by the observations at the 95% confidence level because they largely over-predict the amplitudes of the GGL and G3L signals, probably because they predict too many satellite galaxies in massive halos.

  6. Combining Galaxy-Galaxy Lensing and Galaxy Clustering: A Practical Approach (United States)

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Dark Energy Survey Collaboration


    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the data vectors, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. We also study the effect of external priors on different subsets of these parameters. We conclude that data from the first year of DES will provide powerful constraints on the evolution of structure growth in the universe, constraining the growth function to better than 5%.

  7. Lopsided Collections of Satellite Galaxies (United States)

    Kohler, Susanna


    You might think that small satellite galaxies would be distributed evenly around their larger galactic hosts but local evidence suggests otherwise. Are satellite distributions lopsided throughout the universe?Satellites in the Local GroupThe distribution of the satellite galaxies orbiting Andromeda, our neighboring galaxy, is puzzling: 21 out of 27 ( 80%) of its satellites are on the side of Andromeda closest to us. In a similar fashion, 4 of the 11 brightest Milky Way satellites are stacked on the side closest to Andromeda.It seems to be the case, then, that satellites around our pair of galaxies preferentially occupy the space between the two galaxies. But is this behavior specific to the Local Group? Or is it commonplace throughout the universe? In a recent study, a team of scientists led by Noam Libeskind (Leibniz Institute for Astrophysics Potsdam, Germany) set out to answer this question.Properties of the galaxies included in the authors sample. Left: redshifts for galaxy pairs. Right: Number of satellite galaxies around hosts. [Adapted from Libeskind et al. 2016]Asymmetry at LargeLibeskind and collaborators tested whether this behavior is common by searching through Sloan Digital Sky Survey observations for galaxy pairs that are similar to the Milky Way/Andromeda pair. The resulting sample consists of 12,210 pairs of galaxies, which have 46,043 potential satellites among them. The team then performed statistical tests on these observations to quantify the anisotropic distribution of the satellites around the host galaxies.Libeskind and collaborators find that roughly 8% more galaxies are seen within a 15 angle facing the other galaxy of a pair than would be expected in a uniform distribution. The odds that this asymmetric behavior is randomly produced, they show, are lower than 1 in 10 million indicating that the lopsidedness of satellites around galaxies in pairs is a real effect and occurs beyond just the Local Group.Caution for ModelingProbability that


    NARCIS (Netherlands)



    We present the B-band Tully-Fisher relation for low surface brightness (LSB) galaxies. These LSB galaxies follow the same Tully-Fisher relation as normal spiral galaxies. This implies that the mass-to-light ratio (M/L) of LSB galaxies is typically a factor of 2 larger than that of normal galaxies of

  9. Galactic accretion and the outer structure of galaxies in the CDM model (United States)

    Cooper, Andrew P.; D'Souza, Richard; Kauffmann, Guinevere; Wang, Jing; Boylan-Kolchin, Michael; Guo, Qi; Frenk, Carlos S.; White, Simon D. M.


    We have combined the semi-analytic galaxy formation model of Guo et al. with the particle-tagging technique of Cooper et al. to predict galaxy surface brightness profiles in a representative sample of ˜1900 massive dark matter haloes (1012-1014M⊙) from the Millennium II Λ cold dark matter N-body simulation. Here, we present our method and basic results focusing on the outer regions of galaxies, consisting of stars accreted in mergers. These simulations cover scales from the stellar haloes of Milky Way-like galaxies to the `cD envelopes' of groups and clusters, and resolve low surface brightness substructure such as tidal streams. We find that the surface density of accreted stellar mass around the central galaxies of dark matter haloes is well described by a Sèrsic profile, the radial scale and amplitude of which vary systematically with halo mass (M200). The total stellar mass surface density profile breaks at the radius where accreted stars start to dominate over stars formed in the galaxy itself. This break disappears with increasing M200 because accreted stars contribute more of the total mass of galaxies, and is less distinct when the same galaxies are averaged in bins of stellar mass, because of scatter in the relation between M⋆ and M200. To test our model, we have derived average stellar mass surface density profiles for massive galaxies at z ≈ 0.08 by stacking Sloan Digital Sky Survey images. Our model agrees well with these stacked profiles and with other data from the literature and makes predictions that can be more rigorously tested by future surveys that extend the analysis of the outer structure of galaxies to fainter isophotes. We conclude that it is likely that the outer structure of the spheroidal components of galaxies is largely determined by collisionless merging during their hierarchical assembly.

  10. The Lopsidedness of Satellite Galaxy Systems in ΛCDM Simulations (United States)

    Pawlowski, Marcel S.; Ibata, Rodrigo A.; Bullock, James S.


    The spatial distribution of satellite galaxies around pairs of galaxies in the Sloan Digital Sky Survey (SDSS) have been found to bulge significantly toward the respective partner. Highly anisotropic, planar distributions of satellite galaxies are in conflict with expectations derived from cosmological simulations. Does the lopsided distribution of satellite systems around host galaxy pairs constitute a similar challenge to the standard model of cosmology? We investigate whether such satellite distributions are present around stacked pairs of hosts extracted from the ΛCDM simulations Millennium-I, Millennium-II, Exploring the Local Volume in Simulations, and Illustris-1. By utilizing this set of simulations covering different volumes, resolutions, and physics, we implicitly test whether a lopsided signal exists for different ranges of satellite galaxy masses, and whether the inclusion of hydrodynamical effects produces significantly different results. All simulations display a lopsidedness similar to the observed situation. The signal is highly significant for simulations containing a sufficient number of hosts and resolved satellite galaxies (up to 5 σ for Millennium-II). We find a projected signal that is up to twice as strong as that reported for the SDSS systems for certain opening angles (∼16% more satellites in the direction between the pair than expected for uniform distributions). Considering that the SDSS signal is a lower limit owing to likely back- and foreground contamination, the ΛCDM simulations appear to be consistent with this particular empirical property of galaxy pairs.


    Energy Technology Data Exchange (ETDEWEB)

    Douglass, Kelly A.; Vogeley, Michael S., E-mail: [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)


    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O iii] and [S ii] transitions, provide estimates of a region’s electron temperature and number density. From these two quantities and the emission line fluxes [O ii] λ 3727, [O iii] λ 4363, and [O iii] λλ 4959, 5007, we estimate the abundance of oxygen with the direct T{sub e}  method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.

  12. Direct HST Dust Lane Detection in Powerful Narrow-Line Radio Galaxies

    Directory of Open Access Journals (Sweden)

    Edgar A. Ramírez


    Full Text Available We present the analysis of near-infrared Hubble Space Telescope imaging of 10 Fanaroff Riley II powerful radio galaxies at low redshift (0.03 < z < 0.11 optically classified as narrow-line radio galaxies. The photometric properties of the host galaxy are measured using galfit, and compared with those from the literature. Our high resolution near-infrared observations provide new and direct information on the central kpc-scale dust lanes in our sample that could be connected to the pc-scale torus structure. Moreover, analyzing the infrared spectrograph Spitzer spectra of our sample, we suggest properties of the dust size of the torus.

  13. Herschel Extreme Lensing Line Observations: [CII] Variations in Galaxies at Redshifts z=1-3 (United States)

    Malhotra, Sangeeta; Rhoads, James E.; Finkelstein, K.; Yang, Huan; Carilli, Chris; Combes, Françoise; Dassas, Karine; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Shin, Min-Su; Spaans, Marco; Strauss, Michael A.; Papovich, Casey


    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. A Universe of ultradiffuse galaxies: theoretical predictions from ΛCDM simulations (United States)

    Rong, Yu; Guo, Qi; Gao, Liang; Liao, Shihong; Xie, Lizhi; Puzia, Thomas H.; Sun, Shuangpeng; Pan, Jun


    A particular population of galaxies have drawn much interest recently, which are as faint as typical dwarf galaxies but have the sizes as large as L* galaxies, the so called ultradiffuse galaxies (UDGs). The lack of tidal features of UDGs in dense environments suggests that their host haloes are perhaps as massive as that of the Milky Way. On the other hand, galaxy formation efficiency should be much higher in the haloes of such masses. Here, we use the model galaxy catalogue generated by populating two large simulations: the Millennium-II cosmological simulation and Phoenix simulations of nine big clusters with the semi-analytic galaxy formation model. This model reproduces remarkably well the observed properties of UDGs in the nearby clusters, including the abundance, profile, colour and morphology, etc. We search for UDG candidates using the public data and find two UDG candidates in our Local Group and 23 in our Local Volume, in excellent agreement with the model predictions. We demonstrate that UDGs are genuine dwarf galaxies, formed in the haloes of ˜1010 M⊙. It is the combination of the late formation time and high spins of the host haloes that results in the spatially extended feature of this particular population. The lack of tidal disruption features of UDGs in clusters can also be explained by their late infall-time.

  15. Galaxy bias from galaxy-galaxy lensing in the DES science verification data (United States)

    Prat, J.; Sánchez, C.; Miquel, R.; Kwan, J.; Blazek, J.; Bonnett, C.; Amara, A.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Giannantonio, T.; Hartley, W. G.; Jarvis, M.; MacCrann, N.; Percival, W. J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.


    We present a measurement of galaxy-galaxy lensing around a magnitude-limited (iAB science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h-1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b · r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ.

  16. Supernova studies in the SDSS-II/SNe survey spectroscopy of the peculiar SN 2007qd, and photometric properties of Type-Ia supernovae as a function of the distance to the host galaxy /


    Galbany i Gonzàlez, Lluís


    Descripció del recurs: el 01 setembre 2012 Aquesta tesi engloba el treball fet durant els ultims quatre anys com a estudiant de doctorat a l'Institut de Física d'Altes Energies (IFAE), emmarcat dins de la col·labaració Sloan Digital Sky Survey II Supernova (SDSS-II/SNe) Survey. Al primer capítol (§1) s'introdueixen els principals conceptes del Model Estàndar de Cosmologia, presentant els seus orígens, les propietats dels seus continguts, i les mesures de distància i brillantor. També es re...

  17. The radio core structure of the luminous infrared galaxy NGC 4418. A young clustered starburst revealed? (United States)

    Varenius, E.; Conway, J. E.; Martí-Vidal, I.; Aalto, S.; Beswick, R.; Costagliola, F.; Klöckner, H.-R.


    Context. The galaxy NGC 4418 contains one of the most compact obscured nuclei within a luminous infrared galaxy (LIRG) in the nearby Universe. This nucleus contains a rich molecular gas environment and an unusually high ratio of infrared-to-radio luminosity (q-factor). The compact nucleus is powered by either a compact starburst or an active galactic nucleus (AGN). Aims: The aim of this study is to constrain the nature of the nuclear region (starburst or AGN) within NGC 4418 via very-high-resolution radio imaging. Methods: Archival data from radio observations using the European Very Long Baseline Interferometry Network (EVN) and Multi-Element Radio Linked Interferometer Network (MERLIN) interferometers are imaged. Sizes and flux densities are obtained by fitting Gaussian intensity distributions to the image. The average spectral index of the compact radio emission is estimated from measurements at 1.4 GHz and 5.0 GHz. Results: The nuclear structure of NGC 4418 visible with EVN and MERLIN consists of eight compact (104.8 K indicate that these compact features cannot be HII-regions. The complex morphology and inverted spectrum of the eight detected compact features is evidence against the hypothesis that an AGN alone is powering the nucleus of NGC 4418. The compact features could be super star clusters with intense star formation, and their associated free-free absorption could then naturally explain both their inverted radio spectrum and the low radio-to-IR ratio of the nucleus. The required star formation area density is extreme, however, and close to the limit of what can be observed in a well-mixed thermal/non-thermal plasma produced by star formation, and is also close to the limit of what can be physically sustained.

  18. Stellar populations of shell galaxies (United States)

    Carlsten, S. G.; Hau, G. K. T.; Zenteno, A.


    We present a study of the inner (out to ∼1 Reff) stellar populations of nine shell galaxies. We derive stellar population parameters from long-slit spectra by both analysing the Lick indices of the galaxies and by fitting single stellar population model spectra to the full galaxy spectra. The results from the two methods agree reasonably well. A few of the shell galaxies appear to have lower central Mg2 index values than the general population of galaxies of the same central velocity dispersion, which is possibly due to a past interaction event. Our sample shows a relation between central metallicity and velocity dispersion that is consistent with previous samples of non-shell galaxies. Analysing the metallicity gradients in our sample, we find an average gradient of -0.16 ± 0.10 dex decade-1 in radius. We compare this with formation models to constrain the merging history of shell galaxies. We argue that our galaxies likely have undergone major mergers but it is unclear whether the shells formed from these events or from separate minor mergers. Additionally, we find evidence for young stellar populations ranging in age from 500 Myr to 4-5 Gyr in four of the galaxies, allowing us to speculate on the age of the shells. For NGC 5670, we use a simple dynamical model to find the time required to produce the observed distribution of shells to be roughly consistent with the age of the young subpopulation, suggesting that the shells and subpopulation possibly formed from the same event.

  19. Fire within the Antennae Galaxies (United States)


    This false-color image composite from NASA's Spitzer Space Telescope reveals hidden populations of newborn stars at the heart of the colliding 'Antennae' galaxies. These two galaxies, known individually as NGC 4038 and 4039, are located around 68 million light-years away and have been merging together for about the last 800 million years. The latest Spitzer observations provide a snapshot of the tremendous burst of star formation triggered in the process of this collision, particularly at the site where the two galaxies overlap. The image is a composite of infrared data from Spitzer and visible-light data from Kitt Peak National Observatory, Tucson, Ariz. Visible light from stars in the galaxies (blue and green) is shown together with infrared light from warm dust clouds heated by newborn stars (red). The two nuclei, or centers, of the merging galaxies show up as yellow-white areas, one above the other. The brightest clouds of forming stars lie in the overlap region between and left of the nuclei. Throughout the sky, astronomers have identified many of these so-called 'interacting' galaxies, whose spiral discs have been stretched and distorted by their mutual gravity as they pass close to one another. The distances involved are so large that the interactions evolve on timescales comparable to geologic changes on Earth. Observations of such galaxies, combined with computer models of these collisions, show that the galaxies often become forever bound to one another, eventually merging into a single, spheroidal-shaped galaxy. Wavelengths of 0.44 microns are represented in blue, .70 microns in green and 8.0 microns in red. This image was taken on Dec. 24, 2003.

  20. The Assembly of Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.


    We study the formation of fifty-three galaxy cluster-size dark matter halos (M = 10{sup 14.0-14.76} M{sub {circle_dot}}) formed within a pair of cosmological {Lambda}CDM N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host {approx} 0.1L{sub *} galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'pre-processing' in the group environment prior to their accretion into the cluster. On average, {approx} 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; and less than {approx} 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past ({approx}< 6 Gyr) than a field halo of the same mass. These results suggest that local, cluster processes like ram-pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass; and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with {approx} 20% incorporated into the cluster halo more than 7 Gyr ago and {approx} 20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate time-scale for late-type to early-type transformation within the cluster environment to be {approx} 6 Gyr.

  1. Surface photometry of new nearby dwarf galaxies


    Makarova, L. N.; Karachentsev, I. D.; Grebel, E. K.; Barsunova, O. Yu.


    We present CCD surface photometry of 16 nearby dwarf galaxies, many of which were only recently discovered. Our sample comprises both isolated galaxies and galaxies that are members of nearby galaxy groups. The observations were obtained in the Johnson B and V bands (and in some cases in Kron-Cousins I). We derive surface brightness profiles, total magnitudes, and integrated colors. For the 11 galaxies in our sample with distance estimates the absolute B magnitudes lie in the range of -10>Mb>...

  2. Star Formation Histories of Nearby Dwarf Galaxies


    Grebel, Eva K.


    Properties of nearby dwarf galaxies are briefly discussed. Dwarf galaxies vary widely in their star formation histories, the ages of their subpopulations, and in their enrichment history. Furthermore, many dwarf galaxies show evidence for spatial variations in their star formation history; often in the form of very extended old populations and radial gradients in age and metallicity. Determining factors in dwarf galaxy evolution appear to be both galaxy mass and environment. We may be observi...

  3. Supernova Remnants and Cosmic Ray Acceleration in Nearby Galaxies (United States)

    Pannuti, T. G.

    Supernova remnants (SNRs) have attracted a considerable amount of interest in modern astrophysics from both observational and theoretical perspectives. SNRs play an integral role in numerous processes associated with the evolution of galaxies, including the injection of significant amounts of kinetic energy and heavy-element enriched material into the interstellar medium (ISM). In addition, SNRs have emerged as the leading candidates for the acceleration of cosmic rays within the disks of galaxies through the proposed diffusive shock acceleration (DSA) mechanism. Observations of SNRs have been conducted at three particular wavelengths, based on distinct processes of energy emission associated with these objects. Thermal bremsstrahlung emission from gas shock-heated to temperatures of 10^6 - 10^7 K, recombination radiation from ionized atomic species such as [S II] and non-thermal synchrotron emission from relativistic electrons gyrating in the SNR's magnetic field produce X-ray, optical and radio emission, respectively. Studies of SNRs within our own Galaxy have been hampered by considerable distance uncertainties and massive extinction along Galactic lines of sight, particularly at the X-ray and optical wavelengths. In contrast, the study of SNRs located in nearby galaxies -- particularly galaxies located at high Galactic latitudes with face-on or nearly face-on orientations -- offers the opportunity to examine equidistant samples of SNRs that are nearly free of obscuration. We present a multi-wavelength (X-ray, optical and radio) study of the resident SNR populations of the Sculptor Group galaxies NGC 300 and NGC 7793 and the northern grand-design spiral NGC 6946. These three galaxies are nearby (2.1 Megaparsecs, 3.34 Megaparsecs and 5.1 Megaparsecs distant, respectively), located at high Galactic latitudes and clearly exhibit extensive massive star formation throughout their disks. We have observed these galaxies at the wavelengths of 6 and 20 cm with the Very

  4. Thick Disks of Lenticular Galaxies


    Pohlen, M.; Balcells, M.; Luetticke, R.; Dettmar, R. -J.


    Thick disks are faint and extended stellar components found around several disk galaxies including our Milky Way. The Milky Way thick disk, the only one studied in detail, contains mostly old disk stars (~10 Gyr), so that thick disks are likely to trace the early stages of disk evolution. Previous detections of thick disk stellar light in external galaxies have been originally made for early-type, edge-on galaxies but detailed 2D thick/thin disk decompositions have been reported for only a sc...

  5. The kinematics of lopsided galaxies


    Noordermeer, Edo; Sparke, Linda S.; Levine, Stephen E.


    Lopsidedness is a common feature in galaxies, both in the distribution of light and in the kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a disc lying off-centre in a dark halo, and circling around the halo centre. We search for families of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these orbits. Several of our models show strong lopsided gas kinematics, especially the ones in which the disc spins around its a...

  6. Samsung Galaxy Tabs for dummies

    CERN Document Server

    Gookin, Dan


    A colorful, entertaining, and informative guide to the Samsung Galaxy family of tablets Samsung's bestselling Galaxy Tabs may come in multiple sizes, but they all share the wildly popular Android operating system and are packed with tons of top-notch tablet features. This full-color book shows you how to enjoy all the things your Galaxy Tab can do, regardless of model: browse the web, handle e-mail, manage your social media, make phone calls and video chat, read e-books, take and share photos, play music, and more. Author Dan Gookin, famous for his skill in demystifying technology, takes you

  7. Dark matter in elliptical galaxies (United States)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.


    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  8. Observations and Models of Galaxy Assembly Bias (United States)

    Campbell, Duncan A.


    The assembly history of dark matter haloes imparts various correlations between a halo’s physical properties and its large scale environment, i.e. assembly bias. It is common for models of the galaxy-halo connection to assume that galaxy properties are only a function of halo mass, implicitly ignoring how assembly bias may affect galaxies. Recently, programs to model and constrain the degree to which galaxy properties are influenced by assembly bias have been undertaken; however, the extent and character of galaxy assembly bias remains a mystery. Nevertheless, characterizing and modeling galaxy assembly bias is an important step in understanding galaxy evolution and limiting any systematic effects assembly bias may pose in cosmological measurements using galaxy surveys.I will present work on modeling and constraining the effect of assembly bias in two galaxy properties: stellar mass and star-formation rate. Conditional abundance matching allows for these galaxy properties to be tied to halo formation history to a variable degree, making studies of the relative strength of assembly bias possible. Galaxy-galaxy clustering and galactic conformity, the degree to which galaxy color is correlated between neighbors, are sensitive observational measures of galaxy assembly bias. I will show how these measurements can be used to constrain galaxy assembly bias and the peril of ignoring it.

  9. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies (United States)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.


    We quantify the effect of the galaxy group environment (for group masses of 1012.5-1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (I.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy-galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (I) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ˜1.5-5 x SFR and ˜1-4 x SFR, respectively; and (II) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ˜100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ˜Mpc scales, I.e., from gas not initially associated with the galaxies upon infall. Consequently, the color

  10. Integral field observations of the blue compact galaxy Haro14. Star formation and feedback in dwarf galaxies (United States)

    Cairós, L. M.; González-Pérez, J. N.


    Context. Low-luminosity, gas-rich blue compact galaxies (BCG) are ideal laboratories to investigate the triggering and propagation of star formation in galaxies, the effects of massive stellar feedback within a shallow gravitational potential, and the enrichment of the interstellar medium. Aims: We aim to probe the morphology, stellar content, and kinematics, along with the nebular excitation and ionization mechanism, in the BCG Haro 14 by means of integral field observations. Methods: We observed Haro 14 at the Very Large Telescope, working with the Visible Multi-Object Spectrograph. From these data we build maps in continuum and in the brighter emission lines, produce line-ratio maps (interstellar extinction, density, and diagnostic-line ratios), and obtain the velocity and velocity dispersion fields. We also generate the integrated spectrum of the major H II regions and young stellar clusters identified in the maps to determine reliable physical parameters and oxygen abundances. Results: We find as follows: I) the current star formation in Haro 14 is spatially extended with the major H II regions placed along a linear (chain-like) structure, elongated in the north-south direction, and in a horseshoe-like curvilinear feature that extends about 760 pc eastward; the continuum emission is more concentrated and peaks close to the galaxy center; II) two different episodes of star formation are present in the central galaxy regions: the recent starburst, with ages ≤6 Myr and the intermediate-age clusters, with ages between 10 and 30 Myr; these stellar components rest on a several Gyr old underlying host galaxy; III) the Hα/Hβ pattern is inhomogeneous, with excess color values varying from E(B-V) = 0.04 up to E(B-V) = 1.09; iv) shocks play a significant role in the galaxy; and v) the velocity field displays a complicated pattern with regions of material moving toward us in the east and north galaxy areas. Conclusions: The morphology of Haro 14, its irregular

  11. Spatially Resolved Analysis of the Interstellar Medium in the Cosmic Eye, a Lensed Lyman Break Galaxy at z=3.074 (United States)

    Ball, Catherine; Riechers, Dominik A.; Pavesi, Riccardo


    The [CII]/[NII] ratio combines the [CII] line, a tracer of photodissociation and HII regions emerging from the neutral and ionized phases of the interstellar medium (ISM), with [NII] emission, which only originates from the ionized ISM. In this, the [CII]/[NII] ratio can be used to separate the fractions of [CII] emission emerging from the different phases of the ISM. We present Atacama Large sub-Millimeter Array (ALMA) observations of the Cosmic Eye, a gravitationally lensed Lyman Break Galaxy (LBG). As an LBG, the Cosmic Eye represents a "normal" star forming galaxy in the z>2 universe. LBGs were host to the bulk of star formation during the peak epoch of star formation. Diagnosing star formation in these galaxies provides insight into the evolution of “normal” galaxies in a cosmic sense. The high magnification (30x) allows us to resolve the [CII] 158μm and the [NII] 205μm lines in detail, allowing for a position-resolved analysis of their ratio. We find variations of the line ratio across the galaxy, suggesting the galaxy’s internal structure affects this ratio. We consider the Cosmic Eye in the context of both higher redshift LBGs and local luminous and ultraluminous infrared galaxies, finding that the Cosmic Eye’s line ratio is similar to those of both higher- and lower- redshift galaxies. The Cosmic Eye’s global [CII]/[NII] ratio sits between two previous measurements of z>5 LBGs at low resolution, suggesting that the ratio may correlate more significantly with LFIR than with redshift in this epoch. Furthermore, the Cosmic Eye’s [CII]/[NII] ratio is similar to those of the nearby LIRG/ULIRGs, though we expect local [CII]/[NII] values to be lower due to their different metallicities and dust content. High-resolution studies like this one probe the evolution of [CII]/[NII] over cosmic time by examining the evolution of the ISM’s structure. With a better understanding of the [CII]/[NII] line ratio, we can more effectively use it as a probe of the

  12. Using r-process enhanced galaxies to estimate the neutron star merger rate at high redshift (United States)

    Roederer, Ian


    The rapid neutron-capture process, or r-process, is one of the fundamental ways that stars produce heavy elements. I describe a new approach that uses the existence of r-process enhanced galaxies, like the recently discovered ultra-faint dwarf galaxy Reticulum II, to derive a rate for neutron star mergers at high redshift. This method relies on three assertions. First, several lines of reasoning point to neutron star mergers as a rare yet prolific producer of r-process elements, and one merger event is capable of enriching most of the stars in a low-mass dwarf galaxy. Second, the Local Group is cosmologically representative of the halo mass function at the mass scales of low-luminosity dwarf galaxies, and the volume that their progenitors spanned at high redshifts can be estimated from simulations. Third, many of these dwarf galaxies are extremely old, and the metals found in their stars today date from the earliest times at high redshift. These galaxies occupy a quantifiable volume of the Universe, from which the frequency of r-process enhanced galaxies can be estimated. This frequency may be interpreted as lower limit to the neutron star merger rate at a redshift (z ~ 5-10) that is much higher than is accessible to gravitational wave observatories. I will present a proof of concept demonstration using medium-resolution multi-object spectroscopy from the Michigan/Magellan Fiber System (M2FS) to recover the known r-process galaxy Reticulum II, and I will discuss future plans to apply this method to other Local Group dwarf galaxies.

  13. Active galactic nucleus activity and black hole masses in low surface brightness galaxies (United States)

    Ramya, S.; Prabhu, T. P.; Das, M.


    We present medium resolution optical spectroscopy of a sample of nine low surface brightness (LSB) galaxies. For those that show clear signatures of active galactic nucleus (AGN) emission, we have disentangled the AGN component from stellar light and any Fe I and Fe II contribution. We have decomposed the Hα line into narrow and broad components and determined the velocities of the broad components; typical values lie between 900 and 2500 km s-1. Of the galaxies in our study, UGC 6614, UGC 1922, UGC 6968 and LSBC F568-6 (Malin 2) show clear signatures of AGN activity. We have calculated the approximate black hole (BH) masses for these galaxies from the Hα line emission using the virial approximation. The BH masses are ˜3 × 105 M⊙ for three galaxies and lie in the intermediate-mass BHs domain rather than the supermassive range. UGC 6614 harbours a BH of mass 3.8 × 106 M⊙; it also shows an interesting feature bluewards of Hα and Hβ implying outflow of gas or a one-sided jet streaming towards us. We have also measured the bulge stellar velocity dispersions using the Ca II triplet lines and plotted these galaxies on the M-σ plot. We find that all the three galaxies UGC 6614, UGC 6968 and F568-6 lie below the M-σ relation for nearby galaxies. Thus, we find that although the bulges of LSB galaxies may be well evolved, their nuclear BH masses are lower than those found in bright galaxies and lie offset from the M-σ correlation.

  14. Environmental Effects on the Metallicities of Early-Type Galaxies (United States)

    Jones, Christine; Oliversen, Ronald (Technical Monitor)


    We completed and published two papers in the Astrophysical Journal based on research from grant. In the first paper we analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type II supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia. In the second paper We analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type I1 supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia.

  15. Secular Evolution in Disk Galaxies (United States)

    Kormendy, John


    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  16. Astronomy: Quasars signpost massive galaxies (United States)

    Bouwens, Rychard


    The neighbourhoods of extremely bright astronomical objects called quasars in the early Universe have been incompletely probed. Observations suggest that these regions harbour some of the most massive known galaxies. See Letter p.457

  17. Globular Clusters - Guides to Galaxies

    CERN Document Server

    Richtler, Tom; Joint ESO-FONDAP Workshop on Globular Clusters


    The principal question of whether and how globular clusters can contribute to a better understanding of galaxy formation and evolution is perhaps the main driving force behind the overall endeavour of studying globular cluster systems. Naturally, this splits up into many individual problems. The objective of the Joint ESO-FONDAP Workshop on Globular Clusters - Guides to Galaxies was to bring together researchers, both observational and theoretical, to present and discuss the most recent results. Topics covered in these proceedings are: internal dynamics of globular clusters and interaction with host galaxies (tidal tails, evolution of cluster masses), accretion of globular clusters, detailed descriptions of nearby cluster systems, ultracompact dwarfs, formations of massive clusters in mergers and elsewhere, the ACS Virgo survey, galaxy formation and globular clusters, dynamics and kinematics of globular cluster systems and dark matter-related problems. With its wide coverage of the topic, this book constitute...

  18. Secular Evolution of Spiral Galaxies

    National Research Council Canada - National Science Library

    Zhang, Xiaolei


    It is now a well established fact that galaxies undergo significant morphological transformation during their lifetimes, manifesting as an evolution along the Hubble sequence from the late to the early Hubble types...


    Energy Technology Data Exchange (ETDEWEB)

    Andrews, H.; Barrientos, L. F.; Padilla, N.; Lacerna, I. [Instituto de Astrofisica, Pontificia Universidad Catolica de Chile, Avenida Vicuna Mackenna 4860, Santiago (Chile); Lopez, S.; Lira, P.; Maureira, M. J. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Gilbank, D. G. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Ellingson, E. [Center for Astrophysics and Space Astronomy, University of Colorado at Boulder, Campus Box 389, Boulder, CO 80309-0389 (United States); Gladders, M. D. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Yee, H. K. C., E-mail: [Department of Astronomy and Astrophysics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 3H8 (Canada)


    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from Lopez et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h{sub 71}{sup -1} Mpc from the QSO sight line (a {sup p}hotometric hit{sup )}. The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 A. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 {<=} z{sub gal} {<=} 1.0955, up to an impact parameter of 142 h{sub 71}{sup -1} kpc and a maximum velocity difference of 280 km s{sup -1}. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within {approx}650 km s{sup -1} from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference {Delta}z = 0.1. The general population of our confirmed absorbing galaxies have luminosities

  20. Most Massive Spiral Galaxy Known in the Universe (United States)


    singly ionized nitrogen ([N II]) is seen to the right; it shows exactly the same behaviour. Technical information about this photo is available below. Caption : PR Photo 33c/00 shows the extracted H-alpha profile in ISOHDFS 27 , following extensive image processing of the spectrum shown in Photo 33b/00. When corrected for the inclination of the galaxy (50°), the peak-to-peak velocity difference is about 830 km/sec, corresponding to a rotational velocity of about 415 km/sec. This is about three times more than what is typical for normal spiral galaxies and hence indicates a very large mass. Photo 33b/00 shows the "raw" ISAAC spectrum, i.e. the image of the spectrum as seen in the read-out from the detector. The derived spectral profile of the H-alpha line is shown in Photo 33c/00 . The shape is very unusual and implies that the emitting region is probably not concentrated at the centre of the galaxy, but most likely has a disk-like structure. Taking into account the inclination of the galaxy (50°), the difference in velocity between the two peaks is 830 km/sec, i.e. the rotational velocity is half of that, 415 km/sec, or significantly more than what is measured in normal spiral galaxies. This was an interesting start for an ambitious project. But the astronomers got really excited when they made the first estimate of the total mass of that galaxy. "I can't believe it, this spiral galaxy is really massive!" , said Dimitra Rigopoulou from the Garching team. And she added: "With an estimated mass of 10 12 times that of our Sun and 4 times the mass of our own Galaxy, it seems to be the most massive spiral galaxy found so far in the Universe!" Indeed, careful calculations later showed that a total mass of 1.04 10 12 solar masses is present within 4 arcsec of the central region of (an area of 8 arcsec across), corresponding to 100,000 light-years (40 kpc) in ISOHDFS 27 . This is enormous by all standards [3]. The baryonic mass which corresponds to the mass in the older stars

  1. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6. (United States)

    Decarli, R; Walter, F; Venemans, B P; Bañados, E; Bertoldi, F; Carilli, C; Fan, X; Farina, E P; Mazzucchelli, C; Riechers, D; Rix, H-W; Strauss, M A; Wang, R; Yang, Y


    The existence of massive (1011 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 109 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C ii] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C ii] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C ii] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C ii] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  2. Massive star clusters in galaxies. (United States)

    Harris, William E


    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  3. Chemical Evolution Library for Galaxy Formation Simulation (United States)

    Saitoh, Takayuki R.


    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  4. Enhancement classification of galaxy images (United States)

    Jenkinson, John

    With the advent of astronomical imaging technology developments, and the increased capacity of digital storage, the production of photographic atlases of the night sky have begun to generate volumes of data which need to be processed autonomously. As part of the Tonantzintla Digital Sky Survey construction, the present work involves software development for the digital image processing of astronomical images, in particular operations that preface feature extraction and classification. Recognition of galaxies in these images is the primary objective of the present work. Many galaxy images have poor resolution or contain faint galaxy features, resulting in the misclassification of galaxies. An enhancement of these images by the method of the Heap transform is proposed, and experimental results are provided which demonstrate the image enhancement to improve the presence of faint galaxy features thereby improving classification accuracy. The feature extraction was performed using morphological features that have been widely used in previous automated galaxy investigations. Principal component analysis was applied to the original and enhanced data sets for a performance comparison between the original and reduced features spaces. Classification was performed by the Support Vector Machine learning algorithm.

  5. Star Formation in Tadpole Galaxies

    Directory of Open Access Journals (Sweden)

    Casiana Muñoz-Tuñon


    Full Text Available Tadpole Galaxies look like a star forming head with a tail structure to the side. They are also named cometaries. In a series of recent works we have discovered a number of issues that lead us to consider them extremely interesting targets. First, from images, they are disks with a lopsided starburst. This result is rmly  established with long slit spectroscopy in a nearby representative sample. They rotate with the head following the rotation pattern but displaced from the rotation center. Moreover, in a search for extremely metal poor (XMP galaxies, we identied tadpoles as the dominant shapes in the sample - nearly 80% of the local XMP galaxies have a tadpole morphology. In addition, the spatially resolved analysis of the metallicity shows the remarkable result that there is a metallicity drop right at the position of the head. This is contrary to what intuition would say and dicult to explain if star formation has happened from gas processed in the disk. The result could however be understood if the star formation is driven by pristine gas falling into the galaxy disk. If conrmed, we could be unveiling, for the rst time, cool  ows in action in our nearby world. The tadpole class is relatively frequent at high redshift - 10% of resolvable galaxies in the Hubble UDF but less than 1% in the local Universe. They are systems that could track cool ows and test models of galaxy formation.

  6. AGN feedback in dwarf galaxies? (United States)

    Dashyan, Gohar; Silk, Joseph; Mamon, Gary A.; Dubois, Yohan; Hartwig, Tilman


    Dwarf galaxy anomalies, such as their abundance and cusp-core problems, remain a prime challenge in our understanding of galaxy formation. The inclusion of baryonic physics could potentially solve these issues, but the efficiency of stellar feedback is still controversial. We analytically explore the possibility of feedback from active galactic nuclei (AGNs) in dwarf galaxies and compare AGN and supernova (SN) feedback. We assume the presence of an intermediate-mass black hole within low-mass galaxies and standard scaling relations between the relevant physical quantities. We model the propagation and properties of the outflow and explore the critical condition for global gas ejection. Performing the same calculation for SNe, we compare the ability of AGNs and SNe to drive gas out of galaxies. We find that a critical halo mass exists below which AGN feedback can remove gas from the host halo and that the critical halo mass for an AGN is greater than the equivalent for SNe in a significant part of the parameter space, suggesting that an AGN could provide an alternative and more successful source of negative feedback than SNe, even in the most massive dwarf galaxies.


    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Delgado, David; Grebel, Eva K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12–14, D-69120 Heidelberg (Germany); Läsker, Ronald [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Sharina, Margarita; Karachentsev, Igor D. [Special Astrophysical Observatory, Russian Academy of Sciences (Russian Federation); Toloba, Elisa; Romanowsky, Aaron J. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Fliri, Jürgen [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Beaton, Rachael [The Observatories of the Carnegie Institutions for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Valls-Gabaud, David [LERMA, CNRS UMR 8112, Observatoire de Paris, 61 Avenue de l’Observatoire, F-75014 Paris (France); Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Forbes, Duncan A. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122 (Australia); Gallego-Laborda, J. [Fosca Nit Observatory, Montsec Astronomical Park, Ager (Spain); Teuwen, Karel [Remote Observatories Southern Alpes, Verclause (France); Gómez-Flechoso, M. A. [Departamento de Matemática Aplicada (Biomatemática), Universidad Complutense de Madrid, E-28040 Madrid (Spain); and others


    We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μ{sub V} = 24.8 mag arcsec{sup −2}), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (R{sub e}(V) = 12″) and proximity (15′) to the well-known dwarf spheroidal galaxy And II. Its red color (V − I = 1.0), shallow Sérsic index (n{sub V} = 0.68), and the absence of detectable Hα emission are typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (V{sub h} = 5450 ± 40 km s{sup −1}) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (∼78 Mpc), DGSAT I would have an R{sub e} ∼ 4.7 kpc and M{sub V} ∼ −16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.

  8. Radio Galaxy Zoo: discovery of a poor cluster through a giant wide-angle tail radio galaxy (United States)

    Banfield, J. K.; Andernach, H.; Kapińska, A. D.; Rudnick, L.; Hardcastle, M. J.; Cotter, G.; Vaughan, S.; Jones, T. W.; Heywood, I.; Wing, J. D.; Wong, O. I.; Matorny, T.; Terentev, I. A.; López-Sánchez, Á. R.; Norris, R. P.; Seymour, N.; Shabala, S. S.; Willett, K. W.


    We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of z = 0.0897 for the E0-type host galaxy, 2MASX J08231289+0333016, leading to Mr = -22.6 and a 1.4 GHz radio luminosity density of L1.4 = 5.5 × 1024 W Hz-1. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley classes I and II. The projected largest angular size of ≈8 arcmin corresponds to 800 kpc and the full length of the source along the curved jets/trails is 1.1 Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301 at 1.2-2.6 × 1043 erg s-1 for assumed intracluster medium temperatures of 1.0-5.0 keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with 107 yr in between. This reinforces the idea that an association between RGZ J082312.9+033301 and the newly discovered poor cluster exists.

  9. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies (United States)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide


    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  10. Submillimeter galaxies as progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Toft, S.; Zirm, A.; Krogager, J.-K.; Man, A. W. S. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Mariesvej 30, DK-2100 Copenhagen (Denmark); Smolčić, V.; Krpan, J. [Physics Department, University of Zagreb, Bijenička cesta 32, 10002 Zagreb (Croatia); Magnelli, B.; Karim, A. [Argelander Institute for Astronomy, Auf dem Hügel 71, Bonn, D-53121 (Germany); Michalowski, M. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Capak, P. [Spitzer Science Center, 314-6 Caltech, 1201 East California Boulevard, Pasadena, CA 91125 (United States); Sheth, K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Schawinski, K. [ETH Zurich, Institute for Astronomy, Department of Physics, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Wuyts, S.; Lutz, D.; Staguhn, J.; Berta, S. [MPE, Postfach 1312, D-85741 Garching (Germany); Sanders, D. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Mccracken, H. [Institut dAstrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Riechers, D., E-mail: [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States)


    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42{sub −29}{sup +40} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  11. Do Galaxies Follow Darwinian Evolution? (United States)


    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  12. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Prat, J.; et al.


    We present a measurement of galaxy-galaxy lensing around a magnitude-limited ($i_{AB} < 22.5$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($z\\sim0.3$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $b\\cdot r$ to be $0.87\\pm 0.11$, $1.12 \\pm 0.16$ and $1.24\\pm 0.23$, respectively for the three redshift bins of width $\\Delta z = 0.2$ in the range $0.2galaxy sample, except possibly at the lowest redshift bin ($z\\sim 0.3$), where we find $r = 0.71 \\pm 0.11$ when using TPZ, and $0.83 \\pm 0.12$ with BPZ, assuming the difference between the results from the two probes can be solely attributed to the cross-correlation parameter.

  13. The First Detection of (OIV) from an Ultraluminous X-Ray Source with Spitzer.I. Observational Results for Holmberg II ULX (United States)


    nebula as- sociated with a ULX is located in the dwarf galaxy Holmberg II (Pakull & Mirioni 2002; Lehmann et al. 2005; Abolmasov et al. 2007). He ii is... galaxies : individual (Holmberg II) – infrared: ISM – X-rays: binaries 1. INTRODUCTION The majority of our knowledge of ultraluminous X-ray IMBH. The idea is not far fetched, since examples of super-Eddington sources have been found in our Galaxy , such as GRS 1915+105 (Fender & Belloni

  14. Globular Clusters for Faint Galaxies (United States)

    Kohler, Susanna


    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  15. The formation and evolution of high-redshift dusty galaxies (United States)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration


    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other ingredients including high metallicity, high depletion level, overall low ionization state of gas, neutral

  16. Large Host-galaxy Dispersion Measure of Fast Radio Bursts (United States)

    Yang, Yuan-Pei; Luo, Rui; Li, Zhuo; Zhang, Bing


    Fast radio bursts (FRBs) have excessive dispersion measures (DMs) and an all-sky distribution, which point toward an extragalactic or even a cosmological origin. We develop a method to extract the mean host galaxy DM ( ) and the characterized luminosity (L) of FRBs using the observed DM-flux data, based on the assumption of a narrow luminosity distribution. Applying Bayesian inference to the data of 21 FRBs, we derive a relatively large mean host DM, i.e., ˜ 270 {pc} {{cm}}-3 with a large dispersion. A relatively large DMHG of FRBs is also supported by the millisecond scattering times of some FRBs and the relatively small redshift z = 0.19273 of FRB 121102 (which gives {{DM}}{HG,{loc}}˜ 210 {pc} {{cm}}-3). The large host galaxy DM may be contributed by the interstellar medium (ISM) or a near-source plasma in the host galaxy. If it is contributed by the ISM, the type of the FRB host galaxies would not be Milky Way-like, consistent with the detected host of FRB 121102. We also discuss the possibility of having a near-source supernova remnant, pulsar wind nebula, or H ii region that gives a significant contribution to the observed DMHG.

  17. Ancient Clusters in M33 -- Clues to Galaxy Formation (United States)

    Chandar, Rupali; Goudfrooij, Paul; Puzia, Thomas


    We propose to obtain high-quality integrated-light spectroscopy for ≥≈100 ancient (older than a few Gyr) star clusters in M33, the only late-type spiral galaxy in the Local Group. Using line index measurements in the well-known Lick system, we will derive accurate velocities, ages, and chemical compositions for essentially all known ancient cluster candidates in this galaxy. Because M33 is a bulgeless system, this galaxy provides a unique opportunity to study for the first time, a ``pristine'' halo star cluster sample for a spiral galaxy, without contamination from a bulge component. Our immediate goals are to: (i) measure the kinematic properties (i.e. rotation, velocity dispersion) of ancient star clusters in M33; (ii) estimate the age and metallicity distributions of the halo M33 cluster system in order to constrain formation scenarios; and (iii) pursue a detailed study of the chemistry (i.e., (alpha)/Fe ratios) of these clusters to understand their formation timescales and how they compare with other ancient cluster systems in the Local Group. This proposal was approved last year; however due to technical difficulties at the MMT (for e.g., a rat-induced electrical fire), we only obtained ~20% of the observations. Here, we request one night with the MMT/Hectospec in order to complete our program.

  18. Outflow vs. Infall in Spiral Galaxies: Metal Absorption in the Halo of NGC 891


    Bregman, Joel N.; Miller, Eric D.; Seitzer, Patrick; Cowley, C. R.; Miller, Matthew J.


    Gas accreting onto a galaxy will be of low metallicity while halo gas due to a galactic fountain will be of near-solar metallicity. We test these predictions by measuring the metal absorption line properties of halo gas 5 kpc above the plane of the edge-on galaxy NGC 891, using observations taken with HST/STIS toward a bright background quasar. Metal absorption lines of Fe II, Mg II, and Mg I in the halo of NGC 891 are clearly seen, and when combined with recent deep H I observations, we are ...

  19. Galaxy Zoo: Mergers - Dynamical models of interacting galaxies (United States)

    Holincheck, Anthony J.; Wallin, John F.; Borne, Kirk; Fortson, Lucy; Lintott, Chris; Smith, Arfon M.; Bamford, Steven; Keel, William C.; Parrish, Michael


    The dynamical history of most merging galaxies is not well understood. Correlations between galaxy interaction and star formation have been found in previous studies, but require the context of the physical history of merging systems for full insight into the processes that lead to enhanced star formation. We present the results of simulations that reconstruct the orbit trajectories and disturbed morphologies of pairs of interacting galaxies. With the use of a restricted three-body simulation code and the help of citizen scientists, we sample 105 points in parameter space for each system. We demonstrate a successful recreation of the morphologies of 62 pairs of interacting galaxies through the review of more than 3 million simulations. We examine the level of convergence and uniqueness of the dynamical properties of each system. These simulations represent the largest collection of models of interacting galaxies to date, providing a valuable resource for the investigation of mergers. This paper presents the simulation parameters generated by the project. They are now publicly available in electronic format at Though our best-fitting model parameters are not an exact match to previously published models, our method for determining uncertainty measurements will aid future comparisons between models. The dynamical clocks from our models agree with previous results of the time since the onset of star formation from starburst models in interacting systems and suggest that tidally induced star formation is triggered very soon after closest approach.

  20. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey (United States)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.


    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O ii] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m ⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ˜20% of the full SPT-SZ sample.

  1. Testing MOG, non-local gravity and MOND with rotation curves of dwarf galaxies (United States)

    Zhoolideh Haghighi, M. H.; Rahvar, S.


    Modified gravity (MOG) and non-local gravity (NLG) are two alternative theories to general relativity. They are able to explain the rotation curves of spiral galaxies and clusters of galaxies without including dark matter. In the weak-field approximation, these two theories have similar forms, with an effective gravitational potential that has two components: (I) Newtonian gravity with the gravitational constant enhanced by a factor (1 + α) and (II) a Yukawa-type potential that produces a repulsive force with length-scale 1/μ. In this work, we compare the rotation curves of dwarf galaxies in the LITTLE THINGS catalogue with predictions of MOG, NLG and modified Newtonian dynamics (MOND). We find that the universal parameters of the MOG and NLG theories can fit the rotation curves of dwarf galaxies only at the expense of systematically high stellar mass-to-light ratios at 3.6 μm. For instance, in MOG, half of the galaxies have best-fitting stellar M/L ratios larger than 10. It seems that such a big stellar mass-to-light ratio is in contradiction with observations of nearby stars in the Milky Way and with stellar population synthesis models; however, the stellar mass-to-light ratio of dwarf galaxies is not observed directly by the astrophysical methods. Future observations of binary stars in the dwarf galaxies will identify M/L and consequently examine different modified gravity models.

  2. Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7 (United States)

    Vanzella, E.; Pentericci, L.; Fontana, A.; Grazian, A.; Castellano, M.; Boutsia, K.; Cristiani, S.; Dickinson, M.; Gallozzi, S.; Giallongo, E.; Giavalisco, M.; Maiolino, R.; Moorwood, A.; Paris, D.; Santini, P.


    We report the spectroscopic confirmation of two Lyman break galaxies at redshift >7. The galaxies were observed as part of an ultra-deep spectroscopic campaign with FORS2 at the ESO/VLT for the confirmation of z ~= 7 "z-band dropout" candidates selected from our VLT/Hawk-I imaging survey. Both galaxies show a prominent emission line at 9735 Å and 9858 Å, respectively: the lines have fluxes of ~(1.6-1.2) × 10-17 erg s-1 cm-2 and exhibit a sharp decline on the blue side and a tail on the red side. The asymmetry is quantitatively comparable to the observed asymmetry in z ~ 6 Lyα lines, where absorption by neutral hydrogen in the intergalactic medium (IGM) truncates the blue side of the emission-line profile. We carefully evaluate the possibility that the galaxies are instead at lower redshift and we are observing either [O II], [O III], or Hα emission: however from the spectroscopic and the photometric data we conclude that there are no other plausible identifications, except for Lyα at redshift >7, implying that these are two of the most robust redshift determination for galaxies in the reionization epoch. Based on their redshifts and broadband photometry, we derive limits on the star formation rate and on the ultraviolet spectral slopes of the two galaxies. We argue that these two galaxies alone are unlikely to have ionized the IGM in their surroundings.

  3. Upper limits on the mass and luminosity of Population III-dominated galaxies (United States)

    Yajima, Hidenobu; Khochfar, Sadegh


    We here derive upper limits on the mass and luminosity of Population III (POPIII) dominated proto-galaxies based on the collapse of primordial gas under the effect of angular momentum loss via Lyα radiation drag and the gas accretion on to a galactic centre. Our model predicts that POPIII-dominated galaxies at z ˜ 7 are hosted by haloes with Mh ˜ 1.5 × 108-1.1 × 109 M⊙, that they have Lyα luminosities of LLyα ˜ 3.0 × 1042-2.1 × 1043 erg s- 1, stellar mass of Mstar ˜ 0.8 × 105-2.5 × 106 M⊙ and outflowing gas with velocities Vout ˜ 40 km s- 1 due to Lyα radiation pressure. We show that the POPIII galaxy candidate CR7 violates the derived limits on stellar mass and Lyα luminosity and thus is unlikely to be a POPIII galaxy. POPIII-dominated galaxies at z ˜ 7 have He ii line emission that is ˜1-3 orders of magnitude lower than that of Lyα, they have high Lyα equivalent width of ≳ 300 Å and should be found close to bright star-forming galaxies. The He ii 1640 Å line is in comfortable reach of next generation telescopes, like the James Webb Space Telescope (JWST) or Thirty Meter Telescope (TMT).

  4. Star Formation Activity of Barred Spiral Galaxies (United States)

    Kim, Eunbin; Hwang, Ho Seong; Chung, Haeun; Lee, Gwang-Ho; Park, Changbom; Cervantes Sodi, Bernardo; Kim, Sungsoo S.


    We study the star formation activity of nearby galaxies with bars using a sample of late-type galaxies at 0.02≤slant z≤slant 0.05489 and {M}rgas in strongly barred galaxies are smaller than those in non-barred galaxies, and the gas metallicity is higher in strongly barred galaxies than in non-barred galaxies. The gas properties of weakly barred galaxies again show no difference from those of non-barred galaxies. We stack the optical spectra of barred and non-barred galaxies in several mass bins and fit to the stacked spectra with a spectral fitting code, STARLIGHT. We find no significant difference in stellar populations between barred and non-barred galaxies for both strongly and weakly barred galaxies. Our results are consistent with the idea that the star formation activity of barred galaxies was enhanced in the past along with significant gas consumption, and is currently lower than or similar to that of non-barred galaxies. The past star formation enhancement depends on the strength of bars.

  5. [O II] nebular emission from Mg II absorbers: star formation associated with the absorbing gas (United States)

    Joshi, Ravi; Srianand, Raghunathan; Petitjean, Patrick; Noterdaeme, Pasquier


    We present nebular emission associated with 198 strong Mg II absorbers at 0.35 ≤z ≤ 1.1 in the fibre spectra of quasars from the Sloan Digital Sky Survey. Measured [O II] luminosities (L_[O II]) are typical of sub-L⋆ galaxies with derived star formation rate (uncorrected for fibre losses and dust reddening) in the range of 0.5-20 M⊙ yr-1. Typically less than ∼3 per cent of the Mg II systems with rest equivalent width, W2796≥2Å, show L_[O II] ≥0.3 L^{\\star }_[O II]. The detection rate is found to increase with increasing W2796 and z. No significant correlation is found between W2796 and L_[O II] even when we restrict the samples to narrow z ranges. A strong correlation is seen between L_[O II] and z. While this is expected from the luminosity evolution of galaxies, we show that finite fibre size plays a very crucial role in this correlation. The measured nebular line ratios (like [O III]/[O II] and [O III]/H β) and their z evolution are consistent with those of galaxies detected in deep surveys. Based on the median stacked spectra, we infer the average metallicity (log Z ∼8.3), ionization parameter (log q∼7.5) and stellar mass (log (M/M⊙) ∼ 9.3). The Mg II systems with nebular emission typically have W2796 ≥2 Å, Mg II doublet ratio close to 1 and W(Fe II λ2600)/W2796∼0.5 as often seen in damped Ly α and 21-cm absorbers at these redshifts. This is the biggest reported sample of [O II] emission from Mg II absorbers at low-impact parameters ideally suited for probing various feedback processes at play in z ≤ 1 galaxies.

  6. The Optical Identification of the Luminous Radio Galaxy 0409-752 (United States)

    Alvarez, H.; Aparici, J.; May, J.; Navarrete, M.


    We have identified the radio source 0409 - 752 with a faint (V = 21.6) galaxy which has emission lines of [O II] 3727 (strong), [O III] 4959, 5007 (strong) and [Ne III] 3869 (weak), consistent with a redshift of 0.694. Assuming a cosmological redshift, and using different values for H_0_ and q_0_, we have computed the absolute luminosity in the range 45-8400 MHz. A careful comparison with radio galaxies Cyg A and 3C 295, taken as reference because they are luminous and their spectra are accurately known in that frequency range, shows that 0409 - 752 is even slightly more powerful. The ratio of radio to optical luminosities for 0409 - 752 is very close to the highest known for radio galaxies. We found that the IRAS point source 04099 - 7514 is actually associated to a S0 galaxy in the field.

  7. The Thousand-Ruby Galaxy (United States)


    ESO's Wide Field Imager has captured the intricate swirls of the spiral galaxy Messier 83, a smaller look-alike of our own Milky Way. Shining with the light of billions of stars and the ruby red glow of hydrogen gas, it is a beautiful example of a barred spiral galaxy, whose shape has led to it being nicknamed the Southern Pinwheel. Messier 83, M83 ESO PR Photo 25/08 Spiral Galaxy Messier 83 This dramatic image of the galaxy Messier 83 was captured by the Wide Field Imager at ESO's La Silla Observatory, located high in the dry desert mountains of the Chilean Atacama Desert. Messier 83 lies roughly 15 million light-years away towards the huge southern constellation of Hydra (the sea serpent). It stretches over 40 000 light-years, making it roughly 2.5 times smaller than our own Milky Way. However, in some respects, Messier 83 is quite similar to our own galaxy. Both the Milky Way and Messier 83 possess a bar across their galactic nucleus, the dense spherical conglomeration of stars seen at the centre of the galaxies. This very detailed image shows the spiral arms of Messier 83 adorned by countless bright flourishes of ruby red light. These are in fact huge clouds of glowing hydrogen gas. Ultraviolet radiation from newly born, massive stars is ionising the gas in these clouds, causing the great regions of hydrogen to glow red. These star forming regions are contrasted dramatically in this image against the ethereal glow of older yellow stars near the galaxy's central hub. The image also shows the delicate tracery of dark and winding dust streams weaving throughout the arms of the galaxy. Messier 83 was discovered by the French astronomer Nicolas Louis de Lacaille in the mid 18th century. Decades later it was listed in the famous catalogue of deep sky objects compiled by another French astronomer and famous comet hunter, Charles Messier. Recent observations of this enigmatic galaxy in ultraviolet light and radio waves have shown that even its outer desolate regions

  8. Galaxy And Mass Assembly (GAMA): A “No Smoking” Zone for Giant Elliptical Galaxies?

    NARCIS (Netherlands)

    Khosroshahi, Habib G.; Raouf, Mojtaba; Miraghaei, Halime; Brough, Sarah; Croton, Darren J.; Driver, Simon; Graham, Alister; Baldry, Ivan; Brown, Michael; Prescott, Matt; Wang, Lingyu


    We study the radio emission of the most massive galaxies in a sample of dynamically relaxed and unrelaxed galaxy groups from the Galaxy and Mass Assembly survey. The dynamical state of the group is defined by the stellar dominance of the brightest group galaxy (BGG), e.g., the luminosity gap between

  9. The Road to Galaxy Formation

    CERN Document Server

    Keel, William C


    The formation of galaxies is one of the greatest puzzles in astronomy, the solution is shrouded in the depths of space and time, but has profound implications for the universe we observe today. The book discusses the beginnings of the process from cosmological observations and calculations, considers the broad features of galaxies that we need to explain and what we know of their later history. The author compares the competing theories for galaxy formation and considers the progress expected from new generations of powerful telescopes both on earth and in space. In this second edition the author has retained the observationally-based approach of the first edition, a feature which was particularly well-reviewed: Writing in Nature, Carlton Baugh noted in February 2003 that “It is refreshing, in a market dominated by theorists, to come across a book on galaxy formation written from an observational perspective. The Road to Galaxy Formation should prove to be a handy primer on observations for graduate student...

  10. Three intervening galaxy absorbers towards GRB 060418

    DEFF Research Database (Denmark)

    Ellison, S. L.; Vreeswijk, P.; Ledoux, C.


    Dust, extinction: galaxies: ISM: quasars: absorption lines: gamma-rays: bursts Udgivelsesdato: 10 August......Dust, extinction: galaxies: ISM: quasars: absorption lines: gamma-rays: bursts Udgivelsesdato: 10 August...

  11. Statistical study of some Lee galaxy groups (United States)

    Mohamed, Sabry A.; Fouad, Ahmed M.


    Compact groups of galaxies are systems of small number of galaxies close to each other. They are a good laboratory to study galaxy properties, such as structure, morphology and evolution which are affected by the environment and galaxy interactions. We applied the tree clustering technique (the Euclidean separation distance coefficients) to test the physical reality of groups and used certain criteria (Sabry et al., 2009) depending on the physical attributes of the galaxies. The sample of the data is the quintets groups of Lee compact groups of galaxies (Lee et al., 2004). It is based on a modified version of Hickson's criteria (Hickson, 1982). The results reveal the membership of each galaxy and how it is related to its group. The tables of groups and their members are included. Our results indicates that 12 Groups are real groups with real members while 18 Groups have one galaxy that has attribute discordant and should be discarded from its group.

  12. Cosmology: Photons from dwarf galaxy zap hydrogen (United States)

    Erb, Dawn K.


    The detection of photons sufficiently energetic to ionize neutral hydrogen, coming from a compact, star-forming galaxy, offers clues to how the first generation of galaxies may have reionized hydrogen gas in the early Universe. See Letter p.178

  13. Multiple Supernova Explosions in a Forming Galaxy

    National Research Council Canada - National Science Library

    Masayuki Umemura; Andrea Ferrara


    Ultra-high resolution hydrodynamic simulations using 1024 3 grid points are performed of a very large supernova burst in a forming galaxy, with properties similar to those inferred for Lyman Break Galaxies (LBGs...


    National Aeronautics and Space Administration — DATA MINING THE GALAXY ZOO MERGERS STEVEN BAEHR, ARUN VEDACHALAM, KIRK BORNE, AND DANIEL SPONSELLER Abstract. Collisions between pairs of galaxies usually end in the...

  15. Probing the Baryon Cycle of Galaxies with SPICA Mid- and Far-Infrared Observations (United States)

    van der Tak, F. F. S.; Madden, S. C.; Roelfsema, P.; Armus, L.; Baes, M.; Bernard-Salas, J.; Bolatto, A.; Bontemps, S.; Bot, C.; Bradford, C. M.; Braine, J.; Ciesla, L.; Clements, D.; Cormier, D.; Fernández-Ontiveros, J. A.; Galliano, F.; Giard, M.; Gomez, H.; González-Alfonso, E.; Herpin, F.; Johnstone, D.; Jones, A.; Kaneda, H.; Kemper, F.; Lebouteiller, V.; De Looze, I.; Matsuura, M.; Nakagawa, T.; Onaka, T.; Pérez-González, P.; Shipman, R.; Spinoglio, L.


    The SPICA mid- and far-infrared telescope will address fundamental issues in our understanding of star formation and ISM physics in galaxies. A particular hallmark of SPICA is the outstanding sensitivity enabled by the cold telescope, optimised detectors, and wide instantaneous bandwidth throughout the mid- and far-infrared. The spectroscopic, imaging, and polarimetric observations that SPICA will be able to collect will help in clarifying the complex physical mechanisms which underlie the baryon cycle of galaxies. In particular, (i) the access to a large suite of atomic and ionic fine-structure lines for large samples of galaxies will shed light on the origin of the observed spread in star-formation rates within and between galaxies, (ii) observations of HD rotational lines (out to 10 Mpc) and fine structure lines such as [C ii] 158 μm (out to 100 Mpc) will clarify the main reservoirs of interstellar matter in galaxies, including phases where CO does not emit, (iii) far-infrared spectroscopy of dust and ice features will address uncertainties in the mass and composition of dust in galaxies, and the contributions of supernovae to the interstellar dust budget will be quantified by photometry and monitoring of supernova remnants in nearby galaxies, (iv) observations of far-infrared cooling lines such as [O i] 63 μm from star-forming molecular clouds in our Galaxy will evaluate the importance of shocks to dissipate turbulent energy. The paper concludes with requirements for the telescope and instruments, and recommendations for the observing strategy.

  16. Radio Continuum and H I Study of Blue Compact Dwarf Galaxies (United States)

    Ramya, S.; Kantharia, N. G.; Prabhu, T. P.


    The multifrequency radio continuum and 21 cm H I observations of five blue compact dwarf (BCD) galaxies, Mrk 104, Mrk 108, Mrk 1039, Mrk 1069, and I Zw 97, using the Giant Meterwave Radio Telescope (GMRT) are presented here. Radio continuum emission at 610 MHz and 325 MHz is detected from all the observed galaxies whereas only a few are detected at 240 MHz. In our sample, three galaxies (Mrk 104, Mrk 108, and Mrk 1039) are members of groups and two galaxies (Mrk 1069 and I Zw 97) are isolated galaxies. The radio emission from Mrk 104 and Mrk 108 is seen to encompass the entire optical galaxy whereas the radio emission from Mrk 1039, Mrk 1069, and I Zw 97 is confined to massive H II regions. This, we suggest, indicates that the star formation in the latter group of galaxies has recently been triggered and that the environment in which the galaxy is evolving plays a role. Star formation rates (SFRs) calculated from 610 MHz emission are in the range 0.01-0.1 M sun yr-1 this is similar to the SFR obtained for individual star-forming regions in BCDs. The integrated radio spectra of four galaxies are modeled over the frequency range where data is available. We find that two of the galaxies, Mrk 1069 and Mrk 1039, show a turnover at low frequencies, which is well fitted by free-free absorption whereas the other two galaxies, Mrk 104 and Mrk 108, show a power law at the lowest GMRT frequencies. The flatter spectrum, localized star formation, and radio continuum in isolated galaxies lend support to stochastic self-propagating star formation. The H I observations of four galaxies, Mrk 104, Mrk 108, Mrk 1039, and Mrk 1069, show extended disks as large as ~1.1-6 times the optical size. All the observed BCDs (except Mrk 104) show rotating disk with a half power width of ~50-124 km s-1. Solid body rotation is common in our sample. We note that the tidal dwarf origin is possible for two of the BCDs in our sample.

  17. Ammonia Thermometry of Star Forming Galaxies


    Mangum, Jeffrey G.; Darling, Jeremy; Henkel, Christian; Menten, Karl M.; MacGregor, Meredith; Svoboda, Brian E.; Schinnerer, Eva


    With a goal toward deriving the physical conditions in external galaxies, we present a study of the ammonia (NH$_3$) emission and absorption in a sample of star forming systems. Using the unique sensitivities to kinetic temperature afforded by the excitation characteristics of several inversion transitions of NH$_3$, we have continued our characterization of the dense gas in star forming galaxies by measuring the kinetic temperature in a sample of 23 galaxies and one galaxy offset position se...

  18. Magnetogravitodynamics model of galaxy formation (United States)

    Greyber, Howard D.


    Unless the tau neutrino is discovered to have an appropriate size mass, the theories of galaxy formation involving only gravity may not fit the observations. A model within the Big Bang hypothesis is described with processes occurring after ``Breakout'' that lead to the concentration of matter along thin spatially curved current sheets. When a critical density is reached, gravitational collapse occurs, forming galaxies in many places along thin spatially curved sheets surrounding huge voids, in a cellular structure, as in the observations by Geller, Huchra et al. The origin of a primordial magnetic field concentrated in the sheets is explained. The model predicts that much of the missing dark matter is located along the thin spatially curved sheets of galaxies.

  19. Statistics of the galaxy distribution

    CERN Document Server

    Martinez, Vicent J


    Over the last decade, statisticians have developed new statistical tools in the field of spatial point processes. At the same time, observational efforts have yielded a huge amount of new cosmological data to analyze. Although the main tools in astronomy for comparing theoretical results with observation are statistical, in recent years, cosmologists have not been generally aware of the developments in statistics and vice versa.Statistics of the Galaxy Distribution describes both the available observational data on the distribution of galaxies and the applications of spatial statistics in cosmology. It gives a detailed derivation of the statistical methods used to study the galaxy distribution and the cosmological physics needed to formulate the statistical models. Because the prevalent approach in cosmological statistics has been frequentist, the authors focus on the most widely used of these methods, but they also explore Bayesian techniques that have become popular in large-scale structure studies.Describi...

  20. Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies using LEGUS (United States)

    Kahre, Lauren; Walterbos, Rene; Kim, Hwihyun; Thilker, David; Lee, Janice; LEGUS Team


    Dust is commonly used as a tracer for cold dense gas, either through IR and NIR emission maps or through extinction mapping, and dust abundance and gas metallicity are critical constraints for chemical and galaxy evolution models. Extinction mapping has been used to trace dust column densities in the Milky Way, the Magellanic Clouds, and M31. The maps for M31 use IR and NIR photometry of red giant branch stars, which is more difficult to obtain for more distant galaxies. Work by Kahre et al. (in prep) uses the extinctions derived for individual massive stars using the isochrone-matching method described by Kim et al. (2012) to generate extinction maps for these more distant galaxies.Isochrones of massive stars lie in the same location on a color-color diagram with little dependence on metallicity and luminosity class, so the extinction can be directly derived from the observed photometry. We generate extinction maps using photometry of massive stars from the Hubble Space Telescope for several of the nearly 50 galaxies observed by the Legacy Extragalactic Ultraviolet Survey (LEGUS). The derived extinction maps will allow us to correct ground-based and HST Halpha maps for extinction, and will be used to constrain changes in the dust-to-gas ratio across the galaxy sample and in different star formation, metallicity and morphological environments. Previous studies have found links between galaxy metallicity and the dust-to-gas mass ratio. We present a study of LEGUS galaxies spanning a range of distances, metallicities, and galaxy morphologies, expanding on our previous study of metal-poor dwarfs Holmberg I and II and giant spirals NGC 6503 and NGC 628. We see clear evidence for changes in the dust-to-gas mass ratio with changing metallicity. We also examine changes in the dust-to-gas mass ratio with galactocentric radius. Ultimately, we will provide constraints on the dust-to-gas mass ratio across a wide range of galaxy environments.

  1. SDSS IV MaNGA - spatially resolved diagnostic diagrams: a proof that many galaxies are LIERs (United States)

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Heckman, Timothy M.; Law, David R.; Roman-Lopes, Alexandre; Pan, Kaike; Stanghellini, Letizia; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.


    We study the spatially resolved excitation properties of the ionized gas in a sample of 646 galaxies using integral field spectroscopy data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) programme. Making use of Baldwin-Philips-Terlevich diagnostic diagrams we demonstrate the ubiquitous presence of extended (kpc scale) low-ionization emission-line regions (LIERs) in both star-forming and quiescent galaxies. In star-forming galaxies LIER emission can be associated with diffuse ionized gas, most evident as extraplanar emission in edge-on systems. In addition, we identify two main classes of galaxies displaying LIER emission: `central LIER' (cLIER) galaxies, where central LIER emission is spatially extended, but accompanied by star formation at larger galactocentric distances, and `extended LIER' (eLIER) galaxies, where LIER emission is extended throughout the whole galaxy. In eLIER and cLIER galaxies, LIER emission is associated with radially flat, low H α equivalent width of line emission (<3 Å) and stellar population indices demonstrating the lack of young stellar populations, implying that line emission follows tightly the continuum due to the underlying old stellar population. The H α surface brightness radial profiles are always shallower than 1/r2 and the line ratio [O III] λ5007/[O II] λλ3727,29 (a tracer of the ionization parameter of the gas) shows a flat gradient. This combined evidence strongly supports the scenario in which LIER emission is not due to a central point source but to diffuse stellar sources, the most likely candidates being hot, evolved (post-asymptotic giant branch) stars. Shocks are observed to play a significant role in the ionization of the gas only in rare merging and interacting systems.

  2. A model for the origin of bursty star formation in galaxies (United States)

    Faucher-Giguère, Claude-André


    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  3. Testing for Shock-heated X-Ray Gas around Compact Steep Spectrum Radio Galaxies (United States)

    O’Dea, C. P.; Worrall, D. M.; Tremblay, G. R.; Clarke, T. E.; Rothberg, B.; Baum, S. A.; Christiansen, K. P.; Mullarkey, C. A.; Noel-Storr, J.; Mittal, R.


    We present Chandra and XMM-Newton X-ray, Very Large Array (VLA) radio, and optical observations of three candidate compact steep spectrum (CSS) radio galaxies. CSS sources are of a galactic scale and are presumably driving a shock through the interstellar medium (ISM) of their host galaxy. B3 1445+410 is a low-excitation emission line CSS radio galaxy with possibly a hybrid Fanaroff–Riley FRI/II (or fat double) radio morphology. The Chandra observations reveal a point-like source that is well fit with a power law consistent with the emission from a Doppler boosted core. 3C 268.3 is a CSS broad-line radio galaxy (BLRG) whose Chandra data are consistent spatially with a point source centered on the nucleus and spectrally with a double power-law model. PKS B1017–325 is a low-excitation emission line radio galaxy with a bent double radio morphology. While from our new spectroscopic redshift, PKS B1017‑325 falls outside the formal definition of a CSS, the XMM-Newton observations are consistent with ISM emission with either a contribution from hot shocked gas or non-thermal jet emission. We compile selected radio and X-ray properties of the nine bona fide CSS radio galaxies with X-ray detections so far. We find that two out of the nine show X-ray spectroscopic evidence for hot shocked gas. We note that the counts in the sources are low and that the properties of the two sources with evidence for hot shocked gas are typical of the other CSS radio galaxies. We suggest that hot shocked gas may be typical of CSS radio galaxies due to their propagation through their host galaxies.

  4. The metallicity and elemental abundance gradients of simulated galaxies and their environmental dependence (United States)

    Taylor, Philip; Kobayashi, Chiaki


    The internal distribution of heavy elements, in particular the radial metallicity gradient, offers insight into the merging history of galaxies. Using our cosmological, chemodynamical simulations that include both detailed chemical enrichment and feedback from active galactic nuclei (AGN), we find that stellar metallicity gradients in the most massive galaxies (≳3 × 1010M⊙) are made flatter by mergers and are unable to regenerate due to the quenching of star formation by AGN feedback. The fitting range is chosen on a galaxy-by-galaxy basis in order to mask satellite galaxies. The evolutionary paths of the gradients can be summarized as follows: (I) creation of initial steep gradients by gas-rich assembly, (II) passive evolution by star formation and/or stellar accretion at outskirts, and (III) sudden flattening by mergers. There is a significant scatter in gradients at a given mass, which originates from the last path, and therefore from galaxy type. Some variation remains at given galaxy mass and type because of the complexity of merging events, and hence we find only a weak environmental dependence. Our early-type galaxies (ETGs), defined from the star formation main sequence rather than their morphology, are in excellent agreement with the observed stellar metallicity gradients of ETGs in the SAURON and ATLAS3D surveys. We find small positive [O/Fe] gradients of stars in our simulated galaxies, although they are smaller with AGN feedback. Gas-phase metallicity and [O/Fe] gradients also show variation, the origin of which is not as clear as for stellar populations.

  5. Formation of dwarf ellipticals and dwarf irregular galaxies by interaction of giant galaxies under environmental influence


    Chattopadhyay, Tanuka; Debsarma, Suma; Karmakar, Pradip; Davoust, Emmanuel


    A model is proposed for the formation of gas-rich dwarf irregular galaxies and gas-poor, rotating dwarf elliptical galaxies following the interaction between two giant galaxies as a function of space density. The formation of dwarf galaxies is considered to depend on a random variable, the tidal index theta, an environmental parameter defined by Karachentsev et al. (2004), such that for theta less than zero, the formation of dwarf irregular galaxy is assured whereas for theta greater than zer...

  6. Dark matter in low surface brightness galaxies

    NARCIS (Netherlands)

    de Blok, WJG; McGaugh, SS; Persic, M; Salucci, P


    Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that LSB

  7. Central condensations in Seyfert galaxies. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, V.L.; Pimonov, A.A.; Terebizh, V.Yu. (AN SSSR, Nizhnij Arkhyz. Spetsial' naya Astrofizicheskaya Observatoriya)


    Results of observations with scanning photometer of 7 normal and 17 Seyfert galaxies show that in the Seyfert galaxies a central regions of 3-4 kpc in size exist noted for the high stellar density. A correlation between the volume luminosity of spherical component and the luminosity of the galaxy nucleus is found.