WorldWideScience

Sample records for highly turbid estuary

  1. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    Science.gov (United States)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most

  2. Speciation of mercury in a fluid mud profile of a highly turbid macrotidal estuary (Gironde, France).

    Science.gov (United States)

    Tseng, C M; Amouroux, D; Abril, G; Tessier, E; Etcheber, H; Donard, O F

    2001-07-01

    Mercury (Hg) speciation and partitioning have been investigated in a fluid mud profile collected in the high turbidity zone of the Gironde estuary. The formation of the fluid lens generates local and transient oxic-anoxic oscillations following the sedimentation-resuspension tidal cycles under a specific hydrodynamic regime. The total Hg concentration, ranging from 5 to 190 nM, increases with SPM concentration (4-174 g L-1) to a maximum at bottom. Particulate Hg averages 99% of total Hg. Particulate inorganic Hg (IHg(II)P) and monomethyl Hg (MMHgP) exhibit a similar trend: the maximum concentration is observed within the upper layer above the depth of 7 m and the minimum at the bottom layers of the fluid mud. Significant levels of "dissolved" (i.e. filter passing) Hg species (IHg(II)D, HgoD, MMHgD, DMHgD) are observed within the redox transition interface. In the sub/anoxic fluid mud layer, increasing concentrations of IHg(II)D and MMHgD coincide with decreasing concentrations of IHg(II)P and MMHgP, respectively. The distribution coefficient (log Kd) between the "dissolved" and particulate fraction for IHg(II) averages 4.5 +/- 0.2. A Kd minimum for IHg(II) is observed in the surface layer and at the bottom of the fluid mud and coincides with the maximum levels of dissolved Mn and Fe. Log Kd for MMHg averages 3.3 +/- 0.9 and presents the highest values (4.3-4.6) in the surface and the lowest (approximately 2.2) at bottom, corresponding to the particulate carbon profile. These results demonstrate that the fate of IHg(II) and MMHg in the fluid mud system is influenced by the redox cycling of major species such as carbon, Fe, and Mn. It is therefore suggested that the redox oscillations generated by fluid mud formation in the high turbidity zone affect the distribution and transfer of Hg species in macrotidal estuaries.

  3. Nutrient ratios and the complex structure of phytoplankton communities in a highly turbid estuary of Southeast Asia.

    Science.gov (United States)

    Chu, Thuoc Van; Torréton, Jean-Pascal; Mari, Xavier; Nguyen, Huyen Minh Thi; Pham, Kha Thi; Pham, Thu The; Bouvier, Thierry; Bettarel, Yvan; Pringault, Olivier; Bouvier, Corinne; Rochelle-Newall, Emma

    2014-12-01

    Phytoplankton diversity and abundance in estuarine systems are controlled by many factors. Salinity, turbidity, and inorganic nutrient concentrations and their respective ratios have all been proposed as principal factors that structure phytoplankton diversity and influence the emergence of potentially toxic species. Although much work has been conducted on temperate estuaries, less is known about how phytoplankton diversity is controlled in tropical, monsoonal systems that are subject to large, seasonal shifts in hydrology and to rapidly changing land use. Here, we present the results of an investigation into the factors controlling phytoplankton species composition and distribution in a tropical, monsoonal estuary (Bach Dang estuary, North Vietnam). A total of 245 taxa, 89 genera from six algal divisions were observed. Bacillariophyceae were the most diverse group contributing to 51.4 % of the microalgal assemblage, followed by Dinophyceae (29.8 %), Chlorophyceae (10.2 %), Cyanophyceae (3.7 %), Euglenophyceae (3.7 %) and Dictyochophyceae (1.2 %). The phytoplankton community was structured by inorganic nutrient ratios (DSi:DIP and DIN:DIP) as well as by salinity and turbidity. Evidence of a decrease in phytoplankton diversity concomitant with an increase in abundance and dominance of certain species (e.g., Skeletonema costatum) and the appearance of some potentially toxic species over the last two decades was also found. These changes in phytoplankton diversity are probably due to a combination of land use change resulting in changes in nutrient ratios and concentrations and global change as both rainfall and temperature have increased over the last two decades. It is therefore probable in the future that phytoplankton diversity will continue to change, potentially favoring the emergence of toxic species in this system.

  4. Estimation of turbidity along the Guadalquivir estuary using Landsat TM and ETM+ images

    Science.gov (United States)

    Carpintero, M.; Contreras, E.; Millares, A.; Polo, M. J.

    2013-10-01

    Estuarine water in Mediterranean basins has high concentrations of suspended sediment. In order to study the temporal and spatial distribution of turbidity, a monitoring network with sufficient temporal and spatial resolution is needed to monitor water quality, and this is not always available. Thus, over the last few years, satellite images have been used as an alternative way to estimate water quality parameters, such as turbidity. The Guadalquivir River estuary in south-west Spain extends for 105 km and is one of the world's most turbid estuaries. The sediments present are of a very fine texture due to the great length of the river but, mainly, to the extreme trapping efficiency of the dense reservoir system upstream. This work shows the relationship between turbidity patterns along the Guadalquivir river estuary and the data from Landsat ETM+ images from August 2008 to 2010, and the suitability of the algorithms previously used in this estuary environment, with the ultimate goal of obtaining turbidity maps. The results of this study show that the use of previously developed algorithms underestimate turbidity values measured by the monitoring network used, which proves that one single algorithm for the entire period of study does not provide a reliable reproduction of the real situation. The wide variability in turbidity data along the estuary has enabled us to develop specific expressions for each day, which allow us to obtain turbidity maps.

  5. Salinity and turbidity distributions in the Brisbane River estuary, Australia

    Science.gov (United States)

    Yu, Yingying; Zhang, Hong; Lemckert, Charles

    2014-11-01

    The Brisbane River estuary (BRE) in Australia not only plays a vital role in ecosystem health, but is also of importance for people who live nearby. Comprehensive investigations, both in the short- and long-term, into the salinity and turbidity distributions in the BRE were conducted. Firstly, the analysis of numerical results revealed that the longitudinal salinity varied at approximately 0.45 and 0.61 psu/h during neap and spring tides, respectively. The turbidity stayed at a higher level and was less impacted by tide in the upper estuary, however, the water cleared up while the tide changed from flood to ebb in the mid and lower estuary. The second investigation into the seasonal variations of salinity and turbidity in the BRE was conducted, using ten-year field measurement data. A fourth-order polynomial equation was proposed, describing the longitudinal variation in salinity dilution changes as the upstream distance in the BRE during the wet and dry seasons. From the observation, the mid and upper estuaries were vertically well-mixed during both seasons, but the lower BRE was stratified, particularly during the wet season. The estuary turbidity maximum (ETM) zone was about 10 km longer during the wet season than the dry season. Particular emphasis was given to the third investigation into the use of satellite remote sensing techniques for estimation of the turbidity level in the BRE. A linear relationship between satellite observed water reflectance and surface turbidity level in the BRE was validated with an R2 of 0.75. The application of satellite-observed water reflectance therefore provided a practical solution for estimating surface turbidity levels of estuarine rivers not only under normal weather conditions, but also during flood events. The results acquired from this study are valuable for further hydrological research in the BRE and particularly prominent for immediate assessment of flood impacts.

  6. Wind-driven estuarine turbidity maxima in Mandovi Estuary, central ...

    Indian Academy of Sciences (India)

    driven estuarine turbidity maxima in Mandovi Estuary, central west coast of India. Pratima M Kessarkar V Purnachandra Rao R Shynu Ishfaq Mir Ahmad Prakash Mehra G S Michael D Sundar. Volume 118 Issue 4 August 2009 pp 369-377 ...

  7. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    Science.gov (United States)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  8. The role of wind in generating turbidity maxima in the Tay Estuary

    Science.gov (United States)

    Weir, D. J.; McManus, J.

    1987-11-01

    Variations of wind direction and strength in the Tay Estuary control wave generation and the resultant patterns of suspended sediment concentration in the waters over the extensive tidal flats. Bodies of water with high water concentration peaks advect to occupy sites at which turbidity maxima are normally present at low water. Other low water peaks are generated by ebb tidal current resuspension.

  9. Biogeochemistry of the MAximum TURbidity Zone of Estuaries (MATURE): some conclusions

    NARCIS (Netherlands)

    Herman, P.M.J.; Heip, C.H.R.

    1999-01-01

    In this paper, we give a short overview of the activities and main results of the MAximum TURbidity Zone of Estuaries (MATURE) project. Three estuaries (Elbe, Schelde and Gironde) have been sampled intensively during a joint 1-week campaign in both 1993 and 1994. We introduce the publicly available

  10. Wind-driven estuarine turbidity maxima in Mandovi Estuary, central ...

    Indian Academy of Sciences (India)

    Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of ... and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing .... Location map of the Mandovi River and sampling stations in the river channel. RS – regular station. Numbers.

  11. Phytoplankton bloom dynamics in temperate, turbid, stressed estuaries: a model study

    Science.gov (United States)

    de Swart, Huib E.; Liu, Bo; de Jonge, Victor

    2017-04-01

    To gain insight into mechanisms underlying phytoplankton bloom dynamics in temperature, turbid estuaries, experiments were conducted with an idealised model that couples physical and biological processes. Results show that the model is capable of producing the main features of the observed blooms in the Ems estuary (Northwest Germany), viz. in the lower reach a spring bloom occur, which is followed by a secondary bloom in autumn. The along-estuary distribution of suspended sediment concentration (SSC) and the along-estuary distance between the nutrient source and the seaward bound of the turbidity zone control both the along-estuary locations and intensities of the blooms. Results of further sensitivity studies reveal that in a shallow, well-mixed estuary, under temporally-constant suspended sediment conditions, the seasonally-varying water temperature has larger impact on the timing of spring blooms than the seasonally-varying incident light intensity. The occurrence of the secondary bloom is caused by the fact that the growth rate of phytoplankton attains a maximum at an optimum water temperature. Bloom intensities are also modulated by the advective processes related to subtidal current because the latter regulates the seaward transport of nutrient from riverine source. Large-scale deepening of navigation channels leads to later spring blooms due to increased mixing depth. Finally, phytoplankton blooms are unlikely to occur in the upper reach due to the elevated SSC and the landward expansion of turbidity zone related to large-scale deepening.

  12. Relationship between nutrients and plankton biomass in the turbidity maximum zone of the Pearl River Estuary.

    Science.gov (United States)

    Shi, Zhen; Xu, Jie; Huang, Xiaoping; Zhang, Xia; Jiang, Zhijian; Ye, Feng; Liang, Ximei

    2017-07-01

    Nutrients, dissolved and particulate organic carbon and plankton (bacterio-, phyto- and zoo-) were compared in the turbidity maximum zone (TMZ) and adjacent areas (non-TMZ) in the Pearl River estuary. Our results showed that high levels of suspended substances had marked effect on dynamics of nutrients and plankton in the TMZ. Based on the cluster analysis of total suspended solids (TSS) concentrations, all stations were divided into two groups, TMZ with average TSS of 171mg/L and non-TMZ of 45mg/L. Suspended substances adsorbed PO4(3-) and dissolved organic carbon, resulting in higher particulate phosphorus and organic carbon (POC) and lower PO4(3-) and DOC in the TMZ, compared to the non-TMZ. However, suspended substances had limited effect on nitrogenous nutrients. Phytoplankton growth was light-limited due to high concentrations of suspended substances in the TMZ and a peak of phytoplankton abundance appeared in the non-TMZ. In contrast, the highest bacterial abundance occurred in the TMZ, which was likely partly responsible for low DOC levels. Two peaks of zooplankton abundance observed in the TMZ and non-TMZ in the Pearl River estuary were primarily supported by bacteria and phytoplankton, respectively. Our finding implied that high levels of suspended solids in the TMZ affect the trophic balance. Copyright © 2016. Published by Elsevier B.V.

  13. Uptake of dissolved inorganic nitrogen in turbid, tidal estuaries

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.

    2000-01-01

    Ammonium and nitrate uptake was measured in 6 European tidal estuaries (Ems, Rhine, Scheldt, Loire, Gironde and Douro) using N-15-tracer techniques. Uptake rates of ammonium and nitrate ranged from 0.005 to 1.56 mu mol N l(-1) h(-1) and 0.00025 to 0.25 mu mol N l(-1) h(-1), respectively, and

  14. Measurement frequency and sampling spatial domains required to characterize turbidity and salinity events in the Guadalquivir estuary (Spain)

    OpenAIRE

    Contreras, E.; M. J. Polo

    2012-01-01

    Estuaries are complex systems in which long water quality data series are not always available at the proper scale. Data proceeding from several water quality networks, with different measuring frequencies (monthly, weekly and 15 min) and different numbers of sampling points, were compared throughout the main channel of the Guadalquivir estuary. Higher frequency of turbidity sampling in the upper estuary is required. In the lower estuary, sampling points help to find out the ETM, and higher f...

  15. The impact of extreme turbidity events on the nursery function of a temperate European estuary with regulated freshwater inflow

    Science.gov (United States)

    González-Ortegón, E.; Subida, M. D.; Cuesta, J. A.; Arias, A. M.; Fernández-Delgado, C.; Drake, P.

    2010-04-01

    Estuaries are used as nursery grounds by numerous marine species despite being usually subject to strong anthropogenic disturbances. Abundances of marine recruits (fish and crustacean decapods) and their main prey (mysids) were monitored by monthly sampling, from June 1997 to February 2009, in the lower reaches of the Guadalquivir estuary (SW Spain). During that period, unusually high and persistent turbidity events (HPTEs) were observed twice. Both HPTEs started with strong and sudden freshwater discharges after relatively long periods of very low freshwater inflow. Data from this time-series were used to test the hypothesis that HPTEs may negatively impact the nursery function of estuaries either by decreasing prey availability or by decreasing survival/arrival of marine recruits. During HPTEs, the commonest mysid ( Mesopodopsis slabberi), a key species in the estuarine food web, showed a significant decrease in abundance. Likewise, some marine recruits that prey on M. slabberi and whose peaks of abundance within the estuary occur in summer-autumn ( Engraulis encrasicolus and Pomadasys incisus) were less abundant during HPTEs. It is also suggested that HPTEs might have triggered a shift in the distribution of the most euryhaline prey ( Neomysis integer) and predator ( Dicentrarchus punctatus and Crangon crangon) species, towards more saline waters. This could have contributed to an increase in the inter-specific competition (for food/habitat) within the estuarine nursery area. The results discussed in this study call attention to the need to reduce as much as possible the anthropogenic pressures that may stimulate the occurrence of high and persistent turbidity events (HPTEs) in order to preserve the nursery function of temperate estuaries.

  16. Measurement frequency and sampling spatial domains required to characterize turbidity and salinity events in the Guadalquivir estuary (Spain

    Directory of Open Access Journals (Sweden)

    E. Contreras

    2012-08-01

    Full Text Available Estuaries are complex systems in which long water quality data series are not always available at the proper scale. Data proceeding from several water quality networks, with different measuring frequencies (monthly, weekly and 15 min and different numbers of sampling points, were compared throughout the main channel of the Guadalquivir estuary. Higher frequency of turbidity sampling in the upper estuary is required. In the lower estuary, sampling points help to find out the ETM, and higher frequency sampling of EC is required because of the effect of the tidal and river components. This could be a feedback for the implementation of monitoring networks in estuaries.

  17. Measurement frequency and sampling spatial domains required to characterize turbidity and salinity events in the Guadalquivir estuary (Spain)

    Science.gov (United States)

    Contreras, E.; Polo, M. J.

    2012-08-01

    Estuaries are complex systems in which long water quality data series are not always available at the proper scale. Data proceeding from several water quality networks, with different measuring frequencies (monthly, weekly and 15 min) and different numbers of sampling points, were compared throughout the main channel of the Guadalquivir estuary. Higher frequency of turbidity sampling in the upper estuary is required. In the lower estuary, sampling points help to find out the ETM, and higher frequency sampling of EC is required because of the effect of the tidal and river components. This could be a feedback for the implementation of monitoring networks in estuaries.

  18. The influence of channel deepening on estuarine turbidity levels and dynamics, as exemplified by the Ems estuary

    NARCIS (Netherlands)

    de Jonge, V.N.; Schuttelaars, H.M.; van Beusekom, J.E.E.; Talke, S.A.|info:eu-repo/dai/nl/304823554; de Swart, H.E.|info:eu-repo/dai/nl/073449725

    2014-01-01

    Active deepening of tidal channels usually results in the alteration of the vertical and the horizontal tide. This may lead to concurrent significant increases in mean suspended matter concentrations (SPM) in coastal plain estuaries, the turbidity maximum (ETM) included. This is exemplified by an

  19. Multi-sensor analysis to study turbidity patterns in the Guadalquivir estuary

    Directory of Open Access Journals (Sweden)

    I. Caballero

    2016-06-01

    Full Text Available A detailed study of the mechanisms generated through the turbidity plume and its variability at the Guadalquivir estuary has been carried out with remote sensing and in situ data. Several sensors with different characteristics have been required (spatial, temporal and spectral resolution, thereby providing information for a multi-sensor analysis. The main objective was to determine the water quality parameters (suspended solids and chlorophyll and implement the methodology to define the empirical and semi-analytical algorithms from satellite data (MODIS, METIS, Deimos-1. The processes occurred in the estuary and adjacent region have been examined identifying those involved in the different variability scales. The forcings associated with rainfall and discharge from Alcalá del Río dam in addition to the climatic NAO index control seasonal and inter-annual fluctuations, while tide effects (semi-daily and fortnightly cycles modulate the plume at the mouth throughout the year with significant variability. Special emphasis is focused on diagnosing the role of these mechanisms on the continental shelf ecosystems, constituting a powerful tool for the water quality management and coastal resources.

  20. Wind-driven estuarine turbidity maxima in Mandovi Estuary, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Kessarkar, P.M.; Rao, V.P.; Shynu, R.; Ahmad, I.M.; Mehra, P.; Michael, G.S.; Sundar, D.

    wherein high con- centrations of bacterial populations were reported. Another important aspect of ETM is that it may acts as ‘nursery area’ for some fish eggs and larvae to spend time. Eggs are masked from predators under the cover of high turbidity (North...

  1. High-resolution simulations of turbidity currents

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Ouillon, Raphael; Meiburg, Eckart

    2017-12-01

    We employ direct numerical simulations of the three-dimensional Navier-Stokes equations, based on a continuum formulation for the sediment concentration, to investigate the physics of turbidity currents in complex situations, such as when they interact with seafloor topography, submarine engineering infrastructure and stratified ambients. In order to obtain a more accurate representation of the dynamics of erosion and resuspension, we have furthermore developed a grain-resolving simulation approach for representing the flow in the high-concentration region near and within the sediment bed. In these simulations, the Navier-Stokes flow around each particle and within the pore spaces of the sediment bed is resolved by means of an immersed boundary method, with the particle-particle interactions being taken into account via a detailed collision model. [Figure not available: see fulltext.

  2. Tide Driven Dynamics of Subaqueous Fluid Mud Layers in Turbidity Maximum Zones of German Estuaries

    OpenAIRE

    Wang, Li

    2010-01-01

    Fluid mud is a highly concentrated suspension of fine-grained cohesive sediment, which often occurs in estuarine turbidity maximum zones (ETMZs) throughout the world. As an interface between the sea and inland, the estuarine zone is considered to be an ideal location for trade and thus ports are constructed in the estuarine zone. The occurrence of fluid mud is problematic as it might restrain navigability. Besides, cohesive sediments like mud particles are known to be the main carrier of poll...

  3. Trapping effect of estuarine turbidity maximum on particulate organic carbon and its response to a typhoon event in a macro-tidal estuary

    Science.gov (United States)

    Wang, Aijun; Ye, Xiang; Cheng, Peng; Wang, Liang

    2017-04-01

    Estuaries are key nodes of land-ocean interaction, the associated suspended sediment processes being crucial for global and regional material fluxes and environmental health. Within estuaries, there is commonly a reach where the water turbidity is markedly higher than both landward and seaward. This elevated suspended sediment concentration (SSC) is termed the estuarine turbidity maximum (ETM). The ETM has important influences on harbor siltation, ecological conservation, and biogeochemical dynamics. Jiulongjiang estuary is a small macro-tidal estuary in southeast China coastal area, which is a typical example for estuarine ecosystem conservation and its response to catchment management. Observed results show that the tidal current is the main factor which control the variations of SSC in ETM under the normal condition. However, under the influence of typhoon event, the hydrodynamic action was strengthened and the salt water intrusion was also enhanced, and the fresh water and sediment discharged from river system increased, which led to the complicated variations of the ETM. Under the normal conditions, the maximum width of ETM was about 10 km in spring tide. However, before typhoon landed, the maximum width of the ETM was about 14 km; after the typhoon landed, the maximum width of the ETM was more than 20 km, and during the low tide stage, the width of the ETM was still 19 km which was induced by high turbidity water input from river system. The particulate organic carbon (POC) concentration reached 19.26 mg/L within the ETM at the next day after typhoon landed, which was much higher than that under normal weather condition (the maximum value was only 3.15 mg/L). During the low tide level, the POC concentration increased remarkably from upstream to the core of ETM and then decreased toward downstream, while the POC concentration decreased toward downstream during high tide level. Compared with normal weather condition, the POC concentration varied not obviously

  4. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  5. Structure of the turbidity field in the Guadalquivir estuary: Analysis of observations and a box model approach

    Science.gov (United States)

    Díez-Minguito, M.; Baquerizo, A.; de Swart, H. E.; Losada, M. A.

    2014-10-01

    A study is presented on the transport of suspended particulate matter (SPM) in the Guadalquivir estuary during low river flow conditions. Observations show that tidally induced SPM exceeds that associated with catchment-derived inputs. The main mechanisms that contribute to longitudinal transport are identified and quantified by analyzing the tidally averaged and depth-integrated SPM flux decomposition over time and space. The net transport is generally directed upstream, although differences in the direction between spring and neap tides are identified. The transport is largely controlled by the mean advection, the tidal pumping associated with the covariance between SPM concentration and current, and the tidal Stokes transport. The convergence of the transport associated to these mechanisms alone explains the presence of primary and secondary estuarine turbidity maxima. The tidal reflection at the upstream dam appears to play a significant role in their generation, as evidenced by the convergence zones of the M4 and M2 induced tidal pumping transports. The spatial structure of the transport motivates the development of a box model that describes the concentration of SPM and its exchange between different stretches along the estuary at subtidal time scales. The model is fed by the net SPM transport obtained from observations. Analysis of the morphodynamical state of the estuary using the box model indicates that erosion is dominant in the stretches close to the estuary mouth and that this sediment is transported upstream and deposited in the middle part of the estuary. This process is more influential during spring tides than during neap tides.

  6. Response of the turbidity maximum zone in the Yangtze River Estuary due to human activities during the dry season.

    Science.gov (United States)

    Chen, Xiaofeng; Shen, Zhenyao; Yang, Ye

    2016-09-01

    The interaction between a river and the sea results in a turbidity maximum zone (TMZ) within the estuary, which has a great impact on the local ecosystem. In the Yangtze River Estuary, the magnitude and extent of the TMZ vary with water discharge. In this study, the cumulative human activity altered the water discharge regime from the river to the estuary. In the post-Three Gorges Dam (TGD) period, water discharge increased by 35.10 % at Datong in February compared with that in the pre-TGD period. The effects of water discharge variation on the characteristics of the TMZ were analyzed during spring and neap tidal periods using the three-dimensional environmental fluid dynamic code (EFDC) model. The area of the TMZ decreased by 3.11 and 17.39 % during neap and spring tides, respectively. In addition, the upper limit of the TMZ moved 11.68 km seaward during neap tide, whereas the upper limit of the TMZ in the upstream and downstream areas moved seaward 9.65 and 2.34 km, respectively, during spring tide. These findings suggest that the area and location of the TMZ are more sensitive to upstream runoff during spring tide than during neap tide. These changes in the TMZ will impact the biochemical processes in the Yangtze River Estuary. In the foreseeable future, the distribution characteristic of TMZ will inevitably change due to variations in the Yangtze River discharge resulting from new human activities (i.e., new dams), which are being constructed upstream in the Yangtze River system.

  7. Turbidity maximum formation in a well-mixed macrotidal estuary : The role of tidal pumping

    NARCIS (Netherlands)

    Yu, Q.; Wang, Y.; Gao, J.; Gao, S.; Flemming, B.

    2014-01-01

    Traditionally, vertical circulation (induced by gravity circulation and tidal straining), tidal pumping, and resuspension are suggested as the major processes for the formation and maintenance of the estuarine turbidity maximum (ETM). Due to strong mixing, tidal pumping is considered as the

  8. Riverbank filtration for the treatment of highly turbid Colombian rivers

    Science.gov (United States)

    Gutiérrez, Juan Pablo; van Halem, Doris; Rietveld, Luuk

    2017-05-01

    The poor quality of many Colombian surface waters forces us to seek alternative, sustainable treatment solutions with the ability to manage peak pollution events and to guarantee the uninterrupted provision of safe drinking water to the population. This review assesses the potential of using riverbank filtration (RBF) for the highly turbid and contaminated waters in Colombia, emphasizing water quality improvement and the influence of clogging by suspended solids. The suspended sediments may be favorable for the improvement of the water quality, but they may also reduce the production yield capacity. The cake layer must be balanced by scouring in order for an RBF system to be sustainable. The infiltration rate must remain high enough throughout the river-aquifer interface to provide the water quantity needed, and the residence time of the contaminants must be sufficient to ensure adequate water quality. In general, RBF seems to be a technology appropriate for use in highly turbid and contaminated surface rivers in Colombia, where improvements are expected due to the removal of turbidity, pathogens and to a lesser extent inorganics, organic matter and micro-pollutants. RBF has the potential to mitigate shock loads, thus leading to the prevention of shutdowns of surface water treatment plants. In addition, RBF, as an alternative pretreatment step, may provide an important reduction in chemical consumption, considerably simplifying the operation of the existing treatment processes. However, clogging and self-cleansing issues must be studied deeper in the context of these highly turbid waters to evaluate the potential loss of abstraction capacity yield as well as the development of different redox zones for efficient contaminant removal.

  9. Photosynthetic characteristics of the phytoplankton in the Scheldt estuary: community and single-cell fluorescence measurements

    NARCIS (Netherlands)

    Dijkman, N.A.; Kromkamp, J.C.

    2006-01-01

    Estuaries present a very dynamic environment for phytoplankton with large changes in salinity occurring over relatively short distances, usually with high turbidity. We investigated the photosynthetic characteristics of phytoplankton in the Scheldt estuary (Belgium and the Netherlands) along a

  10. Estuarine Turbidity Maxima and Variations of Aggregate Parameters in the Cam-Nam Trieu Estuary, North Vietnam, in Early Wet Season

    Directory of Open Access Journals (Sweden)

    Vu Duy Vinh

    2018-01-01

    Full Text Available This study aims at exploring the characteristic parameters of the Estuarine Turbidity Maxima (ETM and at investigating their tidal variations within the Cam-Nam Trieu estuary (North Vietnam during the early wet season. Six longitudinal river transects were performed at spring tide. Two types of ETM were observed: an upper well mixed ETM with high Suspended Particulate Matter (SPM concentrations up to the surface at low salinity (0.11 to <1 psu, and a lower ETM confined in a bottom layer over stratified waters at salinities between ~1 psu and 15 psu. Their length depended on the longitudinal salinity gradient and was highest at low tide than at high tide. D50 of the flocs varied between 35 and 90 μm, their excess of density between 60 and 300 kg m−3 and their settling velocity ranged from 0.07 to 0.55 mm s−1 with values between 0.12 and 0.40 mm s−1 in the core of ETMs. The average fractal dimension of flocs was estimated to vary between 1.93 (at high tide to 2.04 (at low tide.

  11. Spatial distribution of suspended particulate matter in the Mandovi and Zuari estuaries: inferences on the estuarine turbidity maximum

    Digital Repository Service at National Institute of Oceanography (India)

    Suja, S.; Kessarkar, P.M; Shynu, R.; Rao, V.P.; Fernandes, L.L.

    The present study estimate the suspended particulate matter in the Mandovi and Zuari estuaries. samples were collected from the Mandovi (M0A–M9) and Zuari (Z0–Z8) estuaries and Cumbarjua canal (C0–C3).The spatial distribution of SPM in the Ma...

  12. Solar radiation and its penetration in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Qasim, S.Z.; Bhattathiri, P.M.A.; Abidi, S.A.H.

    The Cochin Backwater which is an estuarine area on the west coast of India receives maximum solar radiation from December to March and minimum from June to September. During the monsoon months the estuary becomes highly turbid as a result...

  13. Structure of the turbidity field in the Guadalquivir estuary : Analysis of observations and a box model approach

    NARCIS (Netherlands)

    Diez-Minguito, M.; Baquerizo, A.; de Swart, H. E.; Losada, M. A.

    2014-01-01

    A study is presented on the transport of suspended particulate matter (SPM) in the Guadalquivir estuary during low river flow conditions. Observations show that tidally induced SPM exceeds that associated with catchment-derived inputs. The main mechanisms that contribute to longitudinal transport

  14. Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary

    NARCIS (Netherlands)

    Boschker, H.T.S.; Kromkamp, J.C.; Middelburg, J.J.

    2005-01-01

    We studied planktonic community structure and isotopic composition using compound-specific 13C analysis of phospholipid-derived fatty acids (PLFA) along the Scheldt estuary during a spring bloom. A comprehensive set of other carbon cycle parameters was also determined. Based on dissolved carbon

  15. The Swift Turbidity Marker

    Science.gov (United States)

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2011-01-01

    The Swift Turbidity Marker is an optical instrument developed to measure the level of water turbidity. The components and configuration selected for the system are based on common turbidity meter design concepts but use a simplified methodology to produce rapid turbidity measurements. This work is aimed at high school physics students and is the…

  16. Automatic real-time control of suspended sediment based upon high frequency in situ measurements of nephelometric turbidity

    Science.gov (United States)

    Jack Lewis; Rand Eads

    1998-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is potentially a much better predictor than water discharge. Since about 1990, it has been feasible to automatically collect high frequency turbidity data at remote sites using battery-powered turbidity probes that are properly mounted in the river or stream. With sensors calibrated...

  17. Tidal effects on short-term mesozooplankton distribution in small channels of a temperate-turbid estuary, Southwestern Atlantic

    Directory of Open Access Journals (Sweden)

    Javier Chazarreta

    2015-06-01

    Full Text Available Abstract The short-term variability of mesozooplankton distribution and physicochemical variables was examined in two different channels of the Bahía Blanca Estuary, Argentina, during two tidal cycles. All the physicochemical measurements and mesozooplankton sampling were performed at a fixed site during approximately 22-23 h at 3-h intervals. Pumps were used to obtain surface and bottom mesozooplankton samples and the water speed of each stratum was measured with an Acoustic Doppler Current Profiler (ADCP. In all, 23 mesozooplanktonic taxa belonging to four phyla (Arthropoda, Annelida, Echinodermata and Chordata were identified. The most abundant taxa during the two tidal cycles were Balanus glandula larvae, Eurytemora americana and Acartia tonsa. A discernible variability in the water conditions and vertical mesozooplankton distribution (VMD different from that known for the estuary's main channel, was found in the other two selected channels. VMD varied during the tidal cycle in both channels in accordance with the channel's geomorphology and water dynamic characteristics of each of them. The variation of the abundance of the different taxa during ebb and flood currents might indicate the existence of a tidal vertical migration of the mesozooplankton as a response to particular dynamic water conditions.

  18. Hydrodynamic and Sediment Modelling within a Macro Tidal Estuary: Port Curtis Estuary, Australia

    Directory of Open Access Journals (Sweden)

    Ryan J. K. Dunn

    2015-07-01

    Full Text Available An understanding of sediment transport processes and resultant concentration dynamics in estuaries is of great importance to engineering design awareness and the management of these environments. Predictive modelling approaches provide an opportunity to investigate and address potential system responses to nominated events, changes, or conditions of interest, often on high temporal and spatial resolution scales. In this study, a three-dimensional hydrodynamic model and wave model were validated and applied to generate forcing conditions for input into a sediment transport model for the period 7 May 2010–30 October 2010 within a macro tidal estuary, Port Curtis estuary (Australia. The hydrodynamic model was verified against surface and near-bottom current measurements. The model accurately reproduced the variations of surface and near-bottom currents at both a mid-estuary and upper-estuary location. Sediment transport model predictions were performed under varying meteorological conditions and tidal forcing over a 180-day period and were validated against turbidity data collected at six stations within Port Curtis estuary. The sediment transport model was able to predict both the magnitudes of the turbidity levels and the modulation induced by the neap and spring tides and wind-wave variations. The model-predicted (converted turbidity levels compared favourably with the measured surface water turbidity levels at all six stations. The study results have useful practical application for Port Curtis estuary, including providing predictive capabilities to support the selection of locations for monitoring/compliance sites.

  19. High-resolution remote sensing of water quality in the San Francisco Bay-Delta Estuary

    Science.gov (United States)

    Fichot, Cédric G.; Downing, Bryan D.; Bergamaschi, Brian; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Thompson, David R.; Gierach, Michelle M.

    2015-01-01

    The San Francisco Bay–Delta Estuary watershed is a major source of freshwater for California and a profoundly human-impacted environment. The water quality monitoring that is critical to the management of this important water resource and ecosystem relies primarily on a system of fixed water-quality monitoring stations, but the limited spatial coverage often hinders understanding. Here, we show how the latest technology in visible/near-infrared imaging spectroscopy can facilitate water quality monitoring in this highly dynamic and heterogeneous system by enabling simultaneous depictions of several water quality indicators at very high spatial resolution. The airborne portable remote imaging spectrometer (PRISM) was used to derive high-spatial-resolution (2.6 × 2.6 m) distributions of turbidity, and dissolved organic carbon (DOC) and chlorophyll-a concentrations in a wetland-influenced region of this estuary. A filter-passing methylmercury vs DOC relationship was also developed using in situ samples and enabled the high-spatial-resolution depiction of surface methylmercury concentrations in this area. The results illustrate how high-resolution imaging spectroscopy can inform management and policy development in important inland and estuarine water bodies by facilitating the detection of point- and nonpoint-source pollution, and by providing data to help assess the complex impacts of wetland restoration and climate change on water quality and ecosystem productivity.

  20. High-Resolution Remote Sensing of Water Quality in the San Francisco Bay-Delta Estuary.

    Science.gov (United States)

    Fichot, Cédric G; Downing, Bryan D; Bergamaschi, Brian A; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Thompson, David R; Gierach, Michelle M

    2016-01-19

    The San Francisco Bay-Delta Estuary watershed is a major source of freshwater for California and a profoundly human-impacted environment. The water quality monitoring that is critical to the management of this important water resource and ecosystem relies primarily on a system of fixed water-quality monitoring stations, but the limited spatial coverage often hinders understanding. Here, we show how the latest technology in visible/near-infrared imaging spectroscopy can facilitate water quality monitoring in this highly dynamic and heterogeneous system by enabling simultaneous depictions of several water quality indicators at very high spatial resolution. The airborne portable remote imaging spectrometer (PRISM) was used to derive high-spatial-resolution (2.6 × 2.6 m) distributions of turbidity, and dissolved organic carbon (DOC) and chlorophyll-a concentrations in a wetland-influenced region of this estuary. A filter-passing methylmercury vs DOC relationship was also developed using in situ samples and enabled the high-spatial-resolution depiction of surface methylmercury concentrations in this area. The results illustrate how high-resolution imaging spectroscopy can inform management and policy development in important inland and estuarine water bodies by facilitating the detection of point- and nonpoint-source pollution, and by providing data to help assess the complex impacts of wetland restoration and climate change on water quality and ecosystem productivity.

  1. Coagulation of highly turbid suspensions using magnesium hydroxide: effects of slow mixing conditions.

    Science.gov (United States)

    Ayoub, George M; BinAhmed, Sara W; Al-Hindi, Mahmoud; Azizi, Fouad

    2014-09-01

    Laboratory experiments were carried out to study the effects of slow mixing conditions on magnesium hydroxide floc size and strength and to determine the turbidity and total suspended solid (TSS) removal efficiencies during coagulation of highly turbid suspensions. A highly turbid kaolin clay suspension (1,213 ± 36 nephelometric turbidity units (NTU)) was alkalized to pH 10.5 using a 5 M NaOH solution; liquid bittern (LB) equivalent to 536 mg/L of Mg(2+) was added as a coagulant, and the suspension was then subjected to previously optimized fast mixing conditions of 100 rpm and 60 s. Slow mixing speed (20, 30, 40, and 50 rpm) and time (10, 20, and 30 min) were then varied, while the temperature was maintained at 20.7 ± 1 °C. The standard practice for coagulation-flocculation jar test ASTM D2035-13 (2013) was followed in all experiments. Relative floc size was monitored using an optical measuring device, photometric dispersion analyzer (PDA 2000). Larger and more shear resistant flocs were obtained at 20 rpm for both 20- and 30-min slow mixing times; however, given the shorter duration for the former, the 20-min slow mixing time was considered to be more energy efficient. For slow mixing camp number (Gt) values in the range of 8,400-90,000, it was found that the mixing speed affected floc size and strength more than the time. Higher-turbidity removal efficiencies were achieved at 20 and 30 rpm, while TSS removal efficiency was higher for the 50-rpm slow mixing speed. Extended slow mixing time of 30 min yielded better turbidity and TSS removal efficiencies at the slower speeds.

  2. Are viruses important in the plankton of highly turbid glacier-fed lakes?

    Science.gov (United States)

    Drewes, Fabian; Peter, Hannes; Sommaruga, Ruben

    2016-01-01

    Viruses are ubiquitous in aquatic ecosystems where they significantly contribute to microbial mortality. In glacier-fed turbid lakes, however, viruses not only encounter low host abundances, but also a high number of suspended mineral particles introduced by glacier meltwaters. We hypothesized that these particles potentially lead to unspecific adsorption and removal of free virus from the plankton, and thus significantly reduce their abundance in this type of lake. We followed the distribution of free virus-like particles (VLP) during the ice-free season across a turbidity gradient in four alpine lakes including one adjacent clear system where hydrological connectivity to the receding glacier is already lost. In the glacier-fed turbid lakes, VLP abundance increased with distance to the glacier, but the highest numbers were observed in the clear lake by the end of August, coinciding with the maximum in prokaryotic abundance. Our results suggest that viral loss by attachment to particles is less important than expected. Nevertheless, the relatively lower variability in VLP abundance and the lower virus-to-prokaryote ratio found in the turbid lakes than in the clear one point to a rather low temporal turnover and thus, to a reduced impact on microbial communities. PMID:27094854

  3. Copepods in turbid shallow soda lakes accumulate unexpected high levels of carotenoids.

    Directory of Open Access Journals (Sweden)

    Tobias Schneider

    Full Text Available Carotenoids are protective pigments present in many aquatic organisms that reduce the photooxidative stress induced by short-wavelenght solar radiation, yet increase their susceptibility to predators. Arctodiaptomus spinosus, a calanoid copepod typically found in many fishless shallow soda lakes, shows large between-lake differences in pigmentation. Here, we attribute these differences to the environmental state of these ecosystems, namely, 'dark water' lakes with submersed vegetation and turbid 'white' lakes lacking macrophytes. Copepod carotenoid concentration in the turbid 'white' lakes was significantly (about 20-fold higher than in the 'dark water' ones, although the latter systems were characterized by higher transparency. In addition, males had on a dry weight basis around three times higher carotenoid concentrations than females. Mycosporine-like amino acids (direct UV screening substances were found in all cases, but in low concentration. The environmental conditions in these ecosystems were largely shaped by the presence/absence of submersed macrophytes Thus, in the turbid lakes, the strong wind-driven mixis allows for copepods to be brought to the surface and being exposed to solar radiation, whereas in 'dark water' ones, macrophytes reduce water turbulence and additionally provide shelter. Our results explain the counter-intuitive notion of strong red pigmentation in copepods from a turbid ecosystem and suggest that factors other than high UV transparency favor carotenoid accumulation in zooplankton.

  4. Speckle-correlation imaging through highly scattering turbid media with LED illumination

    Science.gov (United States)

    Shao, Xiaopeng; Dai, Weijia; Wu, Tengfei; Li, Huijuan; Wang, Lin

    2015-05-01

    We address an optical imaging method that allows imaging, which owing to the "memory-effect" for speckle correlations, through highly scattering turbid media with "Error Reduction - Hybid Input Ouput (ER-HIO)" algorithm. When light propagates through the opaque materials, such as white paint, paper or biological tissues, it will be scattered away due to the inhomogeneity of the refractive index. Multiple scattering of light in highly scattering media forms speckle field, which will greatly reduce the imaging depth and degrade the imaging quality. Some methods have been developed to solve this problem in recent years, including wavefront modulation method (WMM), transmission matrix method (TMM) and speckle correlations method (SCM). A novel approach is proposed to image through a highly scattering turbid medium, which combines speckle correlations method (SCM) with phase retrieval algorithm (PRA). Here, we show that, owing to the "optical memory effect" for speckle correlations, a single frame image of the speckle field, captured with a high performance detector, encodes sufficient information to image through highly scattering turbid media. Theoretical and experimental results show that, neither the light source, nor wave-front shaping is required in this method, and that the imaging can be easily realized here using just a simple optical system with the help of optical memory effect. Our method does not require coherent light source, which can be achieved with LED illumination, unlike previous approaches, and therefore is potentially suitable for more and more areas. Consequently, it will be beneficial to achieve imaging in currently inaccessible scenarios.

  5. A highly sensitive underwater video system for use in turbid aquaculture ponds

    Science.gov (United States)

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C.

    2016-08-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds’ benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system’s high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  6. Estuaries.

    Science.gov (United States)

    Awkerman, Gary L.

    This publication is designed for use in standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations designed to impart ocean understanding to high school students. When the student has completed this unit, he should be able to: (1) define an…

  7. High frequency turbidity as a proxy for total phosphorus: application in a mixed land use catchment in Sweden

    Science.gov (United States)

    Lannergård, Emma; Ledesma, José L. J.; Fölster, Jens; Futter, Martyn N.

    2017-04-01

    Surface water eutrophication resulting from excessive phosphorus (P) input is one of the most challenging water issues of today. Total phosphorus (TP) concentrations have high temporal variability, which makes the parameter hard to monitor adequately. We explored the possibility of using high frequency turbidity as a proxy for TP in Sävjaån, a stream in a mixed land use catchment in Sweden. An in situ sensor (YSI 600OMS VS) monitoring turbidity every 10th minute, was situated close to the outlet of Sävjaån during 2014 and 2015. In situ and grab sample turbidity measurements were highly correlated (linear regression, r2=0.90). The maximum turbidity concentration measured by the sensor was at most 13 times higher than the highest concentration from the grab samples. The average turbidity concentration from the two methods was close to similar, as well as the Ecological Quality Ratios (EQR) calculated from the two data sets. The correlation between TP and high frequency turbidity was very high (r2=0.79) and between TSS and turbidity high (r2=0.67). When comparing load estimations from the high frequency data with monthly grab sampling and linear interpolation, the high frequency load was 7 % smaller in 2014 and 17 % larger in 2015. In 2014 the monthly grab sampling caught peaks in TP concentration, which with linear interpolation affected the nearby months and furthermore the yearly load. However, in 2015 peaks in concentration were overlooked when using grab sampling, which gave a larger yearly load when using the high frequency data. Season and flow intensity may affect the relationship between turbidity and TP, however this could not be statistically proven in this study. The proxy relationship could also result in uncertainties tied to unexplained diurnal variations of turbidity, proportion particulate bound P or hysteresis. Uncertainties arising from the use of sensors (e.g. sensor calibration and spatial representation) must as well be recognized. To

  8. REE in suspended particulate matter and sediment of the Zuari estuary and adjacent shelf, western India: Influence of mining and estuarine turbidity

    Digital Repository Service at National Institute of Oceanography (India)

    Shynu, R.; Rao, V.P.; Parthiban, G.; Balakrishnan, S.; Narvekar, T.; Kessarkar, P.M.

    Concentrations of Al, Fe, Mn and rare earth elements (REE) were measured in 122 samples of suspended particulate matter (SPM) and 70 surficial sediments from the Zuari estuary and the adjacent shelf to understand their distribution, provenance...

  9. High resolution simulations of down-slope turbidity currents into stratified saline ambient

    Science.gov (United States)

    Ouillon, Raphael; Radhakrishnan, Senthil; Meiburg, Eckart; Sutherland, Bruce

    2016-11-01

    In this work we explore the properties of turbidity currents moving down a slope into a stratified saline ambient through highly resolved 3D Navier-Stokes simulations. Turbidity events are difficult to measure and to replicate experimentally for a wide range of parameters, but they play a key role in ocean, lake or river sediment transport. Our objectives are to improve on previous numerical studies, obtain quantitative data in a more controlled environment than current experimental set-ups, and combine results with analytical arguments to build physics-based scaling laws. We validate our results and propose a simple scaling law to predict the velocity of the front down a slope for any stratification. We also compute a time and space dependent entrainment of ambient fluid and highlight its strong variability. We then introduce a predictable scaling law for the intrusion depth that does not depend on an averaged entrainment and uses it as a verification tool instead. Finally, we show that the ratio of Stokes losses in the local flow around individual particles to dissipative losses of the large scale flow determines the ability of the flow to convert potential energy into kinetic energy. For different parameters, either mechanism can dominate the dynamics of the flow.

  10. High-extinction VIPA-based Brillouin spectroscopy of turbid biological media

    CERN Document Server

    Fiore, Antonio; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-01-01

    Brillouin microscopy has recently emerged as powerful technique to characterize the mechanical properties of biological tissue, cell and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we developed a spectrometer composed of a two VIPA stages and a multi-pass Fabry-Perot interferometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 microns deep within chicken muscle tissue.

  11. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters

    Directory of Open Access Journals (Sweden)

    Stéfani Novoa

    2017-01-01

    Full Text Available The accurate measurement of suspended particulate matter (SPM concentrations in coastal waters is of crucial importance for ecosystem studies, sediment transport monitoring, and assessment of anthropogenic impacts in the coastal ocean. Ocean color remote sensing is an efficient tool to monitor SPM spatio-temporal variability in coastal waters. However, near-shore satellite images are complex to correct for atmospheric effects due to the proximity of land and to the high level of reflectance caused by high SPM concentrations in the visible and near-infrared spectral regions. The water reflectance signal (ρw tends to saturate at short visible wavelengths when the SPM concentration increases. Using a comprehensive dataset of high-resolution satellite imagery and in situ SPM and water reflectance data, this study presents (i an assessment of existing atmospheric correction (AC algorithms developed for turbid coastal waters; and (ii a switching method that automatically selects the most sensitive SPM vs. ρw relationship, to avoid saturation effects when computing the SPM concentration. The approach is applied to satellite data acquired by three medium-high spatial resolution sensors (Landsat-8/Operational Land Imager, National Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite and Aqua/Moderate Resolution Imaging Spectrometer to map the SPM concentration in some of the most turbid areas of the European coastal ocean, namely the Gironde and Loire estuaries as well as Bourgneuf Bay on the French Atlantic coast. For all three sensors, AC methods based on the use of short-wave infrared (SWIR spectral bands were tested, and the consistency of the retrieved water reflectance was examined along transects from low- to high-turbidity waters. For OLI data, we also compared a SWIR-based AC (ACOLITE with a method based on multi-temporal analyses of atmospheric constituents (MACCS. For the selected scenes, the ACOLITE-MACCS difference was

  12. What does impacted look like? High diversity and abundance of epibiota in modified estuaries.

    Science.gov (United States)

    Clark, Graeme F; Kelaher, Brendan P; Dafforn, Katherine A; Coleman, Melinda A; Knott, Nathan A; Marzinelli, Ezequiel M; Johnston, Emma L

    2015-01-01

    Ecosystems modified by human activities are generally predicted to be biologically impoverished. However, much pollution impact theory stems from laboratory or small-scale field studies, and few studies replicate at the level of estuary. Furthermore, assessments are often based on sediment contamination and infauna, and impacts to epibiota (sessile invertebrates and algae) are seldom considered. We surveyed epibiota in six estuaries in south-east Australia. Half the estuaries were relatively pristine, and half were subject to internationally high levels of contamination, urbanisation, and industrialisation. Contrary to predictions, epibiota in modified estuaries had greater coverage and were similarly diverse as those in unmodified estuaries. Change in epibiota community structure was linearly correlated with sediment-bound copper, and the tubeworm Hydroides elegans showed a strong positive correlation with sediment metals. Stressors such as metal contamination can reduce biodiversity and productivity, but others such as nutrient enrichment and resource provision may obscure signals of impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Evaluating the performance of the OC5 algorithm of IFREMER for the highly turbid waters of Río de la Plata

    Directory of Open Access Journals (Sweden)

    Martina Daniela Camiolo

    2016-03-01

    Full Text Available Abstract Remote sensing provides a global vision of the oceans; validation is, however, an essential previous step. IFREMER developed the empirical algorithm OC5 for highly turbid (or type 2 waters and it performed well for the northwestern European shelf. The aim of this study was to evaluate the performance of this algorithm for the Río de la Plata estuary, utilizing in situ observations of chlorophyll-a and suspended matter. Our results show a low point-to-point correlation between in situ and remote observations for both variables. In addition, the root mean square log error (RMSE exceeded 35% for both variables, indicating a poor performance of the OC5 algorithm. This might be related to the empirical nature of the algorithm, to the amount and distribution of the data used for the analysis, to the species that compose the phytoplankton of the region, to the presence of other optically active substances in the water, and to errors in the atmospheric corrections and/or to the spatial variability of the analyzed variables. In conclusion, our results confirm the need to develop regional algorithms which take into account the particular physical and biological characteristics of the area under study.

  14. Operating Conditions of Coagulation-Flocculation Process for High Turbidity Ceramic Wastewater

    Directory of Open Access Journals (Sweden)

    Sameer Al-Asheh

    2017-04-01

    Full Text Available This work attempted to determine the optimum conditions required for the coagulation and flocculation process as an essential stage of the ceramic wastewater treatment. Coagulation and flocculation is a very necessary step in industries as it lessens turbidity, color, and odor of wastewater. The experimental work was performed in several runs. The volume of wastewater used in each run was 200 mL and was kept at this value throughout. In certain runs, the speed of the mixer was varied while keeping the quantity of coagulant and flocculant constant in order to determine the optimum speed that resulted in the least turbidity. A speed of 5% was chosen as the ideal process speed according to the results obtained. Next, experiments were operated at this optimum speed while changing the dosage of coagulant and flocculant in order to decide the optimum dosage. Coagulant and flocculent amounts of 0.4 g (without booster and 0.2 g (with booster selected after the readings were taken. For all the readings, a turbidity meter was used providing results in Nephelometric Turbidity Units (NTU. Lowest turbidity was achieved when using 5% speed with 0.4 grams of coagulant and 0.4 grams of flocculant, or 5% speed with 0.2 grams of coagulant, 0.2 grams of flocculant and 0.25 g/L of booster coagulant. According to factorial design analysis, such as parameters as impeller speed and dosage have an influential impact on the turbidity; while the booster has insignificant influence and other interactions between parameters are important.

  15. Nearshore Turbid-Zone Corals Exhibit High Bleaching Tolerance on the Great Barrier Reef Following the 2016 Ocean Warming Event

    Directory of Open Access Journals (Sweden)

    Kyle M. Morgan

    2017-07-01

    Full Text Available High sea surface temperatures (SSTs on the Great Barrier Reef (GBR during summer 2015/2016 caused extensive coral bleaching, with aerial and in-water surveys confirming high (but variable bleaching-related coral mortality. In contrast, bleaching impacts on nearshore turbid-zone reefs, traditionally considered more “marginal” coral habitats, remain poorly documented. This is because rapid ecological surveys are difficult in these turbid water settings, and baseline coral community data from which to quantify disturbance are rare. However, models suggest that the extreme environmental conditions characteristic of nearshore settings (e.g., fluctuating turbidity, light, and temperature may acclimate corals to the thermal anomalies associated with bleaching on offshore reefs, although validation by field evidence has to-date been sparse. Here we present a novel pre- (June 2013/2014 and post-warming (August 2016 assessment of turbid-zone coral communities and examine the response of corals to prolonged and acute heat stress within the Paluma Shoals reef complex, located on the central GBR. Our analysis of 2,288 still video frames (~1,200 m2 which include 11,374 coral colonies (24 coral genera suggest a high tolerance of turbid-zone corals to bleaching, with no significant changes in coral cover (pre: 48 ± 20%; post: 55 ± 26% or coral community structure (e.g., Acropora, Montipora, Turbinaria, Porites following the warming event. Indeed, only one coral colony (Lobophyllia sp. exhibited full colony bleaching, and just 1.5% of colonies displayed partial pigmentation loss (<20% colony surface. Taxa-specific responses to this thermal stress event contrast with clear-water assessments, as Acropora corals which are normally reported as highly susceptible to bleaching on clear-water reefs were least impacted at Paluma Shoals, a phenomena that has been observed within other turbid settings. Importantly, field surveys confirm regional SSTs were

  16. Dissolved Trace Metals in the Tay Estuary

    Science.gov (United States)

    Owens, R. E.; Balls, P. W.

    1997-04-01

    Dissolved trace metals have been studied over an annual cycle in the relatively pristine Tay estuary (Scotland). The absence of a major anthropogenic signal has enabled some of the more subtle natural processes controlling trace metal distributions to be identified. Concentration ranges of dissolved metals in the Tay are similar to, or lower than, those observed in more industrialized estuaries. All metals behave non-conservatively in the Tay. Interactions with biogenic and detrital particulate phases are important in controlling dissolved trace metal concentrations. The degradation of organic matter appears to be particularly important for Cu. Removal of dissolved metals was observed in the turbidity maximum zone; a simple model was used to demonstrate that this could be accounted for by adsorption onto suspended particulate matter. At high salinity, coincident peaks of all six metals with ammonia and phosphate are attributed to sewage inputs from Dundee at the mouth of the estuary.

  17. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  18. Underwater light field determined by water constituents in highly turbid water: the case of Taihu lake

    Directory of Open Access Journals (Sweden)

    Chang-Chun Huang

    2013-02-01

    Full Text Available The relationships between optical properties and water constituents in highly turbid productivewater were studied on the basis of the multiple bio-optical measurements and samplings of water constituents made during five cruises from 2006 to 2008 in Taihu lake. Taihu lake is a high dynamic ratio [(square root of area/depth] inland shallow lake. The spatial and temporal variation of water constituents and optical properties is significant. The inorganic suspended matter (ISMhas become the primary constituent in Taihu lake: its average percentage can reach 65.21%. The concentration of ISM is highly correlated to the optical properties in Taihu lake due to the sediment resuspension. Consequently, the ISM can be taken into account as an important optically-active constituent in Taihu lake. Resuspended sediments also lead to a poor correlation between scattering optical property and chlorophyll-a concentration (CChl-a. However, empirical relationship between the CChl-a and phytoplankton absorption coefficient at 675 nm is still valid when the package effect is removed. The parameters of linear equation in the present study have slight temporal variation, especially for the relationship between inherent optical properties (IOPs and concentration of total suspended matter (TSM. The relationship between apparent optical property (AOP (diffuse attenuation coefficient of particle, Kdbio and ISM has been examined as well. The Kdbio is strongly affected by ISM, and correlates to it with linear function. Thedifference between specific diffuse attenuation coefficients of organic [K*dOSM(λ] and inorganic [K*dISM(λ] particles is significant. K*dOSM(λ includes the absorption property of chlorophyll-a (chl-a at 675 nm, which is much higher than that of K*dISM(λ. This indicates that the attenuation ability of OSM is stronger than that of ISM although the Kdbio induced by large concentration of ISM is bigger than the Kdbio induced by small concentration of OSM

  19. Operating Conditions of Coagulation-Flocculation Process for High Turbidity Ceramic Wastewater

    OpenAIRE

    Sameer Al-Asheh; Ahmed Aidan

    2017-01-01

    This work attempted to determine the optimum conditions required for the coagulation and flocculation process as an essential stage of the ceramic wastewater treatment. Coagulation and flocculation is a very necessary step in industries as it lessens turbidity, color, and odor of wastewater. The experimental work was performed in several runs. The volume of wastewater used in each run was 200 mL and was kept at this value throughout. In certain runs, the speed of the mixer was varied while ke...

  20. Seasonal variability of optical properties in a highly turbid lake (Laguna Chascomús, Argentina).

    Science.gov (United States)

    Pérez, Gonzalo Luis; Llames, María Eugenia; Lagomarsino, Leonardo; Zagarese, Horacio

    2011-01-01

    We study the underwater light field seasonality in a turbid lake, Laguna Chascomús (Buenos Aires, Argentina). We report (1) relationships between optical properties (OPs) and optically active substances (OASs); (2) relationships between inherent (IOPs) and apparent (AOPs) optical properties; and (3) the seasonal variability in OASs and OPs. Light absorption was dominated by the particulate fraction. The contributions of phytoplankton pigments and unpigmented components were similar. The best predictors of total particulate absorption, unpigmented particulate absorption, turbidity and vertical attenuation coefficient were total suspended solids or their ash content. Many OASs and OPs varied seasonally. The concentrations of OASs were higher during spring and summer, resulting in lower transparency and higher turbidity. However, mass-specific absorption coefficients displayed lower values during spring and summer. Thus, the higher light attenuation observed during spring and summer resulted from higher concentrations of relatively less absorptive OASs. Collectively, these results suggest that: (1) light extinction is enhanced during spring and summer; (2) the enhanced light extinction is due to changes in the particulate fraction; (3) the enhanced light extinction is mostly due to an increase in the amount of particulate material; and (4) the increase of particulate matter also enhanced light extinction through increased scattering. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  1. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes

    Science.gov (United States)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Reading, Michael J.; Sanders, Christian J.

    2017-10-01

    We hypothesise that mangroves play an important role in groundwater exchange processes in sub-tropical and tropical estuarine waters. To investigate this, multiple high resolution time series measurements of radium across a tidal estuary (Coffs Creek, NSW, Australia) were performed as well as a spatial survey in both bottom and surface layers. Results from the spatial survey revealed increasing radium concentrations in parts of the estuary surrounded by mangroves. The average radium concentration in estuary areas lined with mangroves was 2.5 times higher than the average concentration at the mouth of the estuary and 6.5-fold higher than upstream freshwater areas. Additionally, the area enriched in radium coincided with low dissolved oxygen concentrations, implying that porewater exchange may drive anoxia. A radium mass balance model based on 223Ra and 224Ra isotopes at different sections of the estuary confirmed higher porewater exchange rates from areas fringed with mangrove vegetation. Estimated porewater exchange rates were 27.8 ± 5.3 and 13.6 ± 2.1 cm d-1 (0.8 ± 0.1 and 0.4 ± 0.1 m3 s-1) based on 223Ra and 224Ra isotopes, respectively. The average saline porewater exchange was ∼ 10-fold larger than the upstream surface freshwater inputs to the estuary. We suggest that mangrove environments within subtropical estuaries are hotspots for porewater exchange due to the complex belowground structure of crab burrows and the effect of tidal pumping. Because porewater exchange releases carbon and nitrogen from coastal sediments, development and modification of mangrove areas in subtropical estuaries have a significant effect on coastal biogeochemical cycles.

  2. Carbon Flows in the Westerschelde Estuary (the Netherlands) Evaluated by Means of an Ecosystem Model (Moses)

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Herman, P.M.J.

    1995-01-01

    The autotrophic production and heterotrophic consumption of organic matter in the Westerschelde, a highly turbid and eutrophic estuary in the Southwest Netherlands is examined by means of a dynamic simulation model. The model describes the ecologically relevant processes in thirteen spatial

  3. Operation and performance evaluation of high-speed filter using porous non-woven filamentous fibre for the treatment of turbid water.

    Science.gov (United States)

    Niu, Siping; Park, Kisoo; Yu, Jianghua; Kim, Youngchul

    2016-01-01

    This study was carried out to identify the filter performance of fibre filter module treating high-turbidity water at extremely high filtration rates (1000-2500 m/day). The effects of filter aid chemical (polyaluminium chloride (PAC)), filtration rate and particles size on filter performance were investigated. It was found that PAC was a crucial factor influencing the separation process. Even though the optimum PAC dose for the raw water with turbidity of 50 nephelometric turbidity units (NTU) was 0.5 mg/L, the turbidity removal efficiencies were similar as the raw water turbidity was no more than 50 NTU. As expected, the filter performance was negatively affected by the increased filtration rate. However, the turbidity removal efficiency at an extremely high filtration rate still was amazing and attractive (∼80% at 2500 m/day). Moreover, the D50 and uniformity coefficient of the particles in raw water were not the factors greatly affecting the filter performance. The empirical model for the filter processes of granular filters did not work; therefore, an empirical model towards fibre filters at a high flow rate was suggested, which can be used to predict the treatment performance.

  4. Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants.

    Science.gov (United States)

    Dafforn, Katherine A; Kelaher, Brendan P; Simpson, Stuart L; Coleman, Melinda A; Hutchings, Pat A; Clark, Graeme F; Knott, Nathan A; Doblin, Martina A; Johnston, Emma L

    2013-01-01

    Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a 'positive' response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively 'pristine' estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification.

  5. Supercontinuum laser based double-integrating-sphere system for measuring optical properties of highly dense turbid media in the 1300-2350nm region with high sensitivity

    Science.gov (United States)

    Wang, Ling; Sharma, Sandeep; Aernouts, Ben; Ramon, Herman; Saeys, Wouter

    2012-06-01

    Accurate knowledge of the optical properties of turbid media in the light path is important in NIR absorption spectroscopy of biological tissues where multiple scattering complexes the collected light signals due to the non-uniform tissue architecture. Several approaches such as time resolved spectroscopy and spatially resolved spectroscopy have been proposed to measure the bulk optical properties of turbid media. Among them, double integrating sphere (DIS) measurements are recognized as the "golden standard" for in vitro optical properties measurement of turbid media because of its high accuracy and robustness in different conditions. A DIS system is convenient to measure the in vitro optical properties of turbid media like intralipid solutions and biological tissues, since it measures the diffuse reflectance and transmittance simultaneously. However, DIS measurements have been mostly limited to the optical window region (400-1000 nm) or suffered from low signal levels on the detectors due to the absorption by water in the NIR region. In this study, we developed a DIS system for optical property measurement in the 1300-2350 nm region based on a novel wavelength tunable spectroscopic setup which incorporates a high power broadband supercontinuum laser and a high precision monochromator. With this system, optical properties of intralipid solutions were measured in the wavelength region of 1300-2350nm.

  6. A review of sediment dynamics in the Severn Estuary: influence of flocculation.

    Science.gov (United States)

    Manning, A J; Langston, W J; Jonas, P J C

    2010-01-01

    This paper provides a review and critique of the distributions and characteristics of non-cohesive and cohesive sediments within the Severn Estuary, with particular reference to floc properties. The estuary is hyper-tidal and, consequently, highly turbid along most of its length and it generally has two turbidity maxima. In the upper reaches of the estuary, suspended particulate matter (SPM) concentrations can be in excess of 10 g l(-1) for river flows up to 50 m(3)s(-1), rising to over 50 g l(-1) during periods of lower river flow. The lower estuary turbidity maximum originates in the vicinity of Bridgwater Bay where SPM concentrations may vary between 0.1-200 g l(-1). The formation of fluid mud is coupled to the spring-neap cycle and strong vertical gradients in SPM concentrations produce turbulence damping and drag reduction effects, and hence impair the ability of the flow to transport sediments. Flocculation is an important mechanism for controlling the behaviour of fine sediments and mean settling velocities of flocs vary between 0.8-6 mm s(-1). A secondary consequence of flocculation is the formation of mud:sand mixtures in turbid suspensions. Improved understanding of the significance of flocculation processes is crucial as they may exert an influence on the mechanism by which adsorbed contaminants are transported in the system. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Fusion of Landsat-8/OLI and GOCI Data for Hourly Mapping of Suspended Particulate Matter at High Spatial Resolution: A Case Study in the Yangtze (Changjiang Estuary

    Directory of Open Access Journals (Sweden)

    Yanqun Pan

    2018-01-01

    Full Text Available Suspended particulate matter (SPM concentrations ([SPM] in the Yangtze estuary, which has third-order bifurcations and four outlets, exhibit large spatial and temporal variations. Studying the characteristics of these variations in [SPM] is important for understanding sediment transport and pollutant diffusion in the estuary as well as for the construction of port and estuarine engineering structures. The 1-h revisit frequency of the Geostationary Ocean Color Imager (GOCI sensor and the 30-m spatial resolution of the Landsat 8 Operational Land Imager (L8/OLI provide a new opportunity to study the large spatial and temporal variations in the [SPM] in the Yangtze estuary. In this study, [SPM] images with a temporal resolution of 1 h and a spatial resolution of 30 m are generated through the product-level fusion of [SPM] data derived from L8/OLI and GOCI images using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM. The results show that the details and accuracy of the spatial and temporal variations are maintained well in the [SPM] images that are predicted based on the fused images. Compared to the [SPM] observations at fixed field stations, the mean relative error (MRE of the predicted SPM is 17.7%, which is lower than that of the GOCI-derived [SPM] (27.5%. In addition, thanks to the derived high-resolution [SPM] with high spatiotemporal dynamic changes, both natural phenomena (dynamic variation of the maximum turbid zone and human engineering changes leading to the dynamic variability of SPM in the channel are observed.

  8. Nitrogen cycling in a turbid, tidal estuary

    NARCIS (Netherlands)

    Andersson, M.G.I.

    2007-01-01

    In this thesis I investigated nitrification, dissolved inorganic and organic nitrogen uptake, and the relative importance of nitrification and ammonium assimilation. I have also investigated exchange with marshes and sediments. Nitrification, oxidation of ammonium to nitrate is the first step for

  9. Performance of a Direct Horizontal Roughing Filtration (DHRF System in Treatment of Highly Turbid Water

    Directory of Open Access Journals (Sweden)

    A H Mahvi, M Ahmadi Moghaddam, S Nasseri, K Naddafi

    2004-07-01

    Full Text Available Vertical or horizontal flow gravel beds can be used in water treatment as roughing filters. In order to improve the performance of horizontal flow roughing filtration (HRF this process has been modified earlier by applying a constant coagulant dose prior to filtration named direct horizontal roughing filtration (DHRF. In this research a lab scale DHRF pilot plant was used for investigate DHRF performance. The study results indicated that DHRF (6.5 m long consisting of 2.5 m first compartment with 12-18 mm diameter grain, 2 m/s compartment with 8-12 mm diameter and 1.5m third compartment with 4-8 mm diameter was systematically yielded good effluent quality (<2NTU, C.I=0.95 with raw water quality of 200-400 NTU. DHRF is a versatile pretreatment process capable of handling wide fluctuation in raw water turbidity (200-400 NTU while operating condition such as coagulant dose [2mg Fe (III/L], mixing intensity, time and filtration rate remained unchangeable.

  10. A high resolution temporal study of phytoplankton bloom dynamics in the eutrophic Taw Estuary (SW England).

    Science.gov (United States)

    Maier, Gerald; Glegg, Gillian A; Tappin, Alan D; Worsfold, Paul J

    2012-09-15

    The Taw Estuary (SW England) is eutrophic as a result of enhanced nutrient inputs from its catchment. However, factors influencing the timing and extent of phytoplankton bloom formation are not fully understood in this system. In this study, high resolution chemical and biological sampling was undertaken in late-winter/spring and summer 2008 in order to gain further insights into bloom dynamics in the Taw Estuary. Temporal variations in chlorophyll a maxima in the upper and middle estuary during summer were controlled by river flow and tidal amplitude, with nutrient limitation probably less important. Concentrations of chlorophyll a were highest during low river flow and neap tides. Increased river flows advected the chlorophyll maximum to the outer estuary, and under highest river discharges, chlorophyll a concentrations were further reduced. This feature was even more pronounced when spring tides coincided with high flows. The main bloom species were the diatoms Asterionellopsis glacialis and Thalassiosira guillardii. Using two multivariate statistical techniques in combination, five distinct physical and biogeochemical states in the Taw estuarine waters were identified. These states can be summarised as: A(1), high chlorophyll a, high temperature, long residence times, nutrient depletion; A(2), strong coastal water influence; B(1), decreasing chlorophyll a, increasing river flow and/or spring tides; B(2), transitional between states A(1) and B(3); B(3), high river flow. It was thus possible to differentiate between contrasting environmental conditions that were either beneficial or detrimental for the development of algal blooms. A conceptual model of diatom - dominated primary production for the Taw Estuary is proposed which describes how physical controls (river flow, tidal state) moderate plankton biomass production in the upper and mid - estuarine regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. The link between water quality and tidal marshes in a highly impacted estuary.

    Science.gov (United States)

    Meire, Patrick; Maris, Tom; van Damme, Stefan; Jacobs, Sander; Cox, Tom; Struyf, Eric

    2010-05-01

    The Schelde estuary is one of the most heavily impacted estuaries in Europe. During several decades, untreated waste water from large cities (e.g. Brussels, Antwerp, Valenciennes, Lille) and industries was discharged in the river. As a result, the Schelde estuary has the reputation of being one of the most polluted estuaries in Europe. For a long time (approx. 1950 - 1995) all forms of higher life (macro-invertebrates and fish) were absent in the fresh and brackish parts of the estuary. Due to European legislation, a large part of the sewage water is now treated resulting in a significant recovery of water quality in the estuary. However, next to water quality, the estuary also suffered serious habitat losses during the last decades, mostly due to economic development and changing hydrological conditions causing more erosion. Over the last fifteen years, the management of the estuary has changed fundamentally. It is now more and more focused on the restoration of ecosystem services. In this presentation we will document the changes in water quality over the last 50 years and summarize recent work on the role of tidal marshes on water quality within the freshwater part of the Schelde estuary. Our results stress the important of taking into account ecosystem services and habitat restoration for long-term estuarine management. .After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observed a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs, indicating a regime shift. Our results indicate that the recovery of a hypereutrophied systems towards a classical eutrophied state, needs the reduction of waste loads below certain thresholds. Paradoxically, phytoplankton production was inhibited by high ammonia or low oxygen concentrations. The system state change is accompanied by large fluctuations in oxygen concentrations. The improved water quality resulted in a remarkable recovery of different groups

  12. The effects of hydrological dynamics on benthic diatom community structure in a highly stratified estuary: The case of the Ebro Estuary (Catalonia, Spain)

    Science.gov (United States)

    Rovira, L.; Trobajo, R.; Leira, M.; Ibáñez, C.

    2012-04-01

    This study of the distribution of benthic diatom assemblages and their relationship with environmental factors in a highly stratified Mediterranean estuary, i.e. the Ebro Estuary, shows the importance of hydrological dynamics to explain the features of the diatom community in such an estuary, where river flow magnitude and fluctuations imply strong physicochemical variability especially in sites close to the sea. Eight sites along the estuary were sampled during 2007-2008 both at superficial and deep water layers, in order to gather both horizontal and vertical estuarine physicochemical and hydrological gradients. Canonical Variates Analysis and Hierarchical Cluster Analysis segregated diatom community in two assemblages depending on the dynamics of the salt-wedge. The diatom assemblages of riverine conditions (i.e. without salt-wedge influence) where characterised by high abundances of Cocconeis placentula var. euglypta and Amphora pediculus, meanwhile high abundances of Nizschia frustulum and Nitzschia inconspicua were characteristic of estuarine conditions (i.e. under salt-wedge influence). Redundancy Analysis showed that both diatom assemblages responded seasonally to Ebro River flows, especially in estuarine conditions, where fluctuating conditions affected diatom assemblages both at spatial and temporal scale.

  13. High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique

    Science.gov (United States)

    Yuan, Baohong; Uchiyama, Seiichi; Liu, Yuan; Nguyen, Kytai T.; Alexandrakis, George

    2012-07-01

    The spatial resolution of fluorescence imaging techniques in deep optically turbid media such as tissues is limited by photon diffusion. To break the diffusion limit and achieve high-resolution and deep-tissue fluorescence imaging, a fundamentally different method was demonstrated based on a concept of ultrasound-switchable fluorescence. The results showed that a small fluorescent tube with a diameter of ˜180 μm at a depth of ˜20 mm in an optical scattering medium (μs'≈3.2 and μa≈0.026 cm-1) can be clearly imaged with a size of ˜260 μm. The depth-to-resolution ratio is shown to be about one order of magnitude better than other deep-tissue fluorescence imaging techniques.

  14. Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species.

    Science.gov (United States)

    Hasenbein, Matthias; Fangue, Nann A; Geist, Juergen; Komoroske, Lisa M; Truong, Jennifer; McPherson, Rina; Connon, Richard E

    2016-01-01

    Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator-prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species endemic to the San Francisco Estuary and Sacramento-San Joaquin River Delta, USA, where it is associated with turbid waters. Turbidity is known to play an important role for the completion of the species' life cycle; however, turbidity ranges in the Delta are broad, and specific requirements for this fish species are still unknown. To evaluate turbidity requirements for early life stages, late-larval delta smelt were maintained at environmentally relevant turbidity levels ranging from 5 to 250 nephelometric turbidity units (NTU) for 24 h, after which a combination of physiological endpoints (molecular biomarkers and cortisol), behavioural indices (feeding) and whole-organism measures (survival) were determined. All endpoints delivered consistent results and identified turbidities between 25 and 80 NTU as preferential. Delta smelt survival rates were highest between 12 and 80 NTU and feeding rates were highest between 25 and 80 NTU. Cortisol levels indicated minimal stress between 35 and 80 NTU and were elevated at low turbidities (5, 12 and 25 NTU). Expression of stress-related genes indicated significant responses for gst, hsp70 and glut2 in high turbidities (250 NTU), and principal component analysis on all measured genes revealed a clustering of 25, 35, 50 and 80 NTU separating the medium-turbidity treatments from low- and high-turbidity treatments. Taken together, these data demonstrate that turbidity levels that are either too low or too high affect delta

  15. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography.

    Science.gov (United States)

    Luo, Haibin; Lee, Nacole; Wang, Xiangyang; Li, Yuling; Schmelzer, Albert; Hunter, Alan K; Pabst, Timothy; Wang, William K

    2017-03-10

    Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Dynamics of intertidal flats in the Loire estuary

    Science.gov (United States)

    Kervella, Stephane; Sottolichio, Aldo; Bertier, Christine

    2014-05-01

    Tidal flats form at the edges of many tidal estuaries, and are found in broad climatic regions. Their evolution plays a fundamental role in maintaining the morphodynamic equilibrium of an estuary. The Loire estuary is one of the largest macrotidal systems of the french atlantic coast. Since 200 years, its geometry has been drastically modified through channeling, deepening, embanking, infilling of secondary channels, etc. These works altered many intertidal areas. In the recent years, efforts for the rectification of the morphology have been made in order to restore the ecology of the estuary. In this context, it is crucial to better understand the dynamics of intertidal flats, still poorly understood in this estuary. The aim of this work is to analyse a series of original observations conducted for the first time in two intertidal flats of the central Lore estuary between 2008 and 2010. The tidal flats are situated in the northern bank, at 12 and 17 km upstream from the mouth respectively. Six Altus altimeters were deployed at two cross shore transects, measuring continuously and at a high-frequency bed altimetry and water level, providing information on tide and waves. At the semi-diurnal tidal scale, the surficial sediment of intertidal flats is permanently mobilized. Altimetry variations are low, and their amplitude varies as a function of tides and river flow. At the scale of several months, the sedimentation is controlled by the position of the turbidity maximum (and therefore by the river flow) and also by the tidal amplitude. During low river flow periods, altimetry variations are only due to tidal cycles. During decaying tides, suspended sediment settle mainly on the lower part of the tidal flats, forming fluid mud layers of several cm thick, which can consolidate rapidly; under rising tides, the increasing of tidal currents promotes erosion. During periods of high river flow, the turbidity maximum shifts to the lower estuary. The higher suspended sediment

  17. SPM response to tide and river flow in the hyper-turbid Ems River

    Science.gov (United States)

    Winterwerp, Johan C.; Vroom, Julia; Wang, Zheng-B.; Krebs, Martin; Hendriks, Erik C. M.; van Maren, Dirk S.; Schrottke, Kerstin; Borgsmüller, Christine; Schöl, Andreas

    2017-05-01

    In this paper, we analyse the behaviour of fine sediments in the hyper-turbid Lower Ems River, with focus on the river's upper reaches, a stretch of about 25 km up-estuary of Terborg. Our analysis is based on long records of suspended particulate matter (SPM) from optical backscatter (OBS) measurements close to the bed at seven stations along the river, records of salinity and water level measurements at these stations, acoustic measurements on the vertical mud structure just up-estuary of Terborg and oxygen profiles in the lower 3 m of the water column close to Leerort and Terborg. Further, we use cross-sectionally averaged velocities computed with a calibrated numerical model. Distinction is made between four timescales, i.e. the semi-diurnal tidal timescale, the spring-neap tidal timescale, a timescale around an isolated peak in river flow (i.e. about 3 weeks) and a seasonal timescale. The data suggest that a pool of fluid/soft mud is present in these upper reaches, from up-estuary of Papenburg to a bit down-estuary of Terborg. Between Terborg and Gandersum, SPM values drop rapidly but remain high at a few gram per litre. The pool of fluid/soft mud is entrained/mobilized at the onset of flood, yielding SPM values of many tens gram per litre. This suspension is transported up-estuary with the flood. Around high water slack, part of the suspension settles, being remixed during ebb, while migrating down-estuary, but likely not much further than Terborg. Around low water slack, a large fraction of the sediment settles, reforming the pool of fluid mud. The rapid entrainment from the fluid mud layer after low water slack is only possible when the peak flood velocity exceeds a critical value of around 1 m/s, i.e. when the stratified water column seems to become internally supercritical. If the peak flood velocity does not reach this critical value, f.i. during neap tide, fluid mud is not entrained up to the OBS sensors. Thus, it is not classical tidal asymmetry, but

  18. Technologies Beyond Turbidity for Sediment Monitoring - Laser diffraction, High Frequency Acoustics and a new Combined acousto-optic method

    Science.gov (United States)

    Agrawal, Yogesh C.

    2017-04-01

    Sediment monitoring was transformed when optical turbidity was first introduced 3 decades ago, creating a capacity to monitor sediments continuously. Despite many papers that have since noted that turbidity measures particle area concentration not volume, turbidity remains widely in use. In fact, the sensitivity to area rather than volume implies a 1/diameter variation with size on concentration measurement (Volts/volume). Consequently, small amounts of fine sediments can dominate larger amounts of sands - a phenomenon that has masked suspended load in many river profiles, as we will show. Laser diffraction, on the other hand, has constant sensitivity to a wide range of grain sizes, e.g. from 2-500 microns, and obtains size distribution at 1 4-phi size intervals, with LISST instruments. However, it is expensive. An 8MHz acoustic system has recently been introduced, LISST-ABS that has advantages of a flatter response to varying grain sizes than turbidity, a higher sensitivity to suspended load than wash load, and a greater tolerance to turbidity. The response (Volts/volume) is still not flat, exhibiting a size-dependence that is inverse of turbidity at small sizes where particles are in Rayleigh regime, i.e. where ka<1 at 8MHz - diameters smaller than 60 microns. This opposing tendency of optics and acoustics lead us to the concept of combining the two methods, and this is a new idea that we call acousto-optics. Over the 1-500 micron size range, instead of 3 orders of magnitude variation in sensitivity for optics, this sensor achieves constancy within a factor of 3 even for narrow size particles, and better for distributions. The acoustic and acousto-optic sensors should significantly enhance measurement quality for sediments. We shall review and present the new concept.

  19. Optical teledetection of chlorophyll a in turbid inland waters

    NARCIS (Netherlands)

    Gons, H.J.

    1999-01-01

    Determination of subsurface spectral irradiance reflectance by use of a hand-held spectroradiometer and then estimation of chlorophyll a (Chl-a) concentration facilitate assessment of ecological change in turbid lakes, rivers, and estuaries. The method was applied under widely varying solar

  20. Tidal straining effect on the suspended sediment transport in the Huanghe (Yellow River) Estuary, China

    Science.gov (United States)

    Wang, Xiao Hua; Wang, Houjie

    2010-10-01

    Tidal straining effect on sediment transport dynamics in the Huanghe (Yellow River) estuary was studied by field observations and numerical simulations. The measurement of salinity, suspended sediment concentration, and current velocity was conducted during a flood season in 1995 at the Huanghe river mouth with six fishing boats moored at six stations for 25-h hourly time series observations. Based on the measurements, the intra-tidal variations of sediment transport in the highly turbid river mouth was observed and the tidal straining effect occurred. Our study showed that tidal straining of longitudinal sediment concentration gradients can contribute to intra-tidal variability in sediment stratification and to asymmetries in sediment distribution within a tidal cycle. In particular, the tidal straining effect in the Huanghe River estuary strengthened the sediment-induced stratification at the flood tide, thus producing a higher bottom sediment concentration than that during the ebb. A sediment transport model that is capable of simulating sediment-induced stratification effect on the hydrodynamics in the bottom boundary layers and associated density currents was applied to an idealized estuary to demonstrate the processes and to discuss the mechanism. The model-predicted sediment processes resembled the observed characteristics in the Huanghe River estuary. We concluded that tidal straining effect is an important but poorly understood mechanism in the transport dynamics of cohesive sediments in turbid estuaries and coastal seas.

  1. Turbidity removal by centrifugal microfiltration

    Directory of Open Access Journals (Sweden)

    Tim C. Keener

    2017-03-01

    Full Text Available Water turbidity is an important characteristic of surface waters and wastewater treatment plant effluents as well as a key indicator of water quality. Turbidity is the lack of clarity of water caused by microalgae and other particles that attenuates light. The cost of clarifying water can be high. This is primarily due to the physical and chemical steps that must be taken to remove the extremely small entrained particles and colloidal substances that cause high turbidity, and the large amounts of water that generally must be process for such small masses of entrained materials. This paper discusses the results of a series of experiments of a potentially new method of clarifying water by incorporating microfiltration through a high throughput filter operating under a centrifugal force. The results have shown that significant reductions in turbidity can be achieved at relatively high water flux values through a commercially available filter. This indicates the potential of the technology as a water clarifying method by means of this low energy separation device.

  2. Turbidity Current Bedforms

    NARCIS (Netherlands)

    Cartigny, Matthieu|info:eu-repo/dai/nl/304823716; Postma, G.|info:eu-repo/dai/nl/069744599

    2017-01-01

    Turbidity currents in the submarine seascape are what river flows are in terrestrial landscapes. While rivers transport sediment from the mountains through valleys towards the sea, turbidity currents transport sediment from the shallow marine realms through canyons towards the deeper abyssal plains.

  3. Natural forcings on a transformed territory overshoot thresholds of primary productivity in the Guadalquivir estuary

    Science.gov (United States)

    Ruiz, J.; Macías, D.; Navarro, G.

    2017-09-01

    A three year-long quasi continuum sampling dataset on the Guadalquivir estuary water quality was used to assess the role of light availability on its biological production. We found that inorganic nutrients within the estuary are very high (with mean values for inorganic nitrogen and phosphorous of 285 and 2.4 μM respectively) while phytoplankton biomass remains low most of the time (with a mean value of 2.6 mg/m3). A strong relationship between phytoplankton biomass and water turbidity was found indicating that, indeed, light availability is the major constraint of primary production in this system. Most of the time this limitation of primary production is not associated to enhanced turbidity connected to fresh water inputs. Instead, our data indicate that, independently of freshwater inputs, the photosynthesis is restricted by tidal forcings enhancing turbidity in an estuary that has been highly modified. Our results match with classical theories on the functioning of well-mixed, estuarine ecosystems as well as with recent modeling exercises. We also discuss the potential impacts of this particular characteristic of some estuarine systems for their management and regulatory control.

  4. Mine burial in the seabed of high-turbidity area (Belgian coastal zone): findings from a first experiment

    OpenAIRE

    Baeye, M.; Fettweis, M.; Legrand, S.; Dupont, Y.; Van Lancker, V.

    2012-01-01

    Suspended particulate matter; particle size distribution; statistical handling; coastal turbidity maximum; wind impact; seabed variations The seabed of the North Sea is covered with ammunition dating back from World Wars I and II. With increasing human interference (e.g. fisheries, aggregate extraction, harbour related activities), it forms a threat to the safety at sea. In this study, test mines were deployed on a sandy seabed for three months to investigate mine burial processes as a functi...

  5. The Hudson River estuary

    National Research Council Canada - National Science Library

    Levinton, J.S; Waldman, J.R

    2006-01-01

    ... emphasis on important issues specific to the Hudson, such as the effect of power plants and high concentrations of PCBs. The chapters are written by specialists at a level that is accessible to students, teachers, and the interested layperson. The Hudson River Estuary is a unique scientifi c biography of a major estuary, with relevance to the s...

  6. Distribution, transport and exchanges of fine sediment, with tidal power implications: Severn Estuary, UK.

    Science.gov (United States)

    Kirby, R

    2010-01-01

    The Severn, a hypertidal, high turbidity estuary, has a bed largely stripped of unconsolidated sediment. Its inter-tidal zone is mainly mudflats, the universal erosional trend of which is now proven. These are a source for sub-tidal mud accumulations in Newport Deep, much of Bridgwater Bay, less so in Bristol Deep and Cardiff Roads. The main estuary turbidity maximum is dominated by its exceptional turbidity and the cycling of this on two tidal timescales. It is the means to exchange fines between sources and sinks. It shows discontinuities in three planes - lutoclines, suspended sediment fronts and slug flow. Much of the estuary is verging on or actually barren. It has been designated under EU legislation for its fine sediment-induced naturally-depauperate nature. This is invalid as it is complicated by large scale ecosystem collapse due to climate change. Building a Cardiff-Weston barrage would induce a large rise in faunal abundance and biodiversity. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Temporal and spatial variability in the Guadalquivir estuary: a challenge for real-time telemetry

    Science.gov (United States)

    Navarro, Gabriel; Gutiérrez, Francisco Javier; Díez-Minguito, Manuel; Losada, Miguel Angel; Ruiz, Javier

    2011-06-01

    Meteorological, hydrological, and hydrodynamic data for 3 years (2008-2010) have been used to document and explain the temporal and spatial variability of the physical-biogeochemical interactions in the Guadalquivir River Estuary. A real-time, remote monitoring network has been deployed along the course of the river between its mouth and Seville to study a broad range of temporal scales (semidiurnal, diurnal, fortnightly, and seasonal). This network consists of eight hydrological monitoring stations capable of measuring temperature, conductivity, dissolved oxygen, turbidity, and chlorophyll fluorescence at four depths. In addition, six stations have been deployed to study hydrodynamics, obtaining 20-cell water column current profiles, and there is a meteorological station at the river mouth providing data for understanding atmospheric interactions. Completing this data-gathering network, there are several moorings (tide gauges, current/wave sensors, and a thermistor chain) deployed in the estuary and river mouth. Various sources of physical forcing, such as wind, tide-associated currents, and river discharge, are responsible for the particular temporal and spatial patterns of turbidity and salinity found in the estuary. These variables force the distribution of biogeochemical variables, such as dissolved oxygen and chlorophyll fluorescence. In particular, episodes of elevated turbidity (when suspended particle matter concentration >3,000 mg/l) have been detected by the network, together with episodes of declining values of salinity and dissolved oxygen. All these patterns are related to river discharge and tidal dynamics (spring/neap and high/low tide).

  8. Estuaries 1

    OpenAIRE

    Battey, B.

    2016-01-01

    'Estuaries 1' can be viewed at https://vimeo.com/202629040 'Estuaries 1' is the first of the Estuaries series of audiovisual compositions, which explore the expressive potentials of the author's Variable-Coupled Map Networks and OptiNelder methods for generative music and image. It evokes an 'unstable stasis' through processes that are always on the edge of destabilisation.

  9. Estuaries 2

    OpenAIRE

    Battey, B.

    2017-01-01

    'Estuaries 2' is the second of the author's Estuaries series of audiovisual compositions, which explore the expressive potential of the authors Variable-Coupled Map Networks and OptiNelder methods for generative music and images. 'Estuaries 2' focuses on dialog between grid-based logic and all-over textures with random distributions,

  10. Recombinant protein expression of Moringa oleifera lectin in methylotrophic yeast as active coagulant for sustainable high turbid water treatment.

    Science.gov (United States)

    Abd Wahid, Muhamad Azhar; Megat Mohd Noor, Megat Johari; Goto, Masafumi; Sugiura, Norio; Othman, Nor'azizi; Zakaria, Zuriati; Ahmad Mohammed, Thamer; Jusoh, Ahmad; Hara, Hirofumi

    2017-08-01

    The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.

  11. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings

    Science.gov (United States)

    Morgan, Kyle M.; Perry, Chris T.; Smithers, Scott G.; Johnson, Jamie A.; Daniell, James J.

    2016-07-01

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances.

  12. Freshwater scarcity effects on the aquatic macrofauna of a European Mediterranean-climate estuary.

    Science.gov (United States)

    González-Ortegón, Enrique; Baldó, Francisco; Arias, Alberto; Cuesta, Jose A; Fernández-Delgado, Carlos; Vilas, César; Drake, Pilar

    2015-01-15

    In the Mediterranean-climate zone, recurrent drought events and increasing water demand generally lead to a decrease in freshwater input to estuaries. This water scarcity may alter the proper function of estuaries as nursery areas for marine species and as permanent habitat for estuarine species. A 12-year data set of the aquatic macrofauna (fish, decapod and mysid crustaceans) in a Mediterranean estuary (Guadalquivir estuary, South Spain) was analysed to test if water scarcity favours the nursery function of regional estuaries to the detriment of permanent estuarine inhabitants. Target species typically displayed a salinity-related distribution and estuarine salinisation in dry years resulted in a general upstream community displacement. However, annual densities of marine species were neither consistently higher in dry years nor estuarine species during wet years. Exceptions included the estuarine mysid Neomysis integer and the marine shrimp Crangon crangon, which were more abundant in wet and dry years, respectively. High and persistent turbidity, a collateral effect of water scarcity, altered both the structural (salinity-related pattern) and functional (key prey species and predator density) community characteristics, chiefly after the second drought period of the analysis. The observed high inter-year environmental variability, as well as species-specific effects of water scarcity, suggests that exhaustive and long-term sampling programmes will be required for rigorously monitoring the estuarine communities of the Mediterranean-climate region. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary

    Science.gov (United States)

    Cloern, J.E.; Alpine, A.E.; Cole, B.E.; Wong, R.L.J.; Arthur, J.F.; Ball, M.D.

    1983-01-01

    Phytoplankton dynamics in the upper reach of the northern San Francisco Bay estuary are usually characterized by low biomass dominated by microflagellates or freshwater diatoms in winter, and high biomass dominated by neritic diatoms in summer. During two successive years of very low river discharge (the drought of 1976-77), the summer diatom bloom was absent. This is consistent with the hypothesis that formation of the diatom population maximum is a consequence of the same physical mechanisms that create local maxima of suspended sediments in partially-mixed estuaries: density-selective retention of particles within an estuarine circulation cell. Because the estuary is turbid, calculated phytoplankton growth rates are small in the central deep channel but are relatively large in lateral shallow embayments where light limination is less severe. When river discharge falls within a critical range (100-350 m3 s-1) that positions the suspended particulate maximum adjacent to the productive shallow bays, the population of neritic diatoms increases. However, during periods of high discharge (winter) or during periods of very low discharge (drought), the suspended particulate maximum is less well-defined and is uncoupled (positioned downstream or upstream) from the shallow bays of the upper estuary, and the population of neritic diatoms declines. Hence, the biomass and community composition of phytoplankton in this estuary are controlled by river discharge. ?? 1983.

  14. Subtidal benthic macroinfaunal assemblages in tropical estuaries: generality amongst highly variable gradients.

    Science.gov (United States)

    Barros, Francisco; de Carvalho, Gilson Correia; Costa, Yuri; Hatje, Vanessa

    2012-10-01

    South American estuaries are frequently not included in the search for general ecological models and studies dealing with biological assemblages in estuaries frequently do not sample the entire salinity gradient. We sampled three tropical estuaries, two times each, on ten stations distributed along each system. Six replicates were collected in each station for the benthic macroinfauna and sediment samples for grain size and inorganic contaminant analyses. There were finer sediments at the lower than at the upper estuarine portions. There was a decrease in the diversity, at family level, from marine to freshwater and the differences on the structure of the benthic assemblages were mostly spatial. In spite of the many different characteristics of the three estuaries (e.g. catchment size, pollution levels, proximity with the inner continental shelf) several consistent patterns of benthic macrofauna distribution along these systems were still observed. It suggested a general empirical model regarding the distribution of different benthic invertebrates along tropical salinity gradients which can be tested in different estuaries around the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Sediment balance of intertidal mudflats in a macrotidal estuary

    Science.gov (United States)

    lafite, R.; Deloffre, J.; Lemoine, M.

    2012-12-01

    Intertidal area contributes widely to fine-grained sediment balance in estuarine environments. Their sedimentary dynamics is controlled by several forcing parameters including tidal range, river flow and swell, affected by human activities such as dredging, construction or vessels traffic leading to modify sediment transport pattern. Although the estuarine hydrodynamics is well documented, the link between forcing parameters and these sedimentary processes is weakly understood. One of the main reasons is the difficulty to integrate spatial (from the fluvial to the estuary mouth) and temporal (from swell in seconds to pluriannual river flow variability) patterns. This study achieved on intertidal mudflats distributed along the macrotidal Seine estuary (France) aims (i) to quantify the impact of forcing parameters on each intertidal area respect to its longitudinal position in the estuarine system and (ii) to assess the fine-grained sediment budget at estuarine scale. The Seine estuary is a macrotidal estuary developed over 160 km up the upstream limit of tidal wave penetration. With an average river flow of 450m3.s-1, 80% of the Suspended Particles Matter (SPM) annual flux is discharged during the flood period. In the downstream part, the Seine estuary Turbidity Maximum (TM) is the SPM stock located near the mouth. During their transfer toward the sea, the fine particles can be trapped in (i) the intertidal mudflats; preferential areas characterized by low hydrodynamics and generally sheltered of the tidal dominant flow, the main tidal current the Seine River and (ii) the TM. The Seine estuary is an anthropic estuary in order to secure navigation: one consequence of these developments is the tidal bore disappearance. Along the macrotidal Seine estuary hydrodynamics features and sedimentary fluxes were followed during at least 1 year using respectively Acoustic Doppler Velocimeter, Optical BackScatter and altimeter. Results in the fluvial estuary enhance the role of

  16. [Changes of wetland landscape pattern in Dayang River Estuary based on high-resolution remote sensing image].

    Science.gov (United States)

    Wu, Tao; Zhao, Dong-zhi; Zhang, Feng-shou; Wei, Bao-quan

    2011-07-01

    Based on the comprehensive consideration of the high resolution characteristics of remote sensing data and the current situation of land cover and land use in Dayang River Estuary wetland, a classification system with different resolutions of wetland landscape in the Estuary was established. The landscape pattern indices and landscape transition matrix were calculated by using the high resolution remote sensing data, and the dynamic changes of the landscape pattern from 1984 to 2008 were analyzed. In the study period, the wetland landscape components changed drastically. Wetland landscape transferred from natural wetland into artificial wetland, and wetland core regional area decreased. Natural wetland's largest patch area index descended, and the fragmentation degree ascended; while artificial wetland area expanded, its patch number decreased, polymerization degree increased, and the maximum patch area index had an obvious increasing trend. Increasing human activities, embankment construction, and reclamation for aquaculture were the main causes for the decrease of wetland area and the degradation of the ecological functions of Dayang River Estuary. To constitute long-term scientific and reasonable development plan, establish wetland nature reserves, protect riverway, draft strict inspective regimes for aquaculture reclamation, and energetically develop resource-based tourism industry would be the main strategies for the protection of the estuarine wetland.

  17. An overview of physical and ecological processes in the Rio de la Plata Estuary

    Science.gov (United States)

    Marcelo Acha, E.; Mianzan, Hermes; Guerrero, Raúl; Carreto, José; Giberto, Diego; Montoya, Norma; Carignan, Mario

    2008-07-01

    The Rio de la Plata is a large-scale estuary located at 35°S on the Atlantic coast of South America. This system is one of the most important estuarine environments in the continent, being a highly productive area that sustains valuable artisanal and coastal fisheries in Uruguay and Argentina. The main goals of this paper are to summarize recent knowledge on this estuary, integrating physical, chemical and biological studies, and to explore the sources and ecological meaning of estuarine variability associated to the stratification/mixing alternateness in the estuary. We summarized unpublished data and information from several bibliographic sources. From study cases representing different stratification conditions, we draw a holistic view of physical patterns and ecological processes of the stratification/mixing alternateness. This estuary is characterized by strong vertical salinity stratification most of the time (the salt-wedge condition). The head of the estuary is characterized by a well-developed turbidity front. High turbidity constrains their photosynthesis. Immediately offshore the turbidity front, water becomes less turbid and phytoplankton peaks. As a consequence, trophic web in the estuary could be based on two sources of organic matter: phytoplankton and plant detritus. Dense plankton aggregations occur below the halocline and at the tip of the salt wedge. The mysid Neomysis americana, a key prey for juvenile fishes, occurs all along the turbidity front. A similar spatial pattern is shown by one of the most abundant benthic species, the clam Mactra isabelleana. These species could be taken advantage of the particulate organic matter and/or phytoplankton concentrated near the front. Nekton is represented by a rich fish community, with several fishes breeding inside the estuary. The most important species in terms of biomass is Micropogonias furnieri, the main target for the coastal fisheries of Argentina and Uruguay. Two processes have been identified

  18. Fluvial modulation of hydrodynamics and salt transport in a highly stratified estuary

    Directory of Open Access Journals (Sweden)

    Carla de Abreu D'Aquino

    2010-06-01

    Full Text Available An oceanographic campaign was conducted in the Araranguá river estuary during the period from May 11th to 13th of 2006 in order to produce a first hydrographic characterization of this system. The campaign was carried out during the spring tide period, and coincidentally after an intense rain event in the region which produced a peak in river discharge. Water level, currents and salinity time series were recorded hourly during a 50-hour period, at a site nearly 7 km upstream from the estuarine mouth. Two longitudinal distributions of salinity along the estuary were also recorded. The hydrographic data time-series were used to compute the advective salt flux in order to investigate the changes in the transport terms as a function of the change in discharge. The results showed that the estuarine structure was strongly modulated by the river discharge. The drop in water level of about 0.5 m during the first 24 hours was directly related to the ebb phase of the river flood. The water column was highly stratified throughout the period, therefore the stratification increased during the last 24 hours. The currents were stronger, ebbing and uni-directional at the beginning and became weaker and bidirectional as the water level went down, assuming a tidal pattern. The total salt transport in the first 25 hours was of -13.6 kg.m-1.s-1 (seawards, decreasing to 3 Kg.m-1.s-1 during the last 25 hours (landwards. It was also noticeable that the pH in the estuary, recorded together with the salinity, was around 5, showing that the water quality in the estuary is affected by the coal mining activity in the hydrographic basin.Uma campanha oceanográfica foi realizada no estuário do rio Araranguá durante o período de 11 e 13 de maio de 2006, objetivando fazer uma primeira caracterização hidrográfica do sistema. A campanha foi realizada em condição de maré de sizígia, e coincidentemente após um evento de chuvas intensas na região que produziu um pico

  19. Nekton response to freshwater inputs in a temperate European estuary with regulated riverine inflow.

    Science.gov (United States)

    González-Ortegón, E; Subida, M D; Arias, A M; Baldó, F; Cuesta, J A; Fernández-Delgado, C; Vilas, C; Drake, P

    2012-12-01

    The aim of this 12-year study was to assess the nekton (fish, decapod crustaceans) response to freshwater inputs (rainfall, dam discharges) in a temperate estuary with regulated riverine inflow. Although interannual variability in river discharges to the Guadalquivir estuary has been extremely high since the construction of a dam in 1930, a significant decreasing trend in the dam's discharges has been observed in the last 80 years. During this study, an alternation of wet, standard and dry years occurred in the estuarine area but no significant long-term trend was observed. River discharge, in turn, showed a considerable interannual variability and a significantly decreasing long-term trend. Freshwater inputs had an immediate effect on estuarine salinity and turbidity, and consequently on prey availability (mysids). Although 124 nektonic species were collected, only 47 of them (adding up to 99.7% of total abundance) were regularly present in the estuary: 32 marine migrants, 13 estuarine species and 2 diadromous species. Well-defined temporal changes in species composition and abundance yielded clear seasonal patterns in the estuarine nektonic community. Considerable intermonth and interannual changes were occasionally observed relating to freshwater inputs, mainly in winter/autumn of wet years. Thus, within each two-month period, some significant interannual differences in the nektonic community were also observed, with marine migrants tending to be more abundant in dry years. However, changes in the studied nektonic community did not show long-term trends. In conclusion, natural and human-controlled freshwater inputs currently play a significant role in determining the physicochemical conditions and the biota of the Guadalquivir estuary. However, although freshwater input seemed to transitorily affect the estuarine nekton, either directly (flushing out) or indirectly (through changes in salinity, turbidity and prey availability), a quick reestablishment of the

  20. Reduction of Turbidity of Water Using Locally Available Natural Coagulants

    Science.gov (United States)

    Asrafuzzaman, Md.; Fakhruddin, A. N. M.; Hossain, Md. Alamgir

    2011-01-01

    Turbidity imparts a great problem in water treatment. Moringa oleifera, Cicer arietinum, and Dolichos lablab were used as locally available natural coagulants in this study to reduce turbidity of synthetic water. The tests were carried out, using artificial turbid water with conventional jar test apparatus. Optimum mixing intensity and duration were determined. After dosing water-soluble extracts of Moringa oleifera, Cicer arietinum, and Dolichos lablab reduced turbidity to 5.9, 3.9, and 11.1 nephelometric turbidity unit (NTU), respectively, from 100 NTU and 5, 3.3, and 9.5, NTU, respectively, after dosing and filtration. Natural coagulants worked better with high, turbid, water compare to medium, or low, turbid, water. Highest turbidity reduction efficiency (95.89%) was found with Cicer arietinum. About 89 to 96% total coliform reduction were also found with natural coagulant treatment of turbid water. Using locally available natural coagulants, suitable, easier, and environment friendly options for water treatment were observed. PMID:23724307

  1. SPM response to tide and river flow in the hyper-turbid Ems River

    NARCIS (Netherlands)

    Winterwerp, J.C.; Vroom, J; Wang, Zhengbing; Krebs, Martin; Hendriks, H.C.M.; van Maren, D.S.; Schrottke, Kerstin; Borgsmüller, Christine; Schöl, Andreas

    In this paper, we analyse the behaviour of fine sediments in the hyper-turbid Lower Ems River, with focus on the river’s upper reaches, a stretch of about 25 km up-estuary of Terborg. Our analysis is based on long records of suspended particulate matter (SPM) from optical backscatter (OBS)

  2. Eelgrass re-establishment in shallow estuaries is affected by drifting macroalgae

    DEFF Research Database (Denmark)

    Canal-Verges, Paula; Potthoff, M.; Hansen, F. T.

    2014-01-01

    surface sediment. Furthermore, drifting macroalgae ballistically damage eelgrass beds and increase seedling mortality. The frequency and impact of drifting macroalgae in Odense Fjord was evaluated with an agent-based model. The aims of this model were to understand and predict the mobility......(-2). The simulated pattern of drift distribution and hot spots for both brown and green algae fitted the geographical locations in which the algae community was observed on the field. Such high values for sea bed disturbances will have a major impact on the light availability due to sediment......It has been suggested that bedload transport of macroalgae in shallow lagoons and estuaries may negatively impact eelgrass through increased turbidity and physical stress. Increased turbidity and reduced benthic light availability for eelgrass occur when bedload transport of macroalgae erode...

  3. Impact of fluvial sediment input to tidal amplification in an estuary

    Science.gov (United States)

    Wang, Zheng Bing; Fernández Bermejo, Mario

    2010-05-01

    Water level records at two stations in the Guadalquivir Estuary (Spain), one near the estuary mouth (Bonanza) and one about 70 km upstream (Seville), have been analysed to study the amplification of the tide in the estuary. The amplification factor, defined as the ratio between the amplitudes of the semi-diurnal tide at the two stations, show interesting temporal variations (See Figure 1). Firstly, a spring-neap variation is present showing that the tide is less amplified during spring tide than during neap tide. This can be explained by the stronger damping during spring tide due to the bottom resistance which increases non-linearly with the tidal flow velocity, indicating that bottom resistance is an important factor influencing the tidal amplification in the estuary. Secondly, the variation shows some spikes of extreme lows, which appear to be related to river floods causing a large difference between the mean water levels at the two stations. Thirdly, it is interesting to see that the amplification factor has a larger value during a number of periods, also after smoothing out the spring-neap variation. Further analysis of the data together with the data of turbidity and river discharges in combination with the results from various sediment transport modelling studies for the estuary reveals that this phenomenon is caused by the non-linear interaction between the tidal flow and suspended sediment transport, initiated by high sediment input from the river during a river flood. The high sediment concentration, up to more than 10 g/l, causes a reduction of the bottom resistance to the flow resulting in stronger tidal amplification in the estuary. The larger tidal amplitude causes higher tidal flow velocity which in turn keeps the suspended sediment concentration high. PIC Figure 1. Amplification factor of the semi-diurnal tide between Seville and Bonanza, daily data as well as the smoothed data after filtering out the spring-neap variation

  4. Characterization of Iberian turbid plumes by means of synoptic patterns obtained through MODIS imagery

    Science.gov (United States)

    Fernández-Nóvoa, D.; deCastro, M.; Des, M.; Costoya, X.; Mendes, R.; Gómez-Gesteira, M.

    2017-08-01

    Turbid plumes formed by the main Iberian rivers were analyzed and compared in order to determine similarities and differences among them. Five Atlantic rivers (Minho, Douro, Tagus, Guadiana and Guadalquivir) and one Mediterranean river (Ebro) were considered. Plume extension and turbidity were evaluated through synoptic patterns obtained by means of MODIS imagery over the period 2003-2014. River discharge showed to be the main forcing. In fact, the dependence of plume extension on runoff is moderate or high for all rivers, except for Ebro. In addition, most of river plumes adjust immediately to runoff fluctuations. Only the extension of Tagus and Guadalquivir plumes is lagged with respect to river runoff, due to the high residence time generated by their large estuaries. Wind is a secondary forcing, being only noticeable under high discharges. Actually, the dependence of plume extension on wind is moderate or high for all rivers, except Guadalquivir and Ebro. All the Atlantic rivers show the maximum (minimum) near- field plume extension under landward (oceanward) cross-shore winds. The opposite situation was observed for Ebro River. Tide is also a secondary forcing although less important than wind. Actually, the dependence of plume extension on tide is only high for Guadiana River. Nevertheless, all Atlantic river plumes still have some dependence on semidiurnal tidal cycle, they increase under low tides and decrease under high tides. In addition, Tagus River plume also depends on the fortnightly tidal cycle being larger during spring tides than during neap tides. This is due to particular shape of the estuary, where the river debouches into a semi-enclosed embayment connected to the Atlantic Ocean through a strait. Ebro River constitutes a particular case since it has a low dependence on runoff and wind and a negligible dependence on tide. In fact, its plume is mainly driven by the Liguro-Provençal coastal current. Guadalquivir River also shows some unique

  5. Marshes and turbid waters

    Science.gov (United States)

    Verger, F. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. The study of the alluvial zones of the French Atlantic littoral at a taxonomic scale which can bring out the general nature of the sediments and their geomorphic forms is being achieved with the aid of ERTS-1 imagery. It will be necessary to run as many lines as possible to study both the alluvial plains, indicating the seasonal phases of the lowest and highest humidity, as well as the turbidity of littoral waters which change in relation to the tides. A better understanding of these alluvial zones and the origin of the sedimentary forms will not be limited to theoretical interest alone, but will have practical application in numerous fields such as agriculture, shell fishing, and land reclamation.

  6. Exceptionally high organic nitrogen concentrations in a semi-arid South Texas estuary susceptible to brown tide blooms

    Science.gov (United States)

    Wetz, Michael S.; Cira, Emily K.; Sterba-Boatwright, Blair; Montagna, Paul A.; Palmer, Terence A.; Hayes, Kenneth C.

    2017-03-01

    Studies of estuarine eutrophication have tended to focus on systems with continually flowing rivers, while little is known about estuaries from semi-arid/arid regions. Here we report results from an assessment of water quality conditions in Baffin Bay, Texas, a shallow (2 fold higher than in three other Texas estuaries. In contrast, inorganic nitrogen (ammonium, nitrate) and phosphate concentrations were relatively low. Statistically significant long-term annual increases in chlorophyll a and salinity were observed in Baffin Bay, while long-term seasonal increases were observed for water temperature and TKN. Overall, Baffin Bay is displaying multiple symptoms of eutrophication, namely very high organic carbon, organic nitrogen and chlorophyll concentrations, as well as symptoms not quantified here such as fish kills and episodic hypoxia. Much of the increase in chlorophyll in Baffin Bay, at least since ∼1990, have coincided with blooms of the mixotrophic phytoplankton species, Aureoumbra lagunensis, which is thought to be favored under high proportions of organic to inorganic nitrogen. Thus the high and possibly increasing organic nitrogen concentrations, coupled with a long-term annual increase in salinity and a long-term seasonal increase in water temperature are likely to promote additional brown tide blooms in this system in the future.

  7. Turbidity interferes with foraging success of visual but not chemosensory predators

    Directory of Open Access Journals (Sweden)

    Jessica Lunt

    2015-09-01

    Full Text Available Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides and a chemosensory predator (blue crabs, Callinectes sapidus in clear and turbid water (0 and ∼100 nephelometric turbidity units. Feeding assays were conducted with two prey items, mud crabs (Panopeus spp. that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator–prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  8. Plankton composition in two estuaries of the Konkan coast during premonsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.; Nair, S.R.S.; Devassy, V.P.; Nair, V.R.

    abundant at the mouth region. Zooplankton biomass was relatively high in the Kajvi Estuary and all the major groups occurred in high density throughout this estuary. In the Shastri Estuary, the zooplankton biomass was relatively lower and all the major...

  9. Swartkops estuary

    CSIR Research Space (South Africa)

    Baird, D

    1988-01-01

    Full Text Available The Swartkops estuary has been an object of study for many years and research results obtained during the past 30 years were considered at a symposium in 1987. This report documents the proceedings of this symposium as well as conclusions...

  10. Ecological effects of climate change on salt marsh wildlife: a case study from a highly urbanized estuary

    Science.gov (United States)

    Thorne, Karen M.; Takekawa, John Y.; Elliott-Fisk, Deborah L.

    2012-01-01

    Coastal areas are high-risk zones subject to the impacts of global climate change, with significant increases in the frequencies of extreme weather and storm events, and sea-level rise forecast by 2100. These physical processes are expected to alter estuaries, resulting in loss of intertidal wetlands and their component wildlife species. In particular, impacts to salt marshes and their wildlife will vary both temporally and spatially and may be irreversible and severe. Synergistic effects caused by combining stressors with anthropogenic land-use patterns could create areas of significant biodiversity loss and extinction, especially in urbanized estuaries that are already heavily degraded. In this paper, we discuss current ideas, challenges, and concerns regarding the maintenance of salt marshes and their resident wildlife in light of future climate conditions. We suggest that many salt marsh habitats are already impaired and are located where upslope transgression is restricted, resulting in reduction and loss of these habitats in the future. In addition, we conclude that increased inundation frequency and water depth will have negative impacts on the demography of small or isolated wildlife meta-populations as well as their community interactions. We illustrate our points with a case study on the Pacific Coast of North America at San Pablo Bay National Wildlife Refuge in California, an area that supports endangered wildlife species reliant on salt marshes for all aspects of their life histories.

  11. A High-Throughput DNA-Sequencing Approach for Determining Sources of Fecal Bacteria in a Lake Superior Estuary.

    Science.gov (United States)

    Brown, Clairessa M; Staley, Christopher; Wang, Ping; Dalzell, Brent; Chun, Chan Lan; Sadowsky, Michael J

    2017-08-01

    Current microbial source-tracking (MST) methods, employed to determine sources of fecal contamination in waterways, use molecular markers targeting host-associated bacteria in animal or human feces. However, there is a lack of knowledge about fecal microbiome composition in several animals and imperfect marker specificity and sensitivity. To overcome these issues, a community-based MST method has been developed. Here, we describe a study done in the Lake Superior-Saint Louis River estuary using SourceTracker, a program that calculates the source contribution to an environment. High-throughput DNA sequencing of microbiota from a diverse collection of fecal samples obtained from 11 types of animals (wild, agricultural, and domesticated) and treated effluent (n = 233) was used to generate a fecal library to perform community-based MST. Analysis of 319 fecal and environmental samples revealed that the community compositions in water and fecal samples were significantly different, allowing for the determination of the presence of fecal inputs and identification of specific sources. SourceTracker results indicated that fecal bacterial inputs into the Lake Superior estuary were primarily attributed to wastewater effluent and, to a lesser extent, geese and gull wastes. These results suggest that a community-based MST method may be another useful tool for determining sources of aquatic fecal bacteria.

  12. A new seamless, high-resolution digital elevation model of the San Francisco Bay-Delta Estuary, California

    Science.gov (United States)

    Fregoso, Theresa; Wang, Rueen-Fang; Ateljevich, Eli; Jaffe, Bruce E.

    2017-06-14

    Climate change, sea-level rise, and human development have contributed to the changing geomorphology of the San Francisco Bay - Delta (Bay-Delta) Estuary system. The need to predict scenarios of change led to the development of a new seamless, high-resolution digital elevation model (DEM) of the Bay – Delta that can be used by modelers attempting to understand potential future changes to the estuary system. This report details the three phases of the creation of this DEM. The first phase took a bathymetric-only DEM created in 2005 by the U.S. Geological Survey (USGS), refined it with additional data, and identified areas that would benefit from new surveys. The second phase began a USGS collaboration with the California Department of Water Resources (DWR) that updated a 2012 DWR seamless bathymetric/topographic DEM of the Bay-Delta with input from the USGS and modifications to fit the specific needs of USGS modelers. The third phase took the work from phase 2 and expanded the coverage area in the north to include the Yolo Bypass up to the Fremont Weir, the Sacramento River up to Knights Landing, and the American River up to the Nimbus Dam, and added back in the elevations for interior islands. The constant evolution of the Bay-Delta will require continuous updates to the DEM of the Delta, and there still are areas with older data that would benefit from modern surveys. As a result, DWR plans to continue updating the DEM.

  13. Hydraulics and mixing in a laterally divergent channel of a highly stratified estuary

    Science.gov (United States)

    Geyer, W. Rockwell; Ralston, David K.; Holleman, Rusty C.

    2017-06-01

    Estuarine mixing is often intensified in regions where topographic forcing leads to hydraulic transitions. Observations in the salt-wedge estuary of the Connecticut River indicate that intense mixing occurs during the ebb tide in regions of supercritical flow that is accelerated by lateral expansion of the channel. The zones of mixing are readily identifiable based on echo-sounding images of large-amplitude shear instabilities. The gradient Richardson number (Ri) averaged across the mixing layer decreases to a value very close to 0.25 during most of the active mixing phase. The along-estuary variation in internal Froude number and interface elevation are roughly consistent with a steady, inviscid, two-layer hydraulic representation, and the fit is improved when a parameterization for interfacial stress is included. The analysis indicates that the mixing results from lateral straining of the shear layer, and that the rapid development of instabilities maintains the overall flow near the mixing threshold value of Ri = 0.25, even with continuous, active mixing. The entrainment coefficient can be estimated from salt conservation within the interfacial layer, based on the finding that the mixing maintains Ri = 0.25. This approach leads to a scaling estimate for the interfacial mixing coefficient based on the lateral spreading rate and the aspect ratio of the flow, yielding estimates of turbulent dissipation within the pycnocline that are consistent with estimates based on turbulence-resolving measurements.

  14. An Overview of Ecological Processes in the Rio de la Plata Estuary

    Science.gov (United States)

    Acha, M.; Mianzan, H.

    2005-05-01

    The Rio de la Plata, one of the most important estuarine environments in South America, is characterized by a salt-wedge regime. Large extension and shallow water depth make the estuary highly susceptible to atmospheric forcing. The estuary is a highly productive area, which sustain important artisanal and coastal fisheries in Uruguay and Argentina, mainly based on the whitemouth croaker, Micropogonias furnieri. The main goal of this paper is to summarize recent knowledge on this system, integrating physical, chemical and biological studies. This estuary is characterized by strong vertical salinity stratification, with marine waters (saltier and denser) penetrating deeper into the estuary along the bottom, while fresh waters advance ocean-ward on the surface, forming a salt wedge. The upstream reach of the salt wedge defines a bottom salinity fronts, whose location is controlled by the topography, a submerged shoal called Barra del Indio and at the opposite area, the convergence between the estuarine and marine waters define a surface salinity front. The convergence of water masses and the strong picnoclines at the head of the salt wedge produce the accumulation and retention of plankton, including the eggs of those fishes that concentrate here to spawn (e.g. Micropogonias furnieri and Brevoortia aurea) and even debris. High turbidity constrains here photosynthetic production and food chains are probably detritus based, supporting high densities of Acartia tonsa (Copepoda) and Neomysis americana (Mysid), both omnivorous species that complete its entire life-cycle within the estuary. In agreement, heterotophic microzooplankton is abundant. Moreover, high deposition of suspended matter support dense beds of the deposit feeding clams Mactra isabelleana. As soon as the water become less turbid, an extremely high chlorophyll signal is observed. The largest portion of the salt wedge regime (more than 200 km) is characterized by dense plankton aggregations below the

  15. Sequential development of tidal ravinement surfaces in macro- to hypertidal estuaries with high volcaniclastic input: the Miocene Puerto Madryn Formation (Patagonia, Argentina)

    Science.gov (United States)

    Scasso, Roberto A.; Cuitiño, José I.

    2017-08-01

    The late Miocene beds of the Puerto Madryn Formation (Provincia del Chubut, Argentina) are formed by shallow marine and estuarine sediments. The latter include several tidal-channel infills well exposed on the cliffy coast of the Peninsula Valdés. The Bahía Punta Fósil and Cerro Olazábal paleochannels are end members of these tidal channels and show a fining-upward infilling starting with intraformational channel lag conglomerates above deeply erosional surfaces interpreted as fluvial ravinement surfaces (the erosion surface formed in the purely fluvial or the fluvially dominated part of the estuary, where erosion is driven by fluvial processes). These are overlain and eventually truncated (and suppressed) by the tidal ravinement surface (TRS), in turn covered with high-energy, bioclastic conglomerates mostly formed in the "tidally dominated/fluvially influenced" part of an estuary. Above, large straight or arcuate point bars with alternatively sandy/muddy seasonal beds and varying trace and body fossil contents were deposited from the freshwater fluvially dominated to saline-water tidally dominated part of the estuary. The upper channel infill is formed by cross-bedded sands with mud drapes and seaward-directed paleocurrents, together with barren, volcaniclastic sandy to muddy heterolithic seasonal rhythmites, both deposited in the fluvially dominated part of the estuary. Volcanic ash driven by the rivers after large explosive volcanic eruptions on land resulted in sedimentation rates as high as 0.9 m per year, preserving (through burial) the morphology of tidal channels and TRSs. The channel deposits were formed in a tide-dominated, macrotidal to hypertidal open estuary with well-developed TRSs resulting from strong tidal currents deeply scouring into the transgressive filling of the channels and eventually cutting the fluvial ravinement surface. The TRSs extended upstream to the inner part of the estuary during long periods of low sedimentation rates

  16. Simulating high ebb currents in the North Passage of the Yangtze estuary using a vertical 1-D model

    Science.gov (United States)

    Shao, Yuyang; Shen, Xiaoteng; Maa, Jerome P.-Y.; Shen, Jian

    2017-09-01

    A strong maximum ebb current (>3 m/s) in the upper water column was observed at Station CS3 in the middle of the North Passage of the Yangtze River Estuary during the wet season, which was higher than either its upstream or downstream counterparts. To better understand the mechanisms and factors causing the strong ebb current, a vertical one-dimensional (1-D) model was used to conduct a diagnostic study. The model used time series of observed tidal amplitudes, vertical salinity, and suspended sediment concentration (SSC) profiles to compute the density and turbulence. Two tunable parameters, the tidal amplitude attenuation coefficient (i.e., the phase lag) and the background surface pressure gradient that represents the net pressure gradient induced by the freshwater discharge and baroclinic effect, were used to determine the best match with the observed high velocity amplitudes in addition to the bottom roughness height. Three hypotheses of possible causes are tested: (1) the large freshwater discharge, (2) the bottom stratification effects (which were caused by a possible high near-bed suspended sediment gradient), and (3) the unique location of the CS3 station that was influenced by local geometry. The findings show that neither of the first two factors has much influence on the pronounced ebb velocities. Instead, the energy loss caused by the change of channel geometry and a maximum convex bathymetry in the North Passage of the Yangtze River Estuary are the main reasons behind the extremely high observed ebb current velocity profiles. The high near-bottom SSC and gradient located within 0.5 m above the bed only slightly alters the velocity profiles. This 1-D model is convenient for testing a different hypothesis and for coupling with other selected variables to account for the floc size distributions in future studies.

  17. Sediment Transport by Turbidity Currents

    OpenAIRE

    Winslow, Kyle T.

    2001-01-01

    Complete field equations have been established for turbidity current flow. A Modified Three Equation Model has been developed to predict the fate of turbidity currents. Particular attention has focused on the impacts of increased sediment concentration on the field equations and the numerical predictions. Functional relationships for closure hypotheses have been chosen after careful review. Previous investigations have invoked the dilute suspension approximation for sediment concent...

  18. High CO2 emissions from the tropical Godavari estuary (India) associated with monsoon river discharges

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Kumar, N.A.; Prasad, V.R.; Venkataramana, V.; Appalanaidu, S.; Sridevi, B.; Kumar, B.S.K.; Bharati, M.D.; Subbaiah, C.V.; Acharyya, T.; Rao, G.D.; Viswanadham, R.; Gawade, L.; Manjary, D.T.; Kumar, P.P.; Rajeev, K.; Reddy, N.P.C.; Sarma, V.V.; Kumar, M.D.; Sadhuram, Y; Murty, T.V.R.

    . Appalanaidu, B. Sridevi, B.S.K. Kumar, M.D. Bharati, Ch.V. Subbaiah, T. Acharya, G.D. Rao, R. Viswanadham, L. Gawade, D.T. Manjary, P. P. Kumar, K. Rajeev, N.P.C. Reddy, V.V. Sarma, M.D. Kumar, Y. Sadhuram and T.V.R. Murty National Institute...). The evaluated CO 2 uptake by continental shelves (Borges et al., 2005; Laruelle et al., 2010) range between -0.22 and -1.0 PgC y -1 while Laruelle et al. (2010) estimated emission of CO 2 from estuaries to be +0.27 PgC y -1 . All these estimates, however...

  19. Changes in phytoplankton biomass and primary production between 1991 and 2001 in the Westerschelde estuary (Belgium/The Netherlands)

    NARCIS (Netherlands)

    Kromkamp, J.C.; Peene, J.

    2005-01-01

    The Westerschelde estuary is a very polluted and turbid estuary, but the last decade the waterquality improved. Dredging activity also increased in 1997 to allow bigger ships to enter the port of Antwerpen. This could potentially decrease the light conditions for the phytoplankton. Because of all

  20. Temporal variability in dynamic and colloidal metal fractions determined by high resolution in situ measurements in a UK estuary.

    Science.gov (United States)

    Braungardt, Charlotte B; Howell, Kate A; Tappin, Alan D; Achterberg, Eric P

    2011-07-01

    In recent environmental legislation, such as the Water Framework Directive in the European Union (WFD, 2000/60/EC), the importance of metal speciation and biological availability is acknowledged, although analytical challenges remain. In this study, the Voltammetric In situ Profiler (VIP) was used for high temporal resolution in situ metal speciation measurements in estuarine waters. This instrument simultaneously determines Cd, Cu and Pb species within a size range (ca. colloidal metal fraction can be quantified through a combination of VIP measurements and analyses of total dissolved metal concentrations. VIP systems were deployed over tidal cycles in a seasonal study of metal speciation in the Fal Estuary, southwest England. Total dissolved concentrations were 4.97-315 nM Cu, 0.13-8.53 nM Cd and 0.35-5.75 nM Pb. High proportions of Pb (77±17%) and Cu (60±25%) were present as colloids, which constituted a less important fraction for Cd (37±30%). The study elucidated variations in the potentially toxic metal fraction related to river flow, complexation by organic ligands and exchanges between dissolved and colloidal phases and the sediment. Based on published toxicity data, the bioavailable Cu concentrations (1.7-190 nM) in this estuary are likely to severely compromise the ecosystem structure and functioning with respect to species diversity and recruitment of juveniles. The study illustrates the importance of in situ speciation studies at high resolution in pursuit of a better understanding of metal (bio)geochemistry in dynamic coastal systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Allochthonous Organic Matter Subsidize the High Secondary Production of the Invasive Bivalve Corbicula fluminea in Minho Estuary (N-Portugal)

    Science.gov (United States)

    The Asian clam Corbicula fluminea is one of the most invasive species in freshwater ecosystems. In Minho estuary, this species colonize all the middle and upper part of the estuary, dominating the abundance, biomass and secondary production in River Minho tidal freshwater area (T...

  2. An improved modification of the biuret method for the determination of protein in turbid materials with high lipid and hemoglobin content.

    Science.gov (United States)

    Steinbrecht, I; Augustin, W

    1983-01-01

    The quantitative determination of protein by means of the biuret method frequently yields erroneous values, especially when applied to turbid, lipid- and hemoglobin-containing materials. These errors can only partially be abolished either by the addition of detergents or by destroying the Cu-protein complex by KCN addition. It was found that most disturbances were almost completely eliminated after prior precipitation of protein by the addition of Triton X-100 to the solubilizing biuret reagent and absorbance measurements being performed at a wavelength of 572 nm before and after the addition of KCN. Values of protein determinations according to the proposed assay and protein concentrations calculated from Kjeldahl nitrogen determinations have been shown to agree fairly satisfactory. The proposed assay represents a relatively simple and versatile approach for the evaluation of protein concentrations in a variety of materials containing lipids, hemoglobin and of some other turbidities as well.

  3. Sediment Transport in the Bill Williams River and Turbidity in Lake Havasu During and Following Two High Releases from Alamo Dam, Arizona, in 2005 and 2006

    Science.gov (United States)

    Wiele, Stephen M.; Hart, Robert J.; Darling, Hugh L.; Hautzinger, Andrew B.

    2009-01-01

    Discharges higher than are typically released from Alamo Dam in west-central Arizona were planned and released in 2005, 2006, 2007, and 2008 to study the effects of these releases on the Bill Williams River and Lake Havasu, into which the river debouches. Sediment concentrations and water discharges were measured in the Bill Williams River, and turbidity, temperature, and dissolved oxygen were measured in Lake Havasu during and after experimental releases in 2005 and 2006 from Alamo Dam. Data from such releases will support ongoing ecological studies, improve environmentally sensitive management of the river corridor, and support the development of a predictive relationship between the operation of Alamo Dam and downstream flows and their impact on Lake Havasu and the Colorado River. Elevated discharges in the Bill Williams River mobilize more sediment than during more typical dam operation and can generate a turbidity plume in Lake Havasu. The intakes for the Central Arizona Project, which transfers Colorado River water to central and southern Arizona, are near the mouth of the Bill Williams River. Measurement of the turbidity and the development of the plume over time consequently were important components of the study. In this report, the measurements of suspended sediment concentration and discharges in the Bill Williams River and of turbidity in Lake Havasu are presented along with calculations of silt and sand loads in the Bill Williams River. Sediment concentrations were varied and likely dependent on a variable supply. Sediment loads were calculated at the mouth of the river and near Planet, about 10 km upstream from the mouth for the 2005 release, and they indicate that a net increase in transport of silt and a net decrease in the transport of sand occurred in the reach between the two sites.

  4. Simultaneous atmospheric correction and quantification of suspended particulate matter in the Guadalquivir estuary from Landsat images

    Science.gov (United States)

    Carpintero, M.; Polo, M. J.; Suhyp Salama, Mhd.

    2015-05-01

    Earth observations (EOs) following empirical and/or analytical approaches are a feasible alternative to obtain spatial and temporal distribution of water quality variables. The limitations observed in the use of empirical approaches to estimate high concentrations of suspended particulate matter (SPM) in the estuarine water of Guadalquivir have led the authors to use a semi-analytical model, which relates the water constituents' concentration to the water leaving reflectance. In this work, the atmospheric correction has been carried out simultaneously and the aerosol reflectance and backscattering coefficients of SPM obtained. The results are validated using in situ SPM data series provided by a monitoring network in the study area. The results show that the model allows us to successfully estimate backscattering coefficients of SPM in the estuary, differentiating clear and turbid water and using two ɛ(4,5) .These considerations improve the value of R2 from 0.68 (single ɛ(4,5)) to 0.86 (two ɛ( 4,5)) on 18 May 2009. This method could be used as a preliminary approach to obtain SPM concentration in the Guadalquivir estuary with the limitations that the model shows for turbid waters.

  5. Simultaneous atmospheric correction and quantification of suspended particulate matter in the Guadalquivir estuary from Landsat images

    Directory of Open Access Journals (Sweden)

    M. Carpintero

    2015-05-01

    Full Text Available Earth observations (EOs following empirical and/or analytical approaches are a feasible alternative to obtain spatial and temporal distribution of water quality variables. The limitations observed in the use of empirical approaches to estimate high concentrations of suspended particulate matter (SPM in the estuarine water of Guadalquivir have led the authors to use a semi-analytical model, which relates the water constituents’ concentration to the water leaving reflectance. In this work, the atmospheric correction has been carried out simultaneously and the aerosol reflectance and backscattering coefficients of SPM obtained. The results are validated using in situ SPM data series provided by a monitoring network in the study area. The results show that the model allows us to successfully estimate backscattering coefficients of SPM in the estuary, differentiating clear and turbid water and using two ε(4,5 .These considerations improve the value of R2 from 0.68 (single ε(4,5 to 0.86 (two ε( 4,5 on 18 May 2009. This method could be used as a preliminary approach to obtain SPM concentration in the Guadalquivir estuary with the limitations that the model shows for turbid waters.

  6. Microphytobenthos and phytoplankton in the Severn estuary, UK: present situation and possible consequences of a tidal energy barrage.

    Science.gov (United States)

    Underwood, Graham J C

    2010-01-01

    Information on the distribution of microphytobenthos (micro-algae forming biofilms on sediment surfaces) and phytoplankton in the Severn estuary is reviewed. Microphytobenthos (MPB) are widely distributed in salt marsh and mudflat environments, with biomass levels lower than in other estuaries (average 53 mg chl am(-2) on mud, 12 mg chl am(-2) on sand). Seasonal and spatial patterns occur in the species composition of biofilms. Large areas of the Severn have not been surveyed, but it is likely that MPB are abundant in these regions. Dissolved inorganic N, P and Si concentrations are high in the upper estuary (>400 microM nitrate, >10 microM phosphate, >140 microM silicate) and decrease seaward. Phytoplanktonic chl a concentrations are low in the main estuary (2.2 microg chl aL(-1)), but increase in the Bristol Channel and at the head of the estuary (>10 microg chl aL(-1)). High turbidity is the likely cause for low phytoplankton activity. Annual production of MPB was estimated at 33 g Cm(-2) of inter-tidal area y(-1) in the Severn estuary. This estimated benthic primary production would utilise 3.9% and 4.9% of the annual estuarine N and P loads. Construction of tidal energy barrages is estimated to significantly reduce annual estuarine MPB production (by 77% for the Cardiff-Weston barrage). It is unlikely that any potential increases in MPB biomass on remaining inter-tidal areas will be sufficient to compensate for these losses. In general, the data coverage for benthic and planktonic distribution, production and related nutrient cycles is extremely limited and significant new research work is needed to enable more definite predictions of the post-barrage situation to be made. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Disease ecology of Hematodinium perezi in a high salinity estuary: investigating seasonal trends in environmental detection.

    Science.gov (United States)

    Lycett, K A; Pitula, J S

    2017-05-11

    The blue crab Callinectes sapidus has seen a general decline in population levels. One factor influencing mortality is infections by Hematodinium perezi, a dinoflagellate parasite. A 2 yr study was conducted in 2014 and 2015 to monitor H. perezi DNA within the Maryland (USA) coastal bays, comparing seasonal cycles in the abundance of parasite DNA in environmental samples to parasite presence in host blue crabs. A late summer to early fall peak in H. perezi infections in blue crabs was observed, consistent with previous work. Infection intensities matched this trend, showing a slow progression of low intensity infections early in the year, with a peak in moderate and heavy infections occurring between July and September, for both years. It was hypothesized that the peak in water column occurrence would coincide with those months when infection intensities were highest in blue crabs. As the peaks in water column occurrence were in July 2014 and August-September 2015, this is consistent with sporulation being the primary contributor to environmental detection in summer months. An additional peak in environmental detection occurred in both years during the early spring months, the cause of which is currently unknown but may be related to infections in overwintering crabs or alternate hosts. Several new crustacean hosts were identified within this estuary, including grass shrimp Palaemonetes spp. and the sand shrimp Crangon septemspinosa, as well as the mud crab Dyspanopeus sayi. Improved knowledge of this disease system will allow for better management of this important fishery.

  8. Modelling Macroalgae Productivity In An Estuary. A Biorremediation To Nutrient Discharges In The Ecosystems.

    Science.gov (United States)

    Alvera-Azcárate, A.; Ferreira, J. G.; Nunes, J. P.

    Enhanced nutrient load to estuaries and coastal waters due to anthropogenic activities is damaging aquatic ecosystems, resulting in water pollution and eutrophication prob- lems. It is important to quantify the production of photosynthetic organisms, as they play an important role in controlling nitrogen removal and nitrogen fluxes between the sediments and the water column. In turbid estuaries, such as those on the NE Atlantic coast of Europe, benthic primary producers such as macroalgae may play an important part in carbon fixation and nutrient removal, since pelagic production is often strongly light-limited. Estuarine seaweeds are primarily located in intertidal areas, which are characterised by shallow waters and strong tidal currents. Due to high concentrations of suspended particulate matter in the water column, light is rapidly attenuated, limiting macroal- gae production during part of the tidal cycle. An accurate representation of sediment dynamics is essential for the determination of the light energy available for the algae, which is a key factor in reliable primary production estimates. In tidal flats, the sedi- ment dynamics is made more complex by the formation of tidal pools during low tide, where water quickly becomes clear, allowing more light to penetrate through the water column. In the present work a model is developed to calculate macroalgae production in the intertidal areas of estuaries, considering the factors mentioned above. The model is tested for the Tagus estuary (Portugal), and a Gross Primary Production of 3300 g m-2 y-1 was obtained. That results in a total nitrogen removal of 440 gN m-2 y-1. The results show that the macroalgae community plays an impor- tant role in the nitrogen cycle in estuaries and nutrient export to the open sea, acting as a biorremediation for the increased nutrient loading problem.

  9. Benthos of Beypore and Korapuzha estuaries of North Kerala

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.; Sankaranarayanan, V.N.; Venugopal, P.

    The benthos from Beypore and Korapuzha estuaries were studied for one year. Environmental features, sediment characteristics and organic carbon content were estimated. Benthic density was high during monsoon and postmonsoon in both the estuaries...

  10. Variations of dissolved oxygen in Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; SenGupta, R.

    During non-monsoon months the estuaries were well mixed showing uniform oxygen concentrations from surface to bottom. However, during monsoon months both the estuaries showed stratified conditions with surface water showing high oxygen concentration...

  11. Pollution induced tidal variability in water quality of Mahim Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Sabnis, M.M.

    Variability of water quality due to release of wastewater in Mahim Estuary (Maharashtra, India) and associated nearshore waters is discussed. The mixing of low salinity contaminated estuary water with high salinity bay water was considerably...

  12. Turbidity in oil-in-water-emulsions - Key factors and visual perception.

    Science.gov (United States)

    Linke, C; Drusch, S

    2016-11-01

    The aim of the present study is to systematically describe the factors affecting turbidity in beverage emulsions and to get a better understanding of visual perception of turbidity. The sensory evaluation of the human visual perception of turbidity showed that humans are most sensitive to turbidity differences between two samples in the range between 1000 and 1500 NTU (ratio) (nephelometric turbidity units). At very high turbidity values >2000 TU in NTU (ratio) were needed to distinguish between samples that they were perceived significantly different. Particle size was the most important factor affecting turbidity. It was shown that a maximum turbidity occurs at a mean volume - surface diameter of 0.2μm for the oil droplet size. Additional parameters were the refractive index, the composition of the aqueous phase and the presence of excess emulsifier. In a concentration typical for a beverage emulsion a change in the refractive index of the oil phase may allow the alteration of turbidity by up to 30%. With the knowledge on visual perception of turbidity and the determining factors, turbidity can be tailored in product development according to the customer requirements and in quality control to define acceptable variations in optical appearance. Copyright © 2016. Published by Elsevier Ltd.

  13. Foraminifera in surface sediments of Mandovi River Estuary: Indicators for mining pollution and high sea stand in Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Panchang, R.; Banerjee, P.

    Foraminiferal characteristics of 11 surface sediment samples collected from the Mandovi estuary during 2001 have been compared with similar data based on samples collected during 1994. The study reveals drastic fall in total foraminiferal number...

  14. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake

    Science.gov (United States)

    Cao, Zhigang; Duan, Hongtao; Shen, Ming; Ma, Ronghua; Xue, Kun; Liu, Dong; Xiao, Qitao

    2018-02-01

    Inland lakes are generally an important source of drinking water, and information on their water quality needs to be obtained in real time. To date, Moderate-resolution imaging spectroradiometer (MODIS) data have played a critical, effective and long-term role in fulfilling this function. However, the MODIS instruments on board both the Terra and Aqua satellites have operated beyond their designed five-year mission lifespans (Terra was launched in 1999, whereas Aqua was launched in 2002), and these instruments may stop running at any time in the near future. The Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership (Suomi NPP, which was launched in Oct 2011) is expected to provide a consistent, long-term data record and continue the series of observations initiated by MODIS. To date, few evaluations of the consistency between VIIRS and MODIS have been conducted for turbid inland waters. In this study, we first used synchronous MODIS/Aqua and VIIRS/NPP data (±1 h) collected during 2012-2015 to evaluate the consistency of Rayleigh-corrected reflectance (Rrc) observations over Lake Hongze (the fourth-largest freshwater lake in China), since accurate remote sensing reflectance (Rrs) values cannot be acquired over turbid inland waters. Second, we used recently developed algorithms based on Rrc in the red band to estimate the concentrations of suspended particulate matter (SPM) from MODIS/Aqua and VIIRS/NPP data. Finally, we assessed the consistency of the SPM products derived from MODIS/Aqua and VIIRS/NPP. The results show the following. (1) The differences in Rrc among the green (VIIRS 551 nm and MODIS 555 nm) and red bands (VIIRS 671 nm and MODIS 645 nm) indicate a satisfactory consistency, and the unbiased percentage difference (UPD) is products obtained using MODIS/Aqua and VIIRS/NPP have a satisfactory degree of consistency (0-150 mg/L SPM: R2 = 0.81, UPD < 16% and 0-80 mg/L SPM: R2 = 0.85, UPD < 12%, respectively

  15. Associations between land use and Perkinsus marinus infection of eastern oysters in a high salinity, partially urbanized estuary

    Science.gov (United States)

    Gray, Brian R.; Bushek, David; Drane, J. Wanzer; Porter, Dwayne

    2009-01-01

    Infection levels of eastern oysters by the unicellular pathogen Perkinsus marinus have been associated with anthropogenic influences in laboratory studies. However, these relationships have been difficult to investigate in the field because anthropogenic inputs are often associated with natural influences such as freshwater inflow, which can also affect infection levels. We addressed P. marinus-land use associations using field-collected data from Murrells Inlet, South Carolina, USA, a developed, coastal estuary with relatively minor freshwater inputs. Ten oysters from each of 30 reefs were sampled quarterly in each of 2 years. Distances to nearest urbanized land class and to nearest stormwater outfall were measured via both tidal creeks and an elaboration of Euclidean distance. As the forms of any associations between oyster infection and distance to urbanization were unknown a priori, we used data from the first and second years of the study as exploratory and confirmatory datasets, respectively. With one exception, quarterly land use associations identified using the exploratory dataset were not confirmed using the confirmatory dataset. The exception was an association between the prevalence of moderate to high infection levels in winter and decreasing distance to nearest urban land use. Given that the study design appeared adequate to detect effects inferred from the exploratory dataset, these results suggest that effects of land use gradients were largely insubstantial or were ephemeral with duration less than 3 months.

  16. Pairing high-frequency data with a link-node model to manage dissolved oxygen impairment in a dredged estuary.

    Science.gov (United States)

    Camarillo, Mary Kay; Weissmann, Gregory A; Gulati, Shelly; Herr, Joel; Sheeder, Scott; Stringfellow, William T

    2016-08-01

    High-frequency data and a link-node model were used to investigate the relative importance of mass loads of oxygen-demanding substances and channel geometry on recurrent low dissolved oxygen (DO) in the San Joaquin River Estuary in California. The model was calibrated using 6 years of data. The calibrated model was then used to determine the significance of the following factors on low DO: excavation of the river to allow navigation of large vessels, non-point source pollution from the agricultural watershed, effluent from a wastewater treatment plant, and non-point source pollution from an urban area. An alternative metric for low DO, excess net oxygen demand (ENOD), was applied to better characterize DO impairment. Model results indicate that the dredged ship channel had the most significant effect on DO (62 % fewer predicted hourly DO violations), followed by mass load inputs from the watershed (52 % fewer predicted hourly DO violations). Model results suggest that elimination of any one factor will not completely resolve DO impairment and that continued use of supplemental aeration is warranted. Calculation of ENOD proved more informative than the sole use of DO. Application of the simple model allowed for interpretation of the extensive data collected. The current monitoring program could be enhanced by additional monitoring stations that would provide better volumetric estimates of low DO.

  17. Density-salinity-suspended sediment experimental curves for Guadalquivir River estuary conditions

    Science.gov (United States)

    Carpintero García, M.; Jurado López, A.; Contreras Arribas, E.; Polo Gómez, M. J.

    2012-04-01

    Estuarine water in Mediterranean watersheds contains high suspended sediment concentrations due to both the fine textured nature of the materials reaching the final stretch of the fluvial network, and the agricultural predominance of soil uses upstream. Saline conditions induce flocculation processes which alter the original behavior of the soil particles in water. The final high density mixture of water-salts-sediments has physicochemical characteristics very different from the saline water alone. However, this is not often included when modeling the dynamics of estuaries, adopting the density, viscosity, etc., values corresponding to the present level of salinity found at each point. The nature of the local sediments influences the density values finally found. The Guadalquivir River estuary (southwestern Spain) extends along the 105 km between the Alcalá del Río dam, upstream, and its mouth in Sanlúcar de Barrameda. It is an Atlantic mesotidal estuary (Díez-Minguito et al., 2010) with a mainly longitudinal salinity gradient. The sediments in the estuary are very fine-textured due to the great length of the river and, mainly, the extreme trapping efficiency of the dense reservoir network upstream along the 57400 km2 of the contributing area. With an average value of 0.5 - 4.5 g L-1 for the suspended sediment range along the estuary, extreme values up to 160 g L-1 can be found associated with persistent turbidity events forced by different combinations of conditions. This work shows the density variation with changing bivariate conditions of salinity-suspended sediments, following the combined range found along the estuary. Laboratory measurements were made at 19° C for synthetic seawater with 35 g L-1salinity and the decreasing range found upstream by dilution until a final value of 0.2 g L-1, for which an increasing suspended sediment concentration (SSC) was induced by adding sediments locally extracted from the estuary. The final density of these sets of

  18. Climate Ready Estuaries

    Science.gov (United States)

    Information on climate change impacts to different estuary regions, tools and resources to monitor changes, and information to help managers develop adaptation plans for risk management of estuaries and coastal communities.

  19. Estimating sediment and caesium-137 fluxes in the Ribble Estuary through time-series airborne remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wakefield, R. [Atkins Limited, 200 Broomielaw, Glasgow, G1 4RU (United Kingdom); Tyler, A.N., E-mail: a.n.tyler@stir.ac.u [School of Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA (United Kingdom); McDonald, P. [Environmental Sciences Westlakes Scientific Consulting Ltd, The Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN (United Kingdom); Atkin, P.A. [Atkins Limited, Wastwater Pavillion Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3JZ (United Kingdom); Gleizon, P. [Environmental Sciences Westlakes Scientific Consulting Ltd, The Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN (United Kingdom); Gilvear, D. [School of Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA (United Kingdom)

    2011-03-15

    High spatial and temporal resolution airborne imagery were acquired for the Ribble Estuary, North West England in 1997 and 2003, to assess the application of time-series airborne remote sensing to quantify total suspended sediment and radionuclide fluxes during a flood and ebb tide sequence. Concomitant measurements of suspended particulate matter (SPM) and water column turbidity were obtained during the time-series image acquisition for the flood and ebb tide sequence on the 17th July 2003 to verify the assumption of a vertically well mixed estuary and thus justifying the vertical extrapolation of spatially integrated estimate of surface SPM. The {sup 137}Cs activity concentrations were calculated from a relatively stable relationship between SPM and {sup 137}Cs for the Ribble Estuary. Total estuary wide budgets of sediment and {sup 137}Cs were obtained by combining the image-derived estimates of surface SPM and {sup 137}Cs with estimates of water volume from a two-dimensional hydrodynamic model (VERSE) developed for the Ribble Estuary. These indicate that around 10,000 tonnes of sediment and 2.72 GBq of {sup 137}Cs were deposited over the tidal sequence monitored in July 2003. This compared favourably with bed height elevation change estimated from field work. An uncertainty analysis on the total sediment and {sup 137}Cs flux yielded a total budget of the order of 40% on the final estimate. The results represent a novel approach to providing a spatially integrated estimate of the total net sediment and radionuclide flux in an intertidal environment over a flood and ebb tide sequence. - Research highlights: {yields} This paper provides a rare insight into the next flux of sediment and associated radionuclide loading into an estuary over and ebb and flood tide sequence. {yields} The paper uses high temporal resolution airborne imagery coupled with concomitant sampling to convert total suspended sediment flux to {sup 137}Cs loading. {yields} For the estuary and date

  20. Geomorphic Characteristics of Lofted Turbidity Current Deposits

    Science.gov (United States)

    Steel, E.; Buttles, J. L.; Simms, A.; Mohrig, D. C.

    2015-12-01

    Hyperpycnal flows are river-derived turbidity currents, which - in the marine realm - commonly contain interstitial fluid that is fresher and therefore less dense than ambient fluid. These flows travel along the seabed surface due to their high suspended sediment concentrations, and their fate depends heavily on the balance between factors that increase bulk flow density, e.g. entrainment of sediment or ambient water, and those that decrease bulk flow density, e.g. deposition of suspended sediment. If suspended sediment is rapidly deposited from the flow, bulk flow density and flow velocity will decrease until it reaches a point of equal density to the ambient fluid through which it is travelling. Once this point is reached, the flow can begin to rise to the water surface or to a depth of neutral buoyancy in a process known as lofting. We ran 21 experimental turbidity currents with varying bulk flow and interstitial fluid densities, across three different basin geometries, in order to characterize the effect on deposit geometry. Our findings show that lofted turbidity currents are width-limited and generate narrower, more elongate deposits than bed-attached flows. We also show that steeper ramp gradients push the lofting point farther out into the basin. We show the effect of variations in bulk flow density, suspended sediment concentration, and fluid density on overall deposit geometry and flow run-out distances. Most importantly, the use of a 3-dimensional experimental tank allows for the first detailed analysis of the lofting process and its effects on length-to-width ratios of turbidite lobes.

  1. Monitoring suspended sediments and turbidity in Sahelian basins

    Science.gov (United States)

    Robert, Elodie; Grippa, Manuela; Kergoat, Laurent; Martinez, Jean-Michel; Pinet, Sylvain; Nogmana, Soumaguel

    2017-04-01

    Suspended matter can carry viruses and bacteria that are pathogenic to humans and can foster their development. Therefore, turbidity can be considered a vector of microbiological contaminants, which cause diarrheal diseases, and it can be used as a proxy for fecal bacteria. Few studies have focused on water turbidity in rural Africa, where many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, reservoirs, lakes and rivers. Diarrheal diseases are indeed the second cause of infant mortality in sub-Saharan Africa. Furthermore, in this region, environment survey is minimal or inexistent. Monitoring water turbidity therefore represents a challenge for health improvement. Turbidity refers to the optical properties of water and it is well suited to monitoring by remote sensing. Because it varies in space and time and because the small water bodies (remote sensing and questions the methods developed for less turbid waters. In addition, high aerosol loadings (mineral dust and biomass burning) may be detrimental to turbidity retrieval in this region because of inaccurate atmospheric corrections. We propose a method to monitor water quality of Sahelian ponds, lakes and rivers using in-situ and remote sensing data, which is tested at different sites for which in-situ water turbidity and suspended sediments concentration (SSSC) measurements are acquired. Water sample are routinely collected at two sites within the AMMA-CATCH observatory part of the Réseau de Bassin Versants (RBV) French network: the Agoufou pond in northern Mali (starting September 2014), and the Niger River at Niamey in Niger (starting June 2015). These data are used to evaluate different indexes to derive water turbidity from the reflectance in the visible and infrared bands of high resolution optical sensors (LANDSAT, SENTINEL2). The temporal evolution of the turbidity of ponds, lakes and rivers is well captured at the seasonal and interannual scales with the

  2. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida

    Directory of Open Access Journals (Sweden)

    Douglas L. Rickman

    2010-12-01

    Full Text Available Turbidity is a commonly-used index of the factors that determine light penetration in the water column. Consistent estimation of turbidity is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Traditional methods monitoring fixed geographical locations at fixed intervals may not be representative of the mean water turbidity in estuaries between intervals, and can be expensive and time consuming. Although remote sensing offers a good solution to this limitation, it is still not widely used due in part to required complex processing of imagery. There are satellite-derived products, including the Moderate Resolution Imaging Spectroradiometer (MODIS Terra surface reflectance daily product (MOD09GQ Band 1 (620–670 nm which are now routinely available at 250 m spatial resolution and corrected for atmospheric effect. This study shows this product to be useful to estimate turbidity in Tampa Bay, Florida, after rainfall events (R2 = 0.76, n = 34. Within Tampa Bay, Hillsborough Bay (HB and Old Tampa Bay (OTB presented higher turbidity compared to Middle Tampa Bay (MTB and Lower Tampa Bay (LTB.

  3. Distribution and dynamic habitat use of young bull sharks Carcharhinus leucas in a highly stratified northern Gulf of Mexico estuary.

    Science.gov (United States)

    Drymon, J Marcus; Ajemian, Matthew J; Powers, Sean P

    2014-01-01

    Understanding how animals alter habitat use in response to changing abiotic conditions is important for effective conservation management. For bull sharks (Carcharhinus leucas), habitat use has been widely examined in the eastern and western Gulf of Mexico; however, knowledge of their movements and the factors influencing them is lacking for populations in the more temperate north-central Gulf of Mexico. To examine how changes in hydrographic conditions affected the presence of young bull sharks in Mobile Bay, Alabama, thirty-five sharks were fitted with internal acoustic transmitters and monitored with an acoustic monitoring array consisting of thirty-three receivers between June 2009 and December 2010. Tagged sharks ranged in size from 60 to 114 cm fork length and were detected between the upper and lower portions of Mobile Bay. Despite a variety of freshwater sources associated with this highly productive estuary, sharks were most consistently detected at the largest input to the system--the Mobile and Tensaw Rivers. Our findings suggest a combination of hydrographic factors interact to influence the distribution of juvenile bull sharks in Mobile Bay. The factors affecting the probability of detecting at least one bull shark varied both temporally (2009 vs 2010) and spatially (upper vs lower bay). Electivity analysis demonstrated that bull sharks showed highest affinity for warm water (29-32 °C), moderate salinities (10-11 psu) and normoxic waters (5-7 mg/l), although these patterns were not consistent between regions or across years. We suggest future studies coupling telemetry and hydrographic variables should, when possible, consider the interactions of multiple environmental parameters when defining the dynamic factors explaining the spatial distribution of coastal sharks.

  4. Adaptive autonomous sampling toward the study of microbial carbon and energy fluxes in a dynamic estuary

    Science.gov (United States)

    Herfort, L.; Seaton, C. M.; Wilkin, M.; Baptista, A. M.; Roman, B.; Preston, C. M.; Scholin, C. A.; Melançon, C.; Simon, H. M.

    2013-12-01

    An autonomous microbial sampling device was integrated with a long-term (endurance) environmental sensor system to investigate variation in microbial composition and activities related to complex estuarine dynamics. This integration was a part of ongoing efforts in the Center for Coastal Margin Observation and Prediction (CMOP) to study estuarine carbon and nitrogen cycling using an observation and prediction system (SATURN, http://www.stccmop.org/saturn) as foundational infrastructure. The two endurance stations fitted with physical and biogeochemical sensors that were used in this study are located in the SATURN observation network. The microbial sampler is the Environmental Sample Processor (ESP), a commercially available electromechanical/fluidic system designed for automated collection, preservation and in situ analyses of marine water samples. The primary goal of the integration was to demonstrate that the ESP, developed for sampling of pelagic oceanic environments, could be successfully deployed for autonomous sample acquisition in the highly dynamic and turbid Columbia River estuary. The ability of the ESP to collect material at both pre-determined times and automatically in response to local conditions was tested. Pre-designated samples were acquired at specific times to capture variability in the tidal cycle. Autonomous, adaptive sampling was triggered when conditions associated with specific water masses were detected in real-time by the SATURN station's sensors and then communicated to the ESP via the station computer to initiate sample collection. Triggering criteria were based on our understanding of estuary dynamics, as provided by the analysis of extensive archives of high-resolution, long-term SATURN observations and simulations. In this manner, we used the ESP to selectively sample various microbial consortia in the estuary to facilitate the study of ephemeral microbial-driven processes. For example, during the summer of 2013 the adaptive sampling

  5. Mud-induced periodic stratification in the hyperconcentrated Ems estuary

    Science.gov (United States)

    Becker, Marius; Maushake, Christian; Winter, Christian

    2017-04-01

    Feedback of stratification on the flow is widely acknowledged to play a significant role in estuarine sediment transport. Recently, attention was drawn to the influence of sediment-induced horizontal density gradients on the location of the estuarine turbidity zone and, in general, on subtidal dynamics in hyper-concentrated estuaries. By contrast to the increasing number of modelling studies, few experimental results were published regarding the actual vertical structure of the water column, or the intratidal dynamics of high concentration layers, such as fluid mud. In this study, we measured tidal variations of stratification due to suspended sediments in the center of the turbidity zone of the Ems estuary, North Sea. The suspended sediment concentration profile was controlled by strong vertical gradients, first, a lutocline on top of a mobile mud layer, and second, an interface that separated the mobile mud from a higher concentrated, stationary mud layer below (> 50 g/l). Entrainment of the mobile mud layer was observed at the beginning of the flood tide. Re-formation of the mobile mud layer occurred at an unexpectedly early stage during flood. This is interpreted to result from super-saturated conditions after entrainment. The exceptionally high concentration of suspended sediments was not sustained during stagnating flow, and the settling flux was increased, inducing a collapse of the vertical concentration profile. Subsequently, the flow was decoupled between the upper and the lower layer and separated by the lutocline approximately in the middle of the water column. Remarkably, the flow was flood directed in the upper layer, while velocities in the lower, mobile mud layer were ebb directed. The mobile mud layer remained unaffected by entrainment for a period of 4.5 h around high water and moved in ebb direction, with a peak velocity of 0.12 m/s. This ebb directed turbidity current is seen as the combined effect of the downstream concentration gradient and

  6. Suspended sediment levels and turbidity along the Guadalquivir river related to the hydrological regimes

    Science.gov (United States)

    Carpintero García, Miriam; Contreras Arribas, Eva; Jurado Lopez, Alicia; Aguilar Porro, Cristina; José Polo Gómez, María

    2013-04-01

    In Mediterranean watersheds, soil loss is enhanced by the marked seasonality and torrential character of the rainfall regime, together with the usually predominant agricultural usesd. This fact determines the nature and amount of the discharges to the fluvial network in the Guadalquivir River (Spain), where the dense reservoir network within the contributing areas to the main stream alters the original sediment dynamics, and the transport and deposition patterns along the river, especially in the final stretch. The Guadalquivir River basin is located in southern Spain, with a contributing area of 57500 km2. It is a Mediterranean basin with a mean annual rainfall of 600 mm year-1.The changes of soil uses in the basin are associated with an increase of the irrigated area (in 201290 ha until 2007 upstream) and olive area (in 311115 ha until 2007).The suspended sediment concentration in the river is very high, with extreme values up to 16 g/l in the final stretch, which includes the estuary, associated with persistent turbidity events forced by different combinations of conditions. The solids are very fine- textured due to the great length of the river and, mainly, the extreme trapping efficiency of the dense reservoir network upstream. This work shows the spatial-temporal evolution of the suspended sediment concentration and turbidity regime along the Guadalquivir river and its relation with the different soil uses in the different contribunting areas within the watershed, together with the dependence on the hydrological annual regime. Turbidity trends are estimatedby means of data from Landsat-7 ETM that were validated with the quantified suspended sediment concentration values obtained from both field campaigns and automated monitored control points along the river. The results show a time lag between fluvial contributions and suspended sediment concentration due to the intense regulation in the watershed, that is dependent on the storage capacity upstream, the

  7. Environmental conditions and biological community of the Penzhina and Talovka hypertidal estuary (northwest Kamchatka) in the ice-free season

    Science.gov (United States)

    Koval, M. V.; Gorin, S. L.; Romanenko, F. A.; Lepskaya, E. V.; Polyakova, A. A.; Galyamov, R. A.; Esin, E. V.

    2017-07-01

    New data on the abiotic conditions; species composition; abundance, distribution, and migrations of fauna; and feeding interactions in an estuary ecosystem were obtained during expeditions in the mouths of Penzhina and Talovka rivers (northwest Kamchatka). It is revealed that in the ice-free season, the hydrological regime of the estuary is determined by seasonal fluctuations of river runoff, as well as fortnightly and daily variation of tides. The estuary is characterized by hypertidal fluctuations (up to 10-12 m); strong reverse flows (up to 1.0-1.5 m/s), considerable tidal variations in salinity (from 0 to 6-9‰ at the river boundary and from 6-8 to 14-16‰ at the offshore boundary), and high water turbidity (up to 1 000 NTU or more). Based on the spatial structure of the community, three ecological zones with mobile boundaries are distinguished: freshwater (salinity 0-0.1‰), estuarine (0-12.3‰), and neritic (11.2-18.9‰). High turbidity prevents the development of phytoplankton in the estuarine zone (EZ), and the local benthic community is significantly depleted due to the desalination and wide spread of aleuritic silts. Neritic copepods and nektobenthic brackish- water crustaceans generate the maximum abundance and biomass here. The species that have adapted to the local extreme hydrologic conditions dominate and form the basis of the estuarine food chain. Dominant among the EZ vertebrates are such groups as anadromous fishes (smelts, pacific salmons, charrs, and sticklebacks); waterfowl (terns, kittiwakes, cormorants, fulmars, puffins, guillemots, auklets, and wadepipers); and predatory marine mammals (larga, ringed seal, bearded seal, and white whale). The total abundance and biomass of these animals are much higher in the pelagic EZ in comparison to neighboring zones.

  8. Tidally-modulated high frequency internal waves in Gautami-Godavari estuary, East coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sridevi, B.; Murty, T.V.R.; Sadhuram, Y.; Sarma, V.V.S.S.; Murty, V.S.N.; Prasad, K.V.S.R.

    of Internal waves (IWs) and to infer their generation mechanism Based on the stability criteria, two High Frequency (HF) significant modes in the Internal Wave (IW) field at frequencies 96.67 cph (10 m depth) and 71.15 cph (14 m depth) have been identified...

  9. Environmental modulation of the plankton community composition and size-structure along the eutrophic intertidal coast of the Río de la Plata estuary, Argentina

    Directory of Open Access Journals (Sweden)

    Maximiliano D. Garcia

    2014-05-01

    Full Text Available In this study we investigated the spatial distribution of the plankton community, bacterio-, phyto- and zooplankton, in relation with environmental conditions along the intertidal coast of the Río de la Plata estuary, Argentina. Plankton was analyzed in terms of species composition, abundance, biomass (carbon content and size-structure. We aim to evaluate the potential effects of anthropogenic impacts (e.g., nutrient enrichment and physicochemical gradients alongshore (e.g., salinity, turbidity on the composition and functioning of the plankton. We asked whether the natural structuring of the plankton by salinity and turbidity, known to be true of estuaries, is modified by eutrophication along the studied shoreline. We found that the density and biomass of bacteria and phytoplankton were strikingly enhanced by high eutrophication levels along the intertidal southwest coast of the Río de la Plata estuary. We also found that the highest zooplankton density in the most polluted area but the biomass showed a different distribution pattern. Nevertheless, when zooplankton was analyzed by means of its size fraction, we accordingly found that the microzooplankton biomass was positively associated with smaller-size phytoplankton groups and the most polluted study sites. Copepods were the major taxonomic groups that best represented the mesozooplankton biomass. We therefore expected that its distribution was modulated by the presence of its food items (i.e., large cells which, in turn, were more abundant in the middle-outer zone. In contrast, we found that the highest biomass of copepods occurred at the innermost site of the estuary and we found no significant association with other planktonic groups. Overall, this study highlights the noteworthy impacts of human activities modifying the functioning of this coastal ecosystem. The differences found in the taxonomic composition and size structure of the planktonic community assemblage between the most

  10. Simultaneous Removal of Turbidity and Humic Acid Using Electrocoagulation/Flotation Process in Aqua Solution

    Directory of Open Access Journals (Sweden)

    Abdolmotaleb Seid-Mohammadi

    2015-06-01

    Full Text Available In this study, the applicability of the Electrocoagulation/Flotation (ECF process in batch operation was investigated for the simultaneous removal of turbidity and Humic acid (HA using Fe and Al electrodes. The effects of solution pH (3 - 12, electrical potentials (10 - 30 V, initial turbidity concentration (300 - 1200 NTU, and reaction time (10 - 30 minutes with or without HA were investigated in an attempt to achieve higher turbidity removal efficiency. The batch experimental results revealed that with initial turbidity of 300 NTU, at voltage of 30 V, after 30 minutes reaction times, and at pH values of 6 and 8, the ECF process for Fe and Al electrodes removed over 97% and 88% of turbidity, respectively. The percentage of turbidity removal from solution dropped with a decrease in voltages for both electrodes. The results displayed that the Fe-Fe electrode arrangement attained the highest performance for turbidity removal rate. As a result, ECF process was shown to be a very efficient, cost-effective, and promising process for efficient treatment of high turbid water. Regarding HA, the results showed that in ECF process over 67% and 43% of UV254 has been removed for Al and Fe electrodes, respectively at the optimum pH, 30 minutes reaction time and 30 V applied voltage. Thus, it can be considered that Fe and Al are the best electrodes for removing turbidity and HA, respectively.

  11. Transient, tidal-scale, nitrogen transformations in an estuarine turbidity maximum-fluid mud system (The Gironde, S.W. France)

    NARCIS (Netherlands)

    Abril, G.; Riou, S.A.; Etcheber, H.; Frankignoulle, M.; De Wit, R.; Middelburg, J.J.

    2000-01-01

    The maximum turbidity zone (MTZ) of the Gironde Estuary is a site of important mineralization of particulate organic nitrogen. Moreover, this MTZ is characterized by intense cycles of settling and resuspension of anoxic fluid mud at both tidal and neap-spring time-scales. In the upper layer of the

  12. DOCUMENTING THE INTERTIDAL COMPONENT OF EELGRASS DISTRIBUTIONS IN PACIFIC NORTHWEST ESTUARIES USING COLOR INFRARED AERIAL PHOTOGRAPHY

    Science.gov (United States)

    The objective of this study was to develop and test a rapid, cost-effective method of mapping the intertidal (and surface-visible subtidal) distribution of eelgrass (Zostera marina L.) meadows and patches in the turbid coastal estuaries of the Pacific Northwest (PNW). Initial co...

  13. Reproductive period of the swimming crab Callinectes danae at the Santa Cruz Channel, a highly productive tropical estuary in Brazil

    Directory of Open Access Journals (Sweden)

    Marina de Sá Leitão Câmara de Araújo

    Full Text Available The aim of this study was to analyze reproductive aspects of Callinectes danae in one of the most productive estuarine systems in the Northeast Brazil, Santa Cruz Channel. A total of 1.573 individuals, being 756 females (23 ovigerous and 817 males were examined from January to December 2009. Mature males and females, as well as couples of C. danae, occurred in all months of the year. Ovigerous females occurred in nearly all months. The reproductive activity, based on the macroscopic observation of the gonads, occurs continuously, with distinguishable peaks in February, March and September. Ovigerous females were only recorded nearest to the sea, while couples were only in the inner estuary. Thus, a migration pattern is proposed, with couples mating inside the estuary, followed by a migration of females to the area of greater marine influence for egg laying and, probably, larval release. After this, probably the females of do not return to the estuary, characterizing habitat partitioning. The present study is the first contribution on the reproductive period of C. danae in an estuarine ecosystem of the Brazilian northeast coast, and elucidates some aspects of its reproductive behavior.

  14. The environmental characteristics of the Ganga estuary

    Digital Repository Service at National Institute of Oceanography (India)

    SenGupta, R.; Murty, C.S.; Bhattathiri, P.M.A.

    . Occurrence and distribution of bacteria of health significance can be expected to be fairly high in the estuary. Significant numbers of the bacteria, which is the etiologic agent for food-bome gastroenteritis, are present in the waters and sediments...

  15. Environmental conditions and intraspecific interference: unexpected effects of turbidity on pike (Esox lucius) foraging

    DEFF Research Database (Denmark)

    Nilsson, P.A.; Jacobsen, Lene; Berg, Søren

    2009-01-01

    Interference among predators decreases per capita foraging rates and has implications for both community dynamics and top-down trophic processes. Interference originates from behavioural interactions among foragers, and these behaviours could be affected by environmental conditions. In experiment...... on community dynamics and its reduction of predation impact on top-down trophic cascades should consider potential unexpected effects of environmental conditions....... on pike foraging alone or among conspecifics in different levels of water turbidity, we expected high turbidity to decrease the perceived risk of intraspecific interactions among pike, and thereby decrease the strength of interference, as turbidity would decrease the visual contact between individuals......, indicating no effect of interference. As high turbidity enhances prey consumption for pike individuals foraging alone, but does not have this effect for pike in groups, high turbidity induces the relative interference effect. We suggest that future evaluations of the stabilizing effects of interference...

  16. Dissolved uranium, vanadium and molybdenum behaviours during contrasting freshwater discharges in the Gironde Estuary (SW France)

    Science.gov (United States)

    Strady, Emilie; Blanc, Gérard; Schäfer, Jörg; Coynel, Alexandra; Dabrin, Aymeric

    2009-08-01

    Understanding trace metal behaviour in estuarine environments requires sampling strategies and analytical methods adapted to strong physical and geochemical gradients. In this study, we present a specific sampling strategy covering a wide range of hydrological conditions during nine cruises in 2003-2007 to characterise the behaviour of three dissolved metals (uranium, vanadium and molybdenum) in surface and bottom water along the salinity gradient of the highly turbid macrotidal Gironde Estuary using a solid-liquid extraction. Uranium behaved conservatively whatever the water discharges observed. The slight dissolved U depletion compared to the theoretical dilution line between the fluvial and marine end-members occasionally observed in the low salinity range (0-3) was attributed to the mixing of different water bodies of the Gironde tributaries. In contrast, dissolved V behaviour was largely influenced by the hydrological conditions, showing increasingly pronounced addition with decreasing freshwater discharges, (i.e. increasing residence times of water and particles in the estuary). This addition of dissolved V in the low- to mid-salinity range was attributed to desorption processes observed in the Maximum Turbidity Zone (MTZ). The distribution of dissolved Mo concentrations along the salinity gradient was highly variable. Apparent conservative, and non-conservative behaviours were observed and were related to the concomitance of desorption from SPM, inputs from sediments for additive distribution and biological uptake and removal into sediments for subtractive distribution. Based on the whole database (2003-2007), annual net fluxes to the coastal ocean were estimated for dissolved U (15.5-16.6 t yr -1) and V (31.3-36.7 t yr -1).

  17. Turbidity removal from surface water using Tamarindus indica crude ...

    African Journals Online (AJOL)

    Plant-based coagulants are potential alternatives to chemical coagulants used in drinking water treatment. This paper examined the turbidity removal efficiency of Tamarindus indica fruit crude pulp extract (CPE) towards evaluating a low-cost option for drinking-water treatment. Laboratory analysis was carried out on high ...

  18. Learning Lessons from Estuaries

    Science.gov (United States)

    Schnittka, Christine

    2006-01-01

    There is something that draws all people to the sea and especially to the fertile estuaries that nuzzle up to its shores. An estuary serves as both a nursery and a grave for sea creatures. If life evolved from some primordial sea, it may well have been an estuary--a place where ocean and rivers meet and fresh and salty waters mingle in the…

  19. CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): Influence of anthropogenic effect - Carbon dynamics in tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Thottathil, S.D.; Balachandran, K.K.; Madhu, N.V.; Madeswaran, P.; Nair, S.

    Carbon biogeochemistry of a tropical ecosystem (The Cochin Estuary, India) undergoing increased human intervention was studied during February (premonsoon), April (early monsoon) and September (monsoon) 2005. The Cochin estuary sustains high levels...

  20. Characterizing seston in the Penobscot River Estuary.

    Science.gov (United States)

    Meseck, Shannon L; Li, Yaqin; Sunila, Inke; Dixon, Mark; Clark, Paul; Lipsky, Christine; Stevens, Justin R; Music, Paul; Wikfors, Gary H

    2017-10-01

    The Penobscot River Estuary is an important system for diadromous fish in the Northeast United States of American (USA), in part because it is home to the largest remnant population of Atlantic salmon, Salmo salar, in the country. Little is known about the chemical and biological characteristics of seston in the Penobscot River Estuary. This study used estuarine transects to characterize the seston during the spring when river discharge is high and diadromous fish migration peaks in the Penobscot River Estuary. To characterize the seston, samples were taken in spring 2015 for phytoplankton identification, total suspended matter (TSM), percent organic TSM, chlorophyll a, particle size (2 μm-180 μm), particulate carbon and nitrogen concentrations, and stable carbon and nitrogen isotopes. The estuarine profiles indicate that TSM behaved non-conservatively with a net gain in the estuary. As phytoplankton constituted only 1/1000 of the particles, the non-conservative behavior of TSM observed in the estuary was most likely not attributable to phytoplankton. Particulate carbon and nitrogen ratios and stable isotope signals indicate a strong terrestrial, allochthonous signal. The seston in the Penobscot River Estuary was dominated by non-detrital particles. During a short, two-week time period, Heterosigma akashiwo, a phytoplankton species toxic to finfish, also was detected in the estuary. A limited number of fish samples, taken after the 2015 Penobscot River Estuary bloom of H. akashiwo, indicated frequent pathological gill damage. The composition of seston, along with ichthyotoxic algae, suggest the need for further research into possible effects upon resident and migratory fish in the Penobscot River Estuary. Published by Elsevier Ltd.

  1. Hydro- and sediment dynamics in the estuary zone of the Mekong Delta: case study Dinh An estuary.

    Science.gov (United States)

    Tran, Anh Tuan; Thoss, Heiko; Gratiot, Nicolas; Dussouillez, Philippe; Brunier, Guillaume; Apel, Heiko

    2017-04-01

    The Mekong River is the tenth largest river in the world, covers an area of 795,000 km2, 4400km in length, the main river flows over the six countries including: China, Myanmar, Thailand, Laos, Cambodia and Vietnam. Its water discharge is 470 km3year-1 and the sediment discharge is estimated about 160 million ton year-1. The sediment transported by the Mekong River is the key factor in the formation and development of the delta. It is a vital factor for the stability of the coastline and river banks. Furthermore it compensates land subsidence by floodplain deposition, and is the major natural nutrient source for agriculture and aquaculture. However, only a few studies were conducted to characterize and quantify sediment properties and process in the Delta. Also the morphodynamic processes were hardly studied systematically. Hence, this study targets to fill some important and open knowledge gaps with extensive field works that provide important information about the sediment properties and hydrodynamic processes in different seasons Firstly three field survey campaigns are carried out along a 30 km section of the Bassac River from the beginning of Cu Lao Dung Island to Dinh An estuary in 2015 and 2016. During the field campaign, the movement of the salt wedge and the turbidity were monitored by vertical profiles along the river, as well as discharge measurements by ADCP were carried out at three cross sections continuously for 72 hours. The extension of the salt wedge in the river was determined, along with mixing processes. The movement and dynamics observed under different flow conditions indicate that sediment was pumped during low flow upwards the river, while during high flow net transport towards the sea dominated. Also a distinct difference in the sediment properties in the different seasons was observed, with a general tendency towards a higher proportion of coarser particles in the high flow season. These quantitative results give insights into the

  2. Role of IgG fractions with high isoelectric points in the thymol turbidity test in syphilis. Evidence for an increase in basic IgG in early syphilis.

    Science.gov (United States)

    Van Der Sluis, J J; Menke, H E

    1975-01-01

    It is demonstrated that IgG fractions with isoelectric points above 7.6, isolated from pooled syphilitic sera, are able to elevate the thymol turbidity. The effect increases with increasing isoelectric points of the isolated fraction. IgG from individual syphilitic patients exerts a stronger effect on the thymol turbidity than normal IgG. It is concluded that elevated amounts of these basic immunoglobulins are present in the sera of syphilitic subjects. PMID:237599

  3. The Mtata River estuary

    African Journals Online (AJOL)

    1989-02-28

    Feb 28, 1989 ... A survey of the fish fauna of Transkei estuaries. Part Three: The Mtata River estuary. E.E. Plumstead* and J.F. Prinsloo. Department of Zoology, University of Transkei, Private Bag X1 001, Unitra, Umtata, Republic of Transkei. H.J. Schoonbee. Department of Zoology, Rand Afrikaans University, P.O. Box 524, ...

  4. Bioremediation of turbid surface water using seed extract from Moringa oleifera Lam. (drumstick) tree.

    Science.gov (United States)

    Lea, Michael

    2010-02-01

    An indigenous water treatment method uses Moringa oleifera seeds in the form of a water-soluble extract in suspension, resulting in an effective natural clarification agent for highly turbid and untreated pathogenic surface water. Efficient reduction (80.0% to 99.5%) of high turbidity produces an aesthetically clear supernatant, concurrently accompanied by 90.00% to 99.99% (1 to 4 log) bacterial reduction. Application of this low-cost Moringa oleifera protocol is recommended for simplified, point-of-use, low-risk water treatment where rural and peri-urban people living in extreme poverty are presently drinking highly turbid and microbiologically contaminated water.

  5. Bioremediation of Turbid Surface Water Using Seed Extract from the Moringa oleifera Lam. (Drumstick) Tree.

    Science.gov (United States)

    Lea, Michael

    2014-05-01

    An indigenous water treatment method uses Moringa oleifera seeds in the form of a crude water-soluble extract in suspension, resulting in an effective natural clarification agent for highly turbid and untreated pathogenic surface water. Efficient reduction (80.0% to 99.5%) of high turbidity produces an aesthetically clear supernatant, concurrently accompanied by 90.00% to 99.99% (1 to 4 log) bacterial reduction. Application of this low-cost Moringa oleifera protocol is recommended for water treatment where rural and peri-urban people living in extreme poverty are presently drinking highly turbid and microbiologically contaminated water. Copyright © 2014 John Wiley & Sons, Inc.

  6. Effects of Low versus High Freshwater Discharge on the Concentration and Character of Dissolved Carbon, and on the Microbial Community Composition in the Skidaway River Estuary (Southeast USA).

    Science.gov (United States)

    Bittar, T.; Berger, S. A.; Walters, T. L.; Mann, E. L.; Spencer, R. G.; Stubbins, A.; Frischer, M. E.; Brandes, J. A.

    2016-02-01

    The 2012-2013 timeframe encompassed contrasting levels of precipitation in the Southeast USA, which resulted in low freshwater discharge into coastal waters in 2012, and high freshwater discharge in 2013. In the tidally-dominated Skidaway River Estuary, salinity was 32 ppt during summer 2012, and decreased to 25 ppt in summer 2013, at high tide. This shift in freshwater inputs and salinity affected the concentration and character of dissolved inorganic and organic carbon (DIC and DOC), and the composition of the picophytoplankton and bacterioplankton communities in the estuary. DIC concentrations were close to equilibrium throughout 2012, and decreased with freshwater discharge in 2013. DIC isotopes (δ13C-DIC) shifted towards a more depleted state in summer 2012, presumably due to respiration of isotopically depleted DOC, and throughout 2013, possibly due to a combination of respiration and freshwater inputs. During low discharge in 2012, DOC appeared enriched in autochthonous material, based on high N-content and protein-like fluorescence. High freshwater discharge led to higher DOC concentrations in 2013, and shifted DOC towards a more chromophoric, aromatic, humic and N-depleted character, indicating contributions from terrestrially-derived DOC. The picophytoplankton bloom in summer 2012 was co-dominated by two groups of cyanobacteria, including a high-salinity Synechococcus. In contrast, the 2013 summer bloom was dominated by a single group, as Synechococcus was absent, possibly due to lower salinities. Two groups of bacteria were distinguished by flow cytometry based on intensity of DNA fluorescence (low-FL and high-FL). In 2012, bacterioplankton was dominated by the low-FL group, while in 2013 the two groups comprised similar fractions of the community. These shifts in bacterioplankton community composition could be associated with changes in salinity and/or in DOC character.

  7. Change in field turbidity and trace element concentrations during well purging

    Science.gov (United States)

    Gibs, J.; Szabo, Z.; Ivahnenko, T.; Wilde, F.D.

    2000-01-01

    Various physical and chemical properties were monitored sequentially in the field during well purging as indicators of stabilization of the composition of the water in the well. Turbidity was monitored on site during purging of oxic water from three wells with screened intervals open to an unconfined aquifer system in the Coastal Plain of southern New Jersey to determine if stabilization of turbidity is a reliable indicator of the optimum purge time required to collect unbiased trace element samples. Concurrent split (one filtered, one unfiltered) samples collected during purging of the wells were analyzed for concentrations of trace elements so that the relationships between trace element concentrations and turbidity could be compared. Turbidity correlated with the whole water recoverable (WWR) concentration of trace element species, such as iron (Fe), aluminum (Al), and manganese (Mn) in the oxic ground water. Turbidity appeared to be independent of other field-measured characteristics of water such as conductivity, pH, temperature, and dissolved oxygen. The WWR concentrations of lead and copper, considered to be hydrophobic, correlated significantly with the sum of the WWR concentration of Fe, Al, and Mn. High values of field-measured turbidity were a key indicator of an overestimate of ambient hydrophobic trace element WWR concentrations. Stabilization of turbidity was a better indicator of stable, unfiltered trace element concentrations than were the other commonly measured field characteristics. At one well, turbidity was a better indicator of stable, filtered trace element concentrations than the other commonly measured field characteristics. As analytical methods for trace elements improve resulting in smaller MRLs (method reporting levels) and better precision, turbidity of ground water at values of less than 10 NTU (nepheiometric turbidity units) will become important in interpreting the significance of both unfiltered and filtered sample results.

  8. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  9. Evolution of mid-Atlantic coastal and back-barrier estuary environments in response to a hurricane: Implications for barrier-estuary connectivity

    Science.gov (United States)

    Miselis, Jennifer L.; Andrews, Brian D.; Nicholson, Robert S.; Defne, Zafer; Ganju, Neil K.; Navoy, Anthony S.

    2016-01-01

    Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.

  10. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions

    Science.gov (United States)

    Biggerstaff, A.; Smith, D. J.; Jompa, J.; Bell, J. J.

    2015-12-01

    Changes to coral reefs are occurring worldwide, often resulting in declining environmental quality which can be in the form of higher sedimentation rates and increased turbidity. While environmental acclimation to turbid and low-light conditions has been extensively studied in corals, far less is known about other phototrophic reef invertebrates. The photosynthetic cyanobacteria containing sponge Lamellodysidea herbacea is one of the most abundant sponges in the Wakatobi Marine National Park (WMNP, Indonesia), and its abundance is greatest at highly disturbed, turbid sites. This study investigated photoacclimation of L. herbacea symbionts to turbid reef sites using in situ PAM fluorometry combined with shading and transplant experiments at environmental extremes of light availability for this species. We found in situ photoacclimation of L. herbacea to both shallow, clear, high-light environments and deep, turbid, low-light environments. Shading experiments provide some evidence that L. herbacea are dependent on nutrition from their photosymbionts as significant tissue loss was seen in shaded sponges. Symbionts within surviving shaded tissue showed evidence of photoacclimation. Lamellodysidea herbacea transplanted from high- to low-light conditions appeared to have photoacclimated within 5 d with no significant effect of the lowered light level on survival. This ability of L. herbacea to photoacclimate to rapid and extreme changes in light availability may be one of the factors contributing to their survival on more turbid reef sites in the WMNP. Our study highlights the ability of some sponge species to acclimate to changes in light levels as a result of increased turbidity.

  11. Turbidity Measurement Using An Optical Tomography System

    Directory of Open Access Journals (Sweden)

    Sallehuddin Bin Ibrahim

    2013-10-01

    Full Text Available Turbidity is used to describe water quality and it can be caused by the presence of suspended particles and organic matter such as algae, clay and silt. The measurement of turbidity level of water is vital to domestic water supplies since it is related to public health and water treatment process. This paper presents an investigation on an optical tomography system to estimate the turbidity level in a sample of water. The optical sensors consist of infrared light-emitting diodes (LED as transmitters and photodiodes as the receivers where the projections of the sensors are designed in fan beam mode. The system was tested using a vertical flow pipe. The Independent Component Analysis (ICA method was used to display the concentration profile. Results obtained proved that the technique can provide the concentration profile representing the turbidity level of water.

  12. GMDH algorithms applied to turbidity forecasting

    Science.gov (United States)

    Tsai, Tsung-Min; Yen, Pei-Hwa

    2017-06-01

    By applying the group method of data handling algorithm to self-organization networks, we design a turbidity prediction model based on simple input/output observations of daily hydrological data (rainfall, discharge, and turbidity). The data are from a field test site at the Chiahsien Weir and its upper stream in Taiwan, and were recorded from May 2000 to December 2008. The model has a regressive mode that can assess the estimated error, i.e., whether a threshold has been exceeded, and can be adjusted by updating the field input data. Consequently, the model can achieve accurate estimations over long-term periods. Test results demonstrate that the 2006 turbidity prediction model was selected as the best predictive model (RMSE = 5.787 and CC = 0.975) because of its ability to predict turbidity within the acceptable error range and 90 % required confidence interval (50NTU). 70(3,1,1) is the optimum modeling data length and variable combinations.

  13. Spatial Pattern of Great Lakes Estuary Processes from Water Quality Sensing and Geostatistical Methods

    Science.gov (United States)

    Xu, W.; Minsker, B. S.; Bailey, B.; Collingsworth, P.

    2014-12-01

    Mixing of river and lake water can alter water temperature, conductivity, and other properties that influence ecological processes in freshwater estuaries of the Great Lakes. This study uses geostatistical methods to rapidly visualize and understand water quality sampling results and enable adaptive sampling to remove anomalies and explore interesting phenomena in more detail. Triaxus, a towed undulating sensor package, was used for collecting various physical and biological water qualities in three estuary areas of Lake Michigan in Summer 2011. Based on the particular sampling pattern, data quality assurance and quality control (QA/QC) processes, including sensor synchronization, upcast and downcast separation, and spatial outlier removal are first applied. An automated kriging interpolation approach that considers trend and anisotropy is then proposed to estimate data on a gridded map for direct visualization. Other methods are explored with the data to gain more insights on water quality processes. Local G statistics serve as a supplementary tool to direct visualization. The method identifies statistically high value zones (hot spots) and low value zones (cold spots) in water chemistry across the estuaries, including locations of water sources and intrusions. In addition, chlorophyll concentration distributions are different among sites. To further understand the interactions and differences between river and lake water, K-means clustering algorithm is used to spatially cluster the water based on temperature and specific conductivity. Statistical analysis indicates that clusters with significant river water can be identified from higher turbidity, specific conductivity, and chlorophyll concentrations. Different ratios between zooplankton biomass and density indicate different zooplankton structure across clusters. All of these methods can contribute to improved near real-time analysis of future sampling activity.

  14. Reservoir impacts downstream in highly regulated river basins: the Ebro delta and the Guadalquivir estuary in Spain

    Science.gov (United States)

    Polo, María J.; Rovira, Albert; García-Contreras, Darío; Contreras, Eva; Millares, Agustín; Aguilar, Cristina; Losada, Miguel A.

    2016-05-01

    Regulation by reservoirs affects both the freshwater regime and the sediment delivery at the area downstream, and may have a significant impact on water quality in the final transitional water bodies. Spain is one the countries with more water storage capacity by reservoirs in the world. Dense reservoir networks can be found in most of the hydrographic basins, especially in the central and southern regions. The spatial redistribution of the seasonal and annual water storage in reservoirs for irrigation and urban supply, mainly, has resulted in significant changes of water flow and sediment load regimes, together with a fostered development of soil and water uses, with environmental impacts downstream and higher vulnerability of these areas to the sea level rise and drought occurrence. This work shows these effects in the Guadalquivir and the Ebro River basins, two of the largest regulated areas in Spain. The results show a 71 % decrease of the annual freshwater input to the Guadalquivir River estuary during 1930-2014, an increase of 420 % of the irrigated area upstream the estuary, and suspended sediment loads up to 1000 % the initial levels. In the Ebro River delta, the annual water yield has decreased over a 30 % but, on the contrary, the big reservoirs are located in the main stream, and the sediment load has decreased a 99 %, resulting in a delta coastal regression up to 10 m per year and the massive presence of macrophytes in the lower river. Adaptive actions proposed to face these impacts in a sea level rise scenario are also analyzed.

  15. Sedimentary BSi and TOC quantifies the degradation of the Changjiang Estuary, China, from river basin alteration and warming SST

    Science.gov (United States)

    Li, Maotian; Wang, Hong; Li, Yimiao; Ai, Wei; Hou, Lijun; Chen, Zhongyuan

    2016-12-01

    Environmental degradation in the Changjiang Estuary has recently become a global topic, given its proximity to Shanghai with a population >23 million. Intensification of human activities affecting the river basin is responsible for this degradation. Dam construction has cut off ca. 2/3 of the sediment flux to the sea, ca. 60% of the dissolved silicate load (DSi) has been retained in the reservoirs, while total phosphorous (TP) and total nitrogen (TN) transport to the sea are many times more than they were a few decades ago. Under such circumstances, details of the estuarine degradation remain poorly understood. This study uses sedimentary biological silicate (BSi) and total organic carbon (TOC) as environmental proxies to reveal the process-response of such degradation since the 1950s. Our results demonstrate the spatial differences of such degradation. The inner zone of the estuary used to be highly turbid, but presently has increasing diatom (BSi) and primary production (TOC), due to lower suspended sediment concentration (SSC) in relation to dam construction. In contrast, increasing riverine dissolved inorganic nitrate (DIN) and dissolved inorganic phosphorous (DIP) input (up to 2-5 times) and decreasing DSi provide a unique setting, with an excess in N and P, which catalyzes non-diatom algae in the less-turbid middle zone of the estuary. These are reflected by decreasing BSi and BSi/TOC since the 1950s, together with an increase of TOC of 20-40%. In the outer zone of the estuary, increasing DIN, DIP, and sea surface temperatures (SSTs), have resulted in the increase of diatom biomass by 15-20% and the growth of primary production by 30-60% since the 1950s. But the drastic decrease in DSi, Si/N, and Si/P depresses the ability of diatoms to develop, resulting in a reduction of 5-10% diatom proportion (BSi/TOC) since the 1930s. This study improves the understanding of the changing estuarine ecosystem in response to global change.

  16. An alternative cost-effective image processing based sensor for continuous turbidity monitoring

    Science.gov (United States)

    Chai, Matthew Min Enn; Ng, Sing Muk; Chua, Hong Siang

    2017-03-01

    Turbidity is the degree to which the optical clarity of water is reduced by impurities in the water. High turbidity values in rivers and lakes promote the growth of pathogen, reduce dissolved oxygen levels and reduce light penetration. The conventional ways of on-site turbidity measurements involve the use of optical sensors similar to those used in commercial turbidimeters. However, these instruments require frequent maintenance due to biological fouling on the sensors. Thus, image processing was proposed as an alternative technique for continuous turbidity measurement to reduce frequency of maintenance. The camera was kept out of water to avoid biofouling while other parts of the system submerged in water can be coated with anti-fouling surface. The setup developed consisting of a webcam, a light source, a microprocessor and a motor used to control the depth of a reference object. The image processing algorithm quantifies the relationship between the number of circles detected on the reference object and the depth of the reference object. By relating the quantified data to turbidity, the setup was able to detect turbidity levels from 20 NTU to 380 NTU with measurement error of 15.7 percent. The repeatability and sensitivity of the turbidity measurement was found to be satisfactory.

  17. Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata

    Directory of Open Access Journals (Sweden)

    Bahman Ramavandi

    2014-08-01

    Full Text Available A biocoagulant was successfully extracted from Plantago ovata by using an FeCl3-induced crude extract (FCE. The potential of FCE to act as a natural coagulant was tested for clarification using the turbid water of a river. Experimental tests were performed to evaluate the effects of turbidity concentration, coagulant quantity, water pH, and humic acid concentration on the coagulation of water turbidity by FCE. The maximum turbidity removal was occurred at water pH<8. At the optimum dosage of FCE, only 0.8 mg/L of dissolved organic carbon was released to the treated water. An increase in the humic acid led to the promotion of the water turbidity removal. Results demonstrated that the FCE removed more than 95.6% of all initial turbidity concentrations (50–300 NTU. High bacteriological quality was achieved in the treated water. FCE as an eco-friendly biocoagulant was revealed to be a very efficient coagulant for removing turbidity from waters.

  18. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  19. Penobscot Estuary (Maine) Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's NEFSC collects fisheries data from the Penobscot Estuary using several types of fishing gear. The data is used to determine species presence, relative...

  20. Multi-Algorithm Indices and Look-Up Table for Chlorophyll-a Retrieval in Highly Turbid Water Bodies Using Multispectral Data

    Directory of Open Access Journals (Sweden)

    Salem Ibrahim Salem

    2017-06-01

    Full Text Available Many approaches have been proposed for monitoring the eutrophication of Case 2 waters using remote sensing data. Semi-analytical algorithms and spectrum matching are two major approaches for chlorophyll-a (Chla retrieval. Semi-analytical algorithms provide indices correlated with phytoplankton characteristics, (e.g., maximum and minimum absorption peaks. Algorithms’ indices are correlated with measured Chla through the regression process. The main drawback of the semi-analytical algorithms is that the derived relation is location and data limited. Spectrum matching and the look-up table approach rely on matching the measured reflectance with a large library of simulated references corresponding to wide ranges of water properties. The spectral matching approach taking hyperspectral measured reflectance as an input, leading to difficulties in incorporating data from multispectral satellites. Consequently, multi-algorithm indices and the look-up table (MAIN-LUT technique is proposed to combine the merits of semi-analytical algorithms and look-up table, which can be applied to multispectral data. Eight combinations of four algorithms (i.e., 2-band, 3-band, maximum chlorophyll index, and normalized difference chlorophyll index are investigated for the MAIN-LUT technique. In situ measurements and Medium Resolution Imaging Spectrometer (MERIS sensor data are used to validate MAIN-LUT. In general, the MAIN-LUT provide a comparable retrieval accuracy with locally tuned algorithms. The most accurate of the locally tuned algorithms varied among datasets, revealing the limitation of these algorithms to be applied universally. In contrast, the MAIN-LUT provided relatively high retrieval accuracy for Tokyo Bay (R2 = 0.692, root mean square error (RMSE = 21.4 mg m−3, Lake Kasumigaura (R2 = 0.866, RMSE = 11.3 mg m−3, and MERIS data over Lake Kasumigaura (R2 = 0.57, RMSE = 36.5 mg m−3. The simulated reflectance library of MAIN-LUT was generated based on

  1. The hydrodynamics of the Bot River Estuary revisited | van Niekerk ...

    African Journals Online (AJOL)

    It is concluded that the increasingly closed state of the Bot Estuary in recent years is most likely due to reduction in runoff from its tributaries and premature artificial breaching of the Kleinmond arm of the system. These findings, coupled with the high conservation importance of the Bot River Estuary, suggest that the current ...

  2. The zooplankton of Msikaba estuary | Wooldridge | African Zoology

    African Journals Online (AJOL)

    Stratification is well developed in Msikaba estuary and has a major influence on the distribution of the zooplankton. The oligohaline zooplankton component does not become well established, while marine zooplankton organisms penetrate relatively far up the estuary in the high salinity bottom waters. The euryhaline ...

  3. mysidacea of the mtentu river estuary, transkei, south africa

    African Journals Online (AJOL)

    The Mtentu River has a straight open tidal estuary flowing between steep grassy or indigenous forest. covered slopes. Total high-water surface area is about 0,3 kin·. The zooplankton was studied by periodic sampling over a period of thirteen months. Some physical characteristics of the estuary are presented. The seasonal ...

  4. Temporal changes in physical, chemical and biological sediment parameters in a tropical estuary after mangrove deforestation

    Science.gov (United States)

    Ellegaard, Marianne; Nguyen, Ngoc Tuong Giang; Andersen, Thorbjørn Joest; Michelsen, Anders; Nguyen, Ngoc Lam; Doan, Nhu Hai; Kristensen, Erik; Weckström, Kaarina; Son, Tong Phuoc Hoang; Lund-Hansen, Lars Chresten

    2014-04-01

    Dated sediment cores taken near the head and mouth of a tropical estuary, Nha-Phu/Binh Cang, in south central Viet Nam were analyzed for changes over time in physical, chemical and biological proxies potentially influenced by removal of the mangrove forest lining the estuary. A time-series of satellite images was obtained, which showed that the depletion of the mangrove forest at the head of the estuary was relatively recent. Most of the area was converted into aquaculture ponds, mainly in the late 1990's. The sediment record showed a clear increase in sedimentation rate at the head of the estuary at the time of mangrove deforestation and a change in diatom assemblages in the core from the mouth of the estuary indicating an increase in the water column turbidity of the entire estuary at the time of the mangrove deforestation. The proportion of fine-grained sediment and the δ13C signal both increased with distance from the head of the estuary while the carbon content decreased. The nitrogen content and the δ15N signal were more or less constant throughout the estuary. The proportion of fine-grained material and the chemical proxies were more or less stable over time in the core from the mouth while they varied synchronously over time in the core from the head of the estuary. The sediment proxies combined show that mangrove deforestation had large effects on the estuary with regard to both the physical and chemical environment with implications for the biological functioning.

  5. Beyond Rating Curves: Time Series Models for in-Stream Turbidity Prediction

    Science.gov (United States)

    Wang, L.; Mukundan, R.; Zion, M.; Pierson, D. C.

    2012-12-01

    The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies over 1 billion gallons of water per day to more than 9 million customers. DEP's "West of Hudson" reservoirs located in the Catskill Mountains are unfiltered per a renewable filtration avoidance determination granted by the EPA. While water quality is usually pristine, high volume storm events occasionally cause the reservoirs to become highly turbid. A logical strategy for turbidity control is to temporarily remove the turbid reservoirs from service. While effective in limiting delivery of turbid water and reducing the need for in-reservoir alum flocculation, this strategy runs the risk of negatively impacting water supply reliability. Thus, it is advantageous for DEP to understand how long a particular turbidity event will affect their system. In order to understand the duration, intensity and total load of a turbidity event, predictions of future in-stream turbidity values are important. Traditionally, turbidity predictions have been carried out by applying streamflow observations/forecasts to a flow-turbidity rating curve. However, predictions from rating curves are often inaccurate due to inter- and intra-event variability in flow-turbidity relationships. Predictions can be improved by applying an autoregressive moving average (ARMA) time series model in combination with a traditional rating curve. Since 2003, DEP and the Upstate Freshwater Institute have compiled a relatively consistent set of 15-minute turbidity observations at various locations on Esopus Creek above Ashokan Reservoir. Using daily averages of this data and streamflow observations at nearby USGS gauges, flow-turbidity rating curves were developed via linear regression. Time series analysis revealed that the linear regression residuals may be represented using an ARMA(1,2) process. Based on this information, flow-turbidity regressions with

  6. Climate Ready Estuaries Progress Reports

    Science.gov (United States)

    Climate Ready Estuaries has supported adaptation activities in National Estuary Programs since 2008. In 2012, the program partnered with 23 NEPs, completed a pilot project with water utilities, and held workshops. Download annual reports from 2009-2012.

  7. Sticky stuff! Seasonal flocculation in a hypertidal estuary

    Science.gov (United States)

    Todd, David; Souza, Alejandro; Jago, Colin

    2013-04-01

    Suspended particular matter (SPM) is a highly variable and important aspect of estuarine systems. It determines turbidity; impacting water quality, generates benthic fluff, modifies biogeochemical exchanges, and constrains primary productivity. Further, SPM carries biogeochemical components (e.g. carbon, nitrogen), deciding the fates of anthropogenic system inputs. Outside of the non-cohesive fraction (sand), little is known of the properties of estuarine SPM (i.e. sizes, densities, settling velocities) and how these impact sedimentation as most SPM is in the form of flocs (aggregates of dead and living organic matter, cohesive inorganic matter, and water) that are easily ruptured and/or may aggregate during sampling. As such, we lack reliable information on parameters such as settling velocities, particularly since floc properties change over tidal (suspension/advection), lunar (spring-neap cycle), and seasonal (storm resuspension and biological production) time scales. Turbulence is an important mediator of floc characteristics; low turbulence promotes collisions and flocculation, while high levels cause shear-induced rupture, literally tearing flocs apart. Because of this, turbulence parameterisation is key to understanding the relationship between turbulence and particle size. The results of an extensive field campaign in the Dee Estuary (N.W. United Kingdom) are presented, investigating the fates of SPM. Using data from a combination of acoustics, optics, moored deployments and CTD stations particle characteristics varied across tidal, spring-neap, and seasonal time-scales. This was due to seasonal changes in both river input and levels of biological activity. During winter, turbulence-mediated flocculation and breakup dominated, with particles coming together under quiescent conditions, and breaking up during high turbulence conditions. By contrast, stronger, more shear-resistant flocs were present during summer with increased yield strength providing

  8. Long-range sediment transport in the world's oceans by stably stratified turbidity currents

    Science.gov (United States)

    Kneller, Benjamin; Nasr-Azadani, Mohamad M.; Radhakrishnan, Senthil; Meiburg, Eckart

    2016-12-01

    Submarine fans, supplied primarily by turbidity currents, constitute the largest sediment accumulations on Earth. Generally accepted models of turbidity current behavior imply they should dissipate rapidly on the very small gradients of submarine fans, thus their persistence over long distances is enigmatic. We present numerical evidence, constrained by published field data, suggesting that turbidity currents traveling on low slopes and carrying fine particles have a stably stratified shear layer along their upper interface, which dramatically reduces dissipation and entrainment of ambient fluid, allowing the current to propagate over long distances. We propose gradient Richardson number as a useful criterion to discriminate between the different behaviors exhibited by turbidity currents on high and low slopes.

  9. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  10. Transport and transformation of riverine neodymium isotope and rare earth element signatures in high latitude estuaries: A case study from the Laptev Sea

    Science.gov (United States)

    Laukert, Georgi; Frank, Martin; Bauch, Dorothea; Hathorne, Ed C.; Gutjahr, Marcus; Janout, Markus; Hölemann, Jens

    2017-11-01

    Marine neodymium (Nd) isotope and rare earth element (REE) compositions are valuable tracers for present and past ocean circulation and continental inputs. Yet their supply via high latitude estuaries is largely unknown. Here we present a comprehensive dissolved Nd isotope (expressed as εNd values) and REE data set together with seawater stable oxygen isotope (δ18O) compositions of samples from the Laptev Sea recovered in two Arctic summers and one winter. The Laptev Sea is a shallow Siberian Shelf sea characterized by extensive river-runoff, sea-ice production and ice transport into the Arctic Ocean. The large variability in εNd (-6 to -17), REE concentrations (16 to 600 pmol/kg for Nd) and REE patterns is controlled by freshwater supply from distinct riverine sources and open ocean Arctic Atlantic Water. Strikingly and contrary to expectations, except for cerium no evidence for significant release of REEs from particulate phases is found, which is attributed to low amounts of suspended particulate matter and high dissolved organic carbon concentrations present in the contributing rivers. Essentially all shelf waters are depleted in light (L)REEs, while the distribution of the heavy REEs shows a deficiency at the surface and a pronounced excess in the bottom layer. This distribution is consistent with REE removal through coagulation of riverine nanoparticles and colloids starting at salinities near 10 and resulting in a drop of all REE concentrations by ∼30%. With increasing salinity preferential LREE removal is observable reaching ∼75% for Nd at a salinity of 34. Although the delayed onset of dissolved REE removal contrasts with most previous observations from other estuarine environments, it agrees remarkably well with results from recent experiments simulating estuarine mixing of seawater with organic-rich river waters. In addition, melting and formation of sea ice leads to further REE depletion at the surface and strong REE enrichment near the shelf

  11. [Measuring the turbidity of amniotic fluid, a possibility to assess fetal maturity before birth (author's transl)].

    Science.gov (United States)

    Lamberti, G

    1978-08-01

    At the end of gestation, depending on maturation of the fetus and especially of its skin, vernix caseosa is detached into amniotic fluid. The changes of amniotic fluid turbidity can be quantitatively verified with a fotometer (filter for 578 nm, 10 mm disposable cuvettes). The turbidity of amniotic fluid was measured in 125 cases. No correlation was found between turbidity and length of gestation from day 261 to day 287 after last menstruation. In contrast, there is strong and significant contingency between turbidity of amniotic fluid and maturity of fetal skin (quantity of vernix caseosa) or clinical maturity assessed according to Farr et al. Finding a turbidity below 0.5 U on extinction scale of the fotometer, the fetus is not fully mature in 50% of these cases; placental dysfunction can be excluded with high probability. In contrast, two thirds of the children with high turbidity of amniotic fluid (more than 1.0 U on extinction scale) had clinical signs of placental dysfunction.

  12. Tidal fluctuations influence E. coli concentrations in urban estuaries.

    Science.gov (United States)

    Jovanovic, Dusan; Coleman, Rhys; Deletic, Ana; McCarthy, David T

    2017-06-15

    This study investigated the influence of water level and velocity on Escherichia coli levels over multiple tidal cycles in an urban microtidal estuary in Melbourne, Australia. Over 3,500 E. coli samples and high resolution water level and velocity measurements from two locations within the estuary were used for the analysis. E. coli negatively correlated with water level in the upper estuary which was proposed to be linked to increased resuspension of estuarine sediments during low tide. No relationship was found in the lower estuary, likely due to wet weather inputs dwarfing subtler tidal-related processes. Removal of wet weather data enabled significant relationships to emerge in the lower estuary: 1) positive with water level (when a 9-h shift applied corresponding to the phase shift between water levels and velocities) and; 2) positive with velocity (no shift applied). This supports a link between increased E. coli levels and tidal-related resuspension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Poor oxic conditions in a large estuary reduce connectivity from marine to freshwater habitats of a diadromous fish

    Science.gov (United States)

    Tétard, Stéphane; Feunteun, Eric; Bultel, Elise; Gadais, Romain; Bégout, Marie-Laure; Trancart, Thomas; Lasne, Emilien

    2016-02-01

    Connectivity in aquatic systems is often related to abundance and permeability of physical barriers, such as dams, which delay or impede movements of biota with important consequences for aquatic biodiversity. Water quality may, however, also control connectivity between essential habitats. In macrotidal estuaries, Estuarine Turbidity Maxima (ETM) have a strong impact on water quality because of the low oxygen concentration occurring as a response to the related high bacterial and low photosynthetic activities. In this study, we assess Allis shad estuarine spawning migration in 2011 and 2012 in the Loire River (France) where the ETM occurs at spring and summer. Using an acoustic telemetry array, we show that trans-estuarine migration is inhibited during hypoxic episodes in the middle part of the estuary. Shad tends to stay in downstream areas, and even at sea, where oxygen conditions are more suitable. Trans-estuarine migration occurs hastily during neap tide when the ETM decreases, both in terms of spatial extent and intensity, inducing a shift in a set of covariates including dissolved oxygen, which increases, and suspended matter, which decreases. In the context of climate warming, ETM are expected to increase with probable adverse implications for shad migration success and doubtless other diadromous populations.

  14. Declining riverine sediment input impact on spring phytoplankton bloom off the Yangtze River Estuary from 17-year satellite observation

    Science.gov (United States)

    Chen, Cheng; Mao, Zhihua; Tang, Fuping; Han, Guoqi; Jiang, Yazhou

    2017-03-01

    Off the Yangtze River Estuary and its adjacent waters (the YRE) are one of the fastest changing regions in the world in terms of the effects of anthropogenic disturbance. Here we address quantitative analysis whether reducing river to sea sediment may cause declining water turbidity then a better light available condition for the algal growth, therefor increasing phytoplankton bloom magnitude in the YRE in the bloom season. An area of high phytoplankton productivity zone is estimated by theoretical and satellite data analysis, which matches well with the spatial distribution of accumulative times of the reported algal bloom events at the decadal time scale. We present 17-year (1998-2014) satellite and hydrological data to reveal an increasing trend in Chlorophyll-a concentration (Chl-a) in the spring bloom season (May to June), which has strong correlation with the decreasing in the sediment discharge from the Yangtze river to the East China Sea. Changes in Chl-a and the sediment load are inversely related in terms of both temporal variation and their corresponding magnitudes (R2=0.38, p=0.008, n=17). Furtherly, this relationship is not sensitivity to one-year time lag analysis. On the other hand, euphotic depth in the bloom period shows no significant change, which reflects a balance between the increasing phytoplankton biomass enhancing water turbidity and declining riverine sediment decreasing turbidity. Finally, a stepwise multiple linear regression is used to determine which of the five relatively independent environmental variables most significantly contribute to the interannual variability of the bloom magnitude. The most significant effect (p=0.00007) is also found in the riverine sediment load. Therefor, our results suggest that anthropogenic derived riverine sediment change has been significantly impacted spring phytoplankton production in the YRE.

  15. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  16. Riders on the storm: selective tidal movements facilitate the spawning migration of threatened delta smelt in the San Francisco Estuary

    Science.gov (United States)

    Bennett, W.A.; Burau, Jon R.

    2015-01-01

    Migration strategies in estuarine fishes typically include behavioral adaptations for reducing energetic costs and mortality during travel to optimize reproductive success. The influence of tidal currents and water turbidity on individual movement behavior were investigated during the spawning migration of the threatened delta smelt, Hypomesus transpacificus, in the northern San Francisco Estuary, California, USA. Water current velocities and turbidity levels were measured concurrently with delta smelt occurrence at sites in the lower Sacramento River and San Joaquin River as turbidity increased due to first-flush winter rainstorms in January and December 2010. The presence/absence of fish at the shoal-channel interface and near the shoreline was quantified hourly over complete tidal cycles. Delta smelt were caught consistently at the shoal-channel interface during flood tides and near the shoreline during ebb tides in the turbid Sacramento River, but were rare in the clearer San Joaquin River. The apparent selective tidal movements by delta smelt would facilitate either maintaining position or moving upriver on flood tides, and minimizing advection down-estuary on ebb tides. These movements also may reflect responses to lateral gradients in water turbidity created by temporal lags in tidal velocities between the near-shore and mid-channel habitats. This migration strategy can minimize the energy spent swimming against strong river and tidal currents, as well as predation risks by remaining in turbid water. Selection pressure on individuals to remain in turbid water may underlie population-level observations suggesting that turbidity is a key habitat feature and cue initiating the delta smelt spawning migration.

  17. Implementation guide for turbidity threshold sampling: principles, procedures, and analysis

    Science.gov (United States)

    Jack Lewis; Rand Eads

    2009-01-01

    Turbidity Threshold Sampling uses real-time turbidity and river stage information to automatically collect water quality samples for estimating suspended sediment loads. The system uses a programmable data logger in conjunction with a stage measurement device, a turbidity sensor, and a pumping sampler. Specialized software enables the user to control the sampling...

  18. Flushing characteristics of Mahim river estuary (Bombay)

    Digital Repository Service at National Institute of Oceanography (India)

    Sabnis, M.M.; Zingde, M.D.

    to the influence of wastewater. Flushing time of 19 tidal cycles was estimated by applying modified tidal prism method. After a large number of tidal cycles the estuary would retain 9.3x10 super(4) m super(3) of wastewater which was over 15% of the spring high tide...

  19. Kaua'i: Streams and Estuaries.

    Science.gov (United States)

    Hawkins, John, Ed.; Murakami, Colleen, Ed.

    Designed to help teachers develop students' awareness and understanding of some of Hawaii's endangered aquatic resources, this module contains activities and instructional suggestions for use with intermediate as well as high school students. The module is divided into two sections which explore the streams and estuaries of Kauai. Activities in…

  20. Use of a real-time remote monitoring network (RTRM) to characterize the Guadalquivir estuary (Spain).

    Science.gov (United States)

    Navarro, Gabriel; Huertas, Isabel Emma; Costas, Eduardo; Flecha, Susana; Díez-Minguito, Manuel; Caballero, Isabel; López-Rodas, Victoria; Prieto, Laura; Ruiz, Javier

    2012-01-01

    The temporal variability of hydrological variables in the Guadalquivir estuary was examined during three years through a real-time remote monitoring network (RTRM). The network was developed with the aim of studying the influence of hydrodynamical and hydrological features within the estuary on the functioning of the pelagic ecosystem. Completing this data-gathering network, monthly cruises were performed in order to measure biogeochemical variables that are indicative of the trophic status of the aquatic environment. The results showed that several sources of physical forcing, such as wind, tide-associated currents and river discharge were responsible for the spatio-temporal patterns of dissolved oxygen, salinity and turbidity in the estuary. The analysis was conducted under tidal and flood regime, which allowed us to identify river discharge as the main forcing agent of the hydrology inside the estuary. In particular, episodes of elevated turbidity detected by the network, together with episodes of low salinity and dissolved oxygen were closely related to the increase in water supply from a dam located upstream. The network installed provided accurate data that can be rapidly used for research or educational applications and by policy-makers or agencies in charge of the management of the coastal area.

  1. Use of a Real-Time Remote Monitoring Network (RTRM to Characterize the Guadalquivir Estuary (Spain

    Directory of Open Access Journals (Sweden)

    Isabel Caballero

    2012-02-01

    Full Text Available The temporal variability of hydrological variables in the Guadalquivir estuary was examined during three years through a real-time remote monitoring network (RTRM. The network was developed with the aim of studying the influence of hydrodynamical and hydrological features within the estuary on the functioning of the pelagic ecosystem. Completing this data-gathering network, monthly cruises were performed in order to measure biogeochemical variables that are indicative of the trophic status of the aquatic environment. The results showed that several sources of physical forcing, such as wind, tide-associated currents and river discharge were responsible for the spatio-temporal patterns of dissolved oxygen, salinity and turbidity in the estuary. The analysis was conducted under tidal and flood regime, which allowed us to identify river discharge as the main forcing agent of the hydrology inside the estuary. In particular, episodes of elevated turbidity detected by the network, together with episodes of low salinity and dissolved oxygen were closely related to the increase in water supply from a dam located upstream. The network installed provided accurate data that can be rapidly used for research or educational applications and by policy-makers or agencies in charge of the management of the coastal area.

  2. Bifocal optical coherenc refractometry of turbid media.

    Science.gov (United States)

    Alexandrov, Sergey A; Zvyagin, Andrei V; Silva, K K M B Dilusha; Sampson, David D

    2003-01-15

    We propose and demonstrate a novel technique, which we term bifocal optical coherence refractometry, for the rapid determination of the refractive index of a turbid medium. The technique is based on the simultaneous creation of two closely spaced confocal gates in a sample. The optical path-length difference between the gates is measured by means of low-coherence interferometry and used to determine the refractive index. We present experimental results for the refractive indices of milk solutions and of human skin in vivo. As the axial scan rate determines the acquisition time, which is potentially of the order of tens of milliseconds, the technique has potential for in vivo refractive-index measurements of turbid biological media under dynamic conditions.

  3. Turbidity forecasting at a karst spring using combined machine learning and wavelet multiresolution analysis.

    Science.gov (United States)

    Savary, M.; Massei, N.; Johannet, A.; Dupont, J. P.; Hauchard, E.

    2016-12-01

    25% of the world populations drink water extracted from karst aquifer. The comprehension and the protection of these aquifers appear as crucial due to an increase of drinking water needs. In Normandie(North-West of France), the principal exploited aquifer is the chalk aquifer. The chalk aquifer highly karstified is an important water resource, regionally speaking. Connections between surface and underground waters thanks to karstification imply turbidity that decreases water quality. Both numerous parameters and phenomenons, and the non-linearity of the rainfall/turbidity relation influence the turbidity causing difficulties to model and forecast turbidity peaks. In this context, the Yport pumping well provides half of Le Havreconurbation drinking water supply (236 000 inhabitants). The aim of this work is thus to perform prediction of the turbidity peaks in order to help pumping well managers to decrease the impact of turbidity on water treatment. Database consists in hourly rainfalls coming from six rain gauges located on the alimentation basin since 2009 and hourly turbidity since 1993. Because of the lack of accurate physical description of the karst system and its surface basin, the systemic paradigm is chosen and a black box model: a neural network model is chosen. In a first step, correlation analyses are used to design the original model architecture by identifying the relation between output and input. The following optimization phases bring us four different architectures. These models were experimented to forecast 12h ahead turbidity and threshold surpassing. The first model is a simple multilayer perceptron. The second is a two-branches model designed to better represent the fast (rainfall) and low (evapotranspiration) dynamics. Each kind of model is developed using both a recurrent and feed-forward architecture. This work highlights that feed-forward multilayer perceptron is better to predict turbidity peaks when feed-forward two-branches model is

  4. An investigation of atmospheric turbidity of Thai sky

    Energy Technology Data Exchange (ETDEWEB)

    Chaiwiwatworakul, P.; Chirarattananon, S. [Energy Programme, Asian Institute of Technology, Klong Luang, Pathum Thani (Thailand)

    2004-07-01

    An investigation of atmospheric turbidity has been undertaken for tropical Thai sky. Values of turbidity indices, namely, Linke factor (T{sub L}), Angstrom coefficient ({beta}) and illuminance turbidity factor (T{sub il}) are derived directly from measurements taken by pyrheliometer, Volz sun photometer and beam illuminance meter. Monthly mean values and frequency of occurrence of the value of each turbidity index are used to characterize variations of atmospheric turbidity. Simple polynomial equations are developed for computing values of Linke factor and illuminance turbidity factor as functions of solar altitude angle. Using the values of Linke factor and illuminance turbidity factor obtained from the models developed, values of beam normal irradiance and illuminance can be calculated accurately under clear sky conditions. Values of daylight illuminance are useful for daylighting application that contributes to energy conservation for buildings. Knowledge of the size of beam normal irradiance is useful for calculation of cooling load in air-conditioning buildings in tropical climate. (author)

  5. Fractal and spinodal-decomposed turbidities of nanoporous glass: fluctuation picture in turbid and transparent Vycor.

    Science.gov (United States)

    Ogawa, Shigeo; Nakamura, Jiro

    2017-04-01

    The light propagation and scattering in monolithic transparent nanoporous materials such as Vycor glasses exhibit two optical turbidities, both of which are slightly deviated from the λ-4 Rayleigh wavelength dependence in the visible region: one is a transient white turbidity τf, characterized by the convex-upward dependence on the inverse fourth power of wavelength, and the other is turbidity τsp inherent to the structural inhomogeneity, characterized by the convex-downward dependence. The former is attributed to a fractal-like percolation network of imbibed or drained pores as a consequence of transient imbibition or drainage of wetting fluid into or from the pore space. The latter is attributed to the structural inhomogeneities inherent to the original dry porous glass, which are produced by spinodal decomposition. In this paper, we develop a general scheme to estimate the transmittance spectra of Vycor through the turbidities τf and τsp in the visible region on the basis of the theory of dielectric constant fluctuations. We show the applicability and its limitation of the turbidity analysis of the photospectroscopically measured data as a method to study the correlation functions that characterize the pore space and the structural features of isotropic transparent nanoporous media, on the presupposition that there exists no light attenuation other than the scattering.

  6. Causes and effects of a highly successful marine invasion: Case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries

    Science.gov (United States)

    Troost, Karin

    2010-10-01

    Since the 1960's, the Pacific oyster Crassostrea gigas has been introduced for mariculture at several locations within NW Europe. The oyster established itself everywhere and expanded rapidly throughout the receiving ecosystems, forming extensive and dense reef structures. It became clear that the Pacific oyster induced major changes in NW European estuaries. This paper reviews the causes of the Pacific oyster's remarkably successful establishment and spread in The Netherlands and neighbouring countries, and includes a comprehensive review of consequences for the receiving communities. Ecosystem engineering by C. gigas and a relative lack of natural enemies in receiving ecosystems are identified as the most important characteristics facilitating the invader's successful establishment and expansion. The Pacific oyster's large filtration capacity and eco-engineering characteristics induced many changes in receiving ecosystems. Different estuaries are affected differently; in the Dutch Oosterschelde estuary expanding stocks saturate the carrying capacity whereas in the Wadden Sea no such problems exist. In general, the Pacific oyster seems to fit well within continental NW European estuarine ecosystems and there is no evidence that the invader outcompetes native bivalves. C. gigas induces changes in plankton composition, habitat heterogeneity and biodiversity, carrying capacity, food webs and parasite life cycles. The case of the Pacific oyster in NW European estuaries is only one example in an increasing series of biological invasions mediated by human activities. This case-study will contribute to further elucidating general mechanisms in marine invasions; invasions that sometimes appear a threat, but can also contribute to ecological complexity.

  7. Impact of Water-Sediment Regulation Scheme on seasonal and spatial variations of biogeochemical factors in the Yellow River estuary

    Science.gov (United States)

    Wang, Yujue; Liu, Dongyan; Lee, Kenneth; Dong, Zhijun; Di, Baoping; Wang, Yueqi; Zhang, Jingjing

    2017-11-01

    the balance of DIN/DIP in the estuary and Bohai Sea. High turbidity and freshwater flushing depressed the growth of phytoplankton during the WSRS. The growth of phytoplankton was nutrient limited in June (DIP) when the WSRS started and in September after DIP and Si(OH)4 had been consumed by phytoplankton.

  8. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    Science.gov (United States)

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  9. Comparing temporally-focused GPC and CGH for two-photon excitation and optogenetics in turbid media

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas

    2013-01-01

    Inherent inhomogeneity in turbid media not only hinders imaging but also projection of arbitrary light patterns for excitation or optical manipulation. In this work we compare two of the most popular phase modulation-based techniques in beam shaping. The Generalized Phase Contrast (GPC) method uses...... and fabrication because of its high diffraction efficiency and axial confinement. We model the effect of the turbid media as a phase randomization process. We compare the quality and asses the degradation of the projected light pattern for both techniques as it propagates in the turbid media....

  10. Nitrogen cycling in a turbid, tidal estuary - de stikstofkringloop in een troebel getijden estuarium

    NARCIS (Netherlands)

    Andersson, M.G.I.

    2007-01-01

    In this thesis I investigated nitrification, dissolved inorganic and organic nitrogen uptake, and the relative importance of nitrification and ammonium assimilation. I have also investigated exchange with marshes and sediments. Nitrification, oxidation of ammonium to nitrate is the first step for

  11. Turbidity-induced changes in feeding strategies of fish in estuaries

    African Journals Online (AJOL)

    1991-11-12

    Nov 12, 1991 ... aspects of the feeding biology of a filter-feeding planktivore, ... silverside, Atherina breviceps (Atherinidae) as a filter feed- .... of the tank. At the end of the feeding period the net was. 97 simply lifted removing all the fish from the tank at the same time. Before analysing the gut contents the standard length.

  12. Modelling the risk of mortality of Corbicula fluminea (Müller, 1774 (Bivalvia: Corbiculidae exposed to different turbidity conditions

    Directory of Open Access Journals (Sweden)

    WEP. Avelar

    Full Text Available The provision of sediment in rivers, due to erosion processes that occur in the environment, consists of a major source of pollution and alteration of the physicochemical conditions of water resources. In addition, the increase in water turbidity may cause siltation, dramatically impacting aquatic communities. Specifically considering the bivalve Corbicula fluminea (Müller, 1774, the aim of this study was to analyse the effect of exposure to different turbidity conditions of sediments, as a risk factor for the animals. For this purpose, a docking device was designed to ensure water circulation in a closed system and to maintain the desired levels of turbidity. Although C. fluminea can generally tolerate environmental changes in aquatic systems, an intolerance to high turbidity levels was experimentally observed, expressed by the mortality rate of the animals when exposed to conditions above 150 nephelometric turbidity units (NTU. This value was similar to the one recorded at study sites in the rivers Pardo (Serrana-SP-Brazil and Mogi Guaçu (Porto Ferreira-SP-Brazil during the rainy season. Using a logistic regression model, the experimental results were analysed and the observed mortality rates indicate that the exposure of the animals to turbidity levels above 150 nephelometric turbidity units (NTU, for periods longer than 120 hours, may be considered a probable cause of mortality for the species.

  13. Modelling the risk of mortality of Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) exposed to different turbidity conditions.

    Science.gov (United States)

    Avelar, W E P; Neves, F F; Lavrador, M A S

    2014-05-01

    The provision of sediment in rivers, due to erosion processes that occur in the environment, consists of a major source of pollution and alteration of the physicochemical conditions of water resources. In addition, the increase in water turbidity may cause siltation, dramatically impacting aquatic communities. Specifically considering the bivalve Corbicula fluminea (Müller, 1774), the aim of this study was to analyse the effect of exposure to different turbidity conditions of sediments, as a risk factor for the animals. For this purpose, a docking device was designed to ensure water circulation in a closed system and to maintain the desired levels of turbidity. Although C. fluminea can generally tolerate environmental changes in aquatic systems, an intolerance to high turbidity levels was experimentally observed, expressed by the mortality rate of the animals when exposed to conditions above 150 nephelometric turbidity units (NTU). This value was similar to the one recorded at study sites in the rivers Pardo (Serrana-SP-Brazil) and Mogi Guaçu (Porto Ferreira-SP-Brazil) during the rainy season. Using a logistic regression model, the experimental results were analysed and the observed mortality rates indicate that the exposure of the animals to turbidity levels above 150 nephelometric turbidity units (NTU), for periods longer than 120 hours, may be considered a probable cause of mortality for the species.

  14. Controls on suspended aggregate size in partially mixed estuaries

    Science.gov (United States)

    Fugate, David C.; Friedrichs, Carl T.

    2003-10-01

    Knowledge of aggregate size in estuaries is important to determining the fate and transport of suspended sediment and particle adherent contaminants. We have used a suite of in situ instruments to determine the controls of aggregate size distributions in three muddy, partially mixed estuaries in the mid-Atlantic USA. A novel method is presented to estimate turbulent kinetic energy (TKE) production and the resulting Kolmogorov microscale ( λK) using a profiling acoustic Doppler velocimeter that has been contaminated by boat motion. The physical processes that control particle size distribution differ in the three estuaries due to the different hydrodynamics and benthic characteristics. Controls within each estuary also vary with different depth regimes. Surface particle size dynamics in all the studied estuaries are affected by irregular advection events. In the hydrodynamically energetic York River, mid-depth regions are controlled tidally by the combined processes of small λK decreasing particle size at high TKE and differential settling increasing particle size during lower TKE, more stratified conditions. Mid-depth regions in the lower energy Elizabeth River are controlled by irregular resuspension and trapping at the pycnocline of large low density particles. Bottom regions in all estuaries are most strongly influenced by resuspension, tidally in the energetic estuaries and irregularly in the low energy estuary. Near-bed particle size distributions are controlled by both λK and the distribution of particles in the bed in the higher energy estuaries. Just above the bed, large porous particles survive resuspension in the lower energy Elizabeth River, particles become smaller with decreased λK in the more energetic York River, and biological aggregation causes large dense particles to resist turbulent breakup in the Chesapeake Bay, which has a more active benthic community. The net result just above the bed is that particle size and settling velocity are

  15. Extraction of natural coagulant from peanut seeds for treatment of turbid water

    Science.gov (United States)

    Birima, A. H.; Hammad, H. A.; Desa, M. N. M.; Muda, Z. C.

    2013-06-01

    This study investigates the potential of peanut seeds as an environmental friendly and natural coagulant for the treatment of high turbid water. The peanut seeds have been used after oil extraction; and the active coagulation component was extracted by distilled water and salt solution of different salt concentrations. The salts used were NaCl, KNO3, KCl, NH4Cl and NaNO3. Synthetic water with 200 NTU turbidity was used. Peanut extracted with NaCl (PC-NaCl) could effectively remove 92% of the 200 NTU turbidity using only 20 mg/l, while peanut seeds extracted with distilled water (PC-DW) could remove only 31.5% of the same turbidity with the same dosage. The coagulant dosage did not affected by the concentration of the salt solution, however, residual turbidity decreased with increasing the concentration of the salt; and the relationship was found to be a second order polynomial curve with R2 of 0.9312. The other salts tested were also found to be good solvents to extract the active coagulation component with no much difference from NaCl solution in terms of efficiency.

  16. Comparison of two online flocculation monitoring techniques for predicting turbidity removal by granular media filtration.

    Science.gov (United States)

    Ball, T; Carrière, A; Barbeau, B

    2011-07-01

    Particulate matter removal in drinking water treatment via direct granular filtration requires specific flocculation conditions (a process typically termed 'high energy flocculation'). Predicting filtered water turbidity based on flocculated water characteristics remains difficult. This study has sought to establish a relationship between filtered water turbidity and the flocculated water characteristics. Flocculation oflow-turbidity raw water was evaluated online using a Photometric Dispersion Analyser (PDA) and a Dynamic Particle Analyser in a modified jar test followed by a bench-scale anthracite filter. Coagulants used were alum, PASS100 and ferric sulphate, in addition to a polydiallyldimethylammonium chloride (polyDADMAC) cationic polymer. They were dosed in warm and cold waters, and flocculated with intensities (G) from 0 to 100 s(-1). Of the two instruments selected to analyse flocculation performance, the Dynamic Particle Analyser was shown to be the most sensitive, detecting small changes in floc growth kinetics and even floc growth under low flocculation conditions which remained undetected by the PDA. Floc size was shown to be insufficient in predicting particulate matter removal by direct granular filtration as measured by turbidity, although a threshold d(v) value (50 microm) could be identified for the test conditions evaluated in this project, above which turbidity was systematically lower than 0.2 NTU.

  17. Vegetation mapping in the St Lucia estuary using very high-resolution multispectral imagery and LiDAR

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2016-05-01

    Full Text Available This paper examines the value of very high-resolution multispectral satellite imagery and LiDAR-derived digital elevation information for classifying estuarine vegetation types. Satellite images used are from the WorldView-2, RapidEye, and SPOT-6...

  18. A multilayer approach for turbidity currents

    Science.gov (United States)

    Fernandez-Nieto, Enrique; Castro Díaz, Manuel J.; Morales de Luna, Tomás

    2017-04-01

    When a river that carries sediment in suspension enters into a lake or the ocean it can form a plume that can be classified as hyperpycnal or hypopycnal. Hypopycnal plumes occurs if the combined density of the sediment and interstitial fluid is lower than that of the ambient. Hyperpycnal plumes are a class of sediment-laden gravity current commonly referred to as turbidity currents [7,9]. Some layer-averaged models have been previously developed (see [3, 4, 8] among others). Although this layer-averaged approach gives a fast and valuable information, it has the disadvantage that the vertical distribution of the sediment in suspension is lost. A recent technique based on a multilayer approach [1, 2, 6] has shown to be specially useful to generalize shallow water type models in order to keep track of the vertical components of the averaged variables in the classical shallow water equations. In [5] multilayer model is obtained using a vertical discontinuous Galerkin approach for which the vertical velocity is supposed to be piecewise linear and the horizontal velocity is supposed to be piecewise constant. In this work the technique introduced in [5] is generalized to derive a model for turbidity currents. This model allows to simulate hyperpycnal as well as hypopycnal plumes. Several numerical tests will be presented. References [1] E. Audusse, M. Bristeau, B. Perthame, and J. Sainte-Marie. A multilayer Saint-Venant system with mass exchanges for shallow water flows. derivation and numerical validation. ESAIM: Mathematical Modelling and Numerical Analysis, 45(1):169-200, (2010). [2] E. Audusse, M.-O. Bristeau, M. Pelanti, and J. Sainte-Marie. Approximation of the hydrostatic Navier–Stokes system for density stratified flows by a multilayer model: Kinetic interpretation and numerical solution. Journal of Computational Physics, 230(9):3453-3478, (2011). [3] S. F. Bradford and N. D. Katopodes. Hydrodynamics of turbid underflows. i: Formulation and numerical

  19. Assessment of a Continuous Electrocoagulation on Turbidity Removal from Spent Filter Backwash Water

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2016-04-01

    Full Text Available Background & Aims of the Study: Spent filter backwash water (SFBW consists of 1-5% of the total treated water typically and it has a high turbidity. Because of the scarcity of water resources and in order to prevent the environmental contamination, effluent treatment of rapid sand filter backwashing is unavoidable. One of the new technologies for removal of turbidity from the effluent is ElectroCoagulation (EC processes. This study aimed to examine the efficiency of continuous electrocoagulation in turbidity removal from spent filter backwash water. Materials & Methods: This study was non-continuous experiment. A rectangular cube electrocoagulation tank in 24 cm×17 cm×18 cm dimensions from Plexiglas with the volume of 7.35 liter was made. In this tank there were 4 metal plates (electrode (15× 22× 0.1cm; two electrodes as cathode and anode which were made of aluminum and iron, respectively. All of the tests were done in continuous flow. According to the study criteria (Time, Turbidity and pH, 126 sample got with the turbidity 320, 350, 400 NTU from rapid sand filter backwashing water, so they were tested in current density; 1, 1.4, 1.8, 2, 2.4, 2.8 and 3.2 ampere in 3 selected detention times (10, 20 and 30 min. Each experiment was repeated two times. In this research the space of electrode and pH is fixed at 1.5 cm and 8.2. Results: In this case the highest turbidity removal for Al electrode from rapid sand filter backwashing occurred in the current density 3.2 ampere, 30 min detention time and 320 NTU turbidity. The percent of removal for Al was 95.12. The highest removal for Fe electrode from rapid sand filter backwashing occur in the current density 3.2 ampere, 30 min detention time and 320 NTU turbidity. The percent of removal for Fe was 87.40. Conclusion: Regarding to the results of the tests, using electrocoagulation has an appropriate efficiency in turbidity removal.

  20. Building regional threat-based networks for estuaries in the Western United States.

    Directory of Open Access Journals (Sweden)

    Matthew S Merrifield

    Full Text Available Estuaries are ecologically and economically valuable and have been highly degraded from both land and sea. Estuarine habitats in the coastal zone are under pressure from a range of human activities. In the United States and elsewhere, very few conservation plans focused on estuaries are regional in scope; fewer still address threats to estuary long term viability.We have compiled basic information about the spatial extent of threats to identify commonalities. To do this we classify estuaries into hierarchical networks that share similar threat characteristics using a spatial database (geodatabase of threats to estuaries from land and sea in the western U.S. Our results show that very few estuaries in this region (16% have no or minimal stresses from anthropogenic activity. Additionally, one quarter (25% of all estuaries in this study have moderate levels of all threats. The small number of un-threatened estuaries is likely not representative of the ecological variability in the region and will require working to abate threats at others. We think the identification of these estuary groups can foster sharing best practices and coordination of conservation activities amongst estuaries in any geography.

  1. Building Regional Threat-Based Networks for Estuaries in the Western United States

    Science.gov (United States)

    Merrifield, Matthew S.; Hines, Ellen; Liu, Xiaohang; Beck, Michael W.

    2011-01-01

    Estuaries are ecologically and economically valuable and have been highly degraded from both land and sea. Estuarine habitats in the coastal zone are under pressure from a range of human activities. In the United States and elsewhere, very few conservation plans focused on estuaries are regional in scope; fewer still address threats to estuary long term viability.We have compiled basic information about the spatial extent of threats to identify commonalities. To do this we classify estuaries into hierarchical networks that share similar threat characteristics using a spatial database (geodatabase) of threats to estuaries from land and sea in the western U.S.Our results show that very few estuaries in this region (16%) have no or minimal stresses from anthropogenic activity. Additionally, one quarter (25%) of all estuaries in this study have moderate levels of all threats. The small number of un-threatened estuaries is likely not representative of the ecological variability in the region and will require working to abate threats at others. We think the identification of these estuary groups can foster sharing best practices and coordination of conservation activities amongst estuaries in any geography. PMID:21387006

  2. Microscopic imaging through turbid media Monte Carlo modeling and applications

    CERN Document Server

    Gu, Min; Deng, Xiaoyuan

    2015-01-01

    This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the unscattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in biophotonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.

  3. Spectral similarity approach for mapping turbidity of an inland waterbody

    Science.gov (United States)

    Garg, Vaibhav; Senthil Kumar, A.; Aggarwal, S. P.; Kumar, Vinay; Dhote, Pankaj R.; Thakur, Praveen K.; Nikam, Bhaskar R.; Sambare, Rohit S.; Siddiqui, Asfa; Muduli, Pradipta R.; Rastogi, Gurdeep

    2017-07-01

    Turbidity is an important quality parameter of water from its optical property point of view. It varies spatio-temporally over large waterbodies and its well distributed measurement on field is tedious and time consuming. Generally, normalized difference turbidity index (NDTI), or band ratio, or regression analysis between turbidity concentration and band reflectance, approaches have been adapted to retrieve turbidity using multispectral remote sensing data. These techniques usually provide qualitative rather than quantitative estimates of turbidity. However, in the present study, spectral similarity analysis, between the spectral characteristics of spaceborne hyperspectral remote sensing data and spectral library generated on field, was carried out to quantify turbidity in the part of Chilika Lake, Odisha, India. Spatial spectral contextual image analysis, spectral angle mapper (SAM) technique was evaluated for the same. The SAM spectral matching technique has been widely used in geological application (mineral mapping), however, the application of this kind of techniques is limited in water quality studies due to non-availability of reference spectral libraries. A spectral library was generated on field for the different concentrations of turbidity using well calibrated instruments like field spectro-radiometer, turbidity meter and hand held global positioning system. The field spectra were classified into 7 classes of turbidity concentration as 100 NTU for analysis. Analysis reveal that at each location in the lake under consideration, the field spectra matched with the image spectra with SAM score of 0.8 and more. The observed turbidity at each location was also very much falling in the estimated turbidity class range. It was observed that the spectral similarity approach provides more quantitative estimate of turbidity as compared to NDTI.

  4. Regime shifts in muddy estuaries: tidal response to river deepening and canalization

    Science.gov (United States)

    Winterwerp, J. C.; Wang, Z. B.

    2012-04-01

    Johan C. Winterwerp, Zheng Bing Wang A number of tidal rivers in Europe, amongst which the Ems River in Germany/Netherlands, and the Loire River in France are characterized by hyper-concentrated conditions with pronounced layers of fluid mud and suspended sediment concentrations exceeding 30 g/l. From an ecological point of view the sedimentary conditions in these rivers are highly problematic, as oxygen levels and primary production are very low. The present study aims at defining the conditions at which a regime shift in these rivers may occur, yielding a transition from a "normal estuary" with a classical estuarine turbidity maximum governed by estuarine circulation mainly, to hyper-concentrated conditions where sediment dynamics are mainly governed by tidal asymmetry. We hypothesize that these hyper-concentrated conditions are the result of large amplification of the tide and strong flood-dominant conditions, induced by ongoing deepening and embanking of the tidal river. Indeed, today many European rivers, amongst which the Loire and Ems, can be classified as synchronous, with an almost constant tidal amplitude along the main part of the river. Here we present the behavior of tidal asymmetry in response to deepening and embanking based on an analytical solution of the one-dimensional, linearized water movement in a converging channel, with or without intertidal area.

  5. Resolving the complex relationship between harmful algal blooms and environmental factors in the coastal waters adjacent to the Changjiang River estuary.

    Science.gov (United States)

    Zhou, Zheng-Xi; Yu, Ren-Cheng; Zhou, Ming-Jiang

    2017-02-01

    The sea area adjacent to the Changjiang River estuary is the most notable region for harmful algal blooms (HABs(1)) in China as both diatom and dinoflagellate blooms have been recorded in this region. Affected by the Changjiang diluted water (CDW(2)) and currents from the open ocean (i.e., Taiwan warm current, TWC(3)), the environmental conditions in the coastal waters adjacent to the Changjiang River estuary are quite complex. To obtain a better understanding of the mechanisms of HABs in this region, analyses based on field investigation data collected by the National Basic Research Priority Program (CEOHAB I(4)) were performed using principle component analysis (PCA(5)), multiple regression analysis (MRA(6)) and path analysis (PA(7)). The results suggested that phosphate and silicate are the major factors that directly affect the diatom bloom, while dissolved inorganic nitrogen (DIN(8)), temperature and turbidity are the factors that influence the dinoflagellate bloom. CDW and the TWC have different roles in affecting the two types of algal blooms. CDW, which has a high concentration of nitrate and silicate, is essential for the diatom bloom, while the intrusion of the TWC (mainly Kuroshio subsurface water that is rich in phosphate at the bottom) is critical for the maintenance of the dinoflagellate bloom. The results of this study offer a better understanding of the mechanisms of HABs in the East China Sea. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Robust and accurate monitoring of Guadalquivir estuary waters: a high-resolution and low-maintenance system for water quality and hydrodynamics

    OpenAIRE

    Gutiérrez, Francisco J.; Navarro, Gabriel; Roque, David; García, Raúl; Fernández, José Luis; Losada, Miguel Ángel; Ruiz, Javier

    2010-01-01

    Since January 2008, The Guadalquivir Estuary has been equipped with a large amount of instrumentation performing an intensive collection of meteorological, hydrodynamic, hydrological and water-quality parameters. An important effort has been made in setting up a telemetry network to register most of those variables in near real time. All this instrumentation generates more than 70000 data per day. The final purpose of this deployment, and the circulation model being develope...

  7. Flocculation of Turbid Water Using Polyferric-Based Composite Coagulant

    Science.gov (United States)

    Tan, K. H.; Lai, S. H.

    2017-06-01

    The flocculation of turbid water using polyferric chloride-polydimethyldiallylammonium chloride (PFC-PDMDAAC) has been studied. Effect of preparation parameters basicity ratio (B ratio) of PFC and PDMDAAC/PFC ratio and operating parameters pH and dosage were investigated. PFC-PDMDAAC displayed maximum turbidity removal of 94.8% at 4.0mg/L when B=0.5 and PDMDAAC/PFC ratio = 7%. The best turbidity removal efficiencies by PFC-PDMDAAC were 84.7% at pH 7.5. These results reveal that PFC-PDMDAAC is efficient for flocculation of turbid water.

  8. The relative contribution of processes driving variability in flow, shear, and turbidity over a fringing coral reef: West Maui, Hawaii

    Science.gov (United States)

    Storlazzi, C.D.; Jaffe, B.E.

    2008-01-01

    High-frequency measurements of waves, currents and water column properties were made on a fringing coral reef off northwest Maui, Hawaii, for 15 months between 2001 and 2003 to aid in understanding the processes governing flow and turbidity over a range of time scales and their contributions to annual budgets. The summer months were characterized by consistent trade winds and small waves, and under these conditions high-frequency internal bores were commonly observed, there was little net flow or turbidity over the fore reef, and over the reef flat net flow was downwind and turbidity was high. When the trade winds waned or the wind direction deviated from the dominant trade wind orientation, strong alongshore flows occurred into the typically dominant wind direction and lower turbidity was observed across the reef. During the winter, when large storm waves impacted the study area, strong offshore flows and high turbidity occurred on the reef flat and over the fore reef. Over the course of a year, trade wind conditions resulted in the greatest net transport of turbid water due to relatively strong currents, moderate overall turbidity, and their frequent occurrence. Throughout the period of study, near-surface current directions over the fore reef varied on average by more than 41?? from those near the seafloor, and the orientation of the currents over the reef flat differed on average by more than 65?? from those observed over the fore reef. This shear occurred over relatively short vertical (order of meters) and horizontal (order of hundreds of meters) scales, causing material distributed throughout the water column, including the particles in suspension causing the turbidity (e.g. sediment or larvae) and/or dissolved nutrients and contaminants, to be transported in different directions under constant oceanographic and meteorologic forcing.

  9. Groundwater-dependent ecology of the shoreline of the subtropical Lake St Lucia estuary

    Science.gov (United States)

    Taylor, Ricky; Kelbe, Bruce; Haldorsen, Sylvi; Botha, Greg A.; Wejden, Bente; Været, Lars; Simonsen, Marianne B.

    2006-02-01

    The ecology of the St Lucia estuary in South Africa is of unique international importance. During droughts the estuary experiences high salinities, with values above that of seawater. Ion-poor groundwater flowing into the estuary from prominent sand aquifers along its eastern shoreline forms low-salinity habitats for salt-sensitive biota. During droughts, plants and animals can take refuge in the groundwater discharge zone until the condition in the estuary regains tolerable salinity. Simulations of the groundwater discharge indicate that the flow can persist during droughts over at least a decade, and be of great important for the resilience of the estuary. Anthropogenic activities have reduced the river inflow and made the St Lucia estuary more sensitive to droughts. The groundwater has thereby become increasingly important for the estuary’s ecology. Protection of the groundwater discharge along the shoreline itself and actions to increase the groundwater recharge are therefore important management tasks.

  10. Seasonal and spatial distribution of the microbenthic communities of the Rio de la Plata estuary (Argentina) and possible environmental controls.

    Science.gov (United States)

    Gómez, N; Licursi, M; Cochero, J

    2009-06-01

    The relationship between microbenthic communities, the habitat characteristics, and physical and chemical gradients was studied in the Rio de la Plata estuary. Five replicates of the surface layer were collected seasonally, in 10 sampling sites influenced by different land uses. The distribution of microbenthic communities was governed by two gradients, the first one determined by anthropic factors, related to pollution, and the second one to conductivity and turbidity. The higher densities of producers were observed in sites characterized by fine sediments. During winter, spring, and summer cyanophytes were abundant, while in autumn the diatoms, particularly birraphideans, dominated. The ciliates were the most abundant group among consumers, particularly in winter, and their spatial distribution was influenced by the turbidity. The whole study area has an eutrophic condition. Turbidity and the enrichment with nutrients and organic matter explained 50% of the variability in the species' distribution.

  11. Biological effects of anthropogenic contaminants in the San Francisco Estuary

    Science.gov (United States)

    Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.

    2007-01-01

    Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.

  12. Juvenile salmon usage of the Skeena River estuary.

    Directory of Open Access Journals (Sweden)

    Charmaine Carr-Harris

    Full Text Available Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years, Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the

  13. EFFECTIVENESS OF CHITOSAN AS NATURAL COAGULANT AID IN TREATING TURBID WATERS

    Directory of Open Access Journals (Sweden)

    B. Bina ، M. H. Mehdinejad ، M. Nikaeen ، H. Movahedian Attar

    2009-10-01

    Full Text Available During the last decade, there has been a concern about the relation between aluminum residuals in treated water and Alzheimer disease, and more interest has been considered on the development of natural coagulants such as chitosan. Chitosan, a natural linear biopolyaminosaccharide, is obtained by alkaline deacetylation of chitin. The present study was aimed to investigate the effects of alum as coagulant in conjunction with chitosan as coagulant aid on the removal of turbidity, hardness and Escherichia coli from water. A conventional jar test apparatus was employed for the tests. The optimum pH was observed between 7 to 7.5 for all turbidities. The optimum doses of alum and chitosan when used in conjunction, were 10mg/L and 1mg/L, 5mg/L and 0.5mg/L, and 5mg/L and 0.5mg/L in low, medium and high turbidities, respectively. Turbidity removal efficiency was resulted between %74.3 to %98.2 by alum in conjunction with chitosan. Residual Al+3 in treated water was less than 0.2 mg/L, meeting the international guidelines. The results showed that turbidity decrease provided also a primary Escherichia coli reduction of 2-4 log units within the first 1 to 2 hr of treatment. Hardness removal efficiency decreased when the total hardness increased from 102 to 476mg/L as CaCO3. At low initial turbidity, chitosan showed marginally better performance on hardness, especially at the ranges of 100 to 210 mg/L as CaCO3. In conclusion, coagulant aid showed a useful method for coagulation process. By using natural coagulants, considerable savings in chemicals and sludge handling cost may be achieved.

  14. Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout

    Science.gov (United States)

    Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.

    2016-01-01

    Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by trout on endangered humpback chub is important when evaluating management options aimed at preservation of native fishes in Grand Canyon National Park. This research suggests that relatively small changes in turbidity may be sufficient to alter predation dynamics of trout on humpback chub in the mainstem Colorado River and that turbidity manipulation may warrant further investigation as a fisheries management tool.

  15. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    Science.gov (United States)

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  16. Dynamics of phytoplankton productivity and exopolysaccharides (EPS and TEP) pools in the Seine Estuary (France, Normandy) over tidal cycles and over two contrasting seasons.

    Science.gov (United States)

    Morelle, Jérôme; Schapira, Mathilde; Claquin, Pascal

    2017-10-01

    Exopolysaccharides (EPS) play an important role in the carbon flux and may be directly linked to phytoplankton and microphytobenthos production, most notably in estuarine systems. However the temporal and spatial dynamics of estuarine EPS are still not well understood, nor how primary productivity triggers this variability at these different scales. The aim of this study was to investigate the primary productivity of phytoplankton and EPS dynamics in the Seine estuary over a tidal cycle in three different haline zones over two contrasted seasons. The other objectives was to investigate the origin of pools of soluble carbohydrates (S-EPS) and transparent exopolymeric particles (TEP) in phytoplankton, microphytobenthos or other compartments. High frequency measurements of productivity were made in winter and summer 2015. Physical and chemical parameters, biomass and EPS were measured at hourly intervals in sub-surface waters and just above the water sediment-interface. Our results confirmed that high frequency measurements improve the accuracy of primary productivity estimations and associated carbon fluxes in estuaries. The photosynthetic parameters were shown to be strongly controlled by salinity and by the concentrations of suspended particle matter at the smallest temporal and at spatial scales. At these scales, our results showed an inverse relationship between EPS concentrations and biomass and productivity, and a positive relationship with sediment resuspension. Additionally, the distribution of EPS appears to be linked to hydrodynamics with the tide at daily scale and with the winter at seasonal scale. At spatial scale, the maximum turbidity zone played an important role in the distribution of TEP. Our results suggest that, in the Seine estuary, between 9% and 33% of the S-EPS pool in the water column can be attributed to phytoplankton excretion, while only 0.4%-1.6% (up to 6.14% in exceptional conditions) originates from the microphytobenthos compartments

  17. Subtidal sea level variability in a shallow Mississippi River deltaic estuary, Louisiana

    Science.gov (United States)

    Snedden, G.A.; Cable, J.E.; Wiseman, W.J.

    2007-01-01

    The relative roles of river, atmospheric, and tidal forcings on estuarine sea level variability are examined in Breton Sound, a shallow (0.7 m) deltaic estuary situated in an interdistributary basin on the Mississippi River deltaic plain. The deltaic landscape contains vegetated marshes, tidal flats, circuitous channels, and other features that frictionally dissipate waves propagating through the system. Direct forcing by local wind stress over the surface of the estuary is minimal, owing to the lack of significant fetch due to landscape features of the estuary. Atmospheric forcing occurs almost entirely through remote forcing, where alongshore winds facilitate estuary-shelf exchange through coastal Ekman convergence. The highly frictional nature of the deltaic landscape causes the estuary to act as a low-pass filter to remote atmospheric forcing, where high-frequency, coastally-induced fluctuations are significantly damped, and the damping increases with distance from the estuary mouth. During spring, when substantial quantities of controlled Mississippi River inputs (q?? = 62 m3 s-1) are discharged into the estuary, upper estuary subtidal sea levels are forced by a combination of river and remote atmospheric forcings, while river effects are less clear downestuary. During autumn (q?? = 7 m3 s-1) sea level variability throughout the estuary is governed entirely by coastal variations at the marine boundary. A frequency-dependent analytical model, previously used to describe sea level dynamics forced by local wind stress and coastal forcing in deeper, less frictional systems, is applied in the shallow Breton Sound estuary. In contrast to deeper systems where coastally-induced fluctuations exhibit little or no frictional attenuation inside the estuary, these fluctuations in the shallow Breton Sound estuary show strong frequency-dependent amplitude reductions that extend well into the subtidal frequency spectrum. ?? 2007 Estuarine Research Federation.

  18. Turbidity affects foraging success of drift-feeding rosyide dace

    Science.gov (United States)

    Richard M. Zamor; Gary D. Grossman

    2007-01-01

    The effects of suspended sediment on nongame fishes are not well understood. We examined the effects of suspended sediment (i.e., turbidity) on reactive distance and prey capture success at springautumn (12°C) and summer (18°C) temperatures for royside dace Clinostomus funduloides in an artificial stream. Experimental turbidities ranged from 0 to 56...

  19. Manufacturing temperature and turbidity sensor based on ATMega 8535 microcontroller

    Science.gov (United States)

    Nuzula, Nike Ika; Sakinah, Wazirotus; Endarko

    2017-01-01

    The manufacturing of temperature and turbidity measurement system based on ATMega 8535 microcontroller has been done. To measure temperature, this system uses LM35 and photodiode to measure water turbidity. The principle of LM35 sensor is comparing temperature based on its resistance. Thus temperature that is converted to voltage can be detected. The Turbidity system in this experiment is using Nephelometer method with the light scattered by suspended particles in fluid, with LED and photodiode parallel to each other. This system can measure turbidity in 1 NTU - 200 NTU with a close distance (1 inch) and a maximum relative error of 3.09% for the temperature measurement and also 3,12 % for turbidity measurement.

  20. Linking behavior, physiology, and survival of Atlantic Salmon smolts during estuary migration

    Science.gov (United States)

    Stich, Daniel S.; Zydlewski, Gayle B.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Decreased marine survival is identified as a component driver of continued declines of Atlantic Salmon Salmo salar. However, estimates of marine mortality often incorporate loss incurred during estuary migration that may be mechanistically distinct from factors affecting marine mortality. We examined movements and survival of 941 smolts (141 wild and 800 hatchery-reared fish) released in freshwater during passage through the Penobscot River estuary, Maine, from 2005 to 2013. We related trends in estuary arrival date, movement rate, and survival to fish characteristics, migratory history, and environmental conditions in the estuary. Fish that experienced the warmest thermal history arrived in the estuary 8 d earlier than those experiencing the coolest thermal history during development. Estuary arrival date was 10 d later for fish experiencing high flow than for fish experiencing low flow. Fish released furthest upstream arrived in the estuary 3 d later than those stocked further downstream but moved 0.5 km/h faster through the estuary. Temporally, movement rate and survival in the estuary both peaked in mid-May. Spatially, movement rate and survival both decreased from freshwater to the ocean. Wild smolts arrived in the estuary later than hatchery fish, but we observed no change in movement rate or survival attributable to rearing history. Fish with the highest gill Na+, K+-ATPase activity incurred 25% lower mortality through the estuary than fish with the lowest gill Na+, K+-ATPase activity. Smolt survival decreased (by up to 40%) with the increasing number of dams passed (ranging from two to nine) during freshwater migration. These results underscore the importance of physiological preparedness on performance and the delayed, indirect effects of dams on survival of Atlantic Salmon smolts during estuary migration, ultimately affecting marine survival estimates.

  1. Application of MODIS Products to Infer Possible Relationships Between Basin Land Cover and Coastal Waters Turbidity Using the Magdalena River, Colombia, as a Case Study

    Science.gov (United States)

    Madrinan, Max Jacobo Moreno; Cordova, Africa Flores; Olivares, Francisco Delgado; Irwin, Dan

    2012-01-01

    Basin development and consequent change in basin land cover have been often associated with an increased turbidity in coastal waters because of sediment yield and nutrients loading. The later leads to phytoplankton abundance further exacerbating water turbidity. This subsequently affects biological and physical processes in coastal estuaries by interfering with sun light penetration to coral reefs and sea grass, and even affecting public health. Therefore, consistent estimation of land cover changes and turbidity trend lines is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Ground solely methods to estimate land cover change would be unpractical and traditional methods of monitoring in situ water turbidity can be very expensive and time consuming. Accurate monitoring on the status and trends of basin land cover as well as the water quality of the receiving water bodies are required for analysis of relationships between the two variables. Use of remote sensing (RS) technology provides a great benefit for both fields of study, facilitating monitoring of changes in a timely and cost effective manner and covering wide areas with long term measurements. In this study, the Magdalena River basin and fixed geographical locations in the estuarine waters of its delta are used as a case to study the temporal trend lines of both, land cover change and the reflectance of the water turbidity using satellite technology. Land cover data from a combined product between sensors Terra and Aqua (MCD12Q1) from MODIS will be adapted to the conditions in the Magdalena basin to estimate changes in land cover since year 2000 to 2009. Surface reflectance data from a MODIS, Terra (MOD09GQ), band 1, will be used in lieu of in situ water turbidity for the time period between 2000 and present. Results will be compared with available existing data.

  2. The risk of harmful algal blooms (HABs) in the oyster-growing estuaries of New South Wales, Australia.

    Science.gov (United States)

    Ajani, Penelope; Brett, Steve; Krogh, Martin; Scanes, Peter; Webster, Grant; Armand, Leanne

    2013-06-01

    The spatial and temporal variability of potentially harmful phytoplankton was examined in the oyster-growing estuaries of New South Wales. Forty-five taxa from 31 estuaries were identified from 2005 to 2009. Harmful species richness was latitudinally graded for rivers, with increasing number of taxa southward. There were significant differences (within an estuary) in harmful species abundance and richness for 11 of 21 estuaries tested. Where differences were observed, these were predominately due to species belonging to the Pseudo-nitzschia delicatissima group, Dinophysis acuminata, Dictyocha octonaria and Prorocentrum cordatum with a consistent upstream versus downstream pattern emerging. Temporal (seasonal or interannual) patterns in harmful phytoplankton within and among estuaries were highly variable. Examination of harmful phytoplankton in relation to recognised estuary disturbance measures revealed species abundance correlated to estuary modification levels and flushing time, with modified, slow flushing estuaries having higher abundance. Harmful species richness correlated with bioregion, estuary modification levels and estuary class, with southern, unmodified lakes demonstrating greater species density. Predicting how these risk taxa and risk zones may change with further estuary disturbance and projected climate warming will require more focused, smaller scale studies aimed at a deeper understanding of species-specific ecology and bloom mechanisms. Coupled with this consideration, there is an imperative for further taxonomic, ecological and toxicological investigations into poorly understood taxa (e.g. Pseudo-nitzschia).

  3. Multi-faceted monitoring of estuarine turbidity and particulate matter provenance: Case study from Salem Harbor, USA.

    Science.gov (United States)

    Hubeny, J Bradford; Kenney, Melanie; Warren, Barbara; Louisos, Jeremy

    2017-01-01

    Turbidity is a water quality parameter that is known to adversely affect aquatic systems, however the causes of turbid water are often elusive. We present results of a study designed to constrain the source of particulate matter in a coastal embayment that has suffered from increased turbidity over past decades. Our approach utilized monitoring buoys to quantify turbidity at high temporal resolution complemented by geochemical isotope analysis of suspended sediment samples and meteorological data. Results reveal a complex system in which multiple sources are associated with particulate matter. Weight of evidence demonstrates that phytoplankton productivity in the water column, however, is the dominant source of particulate matter associated with elevated turbidity in Salem Harbor, Massachusetts. Allochthonous matter from the watershed was observed to mix into the pool of suspended particulate matter near river mouths, especially in spring and summer. Resuspension of harbor surface sediments likely provides additional particulates in the regions of boat moorings, especially during summer when recreational boats are attached to moorings. Our approach allows us to constrain the causes of turbidity events in this embayment, is helping with conservation efforts of environmental quality in the region, and can be used as a template for other locations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Visual Detection of Speckles in the Fish Xenotoca variata by the Predatory Snake Thamnophis melanogaster in Water of Different Turbidity

    Science.gov (United States)

    Manjarrez, Javier; Rivas-González, Eric; Venegas-Barrera, Crystian S.; Moyaho, Alejandro

    2015-01-01

    Semi-aquatic snakes integrate visual and chemical stimuli, and prey detection and capture success are therefore linked to the display of visual predatory behavior. The snake Thamnophis melanogaster responds preferentially to individuals of the fish Xenotoca variata with a greater number of bright, colorful spots (lateral speckles) compared with those with a smaller number; however, water turbidity can reduce underwater visibility and effect the vulnerability of fish. In this study, we tested whether the presence of iridescent speckles on the flanks of male X. variata interacted with water turbidity to modify the predatory behavior displayed by the snake T. melanogaster. We predicted that in an experimental laboratory test, the snakes would increase the frequency of their predatory behavior to the extent that the water turbidity decreases. The snakes were tested at six different levels of water turbidity, in combination with three categories of male fish (with few, a median number of, or many speckles). The results showed that in a pool with high or zero turbidity, the number of speckles is not a determining factor in the deployment of the predatory behavior of the snake T. melanogaster toward X. variata. Our findings suggest that snakes can view the fish at intermediate percentages of turbidity, but the number of speckles in male X. variata is irrelevant as an interspecific visual signal in environments with insufficient luminosity. The successful capture of aquatic prey is influenced by integration between chemical and visual signals, according to environmental factors that may influence the recognition of individual traits. PMID:26061294

  5. FLORA OF MOLOCHNYI ESTUARY COASTS

    Directory of Open Access Journals (Sweden)

    Kolomiychuk V.P.

    2013-09-01

    Full Text Available Present-day characteristic of the coastal flora of Molochnyi eastury is given, that is one of the largest estuaries in Ukraine, the shores and waters of which in 2009 became a part of the Pryazov’ya National Nature Park. The analysis of the main parameters of the flora is made. Rare component of the estuary coastal flora is characterized, further steps to conserve the nature of Pryazov’ya are proposed.

  6. Effects of heavy metal contamination on the macrobenthic fauna in estuaries: The case of the Seine estuary

    Energy Technology Data Exchange (ETDEWEB)

    Dauvin, Jean-Claude [Station Marine de Wimereux, Universite des Sciences et Technologies de Lille, CNRS FRE 2816 ELICO - Ecosystemes Littoraux et Cotiers, 28, Avenue Foch, BP 80, F-62930 Wimereux (France)], E-mail: jean-claude.dauvin@univ-lille1.fr

    2008-07-01

    Heavy metal contamination levels are generally higher in estuaries than in the open sea. Some estuaries, the Seine estuary for example, have particularly high pollution levels of metals, yet continue to support a very high benthic biomass and remain quite productive. Measurements of sediment contamination are highly variable due to diverse chemical analysis methods, sediments origin and sources of contaminants found in the estuaries. Salinity appears to be the principal factor controlling contaminant distribution in the sediment and the overlying and/or interstitial waters; it also affects the bioavailability of contaminants in estuarine sediments. Of course, the response to contaminants varies greatly among species and assemblages. Trace metals explain only a small part of the variation in benthic community structure. Some species, such as the shrimp Crangon crangon, appears vulnerable to metal pollution, while other species, such as Scrobicularia plana, are able to tolerate quite high levels of cadmium in their tissue. This paper demonstrates the wide variability of benthic responses to contamination, which is probably due to the high spatio-temporal heterogeneity of the estuary. To reduce the problems due the heterogeneity and variability observed to date in the available results, it will be necessary to encourage integrated estuarine studies, in which sedimentologists, chemists, and biologists work together on the same campaigns at the same sites.

  7. Capability of MODIS radiance to analyze Iberian turbid plumes

    Science.gov (United States)

    Fernandez-Novoa, Diego; deCastro, Maite; Des, Marisela; Costoya, Xurxo; Mendes, Renato; Gomez-Gesteira, Moncho

    2017-04-01

    River plumes are formed near river mouths by freshwater and riverine materials. Therefore, the area influenced by freshwater (salinity plume) is usually negatively correlated with the area occupied by suspension and dissolved material (turbid plume). Suspended material results in a strong signal detected by satellite sensors whereas ocean clear waters have negligible contributions. Thus, remote sensing data, such as radiance obtained from Moderate Resolution Imaging Spectroradiometer (MODIS), are a very useful tool to analyze turbid plumes due to the high spatial and time resolution provided. Here, MODIS capability for characterizing similarities and differences among the most important Iberian plumes was assessed under the influence of their main forcing. Daily radiance data from MODIS-Aqua and MODIS-Terra satellite sensors were processed obtaining a resolution of 500 m. Two approaches are usually used for atmospheric correction treatments: Near-Infrared (NIR) bands and a combined algorithm using NIR and Short Wave Infrared (SWIR) bands. In the particular case of Iberian Peninsula plumes both methods offered similar results, although NIR bands present a lower associated error. MODIS allows working with several bands of normalized water-leaving radiances (nLw). Focusing in the resolution provided, nLw555 and 645 were the most appropriate because both provide the best coverage and correlation with river discharge. The nLw645 band was chosen because has a lower water penetration avoiding overestimations of turbidity caused by shallow seafloor areas and/or upwelling blooms. Daily data from both satellites were merged to enhance the robustness and precision of the study by increasing the number of available pixels. Results indicate that differences between radiance data from both satellites are negligible for Iberian plumes, justifying the merging. By last, each turbid limit, to delimit the respective plume from adjacent seawater, was obtained using two alternative

  8. Performance Evaluation of Five Turbidity Sensors in Three Primary Standards

    Science.gov (United States)

    Snazelle, Teri T.

    2015-10-28

    Open-File Report 2015-1172 is temporarily unavailable.Five commercially available turbidity sensors were evaluated by the U.S. Geological Survey, Hydrologic Instrumentation Facility (HIF) for accuracy and precision in three types of turbidity standards; formazin, StablCal, and AMCO Clear (AMCO–AEPA). The U.S. Environmental Protection Agency (EPA) recognizes all three turbidity standards as primary standards, meaning they are acceptable for reporting purposes. The Forrest Technology Systems (FTS) DTS-12, the Hach SOLITAX sc, the Xylem EXO turbidity sensor, the Yellow Springs Instrument (YSI) 6136 turbidity sensor, and the Hydrolab Series 5 self-cleaning turbidity sensor were evaluated to determine if turbidity measurements in the three primary standards are comparable to each other, and to ascertain if the primary standards are truly interchangeable. A formazin 4000 nephelometric turbidity unit (NTU) stock was purchased and dilutions of 40, 100, 400, 800, and 1000 NTU were made fresh the day of testing. StablCal and AMCO Clear (for Hach 2100N) standards with corresponding concentrations were also purchased for the evaluation. Sensor performance was not evaluated in turbidity levels less than 40 NTU due to the unavailability of polymer-bead turbidity standards rated for general use. The percent error was calculated as the true (not absolute) difference between the measured turbidity and the standard value, divided by the standard value.The sensors that demonstrated the best overall performance in the evaluation were the Hach SOLITAX and the Hydrolab Series 5 turbidity sensor when the operating range (0.001–4000 NTU for the SOLITAX and 0.1–3000 NTU for the Hydrolab) was considered in addition to sensor accuracy and precision. The average percent error in the three standards was 3.80 percent for the SOLITAX and -4.46 percent for the Hydrolab. The DTS-12 also demonstrated good accuracy with an average percent error of 2.02 percent and a maximum relative standard

  9. Distribution of Epilithic Diatoms in Estuaries of the Korean Peninsula in Relation to Environmental Variables

    Directory of Open Access Journals (Sweden)

    Ha-Kyung Kim

    2015-11-01

    Full Text Available This study explores the relationships between environmental factors and the distribution of epilithic diatoms in 161 estuaries of three coastal areas on the Korean peninsula. We investigated epilithic diatoms, water quality, and land use in the vicinities of the estuaries during the months of May 2012, 2013 and 2014, because Korea is relatively free from the influences of rainfall at that time of year. We recorded 327 diatom taxa from the study sites, and the assemblage was dominated by members of the Naviculaceae. Bacillariaceae accounted for the largest proportion of diatoms, and Nitzschia inconspicua (18% and N. frustulum (9.6% were the most dominant species. A cluster analysis based on epilithic diatom abundance suggested that the epilithic diatom communities of Korean estuaries can be classified into four large groups (G according to geography, as follows: Ia—the East Sea watershed, Ib—the eastern watershed of the South Sea, IIa—the West Sea watershed, and IIb—the western watershed of the South Sea. The former two groups, Ia and Ib, showed higher proportions of forest land cover and use, higher species occurrence, lower salinity, lower turbidity, and lower concentrations of nutrients than the latter two groups, while the latter groups, IIa and IIb, had higher proportions of agricultural land cover and use, higher electrical conductivity, higher turbidity, higher concentrations of nutrients, and lower species occurrence. The environmental factors underlying the distribution of epilithic diatoms, representative of each region, are as follows: dissolved oxygen and forest land cover and use for Reimeria sinuate and Rhoicosphenia abbreviate of the East Sea (ES, salinity and turbidity for Tabularia fasciculate of the West Sea (WS, and biochemical oxygen demand (BOD and nutrients for Cyclotella meneghiniana of the WS. On the other hand, the most influential environmental factors affecting the occurrence of indicator species showing the

  10. Microbial Community Structure in Relation to Water Quality in a Eutrophic Gulf of Mexico Estuary

    Science.gov (United States)

    Weeks Bay is a shallow, microtidal, eutrophic sub-estuary of Mobile Bay, AL. High watershed nutrient inputs to the estuary contribute to a eutrophic condition characterized by frequent summertime diel-cycling hypoxia and dissolved oxygen (DO) oversaturation. Spatial and seasonal ...

  11. Planktonic diatoms of the Zuari estuary, Goa (west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Redekar, P.D.; Wagh, A.B.

    ). The Zuari estuary on the west coast (Goa) of India is a highly dynamic and variable environment with considerable tidal influence. The perennial connection of this estuary with the Arabian sea results in rhythmic ingress and egress of marine and estuarine...

  12. Preliminary assessment of the biogeography of fishes in South African estuaries

    CSIR Research Space (South Africa)

    Harrison, TD

    2002-01-01

    Full Text Available The biogeography of the fishes of 42 South African estuaries was investigated using an extensive synoptic dataset collected over the period 1993-99. Fish species richness was low on the west (Atlantic Ocean) coast and high in estuaries on the east...

  13. A law & economics approach to the study of integrated management regimes of estuaries

    NARCIS (Netherlands)

    van de Griendt, W.E.

    2004-01-01

    In this paper it is proposed to analyse legal regimes for integrated management of estuaries with the help of institutional legal theory and the Schlager & Ostrom framework for types of ownership. Estuaries are highly valued and valuable and therefore need protection. The problem is that they

  14. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    Science.gov (United States)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  15. Hydrodynamics of Lock-exchange Turbidity Currents down a Slope Based on Direct Numerical Simulation

    CERN Document Server

    Zhao, Liang; Lin, Ying-Tien; Hu, Peng; Liang, Xiaolong; He, Zhiguo

    2016-01-01

    Turbidity currents play a vital role in various geophysical environments. However, until now, few studies have taken into the effects of both suspended particle and slope on its evolution, which requires a precise information of the spatio-temporal flow field. Hence, this study presents high-resolution and two-dimensional direct numerical simulations (DNS) of lock-exchange turbidity currents down a slope. By analyzing front velocity, water entrainment, and energy budget, the factors that affect the driving force, thus the development of the turbidity current, are detailedly investigated. The front velocity history exhibits three distinct stages over time, i.e., a short acceleration stage, a quasi-constant stage, and a deceleration stage. The calculation of the entrainment ratio shows that the mixing due to the collapse of the dense fluid is much stronger than that due to the Kelvin-Helmholtz instabilities and turbulent billows. For a turbidity current down a slope, the entrainment volume of ambient water decr...

  16. The role of upstream-migrating knick points in turbidity current channels

    Science.gov (United States)

    Cartigny, Matthieu; Hughes Clarke, John; Stacey, Cooper; Hage, Sophie; Parsons, Daniel; Talling, Peter; Azpiroz, Maria; Clare, Michael; Eggenhuisen, Joris; Hizzett, Jamie; Hunt, James; Lintern, Gwyn; Sumner, Esther; Vellinga, Age; Vendettouli, Daniella; Wood, Jon

    2017-04-01

    High-resolution bathymetric images of turbidity current channels reveal the existence of a wide range of bedforms within these systems. Knick points are the dominant kilometre-scale bedform in most sandy systems. These knick points are thought to initiate and maintain submarine channels, and they would therefore play a key role the transport of sediment and nutrients to the deep sea. In contrast to their important role very little is known about knick points. What drives the formation of a knick point? Are they remnant headwalls of landslide, or are they related to supercritical turbidity currents? Are they a purely erosional feature? Do they have any preservation potential in the rock record? Here we present data collected from knick points in an active turbidity current channel on a fjord floor in British Colombia, Canada. These data show how trains of knick points migrate several hundred metres upstream every year. We use repeat surveys to show how knick points are a combined erosional-depositional feature. Furthermore, we have deployed several instruments over the knick points to study how the knick points interact with the passing turbidity currents. Finally, we use repeat surveys and cores to explore the potential architecture and facies association associated to knick points.

  17. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    Directory of Open Access Journals (Sweden)

    Mohd Zubir Bin MatJafri

    2009-10-01

    Full Text Available Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.

  18. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective

    Science.gov (United States)

    Piper, David J.W.; Normark, William R.

    2009-01-01

    How the processes that initiate turbidity currents influence turbidite deposition is poorly understood, and many discussions in the literature rely on concepts that are overly simplistic. Marine geological studies provide information on the initiation and flow path of turbidity currents, including their response to gradient. In case studies of late Quaternary turbidites on the eastern Canadian and western U.S. margins, initiation processes are inferred either from real-time data for historical flows or indirectly from the age and contemporary paleogeography, erosional features, and depositional record. Three major types of initiation process are recognized: transformation of failed sediment, hyperpycnal flow from rivers or ice margins, and resuspension of sediment near the shelf edge by oceanographic processes. Many high-concentration flows result from hyperpycnal supply of hyperconcentrated bedload, or liquefaction failure of coarse-grained sediment, and most tend to deposit in slope conduits and on gradients transformation of retrogressive failures and from ignitive flows that are triggered by oceanographic processes, tend to cannibalize these more proximal sediments and redeposit them on lower gradients on the basin plain. Such conduit flushing provides most of the sediment in large turbidites. Initiation mechanism exerts a strong control on the duration of turbidity flows. In most basins, there is a complex feedback between different types of turbidity-current initiation, the transformation of the flows, and the associated slope morphology. As a result, there is no simple relationship between initiating process and type of deposit.

  19. Estuary-wide genetic stock distribution and salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  20. Transient controls on estuarine SPM fluxes: case study in the Dee Estuary, UK.

    Science.gov (United States)

    Amoudry, Laurent; Williams, Megan; Todd, David

    2017-04-01

    Estuaries are a critical interface between land and coastal ocean across which freshwater, suspended particulate matter (SPM), and consequently terrestrial carbon, nutrients and anthropogenic contaminants are exchanged. Suspended particulate matter is closely linked to estuarine turbidity; it affects water quality and estuarine ecology; and it contributes to overall estuarine sediment budgets. However, predicting the response of estuarine ecosystems to climate change and human interventions remains difficult partly due to a lack of comprehensive understanding of SPM concentrations and fluxes across time scales from intratidal to seasonal and interannual variability. We investigate the dynamics of suspended sediment and suspended particulate matter in a hypertidal estuary with a maximum tidal range in excess of 10 m and tidal currents reaching over 1 m/s: the Dee Estuary. This estuary is located in northwest England and outflows in Liverpool Bay, itself in the eastern Irish Sea. The Dee Estuary is a funnel-shaped, coastal plain estuary, which is about 30 km long with a maximum width of 8.5 km at the mouth, and consists of mixed sediments. We focus on field observations, collected during several campaigns in the channels of the Dee Estuary from 2004 to 2009 using acoustic and optical instrumentation, which provide intratidal measurements of flow velocity and suspended sediment, and thus sediment fluxes, over approximately a month. Measurements in February-March 2008 highlight three distinct hydrodynamic regimes: a current dominant regime at neap tides (14-21 February); a combined wave-current regime at spring tides (21-29 February); and a wave dominant regime at neap tide (1-4 March). While analysis of tidal distortion and dominance predicts weak ebb dominant channels, the observations yield flood dominant sediment transport. The net sediment flux exhibits a two-layer structure - import near the bed, export near the surface - that is consistent with the residual

  1. The importance of the river-estuary interface (REI) zone in estuaries ...

    African Journals Online (AJOL)

    The effect of the REI zone on fish was examined in the freshwater-rich Great Fish Estuary and in the freshwater-deprived Kariega Estuary. Estuarine associated fishes responded strongly to river flow in the Great Fish Estuary but a number of these taxa were limited or absent from the Kariega Estuary. These findings are ...

  2. About the Climate Ready Estuaries Program

    Science.gov (United States)

    The Climate Ready Estuaries program is a partnership between EPA and the National Estuary Programs to address climate change in coastal areas. It has helped coastal communities prepare for climate change since 2008.

  3. Nutrients in some estuaries of Kerala

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.; Venugopal, P.; Remani, K.N.; Zacharias, D.; Unnithan, R.V.

    Some environmental parameters and nutrients like inorganic phosphate, nitrate, nitrite and ammonia from four estuaries namely Kallai, Beypore, Korapuzha and Mahe along north Kerala Coast were studied for an year (1980-81). In all these estuaries...

  4. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  5. Does boat traffic cause displacement of fish in estuaries?

    Science.gov (United States)

    Becker, Alistair; Whitfield, Alan K; Cowley, Paul D; Järnegren, Johanna; Næsje, Tor F

    2013-10-15

    Estuaries are increasingly under threat from a variety of human impacts. Recreational and commercial boat traffic in urban areas may represent a significant disturbance to fish populations and have particularly adverse effects in spatially restricted systems such as estuaries. We examined the effects of passing boats on the abundance of different sized fish within the main navigation channel of an estuary using high resolution sonar (DIDSON). Both the smallest (100-300 mm) and largest (>501 mm) size classes had no change in their abundance following the passage of boats. However, a decrease in abundance of mid-sized fish (301-500 mm) occurred following the passage of boats. This displacement may be attributed to a number of factors including noise, bubbles and the rapidly approaching object of the boat itself. In highly urbanised estuarine systems, regular displacement by boat traffic has the potential to have major negative population level effects on fish assemblages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Modeling chlorophyll-a and turbidity concentrations in river Ganga (India) using Landsat-8 OLI imagery

    Science.gov (United States)

    Prasad, Satish; Saluja, Ridhi; Garg, J. K.

    2017-10-01

    Rivers, one of the most complex ecosystems are highly dynamic and vary spatially as well as temporally. Chlorophyll-a (Chl-a) is considered one of the primary indicators of water quality and a measure of river productivity, while turbidity in rivers is a measure of suspended organic matter. Monitoring of river water quality is quite challenging, demand tremendous efforts and resources. Numerous algorithms have been developed in the recent years for estimating environmental parameters such as chlorophyll-a and turbidity from remote sensing imagery. However, most of these algorithms were focused on the lentic ecosystems. There is a paucity of algorithms for rivers from which water quality variables can be estimated using remotely sensed imagery. The primary objective of our study is to develop algorithms based on Landsat 8 OLI imagery and in-situ observations for estimating of Chl-a and turbidity in the Upper Ganga river, India. Band reflectance images from multispectral Landsat-8 OLI pertaining to May and October 2016, and May 2017 were used for model development and validation along with near synchronous ground truth data. Algorithms based on Band 3 (R2= 0.73) proved to be the best applicable algorithm for estimating chlorophyll-a. The best algorithm for estimating turbidity was found to be log (B4/B5) (R2= 0.69) based on band combinations (individual band reflectance, band ratio, logarithmically transformed band reflectance and ratios) tested. The developed algorithms were used to generate maps showing the spatiotemporal variability of chlorophyll-a and turbidity concentration in the Upper Ganga river (Brijghat to Narora) which is also a Ramsar site.

  7. Reservoir impacts downstream in highly regulated river basins: the Ebro delta and the Guadalquivir estuary in Spain

    Directory of Open Access Journals (Sweden)

    M. J. Polo

    2016-05-01

    Full Text Available Regulation by reservoirs affects both the freshwater regime and the sediment delivery at the area downstream, and may have a significant impact on water quality in the final transitional water bodies. Spain is one the countries with more water storage capacity by reservoirs in the world. Dense reservoir networks can be found in most of the hydrographic basins, especially in the central and southern regions. The spatial redistribution of the seasonal and annual water storage in reservoirs for irrigation and urban supply, mainly, has resulted in significant changes of water flow and sediment load regimes, together with a fostered development of soil and water uses, with environmental impacts downstream and higher vulnerability of these areas to the sea level rise and drought occurrence. This work shows these effects in the Guadalquivir and the Ebro River basins, two of the largest regulated areas in Spain. The results show a 71 % decrease of the annual freshwater input to the Guadalquivir River estuary during 1930–2014, an increase of 420 % of the irrigated area upstream the estuary, and suspended sediment loads up to 1000 % the initial levels. In the Ebro River delta, the annual water yield has decreased over a 30 % but, on the contrary, the big reservoirs are located in the main stream, and the sediment load has decreased a 99 %, resulting in a delta coastal regression up to 10 m per year and the massive presence of macrophytes in the lower river. Adaptive actions proposed to face these impacts in a sea level rise scenario are also analyzed.

  8. Formation and entrainment of fluid mud layers in troughs of subtidal dunes in an estuarine turbidity zone

    DEFF Research Database (Denmark)

    Becker, Marius; Schrottke, Kerstin; Bartholomä, Alexander

    2013-01-01

    The formation and entrainment of fluid mud layers in troughs of subtidal dunes were investigated in the Weser Estuary, North Sea, Germany, based on hydroacoustic measurements. Near-bed suspension layers were found to consist of a suspension of large mud flocs of variable concentration, ranging from...... 25 g/L below the lutocline to 70 g/L at the river bed, whereas the gelling concentration was below 70 g/L. Sites of fluid mud formation coincided with the location of the estuarine turbidity zone during slack water. On average, near-bed density gradients were initially observed in dune troughs 1.2 h...... before slack water, and all fluid mud layers were entrained 2.3 h after slack water. No shear instabilities occurred until 1.8 h after slack water. While the flow was oriented in the dune direction, rapid entrainment was related to the development of the turbulent flow field behind dunes and is explained...

  9. Performance testing of coagulants to reduce stormwater runoff turbidity.

    Science.gov (United States)

    2014-05-01

    On December 1, 2009, the US Environmental Protection Agency (EPA) published a rule in the Federal : Register establishing non-numeric and, for the first time, numeric effluent limitation guidelines (ELGs). The : numeric ELGs included a turbidity limi...

  10. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Science.gov (United States)

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  11. Autocorrelation of scattered laser light for ultrasound-modulated optical tomography in dense turbid media.

    Science.gov (United States)

    Li, Hui; Wang, Lihong V

    2002-08-01

    Based on measurement of the intensity autocorrelation function, a new method to determine the modulation depth of scattered laser light modulated by an ultrasonic wave in turbid media was applied to ultrasound-modulated optical tomography. Good signal-to-noise ratios and high sensitivities were demonstrated. Images of double optically absorbing objects buried in a highly optically scattering gel sample were obtained. The contrast was more than 10%, and the spatial resolution was approximately 2 mm.

  12. Autocorrelation of scattered laser light for ultrasound-modulated optical tomography in dense turbid media

    OpenAIRE

    Li, Hui; Wang, Lihong V.

    2002-01-01

    Based on measurement of the intensity autocorrelation function, a new method to determine the modulation depth of scattered laser light modulated by an ultrasonic wave in turbid media was applied to ultrasound-modulated optical tomography. Good signal-to-noise ratios and high sensitivities were demonstrated. Images of double optically absorbing objects buried in a highly optically scattering gel sample were obtained. The contrast was more than 10%, and the spatial resolution was approximately...

  13. How Hydrodynamics Control Algal Blooms in the Ythan Estuary, Scotland

    Science.gov (United States)

    Champangern, K.; Hoey, T.; Thomas, R.; Mitchard, E. T.

    2016-12-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilisers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as nutrient transport in the estuary is crucial for comprehending the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. To understand the controls, the Delft3d flow model is used to simulate hydrodynamic patterns and nutrient pathways in the estuary during high flow and low flow events. The results from the simulations reveal that during high river flow in the central part of the estuary, where algal growth is most extensive, flow velocity are higher during flood tide than in the ebb. However, the velocity in this area remain very low throughout the tidal cycle. During low river flow, the velocity during one tidal cycle has the same pattern as in high flow event, although the velocity is generally slightly higher than during high river flow except during slack tide where velocity and shear stress are lower. The modelled nutrient pathways and their concentration also show the movement of nutrients with regard to interaction of both fresh and sea water. The concentration is greatest during low tide in the upper estuary followed by middle and lower estuary, while appearing lowest during high tide. The nutrients mobilise along the main channel where velocity is greater. However, they are also dispersed to shallower areas where algal growth is extensive and remain high concentrated in the areas until a new flood tide. These model results are validated against measured data, of which the

  14. Comparative assessment of two agriculturally-influenced estuaries

    CSIR Research Space (South Africa)

    Lemley, DA

    2017-04-01

    Full Text Available . With the Gamtoos Estuary experiencing regular high flow conditions, a key difference between the two systems is the propensity for natural flushing events to occur; a mechanism largely eliminated from the highly-regulated Sundays Catchment. Phytoplankton blooms...

  15. Seasonal and spatial variations in rare earth elements and yttrium of dissolved load in the middle, lower reaches and estuary of the Minjiang River, southeastern China

    Science.gov (United States)

    Zhu, Xuxu; Gao, Aiguo; Lin, Jianjie; Jian, Xing; Yang, Yufeng; Zhang, Yanpo; Hou, Yuting; Gong, Songbai

    2017-09-01

    With the aim of elucidating the spatial and seasonal behaviors of rare earth elements (REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower reaches and estuary of the Minjiang River, southeastern China. The results display that the REE abundances in Minjiang River, ranging from 3.3-785.9 ng/L, were higher than those of many of the major global rivers. The total REE concentrations (ΣREE) were seasonally variable, averaging in 5 937.30, 863.79, 825.65 and 1 065.75 ng/L during second highest flow (SHF), normal flow (NF), low flow (LF) and high flow (HF) season, respectively. The R (L/M) and R (H/M) ratios reveal the spatial and temporal variations of REE patterns, and particularly vary apparently in the maximum turbidity zone and estuary. REE patterns of dissolved loads are characterized by progressing weaker LREEs-enrichment and stronger HREEs-enrichment downstream from middle reaches to estuary during all four seasons. Comparing with NF and LF seasons, in which REE patterns are relatively flat, samples of SHF season have more LREE-enriched and HREE-depleted patterns that close to parent rocks, while samples of HF season are more LREEs-depleted and HREE-enriched. REE fractionations from the middle to lower reaches are stronger in the SHF and HF seasons than those in NF and LF seasons. Generally, spatial and seasonal variations in REE abundance and pattern are presumably due to several factors, such as chemical weathering, mixture with rainfall and groundwater, estuarine mixing, runoff, biological production and mountain river characters, such as strong hydrodynamic forces and steep slopes. The highest Gd/Gd* always occurs at north ports during all four seasons, where most of the large hospitals are located. This suggests Gd anomalies are depended on the density of modern medical facilities. Y/Ho ratios fluctuate and positively correlate to salinity in estuary, probably because of the geochemical

  16. Phosphorous dynamics in a temperate intertidal estuary

    Science.gov (United States)

    Lillebø, A. I.; Neto, J. M.; Flindt, M. R.; Marques, J. C.; Pardal, M. A.

    2004-09-01

    Conservation and management of aquatic systems require detailed information of the processes that affect their functioning and development. The objectives of the present work were to describe the phosphorus dynamics during a complete tidal cycle and to quantify the relative contribution of the most common estuarine areas (e.g. seagrass beds, salt marshes, mud- and sand-flats without vegetation) to phosphorus net internal loading in a temperate intertidal estuary. Results show that phosphate efflux rates were higher during the first hours of tidal flood, and that phosphate concentrations were lowest at high tide. During tidal ebbing, ephemeral tide pools may cover a considerable percentage of the intertidal area. In these tide pools, water shallowness combined with enhanced temperatures stimulate the occurrence of high phosphate effluxes. The effluxes to the main water body during high tide contributed 57% of dissolved inorganic phosphorus and efflux during low tide contributed 43% to the net internal loading. Calculations of the phosphate net effluxes (kg P) indicate a strong contribution of the bare bottom mud-flats to the whole system internal phosphate loading, especially during the warmer periods. As a consequence of eutrophication, perennial benthic macrophytes are commonly replaced by fast-growing epiphytic macroalgae. Calculations showed that for a hypothetical intertidal estuary in a temperate region, management programs considering an eventual re-colonization of mud-flats by seagrasses or salt marsh plants may reduce the P-efflux by 13-16 kg ha -1. For example, in the small Mondego estuary, eutrophication has contributed to a reduction of the Zostera noltii meadows, leading to an increase in 190 kg of phosphorus net internal loading.

  17. Autogenic influence on the morphology of submarine fans: an approach from 3D physical modelling of turbidity currents

    Directory of Open Access Journals (Sweden)

    Cristiano Fick

    Full Text Available ABSTRACT: Autogenic controls have significant influence on deep-water fans and depositional lobes morphology. In this work, we aim to investigate autogenic controls on the topography and geometry of deep-water fans. The influence of the sediment concentration of turbidity currents on deep-water fans morphology was also investigated. From the repeatability of 3D physical modeling of turbidity currents, two series of ten experiments were made, one of high-density turbidity currents (HDTC and another of low-density turbidity currents (LDTC. All other input parameters (discharge, sediment volumetric concentration and grain size median were kept constant. Each deposit was analyzed from qualitative and quantitative approaches and statistical analysis. In each experimental series, the variability of the morphological parameters (length, width, L/W ratio, centroid, area, topography of the simulated deep-water fans was observed. Depositional evolution of the HDTC fans was more complex, showing four evolutionary steps and characterized by the self-channelizing of the turbidity current, while LDTC fans neither present self-channelizing, nor evolutionary steps. High disparities on the geometrical parameters of the fans, as characterized by the elevated relative standard deviation, suggest that autogenic controls induced a stochastic morphological behaviour on the simulated fans of the two experimental series.

  18. The effect of turbidity and prey fish density on consumption rates of piscivorous Eurasian perch Perca fluviatilis

    DEFF Research Database (Denmark)

    Jacobsen, Lene; Berg, Søren; Baktoft, Henrik

    2014-01-01

    piscivorous Eurasian perch Perca fluviatilis L. This was done in outdoor mesocosm (16 m2) experiments with clear water and two levels of turbidity (25 and 105 NTU) and two prey fish densities [3.1 and 12.5 roach Rutilus rutilus (L.) individuals m–2]. Perch consumption rates were affected by visibility less...... than expected, while they were highly affected by increased prey fish density. Perch responded to high prey density in all visibility conditions, indicating that prey density is more crucial for consumption than visibility in turbid lakes...

  19. Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro)peroxo complexes.

    Science.gov (United States)

    Villota, Natalia; Lomas, Jose M; Camarero, Luis M

    2017-11-01

    Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe(2+)/kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe(2+)/kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Assessing predation risks for small fish in a large river ecosystem between contrasting habitats and turbidity conditions

    Science.gov (United States)

    Dodrill, Michael J.; Yard, Mike; Pine, William E.

    2016-01-01

    This study examined predation risk for juvenile native fish between two riverine shoreline habitats, backwater and debris fan, across three discrete turbidity levels (low, intermediate, high) to understand environmental risks associated with habitat use in a section of the Colorado River in Grand Canyon, AZ. Inferences are particularly important to juvenile native fish, including the federally endangered humpback chub Gila cypha. This species uses a variety of habitats including backwaters which are often considered important rearing areas. Densities of two likely predators, adult rainbow trout Oncorhynchus mykiss and adult humpback chub, were estimated between habitats using binomial mixture models to examine whether higher predator density was associated with patterns of predation risk. Tethering experiments were used to quantify relative predation risk between habitats and turbidity conditions. Under low and intermediate turbidity conditions, debris fan habitat showed higher relative predation risk compared to backwaters. In both habitats the highest predation risk was observed during intermediate turbidity conditions. Density of likely predators did not significantly differ between these habitats. This information can help managers in Grand Canyon weigh flow policy options designed to increase backwater availability or extant turbidity conditions.

  1. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    Science.gov (United States)

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  2. Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids

    Directory of Open Access Journals (Sweden)

    Jiunn-Lin Wu

    2014-11-01

    Full Text Available Total suspended solid (TSS is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR and artificial neural network (ANN were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L−1 and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L−1 and less than 600 NTU, respectively and used rather than using whole dataset (R2 = 0.93 versus 0.88 for turbidity and R2 = 0.83 versus 0.58 for TSS. On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R2 = 0.66 was better than with the MR

  3. Behaviour of aluminium, silicon and iron in Tapi Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, P.; Zingde, M.D.

    Behaviour od dissolved Al, Si and Fe in high energy and well-mixed Tapi Estuary in Maharashtra, India was studied under varied tidal cycles. The observed trend of variation in concentration of dissolved Al has been explained in terms of release from...

  4. Modelling Phytoplankton Dynamics in Estuaries

    NARCIS (Netherlands)

    Liu, B.

    2017-01-01

    In estuaries, which are the transition areas between rivers and coastal waters, the spatial and temporal distribution of phytoplankton cell number density (P) is determined by local specific growth and loss, advection by currents, mixing by turbulence, and sinking if the density of phytoplankton is

  5. from cross river estuary, nigeria

    African Journals Online (AJOL)

    U,F1,:1.,U_ rt as so. 75 $00 o 25 so 15 109 i. FIG. 3: VARIATION IN STOMACH FULLNESS OF PELLONULA Ieonesis FROM CROSS. RIVER ESTUARY, NIGERIA WITH SEXES, SIZES AND SEASONS. Results on ontogenetic diet composition shows that LSG ate more preyfishes and ants than. 886 while 886 ate ,more ...

  6. Simulated Sampling of Estuary Plankton

    Science.gov (United States)

    Fortner, Rosanne W.; Jenkins, Deborah Bainer

    2009-01-01

    To find out about the microscopic life in the valuable estuary environment, it is usually necessary to be near the water. This dry lab offers an alternative, using authentic data and a simulation of plankton sampling. From the types of organisms found in the sample, middle school students can infer relationships in the biological and physical…

  7. River flow control on intertidal mudflat sedimentation in the mouth of a macrotidal estuary

    Science.gov (United States)

    Cuvilliez, Antoine; Lafite, Robert; Deloffre, Julien; Lemoine, Maxence; Langlois, Estelle; Sakho, Issa

    2015-06-01

    The objective of this study is to analyze the impact of hydrological variability influenced by climatic phenomena upon the sedimentary exchange between the turbidity maximum (TM) and a river mouth intertidal mudflat. This study, carried out over a period of 10 years (1997-2006) in the Seine Estuary (France), is specifically focused on two extreme periods: a wet one from 2001 to 2002 and a drier one from 2005 to 2006. This study is based on an original approach combining data gathered via low-altitude remote sensing with altimeter readings and ground-level measurements. During this 10 year period, we observed a link between climate change and the sedimentary processes on the mudflat surface. The modifications of sedimentary processes are mainly connected to the multiannual variability of hydrological flow rates that control the positioning of the turbidity maximum, the source of the sedimentary material deposited in this intertidal zone. The TM at the mouth of the Seine estuary is well developed; its maximum mass is estimated to be between 300,000 tons and 500,000 tons (Avoine et al., 1981) with maximum concentrations in the surface waters ranging from 1 to 2 g • l- 1 (Le Hir et al., 2001). Most of the fine particles stored within the TM have been found to originate from within the catchment area (Dupont et al., 1994). In the Seine estuary, the dynamics of the estuarine TM, in response to hydrodynamic forcings, have been previously described (Avoine et al., 1981) and modeled (e.g. Brenon and Le Hir, 1999; Le Hir et al., 2001). The TM is upstream of the northern mudflat when the river flow is low (< 450 m • s- 1) and nearby the study area when the river flow is higher. Thus during wet periods, the sedimentation rates increase by + 17 cm • y- 1, while during the drier one (when the turbidity maximum is located upstream of the estuary) we observed an erosion rate of 7.6 cm • y- 1. Sedimentation events in the mudflat resulting from spring tides are less frequent

  8. Digital optical phase conjugation for delivering two-dimensional images through turbid media

    Science.gov (United States)

    Hillman, Timothy R.; Yamauchi, Toyohiko; Choi, Wonshik; Dasari, Ramachandra R.; Feld, Michael S.; Park, Yongkeun; Yaqoob, Zahid

    2013-05-01

    Optical transmission through complex media such as biological tissue is fundamentally limited by multiple light scattering. Precise control of the optical wavefield potentially holds the key to advancing a broad range of light-based techniques and applications for imaging or optical delivery. We present a simple and robust digital optical phase conjugation (DOPC) implementation for suppressing multiple light scattering. Utilizing wavefront shaping via a spatial light modulator (SLM), we demonstrate its turbidity-suppression capability by reconstructing the image of a complex two-dimensional wide-field target through a highly scattering medium. Employing an interferometer with a Sagnac-like ring design, we successfully overcome the challenging alignment and wavefront-matching constraints in DOPC, reflecting the requirement that the forward- and reverse-propagation paths through the turbid medium be identical. By measuring the output response to digital distortion of the SLM write pattern, we validate the sub-wavelength sensitivity of the system.

  9. A new three-band algorithm for estimating chlorophyll concentrations in turbid inland lakes

    Energy Technology Data Exchange (ETDEWEB)

    Duan Hongtao; Ma Ronghua; Zhao Chenlu; Zhou Lin; Shang Linlin [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing (China); Zhang Yuanzhi [Institute of Space and Earth Information Science, Chinese University of Hong Kong (Hong Kong); Loiselle, Steven Arthur [Dipartimento Farmaco Chimico Tecnologico, CSGI, University of Siena, Siena (Italy); Xu Jingping, E-mail: mrhua2002@niglas.ac.cn [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing (China)

    2010-10-15

    A new three-band model was developed to estimate chlorophyll-a concentrations in turbid inland waters. This model makes a number of important improvements with respect to the three-band model commonly used, including lower restrictions on wavelength optimization and the use of coefficients which represent specific inherent optical properties. Results showed that the new model provides a significantly higher determination coefficient and lower root mean squared error (RMSE) with respect to the original model for upwelling data from Taihu Lake, China. The new model was tested using simulated data for the MERIS and GOCI satellite systems, showing high correlations with the former and poorer correlations with the latter, principally due to the lack of a 709 nm centered waveband. The new model provides numerous advantages, making it a suitable alternative for chlorophyll-a estimations in turbid and eutrophic waters.

  10. Control of energy density inside turbid medium (Conference Presentation)

    Science.gov (United States)

    Sarma, Raktim; Yamilov, Alexey; Petrenko, Sasha; Bromberg, Yaron; Cao, Hui

    2017-02-01

    Recent breakthroughs in optical wavefront engineering have opened the possibility of controlling light intensity distribution inside highly scattering medium, but their success is limited by the open geometry of the sample and the difficulty of covering all input modes. Here we demonstrate experimentally an efficient control of energy density distribution inside a strong scattering medium. Instead of the open slab geometry, we fabricate a silicon waveguide that contains scatterers and has reflecting sidewalls. The intensity distribution inside the 2D waveguide is probed from the third dimension. With a careful design of the on-chip coupling waveguide, we can access all the input modes. Such unprecedented control of incident wavefront leads to 10 times enhancement of the total transmission or 50 times suppression. A direct probe of light intensity distribution inside the disordered structure reveals that selective excitation of open channels leads to an energy buildup deep inside the scattering medium, while the excitation of closed channels greatly reduces the penetration depth. Compared to the linear decay for random input fields, the optimized wavefront can produce an intensity profile that is either peaked near the center of the waveguide or decay exponentially with depth. The total energy stored inside the waveguide is increased 3.7 times or decreased 2 times. Since the energy density dictates light-matter interactions inside a scattering system, our results demonstrate the possibility of tailoring optical excitations as well as linear and nonlinear optical processes inside the turbid medium in an on-chip platform.

  11. EFFECT OF DIFFERENT CONCENTRATIONS OF POWER LAW NON-NEWTONIAN LIQUIDS ON THEIR CRITICAL TURBIDITY AND RHEOLOGY

    OpenAIRE

    Ahmed H. Hadi*, Hussein Y. Mahmood

    2016-01-01

    The turbidity of liquid is very important in high speed camera applications used to record the movement of accelerated solid spherical particles with rotation falling in Newtonian and non – Newtonian liquids. Measurements of turbidity, density, apparent viscosity and fluid rheological properties (flow behavior index n & consistency index K) were taken for different concentrations (0.15, 0.2, 0.25, 0.3 and 0 .4) % w/v of Carboxy methyl Cellulose (CMC), poly – vinyl alcohol (PVA) and CMC – ...

  12. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  13. The Need for Definitions in Understanding Estuaries

    Science.gov (United States)

    Elliott, M.; McLusky, D. S.

    2002-12-01

    This paper considers what the definition/classification of estuaries has taught us and why there is a need for classification systems. It further considers why we need to define an estuary and its constituent parts, including the fundamental difficulty and dilemma of trying to define parts of a continuum, as a means to both understanding and managing that estuary. The review considers where an estuary starts and ends and the relative merits of defining estuaries in terms of their biology, physics, chemistry, geographic nature and socio-economic units. It briefly discusses the need for legal and planning definitions and the linkages between science and management. Following this, we present a generic framework for the definition, classification, monitoring, assessment, reporting and management of estuaries. In particular, it is argued that scientists should engage in the debate on the definition of estuaries for legal and socio-economic purposes. It is concluded here that as existing definitions will never be suitable for all needs, a different approach is required. The proposed ' Expert Judgement Checklist Approach ' could provide guidance for those needing to define/delimit an estuary while still acknowledging the inherent variability of such systems. The proposed system mostly relates to the European, temperate estuary, but there are lessons here for estuaries worldwide.

  14. Spatial and seasonal variation of microphytoplankton community and the correlation with environmental parameters in a hypereutrophic tropical estuary - Maranhão - Brazil

    Directory of Open Access Journals (Sweden)

    Ana Karoline Duarte dos Santos

    Full Text Available Abstract The Bacanga River Estuary has a hydrodynamic behavior and its tidal flow is limited by a dam. It is considered as a hypertrophic environment that receives daily high loads of domestic sewage without treatment. This study aimed to evaluate the spatial and temporal variation of phytoplankton community and its relationship with environmental parameters. Bi-monthly sampling campaigns were carried out at six fixed sites between 2012 and 2013. Physical-chemical and biological parameters were collected (chlorophyll a, phytoplankton composition and abundance to perform the statistical correlations. The results indicate that phytoplankton community is mostly represented by diatoms, with Skeletonema costatum being the dominant species responsible for bloom in April and June of 2012. The dominance of this species is related to the high silicate concentrations, pH and turbidity. Other blooms events as well as the Euglena gracilis and Chlamydomonas sp. were recorded in February 2013, when the total phosphorus concentrations were high and the dissolved oxygen concentrations were higher. Dinoflagellates, cyanobacteria and diatom Thallassiosira sp. were widely distributed in the dry period and highly correlated with salinity, water transparency and nutrients. Hence, the distribution of phytoplankton community is more defined seasonally, rather than spatially.

  15. Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (Cochin backwaters - India)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Jyothibabu, R.; Balachandran, K.K.; Honey, U.K.; Martin, G.D.; Vijay, J.G.; Shiyas, C.A.; Gupta, G.V.M.; Achuthankutty, C.T.

    to dominate the entire area during monsoon and post monsoon seasons. The enormous input of nutrients (nitrate, phosphate & silicate) into the estuary from various sources (industries, agriculture and domestic) was responsible for the high phytoplankton biomass...

  16. Salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  17. In-stream PIT detection, estuary wetlands - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  18. Nutrient characterisation of river inflow into the estuaries of the ...

    African Journals Online (AJOL)

    2014-10-02

    Oct 2, 2014 ... estuaries (POE), temporarily open/closed estuaries (TOCE), estuarine lakes ... estuaries where DWA has water quality monitoring data for the rivers that flow ...... relationship, but in this instance it could not be linked to point-.

  19. Extending the range of turbidity measurement using polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S.

    2017-11-21

    Turbidity measurements are obtained by directing a polarized optical beam to a scattering sample. Scattered portions of the beam are measured in orthogonal polarization states to determine a scattering minimum and a scattering maximum. These values are used to determine a degree of polarization of the scattered portions of the beam, and concentrations of scattering materials or turbidity can be estimated using the degree of polarization. Typically, linear polarizations are used, and scattering is measured along an axis that orthogonal to the direction of propagation of the polarized optical beam.

  20. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    Science.gov (United States)

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  1. Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China

    Science.gov (United States)

    Wu, Meilin; Wang, Youshao; Dong, Junde; Sun, Fulin; Wang, Yutu; Hong, Yiguo

    2017-03-01

    A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organizing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.

  2. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu.

    Science.gov (United States)

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia

    2018-01-01

    Climate change is predicted to influence the heat budget of aquatic ecosystems and, in turn, affect the stability of the water column leading to increased turbulence coupled with enhanced turbidity. However, the synergetic effects of turbulence and turbidity on zooplankton community structure remain to be understood in large, shallow lakes. To determine the possible synergetic effects of these factors on zooplankton communities, a 15-day mesocosm experiment was carried out and tested under four turbulence and turbidity regimes namely control (ɛ = 0, 7.6 ± 4.2 NTU), low (ɛ = 6.01 × 10-8 m2 s-3, 19.4 ± 8.6 NTU), medium (ɛ = 2.95 × 10-5 m2 s-3, 55.2 ± 14.4 NTU), and high (ɛ = 2.39 × 10-4 m2 s-3, 741.6 ± 105.2 NTU) conditions, which were comparable to the natural conditions in Lake Taihu. Results clearly showed the negative effects of turbulence and turbidity on zooplankton survival, which also differed among taxa. Specifically, increased turbulence and turbidity levels influenced the competition among zooplankton species, which resulted to the shift from being large body crustacean-dominated (copepods and cladocerans) to rotifer-dominated community after 3 days. The shift could be associated with the decrease in vulnerability of crustaceans in such environments. Our findings suggested that changes in the level of both turbidity and turbulence in natural aquatic systems would have significant repercussions on the zooplankton communities, which could contribute to the better understanding of community and food web dynamics in lake ecosystems exposed to natural mixing/disturbances.

  3. Optical computed tomography in a turbid medium using early arriving photons

    Science.gov (United States)

    Chen, Kun; Perelman, Lev T.; Zhang, Qingguo; Dasari, Ramachandra R.; Feld, Michael S.

    2000-04-01

    We employ photon migration to image absorbing objects embedded in a turbid medium. For improved resolution, we use early arriving photons (a few hundred picoseconds in excess of the time of flight), a regime in which the diffusion approximation breaks down. Our image reconstruction method is based on extension of x-ray computed tomography (CT) to the optical regime. The CT algorithm must be generalized to take into account the distributions of photon paths. We express the point spread function (PSF) in terms of the Green's function for the transport equation. This PSF then provides weighting functions for use in a generalized series expansion method of x-ray CT. Experiments were performed on a turbid medium with scattering and absorption properties similar to those of human breast tissue. Multiple absorbers were embedded into the medium to mimic tumors. Coaxial transmission scans were collected in two projections, and the early-time portions were analyzed. Through accurate modeling, we could remove the blurring associated with multiple scattering and obtain high-resolution images. Our results show that the diffusion approximation PSF is inadequate to describe the early arriving photons. A PSF incorporating causality is required to reconstruct accurate images of turbid media.

  4. Focusing through a turbid medium by amplitude modulation with genetic algorithm

    Science.gov (United States)

    Dai, Weijia; Peng, Ligen; Shao, Xiaopeng

    2014-05-01

    Multiple scattering of light in opaque materials such as white paint and human tissue forms a volume speckle field, will greatly reduce the imaging depth and degrade the imaging quality. A novel approach is proposed to focus light through a turbid medium using amplitude modulation with genetic algorithm (GA) from speckle patterns. Compared with phase modulation method, amplitude modulation approach, in which the each element of spatial light modulator (SLM) is either zero or one, is much easier to achieve. Theoretical and experimental results show that, the advantage of GA is more suitable for low the signal to noise ratio (SNR) environments in comparison to the existing amplitude control algorithms such as binary amplitude modulation. The circular Gaussian distribution model and Rayleigh Sommerfeld diffraction theory are employed in our simulations to describe the turbid medium and light propagation between optical devices, respectively. It is demonstrated that the GA technique can achieve a higher overall enhancement, and converge much faster than others, and outperform all algorithms at high noise. Focusing through a turbid medium has potential in the observation of cells and protein molecules in biological tissues and other structures in micro/nano scale.

  5. Honey Addition in Kefir Whey Drink in Term of Organoleptic Quality, Colour, and Turbidity

    Directory of Open Access Journals (Sweden)

    Firman Jaya

    2017-07-01

    Full Text Available The objective of this research was to determine the optimum honey addition on kefir whey drink based on organoleptic quality (colour, aroma, taste, colour test, and turbidity. The method used in this research was experiment with Completely Randomized Design (CDR by used 4 treatments and 4 replications. The treatments were P0 = without the honey added, P1=added by 20% honey, P2 = added by 30% honey and P3 = added by 40% honey (v/v. The data were analyzed by Analysis of Variance (ANOVA, if there were significantly difference, the data would analyzed by Duncan’s Multiple Range Test. The results showed that honey addition gave highly difference significant (P<0.01 on organoleptic quality (colour, aroma, taste, turbidity and lightness (L*. Honey addition didn’t give significantly difference (P<0.05 on redness (a* and yellowness (b*. The conclusion of this research was the best treatment will the value is added by 40% honey with colour 3.25±0.78, aroma 3.50±1.14, taste 3.75±1.01, lightness (L 31.57±0.5, redness (b* 0.95±0.12, yellowness (b* 0.050±0.36, and turbidity 306.7±6.65 NTU

  6. Effect of storage of shelled Moringa oleifera seeds from reaping time on turbidity removal.

    Science.gov (United States)

    Golestanbagh, M; Ahamad, I S; Idris, A; Yunus, R

    2011-09-01

    Moringa oleifera is an indigenous plant to Malaysia whose seeds are used for water purification. Many studies on Moringa oleifera have shown that it is highly effective as a natural coagulant for turbidity removal. In this study, two different methods for extraction of Moringa's active ingredient were investigated. Results of sodium chloride (NaCl) and distilled water extraction of Moringa oleifera seeds showed that salt solution extraction was more efficient than distilled water in extracting Moringa's active coagulant ingredient. The optimum dosage of shelled Moringa oleifera seeds extracted by the NaCl solution was comparable with that of the conventional chemical coagulant alum. Moreover, the turbidity removal efficiency was investigated for shelled Moringa oleifera seeds before drying in the oven under different storage conditions (i.e. open and closed containers at room temperature, 27 °C) and durations (fresh, and storage for 2, 4, 6 and 8 weeks from the time the seeds were picked from the trees). Our results indicate that there are no significant differences in coagulation efficiencies and, accordingly, turbidity removals between the examined storage conditions and periods.

  7. Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil

    OpenAIRE

    Bissoli, Lorena B.; Bernardino, Angelo F.

    2017-01-01

    Estuaries are highly productive and support diverse benthic assemblages, but few estimates of benthic production are available for most ecosystems. In tropical estuaries mangroves and tidal flats are typical habitats with high spatial heterogeneity of benthic macrofaunal assemblages. However, accessing differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support to management of those ecosystems. Here we studied t...

  8. Submicrometer fluid inclusions in turbid-diamond coats

    Science.gov (United States)

    Guthrie, George D.; Veblen, David R.; Navon, Oded; Rossman, George R.

    1991-07-01

    Transmission and analytical electron microscopies were used to characterize the turbid coats on two diamonds from Zaire. The coats contained euhedral cavities (generally ≤ 0.5 μm) that are believed to represent decrepit fluid inclusions. Crystals (generally ≤ 0.2 μm) were sometimes found in the cavities, but they were never observed to fill the cavities entirely. Cavities that appeared to be intact typically contained several solid inclusions and an amorphous material with a low average atomic weight. The crystals in such cavities were able to move under a condensed electron beam, suggesting that the amorphous material was a liquid and not a glass. Using compositional analysis and electron diffraction, five minerals were identified as daughter crystals in the cavities: apatite, high-Ca carbonate, low-Ca carbonate, mica, and quartz. Coesite and olivine were not observed in any of the cavities. Compositional analysis of some crystals indicated that other minerals (e.g., amphibole) were present as daughter crystals; however, electron diffraction data were insufficient to identify them unambiguously. Since these inclusions are believed to have been trapped during the growth of the diamond coats [1], it may be possible to constrain the environment under which the coast grew, assuming that the daughter minerals precipitated from the trapped fluid and that the fluid inclusions have not re-equilibrated. Coexisting magnesite-like and dolomite-like carbonates and silica constrain XCO2 of the fluid to greater than 0.4. The presence of quartz is consistent with the coats developing at lower pressures and temperatures than the cores they surround; alternatively, quartz grew from a glass or high- P, high- T silica polymorph (coesite) when the inclusions re-equilibrated in the quartz stability field.

  9. Interannual variability in dissolved inorganic nutrients in northern San Francisco Bay estuary

    Science.gov (United States)

    Peterson, D.H.; Smith, R.E.; Hager, S.W.; Harmon, D.D.; Herndon, R.E.; Schemel, L.E.

    1985-01-01

    Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960-1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976-1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores. The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean

  10. Interaction between suspended sediment and tidal amplification in the Guadalquivir Estuary

    Science.gov (United States)

    Wang, Zheng Bing; Winterwerp, Johan C.; He, Qing

    2014-10-01

    Water level records at two stations in the Guadalquivir Estuary (Spain), one near the estuary mouth (Bonanza) and one about 77 km upstream (Sevilla), have been analysed to study the amplification of the tide in the estuary. The tidal amplification factor shows interesting temporal variation, including a spring-neap variation, some extreme low values, and especially the anomalous behaviour that the amplification factor is larger during a number of periods. These variations are explained by data analysis combined with numerical and analytical modelling. The spring-neap variation is due to the quadratic relation between the bottom friction and the tidal flow velocity. The river flood events are the direct causes of the extreme low values of the amplification factor, and they trigger the non-linear interaction between the tidal flow and suspended sediment transport. The fluvial sediment input during a river flood causes high sediment concentration in the estuary, up to more than 10 g/l. This causes a reduction of the effective hydraulic drag, resulting in stronger tidal amplification in the estuary for a period after a river flood. After such an event the tidal amplification in the estuary does not always fall back to the same level as before the event, indicating that river flood events have significant influence on the long-term development of this estuary.

  11. Distribution and Emission of Methane in Nakdong Estuary

    Science.gov (United States)

    Ryu, J.; An, S.

    2014-12-01

    Despite a small area, coastal areas contribute most to the oceanic methane flux. A wide range of methane fluxes have been reported in the coastal areas, but limited data were presented for Korean coastal areas. The air and surface water was sampled in Nakdong Estuary where the barrage had been constructed, and methane concentrations were measured using Gas Chromatography. To see the influence of the barrage, surface water was sampled outside and inside the barrage respectively. In the expectation that methane distribution would be different depending on the tides, surface water outside the barrage was collected at high and low tide respectively. Headspace technique and Membrane Inlet Mass Spectrometry were also used. The average atmospheric concentration (1.82ppm) was lower than the global average concentration expected from the IPCC scenario. The concentrations of water inside the barrage (average 173nM) were similar to those measured in other rivers but in the lower side. The average concentrations outside the barrage (52nM at high tide, 85nM at low tide) were lower than those measured in other coastal areas, but of the same order of magnitude as the European tidal estuaries. Methane concentrations in Nakdong estuary were higher than the methane concentration equilibrated with the atmosphere. The spatial variability of methane concentration in Nakdong estuary seems to be the result of the fresh (high methane) and sea (low methane) water mixing. Meanwhile large tidal flat area in Nakdong estuary should play a major role in methane dynamics and methane flux measurements during sediment incubation were conducted to evaluate the immersion/emersion cycle and photosynthesis by MPB (micro phyto benthos) effect.

  12. Sources and fate of organic matter in suspended and bottom sediments of the Mandovi and Zuari estuaries, Western India

    Digital Repository Service at National Institute of Oceanography (India)

    Shynu, R.; Rao, V.P.; Sarma, V.V.S.S.; Kessarkar, P.M.; ManiMurali, R.

    org in the lower estuary and bay of Zuari indicated efficient mixing of sediments during wet season. Sediments with relatively high delta 13 Corg and low delta 15 N in the upper estuary of Zuari were related to anthropogenic...

  13. The effects of ultraviolet radiation on the planktonic community of a shallow, eutrophic estuary: results of mesocosm experiments

    NARCIS (Netherlands)

    Forster, R.M.; Schubert, H.

    2001-01-01

    This paper describes the results of pelagic mesocosm experiments designed to test the effects of enhanced and reduced ultraviolet radiation (UV) on the planktonic community of a Baltic Sea estuary. The Darss-Zingst estuary consists of a series of brackish lagoons with high concentrations of

  14. Comparison of the Performance of Corn Starch Coagulant Aid Accompany with Alum, Polyaluminum Chloride and Ferric Chloride Coagulants in Turbidity Removal from Water

    Directory of Open Access Journals (Sweden)

    Leila Mosleh

    2014-09-01

    Full Text Available Background: The most important process in water treatment plant is coagulation and flocculation. Regular chemical coagulant which used in Iran are aluminum sulfate (Alum and ferric chloride. Chemical coagulants have hazardous effect on human health and their cost is high for developing country. The purpose of this study was to evaluate the comparison of chemical coagulants accompany with corn starch as a coagulant aid, for the turbidity removal from water. Methods: This study was accomplished in pilot-scale with synthetic turbid water using clay. In this research, initial turbidity of 250 and 500 NTU was experimented. Chemical coagulant dose during the experiment was 1, 2 and 5 ppm and natural coagulant dose was 0, 0.1, 0.3, 0.5 and 0.7 ppm. Results: The results showed that maximum removal efficiency of turbidity in initial turbidity of 250 NTU belonged to poly aluminum chloride with 5 ppm dosage and corn starch with 0.7 ppm dosage which removed and reduced the initial turbidity to 98.48% and 3.73 NTU, respectively. Moreover, in initial turbidity of 500 NTU the maximum removal efficiency was 98.52% which belonged to ferric chloride and corn starch (5 and 0.7 ppm respectively and reduced the initial turbidity to 7.4 NTU. Conclusions: The results of this study showed that using natural coagulant aid reduce the chemical coagulant consumption, and also does not have significant effect on pH range and reduce the health risks. While huge amount of required polyelectrolytes for water treatment plant imported to the country and the production of corn starch in our country is high, it is hope that the results of this project can be used in industrial scale.

  15. Correspondence between zooplankton assemblages and the Estuary Environment Classification system

    Science.gov (United States)

    Lucena-Moya, Paloma; Duggan, Ian C.

    2017-01-01

    We tested whether variability in zooplankton assemblages was consistent with the categories of estuarine environments proposed by the 'Estuary Environment Classification' system (EEC) (Hume et al., 2007) across a variety of North Island, New Zealand, estuaries. The EEC classifies estuaries in to eight categories (A to F) based primarily on a combination of three abiotic controlling factors: ocean forcing, river forcing and basin morphometry. Additionally, we tested whether Remane's curve, which predicts higher diversities of benthic macrofauna and high and low salinities, can be applied to zooplankton assemblages. We focused on three of the eight EEC categories (B, D and F), which covered the range of estuaries with river inputs dominating (B) to ocean influence dominating (F). Additionally, we included samples from river (FW) and sea (MW) to encompass the entire salinity range. Zooplankton assemblages varied across the categories examined in accordance with a salinity gradient predicted by the EEC. Three groups of zooplankton were distinguishable: the first formed by the most freshwater categories, FW and B, and dominated by rotifers (primarily Bdelloidea) and estuarine copepods (Gladioferans pectinatus), a second group formed by categories D and F, of intermediate salinity, dominated by copepods (Euterpina acutifrons), and a final group including the purely marine category MW and dominated also by E. acutifrons along with other marine taxa. Zooplankton diversity responded to the salinity gradient in a manner expected from Remane's curve. The results of this study support others which have shown salinity to be the main factor driving zooplankton community composition and diversity.

  16. Microplastic in three urban estuaries, China.

    Science.gov (United States)

    Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2015-11-01

    Estuarine Microplastics (MPs) are limited to know globally. By filtering subsurface water through 330 μm nets, MPs in Jiaojiang, Oujiang Estuaries were quantified, as well as that in Minjiang Estuary responding to Typhoon Soulik. Polymer matrix was analyzed by Raman spectroscopy. MP (estuaries influenced on MPs contamination levels. Typhoon didn't influence the suspended MP densities significantly. Our results provide basic information for better understanding suspended microplastics within urban estuaries and for managerial actions. Copyright © 2015. Published by Elsevier Ltd.

  17. Distribution, vertical position and ecological implications of shallow gas in Bahía Blanca estuary (Argentina)

    Science.gov (United States)

    Bravo, M. E.; Aliotta, S.; Fiori, S.; Ginsberg, S.

    2018-03-01

    There has been a growing interest in the study of shallow gas due its importance in relation to the marine environment, climate change and human activities. In Bahía Blanca estuary, Argentina, shallow gas has a wide distribution. Acoustic turbidity and blanking are the main seismic evidence for the presence of shallow gas in the estuary. The former prevails in the inner sector of the estuary where gas is either near or in contact with the seabed. Gas deposits are generally associated with paleochannels corresponding to the Holocene paleodeltaic environment. Distribution studies of shallow gas in this estuary are necessary because its presence implies not only a geological risk for harbor activities but also because it may have noxious effects on the marine ecosystem, mainly on benthic communities. The comparison of benthic communities at a gas site (GS) with those at a control site (CS) indicated that gas could generate impoverishment in terms of individuals' abundance (GS: N = 357; CS: N = 724). Also, diversity indices showed great differences in the community structure at each site. This indicates that methane gas may act as a natural disturbance agent in estuarine ecosystems. The presence of gas in seabed sediments must therefore be taken into account when distribution studies are conducted of estuarine benthic communities.

  18. Turbidity-based methods for continuous estimates of suspended sediment, particulate carbon, phosphorus and nitrogen fluxes

    Science.gov (United States)

    Jomaa, Seifeddine; Alsuliman, Malek; Rode, Michael

    2015-04-01

    A good evaluation of surface water pollution is mainly limited by the monitoring strategy and sampling frequencies. Carbon and nutrient monitoring at finer time intervals is still very difficult and expensive. Therefore, establishing relationships between grab sampling and continuous commonly available data can be considered as a favorable solution to turn this problem. The aim of this study was to develop a method to continuously estimate instream sediment, carbon, nitrogen and phosphorus concentrations based on high resolution measurement of turbidity, discharge, electrical conductivity and oxygen concentration. To achieve our gaols, high frequency data (30 min interval) were generated during 3 years at the UFZ- TERENO platform Bode (Terrestrial Environmental Observatories). Samples were analysed for suspended sediment concentration (SSC), particulate organic carbon (POC), total organic carbon (TOC), particulate nitrogen (PN) and particulate phosphorus (PP) using simple and multiple linear regression models. For this study, measurements from six sub-catchments with different geographical characteristics were considered. The available data sets were divided into two years (2010-2012) calibration and one year (2012-2013) validation periods. Results revealed that the turbidity was the most predictor variable in all models, particularly for suspended sediment concentrations. For all gauging stations, the SSC could be explained using simple linear regression model by the turbidity with a lowest correlation coefficient of 0.93. The non-uniqueness of the simple linear equation obtained between the stations reflected the sensitivity of the turbidity signal to the differences in land use and agriculture management between the sub-catchments. Best predictions of POC, TOC, PP and PN were achieved when multiple linear regression models were used including discharge, electrical conductivity and oxygen concentrations as predictor variables in addition to turbidity (lowest

  19. Sediment concentration and turbidity changes during culvert removals

    Science.gov (United States)

    Randy B. Foltz; Kristina A. Yanosek; Timothy M. Brown

    2008-01-01

    The concentrations of sediment and turbidity in stream water were monitored during culvert removals to determine the short term effects of road obliteration. Sediment concentration was measured at 11 stream crossings among two locations in Idaho and one in Washington. Sediment concentration immediately below the culvert outlet exceeded levels above the culvert outlet...

  20. In situ visualization and data analysis for turbidity currents simulation

    Science.gov (United States)

    Camata, Jose J.; Silva, Vítor; Valduriez, Patrick; Mattoso, Marta; Coutinho, Alvaro L. G. A.

    2018-01-01

    Turbidity currents are underflows responsible for sediment deposits that generate geological formations of interest for the oil and gas industry. LibMesh-sedimentation is an application built upon the libMesh library to simulate turbidity currents. In this work, we present the integration of libMesh-sedimentation with in situ visualization and in transit data analysis tools. DfAnalyzer is a solution based on provenance data to extract and relate strategic simulation data in transit from multiple data for online queries. We integrate libMesh-sedimentation and ParaView Catalyst to perform in situ data analysis and visualization. We present a parallel performance analysis for two turbidity currents simulations showing that the overhead for both in situ visualization and in transit data analysis is negligible. We show that our tools enable monitoring the sediments appearance at runtime and steer the simulation based on the solver convergence and visual information on the sediment deposits, thus enhancing the analytical power of turbidity currents simulations.

  1. Time-gated optical imaging through turbid media using stimulated ...

    Indian Academy of Sciences (India)

    gated optical imaging through turbid media using stimulated Raman scattering. Our studies on the contrast of time-gated ... Time-gated imaging; stimulated Raman scattering; image contrast. PACS Nos 42.30.-d; 42.65. ... scattering medium as compared to the ballistic or snake-like components, which essentially travel in the ...

  2. Time-gated optical imaging through turbid media using stimulated ...

    Indian Academy of Sciences (India)

    In this paper, we report the development of experimental set-up for timegated optical imaging through turbid media using stimulated Raman scattering. Our studies on the contrast of time-gated images show that for a given optical thickness, the image contrast is better for sample with lower scattering coefficient and higher ...

  3. Heavy metals in surface sediments from nine estuaries along the coast of Bohai Bay, Northern China.

    Science.gov (United States)

    Wu, Guanghong; Shang, Jingmin; Pan, Ling; Wang, Zhongliang

    2014-05-15

    Concentrations of heavy metals in river water and sediment were investigated in nine estuaries along the coast of Bohai Bay, Northern China. Multivariate statistical techniques such as principal component analysis and cluster analysis, in combination with metal concentration analysis and correlation analysis, were used to identify the possible sources of the metals and the pollution pattern in nine estuaries along the coast of Bohai Bay. The environmental risks of metals, evaluated by sediment quality guidelines and background values, revealed Hg contamination in the estuaries. However, levels of Cd in estuarine sediments were low, and they were less than those levels in river sediments, partly due to the high mobility and dilution of river or seawater. Cd did not contribute to sediment deposits in estuaries. High organic matter from effluents from large municipal sewage treatment plants was predominantly responsible for restricting Hg mobility from the river to Bohai Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Biology and Life-history Strategies of Ilisha(Teleostei: Pristigasteridae) in the Coastal Waters and Estuaries of Sarawak

    Science.gov (United States)

    Blaber, S. J. M.; Staunton-Smith, J.; Milton, D. A.; Fry, G.; Van der Velde, T.; Pang, J.; Wong, P.; Boon-Teck, Ong

    1998-10-01

    Many genera and species of clupeoids are poorly known, especially in the subtropics and tropics where their diversity is high and they are usually among the largest component of estuarine and coastal artisanal and subsistence fisheries. One such genus, Ilisha, is caught by fisheries along the coast of Sarawak (South China Sea). Specimens over 500 mm standard length (SL) are a delicacy and command very high prices but large Ilishaare now rare and there is concern for the state of the stocks. The objectives of the present work, the first detailed study of any Indo-West Pacific Ilisha, were (1) to determine which species of Ilishaoccur in Sarawak, and which of those reach a large size and (2) to describe the biology and ecology of each species, and relate these to distribution patterns and life-history strategies. A total of six species of Ilishawere recorded from Sarawak, but only one, Ilisha filigera, reaches a large size and hence is commercially valuable. The adults of all species live in coastal waters, but only I. filigeraand Ilisha pristigastroidespenetrate to the middle reaches of estuaries (salinity down to about 9, turbidities as high as 1000 NTU). The juveniles of these two species and Ilisha elongataand Ilisha megalopterawere recorded in low salinities (1-5) in the upper reaches of estuaries. In all species there is ontogenetic diet switching, usually from zooplankton to fish or larger nekton such as penaeids. Ilisha melastomais primarily a mollusc feeder; the other five are primarily piscivorous with Crustacea of secondary importance. In most species, the males mature at a smaller size than the females, but there are otherwise no clear differences in size. Ilisha filigeraspawns only in the wet season, while the rest spawn mainly in the dry. From length-at-age data (using otoliths), Ilishacan be divided into three broad life-history groups: (1) small species growing to about 200 mm SL in length and living for less than 2 years: I. kampeniand I. melastoma

  5. Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data.

    Science.gov (United States)

    Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhou, Yongqiang; Qin, Boqiang

    2014-01-01

    Multiple comprehensive in situ bio-optical investigations were conducted from 2005 to 2010 and covered a large variability of total suspended matter (TSM) in Lake Taihu to calibrate and validate a TSM concentration estimation model based on Medium Resolution Imaging Spectrometer (MERIS) data. The estimation model of the TSM concentration in Lake Taihu was developed using top-of-atmosphere (TOA) radiance of MERIS image data at band 9 in combination with a regional empirical atmospheric correction model, which was strongly correlated with the in situ TSM concentration (r(2) = 0.720, pTSM concentration. The developed algorithm was applied to 50 MERIS images from 2003 to 2011 to obtain a high spatial and temporal heterogeneity of TSM concentrations in Lake Taihu. Seasonally, the highest and lowest TSM concentrations were found in spring and autumn, respectively. Spatially, TSM concentrations were high in the southern part and center of the lake and low in Xukou Bay, East Lake Taihu. The lake topography, including the water depth and distance from the shore, had a significant effect on the TSM spatial distribution. A significant correlation was found between the daily average wind speed and TSM concentration (r(2)= 0.685, pTSM variations in Lake Taihu. In addition, a low TSM concentration was linked to the appearance of submerged aquatic vegetation (SAV). Therefore, TSM dynamics were controlled by the lake topography, wind-driven sediment resuspension and SAV distribution.

  6. VIIRS Ocean Color Products over Turbid Coastal and Inland Waters

    Science.gov (United States)

    Wang, M.; Jiang, L.; Liu, X.; Son, S.; Sun, J.; Shi, W.; Tan, L.; Mikelsons, K.; Wang, X.; Lance, V. P.

    2016-02-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP), which has 22 spectral bands similar to the Moderate Resolution Imaging Spectroradiometer (MODIS), is a multi-disciplinary sensor providing observations for the Earth's atmosphere, land, and ocean properties. In this presentation, we provide some extensive evaluations and assessments of VIIRS ocean color data products, including normalized water-leaving radiance spectra nLw(l) at VIIRS five spectral bands, chlorophyll-a concentration, and diffuse attenuation coefficient at 490 nm Kd(490) (and at the photosynthetically available radiation (PAR), Kd(PAR)), over global open oceans and particularly turbid coastal and inland waters. Specifically, VIIRS ocean color products derived from the NOAA Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system, which is the NOAA official data processing system, are evaluated and compared with those from in situ measurements, as well as ocean color data derived from MODIS-Aqua. Specifically, we show evaluation results using the near-infrared (NIR)-based, shortwave infrared (SWIR)-based, and NIR-SWIR combined ocean color data processing approaches. Furthermore, to meet requirements from broad users (e.g., operational, research, modeling, etc.), we propose to routinely produce two VIIRS ocean color data streams, i.e., the near-real-time and science quality ocean color product data. The implementation details for the two data streams will be discussed. Our results show that VIIRS is capable of providing high-quality global ocean color products in support of the science researches and operational applications. Our efforts on instrument calibration using both solar and lunar calibration approaches for VIIRS Level-1B data, as well as the system vicarious calibration for improving ocean color products will also be discussed.

  7. Unraveling the environmental and anthropogenic drivers of bacterial community changes in the Estuary of Bilbao and its tributaries.

    Directory of Open Access Journals (Sweden)

    Mikel Aguirre

    Full Text Available In this study, 16S rRNA gene sequencing was used to characterize the changes in taxonomic composition and environmental factors significantly influencing bacterial community structure across an annual cycle in the Estuary of Bilbao as well as its tributaries. In spite of this estuary being small and characterized by a short residence time, the environmental factors most highly correlated with the bacterial community mirrored those reported to govern larger estuaries, specifically salinity and temperature. Additionally, bacterial community changes in the estuary appeared to vary with precipitation. For example, an increase in freshwater bacteria (Comamonadaceae and Sphingobacteriaceae was observed in high precipitation periods compared to the predominately marine-like bacteria (Rhodobacterales and Oceanospirillales that were found in low precipitation periods. Notably, we observed a significantly higher relative abundance of Comamonadaceae than previously described in other estuaries. Furthermore, anthropic factors could have an impact on this particular estuary's bacterial community structure. For example, ecosystem changes related to the channelization of the estuary likely induced a low dissolved oxygen (DO concentration, high temperature, and high chlorophyll concentration period in the inner euhaline water in summer (samples with salinity >30 ppt. Those samples were characterized by a high abundance of facultative anaerobes. For instance, OTUs classified as Cryomorphaceae and Candidatus Aquiluna rubra were negatively associated with DO concentration, while Oleiphilaceae was positively associated with DO concentration. Additionally, microorganisms related to biological treatment of wastewater (e.g Bdellovibrio and Zoogloea were detected in the samples immediately downstream of the Bilbao Wastewater Treatment Plant (WWTP. There are several human activities planned in the region surrounding the Estuary of Bilbao (e.g. sediment draining

  8. Unraveling the environmental and anthropogenic drivers of bacterial community changes in the Estuary of Bilbao and its tributaries.

    Science.gov (United States)

    Aguirre, Mikel; Abad, David; Albaina, Aitor; Cralle, Lauren; Goñi-Urriza, María Soledad; Estonba, Andone; Zarraonaindia, Iratxe

    2017-01-01

    In this study, 16S rRNA gene sequencing was used to characterize the changes in taxonomic composition and environmental factors significantly influencing bacterial community structure across an annual cycle in the Estuary of Bilbao as well as its tributaries. In spite of this estuary being small and characterized by a short residence time, the environmental factors most highly correlated with the bacterial community mirrored those reported to govern larger estuaries, specifically salinity and temperature. Additionally, bacterial community changes in the estuary appeared to vary with precipitation. For example, an increase in freshwater bacteria (Comamonadaceae and Sphingobacteriaceae) was observed in high precipitation periods compared to the predominately marine-like bacteria (Rhodobacterales and Oceanospirillales) that were found in low precipitation periods. Notably, we observed a significantly higher relative abundance of Comamonadaceae than previously described in other estuaries. Furthermore, anthropic factors could have an impact on this particular estuary's bacterial community structure. For example, ecosystem changes related to the channelization of the estuary likely induced a low dissolved oxygen (DO) concentration, high temperature, and high chlorophyll concentration period in the inner euhaline water in summer (samples with salinity >30 ppt). Those samples were characterized by a high abundance of facultative anaerobes. For instance, OTUs classified as Cryomorphaceae and Candidatus Aquiluna rubra were negatively associated with DO concentration, while Oleiphilaceae was positively associated with DO concentration. Additionally, microorganisms related to biological treatment of wastewater (e.g Bdellovibrio and Zoogloea) were detected in the samples immediately downstream of the Bilbao Wastewater Treatment Plant (WWTP). There are several human activities planned in the region surrounding the Estuary of Bilbao (e.g. sediment draining, architectural changes

  9. Formation of Cyclic Steps due to the Surge-type Turbidity Currents in a Flume Experiment

    Science.gov (United States)

    Yokokawa, M.

    2016-12-01

    Supercritical turbidity currents often form crescentic step-like wavy structures, which have been found at the submarine canyons, and deltaic environments. Field observations of turbidity currents and seabed topography on the Squamish delta in British Columbia, Canada revealed that cyclic steps formed by the surge-type turbidity currents (e.g., Hughes Clarke et al., 2012a; 2012b; 2014). The high-density portion of the flow, which affects the sea floor morphology, lasted only 30-60 seconds. The questions arise if we can reconstruct paleo-flow condition from the morphologic features of these steps. We don't know answers right now because there have been no experiments about the formative conditions of cyclic steps due to the "surge-type" turbidity currents. Here we did preliminary experiments on the formation of cyclic steps due to the multiple surge-type density currents, and compare the morphology of the steps with those of Squamish delta. First of all, we measured wave length and wave height of each step from profiles of each channels of Squamish delta from the elevation data and calculated the wave steepness. Wave steepness of active steps ranges about 0.05 to 0.15, which is relatively larger compare with those of other sediment waves. And in general, wave steepness is larger in the proximal region. The experiments had been performed at Osaka Institute of Technology. A flume, which is 7.0 m long, 0.3 m deep and 2 cm wide, was suspended in a larger tank, which is 7.6 m long, 1.2 m deep and 0.3 m wide, filled with water. The inner flume tilted at 7 degrees. Mixture of salt water (1.17 g/cm3) and plastic particles (1.5 g/cm3, 0.1-0.18 mm in diameter), whose weight ratio is 10:1, poured into the upstream end of the inner flume from head tank for 5 seconds. Discharge of the mixture was 240mL/s, thus for 5seconds 1200mL of mixture was released into the inner flume. We made 130 surges. As a result, four steps were formed ultimately, which were moving toward upstream

  10. Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data.

    Directory of Open Access Journals (Sweden)

    Yunlin Zhang

    Full Text Available Multiple comprehensive in situ bio-optical investigations were conducted from 2005 to 2010 and covered a large variability of total suspended matter (TSM in Lake Taihu to calibrate and validate a TSM concentration estimation model based on Medium Resolution Imaging Spectrometer (MERIS data. The estimation model of the TSM concentration in Lake Taihu was developed using top-of-atmosphere (TOA radiance of MERIS image data at band 9 in combination with a regional empirical atmospheric correction model, which was strongly correlated with the in situ TSM concentration (r(2 = 0.720, p<0.001, and n = 73. The relative root mean square error (RRMSE and mean relative error (MRE were 36.9% and 31.6%, respectively, based on an independent validation dataset that produced reliable estimations of the TSM concentration. The developed algorithm was applied to 50 MERIS images from 2003 to 2011 to obtain a high spatial and temporal heterogeneity of TSM concentrations in Lake Taihu. Seasonally, the highest and lowest TSM concentrations were found in spring and autumn, respectively. Spatially, TSM concentrations were high in the southern part and center of the lake and low in Xukou Bay, East Lake Taihu. The lake topography, including the water depth and distance from the shore, had a significant effect on the TSM spatial distribution. A significant correlation was found between the daily average wind speed and TSM concentration (r(2= 0.685, p<0.001, and n = 50, suggesting a critical role of wind speed in the TSM variations in Lake Taihu. In addition, a low TSM concentration was linked to the appearance of submerged aquatic vegetation (SAV. Therefore, TSM dynamics were controlled by the lake topography, wind-driven sediment resuspension and SAV distribution.

  11. Nitrogen isotope and mass balance approach in the Elbe Estuary

    Science.gov (United States)

    Sanders, Tina; Wankel, Scott D.; Dähnke, Kirstin

    2017-04-01

    The supply of bioavailable nitrogen is crucial to primary production in the world's oceans. Especially in estuaries, which act as a nutrient filter for coastal waters, microbial nitrogen turnover and removal has a particular significance. Nitrification as well as other nitrogen-based processes changes the natural abundance of the stable isotope, which can be used as proxies for sources and sinks as well as for process identification. The eutrophic Elbe estuary in northern Germany is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of dissolved inorganic nitrogen: Nitrification is responsible for significant estuarine nutrient regeneration, especially in the Hamburg Port. In our study, we aimed to quantify sources and sinks of nitrogen based on a mass and stable isotope budget in the Elbe estuary. A model was developed reproduce internal N-cycling and associated isotope changes. For that approach we measured dissolved inorganic nitrogen (DIN), particulate nitrogen and their stable isotopes in a case study in July 2013. We found an almost closed mass balance of nitrogen, with only low lost or gains which we attribute to sediment resuspension. The isotope values of different DIN components and the model approach both support a high fractionation of up to -25‰ during nitrification. However, the nitrogen balance and nitrogen stable isotopes suggest that most important processes are remineralization of organic matter to ammonium and further on the oxidation to nitrate. Denitrification and nitrate assimilation play a subordinate role in the Elbe Estuary.

  12. Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata

    OpenAIRE

    Bahman Ramavandi

    2014-01-01

    A biocoagulant was successfully extracted from Plantago ovata by using an FeCl3-induced crude extract (FCE). The potential of FCE to act as a natural coagulant was tested for clarification using the turbid water of a river. Experimental tests were performed to evaluate the effects of turbidity concentration, coagulant quantity, water pH, and humic acid concentration on the coagulation of water turbidity by FCE. The maximum turbidity removal was occurred at water pH

  13. Evaluation of flow regime of turbidity currents entering Dez Reservoir using extended shallow water model

    OpenAIRE

    Valery Ivanovich ELFIMOV; Hamid KHAKZAD

    2014-01-01

    In this study, the performance of the extended shallow water model (ESWM) in evaluation of the flow regime of turbidity currents entering the Dez Reservoir was investigated. The continuity equations for fluid and particles and the Navier-Stokes equations govern the entire flow of turbidity currents. The shallow water equations governing the flow of the depositing phase of turbidity currents are derived from these equations. A case study was conducted on the flow regime of turbidity currents e...

  14. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons

    OpenAIRE

    Azpiroz-Zabala, Maria; Cartigny, Matthieu J.B.; Talling, Peter J.; Parsons, Daniel R.; Sumner, Esther J.; Clare, Michael A.; Simmons, Stephen M.; Cooper, Cortis; Pope, Ed L.

    2017-01-01

    Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can expla...

  15. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.

    OpenAIRE

    Azpiroz-Zabala, Maria; Cartigny, Matthieu; Talling, Peter; Parsons, Daniel; Sumner, Esther; Clare, Michael; Simmons, Stephen; Cooper, Cortis; Pope, Ed

    2017-01-01

    Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can expla...

  16. Comparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric chloride

    OpenAIRE

    Mazyar Peyda; Tooran Yarahmadi; Mehran Mohammadian Fazli; Rezan Rezaeian; Negin Soleimani

    2016-01-01

    Background Turbidity removal using inorganic coagulants such as iron and aluminum salts in water treatment processes causes environmental and human health concern. Historically, the use of natural coagulant to purify turbid water has been practiced for a long time. Recent research indicates that Descurainia Sophia seed can be effectively used as a natural coagulant to remove water turbidity. Method: In this work, turbidity removal efficiency of Descurainia Sophia seed extract was compared...

  17. Site-specific probabilistic ecological risk assessment of a volatile chlorinated hydrocarbon-contaminated tidal estuary.

    Science.gov (United States)

    Hunt, James; Birch, Gavin; Warne, Michael St J

    2010-05-01

    Groundwater contaminated with volatile chlorinated hydrocarbons (VCHs) was identified as discharging to Penrhyn Estuary, an intertidal embayment of Botany Bay, New South Wales, Australia. A screening-level hazard assessment of surface water in Penrhyn Estuary identified an unacceptable hazard to marine organisms posed by VCHs. Given the limitations of hazard assessments, the present study conducted a higher-tier, quantitative probabilistic risk assessment using the joint probability curve (JPC) method that accounted for variability in exposure and toxicity profiles to quantify risk (delta). Risk was assessed for 24 scenarios, including four areas of the estuary based on three exposure scenarios (low tide, high tide, and both low and high tides) and two toxicity scenarios (chronic no-observed-effect concentrations [NOEC] and 50% effect concentrations [EC50]). Risk (delta) was greater at low tide than at high tide and varied throughout the tidal cycle. Spatial distributions of risk in the estuary were similar using both NOEC and EC50 data. The exposure scenario including data combined from both tides was considered the most accurate representation of the ecological risk in the estuary. When assessing risk using data across both tides, the greatest risk was identified in the Springvale tributary (delta=25%)-closest to the source area-followed by the inner estuary (delta=4%) and the Floodvale tributary (delta=2%), with the lowest risk in the outer estuary (delta=0.1%), farthest from the source area. Going from the screening level ecological risk assessment (ERA) to the probabilistic ERA changed the risk from unacceptable to acceptable in 50% of exposure scenarios in two of the four areas within the estuary. The probabilistic ERA provided a more realistic assessment of risk than the screening-level hazard assessment. Copyright (c) 2010 SETAC.

  18. Indian estuaries: Dynamics, ecosystems, and threats

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    runoff lead to striking temporal changes in salinity and velocity fields in these estuaries. A number of habitats that have adapted to such changes are found in the estuaries. The climate change will have an adverse impact on the habitats. So will local...

  19. Organic matter processing in tidal estuaries

    NARCIS (Netherlands)

    Middelburg, J.J.; Herman, P.M.J.

    2007-01-01

    Processing of organic matter in tidal estuaries modifies its transfer from the river to the sea. We examined the distribution and the elemental and isotopic composition of organic matter in nine tidal estuaries along the Atlantic coast of Europe (Elbe, Ems, Thames, Rhine, Scheldt, Loire, Gironde,

  20. Methane distribution in European tidal estuaries

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Iversen, N.; Høgh, N.; De Wilde, H.; Helder, W.; Seifert, R.; Christof, O.

    2002-01-01

    Methane concentrations have been measured along salinity profiles in nine tidal estuaries in Europe (Elbe, Ems, Thames, Rhine, Scheldt, Loire, Gironde, Douro and Sado). The Rhine, Scheldt and Gironde estuaries have been studied seasonally. A number of different methodologies have been used and they

  1. Trapping of sediment in tidal estuaries

    NARCIS (Netherlands)

    Chernetsky, A.

    2012-01-01

    An estuary is an ideal habitat for various aquatic species. At the same time, estuaries and adjacent rivers are used as fast navigation routes between the coastal and inland territories. The fast industrial development and the subsequent growth of cities and trade have led to large-scale

  2. Numerical Modeling of Hydrodynamic and Sediment Siltation Due to Typhoon in Estuary Channel Regulation

    Directory of Open Access Journals (Sweden)

    Zhao Hongbo

    2015-09-01

    Full Text Available Oujiang Estuary is a complex tidal estuary with many channels and shoals in the East China Sea, which was affected by typhoon frequently. The navigation channel of Wenzhou Port is located in the north branch of Oujiang Estuary, which happened serious sediment siltation in many times due to typhoon impact. The regulation is considered to decrease siltaion of the channel and protect shoals as well. According to the site survey data, the mathematic model is established and validated, which simulates the hydrodynamic, sediment transport and channel siltation due to typhoon in Oujiang Estuary. The channel regulation scenario is studied by the model simulation after analysis of the silation character. It indicates that the high concentration sediment from shoals north of channel is main sediment source caused siltation in the channel, which can be prevented into the channel by the regulation scenario and decrease siltation efficiently.

  3. Mercury distribution in contaminated surface sediments from four estuaries, Khuzestan shore, north part of Persian Gulf.

    Science.gov (United States)

    Sarasiab, Abdolah Raeisi; Hosseini, Mehdi; Mirsalari, Zohreh

    2014-11-01

    The distribution of mercury in surface sediment from four estuaries along the Khuzestan shore, north part of Persian Gulf, was measured. The concentration of mercury varied among sampling stations (p estuaries were from 0.01 to 2.16 µg g(-1). Relatively high mercury concentrations were observed in sediments from Musa estuary. The percentage of mercury associated with different fractions in the sediment from all stations were in the order of residual (70.4 %) > organic matter (16.6 %) > easily and exchangeable (2.2 %) > acid reduction (0.8 %). I geo values calculated for mercury (1.5) showed higher values in Musa estuary than in the other stations. The bioavailability of mercury in sediments could be controlled by physicochemical factors such as pH, oxidation and reduction potential, organic carbon content and cation exchange capacity.

  4. Genetic and shell morphological variability of the invasive bivalve Corbicula fluminea (Müller, 1774) in two Portuguese estuaries

    Science.gov (United States)

    Sousa, Ronaldo; Freire, Ruth; Rufino, Marta; Méndez, Josefina; Gaspar, Miguel; Antunes, Carlos; Guilhermino, Lúcia

    2007-08-01

    The identification of different species inside the Corbicula genus is complicated due to the high variation of shell shape, colour and sculpture of the individuals. The species Corbicula fluminea has been present in the River Minho estuary (NW Portugal) at least since 1989. More recently, individuals of the same genus colonized an adjacent estuary (River Lima estuary). Although appearing also to be C. fluminea, the individuals of the Lima estuary differ from those of Minho estuary in the colour and shape of the shell. Therefore, the two populations were compared by conventional morphometric measures (shell length, width and height), geometric morphometric methods (landmarks analysis using the interior of the shell) and genetic analysis (based on the mitochondrial cytochrome c oxidase subunit I gene sequence). Genetic analysis showed an identical mtCOI sequence indicating that both populations belong to the species C. fluminea. However, results of conventional and geometric morphometric analysis showed significant differences in shell shape between individuals from the two populations. These differences may be due to (a) phenotypical plasticity in response to different environmental and/or ecological conditions existing in the two estuaries, (b) different origins of the populations and/or distinct routes until reaching the two estuaries and (c) inter-population genetic differences caused by processes occurring after the introduction of the species in the two estuaries (e.g. differential selection).

  5. A turbidity current model for real world applications

    Science.gov (United States)

    Macías, Jorge; Castro, Manuel J.; Morales, Tomás

    2016-04-01

    Traditional turbidity current models suffer from several drawbacks. Among them not preserving freshwater mass, a missing pressure term, or not including terms related to deposition, erosion and entrainment in the momentum equation. In Morales et al.(2009) a new turbidity current model was proposed trying to overcome all these drawbacks. This model takes into account the interaction between the turbidity current and the bottom, considering deposition and erosion effects as well as solid bedload transport of particles at the bed due to the current. Moreover, this model includes the effects of the deposition, erosion and water entrainment into the momentum equation,commonly neglected in this type of models and, finally, in the absence of water entrainment, freshwater mass in the turbidity current is preserved. Despite these improvements, the numerical results obtained by this model when applied to real river systems were not satisfactory due to the simple form of the friction term that was considered. In the present work we propose a different parameterization of this term, where bottom and interface fluid frictions are separately parameterized with more complex expressions. Moreover, the discretization of the deposition/erosion terms is now performed semi-implicitly which guarantees the positivity of the volumetric concentration of sediments in suspension and in the erodible sediment layer at the bed. The numerical simulations obtained with this new turbidity current model (component of HySEA numerical computing platform) greatly improve previous numerical results for simplified geometries as well as for real river systems. Acknowledgements: This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069) and the Spanish Government Research project DAIFLUID (MTM2012-38383-C02-01) and Universidad de Málaga, Campus de Excelencia Andalucía TECH. References: T. Morales, M. Castro, C. Parés, and E. Fernández-Nieto (2009). On

  6. Impact of boat generated waves over an estuarine intertidal zone of the Seine estuary (France)

    Science.gov (United States)

    Deloffre, Julien; Lafite, Robert

    2015-04-01

    Water movements in macrotidal estuaries are controlled by the tidal regime modulated seasonally by the fluvial discharge. Wind effect on hydrodynamics and sediment transport is also reported at the mouth. Besides estuaries are frequently man altered our knowledge on the human impact on hydrodynamics and sediment transport is less extended. As an example on the Seine estuary (France) port authorities have put emphasis on facilitating economic exchanges by means of embankment building and increased dredging activity over the last century. These developments led to secure sea vessel traffic in the Seine estuary but they also resulted in a change of estuarine hydrodynamics and sediment transport features. Consequences of boat generated waves are varied: increased water turbidity and sediment transfer, release of nutrient and contaminants in the water column, harmful to users, ecosystems and infrastructures generating important maintenance spending. The aim of this study is to analyse the impact of boat generated waves on sediment transport over an intertidal area. The studied site is located on the left bank in the fluvial part of the Seine estuary. On this site the maximum tidal range ranges between 1.25 and 3.5m respectively during neap and spring tide. The sampling strategy is based on continuous ADV acquisition at 4Hz coupled with turbidimeter and altimeter measurements (1 measurement every minute) in order to decipher sediment dynamics during one year. Our results indicate that sediment dynamics are controlled by river flow while medium term scale evolution is dependent on tidal range and short term dynamics on sea-vessels waves. 64% of boat passages generated significant sediment reworking (from few mm.min-1 to 3cm.min-1). This reworking rate is mainly controlled by two parameters: (i) water height on the site and (ii) vessels characteristics; in particular the distance between seabed and keel that generate a Bernoulli wave (with maximum amplitude of 0.6m

  7. Complex movement patterns of greenback flounder (Rhombosolea tapirina) in the Murray River estuary and Coorong, Australia

    Science.gov (United States)

    Earl, Jason; Fowler, Anthony J.; Ye, Qifeng; Dittmann, Sabine

    2017-04-01

    The greenback flounder Rhombosolea tapirina is a commercially-important flatfish species in southern Australia and New Zealand, whose population dynamics are poorly understood. Acoustic telemetry was used to assess movement patterns and area use for R. tapirina in the Murray River estuary and Coorong, South Australia. Twenty fish (221-313 mm total length) equipped with acoustic transmitters were monitored for up to seven months during a period of high freshwater inflow. Fish were detected over a large part of the system, but showed a strong preference for brackish and near-marine conditions in the inner estuary. Tagged fish exhibited complex movement patterns that differed among individuals, including: (1) within estuary movements; (2) dispersal from the estuary to the sea; and (3) return migrations between the estuary and the sea. A diurnal shift in fine-scale area use was observed in the part of the estuary where residency was highest, with individuals occupying deeper habitats during the day and shallower areas during the night. The results demonstrate the individualistic and often highly transient behaviour of this species and its ability to undertake regular movements over the spatial scale of 10s of km. Understanding such movement patterns can improve effective management of estuarine flatfish populations and ecosystems.

  8. Suspended sediment dynamics on a seasonal scale in the Mandovi and Zuari estuaries, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Shynu, R.; Kessarkar, P.M.; Sundar, D.; Michael, G.S.; Narvekar, T.; Blossom, V.; Mehra, P.

    Suspended particulate matter (SPM) collected at regular stations from the Mandovi and Zuari estuaries indicates that the peaks of high SPM coincide with peaks of high rainfall and low salinity and also with peaks of moderate/low rainfall coupled...

  9. Riverbank filtration for the treatment of highly turbid Colombian rivers

    NARCIS (Netherlands)

    Gutierrez Marin, Juan Pablo; van Halem, D.; Rietveld, L.C.

    2017-01-01

    The poor quality of many Colombian surface waters forces us to seek alternative, sustainable treatment solutions with the ability to manage peak pollution events and to guarantee the uninterrupted provision of safe drinking water to the population. This review assesses the potential of using

  10. A Place to Call Home: A Synthesis of Delta Smelt Habitat in the Upper San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Ted Sommer

    2013-06-01

    Full Text Available We used a combination of published literature and field survey data to synthesize the available information about habitat use by delta smelt Hypomesus transpacificus, a declining native species in the San Francisco Estuary. Delta smelt habitat ranges from San Pablo and Suisun bays to their freshwater tributaries, including the Sacramento and San Joaquin rivers. In recent years, substantial numbers of delta smelt have colonized habitat in Liberty Island, a north Delta area that flooded in 1997. The species has a more upstream distribution during spawning as opposed to juvenile rearing periods. Post-larvae and juveniles tend to have a more downstream distribution during wetter years. Delta smelt are most common in low-salinity habitat (<6 psu with high turbidities (>12 NTU and moderate temperatures (7 °C to 25 °C. They do not appear to have strong substrate preferences, but sandy shoals are important for spawning in other osmerids. The evidence to date suggests that they generally require at least some tidal flow in their habitats. Delta smelt also occur in a wide range of channel sizes, although they seem to be rarer in small channels (<15 m wide. Nonetheless, there is some evidence that open water adjacent to habitats with long water-residence times (e.g. tidal marsh, shoal, low-order channels may be favorable. Other desirable features of delta smelt habitat include high calanoid copepod densities and low levels of submerged aquatic vegetation (SAV and the toxic algae Microcystis. Although enough is known to plan for large-scale pilot habitat projects, these efforts are vulnerable to several factors, most notably climate change, which will change salinity regimes and increase the occurrence of lethal temperatures. We recommend restoration of multiple geographical regions and habitats coupled with extensive monitoring and adaptive management. An overall emphasis on ecosystem processes rather than specific habitat features is also likely to be

  11. Flocculation and floc break-up related to tidally induced turbulent shear in a low-turbidity, microtidal estuary

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Andersen, Thorbjørn Joest

    2014-01-01

    . The asymmetrical, flood-dominated tidal wave showed how longer periods of low turbulent shear enhanced the hysteresis. The study demonstrates how the combination of the two deployment types will give a more adequate description of the flocculation dynamics over tidal cycles. Moreover, it shows the importance...... the dynamics on a short temporal scale (cycle) in the frame of the entire water column in the first campaign. In the second campaign the instruments were moored (Eulerian deployment) to get information on a longer temporal scale (> tidal cycle). The quasi-Lagrangian measurements showed strong...... flocculation and floc break-up dynamics in the lower part of the water column in the period around slack water. These dynamics were confirmed in the Eulerian deployments and were reoccurring in every tidal cycle. The dynamics were mostly governed by changes in turbulent shear. Strong microflocs with a lower...

  12. Effect of bottom stress formulation on modelled flow and turbidity maxima in cross-sections of tide-dominated estuaries

    NARCIS (Netherlands)

    Schramkowski, G.P.; de Swart, H.E.; Schuttelaars, H.

    2010-01-01

    A three-dimensional numerical model with a prognostic salinity field is used to investigate the effect of a partial slip bottom boundary condition on lateral flow and sediment distribution in a transect of a tidally dominated channel. The transect has a symmetrical Gaussian cross-channel bottom

  13. Effect of bottom stress formulation on modelled flow and turbidity maxima in cross-sections of tide-dominated estuaries

    NARCIS (Netherlands)

    Schramkowski, G.P.; De Swart, H.E.; Schuttelaars, H.M.

    2009-01-01

    A three-dimensional numerical model with a prognostic salinity field is used to investigate the effect of a partial slip bottom boundary condition on lateral flow and sediment distribution in a transect of a tidally dominated channel. The transect has a symmetrical Gaussian cross-channel bottom

  14. Turbidity of a Binary Fluid Mixture: Determining Eta

    Science.gov (United States)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  15. Holographic characterization of colloidal particles in turbid media

    Science.gov (United States)

    Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.

    2017-10-01

    Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.

  16. Effect of coagulants upon turbidity removal of waste water from the Chasnala coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, G.; Singh, P.K. [Bira Institute of Technology Sindri, Dhanbad (India)

    2009-07-01

    In this paper, attempt has been made to control the extremely high turbidity of mine waste water by using different coagulants and it is observed that ferrous sulphate is the most effective coagulant followed by alum, ferric sulphate and lime. Also combinations of coagulants are used for getting the optimal results. Further steps are also discussed to make this water portable and a scheme of low cost water supply system of mine waste water has been suggested under the Water Management Strategies. 15 refs., 4 figs., 1 tab.

  17. Coral assemblages are structured along a turbidity gradient on the Southwestern Gulf of Mexico, Veracruz

    Science.gov (United States)

    Jordán-Garza, A. G.; González-Gándara, C.; Salas-Pérez, J. J.; Morales-Barragan, A. M.

    2017-04-01

    Corals on the reef corridor of the southwestern Gulf of Mexico have evolved on a terrigenous shallow continental shelf under the influence of several natural river systems. As a result, water turbidity on these reefs can be high, with visibility as low as Veracruz reef systems share a similar number of coral species (p=0.78 mult. comp.) and both showed higher species richness than the southern system (pVeracruz reef system is at the same time unique and shares a pool of coral species. To protect these ecosystems it is necessary to effectively manage water quality and consider coral diversity on the reef corridor of the southwestern Gulf of Mexico.

  18. Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden

    Directory of Open Access Journals (Sweden)

    G. Göransson

    2013-07-01

    Full Text Available The turbidity variation in time and space is investigated in the downstream stretch of the river Göta Älv in Sweden. The river is heavily regulated and carries the discharge from the largest fresh water lake in Sweden, Lake Vänern, to the outflow point in Göteborg Harbour on the Swedish west coast. The river is an important waterway and serves as a fresh-water supply for 700 000 users. Turbidity is utilised as a water quality indicator to ensure sufficient quality of the intake water to the treatment plant. The overall objective of the study was to investigate the influence of rainfall, surface runoff, and river water flow on the temporal and spatial variability of the turbidity in the regulated river system by employing statistical analysis of an extensive data set. A six year long time series of daily mean values on precipitation, discharge, and turbidity from six stations along the river were examined primarily through linear correlation and regression analysis, combined with nonparametric tests and analysis of variance. The analyses were performed on annual, monthly, and daily bases, establishing temporal patterns and dependences, including; seasonal changes, impacts from extreme events, influences from tributaries, and the spatial variation along the river. The results showed that there is no simple relationship between discharge, precipitation, and turbidity, mainly due to the complexity of the runoff process, the regulation of the river, and the effects of Lake Vänern and its large catchment area. For the river Göta Älv, significant, positive correlations between turbidity, discharge, and precipitation could only be found during periods with high flow combined with heavy rainfall. Local precipitation does not seem to have any significant impact on the discharge in the main river, which is primarily governed by precipitation at catchment scale. The discharge from Lake Vänern determines the base level for the turbidity in the river

  19. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  20. Foraminifera, Thecamoebians and Palynomorphs as Hydrodynamic Indicators in Araguari Estuary, Amazonian Coast, Amapá State – Brazil

    Directory of Open Access Journals (Sweden)

    Odete Fátima Machado

    2010-01-01

    Full Text Available The Araguari estuarine dynamics is singular among traditional models of estuaries under tidal regime due to influence of macrotidal and tidal bore. In order to establish estuarine zones in Araguari according foraminifera, thecamoebians, paliynomorphs and physical-chemistry parameters, sixteen sample stations were established along the estuary. Turbidity and temperature were the environmental parameters which allowed determination of the estuarine gradient. Eighteen species of foraminifera, ten of thecamoebians and fourteen of particulate organic matter types were identified. Cluster analysis in R-mode showed three microorganism assemblages and four palynomorph ones. The CCA analyze shows turbidity and total organic matter with the most influence over foraminiferal and thecamoebians distribution at Araguari. Clustering analysis in Q-mode using all data formed four groups suggesting three estuarine zones in Araguari: Zone I composed of thecamoebian species and continental palynomorphs; Zone II - composed by mangrove foraminifera, thecamoebians and all palynomorph assemblages; and Zone III – composed by mangrove and estuarine foraminifera and all palynomorph assemblages.

  1. Water turbidity optical meter using optical fiber array for topographical distribution analysis

    Science.gov (United States)

    Mutter, Kussay Nugamesh; Mat Jafri, Mohd Zubir; Yeoh, Stephenie

    2017-06-01

    This work is presenting an analysis study for using optical fiber array as turbidity meter and topographical distribution. Although many studies have been figure out of utilizing optical fibers as sensors for turbidity measurements, still the topographical map of suspended particles in water as rare as expected among all of works in literatures in this scope. The effect of suspended particles are highly affect the water quality which varies according to the source of these particles. A two dimensional array of optical fibers in a 1 litter rectangular plastic container with 2 cm cladding off sensing portion prepared to point out 632.8 nm laser power at each fiber location at the container center. The overall output map of the optical power were found in an inhomogeneous distribution such that the top to down layers of a present water sample show different magnitudes. Each sample prepared by mixing a distilled water with large grains sand, small grains sand, glucose and salt. All with different amount of concentration which measured by refractometer and turbidity meter. The measurements were done in different times i.e. from 10 min to 60 min. This is to let the heavy particles to move down and accumulate at the bottom of the container. The results were as expected which had a gradually topographical map from low power at top layers into high power at bottom layers. There are many applications can be implemented of this study such as transport vehicles fuel meter, to measure the purity of tanks, and monitoring the fluids quality in pipes.

  2. Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study.

    Science.gov (United States)

    He, Hu; Hu, En; Yu, Jinlei; Luo, Xuguang; Li, Kuanyi; Jeppesen, Erik; Liu, Zhengwen

    2017-02-01

    It is well established that benthivorous fish in shallow lakes can create turbid conditions that influence phytoplankton growth both positively, as a result of elevated nutrient concentration in the water column, and negatively, due to increased attenuation of light. The net effect depends upon the degree of turbidity induced by the benthivores. Stocked Carassius carassius dominate the benthivorous fish fauna in many nutrient-rich Chinese subtropical and tropical shallow lakes, but the role of the species as a potential limiting factor in phytoplankton growth is ambiguous. Clarification of this relationship will help determine the management strategy and cost of restoring eutrophic lakes in China and elsewhere. Our outdoor mesocosm experiment simulating the effect of high density of crucian carp on phytoplankton growth and community structure in eutrophic shallow lakes suggests that stocking with this species causes resuspension of sediment, thereby increasing light attenuation and elevating nutrient concentrations. However, the effect of light attenuation was insufficient to offset the impact of nutrient enhancement on phytoplankton growth, and significant increases in both phytoplankton biomass and chlorophyll a concentrations were recorded. Crucian carp stocking favored the dominance of diatoms and led to lower percentages (but not biomass) of buoyant cyanobacteria. The dominance of diatoms may be attributed to a competitive advantage of algal cells with high sedimentation velocity in an environment subjected to frequent crucian carp-induced resuspension and entrainment of benthic algae caused by the fish foraging activities. Our study demonstrates that turbidity induced by stocked crucian carp does not limit phytoplankton growth in eutrophic waters. Thus, removal of this species (and presumably other similar taxa) from subtropical or tropical shallow lakes, or suspension of aquaculture, is unlikely to boost phytoplankton growth, despite the resulting

  3. Ecosystem services transcend boundaries: estuaries provide resource subsidies and influence functional diversity in coastal benthic communities.

    Directory of Open Access Journals (Sweden)

    Candida Savage

    Full Text Available BACKGROUND: Estuaries are highly productive ecosystems that can export organic matter to coastal seas (the 'outwelling hypothesis'. However the role of this food resource subsidy on coastal ecosystem functioning has not been examined. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the influence of estuarine primary production as a resource subsidy and the influence of estuaries on biodiversity and ecosystem functioning in coastal mollusk-dominated sediment communities. Stable isotope values (δ(13C, δ(15N demonstrated that estuarine primary production was exported to the adjacent coast and contributed to secondary production up to 4 km from the estuary mouth. Further, isotope signatures of suspension feeding bivalves on the adjacent coast (Dosinia subrosea closely mirrored the isotope values of the dominant bivalves inside the estuaries (Austrovenus stutchburyi, indicating utilization of similar organic matter sources. However, the food subsidies varied between estuaries; with estuarine suspended particulate organic matter (SPOM dominant at Tairua estuary, while seagrass and fringing vegetation detritus was proportionately more important at Whangapoua estuary, with lesser contributions of estuarine SPOM. Distance from the estuary mouth and the size and density of large bivalves (Dosinia spp. had a significant influence on the composition of biological traits in the coastal macrobenthic communities, signaling the potential influence of these spatial subsidies on ecosystem functioning. CONCLUSIONS/SIGNIFICANCE: Our study demonstrated that the locations where ecosystem services like productivity are generated are not necessarily where the services are utilized. Further, we identified indirect positive effects of the nutrient subsidies on biodiversity (the estuarine subsidies influenced the bivalves, which in turn affected the diversity and functional trait composition of the coastal sediment macrofaunal communities. These findings highlight the

  4. Assessing the impact of nutrient enrichment in estuaries: susceptibility to eutrophication.

    Science.gov (United States)

    Painting, S J; Devlin, M J; Malcolm, S J; Parker, E R; Mills, D K; Mills, C; Tett, P; Wither, A; Burt, J; Jones, R; Winpenny, K

    2007-01-01

    The main aim of this study was to develop a generic tool for assessing risks and impacts of nutrient enrichment in estuaries. A simple model was developed to predict the magnitude of primary production by phytoplankton in different estuaries from nutrient input (total available nitrogen and/or phosphorus) and to determine likely trophic status. In the model, primary production is strongly influenced by water residence times and relative light regimes. The model indicates that estuaries with low and moderate light levels are the least likely to show a biological response to nutrient inputs. Estuaries with a good light regime are likely to be sensitive to nutrient enrichment, and to show similar responses, mediated only by site-specific geomorphological features. Nixon's scale was used to describe the relative trophic status of estuaries, and to set nutrient and chlorophyll thresholds for assessing trophic status. Estuaries identified as being eutrophic may not show any signs of eutrophication. Additional attributes need to be considered to assess negative impacts. Here, likely detriment to the oxygen regime was considered, but is most applicable to areas of restricted exchange. Factors which limit phytoplankton growth under high nutrient conditions (water residence times and/or light availability) may favour the growth of other primary producers, such as macrophytes, which may have a negative impact on other biological communities. The assessment tool was developed for estuaries in England and Wales, based on a simple 3-category typology determined by geomorphology and relative light levels. Nixon's scale needs to be validated for estuaries in England and Wales, once more data are available on light levels and primary production.

  5. Ecosystem services transcend boundaries: estuaries provide resource subsidies and influence functional diversity in coastal benthic communities.

    Science.gov (United States)

    Savage, Candida; Thrush, Simon F; Lohrer, Andrew M; Hewitt, Judi E

    2012-01-01

    Estuaries are highly productive ecosystems that can export organic matter to coastal seas (the 'outwelling hypothesis'). However the role of this food resource subsidy on coastal ecosystem functioning has not been examined. We investigated the influence of estuarine primary production as a resource subsidy and the influence of estuaries on biodiversity and ecosystem functioning in coastal mollusk-dominated sediment communities. Stable isotope values (δ(13)C, δ(15)N) demonstrated that estuarine primary production was exported to the adjacent coast and contributed to secondary production up to 4 km from the estuary mouth. Further, isotope signatures of suspension feeding bivalves on the adjacent coast (Dosinia subrosea) closely mirrored the isotope values of the dominant bivalves inside the estuaries (Austrovenus stutchburyi), indicating utilization of similar organic matter sources. However, the food subsidies varied between estuaries; with estuarine suspended particulate organic matter (SPOM) dominant at Tairua estuary, while seagrass and fringing vegetation detritus was proportionately more important at Whangapoua estuary, with lesser contributions of estuarine SPOM. Distance from the estuary mouth and the size and density of large bivalves (Dosinia spp.) had a significant influence on the composition of biological traits in the coastal macrobenthic communities, signaling the potential influence of these spatial subsidies on ecosystem functioning. Our study demonstrated that the locations where ecosystem services like productivity are generated are not necessarily where the services are utilized. Further, we identified indirect positive effects of the nutrient subsidies on biodiversity (the estuarine subsidies influenced the bivalves, which in turn affected the diversity and functional trait composition of the coastal sediment macrofaunal communities). These findings highlight the importance of integrative ecosystem-based management that maintains the

  6. Turbidity removal: Gravel and charcoal as roughing filtration media

    Directory of Open Access Journals (Sweden)

    Josiah A. Adeyemo

    2010-10-01

    Full Text Available Roughing filtration is an important pre-treatment process for wastewater, because it efficiently separates fine solid particles over prolonged periods, without the addition of chemicals. For this study, a pilot plant was designed at Delmas Coal Mine in the Mpumalanga province of South Africa. The design and sizing of the pilot plant was guided by Wegelin’s design criteria. Gravel was used as a control medium because it is one of the most commonly used roughing filter media and because it was used in developing the criteria. We compared the performance of gravel as a filter medium to that of another locally available material, charcoal, for the removal of turbidity in wastewater. The pilot plant was monitored continuously for 90 days from commissioning until the end of the project. The overall performance of the roughing filter in turbidity removal, using gravel or charcoal, was considered efficient for the pre-treatment of waste water. Charcoal performed slightly better than gravel as a filter medium for the removal of turbidity, possibly because charcoal has a slightly higher specific surface area and porosity than gravel, which could enhance sedimentation and other filtration processes, such as adsorption, respectively.

  7. Clearing muddied waters: Capture of environmental DNA from turbid waters.

    Science.gov (United States)

    Williams, Kelly E; Huyvaert, Kathryn P; Piaggio, Antoinette J

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest.

  8. Experimental study on cyclic steps formed by surge-type turbidity currents

    Science.gov (United States)

    Yokokawa, M.; Shozakai, D.; Higuchi, H.; Hughes Clarke, J. E.; Izumi, N.

    2015-12-01

    Field observations of turbidity currents and seabed topography on the Squamish delta in Howe Sound, British Columbia, Canada have been undertaken which found bedwaves actively migrating in the upstream direction in channels formed on the prodelta slope (Hughes Clarke et al., 2012a; 2012b; 2014; Figure 1). Their topography and behaviour suggest that they are cyclic steps formed by the surge-type turbidity currents. There has been no experimental study to investigate the formative conditions of cyclic steps by the surge-type turbidity currents. We did preliminary experiments on the formation of cyclic steps due to the multiple surge-type density currents, and compare the morphology of the steps with those of Squamish delta. The experiments had been performed at Osaka Institute of Technology. A flume, which is 3.6 m long, 0.3 m deep and 2 cm wide, was submerged into a larger flume, which is 4 m long, 0.4 m deep and 8 cm wide, filled with water. Mixture of salt water (1.18 g/cm3) and plastic particles (1.5 g/cm3, 0.1-0.18 mm in diameter) poured into the upstream end of the inner flume by hand using a funnel. For the example introduced here, the slope of the outer flume was 1.5 degrees, and the mixtures' whole weight and volumetric concentration ranged from 310 g (3.23 vol.%) to 510 g (8.16 vol.%). These mixtures were poured 105 times, and the thickness of the deposits was measured every 50 cm by photographs. As a result, two mounds (steps) were formed ultimately, which are moving toward upstream direction. Wavelengths are 80 cm and 120 cm respectively. The two kinds of flow depth were measured from photograph, such as the whole thickness of the flow, and the thickness of the lower high-density layer. Calculating the wave steepness and non-dimensional wave number, it turns out that those values using the thickness of the lower high-density layer fall into the region very close to the Squamish data that assuming the flow depth as 0.5 m. This could lead the following

  9. Management and sediment dynamics of the St. Lucia Estuary mouth, Zululand, South Africa

    Science.gov (United States)

    Wright, C. I.; Mason, T. R.

    1993-11-01

    St. Lucia Estuary is on the subtropical, predominantly microtidal Zululand coast of South Africa. Lake St. Lucia's surface area fluctuates between 420 and 215 km2 and has a mean depth of less than 1 m. The 21-km-long narrows connects Lake St. Lucia with the Indian Ocean. Tidal effects penetrate 14 km up the narrows. The St. Lucia system has changed substantially since the 1930s due to bad farming techniques within its catchment. Large amounts of sediment were deposited in the estuary mouth, resulting in relocation of the Mfolozi River mouth to the south at Mapelane. The St. Lucia catchment was subjected to two devastating floods in the last ten years: Cyclone Domoina during February 1984 and the September 1987 cutoff low flood. After floods scoured out the estuary, marine sand advanced up the estuary at a rate of 1200 m/y as a series of flood-tidal deltas. Over 600,000 m3 of sediment accumulated in the St. Lucia Estuary mouth from February 1988 to November 1989. Of this amount, 466,000 m3 of sediment was removed by dredging, although this has not stopped the shoaling. During high rainfall years, the estuary mouth is able to maintain an open outlet to the sea, but as lake levels drop, shoaling causes the mouth to constrict and eventually close. Without the dredging program the mouth would ultimately close during low rainfall years, causing management problems.

  10. Collaborative Potential between National Estuary Programs ...

    Science.gov (United States)

    Estuaries are among the most productive ecosystems in the world, providing unique habitat for freshwater and marine species as well as valuable social and economic benefits. The wealth of ecosystem goods and services from estuaries has led to growth and development of human communities in adjacent areas and an increase in human activities that can adversely affect water quality and critical habitat. Managing for sustainable estuaries requires a balance of environmental concerns with community social and economic values. This has created an opportunity to leverage Environmental Protection Agency (EPA) scientific knowledge and tools with National Estuary Program (NEP) planning and management expertise to address environmental challenges in important estuarine ecosystems. The non-regulatory National Estuary Program (NEP) was outlined in the Clean Water Act to provide stakeholders an opportunity to monitor and manage ‘nationally significant’ estuaries. Currently there are 28 estuaries in the NEP, broadly distributed across the Atlantic, Pacific and Gulf Coasts, and in Puerto Rico. The local NEP management conferences must address a variety of environmental issues, from water quality and natural resources to coastal and watershed development. While the underlying objectives of each NEP are quite similar, each has unique landscapes, land uses, waterbodies, habitats, biological resources, economies and social culture. Consequently, the effects and severity of anthr

  11. The diet and consumption of dominant fish species in the upper Scheldt estuary, Belgium

    DEFF Research Database (Denmark)

    Maes, J.; De Brabandere, Loreto; Ollevier, F.

    2003-01-01

    the fish assemblage: two goby species, herring, sprat, bass, flounder, eel and pikeperch. Together, they had preyed upon 31 different prey taxa. Calanoid copepods and hyperbenthic mysids were the most important prey items with macrobenthic invertebrates being largely ignored. Pair-wise comparisons......Seasonal changes in the diet composition and trophic niche overlap were examined for the dominant members of the fish assemblage of the turbid low-salinity zone of the Scheldt estuary (Belgium). Samples of fish were taken in the cooling water of a power plant. Juveniles of eight species dominated...... of trophic niche overlap showed that, in general, niche overlap between individuals of the same species was significantly higher than overlap between individuals from different species, suggesting that the available food resources were partitioned. The total annual prey consumption by the dominant fish...

  12. Polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries of China: Distribution, seasonal variations and ecological risk assessment.

    Science.gov (United States)

    Yan, Jinxia; Liu, Jingling; Shi, Xuan; You, Xiaoguang; Cao, Zhiguo

    2016-08-15

    The distribution, seasonal variations and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries in Hai River Basin of China, which has been suffering from different anthropogenic pressures, were investigated. In three estuaries, the average concentration of ΣPAHs was the lowest in Luan River estuary, followed by Hai River estuary, and the highest in Zhangweixin River estuary. There were significant seasonal variations in ΣPAHs, the concentrations of ΣPAHs were higher in November than in May and August. The composition profiles of PAHs in different sites were significantly different, and illustrated seasonal variations. Generally, 2-ring (Nap) and 3-ring PAHs (Acp, Fl and Phe) were the most abundant components at most sampling sites in three estuaries. The PAHs in three estuaries were mainly originated from pyrogenic sources. A method based on toxic equivalency factors (TEFs) and risk quotient (RQ) was proposed to assess the ecological risk of ΣPAHs, with the ecological risk of individual PAHs being considered separately. The results showed that the ecological risks caused by ΣPAHs were high in Hai River estuary and Zhangweixin River estuary, and moderate in Luan River estuary. The mean values of ecological risk in August were lower than those in November. The contributions of individual PAHs to ecological risk were different in May, August and November. 3-ring and 4-ring PAHs accounted for much more ecological risk than 2-ring, 5-ring and 6-ring, although the contributions of 5-ring and 6-ring to ecological risk were higher than these to PAHs concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Distinguishing resuspension and advection signals in a hypertidal estuary

    Science.gov (United States)

    Todd, David; Souza, Alex; Jago, Colin

    2015-04-01

    concentration gradient were opposed by a possible asymmetrical flocculation signal with asymmetrically larger particles occurring during low water than high water. This led to faster settling particles at low water and therefore, over time, a tidal pumping mechanism which transports material up the estuary.

  14. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years.

    Science.gov (United States)

    Jiang, Zhibing; Liu, Jingjing; Chen, Jianfang; Chen, Quanzhen; Yan, Xiaojun; Xuan, Jiliang; Zeng, Jiangning

    2014-05-01

    The phytoplankton community in the Changjiang Estuary is subject to intensive physical and chemical stresses because of human- and climate-driven changes. We obtained historical data on summer phytoplankton communities from 1959 to 2009 to explore responses to long-term environmental changes. The nitrogen (N) and phosphorus (P) concentrations and ratios (N/P and N/Si) increased because of persistent riverine loading, but silicon (Si) levels remained constant. Climatic changes and extensive water diversions and withdrawals (sediment retention) resulted in a series of physical alterations, including increased temperature, turbidity reduction, and river plume shrinkage. These changes induced a dramatic increase in microalgal biomass (cell density and chlorophyll a) with a decreasing diatom-dinoflagellate ratio, and exacerbated harmful algal blooms. In the past dominant net-collected species were usually chain-forming diatoms; however, more recently, large dinoflagellates and filamentous cyanobacteria dominate. This was not consistent with information from water samples (co-dominated by small dinoflagellates), because of the loss of solitary species collected using a 76-μm net. The dominant species shifted from temperate-subtropical/eurythermal to subtropical-tropical/eurythermal taxa in the warmer water caused by global warming and hydrographic changes. There was also an increased dominance of euryhaline/high-salinity species due to increase in Kuroshio transport and the northward Taiwan Warm Current and reduction in Changjiang Diluted Water. All these changes in phytoplankton communities appear to be closely related to an increase in anthropogenic activities and climatic changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A pre-enrichment step is essential for detection of Campylobacter sp. in turbid pond water.

    Science.gov (United States)

    Abulreesh, H H; Paget, T A; Goulder, R

    2014-06-01

    This work aimed to detect Campylobacter species from naturally contaminated turbid pond water by PCR. A total of 16 water samples were collected from a turbid village pond. Four methods of DNA extraction were applied to centrifuge pellets from eight 100 ml pond water samples prior to attempted detection of Campylobacter by PCR without an enrichment step. These methods were (1) Tris-HCl and sodium dodecyl sulfate followed by phenol:chloroform:isoamylalcohol extraction followed by treatment with DNA clean up kit, (2) proteinase K, (3) Chelex® 100, and (4) boiling. The other eight pond water samples (10 ml and 100 ml) were filtered and filters were incubated overnight in Preston enrichment broth. The centrifuge pellets obtained from enrichment cultures were treated by proteinase K for DNA extraction. Primers CF03 and CF04 for the flagellin genes (flaA and flaB) of Campylobacter jejuni and Campylobacter coli were used for amplifying the extracted DNA. The DNA extracted from eight-100 ml pond water samples that were not subject to selective enrichment was never amplified with primers CF03 and CF04, hence Campylobacter was not detected. In contrast, the DNA that was from samples that were subjected to a selective enrichment step in Preston broth prior to PCR assay always gave amplified bands of 340-380 bp, therefore the presence of Campylobacter was confirmed. Detection of campylobacters from naturally contaminated, turbid, environmental water may not be feasible by direct PCR assay because of low numbers and the presence of high concentration of humic matter and other PCR inhibitors. The enrichment of water samples in selective broth, however, facilitated PCR detection of Campylobacter probably by increasing cell number and by diluting PCR inhibitors.

  16. Trout coelomic fluid suitability as Goldfish oocyte extender can be determined by a simple turbidity test.

    Science.gov (United States)

    Depince, A; Marandel, L; Goardon, L; Le Bail, P-Y; Labbe, C

    2011-06-01

    Regeneration technologies such as androgenesis, intracytoplasmic sperm injection, and nuclear transfer require that handling conditions do not alter oocyte ability to sustain embryo development. One important parameter in the maintenance of oocyte quality in fish is the possibility to prevent oocytes activation during manipulation. In Cyprinid, such activation is known to be delayed when Salmonid coelomic fluid is used as incubation medium. Coelomic fluid however is a biological fluid whose ability to sustain oocyte quality during in vitro incubation may be variable. The purpose of the present work was to explore this variability using Rainbow Trout (Oncorhynchus mykiss) coelomic fluid (TCF) and Goldfish (Carassius auratus) oocytes, and to set up a test which would reflect TCF suitability for Goldfish oocyte incubation. We showed that different TCF induced very different development rates after oocyte incubation for 30 min at 20 °C: at 24h post fertilization (pf) and at hatching, rates ranged between 35% and 110% of the non-incubated controls. When TCF (1 volume) was mixed with tap water (9 volumes), a precipitate developed whose extent was measured by spectrophotometry. This turbidity test proved to be highly correlated to development rates after Goldfish oocyte incubation in TCF (r(2) = 0.83 at hatching, n = 150): TCF with the highest turbidity (> 1.5 absorbance unit at 400 nm) were the ones which altered the most the development rates after incubation (less than 50 % at hatching). This easy and rapid turbidity test can therefore be used as a reliable estimator of TCF suitability for Goldfish oocyte incubation and manipulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Pathways of Methylmercury Transfer to the Water Column Across Multiple Estuaries

    Science.gov (United States)

    Schartup, A. T.; Balcom, P. H.; Mason, R. P.; Chen, C.

    2014-12-01

    Estuarine water column methylmercury (MeHg) is an important driver of bioaccumulation in pelagic organisms so it is important to understand the sources and cycling of MeHg. As MeHg biomagnifies in food webs, increased water column concentrations can be transferred to fish consumed by humans. Few studies have taken a multi-estuary approach to look at MeHg cycling in the water column of these important MeHg producing areas. We examined the distributions and partitioning of sediment and water column MeHg across a geographic range of estuaries. In 2008 we sampled 10 shallow-water estuarine sites from Maine to New Jersey, sampled 11 sites in 4 estuaries in 2009, and sampled at 3 estuarine turbidity maximum (ETM) sites in 1 estuary in 2012. Sediment measurements included both solid phase and pore water MeHg and total mercury (HgT). Water column parameters included dissolved and particulate MeHg and HgT, total suspended solids, nutrients, and dissolved organic carbon. Average suspended particle MeHg was highest at Wells (ME; 6 to 11.5 pmol/g; 4.5 to 7% of HgT) and lowest at Portsmouth (NH) and in Long Island Sound (CT-NY; 0.2 to 5.5 pmol/g; 0.25 to 3.75% of HgT). Average water column dissolved MeHg was highest in the Delaware River ETM (0.5 to 0.7 pM; 16 to 24% of HgT) and lowest at Portsmouth (0.06 to 0.12 pM; 1 to 2% of HgT). Significant positive correlations were found between MeHg and HgT across multiple estuaries in both sediment and the water column in 2008 and 2009. In contrast, water column dissolved and suspended particle MeHg do not correlate well with sediment MeHg or HgT, pore water MeHg or methylation rates in sediment across estuaries, indicating that sediment is often not a good predictor of water MeHg levels. However, ratios of average dissolved:pore water MeHg and suspended particle:sediment MeHg are close to 1 in the Delaware River ETM, suggesting that sediment supplies MeHg to the water column in this turbulent region, but average pore water MeHg was

  18. Salinity and suspended matter variations in the Tay estuary

    Science.gov (United States)

    McManus, John

    2005-03-01

    The concept of salinity-induced density layering in estuaries was first demonstrated from the upper reaches of the Tay. In this study the nature of the layering and its variation through the tidal cycle is demonstrated from time series of observations taken at many locations within this estuary. Thorough mixing of the waters on the rising tide, as defined by depth profiles of salinity, is commonly replaced by salinity layering during the high water slack period. This condition continues into the falling tide. Frequently the mixed waters are abruptly replaced by stratified waters within the half-hourly sampling interval. This is attributed to the activity of longitudinal fronts, manifest as surficial foam bands, along which water masses shear past each other on both the flood and ebb tides. Offsetting of transverse salinity coutours along the fronts is introduced to explain apparent complexities in surface water salinity distributions measured at high water slack. Suspended particulate matter concentrations increase towards the limit of the saline water intrusion before decreasing headwards into the freshwater zone of the estuary. The suspensions in the water column may also be displaced by the lateral offsetting of the waters along the fronts. The recognition of the presence of fronts, and a knowledge of their impact on the estuarine waters may provide an alternative means of understanding the flow characteristics of these challenging water bodies. The techniques of spatial and temporal averaging normally widely used today may not be the most realistic approach to analysis of the flows.

  19. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    Science.gov (United States)

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Use of Moringa oleifera seeds for the removal of turbidity of water supply

    Directory of Open Access Journals (Sweden)

    Gustavo Lopes Muniz

    2015-04-01

    Full Text Available Water used for human consumption may contain various impurities and solid particles in suspension that increase its turbidity level. Moringa oleifera Lam is a plant that has the potential to be used as coagulating agent in removing turbidity. The objective of this work was to evaluate the efficiency of Moringa oleifera seeds used in shells and without shells in the removal of turbidity from waters with different degrees of turbidity. Waters were used with 70, 250 and 400 initial NTU obtained synthetically. The extract of moringa seeds was prepared using unshelled and shelled seeds, seeking a simplified procedure and practice. The sedimentation times and dose of coagulant solution used were based on existing recommendations in the literature. All treatments were performed with three replicates and the averages depicted in graphs. The results showed that the use of extract of moringa seeds in shells was more efficient than with unshelled seeds in the removal of turbidity of all treatments and that the shelled seeds removed more than 99% of the initial turbidity of the water samples. Furthermore, there was a direct relationship between turbidity removal efficiency and the level of initial turbidity of the samples. The seeds were more efficient in removing turbidity of the water with a higher level of initial turbidity.

  1. Turbid releases from Glen Canyon Dam, Arizona, following rainfall-runoff events of September 2013

    Science.gov (United States)

    Wildman, Richard A.; Vernieu, William

    2017-01-01

    Glen Canyon Dam is a large dam on the Colorado River in Arizona. In September 2013, it released turbid water following intense thunderstorms in the surrounding area. Turbidity was >15 nephelometric turbidity units (NTU) for multiple days and >30 NTU at its peak. These unprecedented turbid releases impaired downstream fishing activity and motivated a rapid-response field excursion. At 5 locations upstream from the dam, temperature, specific conductance, dissolved oxygen, chlorophyll a, and turbidity were measured in vertical profiles. Local streamflow and rainfall records were retrieved, and turbidity and specific conductance data in dam releases were evaluated. Profiling was conducted to determine possible sources of turbidity from 3 tributaries nearest the dam, Navajo, Antelope, and Wahweap creeks, which entered Lake Powell as interflows during this study. We discuss 4 key conditions that must have been met for tributaries to influence turbidity of dam releases: tributary flows must have reached the dam, tributary flows must have been laden with sediment, inflow currents must have been near the depth of dam withdrawals, and the settling velocity of particles must have been slow. We isolate 2 key uncertainties that reservoir managers should resolve in future similar studies: the reach of tributary water into the reservoir thalweg and the distribution of particle size of suspended sediment. These uncertainties leave the source of the turbidity ambiguous, although an important role for Wahweap Creek is possible. The unique combination of limnological factors we describe implies that turbid releases at Glen Canyon Dam will continue to be rare.

  2. CREEK Project's Microzooplankton Seasonal Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  3. CREEK Project's Nekton Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  4. CREEK Project's Internal Creek Habitat Survey for Eight Creeks in the North Inlet Estuary, South Carolina: January 1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  5. Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    . Cu and Zn enrichment in the river mouth region, associated with high organic carbon contents, is indicative of the influence of organic wastes from municipal sewage entering the estuary. The intermetallic relationship revealed the identical behaviour...

  6. The Peel Inlet-Harvey Estuary Study.

    Science.gov (United States)

    Walker, Warren; Black, Ronald

    1979-01-01

    Describes how the department of physics of the Western Australian Institute of Technology (WAIT) has been involved in the Peel Inlet-Harvey Estuary study. An appendix which presents the departmental approach to curriculum matters is also included. (HM)

  7. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A; Mandalia, A

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  8. AFSC/ABL: Southeast Alaska Estuaries Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains trawl and seine catches from Southeast Alaskan estuaries sampled from 1995 to 2008. The data also include physical variables (temp, salinity,...

  9. Climate Ready Estuaries Partner Projects Map

    Science.gov (United States)

    CRE partners with the National Estuary Program to develop climate change projects in coastal U.S. areas, such as bays and harbors; to develop adaptation action plans, identify climate impacts and indicators, and more. This map shows project locations.

  10. Birds of Mahi River estuary, Gujarat, India

    Directory of Open Access Journals (Sweden)

    P.J. Pandya

    2010-06-01

    Full Text Available The Mahi river estuary is one of the major estuaries of Gujarat. This paper presents a comprehensive list of birds of the Mahi river estuary (nearly 50 km stretch and the adjacent banks/ravines and defines the avian diversity at three major estuarine gradations with a brief check of similarity and diversity within the three. The present observation is the outcome of a 3 year period from August 2006 to July 2009. A sum total of 118 species belonging to 42 families were reported and listed as on Upstream, Midstream, and Downstream of estuary. No significant difference was seen in the species richness at the three zones; a change in avian composition at upstream and downstream was notable.

  11. Benthic studies in south Gujarat estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Govindan, K.; Varshney, P.K.; Desai, B.N.

    Benthic biomass and faunal composition in relation to various environmental conditions of the four South Gujarat estuaries namely the Auranga, Ambika, Purna and Mindola were studied and compared. Mean population density of benthos in Auranga, Ambika...

  12. National Estuary Program Study Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — There are 28 National Estuary Programs (NEPs) in the U.S.that implement habitat protection and restoration projects with their partners. This work takes place within...

  13. Utility of mesohabitat features for determining habitat associations of subadult sharks in Georgia’s estuaries

    Science.gov (United States)

    Belcher, C.N.; Jennings, Cecil A.

    2010-01-01

    We examined the affects of selected water quality variables on the presence of subadult sharks in six of nine Georgia estuaries. During 231 longline sets, we captured 415 individuals representing nine species. Atlantic sharpnose shark (Rhizoprionodon terranovae), bonnethead (Sphyrna tiburo), blacktip shark (Carcharhinus limbatus) and sandbar shark (C. plumbeus) comprised 96.1% of the catch. Canonical correlation analysis (CCA) was used to assess environmental influences on the assemblage of the four common species. Results of the CCA indicated Bonnethead Shark and Sandbar Shark were correlated with each other and with a subset of environmental variables. When the species occurred singly, depth was the defining environmental variable; whereas, when the two co-occurred, dissolved oxygen and salinity were the defining variables. Discriminant analyses (DA) were used to assess environmental influences on individual species. Results of the discriminant analyses supported the general CCA findings that the presence of bonnethead and sandbar shark were the only two species that correlated with environmental variables. In addition to depth and dissolved oxygen, turbidity influenced the presence of sandbar shark. The presence of bonnethead shark was influenced primarily by salinity and turbidity. Significant relationships existed for both the CCA and DA analyses; however, environmental variables accounted for shark species among sites.

  14. Oceanic and local environmental conditions as forcing mechanisms of the glass eel recruitment to the southernmost European estuary

    Science.gov (United States)

    Arribas, Carmen; Fernández-Delgado, Carlos; Oliva-Paterna, Francisco J.; Drake, Pilar

    2012-07-01

    The main oceanic and local environmental traits forcing the glass eel Anguilla anguilla (L., 1758) recruitment to the southernmost European estuary, the Guadalquivir (SW Spain), were studied during nine successive migration seasons (June 1997-December 2006) using a fishery-independent experimental survey at three sampling sites in the estuary. A clear seasonal pattern was observed: density was highest between late autumn and spring with two migration peaks, and lowest during summer. Short-term (inter-month) changes in glass eel density were partially driven by local environmental variables, such as estuarine turbidity, local rainfall and water temperature. Long-term (inter-annual) changes were positively correlated with oceanic factors related to recruitment success (NAO index and primary production at the spawning area) as well as local environmental factors (westerly and southerly wind mixing indices and rainfall). Spatial changes in glass eel density within the estuary depended on tidal and light situations although maximum densities were mainly observed at diurnal and/or nocturnal flood tides. Although the decrease in the abundance of European glass eels has been widely known since the 1980s, during this study there was no evidence of a declining trend, probably because of an insufficiently long time series.

  15. Fishes and fisheries in tropical estuaries: The last 10 years

    Science.gov (United States)

    Blaber, S. J. M.

    2013-12-01

    Since 2002 there has been an increase in knowledge of many aspects of the biology and ecology of tropical estuarine fishes, as well as significant changes to many estuarine fisheries. Analyses of literature databases (2002-2012) show that: of the c. 600 relevant papers, 52% are primarily related to ecology, 11% to conservation, 11% to anthropogenic and pollution effects on fishes, 9% to fisheries, 7% to aquaculture, 4% to study techniques, and 1% each to fish larvae, effects of fishing, taxonomy, climate change, evolution and genetics. In terms of geographic spread 17% are from North America, 15% from south Asia, 14% from the Caribbean, 13% from Australasia, 12% from Africa and 9% each from South America and SE Asia. Research papers came from 50 countries of which the dominant were USA (15%), India (12%), Australia (11%) and Brazil (7%). Increasing numbers of studies in West Africa, SE and South Asia and South America have increased basic knowledge of the ecology of estuarine fish faunas. Increases in understanding relate to: roles of salinity, turbidity and habitat diversity; connectivity between habitats; water flow; ecological drivers of spatial variability; scale dependent variation; thermal tolerances; movement patterns; food webs; larval adaptations; and the viability of areas heavily impacted by human activities. New reviews both challenge and support different aspects of the estuarine dependence paradigm - still perhaps one of the main research issues - and the protective function of estuaries and mangroves for juvenile fishes has received attention in relation to e.g. predation risks and fisheries. There have also been significant advances in the use of guilds and biodiversity models. Fishing pressures have continued unabated in most tropical estuaries and are summarised and management issues discussed. Understanding of the relationships between fisheries production and mangroves has advanced and significant differences have emerged between Indo

  16. Optical properties of a tropical estuary during wet and dry conditions in the Nha Phu estuary, Khanh Hoa Province, south-east Vietnam

    DEFF Research Database (Denmark)

    Lund-Hansen, Lars Chresten; Hai, Doan Nhu; Lam, Nguyen Ngoc

    2010-01-01

    There has been a strong research focus on optical properties in temperate estuaries but very much less in tropical estuaries. These properties comprise light and beam attenuation dominated by suspended particulate matter, Chl a, and CDOM. Spatially and temporally distributed data on optical...... between May 2006 and April 2008. Methods comprised CTD, optical measurements, and water sampling for suspended matter, Chl a, and CDOM. Results showed high light attenuation—K d(PAR)—in wet conditions and low in dry. K d(PAR) was highest at the estuary head and lower in the outer part. Spatial...... and temporal variations in K d(PAR) were in general dominated by variations in suspended particulate matter concentrations in both wet and dry conditions. Chl a concentrations were low and showed no strong variations between wet and dry conditions. CDOM absorption coefficients were higher in wet conditions...

  17. Seasonal distribution and interactions between plankton and microplastics in a tropical estuary

    Science.gov (United States)

    Lima, A. R. A.; Barletta, M.; Costa, M. F.

    2015-11-01

    The seasonal migration of a salt wedge and rainfall were the major factors influencing the spatiotemporal distribution of ichthyoplankton and microplastics along the main channel of the Goiana Estuary, NE Brazil. The most abundant taxa were the clupeids Rhinosardinia bahiensis and Harengula clupeola, followed by the achirid Trinectes maculatus (78.7% of the catch). Estuarine and mangrove larvae (e.g. Anchovia clupeoides, Gobionellus oceanicus), as well as microplastics were ubiquitous. During drier months, the salt wedge reaches the upper estuary and marine larvae (e.g. Cynoscion acoupa) migrated upstream until the zones of coastal waters influence. However, the meeting of waterfronts in the middle estuary forms a barrier that retains the microplastics in the upper and lower estuary most part of the year. During the late dry season, a bloom of zooplankton was followed by a bloom of fish larvae (12.74 ind. 100 m-3) and fish eggs (14.65 ind. 100 m-3) at the lower estuary. During the late rainy season, the high freshwater inflow flushed microplastics, together with the biota, seaward. During this season, a microplastic maximum (14 items 100 m-3) was observed, followed by fish larvae maximum (14.23 ind. 100 m-3) in the lower estuary. In contrast to fish larvae, microplastics presented positive correlation with high rainfall rates, being more strictly associated to flushing out/into the estuary than to seasonal variation in environmental variables. Microplastics represented half of fish larvae density. Comparable densities in the water column increase the chances of interaction between microplastics and fish larvae, including the ingestion of smaller fragments, whose shape and colour are similar to zooplankton prey.

  18. Quantifying reduction in ecological risk in Penrhyn Estuary, Sydney, Australia, following groundwater remediation.

    Science.gov (United States)

    Hunt, James; Birch, Gavin; Warne, Michael

    2012-01-01

    The environmental risk associated with discharge of contaminated groundwater containing a complex mixture of at least 14 volatile chlorinated hydrocarbons (VCHs) to Penrhyn Estuary, Sydney, Australia has previously been assessed. That probabilistic ecological risk assessment (ERA) was undertaken using surface water monitoring data from 2004 to 2005. Subsequently, in 2006, a groundwater remediation system was installed and commissioned to prevent further discharge of VCHs into the estuary. The present study assessed the ecological risk posed to the estuary after 2006 to evaluate the success of the remediation system. The ERA was undertaken using toxicity data derived from direct toxicity assessment (DTA) of preremediation contaminated groundwater using indigenous species, exposure data from surface water monitoring between 2007 and 2008 and the joint probability curve (JPC) methodology. The risk posed was measured in 4 zones of the entire site: source area (2), tributary (2), the inner estuary and outer estuary at high, low, and a combination of high and low tides. In the 2 source areas, risk decreased by over 2 and over 1 orders of magnitude to maximum values of less than 0.5%. In 1 estuary, risk decreased by over 1 order of magnitude, from a maximum of 36% to a maximum of 2.3%. At the other tributary and both the inner and outer estuaries, the risk decreased to less than 1%, regardless of the tide. This analysis revealed that the remediation system was very effective and that the standard level of protection required for slightly to moderately affected ecosystems (95% of species) by the Australian and New Zealand Guidelines for Fresh and Marine Water Quality was met postremediation. Copyright © 2011 SETAC.

  19. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields

    Science.gov (United States)

    Wang, Lihua; Zhou, Yunxuan; Shen, Fang

    2018-01-01

    The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.

  20. Quantifying Cyanobacteria and High Biomass Bloms from Satellite to Support Environmental Management and Public Use of U.S. Lakes and Estuaries

    Science.gov (United States)

    Tomlinson, Michelle C.; Stumpf, Richard P.; Dupuy, Danielle; Wynne, Timothy T.; Briggs, Travis

    2015-12-01

    Algal blooms of high biomass and cyanobacteria are on the rise, occurring both nationally and internationally. These blooms can foul beaches, clog water intakes, produce toxins that contaminate drinking water, and pose a threat to human and domestic animal health. A quantitative tool can aid in the management needs to respond to these issues. These blooms can affect many lakes within a state management district, pointing to the need for a synoptic and timely assessment. The 300 m Medium Resolution Imaging Spectrometer (MERIS) satellite imagery provided by the European Space Agency from 2002 to 2012 has led to advances in our ability to monitor these systems. Algorithms specific to quantifying high biomass blooms have been developed for use by state managers through a comparison of field radiometry, water quality and cell enumeration measurements, and remotely-sensed satellite data. These algorithms are designed to detect blooms even with atmospheric interference and suspended sediments. Initial evaluations were conducted for Florida lakes and the St. Johns River, Florida, USA and showed that cyanobacteria blooms, especially of Microcystis, can be identified and their biomass can be estimated (as chlorophyll concentration and other metrics). Forecasts and monitoring have been demonstrated for Lake Erie and for Florida. A multi-agency (NASA, EPA, NOAA, and USGS) project, “Cyanobacteria Assessment Network (CyAN)” intends to apply these methods to Sentinel-3 data in near real-time on a U.S. national scale, in order to support state management agencies in protecting public health and the environment.

  1. Propagation of a turbidity current in confined geometries

    Science.gov (United States)

    Silvestre, Nuno; Salgueiro, Dora; Franca, Mário J.; Ferreira, Rui M. L.

    2017-04-01

    Sedimentation in reservoirs due to turbidity currents originates problems of loss of storage capacity as well as clogging of outlets/intakes. These currents are driven by the difference in specific weight between the current itself and the surrounding fluid, due to the presence of particles in suspension. As a gravity current, the main properties of these phenomena has been investigated by several authors since the 1970´s. Despite driven by a simple mechanism, the propagation of these currents can become more complex owing to the influence of factors such as geometry, bed roughness and other non-uniform elements. However, the majority of conducted studies has been focused in characterising only the influence of density imbalance. The propagation of a density current in confined geometries and the influence of bed roughness is herein investigated, through laboratory experiments carried out at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico, Lisbon. The density currents were generated with brine to allow for visualization and velocity measurement. The laboratory experiments comprised point and continuous release of a dense NaCl mixture with a tracer (Rhodamine WT), with a density equal to 1028 g/L, into a tank with resting freshwater (1000 g/L). The transport and the mixing processes were recorded with high-speed video. The mass distribution was obtained through a photometric methodology and the Particle Image Velocimetry (PIV) technique was used to measure the instantaneous flow velocity fields and the depth of the density current. Both methodologies were used to measure different plan views of the phenomena, including profile and top views, for different regions, near-field and far-field. Different bed roughness were studied, including smooth and rough bed. The facility was designed with the objective to generate a complex 2D flow with an advancing wave front but also shocks reflected from the walls. As the image analysis technique

  2. Low-coherence optical tomography in turbid tissue: theoretical analysis.

    Science.gov (United States)

    Pan, Y; Birngruber, R; Rosperich, J; Engelhardt, R

    1995-10-01

    On the basis of white-light interferometry and statistical optics, a theoretical model for low-coherence optical tomography is presented that establishes the relation of interference modulation with path-length-resolved reflectance and that can provide analytical expressions and numerical solutions by means of a Fourier transform. The Monte Carlo technique is used to simulate the path-length-resolved reflectance from different multilayer tissue phantoms. Theoretical analyses and preliminary experimental results suggest that, unlike time-resolved spectroscopy, low-coherence optical tomography detects the local relative variations of path-length-resolved reflectance from the turbid tissues.

  3. A Marriage Of Larval Modeling And Empirical Data: Linking Adult, Larval And Juvenile Scallops In An Estuary

    Science.gov (United States)

    Bayer, S.; Wahle, R.; Brooks, D. A.; Brady, D. C.

    2016-02-01

    The giant sea scallop, Placopecten magellanicus, is a commercially valuable sedentary broadcast spawner that occupies offshore banks and coastal bays and estuaries in the Northwest Atlantic. Although area closures have helped repopulate depleted scallop populations, little is known about whether populations at densities that yield larvae supply local or distant populations. Surveying scallop populations in the Damariscotta River estuary in Maine during the 2013 and 2014 spawning seasons, and settling out spat bags to collect settling larvae along the gradient of the estuary, we were able to compare adult densities to newly settled juvenile (`spat') abundance. Using the location where we found a high density of adults, we incorporated previously published behavior, pelagic larval duration, wind and current data into a particle dispersal model within the estuary to determine likely sinks for larvae from the 2013 and 2014 spawning seasons. Preliminary model simulations demonstrate where in the estuary swimming is effective in affecting water column position for larvae, and that most larvae are retained much closer to the mouth of the estuary than previously expected. Combining larval dispersal modeling with empirical data on adult densities and spat settlement on the scale of an embayment or estuary may be helpful in determining sources, sinks and areas that are both sources and sinks for shellfish species that are endangered or economically critical. This may aid in determining small area closures or Marine Protected Areas along coastal regions in the Gulf of Maine and beyond.

  4. Substrate origin and morphology differentially determine oxygen dynamics in two major European estuaries, the Elbe and the Schelde

    Science.gov (United States)

    Geerts, L.; Cox, T. J. S.; Maris, T.; Wolfstein, K.; Meire, P.; Soetaert, K.

    2017-05-01

    The expansion of oxygen minimum zones (OMZ's) in estuaries can be harmful for ecology and economy, prompting the demand for expensive measures. Here we look at the oxygen dynamics in two northern temperate European estuaries, the Schelde (The Netherlands/Belgium) and the Elbe (Germany) and analysed data from the period of 2004-2009. The Schelde is characterized by two zones of increased oxygen consumption; the Elbe shows one zone of increased oxygen consumption. Despite reduction in biochemical oxygen demand in both estuaries, oxygen conditions improved in the Schelde estuary, while the oxygen minimum zone persisted in the Elbe estuary. To understand these different oxygen dynamics, we applied a one-dimensional reactive transport model to both estuaries. In the Schelde we found low oxygen concentrations to be related to organic matter and ammonium input from the major tributaries. In the Elbe, additionally to a high input of organic matter from upstream, oxygen dynamics were influenced by abrupt changes in estuarine morphology. Next, the origin of the organic matter substrate differs between the two estuaries. In the Elbe, the organic matter imported is mostly composed of algal die-off produced in the Elbe River upstream. In the Schelde the organic matter and ammonium input is mostly related to sewage input of anthropogenic origin. This implies that waste water treatment will be more effective to remediate hypoxia related problems in the Schelde than in the Elbe.

  5. Natural radionuclides (210)Po and (210)Pb in the Delaware and Chesapeake Estuaries: modeling scavenging rates and residence times.

    Science.gov (United States)

    Marsan, D; Rigaud, S; Church, T

    2014-12-01

    During the spring and summer months of 2012, (210)Po and (210)Pb activity were measured in the dissolved and particulate phases from the Delaware and upper Chesapeake estuaries. The upper Delaware estuary, near the freshwater end member, was characterized by high-suspended matter concentrations that scavenged dissolved (210)Po and (210)Pb. Box models were applied using mass balance calculations to assess the nuclides residence times in each estuary. Only 60% of the dissolved (210)Po and 55% of the dissolved (210)Pb from the Delaware estuary were exported to coastal waters. A large fraction of soluble (210)Po and (210)Pb within the estuary was either reversibly adsorbed onto suspended particles, trapped in sediment accumulation zones (such as intertidal marshes), bioaccumulated into phytoplankton and discharged to the coastal ocean. The upper Chesapeake estuary was largely characterized by sub-oxic bottom waters that contained higher concentrations of dissolved (210)Po and (210)Pb, hypothesized to be subjected to redox cycling of manganese. The Delaware and Chesapeake estuary mean residence times for (210)Po differed significantly at 86 ± 7 and 126 ± 10 days respectively, while they were similar for (210)Pb (67 ± 6-55 ± 5 days). The difference in residence times corresponds to the greater extent of biogeochemical scavenging and regeneration processes within the upper Chesapeake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Estuaries as filters: the role of tidal marshes in trace metal removal.

    Directory of Open Access Journals (Sweden)

    Johannes Teuchies

    Full Text Available Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  7. Estuaries as filters: the role of tidal marshes in trace metal removal.

    Science.gov (United States)

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J S; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  8. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal

    Science.gov (United States)

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927

  9. Spatial and temporal patterns of turbidity, sediment concentration and load across nested scales in an urban watershed

    Science.gov (United States)

    Kemper, J. T.; Welty, C.; Miller, A. J.

    2016-12-01

    In a highly regulated area such as the Chesapeake Bay watershed, suspended sediment is a matter of primary concern. However, there are few continuous sediment-concentration records available to quantify urban sediment loads. Near real-time turbidity and discharge data have been collected continuously for more than three years at six stream gages representing three nested watershed scales (1-2 sq km, 5-6 sq km, 14 sq km) in the highly impervious Dead Run watershed, located in Baltimore County, MD. Suspended sediment point samples have been collected for multiple storm events at five of the six sites, to establish provisional relationships between turbidity and suspended sediment concentrations. Using these calculated relationships and USGS discharge data, we can quantify sediment loads at each station. Turbidity-discharge relationships vary both spatially and temporally, highlighting the extreme heterogeneity of an urban watershed. Spatially, relationships change from headwaters to mouth, potentially suggesting a variation in sediment sources. Temporally, relationships change both seasonally and annually. The lowest turbidity values are consistently seen in the fall, while values in winter, spring, and summer display a high inter-annual variability. Sediment loads and yields calculated for four representative storms are compared across nested watershed scales to assess evidence for sources or sinks at different locations within the drainage network. Yields at the mouth of the watershed (DRKR) for large storms were higher than an area-weighted average of the two contributing sites (DR3, DR4), potentially suggesting additional source areas of sediment within the watershed. This highlights the ability of near real-time data to assist in developing more effective approaches in mitigating sediment transport by helping to identifying consistent trends, locations of hot spots, and patterns of sediment arrival.

  10. New approach to purging monitoring wells: Lower flow rates reduce required purging volumes and sample turbidity

    Energy Technology Data Exchange (ETDEWEB)

    Puls, R.W.

    1994-01-01

    It is generally accepted that monitoring wells must be purged to access formation water to obtain representative' ground water quality samples. Historically anywhere from 3 to 5 well casing volumes have been removed prior to sample collection to evacuate the standing well water and access the adjacent formation water. However, a common result of such purging practice is highly turbid samples from excessive downhole disturbance to the sampling zone. An alternative purging strategy has been proposed using pumps which permit much lower flow rates (<1 liter/min) and placement within the screened interval of the monitoring well. The advantages of this approach include increased spatial resolution of sampling points, less variability, less purge time (and volume), and low-turbidity samples. The overall objective is a more passive approach to sample extraction with the ideal approach being to match the intake velocity with the natural ground water flow velocity. The volume of water extracted to access formation water is generally independent of well size and capacity and dependant upon well construction, development, hydrogeologic variability and pump flow rate.

  11. Haemocytic leukemia in Prince Edward Island (PEI) soft shell clam (Mya arenaria): Spatial distribution in agriculturally impacted estuaries

    Energy Technology Data Exchange (ETDEWEB)

    Muttray, Annette, E-mail: amuttray@rescan.com [Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Road, Burlington, ON, Canada L7R 4A6 (Canada); Reinisch, Carol, E-mail: creinisch@mbl.edu [Visiting Scientist Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Road, Burlington, ON, Canada L7R 4A6 (Canada); Miller, Jason, E-mail: j.miller@ec.gc.ca [Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Road, Burlington, ON, Canada L7R 4A6 (Canada); Ernst, William, E-mail: bill.ernst@ec.gc.ca [Environment Canada, Water Science and Technology Directorate, 45 Alderney Drive, Dartmouth, NS, Canada B2Y 2N6 (Canada); Gillis, Patricia, E-mail: patty.gillis@ec.gc.ca [Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Road, Burlington, ON, Canada L7R 4A6 (Canada); Losier, Melanie, E-mail: melanie.losier@ec.gc.ca [Environment Canada, Atlantic Laboratory for Environmental Testing, Environmental Science Centre, P.O. Box 23005 Moncton, NB, Canada E1A 6S8 (Canada); Sherry, James, E-mail: jim.sherry@ec.gc.ca [Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Road, Burlington, ON, Canada L7R 4A6 (Canada)

    2012-05-01

    Intensive farming of potatoes in Prince Edward Island (PEI) relies on the repeated and widespread application of fertilizers and pesticides. In PEI the main potato farming areas are in close proximity and drain directly to estuaries. Runoff from high agricultural activity watersheds could impact benthic organism health in the depositional zone of downstream estuaries. The estuarine filter feeder Mya arenaria (soft-shell clam) could be particularly vulnerable to both particle-adsorbed and water soluble contaminants. M. arenaria is susceptible to haemocytic leukemia. In May 2009, we established that heavily proliferated leukemia (HPL) prevalence was generally higher in PEI estuaries located downstream of high intensity potato farming (Dunk and Wilmot estuaries) watersheds than in estuaries downstream of lower intensity areas. Using Mab-1E10 based immunocytochemistry we observed that leukemic haemocytes from the Dunk and Wilmot estuaries were 1E10 negative whereas those from the Ox/Sheep estuary (low potato farming intensity) were 1E10 positive. The expression of genes in the p53 tumour suppressor pathway enabled us to differentiate groups of leukemic and normal M. arenaria, validating our diagnoses. In October 2009, we confirmed that HPL prevalence was elevated in the Dunk and Wilmot estuaries compared to reference (Souris River). Moreover, leukemia prevalence declined with distance from the river mouths along transects through the Dunk and Wilmot estuaries. The pesticides ss-endosulfan and {alpha}-endosulfan were detected in surface sediments from the Dunk and Wilmot estuaries, but not in sediments from either the Souris River or several other lower intensity potato farming watersheds. Our study provides evidence of an association between intensity of potato farming and prevalence of clam leukemia at downstream estuaries in PEI. - Highlights: Black-Right-Pointing-Pointer We examined leukemia prevalence in PEI clams Mya arenaria. Black

  12. Nutrient stoichiometry and freshwater flow in shaping of phytoplankton population in a tropical monsoonal estuary (Kundalika Estuary)

    Science.gov (United States)

    Chowdhury, Mintu; Hardikar, Revati; Chanjaplackal Kesavan, Haridevi; Thomas, Jubin; Mitra, Aditi; Rokade, M. A.; Naidu, V. S.; Sukumaran, Soniya

    2017-11-01

    The present study aimed to understand the role of freshwater flow and physico-chemical parameters in influencing the phytoplankton community shift and thereby helping in balancing the ecosystem. The Kundalika estuary (KE) is a semi-diurnal tropical monsoonal estuary. Strong upstream currents during monsoon as assessed through a 2D numerical model influenced the succession of marine, estuarine and freshwater phytoplankton species depending on the extent of freshwater influx and its distribution in the estuary. Nitrogen and phosphorus played a pivotal role in regulating the phytoplankton growth and their proliferation. Distribution of different phytoplankton species in accordance to salinity and nutrient content was clearly observed. Among the four major classes (Diatoms, Dinoflagellates, Chlorophytes and Phytoflagellates) occurring in the KE, diatoms occupied a wide salinity range. Large-scale shifts in phytoplankton biomass and composition were associated with river run-off during monsoon. Phytoflagellates and Chlorophytes restricted their abundance to relatively high nitrogen level zones. Canonical Correspondence Analysis (CCA) between environmental variables and dominant taxa of phytoplankton indicated the influence of salinity on phytoplankton distribution in the estuarine precinct. Thus the freshwater influx in the KE played a major role on phytoplankton species diversity and its bloom potential.

  13. The importance of the river-estuary interface (REI) zone in estuaries

    African Journals Online (AJOL)

    drinie

    2002-07-03

    Jul 3, 2002 ... The effect of the REI zone on fish was examined in the freshwater-rich Great Fish Estuary and in the freshwater-deprived Kariega Estuary. Estuarine associated fishes responded ... required to sustain ecologically sound estuarine ecosystems in terms of the South African National Water Act (36) of 1998.

  14. The importance of the river-estuary interface (REI) zone in estuaries

    African Journals Online (AJOL)

    drinie

    2002-07-03

    Jul 3, 2002 ... Two estuaries with contrasting river flow regimes were investigated. The Great Fish system was selected for this project because it receives a regular freshwater input and is navigable by boat beyond the estuarine section. This facilitated comparable sampling in both the river and estuary regions. In contrast ...

  15. The Estuary Book: A Guide to Promoting Understanding and Regional Management of Maine's Estuaries and Embayments.

    Science.gov (United States)

    Ruffing, Jenny

    The objective of this document is to provide information about estuaries, the impact of uses on the environmental health of an estuary, and what communities and concerned individuals can do to manage and protect their local estuarine resources successfully. Much of the information presented here pertains to other embayments along the Maine coast…

  16. A model for sediment capacity of turbidity currents considering sediment-fluid interactions with application to longitudinal equilibrium profile of submarine channels

    Science.gov (United States)

    Naruse, H.

    2016-12-01

    Leveed submarine channels are one of the characteristic architectural elements of submarine fans. Comparing to alluvial rivers, leveed submarine channels are stable and thus turbidity currents inside channels can be supposed to flow at quasi-equilibrium condition. Here, this study proposes a model of sediment concentration of turbidity currents in equilibrium condition (i.e. sediment capacity). The model considers turbulence-suppression effect by density stratification of suspended sediments and concentration-related processes such as hindered settling. The model predicts that turbidity currents can have two different values of sediment capacity: high-concentration and low-concentration capacity. High concentration capacity is attained by positive feedback effect of hindered settling, in which settling velocity of sediment decreases as concentration increases. On the other hand, when density stratification effect becomes dominant, turbidity currents have only low-concentration capacity because the effect has negative feedback effect (sediment entrainment decreases as concentration increases). The initial condition of turbidity currents is a critical factor to determine which condition the flows finally reach. We applied our capacity model to predict the equilibrium profile of submarine channels. The equilibrium profile is here defined as profiles where turbidity currents bypass or deposit uniformly. Grain-size distribution is approximated to two size classes: channel-forming sands and levee-forming muddy sediments. The model can predict shape and length of leveed channels in the equilibrium condition. As a result, it was revealed that the profile varies depending on four variables: aggradation rates, sand/mud ratio in suspended load, total sediment discharge and flow discharge. Sand-prone flows produce short and highly inclined channels whereas mud-prone flows produce long and low-inclination channels. Also, the model implies that long-lived channels are difficult

  17. On a shallow water model for the simulation of turbidity currents

    OpenAIRE

    Morales de Luna, Tomás; Castro-Díaz, M.J.; Parés Madroñal, C.; Fernández-Nieto, Enrique D.

    2009-01-01

    We present a model for hyperpycnal plumes or turbidity currents that takes into account the interaction between the turbidity current and the bottom, considering deposition and erosion effects as well as solid transport of particles at the bed load due to the current. Water entrainment from the ambient water in which the turbidity current plunges is also considered. Motion of ambient water is neglected and the rigid lid assumption is considered. The model is obtained as a depth-average system...

  18. Silicon cycle in Indian estuaries and its control by biogeochemical and anthropogenic processes

    Science.gov (United States)

    Mangalaa, K. R.; Cardinal, D.; Brajard, J.; Rao, D. B.; Sarma, N. S.; Djouraev, I.; Chiranjeevulu, G.; Murty, K. Narasimha; Sarma, V. V. S. S.

    2017-09-01

    We study the silicon biogeochemical cycle and its associated parameters in 24 and 18 Indian estuaries during dry and wet periods respectively. We focus more specifically on dissolved Si (DSi), amorphous Si (ASi,) lithogenic Si (LSi), Particulate Organic Carbon (POC), Total Suspended Material (TSM), Dissolved Inorganic Nitrogen (DIN), salinity and fucoxanthin, a marker pigment for diatoms. Overall, we show that the estuaries have strong inter and intra variability of their biogeochemical parameters both seasonally and along salinity gradients. Based on Principal Component Analysis and clustering of categorised (upper and lower) estuaries, we discuss the four major processes controlling the Si variability of Indian estuaries: 1) lithogenic supply, 2) diatom uptake, 3) mixing of sea water and, 4) land use. The influence of lithogenic control is significantly higher during the wet period than during the dry period, due to a higher particle supply through monsoonal discharge. A significant diatom uptake is only identified in the estuaries during dry period. By taking into account the non-conservative nature of Si and by extrapolating our results, we estimate the fluxes from the Indian subcontinent of DSi, ASi, LSi to the Bay of Bengal (211 ± 32, 10 ± 4.7, 2028 ± 317 Gmol) and Arabian Sea (80 ± 15, 7 ± 1.1, 1717 ± 932 Gmol). We show the impact of land use in watersheds with higher levels of agricultural activity amplifies the supply of Si to the coastal Bay of Bengal during the wet season. In contrast, forest cover and steep slopes cause less Si supply to the Arabian Sea by restricting erosion when entering the estuary. Finally, Si:N ratios show that nitrogen is always in deficit relative to silicon for diatom growth, these high Si:N ratios likely contribute to the prevention of eutrophication in the Indian estuaries and coastal sea.

  19. Physical characterization of the Guadiana Estuary using the hydrodynamic model MOHID

    Science.gov (United States)

    Concepción Calero, María; García-Lafuente, Jesús; Garel, Erwan; Delgado-Cabello, Javier; Moreno-Navas, Juan; Martins, Flávio

    2017-04-01

    Guadiana Estuary is an intertidal estuary situated in SW of Iberian Peninsula, the latest 50 Km of which constitutes the natural border between Spain and Portugal. Tidal influence extends to about 80 Km upstream. The Guadiana River presents a high seasonal irregularity with wet winters and dry summers. Recently the river flow has been modified drastically by several dams constructed along the river. One of them is the Alqueva dam, opened in 2002, which is the biggest reservoir in Western Europe. It is placed to 120 Km upstream from the mouth of the estuary and is the last water control in the system being the main dam affecting the flow. A hydrodynamic model based on the MOHID system has been developed to study the hydrodynamics of the Guadiana Estuary. Tidal forcing and fresh water discharges were used in the boundary conditions. The model has been validated by comparing the model outcomes with in situ data measurements in several points along the estuary. Different scenarios have been simulated in order to know tidal progression and asymmetries in the circulation between wet and dry periods. Those phenomena are important because they influence the ecosystem and the distribution of sediments into the estuary and nearest coast. With a discharge of 300 m3/s the friction dominates over the amplification of the tide signal throughout the estuary while with smaller discharges the opposite effect occurs between 30 and 60 km. The difference in duration between floods and ebbs is greater the greater the discharge and the currents do not invert downstream at 50 Km with a discharge of 500 m3/s. Determining a regime of freshwater inputs from the Alqueva dam can be determinant to maintain the natural range of variation between dry and wet periods prior to the inauguration of the dam.

  20. Comparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric chloride

    Directory of Open Access Journals (Sweden)

    Mazyar Peyda

    2016-03-01

    Full Text Available Background Turbidity removal using inorganic coagulants such as iron and aluminum salts in water treatment processes causes environmental and human health concern. Historically, the use of natural coagulant to purify turbid water has been practiced for a long time. Recent research indicates that Descurainia Sophia seed can be effectively used as a natural coagulant to remove water turbidity. Method: In this work, turbidity removal efficiency of Descurainia Sophia seed extract was compared with Ferric chloride. Experiments were performed in laboratory scale. The coagulation experiments were done with kaolin as a model soil to produce turbidity in distilled water. The turbidity removal efficiency of Descurainia Sophia seed extract and Ferric chloride were conducted with jar test apparatus. In all experiments, initial turbidity was kept constant 100(NTU. Optimum combination of independent variables was used to compare two different types of coagulants. Result: The obtained results showed that Ferric chloride could remove 89.75% of the initial turbidity, while in case of Descurainia Sophia this value was 43.13%. The total organic carbon (TOC analysis of the treated water using seed extract showed an increased concentration of TOC equal to 0.99 mg/L. Conclusions: This research has shown that Descurainia Sophia seed extract has an acceptable potential in the coagulation/flocculation process to treat turbid water.

  1. Evaluation of flow regime of turbidity currents entering Dez Reservoir using extended shallow water model

    Directory of Open Access Journals (Sweden)

    Valery Ivanovich ELFIMOV

    2014-07-01

    Full Text Available In this study, the performance of the extended shallow water model (ESWM in evaluation of the flow regime of turbidity currents entering the Dez Reservoir was investigated. The continuity equations for fluid and particles and the Navier-Stokes equations govern the entire flow of turbidity currents. The shallow water equations governing the flow of the depositing phase of turbidity currents are derived from these equations. A case study was conducted on the flow regime of turbidity currents entering the Dez Reservoir in Iran from January 2002 to July 2003. Facing a serious sedimentation problem, the dead storage of the Dez Reservoir will be full in the coming 10 years, and the inflowing water in the hydropower conduit system is now becoming turbid. Based on the values of the dimensionless friction number ( and dimensionless entrainment number ( of turbidity currents, and the coefficient of determination between the observed and predicted deposit depths (R2 = 0.86 for the flow regime of negligible friction and negligible entrainment (NFNE, the flow regime of turbidity currents coming into the Dez Reservoir is considered to be NFNE. The results suggest that the ESWM is an appropriate approach for evaluation of the flow regime of turbidity currents in dam reservoirs where the characteristics of turbidity currents, such as the deposit depth, must be evaluated.

  2. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.

    Science.gov (United States)

    Ehlman, Sean M; Sandkam, Benjamin A; Breden, Felix; Sih, Andrew

    2015-12-01

    Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments.

  3. High resolution carbon isotope of Crassostrea cuttakensis: A proxy for seasonally varying carbon dynamics in a tropical delta-estuary system

    Science.gov (United States)

    Sreemany, Arpita

    2017-04-01

    isotopic composition (δ13Cshelland δ18Oshell). The oyster shell was cut along the maximum growth line and the umbo of the oyster was analyzed for the stable isotopic measurement. An online laser ablation system, attached to a Delta V Advantage Mass Spectrometer via. Gas-bench II, was used for very high resolution (˜125μm, equivalent to ˜6 days) isotope data. Additionally, water samples were collected from the study area in different seasons and the δ13CDICof the ambient water was analyzed. The shell carbonate δ13C profile shows excellent seasonal variation and very good correlation with the measured δ13CDIC. Though more water samples from different seasons are needed to accurately calibrate the vital effect of this species, it can be suggested from the limited dataset that the carbonate shell of this species was precipitated in equilibrium with the ambient water and can be used as a reliable proxy for the δ13CDIC.

  4. Detection limits for nanoparticles in solution with classical turbidity spectra

    Science.gov (United States)

    Le Blevennec, G.

    2013-09-01

    Detection of nanoparticles in solution is required to manage safety and environmental problems. Spectral transmission turbidity method has now been known for a long time. It is derived from the Mie Theory and can be applied to any number of spheres, randomly distributed and separated by large distance compared to wavelength. Here, we describe a method for determination of size, distribution and concentration of nanoparticles in solution using UV-Vis transmission measurements. The method combines Mie and Beer Lambert computation integrated in a best fit approximation. In a first step, a validation of the approach is completed on silver nanoparticles solution. Verification of results is realized with Transmission Electronic Microscopy measurements for size distribution and an Inductively Coupled Plasma Mass Spectrometry for concentration. In view of the good agreement obtained, a second step of work focuses on how to manage the concentration to be the most accurate on the size distribution. Those efficient conditions are determined by simple computation. As we are dealing with nanoparticles, one of the key points is to know what the size limits reachable are with that kind of approach based on classical electromagnetism. In taking into account the transmission spectrometer accuracy limit we determine for several types of materials, metals, dielectrics, semiconductors the particle size limit detectable by such a turbidity method. These surprising results are situated at the quantum physics frontier.

  5. Skagit IMW - Skagit River Estuary Intensively Monitored Watershed Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study evaluates system-level effects of several estuary restoration projects on juvenile Chinook salmon production in the Skagit River estuary. The monitoring...

  6. Comparative assessment of two agriculturally-influenced estuaries: Similar pressure, different response.

    Science.gov (United States)

    Lemley, Daniel A; Adams, Janine B; Taljaard, Susan

    2017-04-15

    This study compared the spatio-temporal dynamics in two agriculturally-influenced South African estuaries - Gamtoos and Sundays - to investigate how contrasting hydrological alterations influence physical, chemical and biological responses. With the Gamtoos Estuary experiencing regular high flow conditions, a key difference between the two systems is the propensity for natural flushing events to occur; a mechanism largely eliminated from the highly-regulated Sundays Catchment. Phytoplankton blooms (>20Chl-aμgl-1) were persistent and seasonal in the Sundays, inducing summer bottom-water hypoxia (550μgl-1) and recurrent nature of two harmful algal bloom (HAB) species. This study provides the first account of HAB persistence and seasonal hypoxia in a South African estuary, demonstrating the possible consequences of shifting an ecosystem into a new stable state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Spatial distribution and ecological risk assessment of heavy metals in the estuaries surface sediments from the Haihe River Basin].

    Science.gov (United States)

    Lü, Shu-Cong; Zhang, Hong; Shan, Bao-Qing; Li, Li-Qing

    2013-11-01

    It is well known that the rivers in the Haihe River Basin have been seriously polluted. However, what is the present condition of the estuary pollution and how the polluted inland rivers affect the estuary areas are not clear. 10 main estuaries of the Haihe River Basin were selected to measure the contents of typical heavy metals (Pb, Cu, Zn, Cd, Cr and Ni) in the surface sediments and to analyze the spatial distribution of these heavy metals. The potential ecological risk index was used to assess the ecological risk of the six heavy metals in the estuaries. The results showed that the contents of Pb, Cu, Zn, Cd, Cr and Ni in the surface sediments of the 10 estuaries were all higher than their background values in the main local soil types and the contents of Cu, Ni and Pb were 2.3-2.6 times as high as their background values, which indicated that the estuaries were contaminated by the six heavy metals. The results also indicated that the contents of the six heavy metals in surface sediment varied from one estuary to another. The four heavy metals of Cr, Cu, Ni and Zn had bigger spatial differences than Pb and Cd in the contents in sediment from different estuaries. The contents of Cr, Cu, Ni and Zn in sediment were higher in the estuaries of the Yongdingxin River, Ziyaxin River and Beipai River than those in the other estuaries, and there were significant correlations between each other (R(Cu-Zn) = 0.891, R(Cu-Cr) = 0.927, R(Cu-Ni) = 0.964, R(Zn-Cr) = 0.842, R(Zn-Ni) = 0.939, and R(Cr-Ni) = 0.879, P estuaries than the other heavy metals, with the values ranged 23.3-95.8 mg x kg(-1) and 0.051-0.200 mg x kg(-1). Contents of the two heavy metals had no significant correlation with the other heavy metals or with the populations of sub-river basins, indicating that Cd and Pb had little connection with the in-land polluted sources. The results of ecological risk assessment showed that estuaries of the Haihe River Basin had the potential ecological risk at lower levels

  8. The environment that conditions the Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Shankar, D.; Neetu, S.; Suprit, K.; Michael, G.S.; Chandramohan, P.

    and Shankar (2007) used a multivariate interpolation scheme that incorporated elevation as the third variable (in addition to the two hor- izontal co-ordinates) to map the rainfall separately for the windward and leeward sides. The ridge separating... dominates circu- lation and mixing in the estuaries. Such estuaries are often referred to as monsoonal estuaries. Such monsoonal estuaries occur along the entire west coast of India. They are used for dumping of domestic and industrial waste, fishing...

  9. Analyzing the relation between the microbial diversity of DaQu and the turbidity spoilage of traditional Chinese vinegar.

    Science.gov (United States)

    Li, Pan; Li, Sha; Cheng, Lili; Luo, Lixin

    2014-07-01

    Vinegar is a traditional fermented condiment, and the microbial diversity of DaQu makes the quality of vinegar products. Recently, turbidity spoilage of vinegar sharply tampered with the quality of vinegar. In this study, the relation between the microbial diversity of DaQu and turbidity spoilage of vinegar was analyzed by plating technique, PCR-denaturing gradient gel electrophoresis (DGGE), and high-performance liquid chromatography (HPLC). The 16S rRNA sequencing and DGGE analysis indicated that Bacillus (Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus thuringiensis) and Lactobacillus (including Lactobacillus acidipiscis and Lactobacillus pobuzihii) species were the dominant contaminants in vinegar products. Meanwhile, DGGE analysis showed that the dominant bacteria in DaQu belonged to genera Bacillus, Lactobacillus, Pseudomonas, Weissella, Saccharopolyspora, Enterobacter, and Pantoea. However, only two yeast species (Pichia kudriavzevii and Saccharomycopsis fibuligera) and seven mold species including Aspergillus oryzae, Aspergillus niger, Aspergillus candidus, Rhizopus microspores, Eurotium herbariorum, Absidia corymbifera, and Eupenicillium javanicum were detected in the DaQu. The population level of fungi was below 5 log CFU/g in DaQu. The chemical and physical properties of vinegar and sediments were also determined. On the basis of a combined microbial diversity-chemical analysis, we demonstrated that turbidity spoilage of vinegar was a result of cooperation among the low population level and abundance of fungal species in DaQu, the suitable climate conditions, and the contaminants in vinegar. This is the first report to analyze the relation between the microbial diversity of DaQu and turbidity spoilage of vinegar.

  10. Recruitment success and growth variability of mugilids in a West African estuary impacted by climate change

    Science.gov (United States)

    Trape, S.; Durand, J.-D.; Vigliola, L.; Panfili, J.

    2017-11-01

    With the persistence of a drought since the late 1960s, some West African estuaries became permanently reversed in term of salinity gradient and hypersaline waters are present in their upstream part (salinity >60). To understand the mechanisms regulating fish recruitment intensity in these estuaries and evaluate the consequences of freshwater shortages on juvenile habitat quality, a growth study was conducted in the Saloum hypersaline estuary (Senegal). The Mugilidae fish family, highly representative of estuarine environments, was targeted and several species sampled (Chelon dumerili, Mugil bananensis and M. cf. curema sp. M). Juveniles were sampled monthly all the year round in three areas of the estuary exhibiting strongly contrasted habitat conditions. Otolith sections were used to estimate the ages, reconstruct growth trajectories, estimate the duration of the oceanic larval phase, and evaluate juvenile growth variability along the salinity gradient. Analyses revealed that the temporal recruitment variability of C. dumerili, with 2 annual cohorts, was not mainly induced by growth-selection mechanisms, but probably more by predation pressures. Juveniles exhibited significantly faster growth rates in the lower salinity suggesting that benthic food availability was a strong factor controlling habitat quality of early juveniles. Salinity had also a clear impact when reducing the growth in hypersaline conditions and/or selecting slower growing individuals. Moderate freshwater inputs positively affected the nursery function of the estuary for mugilids by enhancing the productivity of the first trophic levels. In a long term, the global change could have an impact of the mugilid fishery and its management.

  11. Mercury biomagnification through food webs along a salinity gradient down-estuary from a biological hotspot

    Science.gov (United States)

    Rumbold, Darren G.; Lange, Ted R.; Richard, Doug; DelPizzo, Gina; Hass, Nicole

    2018-01-01

    To examine down-estuary effects and how differences in food webs along a salinity gradient might influence mercury (Hg) biomagnification, we conducted a study from 2010 to 2015 in an estuary with a known biological hotspot at its headwaters. Over 907 samples of biota, representing 92 different taxa of fish and invertebrates, seston and sediments were collected from the upper, middle and lower reach for Hg determination and for stable nitrogen and carbon isotope analyses. Trophic magnification slopes (TMS; log Hg versus δ15N), as a measure of biomagnification efficiency, ranged from 0.23 to 0.241 but did not differ statistically among reaches. Hg concentrations were consistently highest, ranging as high as 4.9 mg/kg in top predatory fish, in the upper-reach of the estuary where basal Hg entering the food web was also highest, as evidenced by methylmercury concentrations in suspension feeders. Top predatory fish at the mouth of the estuary contained relatively low [THg], likely due to lower basal Hg. This was nonetheless surprising given the potential for down-estuary biotransport.

  12. Seasonal variation of the salinity in the Zuari estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Murty, C.S.

    the estuary is vertically mixed and the two processes controlling the transport of salt are run off induced advective transport out of the estuary, and tidally induced diffusive transport into the estuary. The magnitude of the latter is about 20% larger...

  13. The physico-chemical characteristics of Imo River Estuary in ...

    African Journals Online (AJOL)

    The physicochemical characteristics of Imo River Estuary were studied from April to September, 2011 to assess the water quality. The estuary is located at the coastal part of Ikot Abasi Local Government Area of Akwa Ibom State in southeastern Nigeria. Sampling was done monthly at fishing grounds in the estuary ...

  14. Maintaining the ecological flows of estuaries: a critical reflection on ...

    African Journals Online (AJOL)

    Maintaining the ecological flows of estuaries: a critical reflection on the application and interpretation of the relevant legal framework through the lens of the Klein River Estuary. ... These estuaries provide numerous environmental goods and services to the species situated within and adjacent to them. In an effort to improve ...

  15. The zooplankton of Mgazana, a mangrove estuary in Transkei ...

    African Journals Online (AJOL)

    The zooplankton of Mgazana, a mangrove estuary in Transkei, Southern Africa. T Wooldridge. Abstract. Mgazana, a mangrove estuary inTranskei, was investigated from May 1972 to March 1973 at six-week intervals. Salinities were consistently above 25 parts per thousand in the middle and lower estuary. In the upper ...

  16. Food web structure in three contrasting estuaries determined using ...

    African Journals Online (AJOL)

    Food web structure in three contrasting estuaries determined using stable isotope (δ 13 C) analysis. ... African Journal of Aquatic Science ... Food web structure in three contrasting estuaries, the freshwater-deprived Kariega, the freshwater-dominated Great Fish River and the temporarily open/closed Kasouga estuary, along ...

  17. The filtering capacity of selected Eastern Cape estuaries, South Africa

    African Journals Online (AJOL)

    Four Eastern Cape estuaries, the Kromme, Gamtoos, Swartkops and Sundays Estuaries have a permanent connection to the adjacent ocean, but differ in the amount of freshwater inflows as well as in the land-use patterns in their respective catchment areas. The nutrient loading to the four estuaries in terms of phosphate, ...

  18. Biological characteristics of the Vashishti Estuary, Maharashtra (west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Mustafa, S.; Mehta, P.; Govindan, K.; JiyalalRam, M.; Gajbhiye, S.N.

    The estuary and coastal nearshore regions sustained fairly high concentration of chlorophyll a (av. 3.1 mg/m sup(3)) and primary productivity (av. 89.9 mgC/m sup(3)/h). High rate of primary productivity wos observed in the estuarine segments...

  19. Expansion of the North American amphipod Gammarus tigrinus Sexton, 1939 to the Neva Estuary (easternmost Baltic Sea

    Directory of Open Access Journals (Sweden)

    Nadezhda A. Berezina

    2007-03-01

    Full Text Available The North American gammaridean amphipod, Gammarus tigrinus, was found in the easternmost part of the Baltic Sea (Neva Estuary near a new oil terminal. This species may well have been transportedto the Neva Estuary with ballast waters from the Finnish area of the Gulf of Finland, where it was recorded recently. In 2005, the mid-summer density of G. tigrinus was 27 indiv. m-2. By2006 this species had spread 100 km to the east from the first site, colonizing the northern coastal zone of the estuary. Its density reached 99-126 indiv. m-2. Fecund females and juvenilescontributed about 50% to the entire population density, which testifies to the successful reproduction and establishment of G. tigrinus in the Neva Estuary. There is a high risk of further expansions of G. tigrinus from the new area to the various lakes of Eastern Europe via inland canal-river systems, whichmay lead to unforeseeable changes in aquatic communities.

  20. Levels, distributions and sources of veterinary antibiotics in the sediments of the Bohai Sea in China and surrounding estuaries.

    Science.gov (United States)

    Liu, Xinghua; Zhang, Haibo; Li, Lianzhen; Fu, Chuancheng; Tu, Chen; Huang, Yujuan; Wu, Longhua; Tang, Jianhui; Luo, Yongming; Christie, Peter

    2016-08-15

    Veterinary antibiotics are emerging contaminants of concern. A total of 139 samples comprising 104 marine sediments and 35 estuarine sediments were collected from the Bohai Sea area and analyzed for seventeen antibiotics. The results reveal that the presence and concentration of antibiotics were generally higher in the estuaries than in the sea. The highest antibiotic concentration, 4695μgkg(-1) of oxytetracycline, occurred in the estuarine sediment from Ziya New River. Bohai Bay and Laizhou Bay and the surrounding estuaries had higher concentrations of antibiotics. However, low levels of antibiotics detected were detected in Liaodong Bay in contrast to the high concentrations present in the surrounding estuaries. Spatial heterogeneity and principal component analysis suggest a large impact of terrestrial sources of the antibiotics contaminating the Bohai Sea. Risk quotients indicate that current levels of norfloxacin and oxytetracycline might be potentially hazardous to sensitive biota both in the Bohai Sea and in its surrounding estuaries. Copyright © 2016. Published by Elsevier Ltd.

  1. Speckle-Free Coherence Tomography of Turbid Media

    CERN Document Server

    Liba, Orly; SoRelle, Elliott D; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M; Chu, Steven; de la Zerda, Adam

    2016-01-01

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show a method based purely on light manipulation that is able to entirely remove the speckle noise originating from turbid samples without any compromise in resolution. We refer to this method as Speckle-Free OCT (SFOCT). Using SFOCT, we succeeded in revealing small structures that are otherwise hidden by speckle noise when using conventional OCT, including the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, sweat ducts, and Meissners corpuscle in the human fingertip skin. SFOCT has the potential to markedly increase OCTs diagnostic capabilities of various human diseases by revealing minute features that correlate with early pathology.

  2. The particulate {sup 7}Be/{sup 210}Pb{sub xs} and {sup 234}Th/{sup 210}Pb{sub xs} activity ratios as tracers for tidal-to-seasonal particle dynamics in the Gironde estuary (France): Implications for the budget of particle-associated contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Saari, Hanna-Kaisa [Universite de Bordeaux, UMR5805 EPOC, F-33405 Talence Cedex (France); Schmidt, Sabine, E-mail: s.schmidt@epoc.u-bordeaux1.fr [CNRS, UMR5805 EPOC, F-33405 Talence Cedex (France); Castaing, Patrice; Blanc, Gerard [Universite de Bordeaux, UMR5805 EPOC, F-33405 Talence Cedex (France); Sautour, Benoit [Universite de Bordeaux, UMR5805 EPOC, Station Marine d' Arcachon, F-33120 Arcachon (France); Masson, Olivier [IRSN, BP 3, 13115 Saint Paul Lez Durance (France); Cochran, J. Kirk [Marine Sciences Research Center, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000 (United States)

    2010-09-15

    The short-lived natural radionuclides {sup 7}Be (T{sub 1/2} = 53 days), {sup 234}Th{sub xs} (T{sub 1/2} = 24.1 days) and {sup 210}Pb{sub xs} (T{sub 1/2} = 22.3 years), i.e. {sup 234}Th and {sup 210}Pb in excesses of that supported within particles by the decay of their parent isotopes, were analysed in suspended particulate matter (SPM) to study the particle dynamics in the Gironde fluvial estuarine system (France), strongly impacted by heavy metal pollution. From surveys of this land-ocean interface in 2006 and 2007, we established a times series of these radioisotopes and of their activity ratios ({sup 7}Be/{sup 210}Pb{sub xs} and {sup 234}Th/{sup 210}Pb{sub xs} ARs) in particles sampled under different hydrological conditions. The particulate {sup 7}Be/{sup 210}Pb{sub xs} AR varies along the fluvial estuarine system mainly due to variations in {sup 7}Be activities, controlled by riverine, oceanic and atmospheric inputs and by resuspension of old {sup 7}Be-deficient sediments. These processes vary with river discharge, tidal cycle and season. Therefore, seasonal particle transport processes can be described using variations of the SPM {sup 7}Be/{sup 210}Pb{sub xs} ARs. During high river discharge, the SPM {sup 7}Be/{sup 210}Pb{sub x} ARs decrease from river to the ocean. The turbidity maximum zone (TMZ) is dispersed and the particles, and the associated contaminants, are rapidly transported from river to coastal waters, without significant retention within the TMZ. During low river discharge, the TMZ intrudes into the fluvial estuary, and the lowest {sup 7}Be/{sup 210}Pb{sub x} ARs are observed there due to resuspension of {sup 7}Be-deficient sediments. Away from the TMZ, from the middle to lower estuary, SPM {sup 7}Be/{sup 210}Pb{sub x} ARs increase, indicating that the particles have been recently tagged with {sup 7}Be. We explain this trend as being caused by marine input of dissolved radionuclides, as traced by SPM {sup 234}Th/{sup 210}Pb{sub xs} ARs

  3. Influence of Salinity on the Coastal Turbidity Maximum in the Southern Bight of the North Sea

    NARCIS (Netherlands)

    Nguyen, D.; Vanlede, J.D.S.M.; de Maerschalck, B

    2017-01-01

    In the Southern Bight of the North Sea, a Coastal Turbidity Maximum (CTM) can be observed in the Belgian coastal area around the port of Zeebrugge. Understanding the dynamics of this turbidity maximum is of great importance in coastal zone management. Our research studies the CTM with a numerical

  4. Determination of Residual Chlorine and Turbidity in Drinking Water. Student Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This student's manual covers analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. The publication is intended for…

  5. Determination of Residual Chlorine and Turbidity in Drinking Water. Instructor's Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's guide presents analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. This publication is intended…

  6. MassFLOW-3D as a simulation tool for turbidity currents

    NARCIS (Netherlands)

    Basani, Riccardo; Janocko, Michal; Cartigny, Matthieu J.B.; Hansen, Ernst W.M.; Eggenhuisen, Joris T.

    2014-01-01

    Turbidity currents are the most important mechanism for the dispersal and deposition of sand in the deep-sea setting and thus the main phenomenon leading to the formation of oil and gas reservoirs in deep water deposits. The flow characteristics of turbidity currents are difficult to observe and

  7. INTEGRATED WATER MONITORING TO SUPPORT THE MANAGEMENT OF HEALTHY SEGARA ANAKAN ESTUARY

    Directory of Open Access Journals (Sweden)

    Sri Noegrahati

    2007-03-01

    Full Text Available ABSTRACT Estuaries provide vital nesting and feeding habitats for many aquatic plants and animals, therefore suitable methods are needed for monitoring the changes in estuarine waters to keep the health of coastal habitats. Limitations in understanding the relationship between discrete physicochemical measurements and cause of the alteration in the quality and functioning of an ecosystem, has lead to the integration of physicochemical and biological monitoring. In this work, spatial time series integrated monitoring of Southern part of Segara Anakan Estuary, Central Java, Indonesia, was carried out from August 2003 to May 2004. The parameters were measured at the lowest water depth. Dramatic changes in physicochemical parameters of salinity, total suspended solids, turbidity and biological parameters of phytoplankton diversity, density was observed during dry season (August-September 2003 and wet season (December 2003-March 2004, while the changes in parameters of organics (DO, BOD and COD and nutrients (N-NH3 N-NO and P were not significant. The difference of freshwater influx into the estuary caused higher salinity in dry season (25 to 2 ppt and faster water velocity in wet season (0,4 to 0,2 m/detik. The higher rainfall and faster water velocity in wet season caused more re-aeration via the water surface, therefore, photosynthetic production, measured as increase rate of DO in day time, could be assessed only in dry season. Limitation of phytoplankton ability to carry out photosynthesis in wet season, as observed by the decrease of the daytime CO consumption rate, were due to the drastic increase of turbidity (0,8 to 14,1 NTU caused by total suspended solids transported with the freshwater influx. In other turn, this limitation caused the decrease of phytoplankton diversity and density. Considering that healthy estuaries are critical for the continued survival of many species of fish and other aquatic life, and phytoplankton forms the base of

  8. Estimation of serum hyaluronidase activity overcoming the turbidity interference.

    Science.gov (United States)

    Nagaraju, Shivaiah; Girish, K Subbaiah; Pan, Yi; Easely, Kirk A; Kemparaju, Kempaiah

    2011-01-01

    The assay of mammalian hyaluronidases (HAases) is important in understanding the role of the hyaluronan-hyaluronidase (HA-HAase) system in various pathophysiological processes. Despite several quantitative assay method options, the Morgan-Elson colorimetric method modified by Reissig et al is considered the best for determining the activity in clinical samples. However, the sensitivity of the method was greatly limited by presence of protein above 400 microg due to turbidity interference that led to chromogen quenching. Therefore, an effort has been made to reinvestigate the Reissig et al method. In the reinvestigated method, a standardized optimal 0.32 M potassium tetraborate (PTB) was used against 0.13 M (native) to overcome the turbidity interference. The estimated mean OD at 585 nm of serum for native method was 0.043 (95% CI: 0.040 to 0.045), while that for the re-investigated method was 0.138 (95% CI: 0.133 to 0.143, p < 0.0001). The mean OD at 585 nm of serum of native method was significantly lower than that of re-investigated method (p < 0.05) at all protein levels. This was also true for estimated mean OD at 585 nm of plasma. The mean intrasample CVs for native and re-investigated methods were 0.9% and 0.5%, respectively, for normal serum. Furthermore, the repeatability coefficient of normal serum for native was 0.003 IU, while re-investigated method experienced that of 0.002 IU.

  9. Sediment transport due to extreme events: The Hudson River estuary after tropical storms Irene and Lee

    Science.gov (United States)

    Ralston, David K.; Warner, John C.; Geyer, W. Rockwell; Wall, Gary R.

    2013-01-01

    Tropical Storms Irene and Lee in 2011 produced intense precipitation and flooding in the U.S. Northeast, including the Hudson River watershed. Sediment input to the Hudson River was approximately 2.7 megaton, about 5 times the long-term annual average. Rather than the common assumption that sediment is predominantly trapped in the estuary, observations and model results indicate that approximately two thirds of the new sediment remained trapped in the tidal freshwater river more than 1 month after the storms and only about one fifth of the new sediment reached the saline estuary. High sediment concentrations were observed in the estuary, but the model results suggest that this was predominantly due to remobilization of bed sediment. Spatially localized deposits of new and remobilized sediment were consistent with longer term depositional records. The results indicate that tidal rivers can intercept (at least temporarily) delivery of terrigenous sediment to the marine environment during major flow events.

  10. Facilitating political decisions using species distribution models to assess restoration measures in heavily modified estuaries.

    Science.gov (United States)

    Heuner, Maike; Weber, Arnd; Schröder, Uwe; Kleinschmit, Birgit; Schröder, Boris

    2016-09-15

    The European Water Framework Directive requires a good ecological potential for heavily modified water bodies. This standard has not been reached for most large estuaries by 2015. Management plans for estuaries fall short in linking implementations between restoration measures and underlying spatial analyses. The distribution of emergent macrophytes - as an indicator of habitat quality - is here used to assess the ecological potential. Emergent macrophytes are capable of settling on gentle tidal flats where hydrodynamic stress is comparatively low. Analyzing their habitats based on spatial data, we set up species distribution models with 'elevation relative to mean high water', 'mean bank slope', and 'length of bottom friction' from shallow water up to the vegetation belt as key predictors representing hydrodynamic stress. Effects of restoration scenarios on habitats were assessed applying these models. Our findings endorse species distribution models as crucial spatial planning tools for implementing restoration measures in modified estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Influence of Coriolis Forces on Flow Structures of Channelized Large-Scale Turbidity Currents and their Depositional Patterns

    Science.gov (United States)

    Cossu, Remo

    Physical experiments are used to investigate the influence of the Coriolis forces on flow structures in channelized turbidity currents, and their implication for the evolution of straight and sinuous submarine channels. Initial tests were used to determine whether or not saline density currents are a good surrogate for particle-laden currents. Results imply that this assumption is valid when turbidity currents are weakly-depositional and have similar velocity and turbulence structures to saline density currents. Second, the controls of Coriolis forces on flow structures in straight channel sections are compared with two mathematical models: Ekman boundary layer dynamics and the theory of Komar [1969]. Ekman boundary layer dynamics prove to be a more suitable description of flow structures in rotating turbidity currents and should be used to derive flow parameters from submarine channels systems that are subjected to Coriolis forces. The significance of Coriolis forces for submarine channel systems were determined by evaluating the dimensionless Rossby number RoW. The Rossby number is defined as the ratio of the flow velocity, U, of a turbidity current to the channel width, W, and the rotation rate of the Earth represented by the Coriolis parameter, f. Coriolis forces are very significant for channel systems with RoW ≤. O(1) . Third, the effect of Coriolis forces on the internal flow structure in sinuous submarine channels is considered. Since previous studies have only considered pressure gradient and centrifugal forces, the Coriolis force provides a crucial contribution to the lateral momentum balance in channel bends. In a curved channel, both the Rossby number RoW and the ratio of the channel curvature radius R to the channel width W, determine whether Coriolis forces affect the internal flow structure. The results demonstrate that Coriolis forces can cause a significant shift of the density interface and the downstream velocity core of channelized turbidity

  12. Comparison of empirical models with intensively observed data for prediction of salt intrusion in the Sumjin River estuary, Korea

    Directory of Open Access Journals (Sweden)

    D. C. Shaha

    2009-06-01

    Full Text Available Performance of empirical models has been compared with extensively observed data to determine the most suitable model for prediction of salt intrusion in the Sumjin River estuary, Korea. Intensive measurements of salt intrusion were taken at high and low waters during both spring and neap tide in each season from August 2004 to April 2007. The stratification parameter varied with the distance along the estuary, tidal period and freshwater discharge, indicating that the Sumjin River estuary experiences a transition from partially- or well-mixed during spring tide to stratified during neap tide. The salt intrusion length at high water varied from 13.4 km in summer 2005 to 25.6 km in autumn 2006. The salt intrusion mostly depends on the freshwater discharge rather than spring-neap tidal oscillation. Analysis of three years observed salinity data indicates that the scale of the salt intrusion length in the Sumjin River estuary is proportional to the river discharge to the −1/5 power. Four empirical models have been applied to the Sumjin River estuary to explore the most suitable model for prediction of the salt intrusion length. Comparative results show that the Nguyen and Savenije (2006 model, developed under both partially- and well-mixed estuaries, performs best of all models studied (relative error of 4.6%. The model was also applied under stratified neap tide conditions, with a relative error of 5.2%, implying applicability of this model under stratified conditions as well.

  13. A drifter for measuring water turbidity in rivers and coastal oceans.

    Science.gov (United States)

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Finite element solution methods for circulation in estuaries

    Science.gov (United States)

    Walters, Roy A.; Laible, J. P.; Brebbia, C.A.; Gray, W.; Pinder, G.

    1984-01-01

    In this paper, the shallow water equations are used to approximate the depth-mean circulation in estuaries.  The time scales of the motions can be conveniently divided into three ranges: 1) low-frequency (residual) variations with periods of two days or longer, 2) tidal-frequency variations, and 3) high-frequency variations with periods of an hour or shorter.  The emphasis here will be on the tidal-period variations that are characterized by line spectra and thus allow a harmonic decomposition of the governing equations.

  15. Ciliated Protozoa of the polluted Tees estuary

    Science.gov (United States)

    Parker, James G.

    1981-03-01

    In a study of the ciliated Protozoa of Bran Sand, a sheltered beach in the Tees estuary, 20 putative species were identified. This beach was richer in species than the nearby North Gare beach. In experimental batch cultures, seawater from the estuary had an inhibitory effect upon growth of a strain of Uronema marinum Dujardin which was isolated from an unpolluted beach at Robin Hood's Bay. The tolerance to metals of a Tees strain of U. marinum was assessed in simple toxicity tests; lethal levels for this strain were found to be similar to those reported elsewhere for the Robin Hood's Bay strain.

  16. Analytical Green's function for the fluorescence simplified spherical harmonics equations in turbid medium.

    Science.gov (United States)

    Zhang, Limin; Yi, Xi; Li, Jiao; Zhao, Huijuan; Gao, Feng

    2014-01-01

    It is more complicated to write the analytical expression for the fluorescence simplified spherical harmonics ( SPN) equations in a turbid medium, since both the processes of the excitation and emission light and the composite moments of the fluence rate are described by coupled equations. Based on an eigen-decomposition strategy and the well-developed analytical methods of diffusion approximation (DA), we derive the analytical solutions to the fluorescence SPN equations for regular geometries using the Green's function approach. By means of comparisons with the results of fluorescence DA and Monte Carlo simulations, we have shown the effectiveness of our proposed method and the expected advantages of the SPN equations in the case of small source-detector separation and high absorption.

  17. Instrumental research of lithodynamic processes in estuaries of the White Sea

    Science.gov (United States)

    Rimsky-Korsakov, Nikolai; Korotaev, Vladislav; Ivanov, Vadim

    2017-04-01

    The report provides a comparative analysis of morphological lithodynamic processes in estuaries and river deltas on the basis of 2013-2015 field geophysical and hydrographic surveys held by IO RAS and MSU. Studies performed using side scan sonar (Imagenex YellowFin SSS), bathymetric (FortXXI Scat Echo sounder) and navigation (DGPS/GLONASS Sigma Ashtek receiver) equipment. North Dvina modern delta can be classified as multi-arm delta estuary lagoon performance. Areas of modern river waters occupy a large accumulation of deltaic arms. It formed a young island with elevations of about 1 m. The islands are composed of river alluvium and annually flooded during the flood period. Onega river mouth area is unique due to the specific geological conditions. Short, wellhead site is the cause of the anomalous attenuation of the tidal wave and the limited range of penetration of salt water seashore only to Kokorinskogo threshold. Morphological lithodynamic processes in high tide Mezen estuaries (syzygy - 8.5 m) are caused by tidal currents, river runoff, wind waves and sediment longshore drift. Due to the movement of huge masses of sediment in the Mezen estuary occur intense deformation silty-sand banks, reshaping of the bottom channel trenches and displacement of navigable waterways. Thus, the specificity of the morphological lithodynamic processes in high tidal estuaries is a lack of modern delta, the development of mobile local sediment structures inside the estuary and the formation of a broad mouth bar on the open wellhead coast. In multi-arm deltas an intense process of increasing marine edge of the delta is observed due to wellhead delta arms elongation and the formation of small estuarine bars at the mouths of the underwater channel trenches coming out into the open coast. Simultaneously, the process of filling the river sediments of residual waters within the subaerial delta and the formation of marine coastal bars on the outer perimeter edge of the sea ground delta.

  18. Occurrence of Anaerobic Ammonium Oxidation in the Yangtze Estuary

    Science.gov (United States)

    Hou, L.

    2013-12-01

    Over the past several decades, a large quantity of reactive nitrogen has been transported into the Yangtze estuarine and coastal water, due to intense human activities in the Yangtze River Basin. At present, it annually receives a high load of anthropogenic inorganic nitrogen (about 1.1 × 1011 mol N) from increased agricultural activities, fish farming, and domestic and industrial wastewater discharge in the Yangtze River Basin, consequently leading to severe eutrophication and frequent occurrences of harmful algal blooms in the estuary and adjacent coastal areas. Hence, the microbial nitrogen transformations are of major concern in the Yangtze Estuary. Anaerobic ammonium oxidation (anammox) has been reported to play a significant role in the removal of reactive nitrogen in aquatic ecosystems. In this study, the occurrences of anammox bacteria and associated activity in the Yangtze Estuary were evidenced with molecular and isotope-tracing techniques. It is observed that the anammox bacteria at the study area mainly consisted of Candidatus Scalindua, Brocadia, Kuenenia. Salinity was found to be a key environmental factor controlling distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Also, temperature and organic carbon had significant influences on anammox bacterial biodiversity. Q-PCR assays of anammox bacteria indicated that their abundance had a range of 2.63 ×106 - 9.48 ×107 copies g-1 dry sediment, with high spatiotemporal heterogeneity. The potential anammox activities measured in the present work varied between 0.94 - 6.61nmol N g-1 dry sediment h-1, which were related to temperature, nitrite and anammox bacterial abundance. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6 - 12.9 % to the total nitrogen loss whereas the remainder was attributed to denitrification.

  19. Environmental factors structuring fish composition and assemblages in a small macrotidal estuary (eastern English Channel)

    Science.gov (United States)

    Selleslagh, Jonathan; Amara, Rachid

    2008-09-01

    The fish assemblage structure was analyzed along an estuarine gradient of a small macrotidal estuary (the Canche, France). Fishes were collected every two months between May 2006 and July 2007 from 12 sampling stations using a 1.5-m beam trawl with a 5 mm mesh size in the cod end. To complement this information, sampling was also performed using 15-m fyke nets (8 mm mesh size in the cod end). For each sample, abiotic (temperature, salinity, pH, oxygen, turbidity, river flow, wind speed and depth) and biotic (macro crustacean species abundances) were recorded. Throughout the study, 28 fish species belonging to 20 families were collected. Fish catches were dominated by juveniles, especially Young-Of-the-Year (YOY) for the majority of the species. According to the Index of Relative Importance (IRI), common goby Pomatoschistus microps, flounder Platichtys flesus, sprat Sprattus sprattus, sea-bass Dicentrarchus labrax and plaice Pleuronectes platessa were the most abundant species, together accounting for 99.2% of the total IRI. Estuarine residents (ER = 66.2%) and marine juvenile migrants species (MJ = 31.4%) were the most important ecological guilds. The structure of the fish assemblage and its relationship to environmental variables was examined using multivariate techniques. Cluster and non-metric multidimensional scaling (nMDS) analysis defined six distinct groups in the Canche estuary, which are discriminated by specific species (SIMPER). Spatio-temporal variations in fish assemblage structure reflect the density peaks of the most abundant species. Spearman rank correlations and canonical correspondence analysis (CCA) showed that among the ten environmental variables examined, temperature, salinity and Crangon crangon (a potential predator for YOY fish or prey for older ones) are the three most important factors influencing fish species richness and abundances. Our observations reinforce the idea that certain fish species may have different life history styles in

  20. Estuary fish data - Juvenile salmon in migratory corridors of lower Columbia River estuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sampling juvenile salmon and associated fishes in open waters of the lower Columbia River estuary. Field work includes bi-weekly sampling during the spring...

  1. Tideless estuaries in brackish seas as possible freshwater-marine transition zones for bacteria: the case study of the Vistula river estuary.

    Science.gov (United States)

    Gołębiewski, Marcin; Całkiewicz, Joanna; Creer, Simon; Piwosz, Kasia

    2017-04-01

    Most bacteria are found either in marine or fresh waters and transitions between the two habitats are rare, even though freshwater and marine bacteria co-occur in brackish habitats. Estuaries in brackish, tideless seas could be habitats where the transition of freshwater phylotypes to marine conditions occurs. We tested this hypothesis in the Gulf of Gdańsk (Baltic Sea) by comparing bacterial communities from different zones of the estuary, via pyrosequencing of 16S rRNA amplicons. We predicted the existence of a core microbiome (CM, a set of abundant OTUs present in all samples) comprising OTUs consisting of populations specific for particular zones of the estuary. The CMs for the entire studied period consisted of only eight OTUs, and this number was even lower for specific seasons: five in spring, two in summer, and one in autumn and winter. Six of the CM OTUs, and another 21 of the 50 most abundant OTUs consisted of zone-specific populations, plausibly representing micro-evolutionary forces. The presence of up to 15% of freshwater phylotypes from the Vistula River in the brackish Gulf of Gdańsk supported our hypothesis, but high dissimilarity between the bacterial communities suggested that freshwater-marine transitions are rare even in tideless estuaries in brackish seas. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Trace metals in estuaries in the Russian Far East and China: case studies from the Amur River and the Changjiang.

    Science.gov (United States)

    Shulkin, Vladimir; Zhang, Jing

    2014-11-15

    This paper compares the distributions of dissolved and particulate forms of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the estuaries of the largest rivers in East Asia: the Amur River and the Changjiang (Yangtze River). High suspended solid concentrations, elevated pH, and relatively low dissolved trace metal concentrations are characteristics of the Changjiang. Elevated dissolved Fe and Mn concentrations, neutral pH, and relatively low suspended solid concentrations are characteristics of the Amur River. The transfer of dissolved Fe to suspended forms is typical in the Amur River estuary, though Cd and Mn tend to mobilize to solution, and Cu and Ni are diluted in the estuarine system. Metal concentrations in suspended matter in the Amur River estuary are controlled by the ratio of terrigenous riverine material, enriched in Al and Fe, and marine biogenic particles, enriched in Cu, Mn, Cd, and in some cases Ni. The increase in dissolved forms of Mn, Fe, Ni, Cu, Cd, and Pb compared with river end-member is unique to the Changjiang estuary. Particle-solution interactions are not reflected in bulk suspended-solid metal concentrations in the Changjiang estuary due to the dominance of particulate forms of these metals. Cd is an exception in the Changjiang estuary, where the increase in dissolved Cd is of comparable magnitude to the decrease in particulate Cd. Despite runoff in the Amur River being lower than that in the Changjiang, the fluxes of dissolved Mn, Zn and Fe in the Amur River exceed those in the Changjiang. Dissolved Ni, and Cd fluxes are near equal in both estuaries, but dissolved Cu is lower in the Amur River estuary. The hydrological and physico-chemical river characteristics are dominated at the assessment of river influence on the adjoining coastal sea areas despite differences in estuarine processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Alien reef-building polychaete drives long-term changes in invertebrate biomass and diversity in a small, urban estuary

    Science.gov (United States)

    McQuaid, K. A.; Griffiths, C. L.

    2014-02-01

    Two of the greatest threats to native biodiversity are the construction of artificial structures in natural environments and the introduction of invasive species. As the development and urbanisation of estuaries continues at an increasing rate worldwide, these environments are being simultaneously affected by these threats. This study quantifies the spread of an invasive reef-building polychaete, Ficopomatus enigmaticus, in a small, highly manipulated urban estuary in South Africa and investigates its role as an ecosystem engineer. Anthropogenic changes to the Zandvlei Estuary, including construction of a rubble weir and canalisation near the estuary mouth, construction of an extensive marina development and hardening of the banks with concrete, have facilitated the expansion of F. enigmaticus. The standing stock of F. enigmaticus increased from 13.69 t, as measured in 1986, to 50.03 t in 2012, due both to increase in the total area colonised and standing stock per m2. Since F. enigmaticus reefs support a greater biomass of infauna than adjacent sandy areas, total invertebrate biomass in the estuary is estimated to have increased from less than 0.30 t in 1942, to over 56.80 t in 2012, due mainly to hardening of banks in parts of the main estuary with concrete and construction of a marina system. A positive correlation between reef mass and infaunal biomass, density and diversity was also found.

  4. Spatial variation in the environmental control of crab larval settlement in a micro-tidal austral estuary

    Science.gov (United States)

    Pardo, Luis Miguel; Cardyn, Carlos Simón; Garcés-Vargas, José

    2012-09-01

    Settlement of benthic marine invertebrates is determined by the interaction between physical factors and biological processes, in which the tide, wind, and predation can play key roles, especially for species that recruit within estuaries. This complexity promotes high variability in recruitment and limited predictability of the size of annual cohorts. This study describes the settlement patterns of megalopae of the commercially important crab Cancer edwardsii at three locations (one in the center and two at the mouth of the estuary) within the Valdivia River estuary (~39.9°S), over three consecutive years (2006-2008). At each location, 12 passive benthic collectors with a natural substratum were deployed for 48 h at 7-day intervals, over a lunar cycle. Half of the collectors were covered with mesh to exclude predators. The main findings were as follows: (1) circulation changes due to upwelling relaxation or onshore winds controlled crab settlement at sites within the mouth of the estuary, (2) at the internal estuarine site, settlement was dominated by tidal effects, and (3) the effect of predation on settlement was negligible at all scales. The results show that the predominant physical factor controlling the return of competent crab larvae to estuarine environments varies spatially within the estuary. The lack of tidal influence on settlement at the mouth of the estuary can be explained by the overwhelming influence of the intense upwelling fronts and the micro-tidal regime in the study area.

  5. Tropical land-sea couplings: Role of watershed deforestation, mangrove estuary processing, and marine inputs on N fluxes in coastal Pacific Panama.

    Science.gov (United States)

    Valiela, Ivan; Elmstrom, Elizabeth; Lloret, Javier; Stone, Thomas; Camilli, Luis

    2018-02-21

    We review data from coastal Pacific Panama and other tropical coasts with two aims. First, we defined inputs and losses of nitrogen (N) mediating connectivity of watersheds, mangrove estuaries, and coastal sea. N entering watersheds-mainly via N fixation (79-86%)-was largely intercepted; N discharges to mangrove estuaries (3-6%), small compared to N inputs to watersheds, nonetheless significantly supplied N to mangrove estuaries. Inputs to mangrove estuaries (including watershed discharges, and marine inputs during flood tides) were matched by losses (mainly denitrification and export during ebb tides). Mangrove estuary subsidies of coastal marine food webs take place by export of forms of N [DON (62.5%), PN (9.1%), and litter N (12.9%)] that provide dissimilative and assimilative subsidies. N fixation, denitrification, and tidal exchanges were major processes, and DON was major form of N involved in connecting fluxes in and out of mangrove estuaries. Second, we assessed effects of watershed forest cover on connectivity. Decreased watershed forest cover lowered N inputs, interception, and discharge into receiving mangrove estuaries. These imprints of forest cover were erased during transit of N through estuaries, owing to internal N cycle transformations, and differences in relative area of watersheds and estuaries. Largest losses of N consisted of water transport of energy-rich compounds, particularly DON. N losses were similar in magnitude to N inputs from sea, calculated without considering contribution by intermittent coastal upwelling, and hence likely under-estimated. Pacific Panama mangrove estuaries are exposed to major inputs of N from land and sea, which emphasizes the high degree of bi-directional connectivity in these coupled ecosystems. Pacific Panama is still lightly affected by human or global changes. Increased deforestation can be expected, as well as changes in ENSO, which will surely raise watershed-derived loads of N, as well as significantly

  6. Sedimentary Records of Hyperpycnal Flows and the Influence of River Damming on Sediment Dynamics of Estuaries: Examples from the Nelson, Churchill, Moisie and Sainte-Marguerite Rivers (Canada)

    Science.gov (United States)

    St-Onge, G.; Duboc, Q.; Boyer-Villemaire, U.; Lajeunesse, P.; Bernatchez, P.

    2015-12-01

    Sediment cores were sampled in the estuary of the Nelson and Churchill Rivers in western Hudson Bay, as well as in the estuary of the Moisie and Sainte-Marguerite Rivers in Gulf of St. Lawrence in order to evaluate the impact of hydroelectric dams on the sedimentary regime of these estuaries. The gravity cores at the mouth of the Nelson River recorded several cm-thick rapidly deposited layers with a reverse to normal grading sequence, indicating the occurrence of hyperpycnal flows generated by major floods during the last few centuries. These hyperpycnal flows were probably caused by ice-jam formation, which can increase both the flow and the sediment concentration following the breaching of such natural dams. Following the construction of hydroelectric dams since the 1960s, the regulation of river discharge prevented the formation of hyperpycnal flows, and hence the deposition of hyperpycnites in the upper part of the cores. In the core sampled in the estuary of the Churchill River, only one hyperpycnite was recorded. This lower frequency may be due to the enclosed estuary of the Churchill River, its weaker discharge and the more distal location of the coring site.In the Gulf of St. Lawrence, grain size measurements allowed the identification of a major flood around AD 1844±4 years in box cores from both the Sainte-Marguerite and Moisie Rivers, whereas a drastic decrease in variations in the median grain size occurred around AD ~1900 in the estuary of the Sainte-Marguerite River, highlighting the offshore impact of the SM1 dam construction in the early 1900s. Furthermore, sedimentological variations in the box cores from both estuaries have been investigated by wavelet analysis and the sharp disappearance of high frequencies around AD 1900 in the estuary of the dammed river (Sainte-Marguerite River), but not in the estuary of the natural river (Moisie River), also provides evidence of the influence of dams on the sedimentary regime of estuaries.

  7. STUDY ON THE EFFECTS OF TIDE ON SEDIMENTATION IN ESTUARIES OF THE NIGER DELTA, NIGERIA

    Directory of Open Access Journals (Sweden)

    Charles Chizom Dike

    2012-12-01

    Full Text Available Niger Delta Estuary Nigeria is influenced by tidal currents due to its proximity to the Atlantic Ocean. Tides in the region are mostly semidiurnal, having two high and low water levels each day, with tidal prism ranging from 0.4 to 1.5m. The effects of tidal current reduces with distance inland and are strongest at the inlets with velocity varying from 2.0 to 5.0m/sec. The depth of the Estuary Rivers is controlled by the strength of the tidal currents; areas very close to ocean with stronger tidal effect are very deep; while shallow rivers predominates the hub of the estuary. Tidal current provides the steady supply of energy that moves sediments in and out of the estuaries from the seashore thus determing river bathymetric shapes through modification of existing morphology by eroding or depositing of sediments along the river course, while further sediment deposition is curtailed at the bottom as the estuary gets shallower due to the increasing stirring by waves. Despite all the sediment coming into the estuaries, many canals in the region have remained as open-water bodies, even after some thousand years. This suggests that, the interaction between the tide and the shape of the canal floor helps to regulate long-term sedimentation. However, the Dredged Canals in the Niger Delta estuaries have suffered high siltation rates because of excessive supply of sediments generated by storm/flood waters from upland and disposal of spoils from dredging activities into the water bodies, which causes some imbalance in the estuarine self-cleaning mechanism. Sediment loads entering the mangrove swamp environment are essentially polycentric; suspended fines enter the system both from the sea and the rivers. A mathematical model was formulated to predict and study the behavior of the sea bed levels, tidal heights and currents, in other to understand how they interact with each other. The model was calibrated using data obtained from local field observations

  8. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Science.gov (United States)

    Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun

    2017-11-01

    Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16

  9. Characterisation of organic matter source and sediment distribution in Ashtamudi Estuary, southern India

    Science.gov (United States)

    Kumar, Prem; Ankit, Yadav; Mishra, Praveen K.; Jha, Deepak Kumar; Anoop, Ambili

    2017-04-01

    In the present study we have focussed on the surface sediments of Ashtamudi Estuary (southern India) to understand (i) the fate and sources of organic matter by investigating lipid biomarker (n-alkanes) distribution in modern sediments and vegetation samples and (ii) the processes controlling the sediment distribution into the lake basin using end-member modelling approach. The sediment n-alkanes from the Ashtamudi Estuary exhibit a pronounced odd over even predominance with maxima at C29 and C31 chain length indicative of a dominant terrestrial contribution. A number of n-alkane indices have been calculated to illustrate the variability in space by considering separately the river dominated northern reaches and tidal influenced southern part of Ashtamudi Estuary. The highest terrigenous organic contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The Paq and TAR (terrigenous/aquatic ratio) indices demonstrate maximum aquatic productivity (plankton growth and submerged macrophytes) in the tidal dominated region of the Ashtamudi Estuary. The carbon preference index (CPI) and average chain length (ACL) provide evidence for high petrogenic organic inputs in the tidal zone, whereas dominant biogenic contribution have been observed in the riverine zone. In addition, the end member modeling of the grain size distribution of the surface sediment samples enabled us to decipher significant sedimentological processes affecting the sediment distribution in the estuarine settings. The end-member distribution showing highest loading with the coarser fraction is maximum where estuary debouches into the sea. However, the samples near the mouth of the river shows finer fraction of the end-member.

  10. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, A. [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Olías, M., E-mail: manuel.olias@dgyp.uhu.es [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Cánovas, C.R. [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Martín, J.E.; Bolivar, J.P. [Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain)

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  11. Diurnal variations in bacterial and viral production in Cochin estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Jasna, V.; Haridevi, C.K.; Jina, S.; Greeshma, M.; Breezy, J.; Nair, M.

    of bacterial production (BP) and viral production (VP) with respect to primary production over a diurnal period in Cochin estuary. Time series measurements were made every 2 h for 12 h (6 a.m.–6 p.m.) during periods of low and high salinities. The light...

  12. Determination of Cd, Pb and Cu in Mandovi estuary by differential pulse anodic stripping voltammetry

    Digital Repository Service at National Institute of Oceanography (India)

    George, M.D.; Sawkar, K.; Reddy, C.V.G.

    0-60% for Pb and 0-80% for Cu. Compared to the reported values from other estuaries, Mandovi estuarine waters have registered a higher concentration of the metals. These high concentrations, to a large extent, are considered to be the effect...

  13. Primary production and eddy correlation measurements of CO2 exchange over an intertidal estuary

    NARCIS (Netherlands)

    Zemmelink, H.J.; Slagter, H.A.; Slooten van, C.; Snoek, J.W.; Heusinkveld, B.G.; Elbers, J.A.; Bink, N.J.; Klaassen, W.; Philippart, C.J.M.; Baar, de H.

    2009-01-01

    Field measurements by eddy correlation indicate an average CO2 uptake of 1.9 g C m-2 d-1 by the intertidal Wadden Sea estuary in spring 2008. The flux did not show a dependency on the tide and fluxes during high and low tide were comparable. We hypothesize that biological production in the water

  14. Dynamics of circulation and salt balance in the upper reaches of Periyar river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Varma, P.U.; Pylee, A.; Sankaranarayanan, V.N.

    -January and became highly stratified during February-May. September-November was the transition period. The residual flux of salt was directed down the estuary just after the south-west monsoon period and was low. Main source of salt was through vertical shear...

  15. Mouth Bar Formation in Yangtze River Estuary

    NARCIS (Netherlands)

    Wei, C.

    2002-01-01

    The periodic shifting of the bifurcation point of the North Channel and South Channel of the Yangtze river is very important in the estuary. The North Channel is bifurcated from the South Branch by cutting a channel through the submerged sandbanks. Once a bifurcation channel is formed, the

  16. Carbon dioxide emissions from Indian monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Viswanadham, R.; Rao, G.D.; Prasad, V.R.; Kumar, B.S.K.; Naidu, S.A.; Kumar, N.A.; Rao, D.B.; Sridevi, T.; Krishna, M.S.; Reddy, N.P.C.; Sadhuram, Y.; Murty, T.V.R.

    estuarine system, the Pearl River Estuary, China. J. Geophys. Res., 114, G03013, doi: 10.1029/2008JG000905. Hunt, C.W., J.E. Salisbury, D. Vandemark, and W. McGillis (2010). Contrasting carbon dioxide inputs and exchange in three adjacent New England...

  17. BCG Approaches for Improved Management of Estuaries

    Science.gov (United States)

    Estuaries and other complex aquatic systems are exposed to a variety of stressors that act at several scales, but are managed piecemeal - - often resulting in a “death by 1000 cuts” caused by cumulative impacts to these valued resources. To address this, managers need tools that...

  18. Computation of gravity currents in estuaries

    NARCIS (Netherlands)

    Vreugdenhil, C.B.

    1970-01-01

    A great deal of literature has been devoted to gravity currents in estuaries. However, more or less detailed theoretical models of these phenomena are scarce. This is partly due to the fact that the equations have been difficult to solve if they describe the situation with some generality. This

  19. Mercury enrichment in sediments of Amba estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; Rokade, M.A.; Zingde, M.D.

    Concentrations of Hg, total organic carbon (TOC), Al, Fe and Mn were determined in sediment of the Amba Estuary between the mouth and the head over a distance of 24 km in December and May during 1997-2002. Temporal and spatial changes in metal...

  20. Influence of estuaries on shelf sediment texture

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Hashimi, N.H.

    on the coast. Offshore from regions where there are a large number of estuaries, the inner shelf sediments are fine grained (average mean size 5.02 phi, 0.03 mm), rich in organic matter ( 2%) and low in calcium carbonate ( 25%). In contrast, in regions...

  1. Features at some significant estuaries of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    in the second and 162 in the third. Most of the studies on various aspects have been confined to very few of these, and that too, mostly to minor ones. Very little work has been carried out from many of the estuaries of the major rivers. An overview...

  2. THE ECOLOGICAL CONDITION OF VERACRUZ, MEXICO ESTUARIES

    Science.gov (United States)

    During June and July, 2002, forty-seven stations were sampled within estuaries along the gulf coast of the state of Veracruz, MX, using a probabilistic survey design and a common set of response indicators. The objective of the study was to collect information to assess the condi...

  3. Nutrient cycling and foodwebs in Dutch estuaries

    NARCIS (Netherlands)

    Nienhuis, P.H.

    1993-01-01

    In this review several aspects of the functioning of the Dutch estuaries (Ems-Dollard, Wadden Sea, Oosterschelde, Westerschelde, Grevelingen and Veerse Meer) have been compared. A number of large European rivers (especially Rhine) have a prevailing influence on the nutrient cycling of most Dutch

  4. Estuaries and Tidal Marshes. Habitat Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  5. Continuous Turbidity Monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08

    Science.gov (United States)

    Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Thousands of miles of natural gas pipelines are installed annually in the United States. These pipelines commonly cross streams, rivers, and other water bodies during pipeline construction. A major concern associated with pipelines crossing water bodies is increased sediment loading and the subsequent impact to the ecology of the aquatic system. Several studies have investigated the techniques used to install pipelines across surface-water bodies and their effect on downstream suspended-sediment concentrations. These studies frequently employ the evaluation of suspended-sediment or turbidity data that were collected using discrete sample-collection methods. No studies, however, have evaluated the utility of continuous turbidity monitoring for identifying real-time sediment input and providing a robust dataset for the evaluation of long-term changes in suspended-sediment concentration as it relates to a pipeline crossing. In 2006, the U.S. Geological Survey, in cooperation with East Tennessee Natural Gas and the U.S. Fish and Wildlife Service, began a study to monitor the effects of construction of the Jewell Ridge Lateral natural gas pipeline on turbidity conditions below pipeline crossings of Indian Creek and an unnamed tributary to Indian Creek, in Tazewell County, Virginia. The potential for increased sediment loading to Indian Creek is of major concern for watershed managers because Indian Creek is listed as one of Virginia's Threatened and Endangered Species Waters and contains critical habitat for two freshwater mussel species, purple bean (Villosa perpurpurea) and rough rabbitsfoot (Quadrula cylindrical strigillata). Additionally, Indian Creek contains the last known reproducing population of the tan riffleshell (Epioblasma florentina walkeri). Therefore, the objectives of the U.S. Geological Survey monitoring effort were to (1) develop a continuous turbidity monitoring network that attempted to measure real-time changes in suspended sediment (using

  6. Analysis of the influence of river discharge and wind on the Ebro turbid plume using MODIS-Aqua and MODIS-Terra data

    Science.gov (United States)

    Fernández-Nóvoa, D.; Mendes, R.; deCastro, M.; Dias, J. M.; Sánchez-Arcilla, A.; Gómez-Gesteira, M.

    2015-02-01

    The turbid plume formed at many river mouths influences the adjacent coastal area because it transports sediments, nutrients, and pollutants. The effects of the main forcings affecting the Ebro turbid plume were analyzed using data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Aqua and Terra satellites over the period 2003-2011. Composite images were obtained for days under certain river discharge conditions (different flow regimes) and different types of wind (alongshore and cross-shore winds) in order to obtain a representative plume pattern for each situation. River discharge was the main driver of the Ebro River plume, followed by wind as the secondary force and regional oceanic circulation as the third one. Turbid plume extension increased monotonically with increased river discharge. Under high river discharge conditions (> 355 m3 s- 1), wind distributed the plume in the dominant wind direction. Seaward winds (mistral) produced the largest extension of the plume (1893 km2), whereas southern alongshore winds produced the smallest one (1325 km2). Northern alongshore winds induced the highest mean turbid value of the plume, and southern alongshore winds induced the lowest one. Regardless of the wind condition, more than 70% of the plume extension was located south of the river mouth influenced by the regional oceanic circulation.

  7. Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan

    Directory of Open Access Journals (Sweden)

    Shu-Kun Hsu

    2008-01-01

    Full Text Available Submarine landslides or slumps may generate turbidity currents consisting of mixture of sediment and water. Large and fast-moving turbidity currents can incise and erode continental margins and cause damage to artificial structures such as telecommunication cables on the seafloor. In this study, we report that eleven submarine cables across the Kaoping canyon and Manila trench were broken in sequence from 1500 to 4000 m deep, as a consequence of submarine landslides and turbidity currents associated with the 2006 Pingtung earthquakes offshore SW Taiwan. We have established a full-scale scenario and calculation of the turbidity currents along the Kaoping canyon channel from the middle continental slope to the adjacent deep ocean. Our results show that turbidity current velocities vary downstream ranging from 20 to 3.7 and 5.7 m/s, which demonstrates a positive relationship between turbidity current velocity and bathymetric slope. The violent cable failures happened in this case evidenced the destructive power of the turbidity current to seafloor or underwater facilities that should not be underestimated.

  8. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.

    Science.gov (United States)

    Azpiroz-Zabala, Maria; Cartigny, Matthieu J B; Talling, Peter J; Parsons, Daniel R; Sumner, Esther J; Clare, Michael A; Simmons, Stephen M; Cooper, Cortis; Pope, Ed L

    2017-10-01

    Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can explain why these are far more prolonged than all previously monitored oceanic turbidity currents, which lasted for only hours or minutes at other locations. The observed Congo Canyon flows consist of a short-lived zone of fast and dense fluid at their front, which outruns the slower moving body of the flow. We propose that the sustained duration of these turbidity currents results from flow stretching and that this stretching is characteristic of mud-rich turbidity current systems. The lack of stretching in previously monitored flows is attributed to coarser sediment that settles out from the body more rapidly. These prolonged seafloor flows rival the discharge of the Congo River and carry ~2% of the terrestrial organic carbon buried globally in the oceans each year through a single submarine canyon. Thus, this new structure explains sustained flushing of globally important amounts of sediment, organic carbon, nutrients, and fresh water into the deep ocean.

  9. Point-of-use chlorination of turbid water: results from a field study in Tanzania.

    Science.gov (United States)

    Mohamed, Hussein; Brown, Joe; Njee, Robert M; Clasen, Thomas; Malebo, Hamisi M; Mbuligwe, Steven

    2015-06-01

    Household-based chlorine disinfection is widely effective against waterborne bacteria and viruses, and may be among the most inexpensive and accessible options for household water treatment. The microbiological effectiveness of chlorine is limited, however, by turbidity. In Tanzania, there are no guidelines on water chlorination at household level, and limited data on whether dosing guidelines for higher turbidity waters are sufficient to produce potable water. This study was designed to assess the effectiveness of chlorination across a range of turbidities found in rural water sources, following local dosing guidelines that recommend a 'double dose' for water that is visibly turbid. We chlorinated water from 43 sources representing a range of turbidities using two locally available chlorine-based disinfectants: WaterGuard and Aquatabs. We determined free available chlorine at 30 min and 24 h contact time. Our data suggest that water chlorination with WaterGuard or Aquatabs can be effective using both single and double doses up to 20 nephelometric turbidity units (NTU), or using a double dose of Aquatabs up to 100 NTU, but neither was effective at turbidities greater than 100 NTU.

  10. Circulation and suspended particulate matter transport in a tidally dominated estuary: caravelas estuary, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Augusto França Schettini

    2010-03-01

    Full Text Available The circulation and transport of suspended particulate matter in the Caravelas Estuary are assessed. Nearly-synoptic hourly hydrographic, current (ADCP velocity and volume transport and suspended particulate matter data were collected during a full semidiurnal spring tide, on the two transects Boca do Tomba and Barra Velha and on longitudinal sections at low and high tide. On the first transect the peak ebb currents (-1.5 ms-1 were almost twice as strong as those of the wider and shallow Barra Velha inlet (-0.80 ms-1 and the peak flood currents were 0.75 and 0.60 ms-1, respectively. Due to the strong tidal currents both inlets had weak vertical salinity stratification and were classified with the Stratification-circulation Diagram as Type 2a (partially mixed-weakly stratified and Type 1a (well mixed. Volume transports were very close, ranging from -3,500 to 3,100 m³s-1 at the ebb and flood, respectively, with a residual -630 m³s-1. The concentration of the suspended particulate matter was closely related to the tidal variation and decreased landwards from 50 mg.L-1 at the estuary mouth, to 10 mg.L-1 at distances of 9 and 16 km for the low and high tide experiments, respectively. The total residual SPM transport was out of the estuary at rates of -18 tons per tidal cycle.A circulação e o transporte de material particulado em suspensão no Estuário de Caravelas são pesquisados. Dados quase-sinóticos hidrográficos, de correntes (velocidade e transporte de volume com ADCP e de material particulado em suspensão, foram medidos em intervalos horários durante um ciclo semidiurno de maré de sizígia, em duas seções transversais na Boca do Tomba e na Barra Velha e também em seções longitudinais na baixa-mar e na preamar. Na primeira transversal as correntes máximas de vazante (-1,50 m s-1 foram quase duas vezes mais intensas do que na seção transversal mais larga e rasa Barra Velha, (-0,80 m s-1 e as maiores velocidades das correntes de

  11. Effects of suspended sediment concentration and grain size on three optical turbidity sensors

    Science.gov (United States)

    Merten, Gustavo Henrique; Capel, Paul D.; Minella, Jean P.G.

    2014-01-01

    Purpose: Optical turbidity sensors have been successfully used to determine suspended sediment flux in rivers, assuming the relation between the turbidity signal and suspended sediment concentration (SSC) has been appropriately calibrated. Sediment size, shape and colour affect turbidity and are important to incorporate into the calibration process. Materials and methods: This study evaluates the effect of SSC and particle size (i.e. medium sand, fine sand, very fine sand, and fines (silt + clay)) on the sensitivity of the turbidity signal. Three different turbidity sensors were used, with photo detectors positioned at 90 and 180 degrees relative to the axis of incident light. Five different sediment ratios of sand:fines (0:100, 25:75, 50:50, 75:25 and 100:0) were also evaluated for a single SSC (1000 mg l-1). Results and discussion: The photo detectors positioned at 90 degrees were more sensitive than sensor positioned at 180 degrees in reading a wide variety of grain size particles. On average for the three turbidity sensors, the sensitivity for fines were 170, 40, and 4 times greater than sensitivities for medium sand, fine sand, and very fine sand, respectively. For an SSC of 1000 mg l-1 with the treatments composed of different proportions of sand and fines, the presence of sand in the mixture linearly reduced the turbidity signal. Conclusions: The results indicate that calibration of the turbidity signal should be carried out in situ and that the attenuation of the turbidity signal due to sand can be corrected, as long as the proportion of sand in the SSC can be estimated.

  12. DRINKING WATER TURBIDITY AND EMERGENCY DEPARTMENT VISITS FOR GASTROINTESTINAL ILLNESS IN ATLANTA, 1993 – 2004

    Science.gov (United States)

    Tinker, Sarah C.; Moe, Christine L.; Klein, Mitchel; Flanders, W. Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E.

    2013-01-01

    Background The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well-understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the U.S., and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. Methods We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240 000 emergency department visits for gastrointestinal illness during 1993–2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. Results For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. This association was not observed for all treatment plants in plant-specific analyses. Conclusions Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants. PMID:18941478

  13. The herbicide Glyphosate affects nitrification in the Elbe estuary, Germany

    Science.gov (United States)

    Sanders, Tina; Lassen, Stephan

    2015-04-01

    The Elbe River is one of the biggest European rivers discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the river catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the river and estuary into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe estuary, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe estuary with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate

  14. Coastal circulation and sediment dynamics along West Maui, Hawaii; PART IV: measurements of waves, currents, temperature, salinity and turbidity in Honolua Bay, Northwest Maui: 2003-2004

    Science.gov (United States)

    Storlazzi, Curt D.; Presto, M. Kathy

    2005-01-01

    High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Honolua Bay, northwest Maui, Hawaii, during 2003 and 2004 to better understand coastal dynamics in coral reef habitats. Measurements were acquired through two different collection methods. Two hydrographic survey cruises were conducted to acquire spatially-extensive, but temporally-limited, three-dimensional measurements of currents, temperature, salinity and turbidity in the winter and summer of 2003. From mid 2003 through early 2004, a bottom-mounted instrument package was deployed in a water depth of 10 m to collect long-term, single-point high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties such as water temperature, salinity and turbidity vary spatially and temporally in a near-shore coral reef system adjacent to a major stream drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the final part in a series, describes data acquisition, processing and analysis. Previous reports provided data and results on: Long-term measurements of currents, temperature, salinity and turbidity off Kahana (PART I), the spatial structure of currents, temperature, salinity and suspended sediment along West Maui (PART II), and flow and coral larvae and sediment dynamics during the 2003 summer spawning season (PART III).

  15. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA.

    Directory of Open Access Journals (Sweden)

    Emily K Cira

    Full Text Available Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011 in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA. Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in

  16. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA).

    Science.gov (United States)

    Cira, Emily K; Paerl, Hans W; Wetz, Michael S

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  17. A STUDY ON THE EFFECTS OF TIDE ON SEDIMENTATION IN ESTUARIES OF THE NIGER DELTA, NIGERIA

    Directory of Open Access Journals (Sweden)

    Charles Chizom Dike

    2012-01-01

    Full Text Available Estuaries in the Niger Delta-Nigeria are influenced by tidal currents and wave actions due to their proximity to the Atlantic Ocean. Tidal current provides the energy required to move sediments in and out of the estuaries from the seashores, while wave actions curtails the deposition of sediments at the bottom of the estuaries as the bed get shallower, resulting in the modification and long-term regulation of siltation through erosion or accretion. The interaction between estuaries bathymetric shapes, tidal currents and wave actions can only be fully understood through analytical or mathematical relationships. Analytical methods are less accurate in predicting future tides, while none of the existing mathematical relationships can accurately predict tidal behavior in the Niger Delta region due to the fact that parameters governing tidal actions vary from region to region, hence the need for this study. This study shows the behavior of the estuaries in response to variation in tidal heights, currents and wave actions through mathematical modeling, a knowledge which is useful in planning and timing of marine activities that requires pre-knowledge of tidal levels, direction and current velocities. The models were formulated and calibrated using parameters generated from the hydrographic, hydraulics and geotechnical investigation, including local field observations and measurements conducted within the study area. Soil samples taken from the area are composed of peat, organic clays, silty clays and sand. Peat constitutes the dominant soil which is locally known as 'chikoko' with high compressibility and color ranging from dark brown to dark gray and texture from soft to firm. Typical bed material size (D50 is approximately 0.2mm. Tides in the region are mostly semidiurnal with tidal prism ranging from 0.4 to 1.5m. The tidal strength is strongest at the inlets and decreases with distance inland. The depth of the estuaries is controlled by the

  18. Modelling Suspended Sediment Transport in Monsoon Season: A Case Study of Pahang River Estuary, Pahang, Malaysia

    Science.gov (United States)

    Zakariya, Razak; Ahmad, Zuhairi; Saad, Shahbudin; Yaakop, Rosnan

    2013-04-01

    Sediment transport based on 2-dimensional real time model was applied to Pahang River estuary, Pahang, Malaysia and has been evaluated and verified with time series of tidal elevation, flow and suspended sediment load. Period of modelling was during highest high tide and lowest low tide in Northeast Monsoon (NE) which happened in December 2010 and Southwest Monsoon (SW) in July 2011. Simulated model outputs has been verify using Pearson's coefficient and has showed high accuracy. The validated model was used to simulate hydrodynamic and sediment transport of extreme conditions during both monsoon seasons. Based on field measurement and model simulation, tidal elevation and flow velocity, freshwater discharge of Pahang River were found to be higher during NE Monsoon. Based on the fluxes, the estuary also showed 'ebb-dominant' characteristic during highest high tide and lowest low tide in NE monsoon and normal ebbing-flooding characteristics during SW monsoon. In the Pahang River estuary, inflow and outflow patterns were perpendicular to the open boundary with circular flow formed at the shallow area in the middle of estuary during both monsoons. Referring to sea water intrusion from the river mouth, both seasons show penetration of more than 9 km (upstream input boundary) during higher high water tide. During higher lower water tide, the water intrusion stated varies which 5.6km during NE monsoon and 7.8km during SW monsoon. Regarding to the times lap during high tide, the sea water takes 2.8 hours to reach 9km upstream during NE monsoon compared to 1.9 hour during SW monsoon. The averages of suspended sediment concentration and suspended sediment load were higher during Northeast monsoon which increased the sedimentation potentials.Total of suspended sediment load discharged to the South China Sea yearly from Pahang River is approximately 96727.5 tonnes/day or 3.33 tonnes/km2/day which 442.6 tonnes/day during Northeast Monsoon and 25.3 tonnes/day during Southwest

  19. Can turbidity caused by Corophium volutator (Pallas) activity be used to assess sediment toxicity rapidly?

    Science.gov (United States)

    Briggs, Andrew D; Greenwood, Naomi; Grant, Alastair

    2003-04-01

    The standard toxicity test organism, Corophium volutator, exhibits a behavioural response to contaminated sediments that causes increased turbidity of overlying water. We quantify the effects of this response to an estuarine sediment spiked with copper and hydrocarbon contaminated sediments from an oil installation in the North Sea. Turbidity measured 24 h after the start of a toxicity test shows a strong relationship with contaminant concentrations and with mortality after 10 days. Turbidity measurements can therefore give a rapid indication of sediment toxicity, permitting a reduction in storage time of sediments to be used in dilution series and toxicity identification evaluation (TIE) tests, reducing the likelihood of contaminants degrading prior to testing.

  20. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin

    Directory of Open Access Journals (Sweden)

    Gregory M. Huey

    2010-06-01

    Full Text Available Microbial concentrations, total suspended solids (TSS and turbidity vary with stream hydrology and land use. Turbidity, TSS, and microbial concentrations, loads and yields from four watersheds were assessed: an unburned montane forest, a catastrophically burned montane forest, urban land use and rangeland prairie. Concentrations and loads for most water quality variables were greatest during storm events. Turbidity was an effective indicator of TSS, E. coli and Enterococci spp. The greatest threat to public health from microbial contamination occurs during storm runoff events. Efforts to manage surface runoff and erosion would likely improve water quality of the upper Pecos River basin in New Mexico, USA.