WorldWideScience

Sample records for highly sulfated non-sugar

  1. Preparation of Highly Pure Vanadyl Sulfate from Sulfate Solutions Containing Impurities of Iron and Aluminum by Solvent Extraction Using EHEHPA

    National Research Council Canada - National Science Library

    Dan Li; Desheng Chen; Guozhi Zhang; Hongxin Zhao; Tao Qi; Weijing Wang; Lina Wang; Yahui Liu

    2017-01-01

    The preparation of highly pure vanadyl sulfate from sulfate solutions containing impurities of iron and aluminumwas investigated by solvent extraction with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (EHEHPA...

  2. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  3. Preparation of Highly Pure Vanadyl Sulfate from Sulfate Solutions Containing Impurities of Iron and Aluminum by Solvent Extraction Using EHEHPA

    OpenAIRE

    Dan Li; Desheng Chen; Guozhi Zhang; Hongxin Zhao; Tao Qi; Weijing Wang; Lina Wang; Yahui Liu

    2017-01-01

    The preparation of highly pure vanadyl sulfate from sulfate solutions containing impurities of iron and aluminumwas investigated by solvent extraction with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (EHEHPA) and tri-n-butyl phosphate (TBP) as the phase modifier. The extraction and stripping conditions of vanadium (IV) and its separation from iron and aluminum were optimized. Under the optimal extraction conditions, the extraction of vanadium (IV) and iron were 68% and 53%, respectiv...

  4. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin

    Science.gov (United States)

    Fathy, Mahmoud; Moghny, Th. Abdel; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2017-03-01

    In response to rising concerns about the effect of sulfate on water quality, human health, and agriculture, many jurisdictions around the world are imposing tighter regulations for sulfate discharge. This is driving the need for environmental compliance in industries like mining, metal processing, pulp and paper, sewage treatment, and chemical manufacturing. The sulfate removal from synthetic water by high cross-linked polystyrene divinylbenzene resin was studied at batch experiments in this study. The effect of pH, contact time, sulfates concentration, and adsorbent dose on the sulfate sequestration was investigated. The optimum conditions were studied on Saline water as a case study. The results showed that with increasing of the absorbent amount; contact time, and pH improve the efficiency of sulfate removal. The maximum sulfates uptake was obtained in pH and contact time 3.0 and 120 min, respectively. Also, with increasing initial concentration of sulfates in water, the efficiency of sulfate removal decreased. The obtained results in this study were matched with Freundlich isotherm and pseudo-second-order kinetic. The maximum adsorption capacity (Qm) and constant rate were found 0.318 (mg/g) and 0.21 (mg/g.min), respectively. This study also showed that in the optimum conditions, the sulfate removal efficiency from Saline water by 0.1 mg/L sulfates was 65.64 %. Eventually, high cross-linked polystyrene divinylbenzene resin is recommended as a suitable and low cost absorbent to sulfate removal from aqueous solutions.

  5. Acid-Sulfate Alteration at Gusev Crater and Across Mars: High-SiO2 Residues and Ferric Sulfate Precipitates

    Science.gov (United States)

    Morris, R. V.; Catalano, J. G.; Klingelhoefer, G.; Schroeder, C.; Gellert, R.; Clark, B. C.; Ming, D. W.; Yen, A. S.; Arvidson, R. E.; Cohen, B. A.; hide

    2017-01-01

    The Mars Exploration Rover Spirit ended its mission in Gusev crater on sol 2210 after it had become stuck in a deposit of fined-grained and sulfate rich soil with dust covered solar panels unfavorably pointed toward the sun. Final analysis of remaining data from Spirit's Moessbauer spectrometer (Fe redox and mineralogy) for sols 1529 through 2071 is now complete. We focus here on chemical (APXS) and MB data for targets having high-SiO2 or high-SO3 and process link the targets through mixing and geochemical modelling to an acid-sulfate system centered at Home Plate, which is considered to be a hydrovolcanic complex.

  6. Radiation dose in mass screening for gastric cancer with high-concentration barium sulfate compared with moderate-concentration barium sulfate.

    Science.gov (United States)

    Yamamoto, K; Azuma, M; Kuroda, C; Kubo, T; Yabunaka, K; Yamazaki, H; Katsuda, T; Takeda, Y

    2009-06-01

    Recently, high-concentration barium sulfate has been developed and is used in many medical facilities. This study compared radiation dose using high-concentration and moderate-concentration barium sulfate. The dose was evaluated with an experimental method using a gastric phantom and with a clinical examination. In the former, the dose and X-ray tube load were measured on the phantom with two concentrations of barium sulfate. In the latter, the fluoroscopic dose-area product (DAP), the radiographic DAP and their sum, the total DAP, were investigated in 150 subjects (112 males, 38 females) treated with both concentrations of barium sulfate. The effective dose was calculated by the software of PCXMC in every case. The results of the experimental evaluation indicated that the effective dose and X-ray tube load were greater with high-concentration barium sulfate than with moderate-concentration barium sulfate (p barium sulfate than with high-concentration barium sulfate (p barium sulfate. We conclude that high-concentration barium sulfate does not increase radiation dose in mass screening for gastric cancer.

  7. Preparation of Highly Pure Vanadyl Sulfate from Sulfate Solutions Containing Impurities of Iron and Aluminum by Solvent Extraction Using EHEHPA

    Directory of Open Access Journals (Sweden)

    Dan Li

    2017-03-01

    Full Text Available The preparation of highly pure vanadyl sulfate from sulfate solutions containing impurities of iron and aluminumwas investigated by solvent extraction with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (EHEHPA and tri-n-butyl phosphate (TBP as the phase modifier. The extraction and stripping conditions of vanadium (IV and its separation from iron and aluminum were optimized. Under the optimal extraction conditions, the extraction of vanadium (IV and iron were 68% and 53%, respectively, while only 2% aluminum was extracted in a single contact, suggesting good separation of vanadium (IV from aluminum. Sulfuric acid solution was used for the stripping. Nearly 100% vanadium (IV and 95% aluminum were stripped, while only 10% iron was stripped under the optimal stripping conditions in a single contact, suggesting good separation of vanadium (IV from iron. After five stages of extraction and stripping, highly pure vanadyl sulfate containing 76.5 g/L V (IV with the impurities of 12 mg/L Fe and 10 mg/L Al was obtained, which is suitable for the electrolyte of a vanadium redox flow battery. Organic solution was well regenerated after stripping by oxalic acid solution to remove the remaining iron. The mechanism of vanadium (IV extraction using EHEHPA was also discussed based on the Fourier transform infrared spectroscopy (FT-IR analysis.

  8. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  9. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...

  10. Non-sugar matter as an indicator of technological value in different ...

    African Journals Online (AJOL)

    This work represents a research of non-sugar matter (the content of α- amino nitrogen, potassium and sodium) in the root, and their effect on the recoverable sucrose quantity of three genotypes (Esprit, Belinda and Chiara) of sugar beet from vegetation areas of different sizes. They were grown by standard agrotechnical ...

  11. High rate sulfate reduction at pH 6 in a Ph-auxostat submerged membrane bioreactor fed with formate

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Peeters, T.W.T.; Lens, P.N.L.; Buisman, C.J.N.

    2008-01-01

    Many industrial waste and process waters contain high concentrations of sulfate, which can be removed by sulfate-reducing bacteria (SRB). This paper reports on mesophilic (30 °C) sulfate reduction at pH 6 with formate as electron donor in a membrane bioreactor with a pH-auxostat dosing system. A

  12. Assessment of Mechanical Properties and Damage of High Performance Concrete Subjected to Magnesium Sulfate Environment

    Directory of Open Access Journals (Sweden)

    Sheng Cang

    2017-01-01

    Full Text Available Sulfate attack is one of the most important problems affecting concrete structures, especially magnesium sulfate attack. This paper presents an investigation on the mechanical properties and damage evolution of high performance concrete (HPC with different contents of fly ash exposure to magnesium sulfate environment. The microstructure, porosity, mass loss, dimensional variation, compressive strength, and splitting tensile strength of HPC were investigated at various erosion times up to 392 days. The ultrasonic pulse velocity (UPV propagation in HPC at different erosion time was determined by using ultrasonic testing technique. A relationship between damage and UPV of HPC was derived according to damage mechanics, and a correlation between the damage of HPC and erosion time was obtained eventually. The results indicated that (1 the average increasing amplitude of porosity for HPCs was 34.01% before and after exposure to magnesium sulfate solution; (2 the damage evolution of HPCs under sulfate attack could be described by an exponential fitting; (3 HPC containing 20% fly ash had the strongest resistance to magnesium sulfate attack.

  13. Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity.

    Science.gov (United States)

    Fang, Ting; Guo, Hongyu; Zeng, Linghan; Verma, Vishal; Nenes, Athanasios; Weber, Rodney J

    2017-03-07

    Soluble transition metals in particulate matter (PM) can generate reactive oxygen species in vivo by redox cycling, leading to oxidative stress and adverse health effects. Most metals, such as those from roadway traffic, are emitted in an insoluble form, but must be soluble for redox cycling. Here we present the mechanism of metals dissolution by highly acidic sulfate aerosol and the effect on particle oxidative potential (OP) through analysis of size distributions. Size-segregated ambient PM were collected from a road-side and representative urban site in Atlanta, GA. Elemental and organic carbon, ions, total and water-soluble metals, and water-soluble OP were measured. Particle pH was determined with a thermodynamic model using measured ionic species. Sulfate was spatially uniform and found mainly in the fine mode, whereas total metals and mineral dust cations were highest at the road-side site and in the coarse mode, resulting in a fine mode pH metals and OP peaked at the intersection of these modes demonstrating that sulfate plays a key role in producing highly acidic fine aerosols capable of dissolving primary transition metals that contribute to aerosol OP. Sulfate-driven metals dissolution may account for sulfate-health associations reported in past studies.

  14. Performance of high performance concrete (HPC) in low pH and sulfate environment.

    Science.gov (United States)

    2013-05-01

    The goal of this research is to determine the impact of low pH and sulfate environment on high-performance concrete (HPC) and if the current structural and materials specifications provide adequate protections for concrete structures to meet the 75-y...

  15. Sulfate Reduction at pH 5 in a High-Rate Membrane Bioreactor: Reactor Performance and Microbial Community Analyses

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Dopson, M.; Peeters, T.W.T.; Lens, P.N.L.; Buisman, C.J.N.

    2009-01-01

    High rate sulfate reduction under acidic conditions opens possibilities for new process flow sheets that allow the selective recovery of metals from mining and metallurgical waste and process water. However, knowledge about high-rate sulfate reduction under acidic conditions is limited. This paper

  16. High-throughput screening to identify selective inhibitors of microbial sulfate reduction (and beyond)

    Science.gov (United States)

    Carlson, H. K.; Coates, J. D.; Deutschbauer, A. M.

    2015-12-01

    The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive and corrosive. Current strategies to selectively inhibit sulfidogenesis are based on non-specific biocide treatments, bio-competitive exclusion by alternative electron acceptors or sulfate-analogs which are competitive inhibitors or futile/alternative substrates of the sulfate reduction pathway. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to target SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Once inhibitor selectivity is defined, high-throughput characterization of microbial community structure across compound gradients and identification of fitness determinants using isolate bar-coded transposon mutant libraries can give insights into the genetic mechanisms whereby compounds structure microbial communities. The high-throughput (HT) approach we present can be readily applied to target SRM in diverse environments and more broadly, could be used to identify and quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant for engineering environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.

  17. High urinary sulfate concentration is associated with reduced risk of renal disease progression in type 2 diabetes.

    Science.gov (United States)

    van den Born, Joost C; Frenay, Anne-Roos S; Bakker, Stephan J L; Pasch, Andreas; Hillebrands, Jan-Luuk; Lambers Heerspink, Hiddo J; van Goor, Harry

    2016-05-01

    Diabetes is associated with a high incidence of microvascular disease, including nephropathy. Diabetic nephropathy is the most common cause of chronic kidney disease in the Western world. Sulfate in the urine is the metabolic end product of hydrogen sulfide (H2S), a recent discovered gaseous signaling molecule. Urinary sulfate has earlier shown beneficial predictive properties in renal transplant recipients. Based on the protective role of exogenous H2S in experimental models of diabetic nephropathy, we aimed to cross-sectionally investigate the association of sulfate with renal risk markers, and to prospectively investigate its predictive value for renal events in patients with diabetic nephropathy. Post-hoc analysis on data of the sulodexide macroalbuminuria (Sun-MACRO) trial and the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study was performed. A total of 1004 patients with type 2 diabetes were included. Urinary sulfate concentration was measured and cross-sectionally associated to renal risk markers by linear regression. Multivariable Cox regression analysis was performed to assess the prospective association of sulfate with renal events, which was defined as end stage renal disease or a doubling of baseline serum creatinine. Mean age was 63 ± 9 years, median sulfate concentration was 8.0 (IQR 5.8-11.4) mmol/L. Urinary sulfate positively associated with male gender, hemoglobin, and negatively associated with albuminuria at baseline. During follow-up for 12 (IQR 6-18) months, 38 renal events occurred. Each doubling of urinary sulfate was associated with a 19% (95%CI 1%-34%) lower risk of renal events, independent of adjustment for potential confounders, including age, estimated glomerular filtration rate (eGFR), and albuminuria. To conclude, higher urinary sulfate concentration is associated with a more beneficial profile of renal risk markers, and is independently associated with a reduced risk for renal events in type 2 diabetes patients

  18. Highly sensitive ratiometric detection of heparin and its oversulfated chondroitin sulfate contaminant by fluorescent peptidyl probe.

    Science.gov (United States)

    Mehta, Pramod Kumar; Lee, Hyeri; Lee, Keun-Hyeung

    2017-05-15

    The selective and sensitive detection of heparin, an anticoagulant in clinics as well as its contaminant oversulfated chondroitin sulfate (OSCS) is of great importance. We first reported a ratiometric sensing method for heparin as well as OSCS contaminants in heparin using a fluorescent peptidyl probe (Pep1, pyrene-GSRKR) and heparin-digestive enzyme. Pep1 exhibited a highly sensitive ratiometric response to nanomolar concentration of heparin in aqueous solution over a wide pH range (2~11) and showed highly selective ratiometric response to heparin among biological competitors such as hyaluronic acid and chondroitin sulfate. Pep1 showed a linear ratiometric response to nanomolar concentrations of heparin in aqueous solutions and in human serum samples. The detection limit for heparin was calculated to be 2.46nM (R2=0.99) in aqueous solutions, 2.98nM (R2=0.98) in 1% serum samples, and 3.43nM (R2=0.99) in 5% serum samples. Pep1 was applied to detect the contaminated OSCS in heparin with heparinase I, II, and III, respectively. The ratiometric sensing method using Pep1 and heparinase II was highly sensitive, fast, and efficient for the detection of OSCS contaminant in heparin. Pep1 with heparinase II could detect as low as 0.0001% (w/w) of OSCS in heparin by a ratiometric response. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Changes and relations of photosynthesis and iron cycling in anoxic paddy soil amended with high concentrations of sulfate.

    Science.gov (United States)

    Chen, Qin; Jia, Rong; Qu, Dong; Li, Ming

    2017-04-01

    Sulfate contamination is an increasingly serious environmental problem related to microbial reduction processes in anoxic paddy soil. This study revealed the changes and interrelations of ferric iron [Fe(III)] reduction, ferrous iron [Fe(II)] oxidation, and oxygenic photosynthesis in an anoxic paddy soil (Fe-accumuli-Stagnic Anthrosols) amended with a range of high sulfate concentrations. Soil slurries mixed with 0 (control), 50, 100, 200, and 400 mmol kg(-1) Na2SO4 were incubated anaerobically under dark and light conditions. The changes in chlorophyll a (Chl a), Fe(II), pH levels, and the chlorophyll absorption spectrum were determined over a 42-day period. Fe(II) concentrations increased with the addition of sulfate under dark conditions, while Fe(III) reduction potential was enhanced by increasing sulfate addition. The effect of light on Fe(II) concentration was observed after 16 days of incubation, when Fe(II) started to decrease markedly in the control. The decrease in Fe(II) slowed with increasing sulfate addition. The concentrations of Chl a increased in all treatments after 16 days of incubation under light conditions. There was a reduction in Chl a accumulation with increasing sulfate at the same incubation time. The absorption peaks of chlorophyll remained shorter than the 700-nm wavelength throughout the incubation period. The pH of all treatments decreased in the first week and then increased thereafter. The pH increased with sulfate addition and light conditions. In conclusion, contamination with high concentrations of sulfate could accelerate Fe(III) reduction while inhibiting oxygenic photosynthesis, which correspondingly slows chemical Fe(II) oxidation in an anoxic paddy soil.

  20. Solid ferrous ammonium sulfate as a dosimeter at low temperatures and high doses

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-calderon, J.M.; Ramos B, S.; Negron M, A. [Mexico Univ. Nacional Autonoma, Instituto de Ciencias Nucleares (Mexico)

    2006-07-01

    This paper presents the results obtained from a study of the radiation induced oxidation of crystalline ferrous ammonium sulfate with gamma rays at 295 K, 263 K and 77 K and doses from 0 to 300 kGy. The radiation induced decomposition of ferrous ammonium sulfate has been studied by the dissolution of the irradiated salt in 0,8 N sulfuric acid. The main product is ferric ion (Fe{sup 3+}) and its molar concentration was determined spectrophotometrically in the UV region at 304 nm. The optical density values showed a linear dependence with dose, indicating that the data obtained might be used to create a calibrating curve. Color in irradiated salt changes from blue to green, yellow and orange according to the absorbed dose. The accuracy and the reproducibility of the system were tested. In addition, some other characteristics make possible the use of this system as a dosimeter, similar to Fricke chemical dosimeter, for studies and works at low temperatures and high doses. (authors)

  1. Development and testing of a high-resolution model for tropospheric sulfate driven by observation-derived meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M. [Brookhaven National Lab., Upton, NY (United States). Environmental Chemistry Div.

    1994-05-01

    A high-resolution three-dimensional Eulerian transport and transformation model has been developed to simulate concentrations of tropospheric sulfate for specific times and locations; it was applied over the North Atlantic and adjacent continental regions during October and November, 1986. The model represents emissions of anthropogenic SO{sub 2} and sulfate and of biogenic sulfur species, horizontal and vertical transport, gas-phase oxidation of SO{sub 2} and dimethylsulfide, aqueous-phase oxidation of SO{sub 2}, and wet and dry deposition of SO{sub 2}, sulfate, and methanesulfonic acid (MSA). The meteorological driver is the 6-hour output from the forecast model of the European Centre for Medium-Range Weather Forecasts. Calculated sulfate concentrations and column burdens, examined in detail for October 15 and October 22 at 6Z, are related to existing weather patterns. These results exhibit rich temporal and spatial structure; the characteristic (1/e) temporal autocorrelation time for the sulfate column burdens over the central North Atlantic averages 20 hours; 95% of the values were 25 hours or less. The characteristic distance of spatial autocorrelation over this region depends on direction and averages 1,600 km; with 10{sup th} percentile value of 400 km and 90{sup th} percentile value of 1,700 km. Daily average model sulfate concentrations at the lowest vertical accurately represent the spatial variability, temporal episodicity, and absolute magnitudes of surface concentrations measured by monitoring stations in Europe, Canada and Barbados.

  2. Analysis of anabolic androgenic steroids as sulfate conjugates using high performance liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Rzeppa, S; Heinrich, G; Hemmersbach, P

    2015-01-01

    Improvements in doping analysis can be effected by speeding up analysis time and extending the detection time. Therefore, direct detection of phase II conjugates of doping agents, especially anabolic androgenic steroids (AAS), is proposed. Besides direct detection of conjugates with glucuronic acid, the analysis of sulfate conjugates, which are usually not part of the routine doping control analysis, can be of high interest. Sulfate conjugates of methandienone and methyltestosterone metabolites have already been identified as long-term metabolites. This study presents the synthesis of sulfate conjugates of six commonly used AAS and their metabolites: trenbolone, nandrolone, boldenone, methenolone, mesterolone, and drostanolone. In the following these sulfate conjugates were used for development of a fast and easy analysis method based on sample preparation using solid phase extraction with a mixed-mode sorbent and detection by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Validation demonstrated the suitability of the method with regard to the criteria given by the technical documents of the World Anti-Doping Agency (WADA). In addition, suitability has been proven by successful detection of the synthesized sulfate conjugates in excretion urines and routine doping control samples. Copyright © 2015 John Wiley & Sons, Ltd.

  3. High temperature dielectric properties of spent adsorbent with zinc sulfate by cavity perturbation technique

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Liu, Chenhui [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Faculty of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650093 (China); Zhang, Libo, E-mail: libozhang77@163.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); and others

    2017-05-15

    Highlights: • Cavity perturbation technique is employed to measure the dielectric properties. • Microwave absorption capability of ZnO is poor from 20 °C to 850 °C. • Dielectric properties of spent absorbent and zinc sulfate are influenced by temperature especially in high temperature stage. • Penetration depths and heating curve indicate spent adsorbent and ZnO·2ZnSO{sub 4}, ZnSO{sub 4} are excellent microwave absorber. • The pore structures of spent adsorbent are improved significantly by microwave-regeneration directly. - Abstract: Dielectric properties of spent adsorbent with zinc sulfate are investigated by cavity perturbation technique at 2450 MHz from 20 °C to approximately 1000 °C. Two weight loss stages are observed for spent adsorbent by thermogravimetric-differential scanning calorimeter (TG-DSC) analysis, and zinc sulfate is decomposed to ZnO·2ZnSO{sub 4} and ZnO at about 750 °C and 860 °C. Microwave absorption capability of ZnSO{sub 4} increases with increasing temperature and declines after ZnO generation on account of the poor dielectric properties. Dielectric properties of spent adsorbent are dependent on apparent density and noticed an interestingly linearly relationship at room temperature. The three parameters increase gently from 20 °C to 400 °C, but a sharp increase both in real part and imaginary part are found subsequently due to the volatiles release and regeneration of carbon. And material conductivity is improved, which contributes to the π-electron conduction appearance. Relationship between penetration depth and temperature further elaborate spent adsorbent is an excellent microwave absorber and the microwave absorption capability order of zinc compounds is ZnO·2ZnSO{sub 4}, ZnSO{sub 4} and ZnO. Heating characteristics suggest that heating rate is related with dielectric properties of materials. The pore structures of spent adsorbent are improved significantly and the surface is smoother after microwave-regeneration.

  4. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.; Hulshoff Pol, L.W.; Lettinga, G.

    2000-01-01

    Sulfate reduction outcompeted methanogenesis at 65°C and pH 7.5 in methanol and sulfate-fed expanded granular sludge bed reactors operated at hydraulic retention times (HRT) of 14 and 3.5 h, both under methanol-limiting and methanol-overloading conditions. After 100 and 50 days for the reactors

  5. Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach.

    Science.gov (United States)

    Navamani Kartic, D; Aditya Narayana, B Ch; Arivazhagan, M

    2018-01-15

    Sulfate ions pose a major threat and challenge in the treatment of industrial effluents. The sample of wastewater obtained from a pigment industry contained large quantities of sulfate in the form of sodium sulfate which resulted in high TDS. As the removal of sulfate from pigment industry effluent was not reported previously, this work was focused on removing the sulfate ions from the effluent by chemical precipitation using barium chloride. The efficiency of sulfate removal was nearly 100% at an excess dosage of barium chloride, which precipitates the dissolved sulfate ions in the form of barium sulfate. Optimization of the parameters was done using Response Surface Methodology (RSM). This work is the first attempt for modeling the removal of sulfate from pigment industry effluent using RSM and Artificial Neural Network (ANN). Prediction by both the models was evaluated and both of them exhibited good performance (R2 value > 0.99). It was observed that the prediction by RSM (R2 value 0.9986) was closer to the experimental results than ANN prediction (R2 value 0.9955). The influence on the pH and conductivity of the solution by dosage of precipitant was also studied. The formation of barium sulfate was confirmed by characterization of the precipitate. Therefore, the sulfate removed from the effluent was converted into a commercially valuable precipitate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comprehensive assessment of aquatic community responses to a new anionic surfactant, high-solubility alkyl sulfate.

    Science.gov (United States)

    Belanger, Scott E; Bowling, John W; Leblanc, Ellen M; Price, Bradford B; Herzog, Ron R; Bozso, E

    2005-09-01

    High-solubility alkyl sulfate (HSAS) is a new anionic surfactant for use in consumer product applications that provides enhanced water solubility and improved water hardness tolerance. A comprehensive model stream ecosystem investigation was conducted to assess ecological and toxicological effects of HSAS on stream invertebrates. Model streams were dosed with HSAS for a period of 56 days following 56 days of colonization in a single-pass, flow-through system. Exposures were control and 9.1, 24.1, 64.0, 165.8, and 426.5 microg/L based on specific analytical detection methods. Benthic abundance on gravel substrates, drift, and insect emergence were assessed. Several taxonomically unrelated taxa were found sensitive to HSAS and formed the basis of toxicological conclusions. Abundance or biomass of a limpet (Ferrissea), a bivalve (Corbicula), flatworms (Turbellaria), and a mayfly (Stenonema) was reduced at concentrations ranging from 165.8 to 426.5 microg/L. Principal response curve analysis, a constrained form of principal components analysis, demonstrated consistency with univariate analyses and identified similar populations as being sensitive to HSAS. Comparison with historical studies from the same testing site, streams, and experimental design, but with structurally related alkyl sulfate and alkyl ethoxysulfate anionic surfactants, revealed several similar trends in response profiles at the population level for both tolerant and sensitive species. Based on the comprehensive nature of the study, strength of data trends, and demonstrated sensitivity of the aquatic communities contained in the experimental system, the no-observed-effect concentration for HSAS was concluded to be 64.0 microg/L. An application factor of 1 is justified for deriving a predicted no-effect concentration) for HSAS in aquatic systems.

  7. Combination of amplified rDNA restriction analysis and high-throughput sequencing revealed the negative effect of colistin sulfate on the diversity of soil microorganisms.

    Science.gov (United States)

    Fan, Tingli; Sun, Yongxue; Peng, Jinju; Wu, Qun; Ma, Yi; Zhou, Xiaohui

    2018-01-01

    Colistin sulfate is widely used in both human and veterinary medicine. However, its effect on the microbial ecologyis unknown. In this study, we determined the effect of colistin sulfate on the diversity of soil microorganisms by amplified rDNA restriction analysis (ARDRA) and high-throughput sequencing.ARDRAshowed that the diversity of DNA from soil microorganisms was reduced after soil was treated with colistin sulfate, with the most dramatic reductionobserved after 35days of treatment. High-throughput sequencing showed that the Chao1 and abundance-based coverage estimators (ACE) were reduced in the soils treated with colistin sulfate for 35 dayscompared to those treated with colistin sulfate for 7days. Furthermore, Chao1 and ACE tended to be lower when higher concentration of colistin sulfate was used, suggesting that the microbial abundance is reduced by colistin sulfate in a dose-dependent manner. Shannon index showed that the diversity of soil microorganism was reduced upon treatment with colistin sulfate compared to the untreated control group. Following 7days of treatment, Bacillus, Clostridiumand Sphingomonas were sensitive to all the concentration of colistin sulfate used in this study. Following 35days of treatment, the abundance of Choroplast, Haliangium, Pseudomonas, Lactococcus, and Clostridium was significantly decreased. Our results demonstrated that colistin sulfate especially at high concentration (≥5mg/kg) could alter the population structure of microorganisms and consequently the microbial community function in soil. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater.

    Science.gov (United States)

    Barrera, Ernesto L; Spanjers, Henri; Solon, Kimberly; Amerlinck, Youri; Nopens, Ingmar; Dewulf, Jo

    2015-03-15

    This research presents the modeling of the anaerobic digestion of cane-molasses vinasse, hereby extending the Anaerobic Digestion Model No. 1 with sulfate reduction for a very high strength and sulfate rich wastewater. Based on a sensitivity analysis, four parameters of the original ADM1 and all sulfate reduction parameters were calibrated. Although some deviations were observed between model predictions and experimental values, it was shown that sulfates, total aqueous sulfide, free sulfides, methane, carbon dioxide and sulfide in the gas phase, gas flow, propionic and acetic acids, chemical oxygen demand (COD), and pH were accurately predicted during model validation. The model showed high (±10%) to medium (10%-30%) accuracy predictions with a mean absolute relative error ranging from 1% to 26%, and was able to predict failure of methanogenesis and sulfidogenesis when the sulfate loading rate increased. Therefore, the kinetic parameters and the model structure proposed in this work can be considered as valid for the sulfate reduction process in the anaerobic digestion of cane-molasses vinasse when sulfate and organic loading rates range from 0.36 to 1.57 kg [Formula: see text]  m(-3) d(-1) and from 7.66 to 12 kg COD m(-3) d(-1), respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate.

    Science.gov (United States)

    Bollineni, Ravi Chand; Guldvik, Ingrid J; Grönberg, Henrik; Wiklund, Fredrik; Mills, Ian G; Thiede, Bernd

    2015-12-21

    Depletion of highly abundant proteins is an approved step in blood plasma analysis by mass spectrometry (MS). In this study, we explored a precipitation and differential protein solubility approach as a fractionation strategy for abundant protein removal from plasma. Total proteins from plasma were precipitated with 90% saturated ammonium sulfate, followed by differential solubilization in 55% and 35% saturated ammonium sulfate solutions. Using a four hour liquid chromatography (LC) gradient and an LTQ-Orbitrap XL mass spectrometer, a total of 167 and 224 proteins were identified from the 55% and 35% ammonium sulfate fractions, whereas 235 proteins were found in the remaining protein fractions with at least two unique peptides. SDS-PAGE and exclusive total spectrum counts from LC-MS/MS analyses clearly showed that majority of the abundant plasma proteins were solubilized in 55% and 35% ammonium sulfate solutions, indicating that the remaining protein fraction is of potential interest for identification of less abundant plasma proteins. Serum albumin, serotransferrin, alpha-1-antitrypsin and transthyretin were the abundant proteins that were highly enriched in 55% ammonium sulfate fractions. Immunoglobulins, complement system proteins, and apolipoproteins were among other abundant plasma proteins that were enriched in 35% ammonium sulfate fractions. In the remaining protein fractions a total of 40 unique proteins were identified of which, 32 proteins were identified with at least 10 exclusive spectrum counts. According to PeptideAtlas, 9 of these 32 proteins were estimated to be present at low μg ml(-1) (0.12-1.9 μg ml(-1)) concentrations in the plasma, and 17 at low ng ml(-1) (0.1-55 ng ml(-1)) range.

  10. Sub-chronic inhalation of high concentrations of manganese sulfate induces lower airway pathology in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Wong Brian A

    2005-10-01

    Full Text Available Abstract Background Neurotoxicity and pulmonary dysfunction are well-recognized problems associated with prolonged human exposure to high concentrations of airborne manganese. Surprisingly, histological characterization of pulmonary responses induced by manganese remains incomplete. The primary objective of this study was to characterize histologic changes in the monkey respiratory tract following manganese inhalation. Methods Subchronic (6 hr/day, 5 days/week inhalation exposure of young male rhesus monkeys to manganese sulfate was performed. One cohort of monkeys (n = 4–6 animals/exposure concentration was exposed to air or manganese sulfate at 0.06, 0.3, or 1.5 mg Mn/m3 for 65 exposure days. Another eight monkeys were exposed to manganese sulfate at 1.5 mg Mn/m3 for 65 exposure days and held for 45 or 90 days before evaluation. A second cohort (n = 4 monkeys per time point was exposed to manganese sulfate at 1.5 mg Mn/m3 and evaluated after 15 or 33 exposure days. Evaluations included measurement of lung manganese concentrations and evaluation of respiratory histologic changes. Tissue manganese concentrations were compared for the exposure and control groups by tests for homogeneity of variance, analysis of variance, followed by Dunnett's multiple comparison. Histopathological findings were evaluated using a Pearson's Chi-Square test. Results Animals exposed to manganese sulfate at ≥0.3 mg Mn/m3 for 65 days had increased lung manganese concentrations. Exposure to manganese sulfate at 1.5 mg Mn/m3 for ≥15 exposure days resulted in increased lung manganese concentrations, mild subacute bronchiolitis, alveolar duct inflammation, and proliferation of bronchus-associated lymphoid tissue. Bronchiolitis and alveolar duct inflammatory changes were absent 45 days post-exposure, suggesting that these lesions are reversible upon cessation of subchronic high-dose manganese exposure. Conclusion High-dose subchronic manganese sulfate inhalation is

  11. Separation of tramadol enantiomers by capillary electrophoresis using highly sulfated cyclodextrins

    Directory of Open Access Journals (Sweden)

    Majid Zandkarimi

    2005-07-01

    Full Text Available In the pharmaceutical industry a continuing need for chiral resolution of drugs for various purposes and in diverse matrices exist. For these reasons, analysts may require a number of different separation systems capable of resolving a given pair of enantiomers. Highly sulfated cyclodextrins (HS-CDs represent a relatively new class of chiral selectors in capillary electrophoresis (CE. In this investigation the use of HS-CDs as chiral selectors in CE for enantioseparation of tramadol, a highly potent analgesic, as the model drug and the influence of the type of selector and its concentration on enantiomeric resolution were studied. All of the available HSCDs ( , and  could resolve tramadol enantiomers, but HS--CD showed better resolution and a baseline resolution was achieved with this selector even at a concentration as low as 0.5% w/v. Additionally, effect of the buffer pH on the enantioresolution was studied. At low pH buffers, in which electroosmotic flow is low in CE, the negatively charged selector prevented the cationic tramadol to migrate out of the capillary even after a long analysis time of 60 minutes. However, at higher pH values (pH=7 or more, the electroosmotic flow is high enough to drag drug-selector complex toward the detector and a reasonable of the enantiomers of the drug was achieved.

  12. High-Throughput LC-MS/MS Method for Direct Quantification of Glucuronidated, Sulfated and Free Enterolactone in Human Plasma

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Kyrø, Cecilie; Olsen, Anja

    2016-01-01

    Sulfation and glucuronidation constitute a major pathway in humans and may play an important role in biological activity of metabolites including the enterolignan, enterolactone. Because the aromatic structure of enterolactone has similarities to steroid metabolites, it was hypothesized that ente......Sulfation and glucuronidation constitute a major pathway in humans and may play an important role in biological activity of metabolites including the enterolignan, enterolactone. Because the aromatic structure of enterolactone has similarities to steroid metabolites, it was hypothesized......−MS/MS and a fluoroimmunoassay; however, most of these methods measure the total concentration of enterolactone, without any specification of its conjugation pattern. Here for the first time we present a high-throughput LC−MS/MS method to quantify enterolactone in its intact form as glucuronide, sulfate, and free enterolactone....... The method has shown good accuracy and precision at low concentration and very high sensitivity, with LLOQ for enterolactone sulfate at 16 pM, enterolactone glucuronide at 26 pM, and free enterolactone at 86 pM. The short run time of 2.6 min combined with simple sample clean up and high sensitivity make...

  13. Chondroitin Sulfate

    Science.gov (United States)

    ... a complex with iron for treating iron-deficiency anemia. Chondroitin sulfate is available as an eye drop ... chondroitin sulfate together with xanthan gum (PRO-148, Laboratorios Sophia, SA de CV, Guadalajara, Mexico) four times ...

  14. High-Energy Collision-Induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates

    Science.gov (United States)

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B.; Holy, Timothy E.; Gross, Michael L.

    2014-08-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

  15. Decontamination of acid mine water from Ronneburg/Thueringen which is high in sulfates and metals using sulfate-reducing bacteria. Subproject. Final report; Mikrobiologisches Verfahren zur Reinigung radioaktiv und chemisch belasteter Waesser des Sanierungsgebietes Ronneburg. Teilprojekt: Verfahrenstechnische Untersuchungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Glombitza, F.; Karnatz, F.; Loeffler, R.

    1998-11-27

    The authors analyzed and developed the fundamentals of a microbiological water treatment process for decontamination of acid water from a uranium mine which is high in sulfates and heavy metals. The process is based on microbiological sulfate reduction. In the pre-phase of the project, sulfate-reducing microorganisms were isolated and cultivation methods for these microorganisms developed. [German] Es wurden die verfahrestechnischen Grundlagen fuer ein mikrobiologisches Wasserbehandungsverfahren analysiert und entwickelt, mit dessen Hilfe die Wasserqualitaet von sauren, sulfat- und schwermetall- sowie radionuklidhaltigen Waessern aus dem Uranbergbau nachhaltig positiv beeinflusst werden kann. Das Verfahren basiert auf der mikrobiologischen Sulfatreduktion. In der Vorphase des Projektes wurden die dafuer geeigneten sulfatreduzierenden Mikroorganismen isoliert und geeignete Kultivierungsmethoden fuer diese Mikroorganismen entwickelt. (orig.)

  16. Glacier evolution in high-mountain Asia under stratospheric sulfate aerosol injection geoengineering

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2017-06-01

    Full Text Available Geoengineering by stratospheric sulfate aerosol injection may help preserve mountain glaciers by reducing summer temperatures. We examine this hypothesis for the glaciers in high-mountain Asia using a glacier mass balance model driven by climate simulations from the Geoengineering Model Intercomparison Project (GeoMIP. The G3 and G4 schemes specify use of stratospheric sulfate aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP 4.5 scenario for the 50 years between 2020 and 2069, and for a further 20 years after termination of geoengineering. We estimate and compare glacier volume loss for every glacier in the region using a glacier model based on surface mass balance parameterization under climate projections from three Earth system models under G3, five models under G4, and six models under RCP4.5 and RCP8.5. The ensemble projections suggest that glacier shrinkage over the period 2010–2069 is equivalent to sea-level rise of 9.0 ± 1.6 mm (G3, 9.8 ± 4.3 mm (G4, 15.5 ± 2.3 mm (RCP4.5, and 18.5 ± 1.7 mm (RCP8.5. Although G3 keeps the average temperature from increasing in the geoengineering period, G3 only slows glacier shrinkage by about 50 % relative to losses from RCP8.5. Approximately 72 % of glaciated area remains at 2069 under G3, as compared with about 30 % for RCP8.5. The widely reported reduction in mean precipitation expected for solar geoengineering is unlikely to be as important as the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering at 2069 under G3 leads to temperature rise of about 1.3 °C over the period 2070–2089 relative to the period 2050-2069 and corresponding increase in annual mean glacier volume loss rate from 0.17 to 1.1 % yr−1, which is higher than the 0.66 % yr−1 under RCP8.5 during 2070–2089.

  17. Neutron and high-pressure X-ray diffraction study of hydrogen-bonded ferroelectric rubidium hydrogen sulfate.

    Science.gov (United States)

    Binns, Jack; McIntyre, Garry J; Parsons, Simon

    2016-12-01

    The pressure- and temperature-dependent phase transitions in the ferroelectric material rubidium hydrogen sulfate (RbHSO4) are investigated by a combination of neutron Laue diffraction and high-pressure X-ray diffraction. The observation of disordered O-atom positions in the hydrogen sulfate anions is in agreement with previous spectroscopic measurements in the literature. Contrary to the mechanism observed in other hydrogen-bonded ferroelectric materials, H-atom positions are well defined and ordered in the paraelectric phase. Under applied pressure RbHSO4 undergoes a ferroelectric transition before transforming to a third, high-pressure phase. The symmetry of this phase is revised to the centrosymmetric space group P21/c, resulting in the suppression of ferroelectricity at high pressure.

  18. High-Zinc Recovery from Residues by Sulfate Roasting and Water Leaching

    Science.gov (United States)

    Hu, Ming; Peng, Bing; Chai, Li-yuan; Li, Yan-chun; Peng, Ning; Yuan, Ying-zhen; Chen, Dong

    2015-09-01

    An integrated process for the recovery of zinc that is generated from zinc hydrometallurgy in residues was developed. A mixture of residue and ferric sulfate was first roasted to transform the various forms of zinc in the residue, such as ferrite, oxide, sulfide, and silicate, into zinc sulfate. Next, water leaching was conducted to extract the zinc while the iron remained in the residue as ferric oxide. The effects of the roasting and leaching parameters on zinc recovery were investigated. A maximum zinc recovery rate of 90.9% was achieved for a mixture with a ferric sulfate/residue weight ratio of 0.05 when roasting at 640°C for 30 min before leaching with water at room temperature for 20 min using a liquid/solid ratio of 10. Only 0.13% of the iron was dissolved in the water. Thus, the leaching liquor could be directly returned for zinc smelting.

  19. Performance of a high-resolution depth encoding PET detector using barium sulfate reflector

    Science.gov (United States)

    Kuang, Zhonghua; Wang, Xiaohui; Li, Cheng; Deng, Xinhan; Feng, Kai; Hu, Zhanli; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-08-01

    Small animal positron emission tomography (PET) is a well-established imaging modality in preclinical biomedical research. The performance of current small animal PET scanners is mainly limited by the detector performance and depth-encoding detectors are required to simultaneously achieve high spatial resolution and high sensitivity. In this work, the performance of a high-resolution dual-ended readout lutetium-yttrium oxyorthosilicate (LYSO) array using barium sulfate powder (BaSO4) as the inter-crystal reflector was measured for the first time and compared to that of a LYSO array using the most commonly used enhanced specular reflector (ESR). Both LYSO arrays have 18  ×  18 crystals and the crystal size is about 0.62  ×  0.62  ×  20 mm3. The LYSO arrays are readout by two position-sensitive photomultiplier tubes (PSPMTs) from both ends. The flood histograms, energy resolution, depth of interaction (DOI) resolution and timing resolution were measured. The flood histograms of the LYSO array with BaSO4 reflector is much better than that of the LYSO array with ESR reflector. For the BaSO4 array, all crystals can be clearly resolved. For the ESR array, all crystals in one direction can be clearly resolved, but the edge 2-3 columns of the crystals in the other direction cannot be resolved. The average energy resolution of the BaSO4 and ESR arrays are 15.2% and 15.3%, respectively. The average DOI resolution of the BaSO4 array is 2.19 mm, which is 24% worse than the 1.76 mm DOI resolution of the ESR array. The timing resolution of both arrays is ~1.6 ns. The LYSO array with the new BaSO4 reflector provided an much better flood histogram in a high resolution dual-ended readout PET detectors as compared to the ESR array, and will be used to develop a small animal PET scanner that can simultaneously achieve uniform high spatial resolution, high sensitivity and low cost.

  20. Performance of a high-resolution depth encoding PET detector using barium sulfate reflector.

    Science.gov (United States)

    Kuang, Zhonghua; Wang, Xiaohui; Li, Cheng; Deng, Xinhan; Feng, Kai; Hu, Zhanli; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-07-06

    Small animal positron emission tomography (PET) is a well-established imaging modality in preclinical biomedical research. The performance of current small animal PET scanners is mainly limited by the detector performance and depth-encoding detectors are required to simultaneously achieve high spatial resolution and high sensitivity. In this work, the performance of a high-resolution dual-ended readout lutetium-yttrium oxyorthosilicate (LYSO) array using barium sulfate powder (BaSO4) as the inter-crystal reflector was measured for the first time and compared to that of a LYSO array using the most commonly used enhanced specular reflector (ESR). Both LYSO arrays have 18  ×  18 crystals and the crystal size is about 0.62  ×  0.62  ×  20 mm3. The LYSO arrays are readout by two position-sensitive photomultiplier tubes (PSPMTs) from both ends. The flood histograms, energy resolution, depth of interaction (DOI) resolution and timing resolution were measured. The flood histograms of the LYSO array with BaSO4 reflector is much better than that of the LYSO array with ESR reflector. For the BaSO4 array, all crystals can be clearly resolved. For the ESR array, all crystals in one direction can be clearly resolved, but the edge 2-3 columns of the crystals in the other direction cannot be resolved. The average energy resolution of the BaSO4 and ESR arrays are 15.2% and 15.3%, respectively. The average DOI resolution of the BaSO4 array is 2.19 mm, which is 24% worse than the 1.76 mm DOI resolution of the ESR array. The timing resolution of both arrays is ~1.6 ns. The LYSO array with the new BaSO4 reflector provided an much better flood histogram in a high resolution dual-ended readout PET detectors as compared to the ESR array, and will be used to develop a small animal PET scanner that can simultaneously achieve uniform high spatial resolution, high sensitivity and low cost.

  1. Rapid enantioseparation of amlodipine by highly sulfated cyclodextrins using short-end injection capillary electrophoresis

    Directory of Open Access Journals (Sweden)

    M Zandkarimi

    2009-12-01

    Full Text Available "n  "n Background and the purpose of the study:The use of highly sulfated cyclodextrins (HS-CDs as chiral selectors in capillary electrophoresis (CE has been examined for rapid and reproducible enantioseparation of the model drug amlodipine, a calcium channel blocker. "nMaterials and Methods: Fused silica capillaries with an inner diameter of 50 μm, and a total length of 45.5 cm (8.5 cm to the detector were used. Capillaries were rinsed with polyethylene oxide (PEO once daily. A systematic method development approach was conducted by modifying selected parameters such as the type and concentration of the chiral selector, the buffer pH and concentration of the background electrolyte. "nResults: Baseline separation was achieved at low (i.e. 0.05%w/v concentrations of HS-αCD, but migration time and peak area repeatability were more than 4% and 25% of the relative standard deviation (RSD, respectively. At higher concentrations (>0.3% of HS-αCD, amlodipine was transported to the anode by the carrier ability of HS-αCD. In carrier mode, the migration order of enantiomers was reversed, the migration time was reduced and the peak area repeatability of analysis was improved. The optimum electrophoretic conditions for the stereoselective analysis of amlodipine were obtained in carrier mode with 25 mM sodium phosphate buffer containing 1.25% w/v of HS-αCD at pH 2.5 with an applied voltage of +15 kV. Under these conditions migration time was less than 3 min and within-day migration time and peak area repeatability, were less than 0.4% and 2.1% RSD, respectively. Conclusions: Rapid enantioseparation was achieved with minimum variation in quantitative analysis. These optimized conditions are appropriate for the enantioselective analysis of amlodipine.

  2. Anaerobic treatment of wastewater with high concentrations of lipids or sulfate

    NARCIS (Netherlands)

    Rinzema, A.

    1988-01-01

    This thesis describes research on the application of granular sludge bed upflow reactors for anaerobic treatment of wastewaters contaminated with lipids and sulfate, two contaminants that have so far seriously hampered the application of anaerobic treatment in several branches of industry.

  3. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    Science.gov (United States)

    Martins, Paula; Hoyt, David W.; Bansal, Sheel; Mills, Christopher T.; Tfaily, Malak; Tangen, Brian; Finocchiaro, Raymond; Johnston, Michael D.; McAdams, Brandon C.; Solensky, Matthew J.; Smith, Garrett J.; Chin, Yu-Ping; Wilkins, Michael J.

    2017-01-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  4. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Dalcin Martins, Paula [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Bansal, Sheel [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Mills, Christopher T. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Building 20, Denver Federal Center Denver CO 80225 USA; Tfaily, Malak [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Tangen, Brian A. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Finocchiaro, Raymond G. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Johnston, Michael D. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; McAdams, Brandon C. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Solensky, Matthew J. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Smith, Garrett J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Chin, Yu-Ping [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Wilkins, Michael J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA

    2017-02-23

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR, and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations, or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield non-competitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  5. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    Science.gov (United States)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the

  6. A Highly Sensitive Diagnostic System for Detecting Dengue Viruses Using the Interaction between a Sulfated Sugar Chain and a Virion.

    Directory of Open Access Journals (Sweden)

    Budi Saksono

    Full Text Available We propose a novel method of detecting trace amounts of dengue virus (DENVs from serum. Our method is based on the interaction between a sulfated sugar chain and a DENV surface glycoprotein. After capturing DENV with the sulfated sugar chain-immobilized gold nanoparticles (SGNPs, the resulting complex is precipitated and viral RNA content is measured using the reverse-transcription quantitative polymerase chain reaction SYBR Green I (RT-qPCR-Syb method. Sugar chains that bind to DENVs were identified using the array-type sugar chain immobilized chip (Sugar Chip and surface plasmon resonance (SPR imaging. Heparin and low-molecular-weight dextran sulfate were identified as binding partners, and immobilized on gold nanoparticles to prepare 3 types of SGNPs. The capacity of these SGNPs to capture and concentrate trace amounts of DENVs was evaluated in vitro. The SGNP with greatest sensitivity was tested using clinical samples in Indonesia in 2013-2014. As a result, the novel method was able to detect low concentrations of DENVs using only 6 μL of serum, with similar sensitivity to that of a Qiagen RNA extraction kit using 140 μL of serum. In addition, this method allows for multiplex-like identification of serotypes of DENVs. This feature is important for good healthcare management of DENV infection in order to safely diagnose the dangerous, highly contagious disease quickly, with high sensitivity.

  7. Diagnostic validity of high-density barium sulfate in gastric cancer screening: follow-up of screenees by record linkage with the Osaka Cancer Registry.

    Science.gov (United States)

    Yamamoto, Kenyu; Yamazaki, Hideo; Kuroda, Chikazumi; Kubo, Tsugio; Oshima, Akira; Katsuda, Toshizo; Kuwano, Tadao; Takeda, Yoshihiro

    2010-01-01

    The use of high-density barium sulfate was recommended by the Japan Society of Gastroenterological Cancer Screening (JSGCS) in 2004. We evaluated the diagnostic validity of gastric cancer screening that used high-density barium sulfate. The study subjects were 171 833 residents of Osaka, Japan who underwent gastric cancer screening tests at the Osaka Cancer Prevention and Detection Center during the period from 1 January 2000 through 31 December 2001. Screening was conducted using either high-density barium sulfate (n = 48 336) or moderate-density barium sulfate (n = 123 497). The subjects were followed up and their medical records were linked to those of the Osaka Cancer Registry through 31 December 2002. The results of follow-up during 1 year were defined as the gold standard, and test performance values were calculated. The sensitivity and specificity of the screening test using moderate-density barium sulfate were 92.3% and 91.0%, respectively, while the sensitivity and specificity of the high-density barium test were 91.8% and 91.4%, respectively. The results of area under receiver-operating-characteristic (ROC) curve analysis revealed no significant difference between the 2 screening tests. Screening tests using high- and moderate-density barium sulfate had similar validity, as determined by sensitivity, specificity, and ROC curve analysis.

  8. High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica.

    Science.gov (United States)

    Lehnen, Nadine; Marchant, Hannah K; Schwedt, Anne; Milucka, Jana; Lott, Christian; Weber, Miriam; Dekaezemacker, Julien; Seah, Brandon K B; Hach, Philipp F; Mohr, Wiebke; Kuypers, Marcel M M

    2016-10-01

    Seagrass meadows of Posidonia oceanica represent hotspots of productivity in the oligotrophic Mediterranean Sea. The lack of dissolved inorganic nitrogen (DIN) in the seawater suggests that the N-demand of these meadows might be in part supported by microbial dinitrogen (N2) fixation. However, currently there are no direct N2 fixation measurements available for this productive marine macrophyte. Here we investigated N2 fixation activity associated with P. oceanica leaf, rhizome and root pieces. In 15N2 incubations, the roots exhibited highest rates of N2 fixation. The rates varied considerably between replicates, presumably due to a patchy microbial colonization of the roots. Additions of organic carbon compounds (acetate, glucose, sucrose or algal lysate) did not enhance the N2 fixation rates. Sulfate reduction rates measured alongside were also highest in root incubations. Correspondingly, sequences of the nifH gene (a marker gene for the iron protein of the N2-fixing enzyme nitrogenase) related to known sulfate-reducing bacteria were retrieved from P. oceanica roots. Other nifH sequences clustered with known heterotrophic diazotrophs previously identified in other marine macrophytes. In particular, many sequences obtained from P. oceanica roots were similar (>94%) to a saltmarsh rhizosphere-associated heterotrophic diazotroph, indicating that heterotrophic lifestyle might be common among marine macrophyte-associated diazotrophs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. High-energy photon activation tandem mass spectrometry provides unprecedented insights into the structure of highly sulfated oligosaccharides extracted from macroalgal cell walls.

    Science.gov (United States)

    Ropartz, David; Giuliani, Alexandre; Hervé, Cécile; Geairon, Audrey; Jam, Murielle; Czjzek, Mirjam; Rogniaux, Hélène

    2015-01-20

    Extreme ultraviolet photon activation tandem mass spectrometry (MS) at 69 nm (18 eV) was used to characterize mixtures of oligo-porphyrans, a class of highly sulfated oligosaccharides. Porphyrans, hybrid polymers whose structures are far from known, continue to provide a challenge for analytical method development. Activation by 18 eV photons led to a rich fragmentation of the oligo-porphyrans, with many cross-ring and glycosidic cleavages. In contrast to multistage MSn strategies such as activated electron photodetachment dissociation, a single step of irradiation by energetic UV of multiply charged anions led to a complete fragmentation of the oligo-porphyrans. In both ionization modes, the sulfate groups were retained on the backbone, which allowed the pattern of these modifications along the porphyran backbone to be described in unprecedented detail. Many structures released by the enzymatic degradation of the porphyran were completely resolved, including isomers. This work extends the existing knowledge of the structure of porphyrans. In addition, it provides a new demonstration of the potential of activation by high-energy photons for the structural analysis of oligosaccharides, even in unseparated mixtures, with a particular focus on sulfated compounds.

  10. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  11. Sulfated Graphene Oxide as a Hole-Extraction Layer in High-Performance Polymer Solar Cells.

    Science.gov (United States)

    Liu, Jun; Xue, Yuhua; Dai, Liming

    2012-07-19

    In this study, we have rationally designed and successfully developed sulfated graphene oxide (GO-OSO3H) with -OSO3H groups attached to the carbon basal plane of reduced GO surrounded with edge-functionalized -COOH groups. The resultant GO-OSO3H is demonstrated to be an excellent hole extraction layer (HEL) for polymer solar cells (PSCs) because of its proper work function for Ohmic contact with the donor polymer, its reduced basal plane for improving conductivity, and its -OSO3H/-COOH groups for enhancing solubility for solution processing. Compared with that of GO, the much improved conductivity of GO-OSO3H (1.3 S m(-1) vs 0.004 S m(-1)) leads to greatly improved fill factor (0.71 vs 0.58) and power conversion efficiency (4.37% vs 3.34%) of the resulting PSC devices. Moreover, the device performance of GO-OSO3H is among the best reported for intensively studied poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester (P3HT:PCBM) devices. Our results imply that judiciously functionalized graphene materials can be used to replace existing HEL materials for specific device applications with outstanding performance.

  12. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  13. Barium Sulfate

    Science.gov (United States)

    ... uses a computer to put together x-ray images to create cross-sectional or three dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque contrast media. It works by coating the esophagus, stomach, or ...

  14. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Uncomplexed Highly Sulfated Oligosaccharides Using Ionic Liquid Matrices

    Science.gov (United States)

    Laremore, Tatiana N.; Murugesan, Saravanababu; Park, Tae-Joon; Avci, Fikri Y.; Zagorevski, Dmitri V.; Linhardt, Robert J.

    2014-01-01

    Direct UV matrix-assisted laser desorption/ionization (MALDI) mass spectrometric analysis of uncomplexed, underivatized, highly sulfated oligosaccharides has been carried out using ionic liquids as matrices. Under conventionally used MALDI time-of-flight experimental conditions, uncomplexed polysulfated oligosaccharides do not produce any signal. We report that 1-methylimidazolium α-cyano-4-hydroxycinnamate and butylammonium 2,5-dihydroxybenzoate ionic liquid matrices allow the detection of picomole amounts of the sodium salts of a disaccharide, sucrose octasulfate, and an octasulfated pentasaccharide, Arixtra. The experimental results indicate that both analytes undergo some degree of thermal fragmentation with a mass loss corresponding to cleavage of O–SO3Na bonds in the matrix upon laser irradiation, reflecting lability of sulfo groups. PMID:16536411

  15. Identification and control of impurities in streptomycin sulfate by high-performance liquid chromatography coupled with mass detection and corona charged-aerosol detection.

    Science.gov (United States)

    Holzgrabe, Ulrike; Nap, Cees-Jan; Kunz, Nathalie; Almeling, Stefan

    2011-09-10

    For the control of impurities in streptomycin sulfate a reversed phase ion-pair high performance liquid chromatography (HPLC) method using charged aerosol detection (CAD) was developed. With this method, 21 impurities could be separated and tentatively identified using a combination of exact mass measurement by TOF-MS and MS/MS experiments with a triple quadrupole MS. For three impurities the suggested structures could be confirmed by in situ formation. The CAD detector response was found to be linear over 2 orders of magnitude allowing a straightforward quantification of all impurities. A limit of quantification of 0.09% for streptomycin sulfate and of 0.008% for streptidine sulfate (referred to the concentration of the 5mg/ml test solution) could be achieved. The HPLC method was applied to the purity testing of 12 samples of commercially available streptomycin sulfate from different manufacturers. Impurity levels between 4.6% and 16.0% were found. The current European Pharmacopoeia monograph for streptomycin sulfate only limits streptomycin B by a TLC test to 3.0%. Therefore, the results of this study underline the importance of introducing a state-of-the-art test for the control of impurities in the monograph. The new HPLC-CAD method is considered suitable for this purpose. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Theo); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie

    1999-01-01

    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen

  17. Syndecan heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Gomes, Angélica Maciel; Sinkeviciute, Dovile; Multhaupt, Hinke A.B.

    2016-01-01

    Virtually all animal cells express heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Syndecans are a major group of transmembrane proteoglycans functioning as receptors that mediate signal transmission from the extracellular microenvironment to the cell. Their hep......Virtually all animal cells express heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Syndecans are a major group of transmembrane proteoglycans functioning as receptors that mediate signal transmission from the extracellular microenvironment to the cell....... Their heparan sulfate chains, due to their vast structural diversity, interact with a wide array of ligands including potent regulators of adhesion, migration, growth and survival. Frequently, ligands interact with cell surface heparan sulfate in conjunction with high affinity receptors. The consequent...... signaling can therefore be complex, but it is now known that syndecans are capable of independent signaling. This review is divided in two sections, and will first discuss how the assembly of heparan sulfate, the anabolic process, encodes information related to ligand binding and signaling. Second, we...

  18. Performance of high performance concrete (HPC) in low pH and sulfate environment : [technical summary].

    Science.gov (United States)

    2013-01-01

    High-performance concrete (HPC) refers to any concrete formulation with enhanced characteristics, compared to normal concrete. One might think this refers to strength, but in Florida, the HPC standard emphasizes withstanding aggressive environments, ...

  19. Chiral resolution of melatoninergic ligands by EKC using highly sulfated CDs.

    Science.gov (United States)

    Lipka, Emmanuelle; Danel, Cécile; Orhan, Hervé; Bonte, Jean-Paul; Vaccher, Claude

    2007-11-01

    EKC methods for the enantiomeric resolutions of melatoninergic ligands were developed using anionic CDs (highly S-alpha-CD, highly S-beta-CD, and highly S-gamma-CD) as chiral selectors at acidic pH 2.5. The optimization of the various operational parameters (nature and concentration of the CD, phosphate buffer concentration, addition of organic modifiers in the BGE, and temperature) allows baseline enantioresolutions (superior to 2) in short analysis times (inferior to 7 min) for all studied analytes. Some analytical characteristics of the optimal method were then studied for each analyte: repeatability, linearity, and LOD and LOQ. Lastly, determination of the apparent binding constants for the 18 complexes formed between the six analytes and the three CDs led us to rationalize the complexation mechanisms.

  20. [High-dose magnesium sulfate in the treatment of aconite poisoning].

    Science.gov (United States)

    Clara, A; Rauch, S; Überbacher, C A; Felgenhauer, N; Drüge, G

    2015-05-01

    This article reports the case of a 62-year-old male patient who ingested the roots of Monkshood (Aconitum napellus) and white hellebore (Veratrum album) dissolved in alcohol with a suicidal intention and suffered cardiotoxic and neurotoxic symptoms. After contacting the Poison Information Centre ventricular arrhythmia was treated with high-dose magnesium sulphate as the only antiarrhythmic agent and subsequently a stable sinus rhythm could be established after approximately 3 h. Aconitum napellus is considered the most poisonous plant in Europe and it is found in gardens, the Alps and the Highlands. Poisoning is mainly caused by the alkaloid aconite that leads to persistent opening and activation of voltage-dependent sodium channels resulting in severe cardiac and neurological toxicity. As no specific antidote is known so far, poisoning is associated with a high mortality. The therapy with high-dose magnesium sulphate is based on in vitro and animal experiments as well as limited clinical case reports.

  1. Modeling and minimization of barium sulfate scale

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...

  2. Investigations into formation of atmospheric sulfate under high PM 10 concentration

    Science.gov (United States)

    Sharma, Mukesh; Kiran, Y. N. V. M.; Shandilya, Kaushik K.

    This study was primarily initiated to understand the consistently low levels of SO 2 in cities in India in spite of rising SO 2 emissions. A literature review suggested the possibility of chemical transformation of SO 2 to SO 4. Thus, the objective of research was to understand the formation of SO 4 as a function of SO 2, and other constituents of atmosphere such as PM 10, water content, Ca (in aerosol) and pH (of aerosol). For this purpose, air quality monitoring was conducted at five locations in the city of Kanpur, India (during October 1999-April 2000) representing various land-use patterns. It was found that the SO 4 levels were considerably high (2.8-43.6 μg m -3) compared to levels in cities in the US (1.9-3.6 μg m -3, Sandberg et al. (J. Air Pollut. Control Assoc. 26 (1976) 559; 15.7-18.4 μg m -3, Altshuller (J. Air Pollut. Control Assoc. 26 (1976) 318; 4.0-14.0 μg m -3 Dockery et al. (J. Med. 329 (1993) 1753), UK (3.2-9.0 μg m -3, QUARG, 1996 http://www.environment.detr.gov.uk/airq/consult/naqs/index.htm), and 25 locations in Europe (0.34-1.68 μg m -3 (1991-1999), EMEP website), but were comparable to the levels observed at Agra (14.67 μg m -3, Kulshrestha et al. Indian J. Radio Space Phys. 24 (1995) 178) and at New Delhi (12.9-27.5 μg m -3, Shandilya, M.E. Thesis, Malaviya National Institute of Technology, Jaipur, India, 2000). The high SO 4 levels could provide a plausible explanation for low SO 2 concentration levels in the city of Kanpur. It was concluded that high levels of PM 10, Ca and high pH of aerosols in atmosphere provide a conducive environment for conversion of SO 2 to SO 4. It was also concluded that the important migration pathway in study area for the transformation of SO 2 to SO 4 appears to be oxidation of SO 2 on the surfaces (of particulate) available in the ambient atmosphere.

  3. High covalence in CuSO4 and the radicalization of sulfate: an X-ray absorption and density functional study.

    Science.gov (United States)

    Szilagyi, Robert K; Frank, Patrick; DeBeer George, Serena; Hedman, Britt; Hodgson, Keith O

    2004-12-27

    Sulfur K-edge X-ray absorption spectroscopy (XAS) of anhydrous CuSO(4) reveals a well-resolved preedge transition feature at 2478.8 eV that has no counterpart in the XAS spectra of anhydrous ZnSO(4) or copper sulfate pentahydrate. Similar but weaker preedge features occur in the sulfur K-edge XAS spectra of [Cu(itao)SO(4)] (2478.4 eV) and [Cu[(CH(3))(6)tren]SO(4)] (2477.7 eV). Preedge features in the XAS spectra of transition metal ligands are generally attributed to covalent delocalization of a metal d-orbital hole into a ligand-based orbital. Copper L-edge XAS of CuSO(4) revealed that 56% of the Cu(II) 3d hole is delocalized onto the sulfate ligand. Hybrid density functional calculations on the two most realistic models of the covalent delocalization pathways in CuSO(4) indicate about 50% electron delocalization onto the sulfate oxygen-based 2p orbitals; however, at most 14% of that can be found on sulfate sulfur. Both experimental and computational results indicated that the high covalence of anhydrous CuSO(4) has made sulfate more like the radical monoanion, inducing an extensive mixing and redistribution of sulfur 3p-based unoccupied orbitals to lower energy in comparison to sulfate in ZnSO(4). It is this redistribution, rather than a direct covalent interaction between Cu(II) and sulfur, that is the origin of the observed sulfur XAS preedge feature. From pseudo-Voigt fits to the CuSO(4) sulfur K-edge XAS spectrum, a ground-state 3p character of 6% was quantified for the orbital contributing to the preedge transition, in reasonable agreement with the DFT calculation. Similar XAS fits indicated 2% sulfur 3p character for the preedge transition orbitals in [Cu(itao)SO(4)] and [Cu[(CH(3))(6)tren]SO(4)]. The covalent radicalization of ligands similar to sulfate, with consequent energy redistribution of the virtual orbitals, represents a new mechanism for the induction of ligand preedge XAS features. The high covalence of the Cu sites in CuSO(4) was found to be

  4. Aluminium sulfate as coagulant for highly polluted cork processing wastewaters: removal of organic matter.

    Science.gov (United States)

    Domínguez, Joaquín R; González, Teresa; García, Hector M; Sánchez-Lavado, Francisco; Beltrán de Heredia, Jesús

    2007-09-05

    This is the first part of a work on the chemistry of aluminium as coagulant in the treatment of highly polluted cork processing wastewater. The main aim of this first part was to determine the removal of organic matter - measured by reductions in chemical oxygen demand (COD), polyphenols (TP), and aromatic compounds (A) - that can be obtained using this physicochemical process. To this end, jar-test experiments were carried out to determine the optimal conditions for the process, in particular, the effective aluminium dosage, contamination level of wastewater, coagulant mixing time, stirring speed, and pH. The ranges of tested parameters for the coagulation process were: coagulant dose (33-166 mgL(-1) of Al(3+)), contamination of the wastewater (COD between 1060 and 3050 mgO(2)L(-1)), mixing time (5-30 min), stirring speed (60-300 rpm) and pH (4-11). The resulting removal capacities were in the ranges of 20-55% for COD, 28-89% for polyphenols, and 29-90% for aromatic compounds. The best results were obtained with a coagulant mixing time of 5 min and a stirring speed of 300 rpm. The optimal choices of pH and coagulant dose fundamentally depended on the contamination level of wastewater.

  5. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input.

    Science.gov (United States)

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi

    2014-08-15

    Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Science.gov (United States)

    Li, Xiao-Xiao; Liu, Jin-Feng; Zhou, Lei; Mbadinga, Serge M.; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-01-01

    Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs. PMID:28638372

  7. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-06-01

    Full Text Available Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01. In addition, the sulfate-reducing microorganisms (SRMs were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs.

  8. Experimental Study on the Feasibility of Using Water Glass and Aluminum Sulfate to Treat Complications in High Liquid Limit Soil Subgrade

    Directory of Open Access Journals (Sweden)

    Wen-hui Zhang

    2015-01-01

    Full Text Available The feasibility of using water glass and aluminum sulfate to treat high liquid limit soil subgrade diseases is studied through laboratory experiments, and the following results were observed. After improving the high liquid limit clay with water glass and aluminum sulfate, the liquid limit decreases, the plastic limit increases, and the plasticity index decreases. Compared with untreated soil, the clay content of the improved soil decreases, while the silt and coarse contents increase. The absolute and relative expansion rates of the improved soil are both lower than those of the untreated soil. With the same number of dry and wet cycles, the decreased degrees of cohesion and internal friction angle of the improved soil are, respectively, one-half and one-third of those of the untreated soil. After three dry and wet cycles, the California bearing ratio (CBR of the untreated soil does not meet the requirements of specifications. However, after being cured for seven days and being subjected to three dry and wet cycles, the CBR of the improved soil, with 4% water glass solution and 0.4% aluminum sulfate, meets the requirements of specifications.

  9. Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells.

    Science.gov (United States)

    Pozo, Guillermo; Lu, Yang; Pongy, Sebastien; Keller, Jürg; Ledezma, Pablo; Freguia, Stefano

    2017-12-01

    Selective microbial retention is of paramount importance for the long-term performance of cathodic sulfate reduction in microbial electrolysis cells (MECs) due to the slow growth rate of autotrophic sulfate-reducing bacteria. In this work, we investigate the biofilm retention and current-to-sulfide conversion efficiency using carbon granules (CG) or multi-wall carbon nanotubes deposited on reticulated vitreous carbon (MWCNT-RVC) as electrode materials. For ~2months, the MECs were operated at sulfate loading rates of 21 to 309gSO4 -S/m2/d. Although MWCNT-RVC achieved a current density of 57±11A/m2, greater than the 32±9A/m2 observed using CG, both materials exhibited similar sulfate reduction rates (SRR), with MWCNT-RVC reaching 104±16gSO4 -S/m2/d while 110±13gSO4 -S/m2/d were achieved with CG. Pyrosequencing analysis of the 16S rRNA at the end of experimentation revealed a core community dominated by Desulfovibrio (28%), Methanobacterium (19%) and Desulfomicrobium (14%), on the MWCNT-RVC electrodes. While a similar Desulfovibrio relative abundance of 29% was found in CG-biofilms, Desulfomicrobium was found to be significantly less abundant (4%) and Methanobacterium practically absent (0.2%) on CG electrodes. Surprisingly, our results show that CG can achieve higher current-to-sulfide efficiencies at lower power consumption than the nano-modified three-dimensional MWCNT-RVC. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Hydrothermal System at Home Plate in Gusev Crater, Mars: Formation of High Silica Material by Acid-Sulfate Alteration of Basalt

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Yen, A.; Clark, B. C.; Gnaff, T. G.; Arvidson, R. E.; Squyres, S. W.

    2008-01-01

    The Alpha Particle X-ray Spectrometer (APXS) instrument on the Mars Exploration Rover (MER) Spirit measured three targets on or adjacent to Home Plate in Gusev Crater that have unusually high SiO2 concentrations (68% to 91%), unusually low FeO concentrations (1% to 7%, with total Fe as FeO), and unusually high TiO2/FeO ratios (0.2 to 1.2 by weight) [1]. Two targets (Kenosha Comets and Lefty Ganote) are located on high albedo soil (Gertrude Weise) that was exposed by the rover wheels, and one target is a float rock called Fuzzy Smith. Kenosha Comets has the highest SiO2 concentration, lowest FeO concentration, and highest TiO2/FeO ratio. Mineralogical evidence from the MER Miniature Thermal Emission Spectrometer (Mini-TES) suggests that the SiO2 is present as amorphous (noncrystalline) SiO2 at Gertrude Weise and nearby targets [2,3]. Mini-TES data were not acquired for Fuzzy Smith. Home Plate is considered to have an explosive volcanic origin, resulting when basaltic magma came into contact with ground water or ice [4]. Within 50 m to 1 km of Home Plate are sulfate rich soil deposits (Paso Robles class soils with 22-35% SO3) which are considered to be probable fumarolic and/or hydrothermal deposits associated with the volcanism [5]. We develop the model here, suggested by [5], that the high-silica materials are another manifestation of acid-sulfate processes associated with fumarolic and hydrothermal activity at Home Plate. This is done by analogy with basaltic materials altered by acid sulfate processes on the Island of Hawaii.

  11. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  12. An evaporite-based high-resolution sulfur isotope record of Late Permian and Triassic seawater sulfate

    Science.gov (United States)

    Bernasconi, Stefano M.; Meier, Irene; Wohlwend, Stephan; Brack, Peter; Hochuli, Peter A.; Bläsi, Hansruedi; Wortmann, Ulrich G.; Ramseyer, Karl

    2017-05-01

    Variations in the sulfur isotope composition of dissolved marine sulfate through time reflect changes in the global sulfur cycle and are intimately related to changes in the carbon and oxygen cycles. A large shift in the sulfur isotope composition of sulfate at the Permian/Triassic boundary has been recognized for long time and a number of studies were carried out to understand the causes and significance of this shift. However, data for the Middle and Late Triassic are very sparse and the stratigraphic evolution of the sulfur isotope composition of seawater is poorly constrained due to the small number of samples analyzed and/or due to the limited stratigraphic intervals studied. Moreover, in the last few years the Triassic timescale has significantly changed due to a wealth of new radiometric and stratigraphic data. In this study we show that for the Late Permian and the Triassic it is possible to obtain a precise reconstruction of the evolution of the sulfur cycle, for parts of it at sub-million year resolution, by analyzing exclusively gypsum and anhydrite deposits. We base our reconstruction on new data from the Middle and Late Triassic evaporites of Northern Switzerland and literature data from evaporites from Germany, Austria, Italy and the Middle East. We propose a revised correlation between the well-dated marine Tethyan sections in northern Italy and the evaporites from Northern Switzerland and from the Germanic Basin calibrated to the newest radiometric absolute age scale. This new correlation allows for a precise dating of the evaporites and constructing a composite sulfur isotope evolution of seawater sulfate from the latest Permian (Lopingian Epoch) to the Norian. We show that a rapid positive shift of approximately 24‰ at the Permian-Triassic boundary can be used to constrain seawater sulfate concentrations in the range of 2-6 mM, thus higher than previous estimates but with less rapid changes. Finally, we discuss two possible evolution scenarios

  13. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate...... and product distribution under high temperature conditions. In the present work, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate was studied respectively in a fast-heating rate thermogravimetric analyzer for deriving a kinetic model to describe the process. The yields of SO2 and SO3...... of different sulfates indicated that ammonium sulfate has clearly strongest sulfation power towards KCl at temperatures below 800oC, whereas the sulfation power of ferric and aluminum sulfates exceeds clearly that of ammonium sulfate between 900 and 1000oC. However, feeding gaseous SO3 was found to be most...

  14. Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron- and sulfate-rich industrial waste water.

    Science.gov (United States)

    Dann, Alison L; Cooper, Rodney S; Bowman, John P

    2009-05-01

    A passively operated multi-stage bioremediation system utilizing composted agricultural waste products and an artificial wetland system was found to be effective for purification of acidic, iron- and sulfate-rich waste water derived from titanium mineral processing. The main microbial players involved in the remediation system processes and the dynamics were investigated; mineral processing waste water-filled sludge dams possessed stable microbial communities that included Acidithiobacillus, Desulfurella, and acidophilic, anaerobic fermenters of the order Bacteroidales. These groups were enriched in a subsequent potato waste-based iron mobilization pre-treatment stage. Within downstream reduction treatment stages ("reduction cells"), compost/straw decomposition and associated sulfur/sulfate and iron reduction were carried out by a complex mix of aerobic and anaerobic bacteria. The efficaciousness of the system without replacement of the compost was found to steadily decline following 2 years of operation and corresponded with the reduction cell communities becoming simultaneously more diverse and homogenous. Microcosm-based experiments demonstrated that operational declines were due to unsustained supply of suitable labile carbon sources combined with spatial heterogeneity within the layered design of the reduction stage of the system resulting in inadequate redox conditions. Temperature was not found to be a critical performance factor in the range of 10-25 degrees C. Application of a combined emulsified oil/molasses amendment was found to be highly effective in promoting a microbial community capable of remediating waste water with high iron and sulfate levels. Acidophilic members of the order Bacteroidales were found to be critical in the investigated remediation system, providing organic donors for subsequent metal and sulfur transformations and could have a broader ecological significance than previously suspected.

  15. Artificial extracellular matrices composed of collagen I and high-sulfated hyaluronan promote phenotypic and functional modulation of human pro-inflammatory M1 macrophages.

    Science.gov (United States)

    Franz, Sandra; Allenstein, Francie; Kajahn, Jennifer; Forstreuter, Inka; Hintze, Vera; Möller, Stephanie; Simon, Jan C

    2013-03-01

    The sequential phases of biomaterial integration and wound healing require different macrophage functions mediated by distinct macrophage subsets. During the initial phase of healing, pro-inflammatory M1 macrophages (MΦ1) are required to clear the wound from microbes and debris; however, their unopposed, persistent activation often leads to disturbed integration of biomaterials and perturbed wound healing. Here we investigated whether pro-inflammatory macrophage functions are affected by immunomodulatory biomaterials based on artificial extracellular matrices (aECM). To address this issue, we tested the capacity of two-dimensional aECM consisting of collagen I and hyaluronan or sulfated derivatives of hyaluronan to affect functions of in vitro polarized human pro-inflammatory MΦ1. The aECM containing high-sulfated hyaluronan substantially decreased inflammatory macrophage functions, including pathogen uptake and release of the pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-12 due to impaired activation of nuclear factor "kappa-light-chain-enhancer" of activated B-cells. Moreover, these macrophages secreted immunregulatory IL-10 and showed reduced activity of the transcription factors signal transducer and activator of transcription 1 and interferon-regulating factor 5, both controlling macrophage polarization to MΦ1 subsets. Our data reveal that the collagen I matrix containing high-sulfated hyaluronan possesses immunomodulating properties and dampens inflammatory macrophage activities by impeding signaling pathways crucial for polarization of pro-inflammatory MΦ1. We therefore suggest this aECM as a promising coating for biomaterials to modulate inflammatory macrophage functions during the healing response and recommend its further testing as a three-dimensional construct and in in vivo models. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. High performance agarose gel chromatography in sodium dodecyl sulfate of integral membrane proteins from human red cells, with special reference to the glucose transporter.

    Science.gov (United States)

    Mascher, E; Lundahl, P

    1986-04-25

    Integral membrane proteins from human red cells were fractionated in sodium dodecyl sulfate solutions by high performance gel filtration on the small-bead cross-linked agarose gel Superose 6. The components were identified by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The combination of Superose chromatography with electrophoresis afforded high resolution. As expected the gel filtration elution volumes depended essentially on the molecular mass, but the elution volumes decreased stepwise as the detergent concentration was increased from 0.6 to 100 mM, with the largest decrease for the glucose transporter. The resolution increased as the flow rate was decreased from 60 to 1 ml X cm-2 X h-1. The Mr values for the anion and glucose transporters as estimated by Superose 6-chromatography at 50 mM detergent were 75-80% of the corresponding Mr values obtained by electrophoresis. At 50 mM dodecyl sulfate the proteins were resolved into four fractions (a-d) which mainly contained: (a) dimer and (b) monomer of the anion transporter, (c) the glucose transporter and (d) components of Mr below 40 000. Monoclonal antibodies that possibly are directed against the glucose transporter (Lundahl, P., Greijer, E., Cardell, S., Mascher, E. and Andersson, L. (1986) Biochim. Biophys. Acta 855, 345-356) interacted only with part of the 4.5-material in fraction c in immunoblotting (Western blotting). Superose 6-chromatography of red cell glucose transporter that had been partially purified on DEAE-cellulose and Mono Q resolved one major and two minor fractions. Electrophoretic analysis showed that components of Mr 90,000, 50,000, and 25,000 had been separated from the major Mr-55,000-4.5-material and revealed size heterogeneity within the major chromatographic fraction. Heating of the glucose transporter in the presence of dodecyl sulfate caused an unexpected retardation of monomeric transporter on Superose 6. The apparent Mr decreased from 44,000 to 29,000.

  17. O-Linked glycome and proteome of high-molecular-mass proteins in human ovarian cancer ascites: Identification of sulfation, disialic acid and O-linked fucose.

    Science.gov (United States)

    Karlsson, Niclas G; McGuckin, Michael A

    2012-07-01

    The O-linked glycosylation of the main acidic high-molecular-weight glycoprotein from ascites fluid from patients with ovarian cancer were analyzed. The O-linked oligosaccharides were shown to consist of mainly highly sialylated core 1 and 2 structures with a smaller amount of sulfated core 2 structures. These structures were shown to be able to be further extended into small keratan sulfate (KS)-type oligosaccharides with up to four N-acetyllactosamine units. Proteomic studies of the acidic fraction of ascites fluid from patients with ovarian cancer showed that this fraction was enriched in proteoglycans. Among them, lumican, agrin, versican and dystroglycans were potential candidates, with threonine- and serine-rich domains that could carry a significant amount of O-linked glycosylation, including also the O-linked KS. Glycomic analysis using liquid chromatography (LC)-tandem mass spectrometry (MS/MS) also showed that the disialic acid NeuAc-NeuAc- was frequently found as the terminating structure on the O-linked core 1 and 2 oligosaccharides from one ascites sample. Also, a small amount of the epidermal growth factor (EGF)-associated O-linked fucose structure Gal-GlcNAc-Fucitol was detected with and without sialic acid in the LC-MS/MS analysis. Candidate proteins containing O-linked fucose were suggested to be proteoglycan-type molecules containing the O-linked fucose EGF consensus domain.

  18. Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments.

    Science.gov (United States)

    Sela-Adler, Michal; Ronen, Zeev; Herut, Barak; Antler, Gilad; Vigderovich, Hanni; Eckert, Werner; Sivan, Orit

    2017-01-01

    The competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel) estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM. The results show that methanogenesis and sulfate reduction can co-exist while the microbes share substrates over the tested range of sulfate concentrations and at sulfate reduction rates up to 680 μmol L-1 day-1. Rates of methanogenesis were two orders of magnitude lower than rates of sulfate reduction in incubations with acetate and lactate, suggesting a higher affinity of sulfate reducing bacteria for the available substrates. The co-existence of both processes was also confirmed by the isotopic signatures of δ34S in the residual sulfate and that of δ13C of methane and dissolved inorganic carbon. Copy numbers of dsrA and mcrA genes supported the dominance of sulfate reduction over methanogenesis, while showing also the ability of methanogens to grow under high sulfate concentration and in the presence of active sulfate reduction.

  19. Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst.

    Science.gov (United States)

    Wei, Weiqi; Wu, Shubin

    2017-10-01

    Experiments for cellulose depolymerization by synergy of zinc chloride hydrate (ZnCl2·RH2O) and sulfated titania catalyst (SO42-/TiO2) were investigated in this study. The results showed the introduction of sulfate into the TiO2 significantly enhanced the catalyst acid amount, especially for Brønsted acid site, which is beneficial for subsequent cellulose depolymerization. ZnCl2·RH2O hydrate, only a narrow composition range of water, specifically 3.0≤R≤4.0, can dissolve cellulose, which finally resulted the cellulose with low crystallinity and weak intrachain and interchain hydrogen bond network. Coupling of ZnCl2·RH2O hydrate and SO42-/TiO2 catalyst as a mixed reaction system promoted cellulose depolymerization, and the products can be adjusted by the control of reaction conditions, the low temperature (80-100°C) seemed beneficial for glucose formation (maximal yield 50.5%), and the high temperature (120-140°C) favored to produce levulinic acid (maximal yield 43.1%). Besides, the addition of organic co-solvent making HMF as the main product (maximal yield 38.3%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hormonal modulation of novelty processing in women: Enhanced under working memory load with high dehydroepiandrosterone-sulfate-to-dehydroepiandrosterone ratios.

    Science.gov (United States)

    do Vale, Sónia; Selinger, Lenka; Martins, João Martin; Bicho, Manuel; do Carmo, Isabel; Escera, Carles

    2016-11-10

    Several studies have suggested that dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) may enhance working memory and attention, yet current evidence is still inconclusive. The balance between both forms of the hormone might be crucial regarding the effects that DHEA and DHEAS exert on the central nervous system. To test the hypothesis that higher DHEAS-to-DHEA ratios might enhance working memory and/or involuntary attention, we studied the DHEAS-to-DHEA ratio in relation to involuntary attention and working memory processing by recording the electroencephalogram of 22 young women while performing a working memory load task and a task without working memory load in an audio-visual oddball paradigm. DHEA and DHEAS were measured in saliva before each task. We found that a higher DHEAS-to-DHEA ratio was related to enhanced auditory novelty-P3 amplitudes during performance of the working memory task, indicating an increased processing of the distracter, while on the other hand there was no difference in the processing of the visual target. These results suggest that the balance between DHEAS and DHEA levels modulates involuntary attention during the performance of a task with cognitive load without interfering with the processing of the task-relevant visual stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters

    Directory of Open Access Journals (Sweden)

    Jennyfer Serrano

    2017-12-01

    Full Text Available Fluvial sediments, soils, and natural waters in northern Chile are characterized by high arsenic (As content. Mining operations in this area are potential sources of As and other metal contaminants, due to acid mine drainage (AMD generation. Sulfate Reducing Bacteria (SRB has been used for the treatment of AMD, as they allow for the reduction of sulfate, the generation of alkalinity, and the removal of dissolved heavy metals and metalloids by precipitation as insoluble metal sulfides. Thus, SRB could be used to remove As and other heavy metals from AMD, however the tolerance of SRB to high metal concentrations and low pH is limited. The present study aimed to quantify the impact of SRB in As removal under acidic and As-Fe-rich conditions. Our results show that SRB tolerate low pH (up to 3.5 and high concentrations of As (~3.6 mg·L−1. Batch experiments showed As removal of up to 73%, Iron (Fe removal higher than 78% and a neutralization of pH from acidic to circum-neutral conditions (pH 6–8. In addition, XRD analysis showed the dominance of amorphous minerals, while Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDX analysis showed associations between As, Fe, and sulfur, indicating the presence of Fe-S-As compounds or interaction of As species with amorphous and/or nanocrystalline phases by sorption processes. These results indicate that the As removal was mediated by acid/metal-tolerant SRB and open the potential for the application of new strains of acid/metal-tolerant SRB for the remediation of high-As acid mine waters.

  2. The compression behavior of blödite at low and high temperature up to ~10GPa: Implications for the stability of hydrous sulfates on icy planetary bodies

    Energy Technology Data Exchange (ETDEWEB)

    Comodi, Paola; Stagno, Vincenzo; Zucchini, Azzurra; Fei, Yingwei; Prakapenka, Vitali

    2017-03-01

    Recent satellite inferences of hydrous sulfates as recurrent minerals on the surface of icy planetary bodies link with the potential mineral composition of their interior. Blödite, a mixed Mg-Na sulfate, is here taken as representative mineral of icy satellites surface to investigate its crystal structure and stability at conditions of the interior of icy bodies. To this aim we performed in situ synchrotron angle-dispersive X-ray powder diffraction experiments on natural blödite at pressures up to ~10.4 GPa and temperatures from ~118.8 K to ~490.0 K using diamond anvil cell technique to investigate the compression behavior and establish a low-to-high temperature equation of state that can be used as reference when modeling the interior of sulfate-rich icy satellites such as Ganymede. The experimentally determined volume expansivity, α, varies from 7.6 (7) 10-5 K-1 at 0.0001 GPa (from 118.8 to 413.15 K) to 2.6 (3) 10-5 K-1 at 10 GPa (from 313.0 to 453.0 K) with a δα/δP coefficient = -5.6(9)10-6 GPa-1 K-1. The bulk modulus calculated from the least squares fitting of P-V data on the isotherm at 413 K using a second-order Birch - Murnaghan equation of state is 38(5) GPa, which gives the value of δK/δT equal to 0.01(5) GPa K-1. The thermo-baric behavior of blödite appears strongly anisotropic with c lattice parameter being more deformed with respect to a and b. Thermogravimetric analyses performed at ambient pressure showed three endotherms at 413 K, 533 K and 973 K with weight losses of approximately 11%, 11% and 43% caused by partial dehydration, full dehydration and sulfate decomposition respectively. Interestingly, no clear evidence of dehydration was observed up to ~453 K and ~10.4 GPa, suggesting that pressure acts to stabilize the crystalline structure of blödite. The data collected allow to write the following equation of state, V(P, T) = V

  3. First observation of labile arsenic stratification in aluminum sulfate-amended sediments using high resolution Zr-oxide DGT.

    Science.gov (United States)

    Lin, Juan; Sun, Qin; Ding, Shiming; Wang, Dan; Wang, Yan; Tsang, Daniel C W

    2017-12-31

    Arsenic contamination in sediments has received increasing attention because it may be released to the water and threaten aquatic organisms. In this study, aluminum sulfate (ALS) was used to immobilize As in sediments through dosage-series and time-series experiments. Diffusive gradients in thin films (DGT) was used to obtain labile As at a vertically 2.0mm resolution. Our results indicated that a "static" layer with extremely low labile As concentration (minimally 0.13mgL(-1)) with weak variation (<30% RSD) formed within the top 12mm sediment layer at the dosage of 6-12ALS/Asmobile (kmolmol(-1), Asmobile means the total mobile As in top 40mm sediment) and on days 30-80 after amendment at the dosage of 9 ALS/Asmobile. The maximum labile As decreased from 1.83 to 0.99μgL(-1) and from 1.96 to 1.20μgL(-1) in the dosage-series (3-12 ALS/Asmobile) and time-series (10-80days) experiments, respectively, while the depths showing the maximal concentrations moved deeper from 22 to 34mm and 20 to 32mm in the sediments. It implied a reduced upward diffusion potential of labile As to the static layer in deeper sediments. Both distribution coefficient for As between sediment solid pool and pore water (Kd) and the adsorption rate constant (k1) consistently increased, reflecting that As release from sediment solid became increasingly difficult with the progress of ALS immobilization. The results of this millimeter-scale investigation showed that ALS could efficiently immobilize As in sediments under simulated conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  5. Gaseous Sulfate Solubility in Glass: Experimental Method

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  6. Effects of brief and intermediate exposures to sulfate submicron aerosols and sulfate injections on cardiopulmonary function of dogs and tracheal mucous velocity of sheep

    Energy Technology Data Exchange (ETDEWEB)

    Sackner, M.A. (Mount Sinai Medical Center, Miami Beach, FL); Dougherty, R.L.; Chapman, G.A.; Cipley, J.; Perez, D.; Kwoka, M.; Reinhart, M.; Brito, M.; Schreck, R.

    1981-06-01

    Pulmonary mechanics of anesthetized dogs were not changed or were minimally altered by breathing the following compounds as submicron aerosols in concentrations up to 17.3 mg/m/sup 3/ for 7.5 min: (1) sodium chloride (as a control), (2) sodium sulfate, (3) ammonium sulfate, (4) zinc sulfate, (5) zinc ammonium sulfate, (6) ammonium bisulfate, (7) aluminum sulfate, (8) manganese sulfate, (9) nickel sulfate, (10) copper sulfate, (11) ferrous fulfate, and (12) ferric sulfate. Submicron aerosols of these compounds in concentrations of 4.1 to 8.8 mg/m/sup 3/, administered for 4 h to anesthetized dogs, did not affect mechanics of breathing, hemodynamics, and arterial blood gases. In conscious sheep, tracheal mucous velocity was not altered by exposure to the submicron aerosols of the sulfate compounds. None of these compounds, injected iv in a dose of 1 mg, had adverse effects on mechanics of breathing, pulmonary and systemic hemodynamics, or arterial blood gases. In 100-mg injections, zinc sulfate and zinc ammonium sulfate produced a fall in cardiac output, systemic hypotension, hypoxemia, and metabolic acidosis. Copper sulfate at this dose produced pulmonary hypertension, a fall in cardiac output, hypoxemia, respiratory acidosis, and a decrease of specific total respiratory conductance. It is concluded that submicron aerosols of sulfate salts do not have adverse cardiopulmonary effects when administered in high concentrations for up to 4 h. However, prolonged exposure to high concentrations of zinc sulfate, zinc ammonium sulfate, and copper sulfate aerosols might have adverse cardiopulmonary effects.

  7. Sulfate Formation Enhanced by a Cocktail of High NOx, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation.

    Science.gov (United States)

    Xue, Jian; Yuan, Zibing; Griffith, Stephen M; Yu, Xin; Lau, Alexis K H; Yu, Jian Zhen

    2016-07-19

    In recent years in a few Chinese megacities, fog events lasting one to a few days have been frequently associated with high levels of aerosol loading characterized by high sulfate (as high as 30 μg m(-3)), therefore termed as haze-fog events. The concomitant pollution characteristics include high gas-phase mixing ratios of SO2 (up to 71 ppbv) and NO2 (up to 69 ppbv), high aqueous phase pH (5-6), and smaller fog droplets (as low as 2 μm), resulting from intense emissions from fossil fuel combustion and construction activities supplying abundant Ca(2+). In this work, we use an observation-based model for secondary inorganic aerosols (OBM-SIA) to simulate sulfate formation pathways under conditions of haze-fog events encountered in Chinese megacities. The OBM analysis has identified, at a typical haze-fogwater pH of 5.6, the most important pathway to be oxidation of S(IV) by dissolved NO2, followed by the heterogeneous reaction of SO2 on the aerosol surface. The aqueous phase oxidation of S(IV) by H2O2 is a very minor formation pathway as a result of the high NOx conditions suppressing H2O2 formation. The model results indicate that the unique cocktail of high fogwater pH, high concentrations of NO2, SO2, and PM, and small fog droplets are capable of greatly enhancing sulfate formation. Such haze-fog conditions could lead to rapid sulfate production at night and subsequently high PM2.5 in the morning when the fog evaporates. Sulfate formation is simulated to be highly sensitive to fogwater pH, PM, and precursor gases NO2 and SO2. Such insights on major contributing factors imply that reduction of road dust and NOx emissions could lessen PM2.5 loadings in Chinese megacities during fog events.

  8. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  9. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  10. Sulfate reduction in a hydrogen fed bioreactor operated at haloalkaline conditions

    NARCIS (Netherlands)

    Sousa, J.A.B.; Plugge, C.M.; Stams, A.J.M.; Bijmans, M.F.M.

    2015-01-01

    Biological sulfate reduction is used as a biotechnological process to treat sulfate rich streams. However, application of biological sulfate reduction at high pH and high salinity using H2 was not thoroughly investigated before. In this work the sulfate reduction activity, biomass growth, microbial

  11. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  12. A simple chemical method for the determination of dermatan sulfate in the presence of chondroitin 4-sulfate and chondroitin 6-sulfate.

    Science.gov (United States)

    Kinoshita, T; Kanada, K; Tsuji, A

    1975-02-01

    A simple chemical method for the determination of individual mucopolysaccharides in mixtures of dermatan sulfate and chondroitin sulfates by means of a single reagent was established, utilizing the difference in reaction rates of these polysaccharides with orcinol. To each 1 ml of a sample mixture of standard dermatan sulfate and standard chondroitin sulfate (either 4- or 6-sulfate) was added 3 ml of orcinol reagent and the resulting solution was heated in a boiling-water bath. After 20 and 60 min reaction, absorbances at 660 nm were measured and the concentrations of individual mucopolysaccharides were calculated. High reproducibility was observed for the determination of dermatan sulfate in the presence of chondroitin sulfates. In addition, orcinol reaction for 90 min employing D-glucuronolactone as a standard appeared to be of practical value in the estimation of the uronic acid content of these mucopolysaccharides.

  13. The role of sulfated steroid hormones in reproductive processes.

    Science.gov (United States)

    Geyer, Joachim; Bakhaus, Katharina; Bernhardt, Rita; Blaschka, Carina; Dezhkam, Yaser; Fietz, Daniela; Grosser, Gary; Hartmann, Katja; Hartmann, Michaela F; Neunzig, Jens; Papadopoulos, Dimitrios; Sánchez-Guijo, Alberto; Scheiner-Bobis, Georgios; Schuler, Gerhard; Shihan, Mazen; Wrenzycki, Christine; Wudy, Stefan A; Bergmann, Martin

    2017-09-01

    Sulfated steroid hormones, such as dehydroepiandrosterone sulfate or estrone-3-sulfate, have long been regarded as inactive metabolites as they cannot activate classical steroid receptors. Some of them are present in the blood circulation at quite high concentrations, but generally sulfated steroids exhibit low membrane permeation due to their hydrophilic properties. However, sulfated steroid hormones can actively be imported into specific target cells via uptake carriers, such as the sodium-dependent organic anion transporter SOAT, and, after hydrolysis by the steroid sulfatase (so-called sulfatase pathway), contribute to the overall regulation of steroid responsive organs. To investigate the biological significance of sulfated steroid hormones for reproductive processes in humans and animals, the research group "Sulfated Steroids in Reproduction" was established by the German Research Foundation DFG (FOR1369). Projects of this group deal with transport of sulfated steroids, sulfation of free steroids, desulfation by the steroid sulfatase, effects of sulfated steroids on steroid biosynthesis and membrane receptors as well as MS-based profiling of sulfated steroids in biological samples. This review and concept paper presents key findings from all these projects and provides a broad overview over the current research on sulfated steroid hormones in the field of reproduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Aluminum forms in acid sulfate soils].

    Science.gov (United States)

    Wang, J; Luo, S; Feng, Y

    2000-10-01

    With the method of sequential extraction, the extractable noncrystalline aluminum in Acid Sulfate Soils was fractionized into exchangeable Al (ExAl), absorbed inorganic hydroxy-Al(HyAl), organic complexed Al(OrAl), Fe oxide bound Al (DCBAl), interlayered Al(InAl) and noncrystalline aluminosilicate(NcAl) with average of 1.79, 2.51, 4.17, 4.14, 4.31 and 8.66 g Al2O3.kg-1, respectively. In actual Acid Sulfate Soils, the amount of different forms Al followed the order of NcAl > OrAl > InAl > DCBAl > ExAl > HyAl, but in potential acid sulfate soils, NcAl > InAl > DCBAl > HyAl > OrAl > ExAl. The average of the total extractable noncrystalline Al was 35.57 g Al2O3.kg-1, which covered 25.04% of the total amount of Al in Acid Sulfate Soils. The characteristic of extractable noncrystalline Al in Acid Sulfate Soils was the high proportion of active aluminum, such as ExAl, HyAl and OrAl. All forms of Al were closely related to the corresponding properties and ecological characteristics of Acid Sulfate Soils. The strong acid environment of actual Acid Sulfate Soils induced over-released Al, which transformed to active Al and resulted in Al toxicity.

  15. Decontamination of acid mine water from Ronneburg/Thueringen which is high in sulfates and metals using sulfate-reducing bacteria. Pt. 2. Biological bases. Final report of the preliminary phase; Mikrobiologisches Verfahren zur Reinigung radioaktiv und chemisch belasteter Waesser des Sanierungsgebietes Ronneburg. T. 2. Biologische Grundlagen. Abschlussbericht zur Vorphase

    Energy Technology Data Exchange (ETDEWEB)

    Hard, B.; Friedrich, S.

    1995-07-25

    The mining in Eastern Europe, particularly in East-Germany, is a major source of pollution to the surrounding areas of the mines. With the end of the cold war the demand for uranium has drastically declined. Many of the pits have therefore been closed down or are in the process of closure such as the uranium mine in Ronneburg in Thueringen. One major problem is the safe-making of the pits and dumps as they are highly radioactive through naturally occurring uranium and other radioactive elements. Because of the leaching process through bacteria, drainage water is very acidic, with pH-values between 1-2. The water is very rich in magnesium, iron and aluminium sulfate. Here the application of a microbial process to decontaminate acid mine drainage was investigated. Decontamination of the water includes: - Increase in pH - decrease in sulfate concentrations - minimization of the metal and radionuclide load. Sulfate-reducing bacteria seem suitable for this process. In order for such a microbial process to be economically viable a cheap and widely available electron donar has to be used eg. methanol. The work carried out reports on the isolation, characterization and physiology of sulfate-reducing methylotrophic bacteria and their suitability for a decontamination process of sulfuric acid uranium mine water. (orig.) [Deutsch] Ziel der Untersuchungen war, die Moeglichkeit der mikrobiellen Behandlung der Sickerwaesser (stark sauer, radionuklidhaltig, hoher Sulfat- und Metallgehalt) des Sanierungsgebietes Ronneburg zu pruefen. Die mikrobiologische Behandlung soll folgende Problemloesungen liefern: - Reduzierung des Sulfatgehaltes durch sulfatreduzierende Mikroorganismen, - Senkung des Schwermetallgehaltes durch die Faellung als Sulfide, - Abtrennung der Radionuklide durch Faellung, Reduktion, Biosorption oder Akkumulation, - pH-Wert-Verschiebung in den neutralen pH-Bereich waehrend der Sulfatreduktion. In orientierenden Versuchen konnte nachgewiesen werden, dass das

  16. Leukocyte Telomere Length and Serum Levels of High-Molecular-Weight Adiponectin and Dehydroepiandrosterone-Sulfate Could Reflect Distinct Aspects of Longevity in Japanese Centenarians

    Directory of Open Access Journals (Sweden)

    Yuji Aoki MD, PhD

    2017-03-01

    Full Text Available Leukocyte telomere length and serum levels of high-molecular-weight adiponectin and dehydroepiandrosterone-sulfate (DHEA-S were assessed in association with nutrition and performance status (PS in Japanese centenarians. Twenty-three centenarians (five men, 18 women were classified according to their PS 1 (nearly fully ambulatory, n = 2, 2 (in bed less than 50% of daytime, n = 10, 3 (in bed greater than 50%, n = 6, and 4 (completely bedridden, n = 5. Leukocyte telomere length was determined by the hybridization protection assay, and the adiponectin and DHEA-S levels were measured by chemiluminescent enzyme immunoassay. Among variables of PS, body mass index (BMI, albumin, adiponectin, DHEA-S, and telomere length, there were significant correlations between PS and albumin ( r = −.694, p < .01, between telomere length and BMI ( r = .522, p < .05, between adiponectin and BMI ( r = −.574, p < .01, and between DHEA-S and albumin ( r = .530, p < .01. When excluding two cancer-bearing centenarians with short telomere, telomere length significantly correlated with PS ( r = −.632, p < .01. It was indicated that the short leukocyte telomere was associated with poor PS and cancer development and that the adiponectin or DHEA-S was associated with adiposity or nutritional status. Despite a small number of subjects, these biomarkers seemed to reflect distinct aspects of longevity in Japanese centenarians.

  17. Resorption and tolerance of the high doses of ferrous sulfate and ferrous gluconate in the patients on peritoneal dialysis

    Directory of Open Access Journals (Sweden)

    Laušević Mirjana

    2006-01-01

    Full Text Available Background/Aim. Iron supplementation plays a crucial role in peritoneal dialysis (PD patients. Oral iron substitution is more convenient than intravenous therapy in PD patients, but impaired absorption and adverse effects may be limiting factors for oral treatment. The aim of this study was to compare the absorption and side effects of high doses ferrous sulphate and ferrous gluconate in PD patients. Methods. Blood samples were taken from 29 PD patients at baseline, as well as 2, 4 and 8 hours after oral intake of 4 ferrous sulphate tablets (containing 105 mg elemental iron per tablet. The test was repeated using 8 ferrous gluconate drinkable ampoules (containing 50 mg elemental iron per ampoule. Results. The maximal increase in serum iron level during the test with iron sulphate was 113.51±103.37% versus the initial values of 183.87±37.38% during the ferrous gluconate test. The maximal values of serum iron after the intake of ferrous sulphate were 26.23±9.95 µmol/l versus 30.97±8.65 µmol/l after the intake of ferrous gluconate. There was a statistically significant difference between these two groups. Six patients showed an increase in serum iron of more than 300% after a high ferrous gluconate dose, while in 15 of the patients serum iron increased between 100% and 300%, and in 8 of the patients serum iron levels increased by less than 100%. Side effects occurred more frequently after the intake of ferrous sulphate than ferrous gluconate. Conclusion. High doses of oral iron were well absorbed and tolerated in PD patients. Ferrous gluconate was better absorbed and tolerated than ferrous sulphate, thus we recommend it for oral iron supplementation in PD patients.

  18. Citric acid wastewater as electron donor for biological sulfate reduction.

    Science.gov (United States)

    Stams, Alfons J M; Huisman, Jacco; Garcia Encina, Pedro A; Muyzer, Gerard

    2009-07-01

    Citrate-containing wastewater is used as electron donor for sulfate reduction in a biological treatment plant for the removal of sulfate. The pathway of citrate conversion coupled to sulfate reduction and the microorganisms involved were investigated. Citrate was not a direct electron donor for the sulfate-reducing bacteria. Instead, citrate was fermented to mainly acetate and formate. These fermentation products served as electron donors for the sulfate-reducing bacteria. Sulfate reduction activities of the reactor biomass with acetate and formate were sufficiently high to explain the sulfate reduction rates that are required for the process. Two citrate-fermenting bacteria were isolated. Strain R210 was closest related to Trichococcus pasteurii (99.5% ribosomal RNA (rRNA) gene sequence similarity). The closest relative of strain S101 was Veillonella montepellierensis with an rRNA gene sequence similarity of 96.7%. Both strains had a complementary substrate range.

  19. Sulfate uptake in photosynthetic Euglena gracilis. Mechanisms of regulation and contribution to cysteine homeostasis.

    Science.gov (United States)

    García-García, Jorge Donato; Olin-Sandoval, Viridiana; Saavedra, Emma; Girard, Lourdes; Hernández, Georgina; Moreno-Sánchez, Rafael

    2012-10-01

    Sulfate uptake was analyzed in photosynthetic Euglena gracilis grown in sulfate sufficient or sulfate deficient media, or under Cd(2+) exposure or Cys overload, to determine its regulatory mechanisms and contribution to Cys homeostasis. In control and sulfate deficient or Cd(2+)-stressed cells, one high affinity and two low affinity sulfate transporters were revealed, which were partially inhibited by photophosphorylation and oxidative phosphorylation inhibitors and ionophores, as well as by chromate and molybdate; H(+) efflux also diminished in presence of sulfate. In both sulfate deficient and Cd(2+)-exposed cells, the activity of the sulfate transporters was significantly increased. However, the content of thiol-metabolites was lower in sulfate-deficient cells, and higher in Cd(2+)-exposed cells, in comparison to control cells. In cells incubated with external Cys, sulfate uptake was strongly inhibited correlating with 5-times increased intracellular Cys. Re-supply of sulfate to sulfate deficient cells increased the Cys, γ-glutamylcysteine and GSH pools, and to Cys-overloaded cells resulted in the consumption of previously accumulated Cys. In contrast, in Cd(2+) exposed cells none of the already elevated thiol-metabolites changed. (i) Sulfate transport is an energy-dependent process; (ii) sulfate transporters are over-expressed under sulfate deficiency or Cd(2+) stress and their activity can be inhibited by high internal Cys; and (iii) sulfate uptake exerts homeostatic control of the Cys pool. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effects of natural raw meal (NRM) on high-fat diet and dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice.

    Science.gov (United States)

    Shin, Sung-Ho; Song, Jia-Le; Park, Myoung-Gyu; Park, Mi-Hyun; Hwang, Sung-Joo; Park, Kun-Young

    2015-12-01

    Colitis is a serious health problem, and chronic obesity is associated with the progression of colitis. The aim of this study was to determine the effects of natural raw meal (NRM) on high-fat diet (HFD, 45%) and dextran sulfate sodium (DSS, 2% w/v)-induced colitis in C57BL/6J mice. Body weight, colon length, and colon weight-to-length ratio, were measured directly. Serum levels of obesity-related biomarkers, triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein (HDL), insulin, leptin, and adiponectin were determined using commercial kits. Serum levels of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were detected using a commercial ELISA kit. Histological study was performed using a hematoxylin and eosin (H&E) staining assay. Colonic mRNA expressions of TNF-α, IL-1β, IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were determined by RT-PCR assay. Body weight and obesity-related biomarkers (TG, TC, LDL, HDL, insulin, leptin, and adiponectin) were regulated and obesity was prevented in NRM treated mice. NRM significantly suppressed colon shortening and reduced colon weight-to-length ratio in HFD+DSS induced colitis in C57BL/6J mice (P < 0.05). Histological observations suggested that NRM reduced edema, mucosal damage, and the loss of crypts induced by HFD and DSS. In addition, NRM decreased the serum levels of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6 and inhibited the mRNA expressions of these cytokines, and iNOS and COX-2 in colon mucosa (P < 0.05). The results suggest that NRM has an anti-inflammatory effect against HFD and DSS-induced colitis in mice, and that these effects are due to the amelioration of HFD and/or DSS-induced inflammatory reactions.

  1. Acetate Production from Oil under Sulfate-Reducing Conditions in Bioreactors Injected with Sulfate and Nitrate

    Science.gov (United States)

    Callbeck, Cameron M.; Agrawal, Akhil

    2013-01-01

    Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields. PMID:23770914

  2. Modeling the use of sulfate additives for potassium chloride destruction in biomass combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Grell, Morten Nedergaard; Jespersen, Jacob Boll

    2013-01-01

    was affected by the decomposition temperature. Based on the experimental data, a model was proposed to simulate the sulfation of KCl by different sulfate addition, and the simulation results were compared with pilot-scale experiments conducted in a bubbling fluidized bed reactor. The simulation results...... of ammonium sulfate addition and ferric sulfation addition compared favorably with the experimental results. However, the model for aluminum sulfate addition under-predicted significantly the high sulfation degree of KCl observed in the experiments, possibly because of an under-estimation of the decomposition......Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4. In the present study, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate...

  3. High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quartz, sulfur, and copper sulfate

    Science.gov (United States)

    Baumgartner, Stephan; Wolf, Martin; Skrabal, Peter; Bangerter, Felix; Heusser, Peter; Thurneysen, André; Wolf, Ursula

    2009-09-01

    Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10 c-30 c, n = 21, corresponding to iterative dilutions of 100-10-100-30), sulfur (13 x-30 x, n = 18, 10-13-10-30), and copper sulfate (11 c-30 c, n = 20, 100-11-100-30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations

  4. A Schiff base complex of Zn(II) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion.

    Science.gov (United States)

    Shamsipur, M; Yousefi, M; Hosseini, M; Ganjali, M R; Sharghi, H; Naeimi, H

    2001-07-01

    Novel polymeric membrane (PME) and coated graphite (CGE) sulfate-selective electrodes based on a recently synthesized Schiff base complex of Zn(II) were prepared. The electrodes reveal a Nernstian behavior over wide SO4(2-) ion concentration ranges (5.0 x 10(-5)-1.0 x 10(-1) M for PME and 1.0 x 10(-7)-1.0 x 10(-1) M for CGE) and very low detection limits (2.8 x 10(-5) M for PME and 8.5 x 10(-8) M for CGE). The potentiometric response is independent of the pH of the solution in the pH range 3.0-7.0. The electrodes manifest advantages of low resistance, very fast response, and, most importantly, good selectivities relative to a wide variety of other anions. In fact, the selectivity behavior of the proposed SO4(2) ion-selective electrodes shows a great improvement compared to the previously reported electrodes for sulfate ion. The electrodes can be used for at least 3 months without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of sulfate and barium ions and in the determination of iron in ferrous sulfate tablets.

  5. Effect of nitrate addition on the diversity and activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Sulfate-reducing prokaryotes (SRP) producing hydrogen sulfide cause severe problems like microbial corrosion, souring and plugging in seawater-injected oil production systems. Adding nitrate to the injection water is a possible strategy to control the activity of SRP by favoring the growth of both...

  6. Evaluation of changes in serum chemistry in association with feed withdrawal or high dose oral gavage with Dextran Sodium Sulfate (DSS) induced gut leakage in broiler chickens

    Science.gov (United States)

    Dextran sodium sulfate (DSS) has been shown to be effective at inducing enteric inflammation in broiler chickens, resulting in increased leakage of orally administered fluorescein isothiocyanate dextran to circulation. In a previous study, two doses of DSS (0.45g/dose) administered as oral gavage re...

  7. Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    2009-01-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs...

  8. Renal localization of heparan sulfate proteoglycan by immunohistochemistry.

    OpenAIRE

    Klein, D. J.; Oegema, T. R.; Eisenstein, R.; Furcht, L.; Michael, A. F.; Brown, D. M.

    1983-01-01

    Glomerular localization of heparan sulfate proteoglycan (HS-proteoglycan) has been studied immunohistochemically with a highly purified antiserum to bovine aorta HS-proteoglycan core protein. The specificity of the antiserum was enhanced by consecutive fibronectin and chondroitin sulfate-dermatan sulfate proteoglycan (CS-DS proteoglycan) affinity chromatography. The affinity-purified HS-proteoglycan antibody lacked cross-reactivity by enzyme-linked immunosorbent assays (ELISA) with CS-DS prot...

  9. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  10. Sulfated glycopeptide nanostructures for multipotent protein activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp , Samuel I. (NWU)

    2017-06-19

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.

  11. Effect of nitrate addition on prokaryotic diversity and the activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Adding nitrate to injection water is a possible strategy to control the activity of sulfate-reducing prokaryotes (SRP) in oil production system. To assess the effects of nitrate addition, prokaryotic diversity (Bacteria, Archaea, SRP) and SRP activity were studied in the production waters...... of a nitrate-treated and a non-treated system. Comparative analyses of clone libraries indicated that troublesome prokaryotes were enriched at the non-treated site represented by both sulfate- and sulfur-reducing prokaryotes within the Bacteria (Deltaproteobacteria, Desulfotomaculum spp.) and Archaea...... inhibited by nitrate addition. Visualization and quantification of the identified troublesome prokaryotes and potential competitors using the CARD-FISH technique will be performed on production water from both sites....

  12. Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-05-01

    Full Text Available Abstract Background Previously, we have reported the presence of highly sulfated dermatans in solitary ascidians from the orders Phlebobranchia (Phallusia nigra and Stolidobranchia (Halocynthia pyriformis and Styela plicata. Despite the identical disaccharide backbone, consisting of [→4IdoA(2Sβ-1→3GalNAcβ-1→], those polymers differ in the position of sulfation on the N-Acetyl galactosamine, which can occur at carbon 4 or 6. We have shown that position rather than degree of sulfation is important for heparin cofactor II activity. As a consequence, 2,4- and 2,6-sulfated dermatans have high and low heparin cofactor II activities, respectively. In the present study we extended the disaccharide analysis of ascidian dermatan sulfates to additional species of the orders Stolidobranchia (Herdmania pallida, Halocynthia roretzi and Phlebobranchia (Ciona intestinalis, aiming to investigate how sulfation evolved within Tunicata. In addition, we analysed how heparin cofactor II activity responds to dermatan sulfates containing different proportions of 2,6- or 2,4-disulfated units. Results Disaccharide analyses indicated a high content of disulfated disaccharide units in the dermatan sulfates from both orders. However, the degree of sulfation decreased from Stolidobranchia to Phlebobranchia. While 76% of the disaccharide units in dermatan sulfates from stolidobranch ascidians are disulfated, 53% of disulfated disaccharides are found in dermatan sulfates from phlebobranch ascidians. Besides this notable difference in the sulfation degree, dermatan sulfates from phlebobranch ascidians contain mainly 2,6-sulfated disaccharides whereas dermatan sulfate from the stolidobranch ascidians contain mostly 2,4-sulfated disaccharides, suggesting that the biosynthesis of dermatan sulfates might be differently regulated during tunicates evolution. Changes in the position of sulfation on N-acetylgalactosamine in the disaccharide [→4IdoA(2-Sulfateβ-1→3GalNAcβ-1

  13. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG

    2013-04-18

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property in the ultraviolet region which confirms and agrees well with former results. © 2013 Astro Ltd.

  14. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate

    National Research Council Canada - National Science Library

    Institute of Medicine (U.S.). Panel on Dietary Reference Intakes for Electrolytes and Water

    2005-01-01

    ... intake to the risk of high blood pressure and hypertension as well as other diseases and the amounts of water from beverages and foods needed to maintain hydration. In addition, since requirements for sulfur can be met by inorganic sulfate in the diets of animals, a review of the role in inorganic sulfur in the form of sulfate is included. The gro...

  15. Theoretical study on the reactivity of sulfate species with hydrocarbons

    Science.gov (United States)

    Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y.

    2008-01-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42 - are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42 - is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42 -. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels

  16. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  17. Resistance of different materials used in sewers systems:Polyvinyl chloride (PVC), polypropylene (PP) and High density polyethylene (HDPE), to sulfuric acid and sodium sulfate attack.

    OpenAIRE

    LASFAR Sara; MOUALLIF Ilias

    2014-01-01

    The behaviour of PVC, PP and HDPE used in sewer systems exposed to acid and sulfate solutions was investigated at 25°C and 40°C. Gravimetric characterization proves that PVC has a fickian behavior. It shows also, that PP has a non-fickian behavior, characterized by a rapid acceleration of water absorption, and the HDPE has a fickian behavior at 25°C, while it has a non-fickian behavior at 40°C, characterized by a weight loss after a certain aging period. The prolongation of th...

  18. Crystal structure of tris(piperidinium hydrogen sulfate sulfate

    Directory of Open Access Journals (Sweden)

    Tamara J. Lukianova

    2015-12-01

    Full Text Available In the title molecular salt, 3C5H12N+·HSO4−·SO42−, each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O—H...O hydrogen bond. The packing also features a number of N—H...O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen bonds.

  19. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  20. Heparan sulfate 6-O-sulfotransferase is essential for muscle development in zebrafish

    OpenAIRE

    Bink, R.J.; Habuchi, H; Lele, Z.; Dolk, E.; Joore, J.; Rauch, G.; Geisler, R.; Wilson, S.W.; Hertog, J. den; Kimata, K.; Zivkovic, D.

    2003-01-01

    Heparan sulfate proteoglycans function in development and disease. They consist of a core protein with attached heparan sulfate chains that are altered by a series of carbohydrate-modifying enzymes and sulfotransferases. Here, we report on the identification and characterization of a gene encoding zebrafish heparan sulfate 6-O-sulfotransferase (hs6st) that shows high homology to other heparan sulfate 6-O-sulfotransferases. When expressed as a fusion protein in cultured cells, the protein show...

  1. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  2. Using sulfate oxygen isotopes to quantify sulfate formation pathways in the atmosphere: Lessons learned and open questions

    Science.gov (United States)

    Alexander, B.

    2012-12-01

    The abundance of sulfate aerosol in the troposphere has implications for climate, air pollution, acid rain, and pH-dependent chemical reactions. The chemical formation mechanism of sulfate aerosol influences its abundance and its number and size distribution, with implications for both its direct and indirect climate impacts. Sulfate is mainly produced within the atmosphere by oxidation of its precursor, SO2. The oxygen isotopic composition (Δ17O = δ17O - 0.52 x δ18O) of sulfate (Δ17O(SO42-)) reflects the relative importance of different oxidants in the production of sulfate because the oxidants transfer unique oxygen isotope signatures to the oxidation product. Unlike δ18O, processes such as emissions, transport, and deposition do not directly impact the Δ17O value of sulfate. Comparison of observed and modeled Δ17O(SO42-) thus provides a unique means to assess a model's representation of the chemistry of sulfate formation. Large-scale models tend to produce reasonable agreement with observations of sulfate concentrations, but tend to overestimate observations of SO2. These models include gas-phase oxidation of SO2 by the hydroxyl radical, and in-cloud oxidation by hydrogen peroxide and ozone, while neglecting other, potentially important oxidation pathways. Comparison of modeled and observed Δ17O(SO42-) in the Arctic have shown that metal-catalyzed oxidation of SO2 in clouds is the dominant sulfate formation pathway in the northern mid- to high-latitudes during winter. Additional comparisons of modeled and observed Δ17O(SO42-) in the marine boundary layer (MBL) have enabled quantification of the role of sea salt aerosol for sulfate formation rates. These processes tend to increase sulfate formation rates while decreasing modeled concentrations of SO2, and tend to decrease the importance of sulfate formation in the gas-phase which is a prerequisite for new particle formation in the atmosphere. Halogen-containing oxidants such as HOBr have also been

  3. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    KAUST Repository

    Kirchheim, A. P.

    2011-02-21

    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C3A or 3CaO·Al2O 3) and Na-doped tricalcium aluminate (orthorhombic C3A or Na2Ca8Al6O18), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by 27Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C3A hydration during the early stages. There are differences in the hydration mechanism between the two types of C3A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C3A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C3A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping. © 2011 American Chemical Society.

  4. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments

    DEFF Research Database (Denmark)

    Habicht, K S; Canfield, D E

    1997-01-01

    Isotope fractionation during sulfate reduction by natural populations of sulfate-reducing bacteria was investigated in the cyanobacterial microbial mats of Solar Lake, Sinai and the sediments of Logten Lagoon sulfuretum, Denmark. Fractionation was measured at different sediment depths, sulfate...... concentrations, and incubation temperatures. Rates of sulfate reduction varied between 0.1 and 37 micromoles cm-3 d-1, with the highest rates among the highest ever reported from natural sediments. The depletion of 34S during dissimilatory sulfate reduction ranged from 16% to 42%, with the largest 34S...... by the natural populations of sulfate reducers and previous measurements from pure cultures. This was somewhat surprising given the extremely high rates of sulfate reduction in the experiments. Our results are explained if we conclude that the fractionation was mainly controlled by the specific rate of sulfate...

  5. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  6. Biological sulfate removal from gypsum contaminated construction and demolition debris.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Annachhatre, Ajit P; Esposito, Giovanni; van Hullebusch, Eric D; Lens, Piet N L

    2013-12-15

    Construction and demolition debris (CDD) contains high levels of sulfate that can cause detrimental environmental impacts when disposed without adequate treatment. In landfills, sulfate can be converted to hydrogen sulfide under anaerobic conditions. CDD can thus cause health impacts or odor problems to landfill employees and surrounding residents. Reduction of the sulfate content of CDD is an option to overcome these problems. This study aimed at developing a biological sulfate removal system to reduce the sulfate content of gypsum contaminated CDD in order to decrease the amount of solid waste, to improve the quality of CDD waste for recycling purposes and to recover sulfur from CDD. The treatment leached out the gypsum contained in CDD by water in a leaching column. The sulfate loaded leachate was then treated in a biological sulfate reducing Upflow Anaerobic Sludge Blanket (UASB) reactor to convert the sulfate to sulfide. The UASB reactor was operated at 23 ± 3 °C with a hydraulic retention time and upflow velocity of 15.5 h and 0.1 m h(-1), respectively while ethanol was added as electron donor at a final organic loading rate of 3.46 g COD L(-1) reactor d(-1). The CDD leachate had a pH of 8-9 and sulfate dissolution rates of 526.4 and 609.8 mg L(-1) d(-1) were achieved in CDD gypsum and CDD sand, respectively. Besides, it was observed that the gypsum dissolution was the rate limiting step for the biological treatment of CDD. The sulfate removal efficiency of the system stabilized at around 85%, enabling the reuse of the UASB effluent for the leaching step, proving the versatility of the bioreactor for practical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The ferrous ammonium sulfate solid system, as dosemeter for processes at low temperatures and high doses of gamma radiation; El sistema sulfato ferroso amoniacal solido, como dosimetro para procesos a bajas temperaturas y altas dosis de radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Juarez C, J.M.; Ramos B, S.; Negron M, A. [ICN-UNAM, 04510 Mexico D.F. (Mexico)

    2005-07-01

    This paper presents the results obtained from a study of the radiation induced oxidation of crystalline ferrous ammonium sulfate with gamma rays at 295 K, 263 K and 77 K and dose from 0 to 300 kGy. The radiation induced decomposition of ferrous ammonium sulfate has been studied by the dissolution of the irradiated salt in 0,8 N sulfuric acid. The main product is Fe{sup 3+} and molar concentration of ferric ion was determined spectrophotometrically in the UV region at 304 nm. The optical density values showed a linear dependence with dose, indicating that the data obtained might be used to create a calibrating curve. Color in irradiated salt changes from blue to green, yellow and orange according to the absorbed dose. The accuracy and the reproducibility of the system were tested. In addition, some other characteristics make possible the use of this system as a dosimeter, similar to Fricke chemical dosemeter, at low temperatures and high dose. (Author)

  8. Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments

    Science.gov (United States)

    Antler, Gilad; Turchyn, Alexandra V.; Herut, Barak; Davies, Alicia; Rennie, Victoria C. F.; Sivan, Orit

    2014-04-01

    We use multiple stable isotope measurements in two highly stratified estuaries located along the Mediterranean coast of Israel (the Yarqon and the Qishon) to explore the consumption of sulfate through the anaerobic oxidation of methane (sulfate-driven AOM). At both sites, pore fluid sulfate is rapidly consumed within the upper 15-20 cm. Although the pore fluid sulfate and dissolved inorganic carbon (DIC) concentration profiles change over a similar range with respect to depth, the sulfur and oxygen isotopes in the pore fluid sulfate and the carbon isotopes in the pore fluid DIC are fundamentally different. This pore fluid isotope geochemistry indicates that the microbial mechanism of sulfate reduction differs between the studied sites. We suggest that in the Yarqon estuary, sulfate is consumed entirely through AOM, whereas in the Qishon, both AOM and bacterial sulfate reduction through organic matter oxidation coexist. These results have implications for understanding the microbial mechanisms behind sulfate-driven AOM. Our data compilation from marine and marginal marine environments supports the conclusion that the intracellular pathways of sulfate reduction varies among environments with sulfate-driven AOM. The data can be used to elucidate new pathways in the cycling of methane and sulfate, and the findings are applicable to the broader marine environment.

  9. Sodium sulfate-induced corrosion of pure nickel and superalloy Udimet 700 in a high velocity burner rig at 900 C

    Science.gov (United States)

    Misra, A. K.

    1987-01-01

    Sodium sulfate-induced corrosion of pure nickel and a commercial nickel-base superalloy, Udimet 700 (U-700), were studied at 900 C in a Mach 0.3 burner rig with different Na levels in the combustor. The corrosion rate of Ni was independent of the Na level in the combustor and considerably lower than that measured in laboratory salt spray tests. The lower rates are associated with the deposition of only a small amount of Na2SO4 on the surface of the NiO scale. Corrosion of U-700 was observed to occur in two stages. During the first stage, the corrosion proceeds by reaction of Cr2O3 scale with the Na2SO4 and evaporation of the Na2CrO4 reaction product from the surface of the corroding sample. Cr depletion in the alloy occurs and small sulfide particles are formed in the Cr depletion zone. Extensive sulfidation occurs during the second state of corrosion, and a thick scale forms. The relationship between the corrosion rate of U-700 and the Na level in the combustor gives a good correlation in the range of 0.3 to 1.5 ppm by weight Na. Very low levels of Na in the combustor cause accelerated oxidation of U-700 without producing the typical hot corrosion morphology.

  10. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  11. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  12. p-Cresyl Sulfate

    Directory of Open Access Journals (Sweden)

    Tessa Gryp

    2017-01-01

    Full Text Available If chronic kidney disease (CKD is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden.

  13. Structure versus anticoagulant and antithrombotic actions of marine sulfated polysaccharides

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin

    2012-05-01

    Full Text Available Marine sulfated polysaccharides (MSP, such as sulfated fucans (SF, sulfated galactans (SG and glycosaminoglycans (GAG isolated from either algae or invertebrate animals, are highly anionic polysaccharides capable of interacting with certain cationic proteins, such as (co-factors of the coagulation cascade during clotting-inhibition processes. These molecular complexes between MSP and coagulation-related proteins might, at first glance, be assumed to be driven mostly by electrostatic interactions. However, a systematic comparison using several novel sulfated polysaccharides composed of repetitive oligosaccharides with clear sulfation patterns has shown that these molecular interactions are regulated essentially by the stereochemistry of the glycans (which depends on a conjunction of anomericity, monosaccharide, conformational preference, and glycosylation and sulfation sites, rather than just a simple consequence of their negative charge density (mainly the number of sulfate groups. Here, we present an overview of the structure-function relationships of MSP, correlating their structures with their potential anticoagulant and antithrombotic actions, since pathologies related to the cardiovascular system are one of the major causes of illness and mortality in the world.

  14. Methylmercury formation in a wetland mesocosm amended with sulfate.

    Science.gov (United States)

    Harmon, S M; King, J K; Gladden, J B; Chandler, G T; Newman, L A

    2004-01-15

    This study used an experimental model to evaluate methylmercury accumulation when the soil of a constructed wetland is amended with sulfate. The model was planted with Schoenoplectus californicus and designed to reduce wastestream metals and metal-related toxicity. The soil was varied during construction to provide a control and two sulfate treatments which were equally efficient at overall mercury and copper removal. After an initial stabilization period, methylmercury concentrations in porewater were up to three times higher in the sulfate-treated porewater (0.5-1.6 ng/L) than in the control (<0.02-0.5 ng/L). Mean percent methylmercury was 9.0% in the control with 18.5 and 16.6% in the low- and high-sulfate treatments, respectively. Methylmercury concentrations measured in mesocosm surface water did not reflect the differences between the control and the sulfate treatments that were noted in porewater. The mean bulk sediment methylmercury concentration in the top 6 cm of the low-sulfate treatment (2.33 ng/g) was significantly higher than other treatment means which ranged from 0.96 to 1.57 ng/g. Total mercury in sediment ranged from 20.8 to 33.4 ng/g, with no differences between treatments. Results suggest that the non-sulfate-amended control was equally effective in removing metals while keeping mercury methylation low.

  15. Evaluation of changes in serum chemistry in association with feed withdrawal or high dose oral gavage with dextran sodium sulfate- (DSS-) induced gut leakage in broiler chickens.

    Science.gov (United States)

    Kuttappan, V A; Vicuña, E A; Faulkner, O B; Huff, G R; Freeman, K A; Latorre, J D; Menconi, A; Tellez, G I; Hargis, B M; Bielke, L R

    2016-11-01

    Dextran sodium sulfate ( DSS: ) has been shown to be effective at inducing enteric inflammation in broiler chickens, resulting in increased leakage of orally administered fluorescein isothiocyanate dextran to circulation. In a previous study, 2 doses of DSS (0.45 g/dose) administered as oral gavage resulted in increased mucosal permeability. The main objective of the present study was to compare serum turbidity in control and DSS treated birds plus with feed restriction ( FR: ), and evaluate the associated serum chemistry. Three independent experiments were conducted with different combinations of treatment groups. In Experiment 1, control full-fed ( CON: ) and DSS full-fed ( FFD: ) with n = 15 birds/group were evaluated, Experiment 2 had groups (n = 15/group) CON, FFD, feed restriction ( FRS: for 34 h), and DSS with feed restriction ( FRD: ), and Experiment 3 (n = 15/group) had CON, FFD, and FRS (29 h FRS). All DSS treated birds received one or 2 doses of DSS by oral gavage (0.45 g/dose/bird). Results showed that, compared to CON group, there was an increase (P  0.05). Administration of DSS did not result in increase of serum enzymes such as alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase ( LDH: ), nonetheless, the FFD showed lower (P < 0.05) LDH level compared to CON in Experiment 2. Among the various serum chemistry parameters evaluated triglycerides had the highest positive correlation (r2 = 0.85; P < 0.05) with serum turbidity. DSS administration resulted in decreased serum protein levels, especially albumin. These results suggest that oral gavage with DSS in broiler chicks could result in changes to serum chemistry parameters which could be developed as potential marker/s for gut leakage. © 2016 Poultry Science Association Inc.

  16. Ultrasound promoted rapid and green synthesis of thiiranes from epoxides in water catalyzed by chitosan-silica sulfate nano hybrid (CSSNH) as a green, novel and highly proficient heterogeneous nano catalyst.

    Science.gov (United States)

    Behrouz, Somayeh; Soltani Rad, Mohammad Navid; Piltan, Mohammad Amin

    2018-01-01

    The synthesis and characterization of chitosan-silica sulfate nano hybrid (CSSNH) as a novel, green and highly efficient heterogeneous nano catalyst is described. The catalytic activity of this new biopolymeric nano catalyst was investigated in the ultrasonic assisted green synthesis of structurally diverse thiiranes from epoxides using thiourea in water at room temperature. CSSNH was characterized using some different microscopic and spectroscopic techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption isotherm, Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The green nature, cheapness, efficiency, ease of preparation, handling and reusability of this new catalyst makes this catalyst to be useful for green industrial processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sulfate decomposition by bacterial leaching

    Energy Technology Data Exchange (ETDEWEB)

    Deveci, N.; Delaloglu, C.G. [Istanbul Technical Univ. (Turkey)

    1995-04-01

    Sulfate disposal is the main problem of many industrial effluents, such as excess sulfuric acid, gypsum, coal desulfurization byproducts, acid-mine waters, and general metallurgical effluents. It has been established that sulfate present in wastes can be converted to elemental sulfur by bacterial mutualism. This study presents the results of an investigation of the industrial feasibility of utilizing a biological system capable of converting hydrous calcium sulfate (gypsum) to elemental sulfur. Gypsum, which was used in this study, is a byproduct of the fertilizer industry. The biological system is referred to as a bacterial mutualism, and involves Desulfovibrio desulfuricans for sulfate conversion and Chlorobium thiosulfatophilum for hydrogen sulfide conversion. Bacterial mutualism and utilization of sulfate were investigated by means of a two-stage anaerobic system. In the first stage, a gas purge system was used for sulfate conversion to sulfide, and it was found that maximum conversion is 34%. In the second stage, a static culture system was used for sulfide conversion to sulfur with a conversion of 92%. 14 refs., 5 tabs.

  18. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  19. Concentrated Collagen-Chondroitin Sulfate Scaffolds for Tissue Engineering Applications

    OpenAIRE

    Liang, Wan-Hsiang; Kienitz, Brian L.; Penick, Kitsie J.; Welter, Jean F.; Zawodzinski, Thomas A.; Baskaran, Harihara

    2010-01-01

    Collagen-chondroitin sulfate biomaterial scaffolds have been used in a number of tissue engineered products under development or in the clinics. In this paper, we describe a new approach based on centrifugation for obtaining highly concentrated yet porous collagen scaffolds. Water uptake, chondroitin sulfate retention, morphology, mechanical properties and tissue engineering potential of the concentrated scaffolds were investigated. Our results show that the new approach can lead to scaffolds...

  20. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Restaino, Odile Francesca, E-mail: odilefrancesca.restaino@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Finamore, Rosario, E-mail: rosario.finamore@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Diana, Paola, E-mail: paola.diana@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Marseglia, Mariacarmela, E-mail: marimars84@hotmail.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Vitiello, Mario, E-mail: mariovitiello.ita@gmail.com [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Casillo, Angela, E-mail: angela.casillo@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Bedini, Emiliano, E-mail: emiliano.bedini@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Parrilli, Michelangelo, E-mail: michelangelo.parrilli@unina.it [Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); and others

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  1. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  2. Modeling hydrologic controls on sulfur processes in sulfate-impacted wetland and stream sediments

    Science.gov (United States)

    Ng, G.-H. C.; Yourd, A. R.; Johnson, N. W.; Myrbo, A. E.

    2017-09-01

    Recent studies show sulfur redox processes in terrestrial settings are more important than previously considered, but much remains uncertain about how these processes respond to dynamic hydrologic conditions in natural field settings. We used field observations from a sulfate-impacted wetland and stream in the mining region of Minnesota (USA) to calibrate a reactive transport model and evaluate sulfur and coupled geochemical processes under contrasting hydrogeochemical scenarios. Simulations of different hydrological conditions showed that flux and chemistry differences between surface water and deeper groundwater strongly control hyporheic zone geochemical profiles. However, model results for the stream channel versus wetlands indicate sediment organic carbon content to be the more important driver of sulfate reduction rates. A complex nonlinear relationship between sulfate reduction rates and geochemical conditions is apparent from the model's higher sensitivity to sulfate concentrations in settings with higher organic content. Across all scenarios, simulated e- balance results unexpectedly showed that sulfate reduction dominates iron reduction, which is contrary to the traditional thermodynamic ladder but corroborates recent experimental findings by Hansel et al. (2015) that "cryptic" sulfur cycling could drive sulfate reduction in preference over iron reduction. Following the thermodynamic ladder, our models shows that high surface water sulfate slows methanogenesis in shallow sediments, but field observations suggest that sulfate reduction may not entirely suppress methane. Overall, our results show that sulfate reduction may serve as a major component making up and influencing terrestrial redox processes, with dynamic hyporheic fluxes controlling sulfate concentrations and reaction rates, especially in high organic content settings.

  3. Sources of Size Segregated Sulfate Aerosols in the Arctic Summer

    Science.gov (United States)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Abbatt, J.; Levasseur, M.

    2015-12-01

    Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (<0.49 μm) and 86% of SO2 were from biogenic sources. Concentrations of biogenic sulfate for fine aerosols, ranging from 18 to 625 ng/m3, were five times higher than total biogenic sulfate concentrations measured during Fall in the same region (Rempillo et al., 2011). A comparison of the isotope ratio for SO2 and fine

  4. Sulfate reduction in freshwater peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Oequist, M.

    1996-12-31

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  5. Enhanced Sulfate Management in HLW Glass Formulations VSL12R2540-1 REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States)

    2012-11-13

    The Low Activity Waste (LAW) tanks that are scheduled to provide the Hanford Tank Waste Treatment and Immobilization Plant (WTP) with waste feeds contain significant amounts of sulfate. The sulfate content in the LAW feeds is sufficiently high that a separate molten sulfate salt phase may form on top of the glass melt during the vitrification process unless suitable glass formulations are employed and sulfate levels are controlled. Since the formation of the salt phase is undesirable from many perspectives, mitigation approaches had to be developed. Considerable progress has been made and reported by the Vitreous State Laboratory (VSL) in enhancing sulfate incorporation into LAW glass melts and developing strategies to manage and mitigate the risks associated with high-sulfate feeds.

  6. Sulfate reduction in a hydrogen fed bioreactor operated at haloalkaline conditions.

    Science.gov (United States)

    Sousa, João A B; Plugge, Caroline M; Stams, Alfons J M; Bijmans, Martijn F M

    2015-01-01

    Biological sulfate reduction is used as a biotechnological process to treat sulfate rich streams. However, application of biological sulfate reduction at high pH and high salinity using H₂ was not thoroughly investigated before. In this work the sulfate reduction activity, biomass growth, microbial community and biomass aggregation were investigated in a H₂-fed gas lift bioreactor at haloalkaline conditions. The process was characterized by low sulfate reduction volumetric rates due to slow growth and lack of biomass aggregation. Apparently, the extreme conditions and absence of organic compounds prevented the formation of stable aggregates. The microbial community analysis revealed a low abundance of known haloalkaliphilic sulfate reducers and presence of a Tindallia sp. The identified archaea were related to Methanobacterium alcaliphilum and Methanocalculus sp. The biomass did not attach to metal sulfides, calcite and magnesite crystals. However, biofilm formation on the glass bioreactor walls showed that attachment to glass occurs.

  7. Chemical characteristic and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum (Chlorophyta).

    Science.gov (United States)

    Mao, Wenjun; Li, Hongyan; Li, Yi; Zhang, Huijuan; Qi, Xiaohui; Sun, Haihong; Chen, Yin; Guo, Shoudong

    2009-01-01

    A polysaccharide was isolated from marine green algae Monostroma latissimum, and its chemical characteristic and anticoagulant activity were investigated. The results demonstrated that the polysaccharide was high rhamnose-containing sulfated polysaccharide, and was mainly composed of 1,2-linked l-rhamnose residues with sulfate groups substituted at positions C-3 and/or C-4. The sulfated polysaccharide exhibited high anticoagulant activities by assays of the activated partial thromboplastin time (APTT) and thrombin time (TT). The anticoagulant property of the sulfated polysaccharide was mainly attributed to powerful potentiation thrombin by heparin cofactor II.

  8. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  9. Heparan sulfate proteoglycans made by different basement-membrane-producing tumors have immunological and structural similarities

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R; Hassell, J R

    1985-01-01

    Using immunological assays, we determined the relationship between the heparan sulfate proteoglycans produced by two different murine basement-membrane-producing tumors, i.e., the mouse Engelbreth-Holm-Swarm (EHS) tumor and the L2 rat yolk-sac tumor. Antibodies prepared against the heparan sulfat...... an immunologically and structurally similar type of high-molecular-weight heparan sulfate proteoglycan which subsequently becomes incorporated into basement-membrane-like material....

  10. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  11. Chiral Crystallization of Ethylenediamine Sulfate

    Science.gov (United States)

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  12. Benzene Oxidation Coupled to Sulfate Reduction

    OpenAIRE

    Lovley, D. R.; Coates, J D; Woodward, J. C.; Phillips, E

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to 1 (mu)M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [(sup14)C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as (sup14)CO(inf2). Molybdate, an inhibitor of sulfate r...

  13. The specificity of interactions between proteins and sulfated polysaccharides

    Directory of Open Access Journals (Sweden)

    Mulloy Barbara

    2005-01-01

    Full Text Available Sulfated polysaccharides are capable of binding with proteins at several levels of specificity. As highly acidic macromolecules, they can bind non-specifically to any basic patch on a protein surface at low ionic strength, and such interactions are not likely to be physiologically significant. On the other hand, several systems have been identified in which very specific substructures of sulfated polysaccharides confer high affinity for particular proteins; the best-known example of this is the pentasaccharide in heparin with high affinity for antithrombin, but other examples may be taken from the study of marine invertebrates: the importance of the fine structure of dermatan sulfate (DS to its interaction with heparin cofactor II (HCII, and the involvement of sea urchin egg-jelly fucans in species specific fertilization. A third, intermediate, kind of specific interaction is described for the cell-surface glycosaminoglycan heparan sulfate (HS, in which patterns of sulfate substitution can show differential affinities for cytokines, growth factors, and morphogens at cell surfaces and in the intracellular matrix. This complex interplay of proteins and glycans is capable of influencing the diffusion of such proteins through tissue, as well as modulating cellular responses to them.

  14. Sulfate resistance of nanosilica contained Portland cement mortars

    Science.gov (United States)

    Batilov, Iani B.

    Soils, sea water and ground water high in sulfates are commonly encountered hostile environments that can attack the structure of concrete via chemical and physical mechanisms which can lead to costly repairs or replacement. Sulfate attack is a slow acting deteriorative phenomenon that can result in cracking, spalling, expansion, increased permeability, paste-to-aggregate bond loss, paste softening, strength loss, and ultimately, progressive failure of concrete. In the presented research study, Portland cement (PC) mortars containing 1.5% to 6.0% nanosilica (nS) cement replacement by weight were tested for sulfate resistance through full submersion in sodium sulfate to simulate external sulfate attack. Mortars with comparable levels of cement replacement were also prepared with microsilica (mS). Three cement types were chosen to explore nS' effectiveness to reduce sulfate expansion, when paired with cements of varying tricalcium aluminate (C3A) content and Blaine fineness, and compare it to that of mS. Mortars were also made with combined cement replacement of equal parts nS and mS to identify if they were mutually compatible and beneficial towards sulfate resistance. Besides sulfate attack expansion of mortar bars, the testing program included investigations into transport and microstructure properties via water absorption, sulfate ion permeability, porosimetry, SEM with EDS, laser diffraction, compressive strength, and heat of hydration. Expansion measurements indicated that mS replacement mortars outperformed both powder form nS, and nS/mS combined replacement mixtures. A negative effect of the dry nS powder replacement attributed to agglomeration of its nanoparticles during mixing negated the expected superior filler, paste densification, and pozzolanic activity of the nanomaterial. Agglomerated nS was identified as the root cause behind poor performance of nS in comparison to mS for all cement types, and the control when paired with a low C3A sulfate resistant

  15. Sulfate reduction and methanogenesis in marine sediments

    Science.gov (United States)

    Oremland, R. S.; Taylor, B. F.

    1978-01-01

    Methanogenesis and sulfate-reduction were followed in laboratory incubations of sediments taken from tropical seagrass beds. Methanogenesis and sulfate-reduction occurred simultaneously in sediments incubated under N2, thereby indicating that the two processes are not mutually exclusive. Sediments incubated under an atmosphere of H2 developed negative pressures due to the oxidation of H2 by sulfate-respiring bacteria. H2 also stimulated methanogenesis, but methanogenic bacteria could not compete for H2 with the sulfate-respiring bacteria.

  16. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kijjanapanich, Pimluck, E-mail: som_cheng00@hotmail.com [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Do, Anh Tien [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Annachhatre, Ajit P. [Environmental Engineering and Management, Asian Institute of Technology, PO Box 4, Klongluang, Pathumthani 12120 (Thailand); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino (Italy); Yeh, Daniel H. [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Lens, Piet N.L. [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands)

    2014-03-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L{sup −1}) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L{sup −1} did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems.

  17. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a...

  18. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  19. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  20. Heparan sulfate proteoglycans in glomerular inflammation.

    NARCIS (Netherlands)

    Rops, A.L.; Vlag, J. van der; Lensen, J.F.M.; Wijnhoven, T.J.M.; Heuvel, L.P.W.J. van den; Kuppevelt, A.H.M.S.M. van; Berden, J.H.M.

    2004-01-01

    Heparan sulfate proteoglycans (HSPGs) are glycoproteins consisting of a core protein to which linear heparan sulfate side chains are covalently attached. These heparan sulfate side chains can be modified at different positions by several enzymes, which include N-deacetylases, N- and

  1. 21 CFR 184.1461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture of...

  2. 21 CFR 582.5461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  3. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...

  4. Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation.

    Science.gov (United States)

    Lee, Wontae; Westerhoff, Paul

    2006-12-01

    Coagulation of three surface waters was conducted with aluminum salt and/or cationic polymer to assess dissolved organic nitrogen (DON) removal. Coagulation with aluminum sulfate removed equal or slightly lower amounts of DON as compared to dissolved organic carbon (DOC). At aluminum sulfate dosages up to 5mg per mg DOC, the cationic polymer improved DON removal by an additional 15% to 20% over aluminum sulfate alone. At very high aluminum sulfate dosages (>8 mg aluminum sulfate per mg DOC), however, the cationic polymer addition negligibly increased DON removal. Molecular weight fractionation before and after coagulation experiments indicated that cationic polymer addition can increase the removal of all molecular weight fractions of DON with the highest molecular weight fraction (>10,000 Da) being preferentially removed. Results indicated that the DON added as part of the cationic polymer was almost completely removed at optimum aluminum sulfate and polymer doses.

  5. Structure-Activity Relationships of Bioengineered Heparin/Heparan Sulfates Produced in Different Bioreactors

    Directory of Open Access Journals (Sweden)

    Ha Na Kim

    2017-05-01

    Full Text Available Heparin and heparan sulfate are structurally-related carbohydrates with therapeutic applications in anticoagulation, drug delivery, and regenerative medicine. This study explored the effect of different bioreactor conditions on the production of heparin/heparan sulfate chains via the recombinant expression of serglycin in mammalian cells. Tissue culture flasks and continuously-stirred tank reactors promoted the production of serglycin decorated with heparin/heparan sulfate, as well as chondroitin sulfate, while the serglycin secreted by cells in the tissue culture flasks produced more highly-sulfated heparin/heparan sulfate chains. The serglycin produced in tissue culture flasks was effective in binding and signaling fibroblast growth factor 2, indicating the utility of this molecule in drug delivery and regenerative medicine applications in addition to its well-known anticoagulant activity.

  6. Sulfate Reduction at Low Ph To Remediate Acid Mine Drainage

    NARCIS (Netherlands)

    Sánchez-Andrea, I.; Sanz, J.L.; Bijmans, M.F.M.; Stams, A.J.M.

    2014-01-01

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities,

  7. Biological sulfate removal from construction and demolition debris leachate: effect of bioreactor configuration.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P; Esposito, Giovanni; Yeh, Daniel H; Lens, Piet N L

    2014-03-30

    Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75-85% was achieved at a hydraulic retention time (HRT) of 15.5h. A high calcium concentration up to 1,000 mg L(-1) did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Aluminium sulfate as coagulant for highly polluted cork processing wastewater: Evaluation of settleability parameters and design of a clarifier-thickener unit.

    Science.gov (United States)

    González, Teresa; Domínguez, Joaquín R; Beltrán-Heredia, Jesús; García, Héctor M; Sanchez-Lavado, F

    2007-09-05

    This is the second part of a master project on the chemistry of aluminium as coagulant in the treatment of highly polluted cork-process-wastewater. The main aim of this second part was to determine the influence of the operating conditions on the system's settleability parameters. It is well known that it is just as important to achieve good settleability parameters in the physico-chemical treatment of wastewaters as it is to attain a high level of decontamination. These parameters will determine the dimensions of the required equipment, and hence the costs of the installation. This part of the study therefore analyzes the influence of the different operating variables on the following settleability parameters: sediment volumetric percentage, settling velocity, sludge volume index and total suspended solids just after mixture with the coagulant. The ranges used for the experimental variables were: coagulant dose (83-166 mgL(-1) of Al(3+)), coagulation mixing time (5-30 min), stirring rate (60-300 rpm), contamination level of the wastewater (Wastewater II COD approximately 2000 mg O(2) L(-1), Wastewater III COD approximately 3000 mg O(2) L(-1)), and pH (5-11). The optimal conditions found for the settling process were not the same as those that had been determined for the organic matter removal. In this case the optimal conditions were: coagulation mixing time (30 min), stirring rate (60 rpm), coagulant dose (83 mgL(-1) of Al(3+)) and pH (7-9). Finally, the Talmadge-Fitch method is used to apply the results to the design of a clarifier-thickener unit to treat 2m(3)h(-1) of wastewater. The required minimum area of the unit would be 4.11 m(2).

  9. Kinetics of the direct sulfation of limestone at the initial stage of crystal growth of the solid product

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2011-01-01

    The direct sulfation of limestone was studied in a quartz bench scale fixed‐bed reactor with the technique of data deconvolution. The obtained results show that the direct sulfation of limestone has a two‐period kinetic behavior: a short initial sulfation period with high but fast decreasing...... such as SO2, O2, and CO2 and the temperature. The sulfation process in the initial stage of the period with product crystal growth can be described by the combination of the sulfation reaction at the gas–solid interface, diffusion of the product ions toward the product crystal grains, diffusion of carbonate...

  10. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea RID A-8182-2008

    DEFF Research Database (Denmark)

    Leloup, Julie; Loy, Alexander; Knab, Nina J.

    2007-01-01

    branching sequences which might represent Gram-positive spore-forming sulfate- and/or sulfite-reducing microorganisms. We thus hypothesize that terminal carbon mineralization in surface sediments of the Black Sea is largely due to the sulfate reduction activity of previously hidden SRM. Although these novel......The Black Sea, with its highly sulfidic water column, is the largest anoxic basin in the world. Within its sediments, the mineralization of organic matter occurs essentially through sulfate reduction and methanogenesis. In this study, the sulfate-reducing community was investigated in order...... SRM were also abundant in sulfate-poor, methanogenic areas of the Black Sea sediment, their activities and possibly very versatile metabolic capabilities remain subject of further study....

  11. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.

    Science.gov (United States)

    Baldwin, Darren S; Mitchell, Alison

    2012-03-15

    The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide--the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle. Crown Copyright © 2011. Published by Elsevier Ltd. All

  12. Sulfation of melatonin: enzymatic characterization, differences of organs, species and genders, and bioactivity variation.

    Science.gov (United States)

    Tian, Xiangge; Huo, Xiaokui; Dong, Peipei; Wu, Baojian; Wang, Xiaobo; Wang, Chao; Liu, Kexin; Ma, Xiaochi

    2015-04-15

    Exogenous melatonin (Mel) is widely used in clinic for multiple therapeutic purposes. In metabolism pathways of Mel, 6-hydroxymelatonin-sulfate (S-O-Mel) and N-acetylserotonin sulfate (S-NAS) are the most abundant metabolites account for over 90% of total Mel metabolites in humans, indicating that sulfation plays an important role in reflecting the functions and clearance of Mel in vivo. In the present study, we characterized Mel sulfation using various human organ cytosols (liver, lung, kidney, small intestine and brain), liver cytosols from five different animal species, and cDNA-expressed human sulfotransferase (SULT) for the first time. Our results demonstrated that liver, lung, kidney and small intestine of humans had high catalytic efficiency for Mel sulfation, however, brain contained a very low reaction rate. Interestingly, organ cytosols prepared from females exhibited higher sulfation activity than those of males. SULT isoforms 1A1, 1A2, 1A3, 1B1 and 1E1 exhibited metabolic activities toward Mel. According to kinetic parameters (Km and Vmax), chemical inhibition, correlation analysis, molecular docking and sulfation assays with recombinant human SULTs isoforms, SULT1A1 was determined as the major enzyme responsible for Mel sulfation. Furthermore, considerable species differences in Mel sulfation were observed, and the total intrinsic clearance rate of Mel sulfation was as follows: monkey>rat>dog>human>pig>mouse. Additionally, the anti-inflammatory effects of Mel and its sulfated metabolites were evaluated by inhibiting nitric oxide (NO) production in RAW264.7 cells, and S-O-Mel as a bioactive form, exhibited potent bioactivity. Our investigation provided a global view of the enzyme-dependent sulfation of Mel that can guide biomedical research on Mel. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Potential of nitrate addition to control the activity of sulfate-reducing prokaryotes in high-temperature oil production systems - a comparative study on a nitrate-treated and an untreated system

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. Adding nitrate to the injection water is applied to control SRP activity by favoring the growth of heterotrophic, nitrate-reducing bacteria (h......NRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Microbial diversity, abundance of Bacteria, Archaea and sulfate-reducing prokaryotes (SRP) and the potential activity of SRP were studied in production water samples from a nitrate-treated and an untreated system. The reservoirs and the produced water...... share similar physicochemical characteristics. At both sites, Archaea and Archaeoglobus-related SRP dominated the total prokaryotic and the sulfate-reducing community, respectively. It was however indicated from clone libraries and the quantification of 16S rRNA and dsrAB gene copies that Archaeoglobus...

  14. COMPARISON OF UASB AND FLUIDIZED-BED REACTORS FOR SULFATE REDUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Bertolino

    2015-03-01

    Full Text Available Abstract Reactor hydrodynamics is important for sulfidogenesis because sulfate reduction bacteria (SRB do not granulate easily. In this work, the sulfate reduction performance of two continuous anaerobic bioreactors was investigated: (i an upflow anaerobic sludge blanket (UASB reactor and (ii a fluidized bed reactor (FBR. Organic loading, sulfate reduction, and COD removal were the main parameters monitored during lactate and glycerol degradation. The UASB reactor with biomass recirculation showed a specific sulfate reduction rate of 0.089±0.014 g.gSSV-1.d-1 (89% reduction, whereas values twice as high were achieved in the FBR treating either lactate (0.200±0.017 g.gSSV-1.d-1 or glycerol (0.178±0.010 g.gSSV-1.d-1. Sulfate reduction with pure glycerol produced a smaller residual COD (1700 mg.L-1 than that produced with lactate (2500 mg.L-1 at the same COD.sulfate-1 mass ratio. It was estimated that 50% of glycerol degradation was due to sulfate reduction and 50% to fermentation, which was supported by the presence of butyrate in the FBR effluent. The UASB reactor was unable to produce effluents with sulfate concentrations below 250 mg.L-1 due to poor mixing conditions, whereas the FBR consistently ensured residual sulfate concentrations below such a value.

  15. Tillage and water management for riceland productivity in acid sulfate soils of the Mekong delta, Vietnam.

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    1997-01-01

    Acid sulfate soils are characterized by low pH and high concentrations of aluminum, sulfate, iron and hydrogen sulfide. Removal of at least part of these substances is a prerequisite for land use, at least in severely acid soils. In this study, the effectiveness of harrowing and flushing with

  16. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  17. Metodologia analítica para a determinação de sulfato em vinhoto When sulfate is present in high concentrations, it acts as an inhibitor in the production of methane (biogas formation in anaerobic biodigestion processes

    Directory of Open Access Journals (Sweden)

    Sílvio Miranda Prada

    1998-06-01

    Full Text Available In this way it is very important to know the sulfate concentration in vinasse samples before to make the biodigestor design. A previous developed and indirect method (Anal. Chim. Acta. 1996, 329, 197, was used to determine sulfate in samples of vinasse, after previous treatments, done in order to eliminate organic matter with hydrogen peroxide 30% and concentrated nitric acid mixture (3:1, under heating. Interferent cationic ions were isolated by using ion exchange columns. The results obtained for some samples from Araraquara and Penápolis are here presented. The phosphate concentration was also determined.

  18. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.

    Science.gov (United States)

    Scheller, Silvan; Yu, Hang; Chadwick, Grayson L; McGlynn, Shawn E; Orphan, Victoria J

    2016-02-12

    The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane. Copyright © 2016, American Association for the Advancement of Science.

  19. Fabrication of sulfated nanofilter membrane based on carboxymethyl cellulose.

    Science.gov (United States)

    Gasemloo, Sima; Sohrabi, Mahmoud Reza; Khosravi, Morteza; Dastmalchi, Siavoush; Gharbani, Parvin

    2016-12-01

    The aim of this study is to prepare sulfated carboxymethyl cellulose (SCMC) nanofilter membrane using sulfur trioxide pyridine complex (SO3/pyridine) as sulfating agent and glutaraldehyde (GA) as a crosslinking agent onto polysulfone supporting membrane. The prepared nanofilter was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy and zeta potential. To evaluate the prepared nanofilter, various amounts of SO3/Pyridine were used and efficiency of them was investigated. The results showed that increasing the sulfate groups raised the flux from 13.87 to 29.54 L/(m2·h-1), whereas percentage rejection was increased during the separation of salt aqueous solutions and then decreased. It can be concluded that, SCMC-GA-2 (with molar ratio of SO3/pyridine to CMC of 1) shows high separation efficiency in acidic conditions and improves the hydrophilicity and charge density of the filter.

  20. Relationship between microbial sulfate reduction rates and sulfur isotopic fractionation

    Science.gov (United States)

    Matsu'Ura, F.

    2009-12-01

    values of three incubation temperatures were 9.9, 11.0, and 9.7, for 25 °C, 30°C, and 37°C, respectively. These results were different from standard model and Canfield et al. (2006). I could not find the clear correlation between ∂34S values and incubation temperatures in this experiment. The measured fractionation values during the incubation varied with incubation stage. The fractionation values clearly increased with incubation time at every temperature, and at 25°C ∂34S value was 3.6 at the 72h and it increased to 7.9 at 144 hours. This indicated the difference of sulfate reduction rate due to the growth phase of SRB. In the early logarithmic growth phase, metabolic activity of SRB is high and sulfate reduction rate is fast. In contrast at the stationary phase, SRB stop growing and sulfate reduction rate get slower. My result suggested that the sulfur isotopic fractionation is controlled by growth phase of SRB and lighter sulfide would be produced by the stationary phase or half-dormant SRB in natural environment.

  1. Aluminum toxicity in acid sulfate soil alleviated with biogenic liming ...

    African Journals Online (AJOL)

    Low crop yield from acid sulfate soil was caused by high concentrations of aluminum and iron in soil. Aluminum ion which cause root injury at root region inhibits the uptake of the nutrients by the root and lead to nutrient deficiency. Ground magnesium limestones can be applied to overcome this problem but incurred more ...

  2. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer.

    Science.gov (United States)

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-11-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ(13) CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed ((34) ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. © 2014 The Authors. Geobiology Published by John Wiley & Sons Ltd.

  3. Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate.

    Science.gov (United States)

    Saber, Ali; Tafazzoli, Milad; Mortazavian, Soroosh; James, David E

    2017-11-24

    Two common wetland plants, Pampas Grass (Cortaderia selloana) and Lucky Bamboo (Dracaena sanderiana), were used in hydroponic cultivation systems for the treatment of simulated high-sulfate wastewaters. Plants in initial experiments at pH 7.0 removed sulfate more efficiently compared to the same experimental conditions at pH 6.0. Results at sulfate concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L during three consecutive 7-day treatment periods with 1-day rest intervals, showed decreasing trends of both removal efficiencies and uptake rates with increasing sulfate concentrations from the first to the second to the third 7-day treatment periods. Removed sulfate masses per unit dry plant mass, calculated after 23 days, showed highest removal capacity at 600 mg/L sulfate for both plants. A Langmuir-type isotherm best described sulfate uptake capacity of both plants. Kinetic studies showed that compared to pseudo first-order kinetics, pseudo-second order kinetic models slightly better described sulfate uptake rates by both plants. The Elovich kinetic model showed faster rates of attaining equilibrium at low sulfate concentrations for both plants. The dimensionless Elovich model showed that about 80% of sulfate uptake occurred during the first four days' contact time. Application of three 4-day contact times with 2-day rest intervals at high sulfate concentrations resulted in slightly higher uptakes compared to three 7-day contact times with 1-day rest intervals, indicating that pilot-plant scale treatment systems could be sized with shorter contact times and longer rest-intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate-E domains highly up-regulated in ovarian cancer and involved in vascular endothelial growth factor binding.

    NARCIS (Netherlands)

    Dam, G.B. ten; Westerlo, E.M. van de; Purushothaman, A.; Stan, R.V.; Bulten, J.; Sweep, C.G.J.; Massuger, L.F.A.G.; Sugahara, K.; Kuppevelt, A.H.M.S.M. van

    2007-01-01

    Chondroitin sulfate (CS) is abundantly present in the tumor stroma, and tumor-specific CS modifications might be potential targets to influence tumor development. We applied the phage display technology to select antibodies that identify these tumor-specific CS modifications. Antibody GD3G7 was

  5. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  6. Twinned low-temperature structures of tris(ethylenediamine)zinc(II) sulfate and tris(ethylenediamine)copper(II) sulfate

    NARCIS (Netherlands)

    Lutz, M.

    2010-01-01

    Tris(ethylenediamine)zinc(II) sulfate, [Zn(C2H8N2)3]SO4, (I), undergoes a reversible solid–solid phase transition during cooling, accompanied by a lowering of the symmetry from high-trigonal P31c to low-trigonal P3 and by merohedral twinning. The molecular symmetries of the cation and anion change

  7. Bacterial PerO Permeases Transport Sulfate and Related Oxyanions.

    Science.gov (United States)

    Hoffmann, Marie-Christine; Pfänder, Yvonne; Tintel, Marc; Masepohl, Bernd

    2017-07-15

    Rhodobacter capsulatus synthesizes the high-affinity ABC transporters CysTWA and ModABC to specifically import the chemically related oxyanions sulfate and molybdate, respectively. In addition, R. capsulatus has the low-affinity permease PerO acting as a general oxyanion transporter, whose elimination increases tolerance to molybdate and tungstate. Although PerO-like permeases are widespread in bacteria, their function has not been examined in any other species to date. Here, we present evidence that PerO permeases from the alphaproteobacteria Agrobacterium tumefaciens , Dinoroseobacter shibae , Rhodobacter sphaeroides , and Sinorhizobium meliloti and the gammaproteobacterium Pseudomonas stutzeri functionally substitute for R. capsulatus PerO in sulfate uptake and sulfate-dependent growth, as shown by assimilation of radioactively labeled sulfate and heterologous complementation. Disruption of perO genes in A. tumefaciens , R. sphaeroides , and S. meliloti increased tolerance to tungstate and, in the case of R. sphaeroides , to molybdate, suggesting that heterometal oxyanions are common substrates of PerO permeases. This study supports the view that bacterial PerO permeases typically transport sulfate and related oxyanions and, hence, form a functionally conserved permease family. IMPORTANCE Despite the widespread distribution of PerO-like permeases in bacteria, our knowledge about PerO function until now was limited to one species, Rhodobacter capsulatus In this study, we showed that PerO proteins from diverse bacteria are functionally similar to the R. capsulatus prototype, suggesting that PerO permeases form a conserved family whose members transport sulfate and related oxyanions. Copyright © 2017 American Society for Microbiology.

  8. Mercury body burdens in Gambusia holbrooki and Erimyzon sucetta in a wetland mesocosm amended with sulfate.

    Science.gov (United States)

    Harmon, S M; King, J K; Gladden, J B; Chandler, G T; Newman, L A

    2005-04-01

    This study used an experimental model of a constructed wetland to evaluate the risk of mercury methylation when the soil is amended with sulfate. The model was planted with Schoenoplectus californicus and designed to reduce copper, mercury, and metal-related toxicity in a wastestream. The sediments of the model were varied during construction to provide a control and two levels of sulfate treatment, thus allowing characterization of sulfate's effect on mercury methylation and bioaccumulation in periphyton and two species of fish--eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta). After one year in the experimental model, mean dry-weight normalized total mercury concentrations in mosquitofish from the non-sulfate treated controls (374+/-77 ng/g) and the reference location (233+/-17 ng/g) were significantly lower than those from the low and high sulfate treatments (520+/-73 and 613+/-80 ng/g, respectively). For lake chubsucker, mean total mercury concentration in fish from the high sulfate treatment (276+/-63 ng/g) was significantly elevated over that observed in the control (109+/-47 ng/g), the low sulfate treatment (122+/-42 ng/g), and the reference population (41+/-2 ng/g). Mercury in periphyton was mostly inorganic as methylmercury ranged from 6.6 ng/g (dry weight) in the control to 9.8 ng/g in the high sulfate treatment, while total mercury concentrations ranged from 1147 ng/g in the control to a high of 1297 ng/g in the low sulfate treatment. Fish methylmercury bioaccumulation factors from sediment ranged from 52 to 390 and from 495 to 3059 for water. These results suggest that sulfate treatments add a factor of risk due to elevated production of methylmercury in sediment and porewater which biomagnified into small fish, and may potentially increase through the food web.

  9. Combining ability estimates of sulfate uptake efficiency in maize.

    Science.gov (United States)

    Motto, M; Saccomani, M; Cacco, G

    1982-03-01

    Plant root nutrient uptake efficiency may be expressed by the kinetic parameters, Vmax and Km, as well as by normal enzymatic reactions. These parameters are apparently useful indices of the level of adaptation of genotypes to the nutrient conditions in the soil. Moreover, sulfate uptake capacity has been considered a valuable index for selecting superior hybrid characterized by both high grain yield and efficiency in nutrient uptake. Therefore, the purpose of this research was to determine combining ability for sulfate uptake, in a diallel series of maize hybrids among five inbreds. Wide differences among the 20 single crosses were obtained for Vmax and Km. The general and specific combining ability mean squares were significant and important for each trait, indicating the presence of considerable amount of both additive and nonadditive gene effects in the control of sulfate uptake. In addition, maternal and nonmaternal components of F1 reciprocal variation showed sizeable effects on all the traits considered. A relatively high correlation was also detected between Vmax and Km. However, both traits displayed enough variation to suggest that simultaneous improvement of both Vmax and Km should be feasible. A further noteworthy finding in this study was the identification of one inbred line, which was the best overall parent for improving both affinity and velocity strategies of sulfate uptake.

  10. Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, P. A.; Vaishnav, S.; Forder, S. D.; Scrimshire, A.; Jaganathan, B.; Rohini, J.; Marra, J. C.; Fox, K. M.; Pierce, E. M.; Workman, P.; Vienna, J. D.

    2017-02-01

    The capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO42-) and total cation field strength index of the glass, Σ(z/a2), with a high goodness-of-fit (R2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λth (R2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R2 ≈ 0.919), are used. Results support the application of these models, and in particular Σ(z/a2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.

  11. Interactions between chloride and sulfate or silica removals using an advanced lime-aluminum softening process.

    Science.gov (United States)

    Abdel-Wahab, Ahmed; Batchelor, Bill

    2006-12-01

    An advanced softening process called the ultra-high lime with aluminum process (UHLA) was initiated in this research. The UHLA process has the ability to remove sulfate, silica, and chloride from waters such as recycled cooling water and desalination brines. Furthermore, it can remove other scale-forming materials, such as calcium, magnesium, carbonate, and phosphate. The purpose of this paper is to study the interactions among chloride, sulfate, and silica in the UHLA process. Results of equilibrium experiments indicated that sulfate is preferentially removed over chloride. Final chloride concentration increased with increasing initial sulfate concentration. However, initial chloride concentration was found to have negligible effect on final sulfate concentration. Silica was found to have only a small effect on chloride removal.

  12. Plasma indoxyl sulfate concentration predicts progression of chronic kidney disease in dogs and cats.

    Science.gov (United States)

    Chen, C N; Chou, C C; Tsai, P S J; Lee, Y J

    2018-02-01

    Indoxyl sulfate is a protein-bound uremic toxin that increases as the severity of impaired renal function increases in humans, laboratory animals, dogs and cats. An elevation of indoxyl sulfate is related to prognosis among people with chronic kidney disease. However, whether indoxyl sulfate is able to predict the progression of chronic kidney disease in dogs and cats has not been previously studied. In the present study, 58 cats and 36 dogs with chronic kidney disease were enrolled. Plasma indoxyl sulfate was measured by high performance liquid chromatography. Renal progression was defined as an increase by one International Renal Interest Society (IRIS) stage and/or a rise in serum creatinine concentration of 0.5mg/dL during the same stage within a 3-month period. Compared with the non-progression groups, across different stages of renal failure, the baseline plasma indoxyl sulfate concentration was increased in the renal progression group (P<0.05), especially for IRIS stages 2 and 3 animals. The area under the receiver operator characteristic curves of indoxyl sulfate, when predicting renal progression, was above 0.75 for both dogs and cats. Indoxyl sulfate concentrations were also correlated with the increase of blood urea nitrogen, serum creatinine, and phosphate and the decrease of hematocrit among cats; while in dogs, concentrations were only correlated with the increase of phosphate concentrations. Indoxyl sulfate served as a biomarker of progression risk in dogs and cats with chronic kidney disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded genetic code.

    Science.gov (United States)

    Liu, Chang C; Cellitti, Susan E; Geierstanger, Bernhard H; Schultz, Peter G

    2009-01-01

    Tyrosine sulfation is an important post-translational modification that occurs in higher eukaryotes and is involved in cell-cell communication, viral entry and adhesion. We describe a protocol for the heterologous expression of selectively tyrosine-sulfated proteins in Escherichia coli through the use of an expanded genetic code that co-translationally inserts sulfotyrosine in response to the amber nonsense codon, TAG. The components required for this process, an orthogonal aminoacyl-tRNA synthetase specific for sulfotyrosine and its cognate orthogonal tRNA that recognizes the amber codon, are encoded on the plasmid pSUPAR6-L3-3SY, and their use, along with a simple chemical synthesis of sulfotyrosine, are outlined in this protocol. Specifically, the gene for a protein of interest is mutated such that the codon corresponding to the desired location of tyrosine sulfate is TAG. Co-transformation of an expression vector containing this gene and pSUPAR6-L3-3SY into an appropriate E. coli strain allows the overexpression of the site-specifically sulfated protein with high efficiency and fidelity. The resulting protein contains tyrosine sulfate at any location specified by a TAG codon, making this method significantly simpler and more versatile than competing methods such as in vitro enzymatic sulfation, chemical sulfation and peptide synthesis. Once the proper expression vectors are cloned, our protocol should allow the production of the desired sulfated proteins in <1 week.

  14. Growth and activity of ANME clades with different sulfate and sulfide concentrations in presence of methane

    Directory of Open Access Journals (Sweden)

    Peer H.A. Timmers

    2015-09-01

    Full Text Available Extensive geochemical data showed that significant methane oxidation activity exists in marine sediments. The organisms responsible for this activity are anaerobic methane-oxidizing archaea (ANME that occur in consortia with sulfate-reducing bacteria. A distinct zonation of different clades of ANME (ANME-1, ANME-2a/b and ANME-2c exists in marine sediments, which could be related to the localized concentrations of methane, sulfate and sulfide. In order to test this hypothesis we performed long-term incubation of marine sediments under defined conditions with methane as a headspace gas: low or high sulfate (4 and 21 mM, respectively in combination with low or high sulfide (0.1 and 4 mM, respectively concentrations. Control incubations were also performed, with only methane, high sulfate or high sulfide. Methane oxidation was monitored and growth of subtypes ANME-1, ANME-2a/b, and ANME-2c assessed using qPCR analysis. A preliminary archaeal community analysis was performed to gain insight into the ecological and taxonomic diversity. Almost all of the incubations with methane had methane oxidation activity, with the exception of the incubations with combined low sulfate and high sulfide concentrations. Sulfide inhibition occurred only with low sulfate concentrations, which could be due to the lower Gibbs free energy available as well as sulfide toxicity. ANME-2a/b appear to mainly grow in incubations which had high sulfate levels and methane oxidation activity, whereas ANME-1 did not show this distinction. ANME-2c only grew in incubations with only sulfate addition. These findings are consistent with previously published in situ profiling analysis of ANME subclusters in different marine sediments. Interestingly, since all ANME subtypes also grew in incubations with only methane or sulfate addition, ANME may also be able to perform anaerobic methane oxidation under substrate limited conditions or alternatively perform additional metabolic

  15. A radioimmunoassay for measurement of thyroxine sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, I.J.; Santini, F.; Hurd, R.E.; Chua Teco, G.N. (Univ. of California Center for the Health Sciences, Los Angeles (United States))

    1993-01-01

    A highly sensitive, specific, and reproducible RIA has been developed to measure T[sub 4] sulfate (T[sub 4]S) in ethanol extracts of serum. rT[sub 3] sulfate (rT[sub 3]S) cross-reacted 7.1%, and T[sub 3]S cross-reacted 0.59% in the RIA; T[sub 4], T[sub 3], rT[sub 3] and 3,3[prime]-diiodothyronine cross-reacted 0.004% or less. The recovery of nonradioactive T[sub 4]S added to serum averaged 95%. The detection threshold of the RIA was 18 pmol/L. The coefficient of variation averaged 6.9% within an assay and 12% between assays. T[sub 4]S was bound by T[sub 4]-binding globulin and albumin in serum. The free fraction of T[sub 4]S in four normal sera averaged 0.06% compared to a value of 0.03% for T[sub 4] (P < 0.001). The serum concentration of T[sub 4]S was (mean [+-] SE) 19 [+-] 1.2 pmol/L in normal subjects, 33 [+-] 10 in hyperthyroid patients with Graves disease, 42 [+-] 15 in hypothyroid patients, 34 [+-] 6.9 in patients with systematic nonthyroidal illnesses, 21 [+-] 4.3 in pregnant women at 15-40 weeks gestation, and 245 [+-] 26 in cord blood sera of newborns; the value in the newborn was significantly different from normal (P < 0.001). Administration of sodium ipodate (Oragrafin; 3 g, orally) to hyperthyroid patients was associated with a transient increase in serum T[sub 4]S. The T[sub 4]S content of the thyroid gland was less than 1/4000th that of T[sub 4]. We conclude that (1) T[sub 4]S is a normal component of human serum, and its levels are markedly increased in newborn serum and amniotic fluid; and (2) the sulfation pathway plays an important role in the metabolism of T[sub 4] in man. 28 refs., 4 figs., 2 tabs.

  16. An Ideal C3-Symmetric Sulfate Complex: Molecular Recognition of Oxoanions by m-Nitrophenyl- and Pentafluorophenyl-Functionalized Hexaurea Receptors.

    Science.gov (United States)

    Portis, Bobby; Mirchi, Ali; Emami Khansari, Maryam; Pramanik, Avijit; Johnson, Corey R; Powell, Douglas R; Leszczynski, Jerzy; Hossain, Md Alamgir

    2017-09-30

    The anion-binding properties of two tripodal-based hexaureas appended with the m-nitrophenyl (1) and pentafluorophenyl (2) groups have been studied both experimentally and theoretically, showing strong affinities for sulfate over other inorganic oxoanions such as hydrogen sulfate, dihydrogen phosphate, bicarbonate, nitrate, and perchlorate. The structural analysis of the sulfate complex with 1 reveals that the receptor organizes all urea-binding sites toward the cavity at precise orientations around a tetrahedral sulfate anion to form an ideal C3-symmetric sulfate complex that is stabilized by 12 hydrogen-bonding interactions. The receptor and the encapsulated sulfate are located on the threefold axis passing through the bridgehead nitrogen of 1 and the sulfur atom of the anionic guest. The high-level density functional theory calculations support the crystallographic results, demonstrating that the C3-symmetric conformation of the sulfate complex is achieved due to the complementary NH···O between the receptor and sulfate.

  17. Sulfate removal from waste chemicals by precipitation.

    Science.gov (United States)

    Benatti, Cláudia Telles; Tavares, Célia Regina Granhen; Lenzi, Ervim

    2009-01-01

    Chemical oxidation using Fenton's reagent has proven to be a viable alternative to the oxidative destruction of organic pollutants in mixed waste chemicals, but the sulfate concentration in the treated liquor was still above the acceptable limits for effluent discharge. In this paper, the feasibility of sulfate removal from complex laboratory wastewaters using barium and calcium precipitation was investigated. The process was applied to different wastewater cases (two composite samples generated in different periods) in order to study the effect of the wastewater composition on the sulfate precipitation. The experiments were performed with raw and oxidized wastewater samples, and carried out according to the following steps: (1) evaluate the pH effect upon sulfate precipitation on raw wastewaters at pH range of 2-8; (2) conduct sulfate precipitation experiments on raw and oxidized wastewaters; and (3) characterize the precipitate yielded. At a concentration of 80 g L(-1), barium precipitation achieved a sulfate removal up to 61.4% while calcium precipitation provided over 99% sulfate removal in raw and oxidized wastewaters and for both samples. Calcium precipitation was chosen to be performed after Fenton's oxidation; hence this process configuration favors the production of higher quality precipitates. The results showed that, when dried at 105 degrees C, the precipitate is composed of hemidrate and anhydrous calcium sulfate ( approximately 99.8%) and trace metals ( approximately 0.2%: Fe, Cr, Mn, Co, Ag, Mg, K, Na), what makes it suitable for reuse in innumerous processes.

  18. 21 CFR 182.8997 - Zinc sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc sulfate. 182.8997 Section 182.8997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product...

  19. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  20. Metabolic flexibility of sulfate-reducing bacteria

    NARCIS (Netherlands)

    Plugge, C.M.; Zhang, Weinwen; Scholten, J.C.M.; Stams, A.J.M.

    2011-01-01

    Dissimilatory sulfate-reducing prokaryotes (SRB) are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic

  1. Sulfation of naringenin by Cunninghamella elegans.

    Science.gov (United States)

    Ibrahim, A R

    2000-01-01

    A new flavonoid sulfate, naringenin-7-sulfate, was obtained by fermentation of naringenin using the fungus Cunninghamella elegans NRRL 1392 in 23% yield. Structural elucidation of the metabolite was achieved using EIMS, UV, IR, 1D and 2D NMR spectroscopy beside acid and enzyme hydrolyses.

  2. Structure and anticoagulant properties of sulfated glycosaminoglycans from primitive Chordates

    Directory of Open Access Journals (Sweden)

    MAURO S. G. PAVÃO

    2002-03-01

    Full Text Available Dermatan sulfates and heparin, similar to the mammalian glycosaminoglycans, but with differences in the degree and position of sulfation were previously isolated from the body of the ascidian Styela plicata and Ascidia nigra. These differences produce profound effects on their anticoagulant properties. S. plicata dermatan sulfate composed by 2-O-sulfatedalpha-L-iduronic acid and 4-O-sulfated N-acetyl-beta-D-galactosamine residues is a potent anticoagulant due to a high heparin cofactor II activity. Surprisingly, it has a lower potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the mammalian dermatan sulfate. In contrast, A. nigra dermatan sulfate, also enriched in 2-O-sulfated alpha-L-iduronic acid, but in this case sulfated at O-6 of the N-acetyl-beta-D-galactosamine units, has no in vitro or in vivo anticoagulant activity, does not prevent thrombus formation but shows a bleeding effect similar to the mammalian glycosaminoglycan. Ascidian heparin, composed by 2-O-sulfated alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (75% and alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (25% disaccharide units has an anticoagulant activity 10 times lower than the mammalian heparin, is about 20 times less potent in the inhibition of thrombin by antithrombin, but has the same heparin cofactor II activity as mammalian heparin.Dermatam sulfato e heparina semelhantes aos glicosaminoglicanos de mamíferos, mas apresentando diferenças no grau e posição de sulfatação foram previamente isolados do corpo das ascídias Styela plicata e Ascidia nigra. Estas diferenças produzem efeitos profundos nas suas propriedades anticoagulantes. O dermatam sulfato de S. plicata, composto por resíduos de ácido alfa-L-idurônico 2-O-sulfatados e N-acetilgalactosamina 4-O-sulfatados é um potente anticoagulante devido a sua alta atividade de cofator II da heparina. Surpreendentemente, este polímero possui uma

  3. Sulfhaemoglobinaemia caused by ferrous sulfate.

    Science.gov (United States)

    Derbas, Laith; Warsame, Mohamed; Omar, Mohannad Abu; Zafar, Yousaf; Howell, Gregory

    2017-06-13

    A 78-year-old man was referred from his primary care clinic to the emergency department due to bluish discolouration of his lips and decreased oxygen saturation on pulse oximetry. The patient was asymptomatic. Physical exam was normal except for lip cyanosis. A CT pulmonary angiogram was negative for pulmonary embolism. Arterial blood gas (ABG) analysis with co-oximetry showed low oxyhaemoglobin, normal partial pressure of oxygen and methaemoglobinaemia, but an unexplained 'gap' in total haemoglobin saturation. This gap was felt to be due to sulfhaemoglobinaemia. After a thorough review of his medications, ferrous sulfate was stopped which resulted in resolution in patient's cyanosis and normalisation of his ABG after 7 weeks. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Sulfate radicals enable a non-enzymatic Krebs cycle precursor.

    Science.gov (United States)

    Keller, Markus A; Kampjut, Domen; Harrison, Stuart A; Ralser, Markus

    2017-03-13

    The evolutionary origins of the Krebs cycle (tricarboxylic acid cycle) are not currently clear. Despite the existence of a simple non-enzymatic Krebs cycle catalyst being dismissed only a few years ago as 'an appeal to magic', citrate and other intermediates have since been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify a metabolism-like non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate compounds in a reaction mixture that orients on the typical components of Archaean sediment. Krebs cycle intermediates were found to be stable in water and in the presence of most molecule species, including simple iron sulfate minerals. However, in the presence of sulfate radicals generated from peroxydisulfate, the intermediates underwent 24 interconversion reactions. These non-enzymatic reactions covered the critical topology of the oxidative Krebs cycle, the glyoxylate shunt and the succinic-semialdehyde pathway. Assembled in a chemical network, the reactions achieved over 90% carbon recovery. Our results show that a non-enzymatic precursor of the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals.

  5. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications.

    Science.gov (United States)

    Müller, Michael; Öztürk, Ece; Arlov, Øystein; Gatenholm, Paul; Zenobi-Wong, Marcy

    2017-01-01

    One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel system based on alginate sulfate which potently supports chondrocyte phenotype, but is not printable due to its rheological properties (no yield point). To convert alginate sulfate to a printable bioink, it was combined with nanocellulose, which has been shown to possess very good printability. The alginate sulfate/nanocellulose ink showed good printing properties and the non-printed bioink material promoted cell spreading, proliferation, and collagen II synthesis by the encapsulated cells. When the bioink was printed, the biological performance of the cells was highly dependent on the nozzle geometry. Cell spreading properties were maintained with the lowest extrusion pressure and shear stress. However, extruding the alginate sulfate/nanocellulose bioink and chondrocytes significantly compromised cell proliferation, particularly when using small diameter nozzles and valves.

  6. Distribution of Heparan Sulfate Oligosaccharides in Murine Mucopolysaccharidosis Type IIIA

    Directory of Open Access Journals (Sweden)

    Kerryn Mason

    2014-12-01

    Full Text Available Heparan sulfate (HS catabolism begins with endo-degradation of the polysaccharide to smaller HS oligosaccharides, followed by the sequential action of exo-enzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In mucopolysaccharidosis type IIIA (MPS IIIA the exo-enzyme, N-sulfoglucosamine sulfohydrolase, is deficient resulting in an inability to hydrolyze non-reducing end glucosamine N-sulfate esters. Consequently, partially degraded HS oligosaccharides with non-reducing end glucosamine sulfate esters accumulate. We investigated the distribution of these HS oligosaccharides in tissues of a mouse model of MPS IIIA using high performance liquid chromatography electrospray ionization-tandem mass spectrometry. Oligosaccharide levels were compared to total uronic acid (UA, which was used as a measure of total glycosaminoglycan. Ten oligosaccharides, ranging in size from di- to hexasaccharides, were present in all the tissues examined including brain, spleen, lung, heart, liver, kidney and urine. However, the relative levels varied up to 10-fold, suggesting different levels of HS turnover and storage. The relationship between the di- and tetrasaccharides and total UA was tissue specific with spleen and kidney showing a different disaccharide:total UA ratio than the other tissues. The hexasaccharides showed a stronger correlation with total UA in all tissue types suggesting that hexasaccharides may more accurately reflect the storage burden in these tissues.

  7. Sulfate threshold target to control methylmercury levels in wetland ecosystems

    Science.gov (United States)

    Corrales, J.; Naja, G.M.; Dziuba, C.; Rivero, R.G.; Orem, W.

    2011-01-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear-1, respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear-1, respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear-1, and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear-1. Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL-1 was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2??gL-1 criterion for surface water already established by the U.S. Environmental Protection Agency (EPA). ?? 2011 Elsevier B.V.

  8. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China

    Science.gov (United States)

    Cheng, Yafang; Zheng, Guangjie; Wei, Chao; Mu, Qing; Zheng, Bo; Wang, Zhibin; Gao, Meng; Zhang, Qiang; Wang, Kebin; Carmichael, Gregory; Pöschl, Ulrich; Su, Hang

    2017-04-01

    Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to 300 μg m-3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution. Reference: Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, 10.1126/sciadv.1601530, 2016.

  9. Pressure effect on dissimilatory sulfate reduction

    Science.gov (United States)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of

  10. Rapid field detection of sulfate and organic content in soils : technical report.

    Science.gov (United States)

    2011-06-01

    In recent years, the Texas Department of Transportation (TxDOT) has experienced problems chemically : stabilizing moderate to high plasticity clay soils with calcium-based additives. Many of the problems are the : result of soluble sulfate minerals i...

  11. Ambient iron concentration regulates the sulfate reducing activity in the mangrove swamps of Diwar, Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Attria, K.; Kerkar,S.; LokaBharathi, P.A.

    In order to test the hypothesis that the ambient iron concentrations could regulate sulfate reducing activity (SRA) in mangrove areas, 10 cm cores were examined from test and reference sites. The test site at Diwar mangrove ecosystem is highly...

  12. Characterization and cytotoxic activity of sulfated derivatives of polysaccharides from Agaricus brasiliensis

    Science.gov (United States)

    Cardozo, F. T. G. S.; Camelini, C. M.; Cordeiro, M. N. S.; Mascarello, A.; Malagoli, B. G.; Larsen, I.; Rossi, M. J.; Nunes, R. J.; Braga, F. C.; Brandt, C.R.; Simões, C. M. O.

    2014-01-01

    Agaricus brasiliensis cell-wall polysaccharides isolated from fruiting body (FR) and mycelium (MI) and their respective sulfated derivatives (FR-S and MI-S) were chemically characterized using elemental analysis, TLC, FT-IR, NMR, HPLC, and thermal analysis. Cytotoxic activity was evaluated against A549 tumor cells by MTT and sulforhodamine assays. The average molecular weight (Mw) of FR and MI was estimated to be 609 and 310 kDa, respectively. FR-S (127 kDa) and MI-S (86 kDa) had lower Mw, probably due to hydrolysis occurred during the sulfation reaction. FR-S and MI-S presented ~14 % sulfur content in elemental analysis. Sulfation of samples was characterized by the appearance of two new absorption bands at 1253 and 810 cm−1 in the infrared spectra, related to S=O and C-S-O sulfate groups, respectively. Through 1H and 13C NMR analysis FR-S was characterized as a (1→6)-(1→3)-β-D-glucan fully sulfated at C-4 and C-6 terminal and partially sulfated at C-6 of (1→3)-β-D-glucan moiety. MI-S was shown to be a (1→3)-β-D-gluco-(1→2)-β-D-mannan, partially sulfated at C-2, C-3, C-4, and C-6, and fully sulfated at C-6 of the terminal residues. The combination of high degree of sulfation and low molecular weight was correlated with the increased cytotoxic activity (48 h of treatment) of both FR-S (EC50=605.6 μg/mL) and MI-S (EC50=342.1 μg/mL) compared to the non-sulfated polysaccharides FR and MI (EC50>1500 μg/mL). PMID:23511057

  13. Effect of sulfate on anaerobic degradation of benzoate in UASB reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, H.H.P.; Liu, Y.; Chen, T. [Univ. of Hong Kong (Hong Kong)

    1997-04-01

    Anaerobic processes have been widely used for the treatment of various high-strength industrial wastewaters. However, application has been limited for the treatment of sulfate-rich industrial wastewaters, such as those from the petrochemical, and mining industries. Wastewaters containing benzoate and sulfate were treated in two upflow anaerobic sludge blanket (UASB) reactors at 34--37 C for 320 d. The sulfate concentration was increased stepwise in Reactor-A up to 7,500 mg/L, and was kept mostly constant at 3,000 mg/L in Reactor-B. Both reactors removed over 98% of organic chemical-oxygen demand (COD) for sulfate up to 6,000 mg/L, despite the fact that the mixed liquor contained up to 769 mg S/L of total sulfides and up to 234 mg S/L of dissolved H{sub 2}S. Sulfate0reducing efficiency decreased with the increase in sulfate concentration, but increased with time at each sulfate concentration. Reactor-B consistently reduced 89% of sulfate. However, both organic COD removal and sulfate-reducing efficiencies of Reactor-A dropped drastically at 7,500 mg SO{sub 4}{sup {minus}2}/L, and showed no sign of recovery after 50 d. The system failure was likely due to the increased sulfate, instead of sulfide, toxicity. From the COD balance, 93.4% of COD removed was converted to methane instead of sulfides, with a net sludge yield of 0.047 g volatile suspended solids (VSS)/g COD. The sulfur balance was over 97%.

  14. Identification of a sulfate metabolite of PCB 11 in human serum.

    Science.gov (United States)

    Grimm, Fabian A; Lehmler, Hans-Joachim; Koh, Wen Xin; DeWall, Jeanne; Teesch, Lynn M; Hornbuckle, Keri C; Thorne, Peter S; Robertson, Larry W; Duffel, Michael W

    2017-01-01

    Despite increasing evidence for a major role for sulfation in the metabolism of lower-chlorinated polychlorinated biphenyls in vitro and in vivo, and initial evidence for potential bioactivities of the resulting sulfate ester metabolites, the formation of PCB sulfates in PCB exposed human populations had not been explored. The primary goal of this study was to determine if PCB sulfates, and potentially other conjugated PCB derivatives, are relevant classes of PCB metabolites in the serum of humans with known exposures to PCBs. In order to detect and quantify dichlorinated PCB sulfates in serum samples of 46 PCB-exposed individuals from either rural or urban communities, we developed a high-resolution mass spectrometry-based protocol using 4-PCB 11 sulfate as a model compound. The method also allowed the preliminary analysis of these 46 human serum extracts for the presence of other metabolites, such as glucuronic acid conjugates and hydroxylated PCBs. Sulfate ester metabolites derived from dichlorinated PCBs were detectable and quantifiable in more than 20% of analyzed serum samples. Moreover, we were able to utilize this method to detect PCB glucuronides and hydroxylated PCBs, albeit at lower frequencies than PCB sulfates. Altogether, our results provide initial evidence for the presence of PCB sulfates in human serum. Considering the inability of previously employed analytical protocols for PCBs to extract these sulfate ester metabolites and the concentrations of these metabolites observed in our current study, our data support the hypothesis that total serum levels of PCB metabolites in exposed individuals may have been underestimated in the past. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    Science.gov (United States)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion

  16. Heparan sulfate mediates trastuzumab effect in breast cancer cells

    Science.gov (United States)

    2013-01-01

    these resistant cells. Conclusion Trastuzumab action is dependent on the availability of heparan sulfate on the surface of breast cancer cells. Furthermore, our data suggest that high levels of heparan sulfate shed to the medium are able to capture trastuzumab, blocking the antibody action mediated by HER2. In addition to HER2 levels, heparan sulfate synthesis and shedding determine breast cancer cell susceptibility to trastuzumab. PMID:24083474

  17. Hydroconversion of aromatic hydrocarbons with iron sulfates catalysts; Ryusan tetsukei shokubai ni yoru hokozoku kagobutsu no suiso tenkan hanno

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, E.; Horie, K. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Saito, I.; Ukegawa, K. [National Institute for Resources and Environment, Tsukuba (Japan); Nishijima, A. [Kochi Prefecture Industrial Technology Center, Kochi (Japan)

    1997-10-30

    In order to develop the suitable catalyst for hydroconversion of coal and heavy materials, possibility of high quality catalyst production from iron sulfates was pursued on the hydroconversion of 1-methylnaphthalene(1-MN) and 4-(1-naphthylmethyl)bibenzyl(NMBB) with iron sulfates in the absence and presence of sulfur(S) at 350degC. Catalystic activity of ferrous sulfate was very low in the absence of S. The activity of ferrous sulfate was dramatically increased with addition of enough S for the hydrogenation of 1-MN and hydrocracking of NMBB. The activity of ferric sulfate, however, did not increase with addition of S. Ferrous sulfate is revealed one of useful catalyst precursors for hydroconversion of heavy aromatic hydrocarbons. 5 refs., 4 tabs.

  18. Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions

    DEFF Research Database (Denmark)

    Cain, Stuart A; Baldwin, Andrew K; Mahalingam, Yashithra

    2008-01-01

    in response to soluble PF1. Within domains encoded by exons 59-62 near the fibrillin-1 C terminus are novel conformation-dependent high affinity heparin and tropoelastin binding sites. Heparin disrupted tropoelastin binding but did not disrupt N- and C-terminal fibrillin-1 interactions. Thus, fibrillin-1 N......-terminal interactions with heparin/heparan sulfate directly influence cell behavior, whereas C-terminal interactions with heparin/heparan sulfate regulate elastin deposition. These data highlight how heparin/heparan sulfate controls fibrillin-1 interactions....

  19. Detailed predictive mapping of acid sulfate soil occurrence using electromagnetic induction data

    DEFF Research Database (Denmark)

    Beucher, Amélie; Boman, A; Mattbäck, S

    Acid sulfate soils are often called the nastiest soils in the world (Dent & Pons, 1995). Releasing a toxic combination of acidity and metals into the recipient watercourses and estuaries, these soils represent a crucial environmental problem. Moreover, these soils can have a considerable economic......).Since acid sulfate soils contain large amounts of soluble salts, they yield strong electromagnetic (EM) anomalies, appearing as diffuse and round-shaped high electrical conductivity (EC) areas. EM induction data collected from an EM38 proximal sensor hence enabled the refined mapping of acid sulfate...

  20. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.L.; Austen, K.F. (Brigham and Women' s Hospital, Boston, MA (USA)); Fox, C.C.; Lichtenstein, L.M. (Johns Hopkins School of Medicine, Baltimore, MD (USA))

    1988-04-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of {sup 35}S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although ({sup 35}S)heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate ({sup 35}S)sulfate into separate heparin and chondroitin sulfate proteoglycans in an {approx}2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin ({sup 35}S)sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin ({sup 35}S)sulfate E proteoglycans and the ({sup 35}S)heparin proteoglycans were exocytosed from the ({sup 35}S)sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of {sup 35}S-labeled proteoglycans reside in the secretory granules of these human lung mast cells.

  1. Nitrate reduction in sulfate-reducing bacteria.

    Science.gov (United States)

    Marietou, Angeliki

    2016-08-01

    Sulfate-reducing bacteria (SRBs) gain their energy by coupling the oxidation of organic substrate to the reduction of sulfate to sulfide. Several SRBs are able to use alternative terminal electron acceptors to sulfate such as nitrate. Nitrate-reducing SRBs have been isolated from a diverse range of environments. In order to be able to understand the significance of nitrate reduction in SRBs, we need to examine the ecology and physiology of the nitrate-reducing SRB isolates. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    Science.gov (United States)

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Abbatt, Jonathan P. D.; Levasseur, Maurice; Thomas, Jennie L.

    2016-04-01

    Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter 63 %), which is higher than in previous Arctic studies measuring above the ocean during fall ( 30 %) (Norman et al., 1999). The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles < 0.49 µm in diameter (15-17 and 17-19 July). The high biogenic fraction of sulfate fine aerosol and similar isotope ratio values of these particles and SO2 emphasize the role of marine organisms (e.g., phytoplankton, algae, bacteria) in the formation of fine particles above the Arctic Ocean during the productive summer months.

  3. Extraction and quantification of sulfated glycosaminoglycan content in five different aquatic species of Malaysia

    Directory of Open Access Journals (Sweden)

    Ravi Lokwani

    2015-09-01

    Full Text Available Objective: To extract, characterize and quantify glycosaminoglycans (GAGs from the body of cuttlefish, tennis-ball sea cucumber, shrimp, seabass and fresh water fish Nile tilapia. Methods: The extracted crude powder was evaluated for the content of GAGs. The qualitative analysis of sulfated pattern and other important functional groups related with GAGs were explained in the form of Fourier transform infra-red spectroscopy data. Proteins and nucleic acid in the crude extract were determined by the ultraviolet spectrophotometer, while the quantification of total sulfated GAGs and estimation of N-sulfated and O-sulfated GAGs in the crude mixture were performed by using Blyscan kit. Results: The sulfated pattern and other important functional groups related with GAGs were intercepted in Fourier transform infrared analysis. Blyscan quantification method reported that a rare variety of sea cucumber (tennis-ball sea cucumber emerged as a rich source of GAGs with high values of both N-sulfated and O-sulfated GAGs in comparison to its other counterparts. Conclusions: Findings in this study point out the potential of tennis-ball sea cucumber, a rare variety of sea cucumber to act as an alternative source for GAG extraction for commercial purpose.

  4. Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles

    Directory of Open Access Journals (Sweden)

    K. J. Baustian

    2010-03-01

    Full Text Available Heterogeneous ice nucleation on solid ammonium sulfate and glutaric acid particles was studied using optical microscopy and Raman spectroscopy. Optical microscopy was used to detect selective nucleation events as water vapor was slowly introduced into an environmental sample cell. Particles that nucleated ice were dried via sublimation and examined in detail using Raman spectroscopy. Depositional ice nucleation is highly selective and occurred preferentially on just a few ammonium sulfate and glutaric acid particles in each sample. For freezing temperatures between 214 K and 235 K an average ice saturation ratio of S = 1.10±0.07 for solid ammonium sulfate was observed. Over the same temperature range, S values observed for ice nucleation on glutaric acid particles increased from 1.2 at 235 K to 1.6 at 218 K. Experiments with externally mixed particles further show that ammonium sulfate is a more potent ice nucleus than glutaric acid. Our results suggest that heterogeneous nucleation on ammonium sulfate may be an important pathway for atmospheric ice nucleation and cirrus cloud formation when solid ammonium sulfate aerosol particles are available for ice formation. This pathway for ice formation may be particularly significant near the tropical tropopause region where sulfates are abundant and other species known to be good ice nuclei are depleted.

  5. Characterisation of titanium tetrachloride and titanium sulfate flocculation in wastewater treatment.

    Science.gov (United States)

    Okour, Y; Shon, H K; El Saliby, I

    2009-01-01

    Flocculation with titanium tetrachloride (TiCl(4)) and titanium sulfate (Ti(SO(4))(2)) was investigated in terms of different coagulant doses, pH, turbidity, dissolved organic carbon (DOC), UV-254, colour, zeta potential, particle size and molecular weight distribution. The two coagulants were compared with the commonly used coagulants such as ferric chloride (FeCl(3)) and aluminium sulfate (Al(2)(SO(4))(3)). Titanium tetrachloride showed the highest turbidity removal, while titanium sulfate showed the highest reduction of UV-254 and colour at all pH values. The four coagulants were found to have similar organic removal up to 60-67% and resulted in similar organic removal in terms of various MW ranges. The decantability of the settled flocs was very high for titanium tetrachloride, titanium sulfate and ferric chloride compared with aluminium sulfate. The dominating coagulation mechanisms for titanium tetrachloride and titanium sulfate are still to be studied, since different precipitation reactions might take place at different pH even without flocculant addition. Titanium tetrachloride and titanium sulfate were found as effective new coagulants in wastewater treatment not only in terms of organic matter removal, but also in sludge reduction through the production of titanium dioxide.

  6. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  7. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  8. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  9. Can magnesium sulfate therapy impact lactogenesis?

    Science.gov (United States)

    Haldeman, W

    1993-12-01

    This case report describes a patient who ingested magnesium sulfate (MgSO4) for approximately four days as a treatment for pregnancy-induced hypertension. Stage II lactogenesis was delayed until the tenth postpartum day at which point the patient's breasts became fully engorged. No explanation for this delay was found, other than the possibility that magnesium sulfate treatment impeded lactogenesis. Implications for professionals who care for lactating women are discussed.

  10. Toxicity of copper sulfate and zinc sulfate to Macrobrachium lamarrel (H. Miline Edwards) (Decapoda, Palaemonidae)

    Energy Technology Data Exchange (ETDEWEB)

    Murti, R.; Shukla, G.S.

    1984-09-01

    Macrobrachium lamarrei were exposed to six different concentrations of copper sulfate and zinc sulfate solutions. The specimens showed increased activity immediately after their transfer to the test solutions. They subside their activity very soon in copper sulfate, whereas in zinc sulfate they remain active for about 2 hr frequently coming to the surface of the toxic solution. In both cases, profuse secretion of mucus has been noted on the whole body surface, but most pronounced in the gill region. The 96 h LC/sub 50/ values of copper sulfate (0.247 mg/l) and zinc sulfate (3.188 mg/l) show that copper is thirteen times more toxic to this species than zinc. The minimum concentration of zinc sulfate to initiate slight mortality was 1 mg/l while for copper the corresponding value was as low as 0.01 mg/l. The first mortality in copper sulfate solution of 0.5 mg/l was noted after 4 hr exposure in contrast to zinc sulfate where it required 6 hr in 15 mg/l solutions. 27 references, 2 tables.

  11. Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Abbas, B.; Tourova, T.P.; Bumazhkin, B.K.; Kolganova, T.V.; Muyzer, G.

    2014-01-01

    So far, anaerobic sulfate-dependent acetate oxidation at high pH has only been demonstrated for a low-salt-tolerant syntrophic association of a clostridium ‘Candidatus Contubernalis alkalaceticum’ and its hydrogenotrophic sulfate-reducing partner Desulfonatronum cooperativum. Anaerobic enrichments

  12. Sensitivity of Oxygen Isotopes of Sulfate in Ice Cores to Past Changes in Atmospheric Oxidant Concentrations

    Science.gov (United States)

    Sofen, E. D.; Alexander, B.; Kunasek, S. A.; Mickley, L.; Murray, L. T.; Kaplan, J. O.

    2009-12-01

    The oxygen isotopic composition (Δ17O) of sulfate from ice cores allows for a quantitative assessment of the past oxidative capacity of the atmosphere, which has implications for the lifetime of pollutants (e.g. CO) and greenhouse gases (e.g. CH4), and changes in the sulfur budget on various timescales. Using Δ17O of sulfate measurements from the WAIS-Divide, Antarctica and Site-A, Greenland ice cores as constraints, we use the GEOS-Chem global three-dimensional chemical transport model to study changes in the concentrations of OH, O3, and H2O2 and their impact on sulfate Δ17O between the preindustrial and present-day. The Greenland ice core sulfate oxygen isotope observations are insensitive to changes in oxidant concentrations on the preindustrial-industrial timescale due to the rising importance of metal catalyzed S(IV) oxidation in mid- to high-northern latitudes resulting from anthropogenic metal emissions. The small change in Antarctic ice core sulfate Δ17O observations on this timescale is consistent with simultaneous increases in boundary layer O3 (32%) and H2O2 (49%) concentrations in the Southern Hemisphere, which have opposing effects on the sulfate O-isotope anomaly. Sulfate Δ17O is insensitive to the relatively small (-12%) decrease in Southern Hemisphere OH concentrations on this timescale due to the dominance of in-cloud versus gas-phase formation of sulfate in the mid-to-high southern latitudes. We find that the fraction of sulfate formed globally through gas-phase oxidation has not changed substantially between preindustrial and present times, however the total amount of sulfate formed in the gas-phase has nearly quadrupled due to rising anthropogenic emissions of sulfur dioxide. Measurements over a glacial-interglacial cycle from the Vostok core indicate dramatic changes in the Δ17O of sulfate on this timescale, which provide a strong constraint for glacial-era atmospheric chemistry modeling efforts. We will present preliminary results of

  13. Biogenic barite preciptiation at micromolar ambient sulfate

    Science.gov (United States)

    Horner, T. J.; Pryer, H. V.; Nielsen, S.; Ricketts, R. D.

    2016-12-01

    Earth's early oceans were essentially devoid of sulfate, yet barium sulfate (barite) deposits are common to ancient sediments. Most explanations for this `barite paradox' overlook biogenic barite precipitation—the dominant vector of particulate barium cycling in modern seawater—as the ancient oceans were presumably strongly undersaturated with respect to barite. We tested whether biogenic barite could indeed precipitate at trace sulfate by examining the particulate multi-element and Ba-isotopic geochemistry of one of the largest trace-sulfate ecosystems on Earth: Lake Superior. Despite exceptional levels of barite undersaturation in Lake Superior, we find unambiguous evidence of biogenic barite precipitation that is correlated with the depths of greatest organic matter remineralization in the water column. The overall pattern of particulate barium cycling in Lake Superior is strikingly similar to that seen in the open ocean, supporting the critical role of particle-associated `microenvironments' that become rich in respired sulfate as protected sites of biogenic barite formation. Our observations offer a microbially-mediated mechanism for barite formation at micromolar ambient sulfate and thus also a potential resolution to the barite paradox in the ancient oceans.

  14. Ammonium sulfate preparation from phosphogypsum waste

    Directory of Open Access Journals (Sweden)

    Abdel-Hakim T. Kandil

    2017-01-01

    Full Text Available The Egyptian phosphogypsum waste is treated using sulfuric acid prior the ammonium sulfate production. The relevant factors that would affect the removal efficiencies of some impurities are studied. The optimum conditions of the treatment are 8 M sulfuric acid solution and 1/4 solid/liquid ratio for 30 min contact time at 80 °C. Moreover, the optimum conditions of the ammonium sulfate preparation are 10 g of the suspended impure or purified phosphogypsum in 40 ml of 3% ammonium sulfate solution (as initiator, 1/4 solid/liquid ratio at pH7 at an addition of an excess ammonium carbonate, and 150 rpm stirring speed for 4.0 h contact time at 55 °C as well as the 5 mg of barium chloride is added to remove the radium in the ammonium sulfate product. Finally, the ammonium sulfate is crystallized and the chemical analysis of the product shows 20% nitrogen and 23.6% sulfur. Therefore, the purity of the obtained ammonium sulfate is 95% from the purified phosphogypsum.

  15. Selective effects of transient oxygen and nitrate exposure on sulfate reducing/fermentative consortia

    OpenAIRE

    Abdulrahman Beiruti, Zainab

    2014-01-01

    The activity and diversity of prokaryotes is one of the keys to understand element cycling in our environment. Many microbes couple the oxidation of carbon compounds with the reduction of inorganic compounds such as oxygen, nitrogen,manganese, iron and sulfate. The sulfur cycle is one of the most important elements cycles, because of the high abundance of sulfate in the marine environment and the rich speciation of sulfur compounds at different redox states. The most stable and abundant form ...

  16. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    Science.gov (United States)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  17. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  18. Biokinetics and effects of barium sulfate nanoparticles.

    Science.gov (United States)

    Konduru, Nagarjun; Keller, Jana; Ma-Hock, Lan; Gröters, Sibylle; Landsiedel, Robert; Donaghey, Thomas C; Brain, Joseph D; Wohlleben, Wendel; Molina, Ramon M

    2014-10-21

    Nanoparticulate barium sulfate has potential novel applications and wide use in the polymer and paint industries. A short-term inhalation study on barium sulfate nanoparticles (BaSO₄ NPs) was previously published [Part Fibre Toxicol 11:16, 2014]. We performed comprehensive biokinetic studies of ¹³¹BaSO₄ NPs administered via different routes and of acute and subchronic pulmonary responses to instilled or inhaled BaSO₄ in rats. We compared the tissue distribution of ¹³¹Ba over 28 days after intratracheal (IT) instillation, and over 7 days after gavage and intravenous (IV) injection of ¹³¹BaSO₄. Rats were exposed to 50 mg/m³ BaSO₄ aerosol for 4 or 13 weeks (6 h/day, 5 consecutive days/week), and then gross and histopathologic, blood and bronchoalveolar lavage (BAL) fluid analyses were performed. BAL fluid from instilled rats was also analyzed. Inhaled BaSO₄ NPs showed no toxicity after 4-week exposure, but a slight neutrophil increase in BAL after 13-week exposure was observed. Lung burden of inhaled BaSO₄ NPs after 4-week exposure (0.84 ± 0.18 mg/lung) decreased by 95% over 34 days. Instilled BaSO₄ NPs caused dose-dependent inflammatory responses in the lungs. Instilled BaSO₄ NPs (0.28 mg/lung) was cleared with a half-life of ≈ 9.6 days. Translocated ¹³¹Ba from the lungs was predominantly found in the bone (29%). Only 0.15% of gavaged dose was detected in all organs at 7 days. IV-injected ¹³¹BaSO₄ NPs were predominantly localized in the liver, spleen, lungs and bone at 2 hours, but redistributed from the liver to bone over time. Fecal excretion was the dominant elimination pathway for all three routes of exposure. Pulmonary exposure to instilled BaSO₄ NPs caused dose-dependent lung injury and inflammation. Four-week and 13-week inhalation exposures to a high concentration (50 mg/m³) of BaSO₄ NPs elicited minimal pulmonary response and no systemic effects. Instilled and inhaled BaSO₄ NPs were cleared quickly yet

  19. Disguised as a sulfate reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    DEFF Research Database (Denmark)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa Jean Lehsau

    2017-01-01

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D...... of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane....... alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction...

  20. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...

  1. The efficacy of nebulized salbutamol, magnesium sulfate, and salbutamol/magnesium sulfate combination in moderate bronchiolitis.

    Science.gov (United States)

    Kose, Mehmet; Ozturk, Mehmet Adnan; Poyrazoğlu, Hakan; Elmas, Tuba; Ekinci, Duygu; Tubas, Filiz; Kurt, Tuba; Goktas, Mehmet Akif

    2014-09-01

    The aim of this paper is to compare the effect of nebulized magnesium sulfate to nebulized salbutamol and salbutamol/magnesium sulfate on successful discharge from the emergency department. A total of 56 infants were included in this double-blinded, prospective study. Infants were grouped according to the nebulized treatment they received: group 1-salbutamol/normal saline, group 2-magnesium sulfate and normal saline, and group 3-salbutamol plus magnesium sulfate. Heart beat, bronchiolitis, clinical severity scores (CSS), and oxygen saturation of the patients were determined before and after nebulization (0, 1, 4 h). The patients were monitored for adverse reactions. Post-treatment mean CSS results were significantly lower than pre-treatment scores in all groups at 4 h with no significant difference within groups. CSS scores were lower in the salbutamol/magnesium sulfate group when compared with the magnesium sulfate and salbutamol groups (3.4 (2.4-4.3), 4.7 (3.8-5.7), 4.0 (3.2-4.3)). CSS were significantly lower than those from the magnesium sulfate group. Nebulized magnesium sulfate plus salbutamol may have additive effects for improving the short-term CSS.

  2. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  3. Infrared Turbidimetric Titration Method for Sulfate Ions in Brackish Water

    Directory of Open Access Journals (Sweden)

    Benabadji Nouredine

    2012-12-01

    Full Text Available In this work an infrared turbidimetric titration method is described for the determination of sulfate ions in brackish water. A suspension of barium sulfate is produced in an aqueous solution and/or brackish water sample by the addition of barium chloride solution and the turbidity is monitored with the help of an immersed infrared sensor. The developed sensor utilizes an optical system to measure the evolution of turbidity during the titration. This sensor is a simple device designed in the laboratory, consisting of two infrared diodes (LED, the first is an emitter and the second is used as detector (receiver. The data acquisition system is made with the help of a dataloger made on the basis of the microcontroller 16F877/874 accompanied with adaptable software both of them are self made. Concentration over 60 µg/mL of sulfate expressed as, SO42- can be measured with high reproducibility, by this method without a preliminary treatment or dilution of the sample. The method determines SO42 - concentration of brackish water with RSD of < 1.2%.

  4. Origins and diversification of sulfate-respiring microorganisms.

    Science.gov (United States)

    Stahl, David A; Fishbain, Susan; Klein, Michael; Baker, Brett J; Wagner, Michael

    2002-08-01

    If the diversification of microbial life can be depicted as a single tree, as inferred by comparative sequencing of ribosomal RNAs, this could provide a framework for defining the order of emergence of new metabolic pathways. However, recent recognition that lateral gene transfer has been a significant force in microbial evolution has created uncertainty about the interpretation of taxonomies based on gene sequences. In this context, the origins and evolution of sulfate respiration will be evaluated considering the evolutionary history of a central enzyme in this process, the dissimilatory sulfite reductase. These studies suggest at least two major lateral transfer events during the early diversification of sulfate respiring microorganisms. The high sequence conservation of this enzyme has also provided a mechanism to directly explore the natural diversity of sulfate-respiring organisms using molecular techniques, avoiding the bias of culture-based identification. These studies suggest that the habitat range and evolutionary diversity of this key functional group of organisms is greater than now appreciated.

  5. Uncovering the Terahertz Spectrum of Copper Sulfate Pentahydrate.

    Science.gov (United States)

    Ruggiero, Michael T; Korter, Timothy M

    2016-01-21

    Terahertz vibrational spectroscopy has evolved into a powerful tool for the detection and characterization of transition metal sulfate compounds, specifically for its ability to differentiate between various hydrated forms with high specificity. Copper(II) sulfate is one such system where multiple crystalline hydrates have had their terahertz spectra fully assigned, and the unique spectral fingerprints of the forms allows for characterization of multicomponent systems with relative ease. Yet the most commonly occurring form, copper(II) sulfate pentahydrate (CuSO4·5H2O), has proven elusive due to the presence of a broad absorption across much of the terahertz region, making the unambiguous identification of its spectral signature difficult. Here, it is shown that the sub-100 cm(-1) spectrum of CuSO4·5H2O is obscured by absorption from adsorbed water and that controlled drying reveals sharp underlying features. The crystalline composition of the samples was monitored in parallel by X-ray diffraction as a function of drying time, supporting the spectroscopic results. Finally, the terahertz spectrum of CuSO4·5H2O was fully assigned using solid-state density functional theory simulations, helping attribute the additional absorptions that appear after excessive drying to formation of CuSO4·3H2O.

  6. Mono- and Polyhydrated Sulfates in Tithonium Chasma

    Science.gov (United States)

    2008-01-01

    This image of sulfate-containing deposits in Tithonium Chasma was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1538 UTC (11:38 a.m. EDT) on August 31, 2007 near 5.22 degrees south latitude, 270.48 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is just over 10 kilometers (6.2 miles) wide at its narrowest point. Tithonium Chasma lies at the western end of the Valles Marineris canyon system. It extends approximately east-west for roughly 810 kilometers (503 miles), varies in width from approximately 10 to 110 kilometers (6 to 68 miles), and cuts into the Martian surface to a maximum depth of roughly 6 kilometers (4 miles). The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data covers an area centered on a ridge of erosion-resistant rock. The center left image, an infrared false color image, reveals banded, light-colored material draped on the ridge. The center right image unveils the mineralogical composition of the area, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral) and purple polyhydrated sulfates (sulfates with multiple waters per mineral molecule). The lower two images are renderings of data draped over topography with 7 times vertical exaggeration. These images provide a view of the topography and reveal how the sulfate deposits both cover and flank the ridge. Brighter, monohydrated sulfate (yellow) deposits revealed in the lower right image lies along the ridge's northwest side and fall off into a small valley or depression, while darker polyhydrated sulfates (purple) lie along the ridge's northeast flank. A deposit of both mono- and polyhydrated sulfates spanning the ridge near its crest also appears

  7. Sulfate Storage and Stability on Common Lean NOx Trap Components

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Nathan A [ORNL; Toops, Todd J [ORNL; Pihl, Josh A [ORNL; Roop, Justin T [ORNL; Choi, Jae-Soon [ORNL; Partridge Jr, William P [ORNL

    2012-01-01

    Components found in a commercial lean NO{sub x} trap have been studied in order to determine their impact on sulfate storage and release. A micro-reactor and a diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) were used to compare components MgAl{sub 2}O{sub 4}, Pt/MgAl{sub 2}O{sub 4}, Pt/Al{sub 2}O{sub 3}, Pt/Ba/Al{sub 2}O{sub 3}, Pt/CeO{sub 2}-ZrO{sub 2}, and Pt/Ba/CeO{sub 2}-ZrO{sub 2}, as well as physical mixtures of Pt/Al{sub 2}O{sub 3} + MgAl{sub 2}O{sub 4} and Pt/Ba/CeO{sub 2}-ZrO{sub 2} + MgAl{sub 2}O{sub 4}. Desulfation temperature profiles as well as DRIFTS NO{sub x} and SO{sub x} storage spectra are presented for all components. This systematic approach highlighted the ability of the underlying support to impact sulfate stability, in particular when Ba was supported on ceria-zirconia rather than alumina the desulfation temperature decreased by 60-120 C. A conceptual model of sulfation progression on the ceria-zirconia support is proposed that explains the high uptake of sulfur and low temperature release when it is employed. It was also determined that the close proximity of platinum is not necessary for much of the sulfation and desulfation chemistry that occurs, as physical mixtures with platinum dispersed on only one phase displayed similar behavior to samples with platinum dispersed on both phases.

  8. LASL bismuth sulfate thermochemical hydrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Cox, K.E.; Jones, W.M.; Peterson, C.L.

    1980-01-01

    The LASL bismuth sulfate cycle is one of a generic class of solid sulfate cycles in which a metal sulfate is substituted for sulfuric acid in a hybrid (partly electrochemical) cycle. This technique avoids the serious materials and heat penalty problems associated with the handling of concentrated acid solutions, and if the electrolyzer is operated at acid concentrations below 50% it may, in principle, lead to a lower cell voltage with subsequent energy savings. Experiment verification of all steps in the cycle has been obtained, particularly for the decomposition of normal bismuth sulfate and lower bismuth oxysulfates. For the substance, Bi/sub 2/O/sub 3/ 2SO/sub 3/, an endothermic requirement of 172 kJ/mol was obtained, which is considerably less than that for other metal sulfate systems. A rotary kiln was used for continuous experiments and our results show decomposition of this compound to Bi/sub 2/O/sub 3/ SO/sub 3/ in under 8 minutes residence time at 1023 K. Preliminary analysis of the cycle's energy balance shows an overall thermal efficiency of greater than 50% when the maximum cycle reaction temperature is 1500 K. The cycle has potential for hydrogen production when coupled with an energy source such as solar or fusion energy.

  9. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  10. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Weber, A.; Zopfi, J.

    2001-01-01

    Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35...... the process was very sluggish with turnover times of methane within the sulfate-methane transition zone of 20 yr or more. (C) 2001 Elsevier Science Ltd. All rights reserved.Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea...... oxidation accounted for 7-11% of the total sulfate reduction in slope and deep-sea sediments. Although this methane-driven sulfate reduction shaped the entire sulfate gradient, it was only equivalent to the sulfate reduction in the uppermost 1.5 cm of surface sediment. Methane oxidation was complete, yet...

  11. Evaluation of effects of Maṇḍurabhasma on structural and functional integrity of small intestine in comparison with ferrous sulfate using an experimental model of iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Suchita Rajanikant Gawde

    2015-01-01

    Conclusion: Rats receiving a high dose of MB have shown improvement in hematinic and lactase levels comparable to those receiving ferrous sulfate. However, it causes lesser oxidative damage as compared to ferrous sulfate. This is an encouraging finding because it indicates the potential of MB to cause lesser gastrointestinal side effects compared to ferrous sulfate.

  12. Thermochemical sulfate reduction in deep petroleum reservoirs: a molecular approach; Thermoreduction des sulfates dans les reservoirs petroliers: approche moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanin, S.

    2002-11-01

    The thermochemical sulfate reduction (TSR) is a set of chemical reactions leading to hydrocarbon oxidation and production of carbon dioxide and sour gas (H{sub 2}S) which is observed in deep petroleum reservoirs enriched in anhydrites (calcium sulfate). Molecular and isotopic studies have been conducted on several crude oil samples to determine which types of compounds could have been produced during TSR. Actually, we have shown that the main molecules formed by TSR were organo-sulfur compounds. Indeed, sulfur isotopic measurements. of alkyl-di-benzothiophenes, di-aryl-disulfides and thia-diamondoids (identified by NMR or synthesis of standards) shows that they are formed during TSR as their value approach that of the sulfur of the anhydrite. Moreover, thia-diamondoids are apparently exclusively formed during this phenomenon and can thus be considered as true molecular markers of TSR. In a second part, we have investigated with laboratory experiments the formation mechanism of the molecules produced during TSR. A first model has shown that sulfur incorporation into the organic matter occurred with mineral sulfur species of low oxidation degree. The use of {sup 34}S allowed to show that the sulfates reduction occurred during these simulations. At least, some experiments on polycyclic hydrocarbons, sulfurized or not, allowed to establish that thia-diamondoids could be formed by acid-catalysed rearrangements at high temperatures in a similar way as the diamondoids. (author)

  13. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  14. Influencia de compuestos azúcares y no azúcares en la calidad industrial de caña de azúcar en Tucumán, R. Argentina: caña verde y quemada (Parte 2 Effect of sugar and non sugar compounds on sugar cane industrial quality in Tucumán (Argentina

    Directory of Open Access Journals (Sweden)

    B. Silvia Zossi

    2011-06-01

    . The rest is harvested in a semi-mechanical way, mostly by burning cane, cutting it manually and using a loading device. Cane is burnt before or after harvest to remove leaves attached to stems, thereby minimizing the presence of non-sugars during industrial processing. Due to legislative actions since 2005, green cane harvesting has been gradually implemented. This harvesting practice ultimately led to a significant increase in non-sugar content in processed cane. This paper studies the influence of the main sugar and non-sugar components on juice composition that affect the manufacturing process, especially focusing on those compounds promoting colour. The study was conducted on cane from the four most widely used commercial varieties in the province: TUCCP 77-42, LCP 85-384, CP 65-357 and RA 87-3. Cane samples derived from three different harvesting practices: topped stalks without leaves, burnt cane without leaves and tops, and green harvested cane with approximately 15% of trash (leaves and tops. Results showed that regardless of the type of harvest, LCP 85-384 yielded the highest sugar levels because of its highest sucrose content and lowest levels of fibre and non sugar compounds. In the four varieties studied juice extraction and total recoverable sugar decreased, while non sugar compounds, mainly starch and ash, increased when green cane harvested was processed.

  15. A unique isotopic fingerprint during sulfate-driven anaerobic oxidation of methane

    Science.gov (United States)

    Antler, G.; Turchyn, A. V.; Herut, B.; Sivan, O.

    2014-12-01

    Bacterial sulfate reduction is responsible for the majority of anaerobic methane oxidation in modern marine sediments. This sulfate-driven AOM can often metabolize all the methane produced within marine sediments, preventing any from reaching the overlying ocean. In certain areas, however, methane concentrations are high enough to form bubbles, which can reach the seafloor, only partially metabolized through sulfate-driven AOM; these areas where methane bubbles into the ocean are called cold seeps, or methane seeps. We use the sulfur and oxygen isotopes of sulfate (d34SSO4 and d18OSO4) in locations where sulfate-driven AOM is occurring both in methane seeps as well as lower flux methane transition zones to show that in methane seeps, the d34SSO4 and d18OSO4 data during the coupled sulfate reduction fall into a very narrow range and with a close to linear relationship (slope 0.37± 0.01 (R^2= 0.98, n=52, 95% confidence interval). In the studied environments, considerably different physical properties exist, excluding the possibility that this linear relationship can be attributed to physical processes such as diffusion, advection or mixing of two end-members. This unique isotopic signature emerges during bacterial sulfate reduction by methane in 'cold' seeps and differs when sulfate is reduced by either organic matter oxidation or by a slower, diffusive flux of methane within marine sediments. We show also that this unique isotope fingerprint is preserved in the rock record in authigenic build-ups of carbonates and barite associated with methane seeps, and may serve as a powerful tool for identifying catastrophic methane release in the geological record.

  16. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  17. Anti-metastatic Semi-synthetic Sulfated Maltotriose C-C Linked Dimers. Synthesis and Characterisation

    Directory of Open Access Journals (Sweden)

    Giangiacomo Torri

    2012-08-01

    Full Text Available This manuscript describes the preparation and the spectroscopic characterisation of semi-synthetic sulfated maltotriose C-C linked dimers (SMTCs where the natural C-O-C anomeric bond was substituted by one direct central C-C bond. This C-C bond induces conformation and flexibility changes with respect to the usual anomeric bond. SMTCs neutral precursors came from maltotriosyl bromide electroreduction through maltotriosyl radical intermediate dimerisation. The new C-C bond configuration, named for convenience a,a, a,b and b,b as the natural anomeric bond, dictated the statistic ratio formation of three diastereoisomers. They were separated by silica gel flash chromatography followed by semi preparative HPLC chromatography. Each diastereoisomer was exhaustively sulfated to afford the corresponding SMTCs. SMTCs were huge characterised by NMR spectroscopy which provided the sulfation degree, too. a,a and a,b were found quite homogeneous samples with a high degree of sulfation (85–95%. b,b appeared a non-homogeneous sample whose average sulfation degree was evaluated at around 78%. Mass spectroscopy experiments confirmed the sulfation degree range. Some considerations were proposed about SMTCs structure-biological properties.

  18. Sulfate Reduction and Thiosulfate Transformations in a Cyanobacterial Mat during a Diel Oxygen Cycle

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1994-01-01

    Bacterial sulfate reduction and transformations of thiosulfate were studied with radiotracers in a Microcoleus chthono-plastes-dominated microbial mat growing in a hypersaline pond at the Red Sea. The study showed how a diel cycle of oxygen evolution affected respiration by sulfate-reducing bacte......Bacterial sulfate reduction and transformations of thiosulfate were studied with radiotracers in a Microcoleus chthono-plastes-dominated microbial mat growing in a hypersaline pond at the Red Sea. The study showed how a diel cycle of oxygen evolution affected respiration by sulfate......-reducing bacteria and the metabolism of thiosulfate through oxidative and reductive pathways. Sulfate reduction occurred in both oxic and anoxic layers of the mat and varied diurnally, apparently according to temperature rather than to oxygen. Time course experiments showed that the radiotracer method...... underestimated sulfate reduction in the oxic zone due to rapid reoxidation of the produced sulfide. Extremely high reduction rates of up to 10 mu mol cm(-3) d(-1) were measured just below the euphotic zone. Although thiosulfate was simultaneously oxidized, reduced and disproportionated by bacteria in all layers...

  19. Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis.

    Science.gov (United States)

    Mi-ichi, Fumika; Miyamoto, Tomofumi; Takao, Shouko; Jeelani, Ghulam; Hashimoto, Tetsuo; Hara, Hiromitsu; Nozaki, Tomoyoshi; Yoshida, Hiroki

    2015-06-02

    Hydrogenosomes and mitosomes are mitochondrion-related organelles (MROs) that have highly reduced and divergent functions in anaerobic/microaerophilic eukaryotes. Entamoeba histolytica, a microaerophilic, parasitic amoebozoan species, which causes intestinal and extraintestinal amoebiasis in humans, possesses mitosomes, the existence and biological functions of which have been a longstanding enigma in the evolution of mitochondria. We previously demonstrated that sulfate activation, which is not generally compartmentalized to mitochondria, is a major function of E. histolytica mitosomes. However, because the final metabolites of sulfate activation remain unknown, the overall scheme of this metabolism and the role of mitosomes in Entamoeba have not been elucidated. In this study we purified and identified cholesteryl sulfate (CS) as a final metabolite of sulfate activation. We then identified the gene encoding the cholesteryl sulfotransferase responsible for synthesizing CS. Addition of CS to culture media increased the number of cysts, the dormant form that differentiates from proliferative trophozoites. Conversely, chlorate, a selective inhibitor of the first enzyme in the sulfate-activation pathway, inhibited cyst formation in a dose-dependent manner. These results indicate that CS plays an important role in differentiation, an essential process for the transmission of Entamoeba between hosts. Furthermore, we show that Mastigamoeba balamuthi, an anaerobic, free-living amoebozoan species, which is a close relative of E. histolytica, also has the sulfate-activation pathway in MROs but does not possess the capacity for CS production. Hence, we propose that a unique function of MROs in Entamoeba contributes to its adaptation to its parasitic life cycle.

  20. ATTENUATION OF CARDIOVASCULAR RESPONSES TO LARYNGOSCOPY AND INTUBATIONDEXMEDETOMIDINE VS. MAGNESIUM SULFATE

    Directory of Open Access Journals (Sweden)

    Basheer Ahmed Khan

    2017-01-01

    Full Text Available BACKGROUND Laryngoscopy and intubation are associated with cardiovascular changes like tachycardia, increase in blood pressure and pulmonary artery pressure and arrhythmias and ever since several methods have been suggested to alleviate such complications including the administration of dexmedetomidine and magnesium sulfate. This study compares the effects of intravenous administration of dexmedetomidine and magnesium sulfate on unwanted haemodynamic responses following laryngoscopy and intubation in elective surgery cases. MATERIALS AND METHODS This prospective randomised clinical trial was conducted on 100 ASA-I and ASA-II candidates who received dexmedetomidine and magnesium sulfate randomly before intubation. Heart rate, systolic blood pressure and diastolic blood pressure were noted at 0, 3, 5 and 10 minutes after intubation. RESULTS Systolic and diastolic blood pressure in both groups when compared to the preoperative values showed that after giving the study drug there was significant fall in SBP and DBP. Both magnesium sulfate and dexmedetomidine controlled the systolic and diastolic blood pressure to laryngoscopy and endotracheal intubation effectively. Heart rate values were statistically and significantly lower in dexmedetomidine group. The increase in heart rate was highly significant in magnesium sulfate group when compared to dexmedetomidine group during laryngoscopy and intubation. CONCLUSION Our study concludes that dexmedetomidine and magnesium sulfate were equally effective in attenuating the stress response to laryngoscopy and intubation when administered 10 minutes prior to intubation.

  1. Resistance of Xanthomonas euvesicatoria strains from Brazilian pepper to copper and zinc sulfates

    Directory of Open Access Journals (Sweden)

    MAYSA S. AREAS

    Full Text Available ABSTRACT Bacterial spot, caused by Xanthomonas spp., is one of the major bacterial diseases in pepper (Capsicum annuum L.. The infection results in reduced crop yield, particularly during periods of high rainfall and temperature, due to the low efficiency of chemical control with copper bactericides. This study evaluated the copper and zinc sulfate sensitivity of 59 pathogenic strains of Xanthomonas euvesicatoria isolated from pepper plants produced in various regions throughout Brazil. Both the respective sulfates and a mixture thereof was evaluated at 50, 100, 200 and 400 μg.mL-1. All the evaluated strains were found to be resistant to zinc sulfate (100 μg.mL-1 and 86.4% were resistant to copper sulfate (200 μg.mL-1. The mixture of copper (200 μg.mL-1 and zinc (200 μg.mL-1 sulfates inhibited the growth of all strains of X. euvesicatoria. To our knowledge this is the first study to report the resistance of X. euvesicatoria strains from pepper plants to copper and zinc sulfates in Brazil.

  2. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  3. Diaqua(triethanolaminecopper(II sulfate monohydrate

    Directory of Open Access Journals (Sweden)

    Xi-Zhong Li

    2009-08-01

    Full Text Available The asymmetric unit of the title compound, [Cu(C6H15NO3(H2O2]SO4·H2O, contains a complex cation, a sulfate anion and one uncoordinated water molecule. In the complex cation, the CuII ion is coordinated by five O atoms (three of which are from the triethanolamine ligand and two from coordinated water molecules and one N atom of the triethanolamine ligand in a typical Jahn–Teller-distorted octahedral geometry. Classical intermolecular O—H...O hydrogen bonds link the cation, the sulfate anion and the water molecule into a two-dimensional network.

  4. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction

    Science.gov (United States)

    Antler, Gilad; Turchyn, Alexandra V.; Ono, Shuhei; Sivan, Orit; Bosak, Tanja

    2017-04-01

    Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide.

  5. [Discussion on barium sulfate turbidity as arbitration inspection method for sulfate in drinking water].

    Science.gov (United States)

    Wei, Bin; Wang, Qin; He, Yi; Wang, Yang; Wang, Min; Liu, Yueyue

    2013-09-01

    To evaluate the suitability of barium sulfate turbidity in Standard examination methods for drinking water (GB/T 5750.5-2006) as arbitration inspection method of sulfate in drinking water by evaluation of uncertainty. The expanded uncertainty of determination result for the unknown water sample was given by evaluating all uncertainty components in process of determination of barium sulfate turbidity. The determination result of the unknown water sample is 250 mg/L , with the expanded uncertainty of 42 mg/L (kappa = 2). This method could not accurately determine the amount of sulfate which is close to health standard limited in drinking water, at the same time, it' s unsuitable as arbitration inspection method of sulfate in drinking water. Because the expanded uncertainty of determination results of the unknown water sample by barium sulfate turbidity is so big, with the confidence regions of sulfate of 208-292 mg/L. So, evaluating uncertainty of the determination results is helpful to choose the suitable arbitration inspection method.

  6. Modeling Spatio-vertical Distribution of Sulfate and Total Sulfide along the Mangrove Intertidal Zone

    Directory of Open Access Journals (Sweden)

    Pasicha Chaikaew,

    2017-07-01

    Full Text Available Given the complexity and heterogeneity of mangrove conservation landscape, research gaps still exists to quantify sulfate and total sulfide and their relationships with sediment properties and environmental covariates. Thirty-two sediment samples in the top layers (0-10 cm were analyzed to assess biochemical properties, sulfate and total sulfide contents. With an average±SD value of 0.62±0.36 mg/g, the total sulfide content from the study site was high compared to the southern part of Thailand. The distribution of sulfate content exhibited high values in nearby land area which gradually reduced in seaward discharges/runoff, whereas high concentrations of total sulfide were highlighted around the center of the study site and vertically accumulated in the top few centimeters of soil and decreased with depth. The most pronounced factor affecting the amount of sulfate and total sulfide content was organic matter, while pH, organic carbon, potassium, salinity, and sediment-mangrove conditions correlated with sulfate and sulfide at different levels. Total sulfides concentration can be considered as indicator of over nutrient-rich sediments for assessing environmental quality perhaps the die-back of mangroves. Concerns about high total sulfide concentrations across mangrove conservation areas should receive more attention, in particular the reduction of OM from the anthropogenic source.

  7. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    Directory of Open Access Journals (Sweden)

    R. Ghahremaninezhad

    2016-04-01

    Full Text Available Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter  <  0.49 µm was from biogenic sources (>  63 %, which is higher than in previous Arctic studies measuring above the ocean during fall (<  15 % (Rempillo et al., 2011 and total aerosol sulfate at higher latitudes at Alert in summer (>  30 % (Norman et al., 1999. The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles  <  0.49 µm in diameter (15–17 and 17–19 July. The high biogenic fraction of sulfate fine aerosol and similar isotope ratio values of these particles and SO2 emphasize the role of marine organisms (e.g., phytoplankton, algae, bacteria in the formation of fine particles above the Arctic Ocean during the productive summer months.

  8. Plasmin Regulation through Allosteric, Sulfated, Small Molecules

    Directory of Open Access Journals (Sweden)

    Rami A. Al-Horani

    2015-01-01

    Full Text Available Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffolds and varying number and positions of sulfate groups to discover several promising hits. Of these, a pentasulfated flavonoid-quinazolinone dimer 32 was found to be the most potent sulfated small inhibitor of plasmin (IC50 = 45 μM, efficacy = 100%. Michaelis-Menten kinetic studies revealed an allosteric inhibition of plasmin by these inhibitors. Studies also indicated that the most potent inhibitors are selective for plasmin over thrombin and factor Xa, two serine proteases in coagulation cascade. Interestingly, different inhibitors exhibited different levels of efficacy (40%–100%, an observation alluding to the unique advantage offered by an allosteric process. Overall, our work presents the first small, synthetic allosteric plasmin inhibitors for further rational design.

  9. Treating poultry litter with aluminum sulfate (alum)

    Science.gov (United States)

    This is a USDA/ARS factsheet on how to treat poultry litter with aluminum sulfate (alum) to reduce ammonia emissions. Over half of the nitrogen excreted from chickens is lost to the atmosphere as ammonia before the manure is removed from the poultry houses. Research has shown that additions of alu...

  10. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS ...

    African Journals Online (AJOL)

    Four strains of eri, Samia cynthia ricini Lepidoptera: Saturniidae that can be identified morphologically and maintained at North East Institute of Science and Technology, Jorhat were characterized based on their protein profile by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and DNA by random ...

  11. Intravenous magnesium sulfate therapy in severe asthma

    Directory of Open Access Journals (Sweden)

    Mohd. Al-Ajmi

    2007-01-01

    Full Text Available A 22-year-old female, known asthmatic since seven years, developed severe bronchospasm in the preop-erative period. Bronchospasm remained unresponsive to the inhaled beta-agonist plus anticholinergic, IV ami-nophylline and hydrocortisone but responded quickly with magnesium sulfate® ( PSI, KSA infusion 1.25gm in 100ml normal saline over 20 minutes and another 1.25 gm over next 30 minutes as the initial infusion showed improvement in her clinical symptoms. Within half an hour of administering the 1st infusion of magnesium sulfate (1.25 gm the respiratory rate started reducing, rhonchi became less, SpO 2 came upto 92% and re-mained always above 90%. Encouraged by this result IV magnesium sulfate 2.5 gm in 500 ml normal saline was infused over next 24 hours along with alternate salbutamol and ipratropium nebulization every 6 hourly. With this treatment regimen the patient became asymptomatic within next 24 hours with normal clinical parameters and FEV 1 value. Hence it may be concluded that IV magnesium sulfate can be considered for patients with acute severe asthma who do not respond to standard therapeutic medications.

  12. Sulfate reducing potential in an estuarine beach

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    Sulfate reducing bacteria (SRB) and their activity (SRA) together with total anaerobic and aerobic bacterial flora were estimated during July 1982-April 1983 and July-August 1984 from 1, 3 and 5 cm depths using core samples. The average number (no...

  13. 21 CFR 582.5997 - Zinc sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  14. 21 CFR 582.5230 - Calcium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  15. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  16. 21 CFR 582.5315 - Ferrous sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  17. COMBINED ALUMINIUM SULFATE/HYDROXIDE PROCESS FOR ...

    African Journals Online (AJOL)

    community level. KEY WORDS: Nalgonda Technique, Aluminium sulfate, Aluminium hydroxide, Fluoride, Drinking water. INTRODUCTION. Fluoride is a common constituent in natural waters or wastewaters. It may originate from either natural geological sources or industries that use fluoride-containing compounds as raw.

  18. Thermophilic methanol utilization by sulfate reducing bacteria

    NARCIS (Netherlands)

    Goorissen, Helene Petronel

    2002-01-01

    The deposition of sulfuroxyaninons like sulfate, sulfite, and thiosulfate by man causes severe environmental problems like anaerobiosis of surface water and acid rain. The classical way of treatment of sulfuroxyanions containing waste streams like flue- gases is a chemical process in which the

  19. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    These effects were found to be significant (P<0.05). Eye care practitioners should advise their patients to desist from abusing laxatives and other over-the-counter drugs and should consider its effects during analysis of visual test finding for effective patient care. Magnesium sulfate, Laxatives, Accommodation, Convergence, ...

  20. METABOLISM OF SULFATE-REDUCING PROKARYOTES

    NARCIS (Netherlands)

    HANSEN, TA

    1994-01-01

    Dissimilatory sulfate reduction is carried out by a heterogeneous group of bacteria and archaea that occur in environments with temperatures up to 105 degrees C. As a group together they have the capacity to metabolize a wide variety of compounds ranging from hydrogen via typical organic

  1. Hygroscopicity and optical properties of alkylaminium sulfates.

    Science.gov (United States)

    Hu, Dawei; Li, Chunlin; Chen, Hui; Chen, Jianmin; Ye, Xingnan; Li, Ling; Yang, Xin; Wang, Xinming; Mellouki, Abdelwahid; Hu, Zhongyang

    2014-01-01

    The hygroscopicity and optical properties of alkylaminium sulfates (AASs) were investigated using a hygroscopicity tandem differential mobility analyzer coupled to a cavity ring-down spectrometer and a nephelometer. AAS particles do not exhibit a deliquescence phenomenon and show a monotonic increase in diameter as the relative humidity (RH) ascends. Hygroscopic growth factors (GFs) for 40, 100 and 150 nm alkylaminium sulfate particles do not show an apparent Kelvin effect when RH is less than 45%, whereas GFs of the salt aerosols increase with initial particle size when RH is higher than 45%. Calculation using the Zdanovskii-Stokes-Robinson mixing rule suggests that hygroscopic growth of triethylaminium sulfate-ammonium sulfate mixtures is non-deliquescent, occurring at very low RH, implying that the displacement of ammonia by amine will significantly enhance the hygroscopicity of (NH4)2SO4 aerosols. In addition, light extinction of AAS particles is a combined effect of both scattering and absorption under dry conditions, but is dominated by scattering under wet conditions.

  2. Primary ovarian carcinomas and abdominal metastasis contain 4,6-disulfated chondroitin sulfate rich regions, which provide adhesive properties to tumour cells

    NARCIS (Netherlands)

    Vallen, M.J.E.; Schmidt, S.; Oosterhof, A.; Bulten, J.; Massuger, L.F.A.G.; Kuppevelt, T.H. van

    2014-01-01

    High mortality in ovarian cancer patients is primarily caused through rapid metastasis of the tumour, but the underlying mechanisms are poorly understood. Glycosaminoglycans, are abundantly present in tumours and chondroitin sulfate-E (CSE), a highly 4,6-sulfated glycosaminoglycan, has been

  3. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    Science.gov (United States)

    Qi, Ping; Liang, Zhi-An; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-Qiong; Zheng, Chun-Hao; Luo, Li-Ni; Lin, Zi-Hao; Zhu, Fang; Zhang, Xue-Wu

    2016-03-11

    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Uncertainties in the oxygen isotopic composition of barium sulfate induced by coprecipitation of nitrate.

    Science.gov (United States)

    Michalski, Greg; Kasem, Michelle; Rech, Jason A; Adieu, Sabine; Showers, William S; Genna, Bernie; Thiemens, Mark

    2008-10-01

    Coprecipitation of nitrate and sulfate by barium has probably resulted in significant error in numerous studies dealing with the oxygen isotopic composition of natural sulfates using chemical/thermal conversion of BaSO(4) and analysis by isotope ratio mass spectrometry. In solutions where NO(3) (-)/SO(4) (2-) molar ratios are above 2 the amount of nitrate coprecipitated with BaSO(4) reaches a maximum of approximately 7% and decreases roughly linearly as the molar ratio decreases. The fraction of coprecipitated nitrate appears to increase with decreasing pH and is also affected by the nature of the cations in the precipitating solution. The size of the oxygen isotope artifact in sulfate depends both on the amount of coprecipitated nitrate and the delta(18)O and Delta(17)O values of the nitrate, both of which can be highly variable. The oxygen isotopic composition of sulfate extracted from atmospheric aerosols or rain waters are probably severely biased because photochemical nitrate is usually also present and it is highly enriched in (18)O (delta(18)O approximately 50-90 per thousand) and has a large mass-independent isotopic composition (Delta(17)O approximately 20-32 per thousand). The sulfate delta(18)O error can be 2-5 per thousand with Delta(17)O artifacts reaching as high as 4.0 per thousand.

  5. The Importance of Sulfate Adenylyl Transferase in S and O Fractionation by Sulfate Reducing Bacteria

    Science.gov (United States)

    Smith, D. A.; Johnston, D. T.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reduction (MSR) is critical to the oxidation of organic matter in modern and ancient oceans, and plays an important role in regulating the redox state of the Earth's surface. The sulfur and oxygen isotopic composition of seawater sulfate and of sulfate minerals reflect the biogeochemical processes that cycle sulfur, of which MSR is among the most important. MSR is a multi-enzymatic reaction network that partitions the isotopes of sulfur and oxygen as a consequence of both the flux of sulfate through this biochemical network and the fractionation imposed by each individual enzyme. MSR affects the δ18O of residual, extracellular sulfate mainly by the equilibration of the MSR intermediate sulfite with extracellular water (Antler et al., 2013 GCA, Wankel et al., 2013 Geobiol). A series of oxidative and exchange reactions catalyzed by APS reductase (APSr), sulfate adenylyl transferase (Sat), and sulfate transporters promote the conversion of water-equilibrated intracellular sulfite to extracellular sulfate. The flux of sulfoxy anions via these proteins will be, at least in part, dependent on the activity of these enzymes. To test this, we examined sulfur and oxygen isotope fractionation in genetically engineered mutants of the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH). In these mutants, the activity of Sat has been artificially increased by perturbing the (i) transcriptional repressor Rex and (ii) its binding site upstream of the gene encoding Sat (Christensen et al., 2015 J. Bacteriol). It was predicted that this would minimize the back reaction of Sat, enhance the intracellular pool of APS, and minimize the equilibration between sulfite and adenosine monophosphate (AMP). Both mutants, along with the wild type DvH were grown in batch culture made with water enriched in 18O. Samples were collected throughout batch growth, and we report the evolution of the S and O isotopic composition of sulfate, and of the S isotopic

  6. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    Science.gov (United States)

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  7. 21 CFR 522.1204 - Kanamycin sulfate injection.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Kanamycin sulfate injection. 522.1204 Section 522.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....1204 Kanamycin sulfate injection. (a) Specifications. Each milliliter of kanamycin sulfate injection...

  8. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  9. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  10. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  11. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of...

  12. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b...

  13. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of use...

  14. Citric acid wastewater as electron donor for biological sulfate reduction

    NARCIS (Netherlands)

    Stams, A.J.M.; Huisman, J.; Garcia Encia, P.A.; Muyzer, G.

    2009-01-01

    Citrate-containing wastewater is used as electron donor for sulfate reduction in a biological treatment plant for the removal of sulfate. The pathway of citrate conversion coupled to sulfate reduction and the microorganisms involved were investigated. Citrate was not a direct electron donor for the

  15. 21 CFR 529.1044b - Gentamicin sulfate solution.

    Science.gov (United States)

    2010-04-01

    ... gentamicin solution for approximately 10 minutes at atmospheric pressure. Eggs can also be treated by warming... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate solution. 529.1044b Section 529... Gentamicin sulfate solution. (a) Specifications. Each milliliter of solution contains gentamicin sulfate...

  16. 21 CFR 520.2158a - Streptomycin sulfate oral solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Streptomycin sulfate oral solution. 520.2158a... Streptomycin sulfate oral solution. (a) Specifications. Solution containing 25 percent streptomycin sulfate. (b... administer for more than 4 days. Prepare fresh solution daily. Calves: Withdraw 2 days before slaughter. As...

  17. 21 CFR 522.1484 - Neomycin sulfate sterile solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate sterile solution. 522.1484... § 522.1484 Neomycin sulfate sterile solution. (a) Specifications. Each milliliter of sterile aqueous solution contains 50 milligrams of neomycin sulfate (equivalent to 35 milligrams of neomycin base).1 1...

  18. 21 CFR 520.1044c - Gentamicin sulfate soluble powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate soluble powder. 520.1044c Section 520.1044c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Gentamicin sulfate soluble powder. (a) Specifications. Each gram of gentamicin sulfate soluble powder...

  19. Copper sulfates as cathode materials for Li batteries

    Science.gov (United States)

    Schwieger, Jonathan N.; Kraytsberg, Alexander; Ein-Eli, Yair

    As lithium battery technology sets out to bridge the gap between portable electronics and the electrical automotive industry, cathode materials still stand as the bottleneck regarding performances. In the realm of highly attractive polyanion-type structures as high-voltage cathode materials, the sulfate group (SO 4) 2- possesses an acknowledged superiority over other contenders in terms of open circuit voltage arising from the inductive effect of strong covalent S-O bonds. In parallel, novel lithium insertion mechanisms are providing alternatives to traditional intercalation, enabling reversible multi-electron processes securing high capacities. Combining both of these advantageous features, we report here the successful electrochemical reactivity of copper sulfate pentahydrate (CuSO 4·5H 2O) with respect to lithium insertion via a two-electron displacement reaction entailing the extrusion of metallic copper at a dual voltage of 3.2 V and 2.7 V followed by its reversible insertion at 3.5 V and 3.8 V. At this stage, cyclability was still shown to be limited due to the irreversible degradation to a monohydrate structure owing to constitutional water loss.

  20. Copper sulfates as cathode materials for Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schwieger, Jonathan N.; Kraytsberg, Alexander; Ein-Eli, Yair [Technion Israel Institute of Technology, Department of Materials Engineering, Technion City, Haifa 32000 (Israel)

    2011-02-01

    As lithium battery technology sets out to bridge the gap between portable electronics and the electrical automotive industry, cathode materials still stand as the bottleneck regarding performances. In the realm of highly attractive polyanion-type structures as high-voltage cathode materials, the sulfate group (SO{sub 4}){sup 2-} possesses an acknowledged superiority over other contenders in terms of open circuit voltage arising from the inductive effect of strong covalent S-O bonds. In parallel, novel lithium insertion mechanisms are providing alternatives to traditional intercalation, enabling reversible multi-electron processes securing high capacities. Combining both of these advantageous features, we report here the successful electrochemical reactivity of copper sulfate pentahydrate (CuSO{sub 4}.5H{sub 2}O) with respect to lithium insertion via a two-electron displacement reaction entailing the extrusion of metallic copper at a dual voltage of 3.2 V and 2.7 V followed by its reversible insertion at 3.5 V and 3.8 V. At this stage, cyclability was still shown to be limited due to the irreversible degradation to a monohydrate structure owing to constitutional water loss. (author)

  1. Spatial dependence of reduced sulfur in Everglades dissolved organic matter controlled by sulfate enrichment

    Science.gov (United States)

    Poulin, Brett A.; Ryan, Joseph N.; Nagy, Kathryn L.; Stubbins, Aron; Dittmar, Thorsten; Orem, William H.; Krabbenhoft, David P.; Aiken, George R.

    2017-01-01

    Sulfate inputs to the Florida Everglades stimulate sulfidic conditions in freshwater wetland sediments that affect ecological and biogeochemical processes. An unexplored implication of sulfate enrichment is alteration of the content and speciation of sulfur in dissolved organic matter (DOM), which influences the reactivity of DOM with trace metals. Here, we describe the vertical and lateral spatial dependence of sulfur chemistry in the hydrophobic organic acid fraction of DOM from unimpacted and sulfate-impacted Everglades wetlands using X-ray absorption spectroscopy and ultrahigh-resolution mass spectrometry. Spatial variation in DOM sulfur content and speciation reflects the degree of sulfate enrichment and resulting sulfide concentrations in sediment pore waters. Sulfur is incorporated into DOM predominantly as highly reduced species in sulfidic pore waters. Sulfur-enriched DOM in sediment pore waters exchanges with overlying surface waters and the sulfur likely undergoes oxidative transformations in the water column. Across all wetland sites and depths, the total sulfur content of DOM correlated with the relative abundance of highly reduced sulfur functionality. The results identify sulfate input as a primary determinant on DOM sulfur chemistry to be considered in the context of wetland restoration and sulfur and trace metal cycling.

  2. Designing allosteric inhibitors of factor XIa. Lessons from the interactions of sulfated pentagalloylglucopyranosides.

    Science.gov (United States)

    Al-Horani, Rami A; Desai, Umesh R

    2014-06-12

    We recently introduced sulfated pentagalloylglucopyranoside (SPGG) as an allosteric inhibitor of factor XIa (FXIa) (Al-Horani et al., J. Med Chem. 2013, 56, 867-878). To better understand the SPGG-FXIa interaction, we utilized eight SPGG variants and a range of biochemical techniques. The results reveal that SPGG's sulfation level moderately affected FXIa inhibition potency and selectivity over thrombin and factor Xa. Variation in the anomeric configuration did not affect potency. Interestingly, zymogen factor XI bound SPGG with high affinity, suggesting its possible use as an antidote. Acrylamide quenching experiments suggested that SPGG induced significant conformational changes in the active site of FXIa. Inhibition studies in the presence of heparin showed marginal competition with highly sulfated SPGG variants but robust competition with less sulfated variants. Resolution of energetic contributions revealed that nonionic forces contribute nearly 87% of binding energy suggesting a strong possibility of specific interaction. Overall, the results indicate that SPGG may recognize more than one anion-binding, allosteric site on FXIa. An SPGG molecule containing approximately 10 sulfate groups on positions 2 through 6 of the pentagalloylglucopyranosyl scaffold may be the optimal FXIa inhibitor for further preclinical studies.

  3. Spatial Dependence of Reduced Sulfur in Everglades Dissolved Organic Matter Controlled by Sulfate Enrichment.

    Science.gov (United States)

    Poulin, Brett A; Ryan, Joseph N; Nagy, Kathryn L; Stubbins, Aron; Dittmar, Thorsten; Orem, William; Krabbenhoft, David P; Aiken, George R

    2017-04-04

    Sulfate inputs to the Florida Everglades stimulate sulfidic conditions in freshwater wetland sediments that affect ecological and biogeochemical processes. An unexplored implication of sulfate enrichment is alteration of the content and speciation of sulfur in dissolved organic matter (DOM), which influences the reactivity of DOM with trace metals. Here, we describe the vertical and lateral spatial dependence of sulfur chemistry in the hydrophobic organic acid fraction of DOM from unimpacted and sulfate-impacted Everglades wetlands using X-ray absorption spectroscopy and ultrahigh-resolution mass spectrometry. Spatial variation in DOM sulfur content and speciation reflects the degree of sulfate enrichment and resulting sulfide concentrations in sediment pore waters. Sulfur is incorporated into DOM predominantly as highly reduced species in sulfidic pore waters. Sulfur-enriched DOM in sediment pore waters exchanges with overlying surface waters and the sulfur likely undergoes oxidative transformations in the water column. Across all wetland sites and depths, the total sulfur content of DOM correlated with the relative abundance of highly reduced sulfur functionality. The results identify sulfate input as a primary determinant on DOM sulfur chemistry to be considered in the context of wetland restoration and sulfur and trace metal cycling.

  4. Introduction of sulfate groups on poly(ethylene) surfaces by argon plasma immobilization of sodium alkyl sulfates

    NARCIS (Netherlands)

    Lens, J.P.; Lens, J.P.; Terlingen, J.G.A.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1998-01-01

    Sulfate groups were introduced at the surface of poly(ethylene) (PE) samples. This was accomplished by immobilizing a precoated layer of either sodium 10-undecene sulfate (S11(:)) or sodium dodecane sulfate (SDS) on the polymeric surface by means of an argon plasma treatment. For this purpose,

  5. Seasonal and event variations in δ34S values of stream sulfate in a Vermont forested catchment: Implications for sulfur sources and cycling

    Science.gov (United States)

    Shanley, James B.; Mayer, Bernhard; Mitchell, Myron J.; Bailey, Scott W.

    2008-01-01

    Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The δ34S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5‰ in early spring to about 10‰ in early fall. During high-flow events, δ34S values typically decreased by 1 to 3‰ from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (δ34S ~ 6–14‰); (2) contributions of pedogenic sulfate (δ34S ~ 5–6‰) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.

  6. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor.

    Science.gov (United States)

    Tan, Chee Wah; Poh, Chit Laa; Sam, I-Ching; Chan, Yoke Fun

    2013-01-01

    Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor.

  7. Effect of magnetic field on the crystallization of zinc sulfate

    Directory of Open Access Journals (Sweden)

    A. M. B. Freitas

    2000-03-01

    Full Text Available The effect of magnetic field on the crystallization of diamagnetic zinc sulfate was investigated in a series of controlled batch cooling experiments. Zinc sulfate solutions were exposed to magnetic fields of different intensities, up to a maximum of 0.7T. A clear influence of magnetic field on the following zinc sulfate crystallization parameters was found: an increase in saturation temperature, a decrease in metastable zone width, and an increase in growth rate and average crystal size. These effects were observed for the diamagnetic zinc sulfate, but not in similar, previously reported experiments for paramagnetic copper sulfate.

  8. Sulfation of the bikunin chondroitin sulfate chain determines heavy chain·hyaluronan complex formation.

    Science.gov (United States)

    Lord, Megan S; Day, Anthony J; Youssef, Peter; Zhuo, Lisheng; Watanabe, Hideto; Caterson, Bruce; Whitelock, John M

    2013-08-09

    Inter-α-trypsin inhibitor (IαI) is a complex comprising two heavy chains (HCs) that are covalently bound by an ester bond to chondroitin sulfate (CS), which itself is attached to Ser-10 of bikunin. IαI is essential for the trans-esterification of HCs onto hyaluronan (HA). This process is important for the stabilization of HA-rich matrices during ovulation and some inflammatory processes. Bikunin has been isolated previously by anion exchange chromatography with a salt gradient up to 0.5 M NaCl and found to contain unsulfated and 4-sulfated CS disaccharides. In this study, bikunin-containing fractions in plasma and urine were separated by anion exchange chromatography with a salt gradient of 0.1-1.0 M NaCl, and fractions were analyzed for their reactivity with the 4-sulfated CS linkage region antibody (2B6). The fractions that reacted with the 2B6 antibody (0.5-0.8 M NaCl) were found to predominantly contain sulfated CS disaccharides, including disulfated disaccharides, whereas the fractions that did not react with this antibody (0.1-0.5 M NaCl) contained unsulfated and 4-sulfated CS disaccharides. IαI in the 0.5-0.8 M NaCl plasma fraction was able to promote the trans-esterification of HCs to HA in the presence of TSG-6, whereas the 0.1-0.5 M NaCl fraction had a much reduced ability to transfer HC proteins to HA, suggesting that the CS containing 4-sulfated linkage region structures and disulfated disaccharides are involved in the HC transfer. Furthermore, these data highlight that the structure of the CS attached to bikunin is important for the transfer of HC onto HA and emphasize a specific role of CS chain sulfation.

  9. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters.

    Science.gov (United States)

    Wakeman, Kathryn D; Erving, Leena; Riekkola-Vanhanen, Marja L; Puhakka, Jaakko A

    2010-09-01

    Silage was used as source of carbon and electrons for enrichment of silage-degrading and sulfate reducing bacteria (SRB) from boreal, acidic, metals-containing peat-bog samples and to support their use in batch and semi-batch systems in treatment of synthetic waste water. Sulfidogenic silage utilization resulted in a rapid decrease in lactate concentrations; concentrations of acetate, butyrate and propionate increased concomitantly. Synthetic waste water consisting of Mn, Mg and Fe (II) ions inhibited sulfate reduction at concentrations of 6 g/l, 8 g/l and 1 g/l respectively. During treatment, Mn and Mg ions remained in solution while Fe ions partially precipitated. Up to 87 mg sulfate was reduced per gram of silage. Sulfate reduction rates of 34, 22 and 6 mg/l/day were obtained at temperatures of 30, 20 and 9 °C respectively. In semi-batch reactors operated at low pH, the iron precipitation capacity was controlled by sulfate reduction rates and by partial loss of hydrogen sulfide to the gas phase. Passive reactor systems should, therefore, be operated at neutral pH. Metals tolerant, silage-fermenting (predominantly species belonging to genus Clostridium) and sulfate reducing bacteria (including a species similar to the psychrotolerant Desulfovibrio arcticus) were obtained from the peat bog samples. This work demonstrates that silage supports sulfate reduction and can be used as a low cost carbon and electron source for SRB in treatment of metals-containing waste water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Effect of sulfate fertilization on soil biota in grassland columns

    Science.gov (United States)

    Ikoyi, Israel; Donohue, John; Fowler, Andrew; Schmalenberger, Achim

    2017-04-01

    Sulfur (S) is an important macronutrient element in plant nutrition as a component of protein, enzymes, enzyme cofactors as well as being the major constituent of the amino acids cysteine and methionine. Organically bound S is the predominant form of S in the soil constituting up to 95% of S in agricultural soils. The most important form of S in terms of plant nutrition is inorganic sulfate which forms only about 5% of the total soil S content. Air pollution was the major source of S (as SO2) for plants, with up to 80% of the S obtained from this source. However, common effects of S limitation on crops such as chlorosis, yield reduction, and decrease in crop quality are becoming increasingly evident as atmospheric S supply has decreased in recent years. Recent research has shown that organically-bound S in soils is also plant-bioavailable, likely due to interconversion of organic S forms to inorganic sulfate by soil microbes. In this study, soil columns were setup in a greenhouse using moderate S (equivalent to Wisconsin S soil availability index of below 30) soils. The columns were planted with Lolium perenne and fertilized with 0 (control), 5 (low), 10 (medium) and 20 (high) kg/ha sulfate S alongside a full complement of other nutrients. Results after 14 weeks of management show a significant decrease (Pnutrition as is often the practice. Further analyses are underway to trace the fate of the applied S, nematode abundance, bacterial diversity and function. Studies like ours are important to feed data into mathematical models on biotic S cycling which serves as predictive tool for fertilizer use in agriculture.

  11. Deriving a History of Deposition and Alteration from Phyllosilicate-Sulfate Associations at Gale Crater

    Science.gov (United States)

    Vaniman, D. T.

    2011-12-01

    Gale Crater, field site for the 2011 Mars Science Laboratory rover Curiosity, is located in one of the most chlorine- and sulfur-rich areas detected by Odyssey gamma-ray spectroscopy (GRS) along the dichotomy boundary between Mars' southern cratered highlands and the northern plains. Comparably elevated chlorine and sulfur abundances occur in Arabia Terra, where modeling and MER Opportunity observations suggest that groundwater upwelling led to evaporite salt precipitation. In a deep crater such as Gale upwelling may have produced playa systems. High GRS sulfur at Gale Crater is supported by visible-infrared spectra in Gale's central mound consistent with Mg-sulfates (kieserite and polyhydrated), interstratified with smectite. There is a significant (~20 m) section with abundant nontronite and little or no evidence of hydrated sulfate in the lower mound. Mineral stratification at Gale promises the possibility of capturing a transition in sedimentary environment between phyllosilicate- and sulfate-dominated deposition. Sedimentary fabrics, textures, and mineralogy all bear on determining sedimentary history and Gale will provide an exceptionally detailed history through Curiosity's instrument suite. Should the clay minerals at Gale be limited to nontronite and other smectites, with little evidence of chlorite or mixed layer chlorite/smectite, limits can be placed on the extent of interaction with Mg-sulfate solutions. Gale has evidence of being at one time completely filled and a lack of chloritic forms would be particularly limiting on occurrence and composition of paleo-groundwater. Complete infilling of Gale would likely result in past burial temperatures, at the deep elevation of the landing site, favoring chloritization of smectite if concentrated Mg-sulfate groundwater were present. Sedimentary history at Gale may be further constrained by absence or presence of Ca-sulfates, which should form by cation exchange between smectite and Mg-enriched brines if the

  12. Sulfate and acid resistant concrete and mortar

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  13. Surface water sulfate dynamics in the northern Florida Everglades.

    Science.gov (United States)

    Wang, Hongqing; Waldon, Michael G; Meselhe, Ehab A; Arceneaux, Jeanne C; Chen, Chunfang; Harwell, Matthew C

    2009-01-01

    Sulfate contamination has been identified as a serious environmental issue in the Everglades ecosystem. However, it has received less attention compared to P enrichment. Sulfate enters the Arthur R. Marshall Loxahatchee National Wildlife Refuge (Refuge), a remnant of the historic Everglades, in pumped stormwater discharges with a mean concentration of approximately 50 mg L(-1), and marsh interior concentrations at times fall below a detection limit of 0.1 mg L(-1). In this research, we developed a sulfate mass balance model to examine the response of surface water sulfate in the Refuge to changes in sulfate loading and hydrological processes. Meanwhile, sulfate removal resulting from microbial sulfate reduction in the underlying sediments of the marsh was estimated from the apparent settling coefficients incorporated in the model. The model has been calibrated and validated using long-term monitoring data (1995-2006). Statistical analysis indicated that our model is capable of capturing the spatial and temporal variations in surface water sulfate concentrations across the Refuge. This modeling work emphasizes the fact that sulfate from canal discharge is impacting even the interior portions of the Refuge, supporting work by other researchers. In addition, model simulations suggest a condition of sulfate in excess of requirement for microbial sulfate reduction in the Refuge.

  14. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    Sulfate reduction was measured with the (SO42-)-S-35-tracer technique in slurries of sediment from Aarhus Bay, Denmark, where seasonal temperatures range from 0 degrees to 15 degrees C. The incubations were made at temperatures from 0 degrees C to 80 degrees C in temperature increments of 2 degrees...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...

  15. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...... of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of delta S-34 values. Using models informed by sulfur cycling in Lake Matano, we infer...... Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans....

  16. (/sup 35/S)autoradiographic study of sulfated GAG accumulation and turnover in embryonic mouse tooth germs

    Energy Technology Data Exchange (ETDEWEB)

    Lau, E.C.; Boukari, A.; Arechaga, J.; Osman, M.; Ruch, J.V.

    1983-01-01

    The accumulation of sulfated glycosaminoglycans(GAG) in embryonic mouse molars before, during, and after terminal differentiation of odontoblasts was localized by (/sup 35/S)autoradiography combined with the use of chondroitin ABC lyase. Much more sulfated GAG were accumulated in the dental papilla than in the dental epithelium. High incorporation of (/sup 35/S)sulfate occurred at the epithelio-mesenchymal junction, which is the site of dental basement membrane and predentin. Before terminal differentiation of odontoblasts, the distribution of sulfated GAG was uniform at the basement membrane. After the onset of terminal differentiation of odontoblasts, much more sulfated GAG accumulated at the tip of principal cusps than at the apical (inferior) parts of cusps, and sulfated GAG were then found to be degraded more rapidly at the epithelio-mesenchymal junction than at other parts of the tooth germ. Thus regional variation in the rate of degradation of GAG exists in the tooth germs. Trypsin-isolated dental epithelia cultured in vitro synthesized a new basement membrane that could be labeled with (/sup 3/H)glucosamine but not with /sup 35/SO4(-2). The epithelial-derived basal lamina contains little or no sulfatated GAG.

  17. Computational study of the effect of glyoxal-sulfate clustering on the Henry's law coefficient of glyoxal.

    Science.gov (United States)

    Kurtén, Theo; Elm, Jonas; Prisle, Nønne L; Mikkelsen, Kurt V; Kampf, Christopher J; Waxman, Eleanor M; Volkamer, Rainer

    2015-05-14

    We have used quantum chemical methods to investigate the molecular mechanism behind the recently reported ( Kampf , C. J. ; Environ. Sci. Technol . 2013 , 47 , 4236 - 4244 ) strong dependence of the Henry's law coefficient of glyoxal (C2O2H2) on the sulfate concentration of the aqueous phase. Although the glyoxal molecule interacts only weakly with sulfate, its hydrated forms (C2O3H4 and C2O4H6) form strong complexes with sulfate, displacing water molecules from the solvation shell and increasing the uptake of glyoxal into sulfate-containing aqueous solutions, including sulfate-containing aerosol particles. This promotes the participation of glyoxal in reactions leading to secondary organic aerosol formation, especially in regions with high sulfate concentrations. We used our computed equilibrium constants for the complexation reactions to assess the magnitude of the Henry's law coefficient enhancement and found it to be in reasonable agreement with experimental results. This indicates that the complexation of glyoxal hydrates with sulfate can explain the observed uptake enhancement.

  18. Long-term effects of increasing acidity on low-pH sulfate-reducing bioprocess and bacterial community.

    Science.gov (United States)

    Zhao, Jing; Fang, Di; Zhang, Pengfei; Zhou, Lixiang

    2017-02-01

    An ethanol-fed, sulfate-reducing anaerobic baffled reactor was operated over a period of 260 days to assess the effects of sequentially more acidic conditions (pH 4.5-2.5) on sulfate reduction and bacterial community. Results showed that the reactor could reduce sulfate and generate alkalinity at progressively lower pH values of 4.5, 3.5, and 2.5 in a synthetic wastewater containing 2500 mg/L sulfate. About 93.9% of the influent sulfate was removed at a rate of 4691 mg/L/day, and the effluent pH was increased to 6.8 even when challenged with influent pH as low as 2.5. Illumina MiSeq sequencing revealed that a step decrease in influent pH from 4.5 to 2.5 resulted in noticeable decrease in the biodiversity inside the sulfidogenic reactor. Additionally, complete and incomplete organic oxidizers Desulfobacter and Desulfovibrio were observed to be the most dominant sulfate reducers at pH 2.5, sustaining the low-pH, high-rate sulfate removal and alkalinity generation.

  19. A hydrogen sulfate salt of chlordiazepoxide

    Directory of Open Access Journals (Sweden)

    Veronica Diesen

    2012-07-01

    Full Text Available Crystals of the hydrogen sulfate salt of chlordiazepoxide (systematic name: 7-chloro-N-methyl-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-2-iminium 4-oxide hydrogen sulfate, C16H15ClN3O+·HSO4−, were obtained from a solution of chlordiazepoxide and sulfuric acid in methanol. The structure features chlordiazepoxide molecules that are protonated at the imine N atom. The seven-membered ring adopts a boat conformation with the CH2 group as the prow and the two aryl C atoms as the stern. The dihedral angle between the benzene rings is 72.41 (6°. In the crystal, the HSO4− anion acts as a bridging group between two chlordiazepoxide cations. The H atom of the protonated imino N forms an N—H...O hydrogen bond with a hydrogen sulfate ion. The anion in turn forms two hydrogen bonds, O—H...O with the anion as donor and N—H...O with the anion as acceptor, to generate an R22(10 loop. Each HSO4− anion connects two chlordiazepoxide moieties of the same chirality.

  20. Glucosamine sulfate--environmental antibacterial activity.

    Science.gov (United States)

    Rozin, Alexander P

    2009-10-01

    We have recently showed antibacterial activity against E. coli in vitro of a trademark Mega-Gluflex-containing glucosamine sulfate (GS) and chondroitin sulfate (CS). The purpose of this study was to examine the antibacterial activity of GS as a new trademark Arthryl (Manufacturer Rottapharm Ltd, Ireland; Distributor in Israel Rafa Laboratories Ltd) in vitro. We used cabbage and chicken broths and milk (every media of 20 ml) left opened for 1 week with and without Arthryl supplements 1,500 mg, the content of one package of the medication. A similar volume (20 ml) is ingested in taking the medication. Experiments with three repeatable results were taken for consideration. Arthryl inhibited environmental bacterial colonies' growth in every media but fungi growth was not impaired. Milk stayed liquid for the whole week with supplement of the Arthryl compared with sour milk transformation without Arthryl. Sample B showed inhibitory properties of the bacterial colonies on the fungi growth. The sample with Arthryl showed progressive growth of fungi without bacterial growth after 10 days of follow up compared with bacterial growth on media without Arthryl. Glucosamine sulfate as a new trademark Arthryl has environmental antibacterial properties but does not inhibit growth of fungal colonies.

  1. Use of Magnesium Sulfate Infusion for the Management of Febrile Illness-Related Epilepsy Syndrome: A Case Series.

    Science.gov (United States)

    Tan, Wei Wei; Chan, Derrick W S; Lee, Jan Hau; Thomas, Terrence; Menon, Anuradha P; Chan, Yoke Hwee

    2015-01-01

    Febrile illness-related epilepsy syndrome is a catastrophic epileptic encephalopathy that is highly refractory to most antiepileptic drugs leading to high morbidity and mortality. The authors report the use of a pediatric infusion protocol of continuous intravenous magnesium sulfate for the control of seizures in 2 children with febrile illness-related epilepsy syndrome refractory to multiple antiepileptic drugs in a pediatric intensive care unit of a tertiary care children's hospital. Both patients, 2 and 16 years of age, respectively, were treated with continuous magnesium sulfate infusion. Serum magnesium concentrations ranging from 2.1 to 5 mmol/L were achieved. Seizure reduction and cessation were noted in 1 patient with magnesium more than 3.0 mmol/L. No significant adverse effects were observed. Magnesium sulfate infusions can be safely used in pediatric refractory status epilepticus. Magnesium sulfate can be considered in the management of children with febrile illness-related epilepsy syndrome.

  2. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments

    Science.gov (United States)

    Canfield, D. E.; DeVincenzi, D. L. (Principal Investigator)

    1989-01-01

    Compilations have been made of sulfate reduction rates and oxic respiration rates over the entire range of marine sedimentation rates, and sedimentary environments, including several euxinic sites. These data show, consistent with the findings of Jorgensen (1982, Nature, 296, 643-645), that sulfate reduction and oxic respiration oxidize equal amounts of organic carbon in nearshore sediments. As sedimentation rates decrease, oxic respiration, becomes progressively more important, and in deep-sea sediments 100-1000 times more organic carbon is oxidized by oxic respiration than by sulfate reduction. By contrast, nearly as much organic carbon is oxidized by sulfate reduction in euxinic sediments as is oxidized by the sum of sulfate reduction and oxic respiration in normal marine sediments of similar deposition rate. This observation appears at odds with the enhanced preservation of organic carbon observed in euxinic sediments. However, only small reductions in (depth-integrated) organic carbon decomposition rates (compared to normal marine) are required to give both high organic carbon concentrations and enhanced carbon preservation in euxinic sediments. Lower rates of organic carbon decomposition (if only by subtle amounts) are explained by the diminished ability of anaerobic bacteria to oxidize the full suite of sedimentary organic compounds.

  3. Microbial Diversity in a Hypersaline Sulfate Lake: A Terrestrial Analog of Ancient Mars

    Directory of Open Access Journals (Sweden)

    Alexandra Pontefract

    2017-09-01

    Full Text Available Life can persist under severe osmotic stress and low water activity in hypersaline environments. On Mars, evidence for the past presence of saline bodies of water is prevalent and resulted in the widespread deposition of sulfate and chloride salts. Here we investigate Spotted Lake (British Columbia, Canada, a hypersaline lake with extreme (>3 M levels of sulfate salts as an exemplar of the conditions thought to be associated with ancient Mars. We provide the first characterization of microbial structure in Spotted Lake sediments through metagenomic sequencing, and report a bacteria-dominated community with abundant Proteobacteria, Firmicutes, and Bacteroidetes, as well as diverse extremophiles. Microbial abundance and functional comparisons reveal similarities to Ace Lake, a meromictic Antarctic lake with anoxic and sulfidic bottom waters. Our analysis suggests that hypersaline-associated species occupy niches characterized foremost by differential abundance of Archaea, uncharacterized Bacteria, and Cyanobacteria. Potential biosignatures in this environment are discussed, specifically the likelihood of a strong sulfur isotopic fractionation record within the sediments due to the presence of sulfate reducing bacteria. With its high sulfate levels and seasonal freeze-thaw cycles, Spotted Lake is an analog for ancient paleolakes on Mars in which sulfate salt deposits may have offered periodically habitable environments, and could have concentrated and preserved organic materials or their biomarkers over geologic time.

  4. Assessment of acid sulfate soil mapping utilizing chemical indicators in recipient waters

    Directory of Open Access Journals (Sweden)

    Beucher, A.

    2015-06-01

    Full Text Available In Finland, poor water quality and associated ecological damage in the coastal streams related to land use on acid sulfate (a.s. soils has been drawing a considerable amount of attention since the 1950’s. These soils originate from sulfide-bearing marine sediments mostly occurring in the coastal areas located below the highest shoreline of the former Litorina Sea. Of the many previous studies carried out on soil or water data, quite few gathered both and their geographic extent was relatively limited. This study aimed at assessing a.s. soil probability maps using two chemical indicators measured in the recipient waters (i.e. sulfate content and sulfate/chloride ratio for 24 catchments along the Finnish coast. All the available data was compiled for these catchments, which were surveyed using different methods (i.e. conventional mapping and two spatial modeling techniques: fuzzy logic and artificial neural networks. High sulfate contents and sulfate/ chloride ratios measured in these rivers were controlled by a.s. soils in the corresponding catchments. The extent of the most probable areas for a.s. soils in the surveyed catchments correlated with the two chemical indicators measured in the recipient waters, suggesting that the probability maps created with different methods are reliable and comparable. The use of a.s. soil related chemical indicators in water, thus, constitutes a complementary, independent and straightforward tool to assess a.s. soil probability maps.

  5. Localization and characterization of sulfated glycosaminoglycans in the body of the earthworm Eisenia andrei (Oligochaeta, Annelida).

    Science.gov (United States)

    Amaral, Hanna B F; Mateus, Samuel H; Ferreira, Laina C; Ribeiro, Cristiane C; Palumbo-Junior, Antonio; Domingos, Maria-Aparecida O; Cinelli, Leonardo P; Costa-Filho, Adilson; Nasciutti, Luiz E; Silva, Luiz-Claudio F

    2011-07-01

    The aim of this study was to characterize the compartmental distribution of sulfated glycosaminoglycans (S-GAGs) in adults and their occurrence during the development of the earthworm Eisenia andrei. S-GAGs were extracted from the body of earthworms to identify their composition and the time of their appearance and disappearance in embryonic, newborn, juvenile, and adult earthworms. S-GAGs were also analyzed in earthworm tissue using histochemical metachromatic staining. Purified S-GAGs obtained from the whole body of adult earthworms were composed of chondroitin sulfate (CS) and heparan sulfate (HS). In addition, an unknown, highly sulfated polysaccharide (HSP) was detected. In order to characterize specifically the S-GAG composition in the integument, earthworms were dissected and as much as possible of their viscera was removed. HS and CS were the predominant sulfated polysaccharides in the dissected integument, whereas in viscera, CS, HS and the HSP were found in proportions similar to those identified in the body. The qualitative S-GAG composition in juveniles was similar to that obtained from adult earthworms. CS was the predominant S-GAG in newborn earthworms, accompanied by lesser amounts of HS and by tiny amounts of the HSP. This study provides a detailed descriptive account of the pattern of S-GAG synthesis during development, and also the characterization of the tissue distribution of these compounds in the body of earthworms. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  7. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  8. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Helvoort, van P.J.; Dar, S.; Dopson, M.; Lens, P.N.L.; Buisman, C.J.N.

    2009-01-01

    Process streams with high concentrations of metals and sulfate are characteristic for the mining and metallurgical industries. This study aims to selectively recover nickel from a nickel-iron-containing solution at pH 5.0 using a single stage bioreactor that simultaneously combines low pH sulfate

  9. Aluminum sulfate (alum) application interactions with coupled metal and nutrient cycling in a hypereutrophic lake ecosystem.

    Science.gov (United States)

    Nogaro, Geraldine; Burgin, Amy J; Schoepfer, Valerie A; Konkler, Matthew J; Bowman, Katlin L; Hammerschmidt, Chad R

    2013-05-01

    Many lake ecosystems worldwide experience severe eutrophication and associated harmful blooms of cyanobacteria due to high loadings of phosphorus (P). While aluminum sulfate (alum) has been used for decades as chemical treatment of eutrophic waters, the ecological effects of alum on coupled metal and nutrient cycling are not well known. The objective of our study was to investigate the effects of an in-situ alum treatment on aluminum and nutrient (P, N, and S) cycling in a hypereutrophic lake ecosystem. Our results indicate that the addition of alum along with sodium aluminate (as a buffer) increased dissolved aluminum and sulfate in the surface and pore waters, and altered nitrogen cycling by increasing nitrous oxide (N2O) concentrations in the surface water. The increase of aluminum and sulfate may potentially feedback to alter benthic community dynamics. These results enhance our understanding of the unintended ecological consequences of alum treatments in hypereutrophic freshwater ecosystems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Role of sulfate reduction and methane production by organic carbon degradation ineutrophic fjord sediments (Limfjorden, Denmark)

    DEFF Research Database (Denmark)

    Jørgensen, Bo Barker; Parkes, R. John

    2010-01-01

    , accompanied by peaks in sulfide (4-6 mmol L21) and high dissolved inorganic carbon (30-50 mmol L21). Pore-water acetate concentrations were 2-10 mmol L21. 14C-acetate was oxidized to 14CO2 in the sulfate zone and reduced to 14CH4 at and below the SMT. CO2 reduction was the predominant pathway....... A comparison of the burial flux of organic carbon below the sulfate zone and the returning flux of methane indicated that the diffusion modeling of pore-water sulfate strongly underestimated in situ SRRs, whereas the 35S data may have overestimated the rates at depth. Modeled and measured SRR could...

  11. Serious anaphylactic reactions due to protamine sulfate: a systematic literature review

    DEFF Research Database (Denmark)

    Nybo, Mads; Madsen, Jonna Skov

    2008-01-01

    Anaphylactic reactions caused by injection of protamine sulfate during cardiac surgery are a well-known complication. A systematic literature review was therefore conducted to gather evidence of the knowledge concerning these side effects, and to see if any prospective randomized studies supported...... this. Studies investigating the effect of protamine sulfate in human beings were extracted from MEDLINE, Embase and the Cochrane Library, retrieving 487 articles. Abstracts were evaluated by both authors, and referred articles not found in the primary search were furthermore extracted from reviews......, systematic literature review conducted in a well-structured, repeated manner should be given high priority....

  12. Variations of 57Fe hyperfine parameters in medicaments containing ferrous fumarate and ferrous sulfate

    Science.gov (United States)

    Oshtrakh, M. I.; Novikov, E. G.; Dubiel, S. M.; Semionkin, V. A.

    2010-04-01

    Several commercially available medicaments containing ferrous fumarate (FeC4H2O4) and ferrous sulfate (FeSO4), as a source of ferrous iron, were studied using a high velocity resolution Mössbauer spectroscopy. A comparison of the 57Fe hyperfine parameters revealed small variations for the main components in both medicaments indicating some differences in the ferrous fumarates and ferrous sulfates. It was also found that all spectra contained additional minor components probably related to ferrous and ferric impurities or to partially modified main components.

  13. Thermal stabilization of DMPC/DHPC bicelles by addition of cholesterol sulfate.

    Science.gov (United States)

    Shapiro, Rebecca A; Brindley, Amanda J; Martin, Rachel W

    2010-08-25

    Doping DMPC/DHPC bicelles with cholesterol sulfate broadens the temperature range over which stable alignment occurs, forming an aligned phase at lower temperatures even with high lipid concentrations. Cholesterol sulfate appears to combine the advantages of cholesterol with those of charged amphiphiles, stabilizing the aligned phase and preventing precipitation. This allows NMR data for RDC and CSA protein structure constraints to be acquired at or below room temperature, an obvious advantage for solid-state and solution studies of heat-sensitive proteins.

  14. EVALUATION OF SULFATE ATTACK ON SALTSTONE VAULT CONCRETE AND SALTSTONESIMCO TECHNOLOGIES, INC. PART1 FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2008-08-19

    This report summarizes the preliminary results of a durability analysis performed by SIMCO Technologies Inc. to assess the effects of contacting saltstone Vaults 1/4 and Disposal Unit 2 concretes with highly alkaline solutions containing high concentrations of dissolved sulfate. The STADIUM{reg_sign} code and data from two surrogate concretes which are similar to the Vaults 1/4 and Disposal Unit 2 concretes were used in the preliminary durability analysis. Simulation results for these surrogate concrete mixes are provided in this report. The STADIUM{reg_sign} code will be re-run using transport properties measured for the SRS Vaults 1/4 and Disposal Unit 2 concrete samples after SIMCO personnel complete characterization testing on samples of these materials. Simulation results which utilize properties measured for samples of Vaults 1/4 and Disposal Unit 2 concretes will be provided in Revision 1 of this report after property data become available. The modeling performed to date provided the following information on two concrete mixes that will be used to support the Saltstone PA: (1) Relationship between the rate of advancement of the sulfate front (depth of sulfate ion penetration into the concrete) and the rate of change of the concrete permeability and diffusivity. (2) Relationship between the sulfate ion concentration in the corrosive leachate and the rate of the sulfate front progression. (3) Equation describing the change in hydraulic properties (hydraulic conductivity and diffusivity) as a function of sulfate ion concentration in the corrosive leachate. These results have been incorporated into the current Saltstone PA analysis by G. Flach (Flach, 2008). In addition, samples of the Saltstone Vaults 1/4 and Disposal Unit 2 concretes have been prepared by SIMCO Technologies, Inc. Transport and physical properties for these materials are currently being measured and sulfate exposure testing to three high alkaline, high sulfate leachates provided by SRNL is

  15. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype.

    Directory of Open Access Journals (Sweden)

    Liesbeth Viaene

    Full Text Available BACKGROUND: Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. OBJECTIVE AND DESIGN: Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study. RESULTS: Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4-4.3 and 13.0 (7.4-21.5 μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17 and p-cresyl sulfate (h2 = 0.18 concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. LIMITATIONS: Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. CONCLUSIONS: The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.

  16. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer in parts of Marion, Sumter, and Citrus counties, Florida

    Science.gov (United States)

    Sacks, Laura A.

    1996-01-01

    In inland areas of northwest central Florida, sulfate concentrations in the Upper Floridan aquifer are extremely variable and sometimes exceed drinking water standards (250 milligrams per liter). This is unusual because the aquifer is unconfined and near the surface, allowing for active recharge. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated in this area. Water was sampled from thirty-three wells in parts of Marion, Sumter, and Citrus Counties, within the Southwest Florida Water Management District; these included at least a shallow and a deep well at fifteen separate locations. Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (sulfur-34 of sulfate and sulfide, carbon-13 of inorganic carbon, deuterium, and oxygen-18). Sulfate concentrations ranged from less than 0.2 to 1,400 milligrams per liter, with higher sulfate concentrations usually in water from deeper wells. The samples can be categorized into a low sulfate group (less than 30 milligrams per liter) and a high sulfate group (greater than 30 milligrams per liter). For the high sulfate water, concentrations of calcium and magnesium increased concurrently with sulfate. Chemical and isotopic data and mass-balance modeling indicate that the composition of high sulfate waters is controlled by dedolomitization reactions (dolomite dissolution and calcite precipitation, driven by dissolution of gypsum). Gypsum occurs deeper in the aquifer than open intervals of sampled wells. Upward flow has been documented in deeper parts of the aquifer in the study area, which may be driven by localized discharge areas or rapid flow in shallow parts of the aquifer. Mixing between shallow ground water and sulfate-rich water that dissolved gypsum at the base of the aquifer is probably responsible for the range of concentrations observed in the study area. Other solutes that increased with sulfate apparently

  17. [Marine SRB community reducing sulfate wastewater in flue gas desulfurization].

    Science.gov (United States)

    Pan, Jia-Chuan; Cao, Hong-Bin; Shao, Zong-Ze; Sheng, Yu-Xing; Zhang, Yi

    2009-02-15

    An SRB community (SRB-2) was enriched from marine sediment for the treatment of sulfate-rich wastewater of high salinity, and the effect of salinity, temperature, pH value, carbon source, concentration of sulfate and the form of Fe on the activity of SRB-2 was studied. The results show that SRB-2 is a halophilous and moderately mesophilous SRB community. The optimal conditions for its growth are as follows: temperature of 30-40 degrees C and pH value of 7.4-8.3; it can endure 5,200 mg/L SO4(2-) and 60g/L NaCl. Zero-valent Fe can promote the reductive activity of SRB-2, while Fe2+ inhibits that. SEM and optical microscopic measurements indicate many rod-shaped and spiral bacteria on the surface of padding in reactor and black sticky substance composed of rod-shaped bacteria on the bottom of reactor. This sticky substance might be cumulus of culture SRB-2-64 (GenBank accession number: EU167911).

  18. Enhanced sonochemical degradation of tetracycline by sulfate radicals.

    Science.gov (United States)

    Eslami, Akbar; Bahrami, Hamideh; Asadi, Anvar; Alinejad, Abdolazim

    2016-01-01

    Tetracyclines (TCs) are widely used antibiotics in human and veterinary medicine and as growth promoters in the world. Sulfate radical-based advanced oxidation processes have been of great interest due to the high oxidizing potential of sulfate radical to degrade refractory organic pollutants in aqueous solution. In this study, the degradation of antibiotic TC in aqueous solution by silver-activated persulfate (Na2S2O8) in the presence of ultrasound irradiation under various conditions has been investigated. The effects of several parameters such as Ag2SO4, Na2S2O8 concentration, temperature, ultrasonic (US) power, initial TC concentration and initial pH on the degradation of TC were investigated. More than 83% of TC removal was achieved within 120 min under optimal conditions. The optimum operational conditions were found to be as follows: Ag2SO4 dosage 3.5 mmol/L, Na2S2O8 concentration 70 mmol/L, reaction temperature 25 °C, US power 120 W, initial TC concentration 50 mg/L, pH 3.0 and contact time 120 min. The degradation of TC in the persulfate/Ag(+)/US process followed the pseudo-first-order kinetics.

  19. Hemi(piperazinediium) hexaaquaaluminium(III) bis(sulfate) tetrahydrate: a new double aluminium sulfate salt.

    Science.gov (United States)

    Bataille, Thierry

    2003-11-01

    Piperazinium aluminium sulfate decahydrate, (C(4)H(12)N(2))(0.5)[Al(H(2)O)(6)](SO(4))(2).4H(2)O, exhibits a crystal structure built from isolated [Al(H(2)O)(6)](3+), SO(4)(2-), C(4)H(12)N(2)(2+) and H(2)O units connected by a complex hydrogen-bond network. The title compound shows strong similarities to many double aluminium sulfates, such as alums and Tutton's salts. However, since its structure is not derived directly from that of these compounds, it is assumed to be a new structure type.

  20. Effects of dissimilatory sulfate reduction on FeIII (hydr)oxide reduction and microbial community development

    Science.gov (United States)

    Kwon, Man Jae; Boyanov, Maxim I.; Antonopoulos, Dionysios A.; Brulc, Jennifer M.; Johnston, Eric R.; Skinner, Kelly A.; Kemner, Kenneth M.; O'Loughlin, Edward J.

    2014-03-01

    Although dissimilatory iron and sulfate reduction (DIR and DSR) profoundly affect the biogeochemical cycling of C, Fe, and S in subsurface systems, the dynamics of DIR and DSR in the presence of both FeIII (hydr)oxides and sulfate have not been well-studied with mixed microbial populations. This study examined the response of native microbial communities in subsurface sediment from the U.S. Department of Energy’s Integrated Field Research Challenge site in Rifle, CO to the availability of sulfate and specific FeIII (hydr)oxide minerals in experimental systems containing lactate as the electron donor, with ferrihydrite, goethite, or lepidocrocite and high (10.2 mM) or low (0.2 mM) sulfate as electron acceptors. We observed rapid fermentation of lactate to acetate and propionate. FeIII reduction was slow and limited in the presence of low-sulfate, but the extent of FeIII reduction increased more than 10 times with high-sulfate amendments. Furthermore, the extent of FeIII reduction was higher in ferrihydrite or lepidocrocite incubations than in goethite incubations. Propionate produced during fermentation of lactate was used as the electron donor for DSR. The concurrence of sulfate reduction and FeII production suggests that FeII production was driven primarily by reduction of FeIII by biogenic sulfide. X-ray absorption fine-structure analysis confirmed the formation of ferrous sulfide and the presence of O-coordinated ferrous species. 16S rRNA-based microbial community analysis revealed the development of distinct communities with different FeIII (hydr)oxides. These results highlight the highly coupled nature of C, Fe, and S biogeochemical cycles during DIR and DSR and provide new insight into the effects of electron donor utilization, sulfate concentration, and the presence of specific FeIII (hydr)oxide phases on microbial community development.

  1. Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2017-09-01

    Full Text Available Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L−1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance.

  2. Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water

    Science.gov (United States)

    Mäkinen, Jarno; Salo, Marja; Arnold, Mona

    2017-01-01

    Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L−1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB) constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance. PMID:28930182

  3. Diversity, activity, and abundance of sulfate-reducing bacteria in saline nad hypersaline soda lakes

    NARCIS (Netherlands)

    Foti, M.; Sorokin, D.Y.; Lomans, B.P.; Mussman, M.; Zacharova, E.E.; Pimenov, N.V.; Kuenen, J.G.; Muyzer, G.

    2007-01-01

    Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in

  4. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  5. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    OpenAIRE

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria.

  6. Highly sulfated chondroitin sulfates, a novel class of prognostic biomarkers in ovarian cancer tissue.

    NARCIS (Netherlands)

    Vallen, M.J.E.; Massuger, L.F.A.G.; Dam, G.B. ten; Bulten, J.; Kuppevelt, T. van

    2012-01-01

    OBJECTIVE: Clinical decision making in ovarian cancer needs new (prognostic) biomarkers. Although the search for biomarkers has traditionally focused on tumor cells, their surrounding contains important information as well. Glycosaminoglycans, heterogeneous polysaccharides which are abundantly

  7. Combined S-33 and O-18 Isotope Tracing of Intracellular Sulfur Metabolism during Microbial Sulfate Reduction

    Science.gov (United States)

    Antler, Gilad; Bosak, Tanja; Ono, Shuhei; Sivan, Orit; Turchyn, Alexandra V.

    2014-05-01

    Microbial sulfate reduction is a key player in the global carbon cycle, oxidizing nearly 50% of organic matter in marine sediments. The biochemical pathway of microbial sulfate reduction fractionates sulfur and oxygen isotopes and these fractionations can be used to reconstruct S cycling in sediments. Sulfur isotope fractionation during microbial sulfate reduction, which partitions lighter sulfur (32S) into sulfide and heavier sulfur (33S and 34S) into the residual sulfate, can be as high as 72o for 34S/32S. The availability and type of organic substrate control the magnitude of sulfur isotope fractionation by influencing the fluxes of and the transfer of electrons to different S species. The partitioning of oxygen in sulfate during microbial sulfate reduction appears to be strongly influenced by the oxygen isotopic composition of water in which the bacteria grow, but its magnitude also seems to correlate with the magnitude of 34S/32S isotope fractionation. In addition, the fractionation of 33S/32S is thought to reflect the reversibility of some intercellular fluxes. We wanted to investigate whether the 18O/16O, 34S/32S and 33S/32S isotope fractionations in sulfate are controlled by the same intracellular processes and conditions. This was done by investigating the combined sulfur and oxygen isotope partitioning by a marine Desulfovibrio sp. grown in pure culture on different organic substrates and in water with different isotopic composition of oxygen. The isotope fractionations of oxygen and sulfur correlated with the cell specific sulfate reduction rates (csSRR), where slower rates yielded higher sulfur fractionation (as high as 60) and higher oxygen isotope fractionation. The trends in 33S/32S and 34S/32S with the changing csSRR was similar to the trends in 18O/16O with the csSRR, suggesting that the same intercellular pathways controlled both oxygen and sulfur isotope signatures during microbial sulfate reduction. The use of water with different isotopic

  8. Sulfated fucan as support for antibiotic immobilization

    Directory of Open Access Journals (Sweden)

    Araújo P.M.

    2004-01-01

    Full Text Available Xylofucoglucuronan from Spatoglossum schröederi algae was tested as a support for antibiotic immobilization. The polysaccharide (20 mg in 6 ml was first activated using carbodiimide, 1-ethyl-3-(3-dimethylamino-propylcarbodiimide methiodide (20 mg in 2 ml, under stirring for 1 h at 25ºC and pH from 4.5 to 5.0. After adjusting the pH to 8.0, either gentamicin or amikacin (62.5 mg in 1.25 ml was then immobilized on this chemically modified polysaccharide with shaking for 24 h in a cold room. Infrared spectra of the activated carbodiimide xylofucoglucuronan showed two bands to carbonyl (C = O at 1647.9 and 1700.7 cm-1 and to amide (CÝ-NH2 groups (1662.8 and 1714.0 cm-1. Microbial characterization of the derivatives was carried out by the disk diffusion method using Staphylococcus aureus or Klebsiella pneumoniae incorporated in Müller Hinton medium. Inhibition halos of bacterial growth were observed for the antibiotics immobilized on this sulfated heteropolysaccharide before and after dialysis. However, the halos resulting from the samples after dialysis were much smaller, suggesting that dialysis removed either non-covalently bound antibiotic or other small molecules. In contrast, bacterial growth was not inhibited by either xylofucoglucuronan or its activated form or by gentamicin or amikacin after dialysis. An additional experiment was carried out which demonstrated that the sulfated heteropolysaccharide was hydrolyzed by the microorganism. Therefore, the antibiotic immobilized on xylofucoglucuronan can be proposed as a controlled drug delivery system. Furthermore, this sulfated heteropolysaccharide can be extracted easily from sea algae Spatoglossum schröederi.

  9. Removal of Sulfate Ion From AN-107 by Evaporation

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

    2000-08-02

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid.

  10. Immobilization of calcium sulfate contained in demolition waste

    Energy Technology Data Exchange (ETDEWEB)

    Ambroise, J. [Laboratoire Genie Civil et Ingenierie Environnementale (LGCIE), Institut National des Sciences Appliquees de Lyon, Domaine Scientifique de la Doua, Batiment J. Tuset, 12, Avenue des Arts, 69 621 Villeurbanne Cedex (France); Pera, J. [Laboratoire Genie Civil et Ingenierie Environnementale (LGCIE), Institut National des Sciences Appliquees de Lyon, Domaine Scientifique de la Doua, Batiment J. Tuset, 12, Avenue des Arts, 69 621 Villeurbanne Cedex (France)], E-mail: Jean.Pera@insa-lyon.fr

    2008-03-01

    This paper presents the results of a laboratory study undertaken to examine the treatment of demolition waste containing calcium sulfate by means of calcium sulfoaluminate clinker (CSA). The quantity of CSA necessary to entirely consume calcium sulfate was determined. Using infrared spectrometry analysis and X-ray diffraction, it was shown that calcium sulfate was entirely consumed when the ratio between CSA and calcium sulfate was 4. Standard sand was polluted by 4% calcium sulfate. Two solutions were investigated: {center_dot}either global treatment of sand by CSA, {center_dot}or immobilization of calcium sulfate by CSA, followed by the introduction of this milled mixture in standard sand. Regardless of the type of treatment, swelling was almost stabilized after 28 days of immersion in water.

  11. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions

    Science.gov (United States)

    Arkhipova, Viktoriya V.; Apyari, Vladimir V.; Dmitrienko, Stanislava G.

    2015-03-01

    Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples.

  12. Applications of heparin and heparan sulfate microarrays.

    Science.gov (United States)

    Yin, Jian; Seeberger, Peter H

    2010-01-01

    Carbohydrate microarrays have become crucial tools for revealing the biological interactions and functions of glycans, primarily because the microarray format enables the investigation of large numbers of carbohydrates at a time. Heparan sulfate (HS) and heparin are the most structurally complex glycosaminoglycans (GAGs). In this chapter, we describe the preparation of a small library of HS/heparin oligosaccharides, and the fabrication of HS/heparin microarrays that have been used to establish HS/heparin-binding profiles. Fibroblast growth factors (FGFs), natural cytotoxicity receptors (NCRs), and chemokines were screened to illuminate the very important biological functions of these glycans. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Nathalie Chopin

    2015-01-01

    Full Text Available GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG- like compound was modified in a classical solvent (N,N′-dimethylformamide. However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine.

  14. Ferrous sulfate, but not iron polymaltose complex, aggravates local and systemic inflammation and oxidative stress in dextran sodium sulfate-induced colitis in rats.

    Science.gov (United States)

    Toblli, Jorge E; Cao, Gabriel; Angerosa, Margarita

    2015-01-01

    Iron deficiency is common in inflammatory bowel disease, yet oral iron therapy may worsen the disease symptoms and increase systemic and local oxidative stress. The aim of this study was to compare the effects of oral ferrous sulfate and iron polymaltose complex on inflammatory and oxidative stress markers in colitic rats. Animals were divided into four groups with ten animals each. Rats of three groups received dextran sodium sulfate to induce colitis and animals of two of these groups received 5 mg iron/kg of body weight a day, as ferrous sulfate or iron polymaltose complex, for 7 days. Gross colon anatomy, histology of colon and liver, stainings of L-ferritin, Prussian blue, hepcidin, tumor necrosis factor-α, and interleukin-6, as well serum levels of liver enzymes, inflammatory markers, and iron markers, were assessed. Body weight, gross anatomy, crypt injury and inflammation scores, inflammatory parameters in liver and colon, as well as serum and liver hepcidin levels were not significantly different between colitic animals without iron treatment and colitic animals treated with iron polymaltose complex. In contrast, ferrous sulfate treatment caused significant worsening of these parameters. As opposed to ferrous sulfate, iron polymaltose complex caused less or no additional oxidative stress in the colon and liver compared to colitic animals without iron treatment. Iron polymaltose complex had negligible effects on colonic tissue erosion, local or systemic oxidative stress, and local or systemic inflammation, even at high therapeutic doses, and may thus represent a valuable oral treatment of iron deficiency in inflammatory bowel disease.

  15. The impact of sulfate restriction on seed yield and quality of winter oilseed rape depends on the ability to remobilize sulfate from vegetative tissues to reproductive organs.

    Directory of Open Access Journals (Sweden)

    Alexandra eGirondé

    2014-12-01

    Full Text Available Our current knowledge about sulfur (S management by winter oilseed rape to satisfy the S demand of developing seeds is still scarce, particularly in relation to S restriction. Our goals were to determine the physiological processes related to S use efficiency that led to maintain the seed yield and quality when S limitation occurred at the bolting or early flowering stages. To address these questions, a pulse-chase 34SO42- labelling method was carried out in order to study the S fluxes from uptake and remobilization at the whole plant level. In response of S limitation at the bolting or early flowering stages, the leaves are the most important source organ for S remobilization during reproductive stages. By combining 34S-tracer with biochemical fractionation in order to separate sulfate from other S-compounds, it appeared that sulfate was the main form of S remobilized in leaves at reproductive stages and that tonoplastic SULTR4-type transporters were specifically involved in the sulfate remobilisation in case of low S availability. In response to S limitation at the bolting stage, the seed yield and quality were dramatically reduced compared to control plants. These data suggest that the increase of both S remobilization from source leaves and the root proliferation in order to maximize sulfate uptake capacities, were not sufficient to maintain the seed yield and quality. When S limitation occurred at the early flowering stage, oilseed rape can optimize the mobilization of sulfate reserves from vegetative organs (leaves and stem to satisfy the demand of seeds and maintain the seed yield and quality. Our study also revealed that the stem may act as a transient storage organ for remobilized S coming from source leaves before its utilization by seeds. The physiological traits (S remobilization, root proliferation, transient S storage in stem observed under S limitation could be used in breeding programs to select oilseed rape genotypes with high S

  16. Ferrous sulfate, but not iron polymaltose complex, aggravates local and systemic inflammation and oxidative stress in dextran sodium sulfate-induced colitis in rats

    Science.gov (United States)

    Toblli, Jorge E; Cao, Gabriel; Angerosa, Margarita

    2015-01-01

    Background and aims Iron deficiency is common in inflammatory bowel disease, yet oral iron therapy may worsen the disease symptoms and increase systemic and local oxidative stress. The aim of this study was to compare the effects of oral ferrous sulfate and iron polymaltose complex on inflammatory and oxidative stress markers in colitic rats. Methods Animals were divided into four groups with ten animals each. Rats of three groups received dextran sodium sulfate to induce colitis and animals of two of these groups received 5 mg iron/kg of body weight a day, as ferrous sulfate or iron polymaltose complex, for 7 days. Gross colon anatomy, histology of colon and liver, stainings of L-ferritin, Prussian blue, hepcidin, tumor necrosis factor-α, and interleukin-6, as well serum levels of liver enzymes, inflammatory markers, and iron markers, were assessed. Results Body weight, gross anatomy, crypt injury and inflammation scores, inflammatory parameters in liver and colon, as well as serum and liver hepcidin levels were not significantly different between colitic animals without iron treatment and colitic animals treated with iron polymaltose complex. In contrast, ferrous sulfate treatment caused significant worsening of these parameters. As opposed to ferrous sulfate, iron polymaltose complex caused less or no additional oxidative stress in the colon and liver compared to colitic animals without iron treatment. Conclusion Iron polymaltose complex had negligible effects on colonic tissue erosion, local or systemic oxidative stress, and local or systemic inflammation, even at high therapeutic doses, and may thus represent a valuable oral treatment of iron deficiency in inflammatory bowel disease. PMID:26005335

  17. Ferrous sulfate, but not iron polymaltose complex, aggravates local and systemic inflammation and oxidative stress in dextran sodium sulfate-induced colitis in rats

    Directory of Open Access Journals (Sweden)

    Toblli JE

    2015-05-01

    Full Text Available Jorge E Toblli, Gabriel Cao, Margarita Angerosa Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina Background and aims: Iron deficiency is common in inflammatory bowel disease, yet oral iron therapy may worsen the disease symptoms and increase systemic and local oxidative stress. The aim of this study was to compare the effects of oral ferrous sulfate and iron polymaltose complex on inflammatory and oxidative stress markers in colitic rats.Methods: Animals were divided into four groups with ten animals each. Rats of three groups received dextran sodium sulfate to induce colitis and animals of two of these groups received 5 mg iron/kg of body weight a day, as ferrous sulfate or iron polymaltose complex, for 7 days. Gross colon anatomy, histology of colon and liver, stainings of L-ferritin, Prussian blue, hepcidin, tumor necrosis factor-α, and interleukin-6, as well serum levels of liver enzymes, inflammatory markers, and iron markers, were assessed.Results: Body weight, gross anatomy, crypt injury and inflammation scores, inflammatory parameters in liver and colon, as well as serum and liver hepcidin levels were not significantly different between colitic animals without iron treatment and colitic animals treated with iron polymaltose complex. In contrast, ferrous sulfate treatment caused significant worsening of these parameters. As opposed to ferrous sulfate, iron polymaltose complex caused less or no additional oxidative stress in the colon and liver compared to colitic animals without iron treatment.Conclusion: Iron polymaltose complex had negligible effects on colonic tissue erosion, local or systemic oxidative stress, and local or systemic inflammation, even at high therapeutic doses, and may thus represent a valuable oral treatment of iron deficiency in inflammatory bowel disease. Keywords: preclinical, oral iron treatment, tolerability, colonic tissue erosion

  18. Formation of Authigenic Sulfates in Cold Dry Glaciers: Terrestrial and Planetary Implications of Sublimites

    Science.gov (United States)

    Massé, M.; Rondeau, B.; Ginot, P.; Schmitt, B.; Bourgeois, O.; Mitri, G.

    2015-12-01

    Salts are common on planetary surfaces, and sulfates have been widely observed on Earth, Mars (Gendrin et al., 2005) and on some of Jupiter's and Saturn's icy moons like Europa (Dalton et al., 2007). These minerals can form under a wide range of conditions, and the determination of sulfate formation processes can provide key elements for deciphering past planetary surface conditions. Most terrestrial sulfates form as evaporites in warm environments with high water/rock ratios, but these conditions are rarely encountered on other planets. Here we describe the formation of cryogenic sulfates in an extreme cold and dry environment: the Guanaco glacier located in the Chilean Andes (Fig.1a, Rabatel et al., 2011). Field analyses reveal that it is a cold-based glacier, its surface temperature remains below 0°C throughout the year, and ablation occurs mostly by sublimation. Ablation creates ice cliffs punctuated of pluricentimetric whitish, tapered crystals embedded in the ice (Fig.1b, c). By Raman and chemistry, they proved to be gypsum, covered by micrometric crystals of jarosite, halotrichite and native sulfur. The euhedral morphology of these soft minerals indicates that they are neoformed and have not been transported in the ice. This is supported by the absence of gypsum crystals in ice cores drilled through the glacier. We infer that the crystallization thus occurred at the glacier surface during ice sublimation and does not involve liquid water. To distinguish this original salt formation process from the more common evaporites, we name these minerals "sublimites". Though this formation process is uncommon and generates minor quantities of sulfates on Earth, it may be dominant on other bodies in the Solar System where sublimation is effective. Examples of planetary sublimites may include gypsum on the North Polar Cap of Mars (Massé et al., 2012), and other sulfates on icy moons where sublimation has been observed (Howard et al., 2008).

  19. Polysulfides as Intermediates in the Oxidation of Sulfide to Sulfate by Beggiatoa spp.

    Science.gov (United States)

    Schwedt, Anne; Kreutzmann, Anne-Christin; Kuypers, Marcel M. M.; Milucka, Jana

    2014-01-01

    Zero-valent sulfur is a key intermediate in the microbial oxidation of sulfide to sulfate. Many sulfide-oxidizing bacteria produce and store large amounts of sulfur intra- or extracellularly. It is still not understood how the stored sulfur is metabolized, as the most stable form of S0 under standard biological conditions, orthorhombic α-sulfur, is most likely inaccessible to bacterial enzymes. Here we analyzed the speciation of sulfur in single cells of living sulfide-oxidizing bacteria via Raman spectroscopy. Our results showed that under various ecological and physiological conditions, all three investigated Beggiatoa strains stored sulfur as a combination of cyclooctasulfur (S8) and inorganic polysulfides (Sn2−). Linear sulfur chains were detected during both the oxidation and reduction of stored sulfur, suggesting that Sn2− species represent a universal pool of bioavailable sulfur. Formation of polysulfides due to the cleavage of sulfur rings could occur biologically by thiol-containing enzymes or chemically by the strong nucleophile HS− as Beggiatoa migrates vertically between oxic and sulfidic zones in the environment. Most Beggiatoa spp. thus far studied can oxidize sulfur further to sulfate. Our results suggest that the ratio of produced sulfur and sulfate varies depending on the sulfide flux. Almost all of the sulfide was oxidized directly to sulfate under low-sulfide-flux conditions, whereas only 50% was oxidized to sulfate under high-sulfide-flux conditions leading to S0 deposition. With Raman spectroscopy we could show that sulfate accumulated in Beggiatoa filaments, reaching intracellular concentrations of 0.72 to 1.73 M. PMID:24212585

  20. Increased deposition of glycosaminoglycans and altered structure of heparan sulfate in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Westergren-Thorsson, Gunilla; Hedström, Ulf; Nybom, Annika; Tykesson, Emil; Åhrman, Emma; Hornfelt, Marie; Maccarana, Marco; van Kuppevelt, Toin H; Dellgren, Göran; Wildt, Marie; Zhou, Xiao-Hong; Eriksson, Leif; Bjermer, Leif; Hallgren, Oskar

    2017-02-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant deposition of extracellular matrix (ECM) constituents, including glycosaminoglycans (GAGs), that may play a role in remodelling processes by influencing critical mediators such as growth factors. We hypothesize that GAGs may be altered in IPF and that this contribute to create a pro-fibrotic environment. The aim of this study was therefore to examine the fine structure of heparan sulfate (HS), chondroitin/dermatan sulfate (CS/DS) and hyaluronan (HA) in lung samples from IPF patients and from control subjects. GAGs in lung samples from severe IPF patients and donor lungs were analyzed with HPLC. HS was assessed by immunohistochemistry and collagen was quantified as hydroxyproline content. The total amount of HS, CS/DS and HA was increased in IPF lungs but there was no significant difference in the total collagen content. We found a relative increase in total sulfation of HS due to increment of 2-O, 6-O and N-sulfation and a higher proportion of sulfation in CS/DS. Highly sulfated HS was located in the border zone between denser areas and more normal looking alveolar parenchyma in basement membranes of blood vessels and airways, that were immuno-positive for perlecan, as well as on the cell surface of spindle-shaped cells in the alveolar interstitium. These findings show for the first time that both the amount and structure of glycosaminoglycans are altered in IPF. These changes may contribute to the tissue remodelling in IPF by altering growth factor retention and activity, creating a pro-fibrotic ECM landscape. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites

    Directory of Open Access Journals (Sweden)

    Kateřina Valentová

    2017-10-01

    Full Text Available Sulfated quercetin derivatives are important authentic standards for metabolic studies. Quercetin-3′-O-sulfate, quercetin-4′-O-sulfate, and quercetin-3-O-sulfate as well as quercetin-di-O-sulfate mixture (quercetin-7,3′-di-O-sulfate, quercetin-7,4′-di-O-sulfate, and quercetin-3′,4′-di-O-sulfate were synthetized by arylsulfotransferase from Desulfitobacterium hafniense. Purified monosulfates and disulfates were fully characterized using MS and NMR and tested for their 1,1-diphenyl-2-picrylhydrazyl (DPPH, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+ and N,N-dimethyl-p-phenylenediamine (DMPD radical scavenging, Folin-Ciocalteau reduction (FCR, ferric reducing antioxidant power (FRAP, and anti-lipoperoxidant activities in rat liver microsomes damaged by tert-butylhydroperoxide. Although, as expected, the sulfated metabolites were usually less active than quercetin, they remained still effective antiradical and reducing agents. Quercetin-3′-O-sulfate was more efficient than quercetin-4′-O-sulfate in DPPH and FCR assays. In contrast, quercetin-4′-O-sulfate was the best ferric reductant and lipoperoxidation inhibitor. The capacity to scavenge ABTS+• and DMPD was comparable for all substances, except for disulfates, which were the most efficient. Quantum calculations and molecular dynamics simulations on membrane models supported rationalization of free radical scavenging and lipid peroxidation inhibition. These results clearly showed that individual metabolites of food bioactives can markedly differ in their biological activity. Therefore, a systematic and thorough investigation of all bioavailable metabolites with respect to native compounds is needed when evaluating food health benefits.

  2. Isolation of a sulfate reducing bacterium and its application in sulfate ...

    African Journals Online (AJOL)

    It was found that the removal rate of sulfate in actual tannery wastewater reached 89.66% which was 12.13% higher than the treatment without inoculating the isolated SRB when the initial SO42- concentration was 1069 mg/L. The experiment demonstrates that C. freundii could be selected as a new biomaterial to remove ...

  3. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Energy Technology Data Exchange (ETDEWEB)

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  4. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Science.gov (United States)

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  5. Purification, structural characterization and antiproliferative properties of chondroitin sulfate/dermatan sulfate from tunisian fish skins.

    Science.gov (United States)

    Krichen, Fatma; Volpi, Nicola; Sila, Assaâd; Maccari, Francesca; Mantovani, Veronica; Galeotti, Fabio; Ellouz-Chaabouni, Semia; Bougatef, Ali

    2017-02-01

    Chondroitin sulfate/dermatan sulfate GAGs were extracted and purified from the skins of grey triggerfish (GTSG) and smooth hound (SHSG). The disaccharide composition produced by chondroitinase ABC treatment showed the presence of nonsulfated disaccharide, monosulfated disaccharides ΔDi6S and ΔDi4S, and disulfated disaccharides in different percentages. In particular, the nonsulfated disaccharide ΔDi0S of GTSG and SHSG were 3.5% and 5.5%, respectively, while monosulfated disaccharides ΔDi6S and ΔDi4S were evaluated to be 18.2%, 59% and 14.6%, 47.0%, respectively. Capillary elecrophoresis analysis of GTSG and SHSG contained 99.2% and 95.4% of chondroitin sulfate/dermatan sulfate, respectively. PAGE analysis showed a GTSG and SHSG having molecular masses with average values of 41.72KDa and 23.8KDa, respectively. HCT116 cell proliferation was inhibited (p<0.05) by 70.6% and 72.65% at 200μg/mL of GTSG and SHSG respectively. Both GTSG and SHSG demonstrated promising antiproliferative potential, which may be used as a novel, effective agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... sulfate proteoglycans previously described....

  7. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodyne is developing a sulfate detection instrument, based on the Tunable Infrared Laser Differential Absorption Spectrophotometer (TILDAS) technology and...

  8. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I. (University Hospital, Zurich (Switzerland))

    1987-10-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven ({sup 35}S)-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4{prime}-isothiocyanostilbene-2,2{prime}-disulfonic acid, and 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (IC{sub 50}, {approximately}40 {mu}M). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation.

  9. Mine water treatment with limestone for sulfate removal.

    Science.gov (United States)

    Silva, Adarlêne M; Lima, Rosa M F; Leão, Versiane A

    2012-06-30

    Limestone can be an option for sulfate sorption, particularly from neutral mine drainages because calcium ions on the solid surface can bind sulfate ions. This work investigated sulfate removal from mine waters through sorption on limestone. Continuous stirred-tank experiments reduced the sulfate concentration from 588.0mg/L to 87.0mg/L at a 210-min residence time. Batch equilibrium tests showed that sulfate loading on limestone can be described by the Langmuir isotherm, with a maximum loading of 23.7mg/g. Fixed-bed experiments were utilized to produce breakthrough curves at different bed depths. The Bed Depth Service Time (BDST) model was applied, and it indicated sulfate loadings of up to 20.0gSO(4)(2-)/L-bed as the flow rate increased from 1 to 10mL/min. Thomas, Yoon-Nelson and dose-response models, predicted a maximum particle loading of 19mg/g. Infrared spectrometry indicated the presence of sulfate ions on the limestone surface. Sulfate sorption on limestone seems to be an alternative to treating mine waters with sulfate concentrations below the 1200-2000mg/L range, where lime precipitation is not effective. In addition, this approach does not require alkaline pH values, as in the ettringite process. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    Science.gov (United States)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  11. Large-scale synthesis and formation mechanism study of basic aluminium sulfate microcubic crystals.

    Science.gov (United States)

    Xia, Yuguo; Chen, Bo; Jiao, Xiuling; Chen, Dairong

    2014-03-28

    Cube-like basic aluminium sulfate crystals were prepared by a facile template-free hydrothermal strategy. The microstructures, morphologies and textural properties of as-synthesized material were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy. X-ray crystallography reveals that cubic basic aluminium sulfate possesses a single crystal nature. Chemical formation mechanism studies of sulfuric acid with γ-AlOOH were performed using a combined experimental and computational approach. Time dependent experiments reveal that formation of basic aluminium sulfate is based on the dissolution-recrystallization process, and the source of Al(3+) is from the dissolution of γ-AlOOH at high H(+) concentration. Moreover, the quantum mechanical calculations reveal that dramatic structural changes occurred in the (100) plane at high H(+) concentration, which is inferred to be the initiation of the source of Al(3+). Meanwhile, surface energy calculations can well explain the exposed plane of basic aluminium sulfate microcubes, which are consistent with the XRD results. Besides, equations to quantitatively describe the relationship between the molar amount of H(+) and the final phase are proposed, which has been confirmed by experimental results.

  12. Mass Spectrometry Combinations for Structural Characterization of Sulfated-Steroid Metabolites

    Science.gov (United States)

    Yan, Yuetian; Rempel, Don L.; Holy, Timothy E.; Gross, Michael L.

    2014-05-01

    Steroid conjugates, which often occur as metabolites, are challenging to characterize. One application is female-mouse urine, where steroid conjugates serve as important ligands for the pheromone-sensing neurons. Although the two with the highest abundance in mouse urine were previously characterized with mass spectrometry (MS) and NMR to be sulfated steroids, many more exist but remain structurally unresolved. Given that their physical and chemical properties are similar, they are likely to have a sulfated steroid ring structure. Because these compounds occur in trace amounts in mouse urine and elsewhere, their characterization by NMR will be difficult. Thus, MS methods become the primary approach for determining structure. Here, we show that a combination of MS tools is effective for determining the structures of sulfated steroids. Using 4-pregnene analogs, we explored high-resolving power MS (HR-MS) to determine chemical formulae; HD exchange MS (HDX-MS) to determine number of active, exchangeable hydrogens (e.g., OH groups); methoxyamine hydrochloride (MOX) derivatization MS, or reactive desorption electrospray ionization with hydroxylamine to determine the number of carbonyl groups; and tandem MS (MSn), high-resolution tandem MS (HRMS/MS), and GC-MS to obtain structural details of the steroid ring. From the fragmentation studies, we deduced three major fragmentation rules for this class of sulfated steroids. We also show that a combined MS approach is effective for determining structure of steroid metabolites, with important implications for targeted metabolomics in general and for the study of mouse social communication in particular.

  13. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) involved in chondroitin sulfate initiation: Impact of sulfation on activity and specificity.

    Science.gov (United States)

    Gulberti, Sandrine; Jacquinet, Jean-Claude; Chabel, Matthieu; Ramalanjaona, Nick; Magdalou, Jacques; Netter, Patrick; Coughtrie, Michael W H; Ouzzine, Mohamed; Fournel-Gigleux, Sylvie

    2012-04-01

    Glycosaminoglycan (GAG) assembly initiates through the formation of a linkage tetrasaccharide region serving as a primer for both chondroitin sulfate (CS) and heparan sulfate (HS) chain polymerization. A possible role for sulfation of the linkage structure and of the constitutive disaccharide unit of CS chains in the regulation of CS-GAG chain synthesis has been suggested. To investigate this, we determined whether sulfate substitution of galactose (Gal) residues of the linkage region or of N-acetylgalactosamine (GalNAc) of the disaccharide unit influences activity and specificity of chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1), a key glycosyltransferase of CS biosynthesis. We synthesized a series of sulfated and unsulfated analogs of the linkage oligosaccharide and of the constitutive unit of CS and tested these molecules as potential acceptor substrates for the recombinant human CSGalNAcT-1. We show here that sulfation at C4 or C6 of the Gal residues markedly influences CSGalNAcT-1 initiation activity and catalytic efficiency. Kinetic analysis indicates that CSGalNAcT-1 exhibited 3.6-, 1.6-, and 2.2-fold higher enzymatic efficiency due to lower K(m) values toward monosulfated trisaccharides substituted at C4 or C6 position of Gal1, and at C6 of Gal2, respectively, compared with the unsulfated oligosaccharide. This highlights the critical influence of Gal substitution on both CSGalNAcT-1 activity and specifity. No GalNAcT activity was detected toward sulfated and unsulfated analogs of the CS constitutive disaccharide (GlcA-β1,3-GalNAc), indicating that CSGalNAcT-1 was involved in initiation but not in elongation of CS chains. Our results strongly suggest that sulfation of the linkage region acts as a regulatory signal in CS chain initiation.

  14. A role for heparan sulfate in viral surfing

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Myung-Jin; Akhtar, Jihan [Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612 (United States); Desai, Prashant [Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD 21231 (United States); Shukla, Deepak, E-mail: dshukla@uic.edu [Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-01-01

    Heparan sulfate (HS) moieties on cell surfaces are known to provide attachment sites for many viruses including herpes simplex virus type-1 (HSV-1). Here, we demonstrate that cells respond to HSV-1 infection by enhancing filopodia formation. Filopodia express HS and are subsequently utilized for the transport of HSV-1 virions to cell bodies in a surfing-like phenomenon, which is facilitated by the underlying actin cytoskeleton and is regulated by transient activation of a small Rho GTPase, Cdc42. We also demonstrate that interaction between a highly conserved herpesvirus envelope glycoprotein B (gB) and HS is required for surfing. A HSV-1 mutant that lacks gB fails to surf and quantum dots conjugated with gB demonstrate surfing-like movements. Our data demonstrates a novel use of a common receptor, HS, which could also be exploited by multiple viruses and quite possibly, many additional ligands for transport along the plasma membrane.

  15. The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences

    Science.gov (United States)

    Chou, I-Ming; Seal, Robert R.; Wang, Alian

    2013-01-01

    Sulfate and hydrated sulfate minerals are abundant and ubiquitous on the surface of the Earth and also on other planets and their satellites. The humidity-buffer technique has been applied to study the stability of some of these minerals at 0.1MPa in terms of temperature-relative humidity space on the basis of hydration-dehydration reversal experiments. Updated phase relations in the binary system MgSO"4-H"2O are presented, as an example, to show how reliable thermodynamic data for these minerals could be obtained based on these experimental results and thermodynamic principles. This approach has been applied to sulfate and hydrated sulfate minerals of other metals, including Fe (both ferrous and ferric), Zn, Ni, Co, Cd, and Cu. Metal-sulfate salts play important roles in the cycling of metals and sulfate in terrestrial systems, and the number of phases extends well beyond the simple sulfate salts that have thus far been investigated experimentally. The oxidation of sulfide minerals, particularly pyrite, is a common process that initiates the formation of efflorescent metal-sulfate minerals. Also, the overall abundance of iron-bearing sulfate salts in nature reflects the fact that the weathering of pyrite or pyrrhotite is the ultimate source for many of these phases. Many aspects of their environmental significance are reviewed, particularly in acute effects to aquatic ecosystems related to the dissolution of sulfate salts during rain storms or snow-melt events. Hydrous Mg, Ca, and Fe sulfates were identified on Mars, with wide distribution and very large quantities at many locations, on the basis of spectroscopic observations from orbital remote sensing and surface explorations by rovers. However, many of these findings do not reveal the detailed information on the degree of hydration that is essential for rigorous interpretation of the hydrologic history of Mars. Laboratory experiments on stability fields, reactions pathways, and reaction rates of hydrous

  16. Sulfur isotopic fractionation and its implication: Sulfate formation in PM2.5 and coal combustion under different conditions

    Science.gov (United States)

    Chen, Shanli; Guo, Ziyan; Guo, Zhaobing; Guo, Qingjun; Zhang, Yanlin; Zhu, Bin; Zhang, Haixiao

    2017-09-01

    In order to exactly explore sulfur source and sulfate formation under highly polluted atmosphere, we determined δ34S values of sulfate in PM2.5 and atmospheric SO2 in Nanjing region from 1 to 23 Jan. 2014. The secondary sulfate formation mechanism was discussed based on sulfur isotopic fractionation in the process of SO2 oxidation. Meanwhile, we synchronously studied δ34S values of raw coals used locally as well as sulfur isotopic fractionation during the combustion under coal burning and smoldering. The results show that δ34S average values of SO2 and sulfate in PM2.5 were 1.5‰ and 5.1‰, respectively. δ34S values of sulfate in PM2.5 were consistent with those of coals widely used in Nanjing region and Northern China, indicating coal combustion was an important sulfur source for PM2.5. Sulfur isotopic fractionation factors ranged from 1.0014 to 1.0075, implying that SO2 heterogeneous and homogeneous oxidation were coexisting during the formation of the secondary sulfate. The contribution of SO2 heterogeneous oxidation to sulfate varied from 40.7% to 64.8% during the observation period. δ34S values of coals presented moderately positive sulfur isotopic signatures due to organic sulfur in low sulfur coals were mainly formed by plant assimilation. Besides, the negative relationship between δ34S values of coals and total sulfur contents was also found. In addition, there existed a significant sulfur isotopic fractionation effect during coal combustion. Sulfate in PM2.5 in flue gas enriched 34S, while SO2 in flue gas enriched 32S. There was presence of the difference of δ34S values in PM2.5 and SO2 in flue gas between coal burning and smoldering, which was related to coal property and combustion temperature.

  17. Effects of sulfate and sulfide on the life cycle of Zizania palustris in hydroponic and mesocosm experiments.

    Science.gov (United States)

    Pastor, John; Dewey, Brad; Johnson, Nathan W; Swain, Edward B; Monson, Philip; Peters, Emily B; Myrbo, Amy

    2017-01-01

    Under oxygenated conditions, sulfate is relatively non-toxic to aquatic plants. However, in water-saturated soils, which are usually anoxic, sulfate can be reduced to toxic sulfide. Although the direct effects of sulfate and sulfide on the physiology of a few plant species have been studied in some detail, their cumulative effects on a plant's life cycle through inhibition of seed germination, seedling survival, growth, and seed production have been less well studied. We investigated the effect of sulfate and sulfide on the life cycle of wild rice (Zizania palustris L.) in hydroponic solutions and in outdoor mesocosms with sediment from a wild rice lake. In hydroponic solutions, sulfate had no effect on seed germination or juvenile seedling growth and development, but sulfide greatly reduced juvenile seedling growth and development at concentrations greater than 320 μg/L. In outdoor mesocosms, sulfate additions to overlying water increased sulfide production in sediments. Wild rice seedling emergence, seedling survival, biomass growth, viable seed production, and seed mass all declined with sulfate additions and hence sulfide concentrations in sediment. These declines grew steeper during the course of the 5 yr of the mesocosm experiment and wild rice populations became extinct in most tanks with concentrations of 250 mg SO4 /L or greater in the overlying water. Iron sulfide precipitated on the roots of wild rice plants, especially at high sulfate application rates. These precipitates, or the encroachment of reducing conditions that they indicate, may impede nutrient uptake and be partly responsible for the reduced seed production and viability. © 2016 by the Ecological Society of America.

  18. Performance of CSTR-EGSB-SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis.

    Science.gov (United States)

    Shan, Lili; Zhang, Zhaohan; Yu, Yanling; Ambuchi, John Justo; Feng, Yujie

    2017-06-01

    Performance and microbial community composition were evaluated in a two-phase anaerobic and aerobic system treating sulfate-rich cellulosic ethanol wastewater (CEW). The system was operated at five different chemical oxygen demand (COD)/SO42- ratios (63.8, 26.3, 17.8, 13.7, and 10.7). Stable performance was obtained for total COD removal efficiency (94.5%), sulfate removal (89.3%), and methane production rate (11.5 L/day) at an organic loading rate of 32.4 kg COD/(m3·day). The acidogenic reactor made a positive contribution to net VFAs production (2318.1 mg/L) and sulfate removal (60.9%). Acidogenic bacteria (Megasphaera, Parabacteroides, unclassified Ruminococcaceae spp., and Prevotella) and sulfate-reducing bacteria (Butyrivibrio, Megasphaera) were rich in the acidogenic reactor. In the methanogenic reactor, high diversity of microorganisms corresponded with a COD removal contribution of 83.2%. Moreover, methanogens (Methanosaeta) were predominant, suggesting that these organisms played an important role in the acetotrophic methanogenesis pathway. The dominant aerobic bacteria (Truepera) appeared to have been responsible for the COD removal of the SBR. These results indicate that dividing the sulfate reduction process could effectively minimize sulfide toxicity, which is important for the successful operation of system treating sulfate-rich CEW.

  19. Host cell heparan sulfate glycosaminoglycans are ligands for OspF-related proteins of the Lyme disease spirochete.

    Science.gov (United States)

    Lin, Yi-Pin; Bhowmick, Rudra; Coburn, Jenifer; Leong, John M

    2015-10-01

    Borrelia burgdorferi, the agent of Lyme disease, spreads from the site of the tick bite to tissues such as heart, joints and the nervous tissues. Host glycosaminoglycans, highly modified repeating disaccharides that are present on cell surfaces and in extracellular matrix, are common targets of microbial pathogens during tissue colonization. While several dermatan sulfate-binding B. burgdorferi adhesins have been identified, B. burgdorferi adhesins documented to promote spirochetal binding to heparan sulfate have not yet been identified. OspEF-related proteins (Erps), a large family of plasmid-encoded surface lipoproteins that are produced in the mammalian host, can be divided into the OspF-related, OspEF-leader peptide (Elp) and OspE-related subfamilies. We show here that a member of the OspF-related subfamily, ErpG, binds to heparan sulfate and when produced on the surface of an otherwise non-adherent B. burgdorferi strain, ErpG promotes heparan sulfate-mediated bacterial attachment to the glial but not the endothelial, synovial or respiratory epithelial cells. Six other OspF-related proteins were capable of binding heparan sulfate, whereas representative OspE-related and Elp proteins lacked this activity. These results indicate that OspF-related proteins are heparan sulfate-binding adhesins, at least one of which promotes bacterial attachment to glial cells. © 2015 John Wiley & Sons Ltd.

  20. Recent patterns of sulfate variability in pristine streams

    Science.gov (United States)

    Lins, H.F.

    1986-01-01

    Systematic modes of spatial and temporal variation in a 13-y record of stream sulfate from a nationwide network of headwater sampling stations are defined using principal components. Based on the undisturbed nature of the sampling network, it is suggested that these modes of stream sulfate variability are analogues for variations in acid deposition. Three statistically significant components, accounting for approximately 50% of the total stream sulfate variance, are identified. Analysis of component loadings and scores indicates that a major transition occurred in the early 1970s when stream sulfate concentrations in the northeast changed from persistently above mean levels to persistently below. At the same time concentrations of sulfate in Gulf and Southeast Atlantic coast streams shifted from persistently below to persistently above mean concentrations. Significantly, these changes occurred contemporaneously with regional trends in sulfate emissions which can generally be characterized as decreasing in the northeast and increasing in the southeast.Systematic modes of spatial and temporal variation in a 13-y record of stream sulfate from a nationwide network of headwater sampling stations are defined using principal components. Based on the undisturbed nature of the sampling network, it is suggested that these modes of stream sulfate variability are analogues for variations in acid deposition. Three statistically significant components, accounting for approximately 50% of the total stream sulfate variance, are identified. Analysis of component loadings and scores indicates that a major transition occurred in the early 1970s when stream sulfate concentrations in the northeast changed from persistently above mean levels to persistently below. At the same time concentrations of sulfate in Gulf and Southeast Atlantic coast streams shifted from persistently below to persistently above mean concentrations.

  1. Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols

    Science.gov (United States)

    Bindeman, I. N.; Eiler, J. M.; Wing, B. A.; Farquhar, J.

    2007-05-01

    data presented here are consistent with modification of a chemical mass-dependent fractionation of sulfur isotopes in the volcanic plume by either a kinetic gas phase reaction of volcanic SO 2 with OH and/or a Rayleigh processes involving a residual Rayleigh reactant—volcanic SO 2 gas, rather than a Rayleigh product. These results may also imply at least two removal pathways for SO 2 in volcanic plumes. Above-zero Δ17O values and their positive correlation with δ18O in sulfate can be explained by oxidation by high- δ18O and high- Δ17O compounds such as ozone and radicals such as OH that result from ozone break down. Large caldera-forming eruptions have the highest Δ17O values, and the largest range of δ18O, which can be explained by stratospheric reaction with ozone-derived OH radicals. These results suggest that massive eruptions are capable of causing a temporary depletion of the ozone layer. Such depletion may be many times that of the measured 3-8% depletion following 1991 Pinatubo eruption, if the amount of sulfur dioxide released scales with the amount of ozone depletion.

  2. Upper tropospheric ice sensitivity to sulfate geoengineering

    Science.gov (United States)

    Visioni, Daniele; Pitari, Giovanni; Mancini, Eva

    2017-04-01

    In light of the Paris Agreement which aims to keep global warming under 2 °C in the next century and considering the emission scenarios produced by the IPCC for the same time span, it is likely that to remain below that threshold some kind of geoengineering technique will have to be deployed. Amongst the different methods, the injection of sulfur into the stratosphere has received much attention considering its effectiveness and affordability. Aside from the rather well established surface cooling sulfate geoengineering (SG) would produce, the investigation on possible side-effects of this method is still ongoing. For instance, some recent studies have investigated the effect SG would have on upper tropospheric cirrus clouds, expecially on the homogenous freezing mechanisms that produces the ice particles (Kuebbeler et al., 2012). The goal of the present study is to better understand the effect of thermal and dynamical anomalies caused by SG on the formation of ice crystals via homogeneous freezing by comparing a complete SG simulation with a RCP4.5 reference case and with a number of sensitivity studies where atmospheric temperature changes in the upper tropospheric region are specified in a schematic way as a function of the aerosol driven stratospheric warming and mid-lower tropospheric cooling. These changes in the temperature profile tend to increase atmospheric stabilization, thus decreasing updraft and with it the amount of water vapor available for homogeneous freezing in the upper troposphere. However, what still needs to be assessed is the interaction between this dynamical effect and the thermal effects of tropospheric cooling (which would increase ice nucleation rates) and stratospheric warming (which would probably extend to the uppermost troposphere via SG aerosol gravitational settling, thus reducing ice nucleation rates), in order to understand how they combine together. Changes in ice clouds coverage could be important for SG, because cirrus ice

  3. Solubility of uranous sulfate in aqueous sulfuric acid solution

    Science.gov (United States)

    Suzuki, Shigeru; Hirono, Shuichiro; Awakura, Yasuhiro; Majima, Hiroshi

    1990-10-01

    To provide important thermodynamic data for use in uranium hydrometallurgy, solubilities of uranous sulfate were determined as a function of free acid concentration and temperature. Two sets of experiments were performed in this study. One set was the precipitation experiments of uranous sulfate crystals, in which concentrated uranous sulfate solution was mixed with sulfuric acid solution of suitable concentration. The other set was the dissolution experiments of uranous sulfate crystals in aqueous sulfuric acid solutions. It is noteworthy that good agreement exists between the solubilities determined by the two methods. At elevated temperatures, say, 363 K, the presence of free sulfuric acid is required to avoid precipitation of uranous hydroxide resulting from the hydrolysis of uranous sulfate. Generally speaking, however, an increase in free sulfuric acid concentration results in a slight decrease in uranous sulfate solubility. The elevation of solution temperature causes a decrease in solubility of uranous sulfate. It should be noted that the solid uranous sulfates equilibrated with saturated solutions at 298 K were U(SO4)2 2H2O in dilute sulfuric acid solution and U(SO4)2 4H2O in concentrated sulfuric acid solution, while those at 333 K and 363 K were mainly U(SO4)2 4H2O.

  4. 21 CFR 520.1044 - Gentamicin sulfate oral dosage forms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate oral dosage forms. 520.1044... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1044 Gentamicin sulfate oral dosage forms. ...

  5. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  6. Quantitative Analysis of Sulfate in Water by Indirect EDTA Titration

    Science.gov (United States)

    Belle-Oudry, Deirdre

    2008-01-01

    The determination of sulfate concentration in water by indirect EDTA titration is an instructive experiment that is easily implemented in an analytical chemistry laboratory course. A water sample is treated with excess barium chloride to precipitate sulfate ions as BaSO[subscript 4](s). The unprecipitated barium ions are then titrated with EDTA.…

  7. Effects of magnesium sulfate on the acquisition and reinstatement of ...

    African Journals Online (AJOL)

    In the current study, the effects of magnesium sulfate on the acquisition and reinstatement of morphine-induced conditioned place preference (CPP) in an animal model were investigated. The acquisition and extinction and reinstatement phases induced using morphine 40 and 10mg/kg. Magnesium sulfate 300 and 600 ...

  8. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  9. Reductive and sorptive properties of sulfate green rust (GRSO4)

    DEFF Research Database (Denmark)

    Nedel, Sorin

    The Fe(II), Fe(III) hydroxide containing sulfate in its structure, called sulfate green rust (GRSO4), can effectively reduce and convert contaminants to less mobile and less toxic forms. However, the ability of GRSO4 to remove positively charged species from solution, via sorption, is very limited...

  10. Characterization of Sulfate Groups and Assessment of Anti ...

    African Journals Online (AJOL)

    Characterization of Sulfate Groups and Assessment of Anti-Coagulant Activity of Glucomannan Sulfate Prepared from Konjac Glucomannan. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  11. Some considerations on the washout of sulfate from stack plumes

    Science.gov (United States)

    Leonard K. Peters

    1976-01-01

    A theoretical analysis of the contribution to rainwater sulfate concentration by precipitation scavenging of gaseous SO2 and sulfate containing aerosols is presented. Aspects, such as the proper choice of mean raindrop diameter, are discussed in detail, and guidelines for their use are explored. Sample calculations are provided in which emissions...

  12. 21 CFR 529.1044a - Gentamicin sulfate intrauterine solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate intrauterine solution. 529.1044a Section 529.1044a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... § 529.1044a Gentamicin sulfate intrauterine solution. (a) Specifications. Each milliliter of solution...

  13. 21 CFR 529.50 - Amikacin sulfate intrauterine solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Amikacin sulfate intrauterine solution. 529.50 Section 529.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Amikacin sulfate intrauterine solution. (a) Specifications. Each milliliter of sterile aqueous solution...

  14. 21 CFR 520.1044a - Gentamicin sulfate oral solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate oral solution. 520.1044a Section 520.1044a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Gentamicin sulfate oral solution. (a) Specifications. Each milliliter of aqueous solution contains gentamicin...

  15. Sodium dodecyl sulfate-assisted synthesis of Ni nanoparticles ...

    Indian Academy of Sciences (India)

    31

    Sodium dodecyl sulfate-assisted synthesis of Ni nanoparticles: Electrochemical. 1 properties. 2. 3 ... presence of different concentrations of sodium dodecyl sulfate (SDS) (mole ratios of. 4. SDS:Ni(acac)2 = 1:1, ..... In our previous work, we presented that DMF could be act as a unique reducing agent for the. 12 reduction of ...

  16. 21 CFR 520.110 - Apramycin sulfate soluble powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Apramycin sulfate soluble powder. 520.110 Section 520.110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... sulfate soluble powder. (a) Specifications. A water soluble powder used to make a medicated drinking water...

  17. Mercury in Fish from a Sulfate-Amended Wetland Mesocosm

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, S.M.

    2003-05-29

    This study used an experimental model of a constructed wetland to evaluate the risk of mercury methylation when the soil is amended with sulfate. The model was planted with Schoenoplectus californicus, and the sediments were varied during construction to provide a control and two levels of sulfate treatment.

  18. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor.

    Science.gov (United States)

    Gustafsen, Camilla; Olsen, Ditte; Vilstrup, Joachim; Lund, Signe; Reinhardt, Anika; Wellner, Niels; Larsen, Torben; Andersen, Christian B F; Weyer, Kathrin; Li, Jin-Ping; Seeberger, Peter H; Thirup, Søren; Madsen, Peder; Glerup, Simon

    2017-09-11

    Coronary artery disease is the main cause of death worldwide and accelerated by increased plasma levels of cholesterol-rich low-density lipoprotein particles (LDL). Circulating PCSK9 contributes to coronary artery disease by inducing lysosomal degradation of the LDL receptor (LDLR) in the liver and thereby reducing LDL clearance. Here, we show that liver heparan sulfate proteoglycans are PCSK9 receptors and essential for PCSK9-induced LDLR degradation. The heparan sulfate-binding site is located in the PCSK9 prodomain and formed by surface-exposed basic residues interacting with trisulfated heparan sulfate disaccharide repeats. Accordingly, heparan sulfate mimetics and monoclonal antibodies directed against the heparan sulfate-binding site are potent PCSK9 inhibitors. We propose that heparan sulfate proteoglycans lining the hepatocyte surface capture PCSK9 and facilitates subsequent PCSK9:LDLR complex formation. Our findings provide new insights into LDL biology and show that targeting PCSK9 using heparan sulfate mimetics is a potential therapeutic strategy in coronary artery disease.PCSK9 interacts with LDL receptor, causing its degradation, and consequently reduces the clearance of LDL. Here, Gustafsen et al. show that PCSK9 interacts with heparan sulfate proteoglycans and this binding favors LDLR degradation. Pharmacological inhibition of this binding can be exploited as therapeutic intervention to lower LDL levels.

  19. Microbial Preservation in Sulfates in the Haughton Impact Structure Suggests Target in Search for Life on Mars

    Science.gov (United States)

    Parnell, J.; Osinski, G. R.; Lee, P.; Cockell, C. S.

    2005-01-01

    Microbes in Haughton Crater Sulfates: Impact craters are of high interest in planetary exploration because they are viewed as possible sites for evidence of life [1]. Hydrothermal systems in craters are particularly regarded as sites where primitive life could evolve. Evidence from the Miocene Haughton impact structure shows that crater hydrothermal deposits may also be a preferred site for subsequent colonization and hence possible extant life: Hydrothermal sulfates at Haughton are colonized by viable cyanobacteria [2]. The Haughton impact structure, Devon Island, Canadian High Arctic, is a 24 km-diameter crater of mid-Tertiary age. The structure preserves an exceptional record of impact-induced hydrothermal activity, including sulfide, and sulfate mineralization [3]. The target rocks excavated at the site included massive gypsum-bearing carbonate rocks of Ordovician age. Impact-remobilized sulfates occur as metre-scale masses of intergrown crystals of the clear form of gypsum selenite in veins and cavity fillings within the crater s impact melt breccia deposits [4]. The selenite is part of the hydrothermal assemblage as it was precipitated by cooling hot waters that were circulating as a result of the impact. Remobilization of the sulfate continues to the present day, such that it occurs in soil crusts (Fig. 1) including sandy beds with a gypsum cement. The sulfate-cemented beds make an interesting comparison with the sulfate-bearing sandy beds encountered by the Opportunity MER [5]. The selenite crystals are up to 0.3 m in width, of high purity, and transparent. They locally exhibit frayed margins where cleavage surfaces have separated. This exfoliation may be a response to freeze-thaw weathering. The selenite contains traces of rock detritus, newly precipitated gypsum, and microbial colonies. The rock detritus consists of sediment particles which penetrated the opened cleavages by up to 2cm from the crystal margins. Some of the detritus is cemented into place

  20. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  1. Modeling calcium sulfate chemistries with applications to Mars

    Science.gov (United States)

    Marion, G. M.; Catling, D. C.; Kargel, J. S.; Crowley, J. K.

    2016-11-01

    On Mars, evidence indicates widespread calcium sulfate minerals. Gypsum (CaSO4ṡ2H2O) seems to be the dominant calcium sulfate mineral in the north polar region of Mars. On the other hand, anhydrite (CaSO4) and bassanite (CaSO4ṡ0.5H2O) appear to be more common in large sedimentary deposits in the lower latitudes. The tropics are generally warmer and drier, and at least locally show evidence of acidic environments in the past. FREZCHEM is a thermodynamic modeling tool used for assessment of equilibrium involving high salinity solutions and salts, designed especially for low temperatures below 298 K (with one version adapted for temperatures up to 373 K), and we have used it to investigate many Earth, Mars, and other planetary science problems. Gypsum and anhydrite were included in earlier versions of FREZCHEM and our model Mars applications, but bassanite (the CaSO4 hemihydrate) has not previously been included. The objectives of this work are to (1) add bassanite to the FREZCHEM model, (2) examine the environments in which thermodynamic equilibrium precipitation of calcium sulfate minerals would be favored on Mars, and (3) use FREZCHEM to model situations where metastable equilibrium might be favored and promote the formation or persistence of one of these phases over the others in violation of an idealized equilibrium state. We added a bassanite equation based on high temperatures (343-373 K). A Mars simulation was based on a previously published Nasbnd Casbnd Mgsbnd Clsbnd SO4 system over the temperature range of 273 to 373 K. With declining temperatures, the first solid phase under equilibrium precipitation is anhydrite at 373 K, then gypsum forms at 319 K (46 °C), and epsomite (MgSO4ṡ7H2O) at 277 K. This sequence could reflect, for example, the precipitation sequence in a saturated solution that is slowly cooled in a deep, warm aquifer. Because FREZCHEM is based on thermodynamic equilibrium, a crude approach to problems involving metastable equilibria is

  2. Structum (chondroitin sulfate in treatment of osteoarthritis

    Directory of Open Access Journals (Sweden)

    O J Varga

    2003-01-01

    Full Text Available Objective. To assess Structum (chondroitin sulfate efficacy in treatment of osteoarthritis in Republic of Karelia. Methods. 34 pts with osteoarthritis (mean disease duration 6,44±0,67 years were included. Functional Leken score (FLS, pain at rest and at walk on visual analog scale (VAS, pts nonsteroidal anti-inflammatory drugs (NSAID requirement (diclofenac daily requirement in mg, percent of pts refused NSAID treatment, achievement of clinically significant improvement (40% decrease of FLS and/or 50% decrease of NSAID requirement were regarded as variables for the evaluation of therapy efficacy. Results. Structum administration in pts with osteoarthritis provided reduction of FLS, pain at rest and at walk, NSAID requirement and in some cases allowed to withdraw of NSAID completely. Structum has good safety and is effective in doctor and pts opinion. Conclusion. Structum is an effective drug for treatment of osteoarthritis.

  3. Acidic Fluids Across Mars: Detections of Magnesium-Nickel Sulfates

    Science.gov (United States)

    Yen, A. S.; Ming, D. W.; Gellert, R.; Mittlefehldt, D. W.; Rampe, E. B.; Vaniman, D. T.; Thompson, L. M.; Morris, R. V.; Clark, B. C.; VanBommel, S. J.

    2017-01-01

    Calcium, magnesium and ferric iron sulfates have been detected by the instrument suites on the Mars rovers. A subset of the magnesium sulfates show clear associations with nickel. These associations indicate Ni(2+) co-precipitation with or substitution for Mg(2+) from sulfate-saturated solutions. Nickel is ex-tracted from primary rocks almost exclusively at pH values less than 6, constraining the formation of these Mg-Ni sulfates to mildly to strongly acidic conditions. There is clear evidence for aqueous alteration at the rim of Endeavour Crater (Meridiani Planum), in the Murray formation mudstone (Gale Crater), and near Home Plate (Gusev Crater). The discovery of Mg-Ni sulfates at these locations indicates a history of fluid-rock interactions at low pH.

  4. Preparation and characterization of a chemically sulfated cashew gum polysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Moura Neto, Erico de; Maciel, Jeanny da S.; Cunha, Pablyana L. R.; Paula, Regina Celia M. de; Feitosa, Judith P.A., E-mail: judith@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, Fortaleza (Brazil)

    2011-09-15

    Cashew gum (CG) was sulfated in pyridine:formamide using chlorosulfonic acid as the reagent. Confirmation of sulfation was obtained by Fourier transform infrared (FTIR) spectroscopy through the presence of an asymmetrical S=O stretching vibration at 1259 cm{sup -1}. The degrees of substitution were 0.02, 0.24 and 0.88 determined from the sulfur percentage. 1D and 2D nuclear magnetic resonance (NMR) data showed that the sulfation occurred at primary carbons. An increase of at least 4% of the solution viscosity was observed due to sulfation. The thermal gravimetric curves (TGA) indicate that the derivatives are stable up to ca. 200 deg C. The sulfated CG is compared to carboxymethylated CG in order to verify the possibility of the use of the former in the preparation of polyelectrolyte complexes; the latter is already being used for this application. (author)

  5. Use of Magnesium Sulfate Infusion for the Management of Febrile Illness-Related Epilepsy Syndrome

    OpenAIRE

    Tan, Wei Wei; Chan, Derrick W. S.; Lee, Jan Hau; Thomas, Terrence; Menon, Anuradha P.; Chan, Yoke Hwee

    2015-01-01

    Febrile illness-related epilepsy syndrome is a catastrophic epileptic encephalopathy that is highly refractory to most antiepileptic drugs leading to high morbidity and mortality. The authors report the use of a pediatric infusion protocol of continuous intravenous magnesium sulfate for the control of seizures in 2 children with febrile illness-related epilepsy syndrome refractory to multiple antiepileptic drugs in a pediatric intensive care unit of a tertiary care children?s hospital. Both p...

  6. Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors

    KAUST Repository

    Villa-Gómez, Denys Kristalia

    2014-02-13

    BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters such as pH, sulfide concentration and reactor configuration has been previously studied. The effect of the hydraulic retention time (HRT) on the metal precipitate characteristics such as particle size for settling has not yet been addressed. RESULTS: The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of the HRT was studied in two sulfate reducing inversed fluidized bed (IFB) reactors operating at different chemical oxygen demand concentrations to produce high and low sulfide concentrations. The decrease of the HRT from 24 to 9h in both IFB reactors affected the contact time of the precipitates formed, thus making differences in aggregation and particle growth regardless of the differences in sulfide concentration. Further HRT decrease to 4.5h affected the sulfate reducing activity for sulfide production and hence, the supersaturation level and solid phase speciation. Metal sulfide precipitates affected the sulfate reducing activity and community in the biofilm, probably because of the stronger local supersaturation causing metal sulfides accumulation in the biofilm. CONCLUSIONS: This study shows that the HRT is an important factor determining the size and thus the settling rate of the metal sulfides formed in bioreactors.

  7. Acidification of musts in warm regions with tartaric acid and calcium sulfate at industrial scale

    Directory of Open Access Journals (Sweden)

    Gómez Juan

    2015-01-01

    Full Text Available Acidification of musts is necessary in warm areas where high temperatures during ripening accelerate breathing com- bustion of tartaric acid and, in particular, malic acid in the berries. L(+ tartaric acid, L(- or D,L malic acid and lactic acids are the only chemical acidifiers authorized by the OIV and European Community regulations. The use of calcium sulfate (gypsum: CaSO4·2H2O is also authorized in the European Community as a complementary acidifier in generous and generous liquor 42 wines from Spain (a practice known as plastering, provided that the residual sulfate content in the wine does not exceed 2.5 g/L expressed as potassium sulfate. However, this practice is not yet approved by OIV. To predict the effect on pH of different acidi- fiers, several chemical modeling approaches have been described in the literature, in particular a simplified model where the acidity of wine is considered to be due to a monoprotic acid. The aim of this work is to verify this model at pilot and industrial scale in the acidification of musts with tartaric and calcium sulfate, added either individually and in combination, using doses up to 3 g/L and to study the modifications that these practices produce on the compositions of the resulting wines. This work sup- plies useful information to study this practice in OIV in order to consider its approval.

  8. Crystal structures of the kinase domain of the sulfate-activating complex in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Ömer Poyraz

    Full Text Available In Mycobacterium tuberculosis the sulfate activating complex provides a key branching point in sulfate assimilation. The complex consists of two polypeptide chains, CysD and CysN. CysD is an ATP sulfurylase that, with the energy provided by the GTPase activity of CysN, forms adenosine-5'-phosphosulfate (APS which can then enter the reductive branch of sulfate assimilation leading to the biosynthesis of cysteine. The CysN polypeptide chain also contains an APS kinase domain (CysC that phosphorylates APS leading to 3'-phosphoadenosine-5'-phosphosulfate, the sulfate donor in the synthesis of sulfolipids. We have determined the crystal structures of CysC from M. tuberculosis as a binary complex with ADP, and as ternary complexes with ADP and APS and the ATP mimic AMP-PNP and APS, respectively, to resolutions of 1.5 Å, 2.1 Å and 1.7 Å, respectively. CysC shows the typical APS kinase fold, and the structures provide comprehensive views of the catalytic machinery, conserved in this enzyme family. Comparison to the structure of the human homolog show highly conserved APS and ATP binding sites, questioning the feasibility of the design of specific inhibitors of mycobacterial CysC. Residue Cys556 is part of the flexible lid region that closes off the active site upon substrate binding. Mutational analysis revealed this residue as one of the determinants controlling lid closure and hence binding of the nucleotide substrate.

  9. Modelling the Effect of Black Carbon and Sulfate Aerosol on the Regional Meteorology Factors

    Science.gov (United States)

    Ma, X.; Wen, W.

    2017-07-01

    In this study, we focus on the effect of black carbon aerosol and sulfate aerosol on meteorology factors during heavy pollution period and non-heavy pollution period. The version of WRF/chem V3.4 was used in this work, Four Simulation scenarios are applied to simulate the effect of the effect of black carbon aerosol and sulfate aerosol on solar radiation, temperature, PBL high. The analysis results show that the effect of black carbon and sulfate aerosol cause decline on three meteorological factors in both heavy pollution and non-heavy pollution period in both January and July. The influence of two aerosols on meteorological factors are less significant than winter. During heavy pollution, black carbon aerosol cause the loss of solar radiation is 29.1W/m2; the warming effect of black carbon aerosol caused temperature to rise 0.05°C PBL height decreased by an average of 73.1m. Sulfate aerosols cause the loss of solar radiation is 21.5W/m2; Temperature fell an average of 0.89°C PBL height decreased by 66.6m. The change of three meteorological factors due to aerosol feedback in non-heavy pollution period in much smaller than heavy pollution period.

  10. Effective Henry's law partitioning and the salting constant of glyoxal in aerosols containing sulfate.

    Science.gov (United States)

    Kampf, Christopher J; Waxman, Eleanor M; Slowik, Jay G; Dommen, Josef; Pfaffenberger, Lisa; Praplan, Arnaud P; Prévôt, André S H; Baltensperger, Urs; Hoffmann, Thorsten; Volkamer, Rainer

    2013-05-07

    The reversible partitioning of glyoxal was studied in simulation chamber experiments for the first time by time-resolved measurements of gas-phase and particle-phase concentrations in sulfate-containing aerosols. Two complementary methods for the measurement of glyoxal particle-phase concentrations are compared: (1) an offline method utilizing filter sampling of chamber aerosols followed by HPLC-MS/MS analysis and (2) positive matrix factorization (PMF) analysis of aerosol mass spectrometer (AMS) data. Ammonium sulfate (AS) and internally mixed ammonium sulfate/fulvic acid (AS/FA) seed aerosols both show an exponential increase of effective Henry's law coefficients (KH,eff) with AS concentration (cAS, in mol kg(-1) aerosol liquid water, m = molality) and sulfate ionic strength, I(SO4(2-)) (m). A modified Setschenow plot confirmed that "salting-in" of glyoxal is responsible for the increased partitioning. The salting constant for glyoxal in AS is K(S)CHOCHO = (-0.24 ± 0.02) m(-1), and found to be independent of the presence of FA. The reversible glyoxal uptake can be described by two distinct reservoirs for monomers and higher molecular weight species filling up at characteristic time constants. These time constants are τ1 ≈ 10(2) s and τ2 ≈ 10(4) s at cAS < 12 m, and about 1-2 orders of magnitude slower at higher cAS, suggesting that glyoxal uptake is kinetically limited at high salt concentrations.

  11. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    Science.gov (United States)

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  12. Swelling of Clay-Sulfate Rocks: A Review of Processes and Controls

    Science.gov (United States)

    Butscher, Christoph; Mutschler, Thomas; Blum, Philipp

    2016-04-01

    The swelling of clay-sulfate rocks is a major threat in tunnel engineering, causing serious damage to tunnels and producing high additional costs during tunnel construction and operation. The swelling problem is also known from other geotechnical fields, such as road and bridge construction, and in conjunction with geothermal drillings. The planning of counter measures that would stop or minimize the swelling is extremely difficult, and it is currently impossible to predict the swelling behavior of an actual geotechnical project. One of the reasons is our limited knowledge of the processes involved in the swelling of clay-sulfate rocks, and of the geological, mineralogical, chemical, hydraulic and mechanical controls of the swelling. This article presents a literature review of processes in swelling clay-sulfate rocks and associated controls. Numerical models that aim at simulating the processes and controls are also included in this review, and some of the remaining open questions are pointed out. By focusing on process-related work in this review, the article intends to stimulate further research across disciplines in the field of swelling clay-sulfate rocks to finally get a step further in managing the swelling problem in geotechnical projects.

  13. Analysis of sulfate resistance in concrete based on artificial neural networks and USBR4908-modeling

    Directory of Open Access Journals (Sweden)

    Osama Hodhod

    2013-12-01

    Full Text Available One of the available tests that can be used to evaluate concrete sulfate resistance is USBR4908. However, there are deficiencies in this test method. This study focuses on the ANN as an alternative approach to evaluate the sulfate expansion. Three types of cement combined with FA or SF, along with variable W/B were study by USBR4908. ANN model were developed by five input parameters, W/B, cement content, FA or SF, C3A, and exposure duration; output parameter is determined as expansion. Back propagation algorithm was employed for the ANN training; a Tansig function was used as the nonlinear transfer function. It was clear that the ANN models give high prediction accuracy. In addition, The engineer can avoid the use of the borderline 2.5–5% C3A content in severe sulfate environments and borderline 6–8% C3A content in moderate sulfate environments, specially with W/B ratio greater than 0.45.

  14. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    Directory of Open Access Journals (Sweden)

    Casper Thorup

    2017-07-01

    Full Text Available This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR. Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase.

  15. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  16. Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence

    Science.gov (United States)

    Tie, Xuexi; Emmons, Louisa; Horowitz, Larry; Brasseur, Guy; Ridley, Brian; Atlas, Elliot; Stround, Craig; Hess, Peter; Klonecki, Andrzej; Madronich, Sasha; Talbot, Robert; Dibb, Jack

    2003-02-01

    The distributions of NOx and O3 are analyzed during TOPSE (Tropospheric Ozone Production about the Spring Equinox). In this study these data are compared with the calculations of a global chemical/transport model (Model for OZone And Related chemical Tracers (MOZART)). Specifically, the effect that hydrolysis of N2O5 on sulfate aerosols has on tropospheric NOx and O3 budgets is studied. The results show that without this heterogeneous reaction, the model significantly overestimates NOx concentrations at high latitudes of the Northern Hemisphere (NH) in winter and spring in comparison to the observations during TOPSE; with this reaction, modeled NOx concentrations are close to the measured values. This comparison provides evidence that the hydrolysis of N2O5 on sulfate aerosol plays an important role in controlling the tropospheric NOx and O3 budgets. The calculated reduction of NOx attributed to this reaction is 80 to 90% in winter at high latitudes over North America. Because of the reduction of NOx, O3 concentrations are also decreased. The maximum O3 reduction occurs in spring although the maximum NOx reduction occurs in winter when photochemical O3 production is relatively low. The uncertainties related to uptake coefficient and aerosol loading in the model is analyzed. The analysis indicates that the changes in NOx due to these uncertainties are much smaller than the impact of hydrolysis of N2O5 on sulfate aerosol. The effect that hydrolysis of N2O5 on global NOx and O3 budgets are also assessed by the model. The results suggest that in the Northern Hemisphere, the average NOx budget decreases 50% due to this reaction in winter and 5% in summer. The average O3 budget is reduced by 8% in winter and 6% in summer. In the Southern Hemisphere (SH), the sulfate aerosol loading is significantly smaller than in the Northern Hemisphere. As a result, sulfate aerosol has little impact on NOx and O3 budgets of the Southern Hemisphere.

  17. Negative Electron Transfer Dissociation Sequencing of Increasingly Sulfated Glycosaminoglycan Oligosaccharides on an Orbitrap Mass Spectrometer

    Science.gov (United States)

    Leach, Franklin E.; Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.; Amster, I. Jonathan

    2017-09-01

    The structural characterization of sulfated glycosaminoglycan (GAG) carbohydrates remains an important target for analytical chemists attributable to challenges introduced by the natural complexity of these mixtures and the defined need for molecular-level details to elucidate biological structure-function relationships. Tandem mass spectrometry has proven to be the most powerful technique for this purpose. Previously, electron detachment dissociation (EDD), in comparison to other methods of ion activation, has been shown to provide the largest number of useful cleavages for de novo sequencing of GAG oligosaccharides, but such experiments are restricted to Fourier transform ion cyclotron resonance mass spectrometers (FTICR-MS). Negative electron transfer dissociation (NETD) provides similar fragmentation results, and can be achieved on any mass spectrometry platform that is designed to accommodate ion-ion reactions. Here, we examine for the first time the effectiveness of NETD-Orbitrap mass spectrometry for the structural analysis of GAG oligosaccharides. Compounds ranging in size from tetrasaccharides to decasaccharides were dissociated by NETD, producing both glycosidic and cross-ring cleavages that enabled the location of sulfate modifications. The highly-sulfated, heparin-like synthetic GAG, ArixtraTM, was also successfully sequenced by NETD. In comparison to other efforts to sequence GAG chains without fully ionized sulfate constituents, the occurrence of sulfate loss peaks is minimized by judicious precursor ion selection. The results compare quite favorably to prior results with electron detachment dissociation (EDD). Significantly, the duty cycle of the NETD experiment is sufficiently short to make it an effective tool for on-line separations, presenting a straightforward path for selective, high-throughput analysis of GAG mixtures. [Figure not available: see fulltext.

  18. The Chicxulub crater - impact metamorphism of sulfate and carbonate lithologies

    Science.gov (United States)

    Deutsch, A.; Langenhorst, F.; Hornemann, U.; Ivanov, B. A.

    2003-04-01

    It is discussed whether in the aftermath of the Chicxulub event, impact-released CO_2 and SO_x have changed the Earth's climate, acting also as lethal thread for life. Undoubtedly, vaporization of carbonates and sulfates, which are major target lithologies at the Chicxulub impact site, occurred in the footprint of the projectile. What happened to these lithologies outside this very restricted zone was so far unconstrained. Petrologic observations on PEMEX and UNAM as well as on the CSDP cores allow to set up a general classification for shock-related pro-grade effects on sulfate and carbonate sedimentary rocks. Shock effects in lithic breccias are restricted to brecciation and formation of twins in calcite. Suevites mostly lack melted carbonate clasts; annealing effects in anhydrite fragments are absent. The underlying melt breccias contain anhydrite fragments still displaying a sedimentary texture, and limestone clasts, whose texture reflect crystallization from melt. Impact melt breccias from deeper levels frequently contain partially resorbed anhydrite clasts and a melt matrix with the Ca-rich mineral assemblage quartz + plagioclase + clinopyroxene; this mineral assemblage provides evidence for partial dissociation of CaSO_4. Large clasts of anhydrite consist of equant crystals with 120^o triple junctions, a feature indicative for re-crystallization in the solid state. Tagamites (impact melt rocks) are virtually free of clasts from sedimentary lithologies. These rocks have an extremely high formation temperature, which caused total dissociation of CaSO_4 and CaCO_3. Finally, up to 100 μm wide veins of anhydrite + calcite + quartz cut the matrix of all lithologies except the tagamites. They probably represent "degassing vents". The given scheme is in qualitative accordance with data of shock recovery and annealing experiments as well as with modeling results. In addition, it substantiates that annealing plays a fundamental role in the impact metamorphism of

  19. Structural characterization of chondroitin sulfate from sturgeon bone.

    Science.gov (United States)

    Maccari, Francesca; Ferrarini, Fabrizio; Volpi, Nicola

    2010-07-19

    Chondroitin sulfate (CS) was purified for the first time from the bones of sturgeon and analyzed to evaluate its structure and properties. A single polysaccharide was extracted from sturgeon bone in a concentration of 0.28-0.34% for dry tissue and characterized as CS. By means of specific chondroitinases and HPLC separation of generated unsaturated repeating disaccharides, this polymer was found to be composed of approximately 55% of disaccharide monosulfated in position 6 of the GalNAc, approximately 38% of disaccharide monosulfated in position 4 of the GalNAc, and approximately 7% of nonsulfated disaccharide. The charge density was 0.93 and the ratio of 4:6 sulfated residues was equal to 0.69, a value confirmed by (13)C NMR experiments. Chondroitinase B confirmed that the purified sturgeon CS contained mainly GlcA (>99.5%) as uronic acid. PAGE analysis showed a CS having a high molecular mass with an average value of 39,880 according to HPSEC values producing a weight average molecular weight (Mw) of 37,500. On the basis of the data collected, it is reasonable to assume that CS isolated from sturgeon bone might be potentially useful for scientific and pharmacological applications, making this bony fish, which is generally discarded after ovary collection, a useful source of this polymer. Finally, this newly identified source of CS would enable the production of this macromolecule having a particular repeating disaccharide composition, structure, and biological properties. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Multitasking Human Lectin Galectin-3 Interacts with Sulfated Glycosaminoglycans and Chondroitin Sulfate Proteoglycans.

    Science.gov (United States)

    Talaga, Melanie L; Fan, Ni; Fueri, Ashli L; Brown, Robert K; Bandyopadhyay, Purnima; Dam, Tarun K

    2016-08-16

    Glycosaminoglycan (GAG) binding proteins (GAGBPs), including growth factors, cytokines, morphogens, and extracellular matrix proteins, interact with both free GAGs and those covalently linked to proteoglycans. Such interactions modulate a variety of cellular and extracellular events, such as cell growth, metastasis, morphogenesis, neural development, and inflammation. GAGBPs are structurally and evolutionarily unrelated proteins that typically recognize internal sequences of sulfated GAGs. GAGBPs are distinct from the other major group of glycan binding proteins, lectins. The multifunctional human galectin-3 (Gal-3) is a β-galactoside binding lectin that preferentially binds to N-acetyllactosamine moieties on glycoconjugates. Here, we demonstrate through microcalorimetric and spectroscopic data that Gal-3 possesses the characteristics of a GAGBP. Gal-3 interacts with unmodified heparin, chondroitin sulfate-A (CSA), -B (CSB), and -C (CSC) as well as chondroitin sulfate proteoglycans (CSPGs). While heparin, CSA, and CSC bind with micromolar affinity, the affinity of CSPGs is nanomolar. Significantly, CSA, CSC, and a bovine CSPG were engaged in multivalent binding with Gal-3 and formed noncovalent cross-linked complexes with the lectin. Binding of sulfated GAGs was completely abolished when Gal-3 was preincubated with β-lactose. Cross-linking of Gal-3 by CSA, CSC, and the bovine CSPG was reversed by β-lactose. Both observations strongly suggest that GAGs primarily occupy the lactose/LacNAc binding site of Gal-3. Hill plot analysis of calorimetric data reveals that the binding of CSA, CSC, and a bovine CSPG to Gal-3 is associated with progressive negative cooperativity effects. Identification of Gal-3 as a GAGBP should help to reveal new functions of Gal-3 mediated by GAGs and proteoglycans.

  1. Studi Pendirian Pabrik Natrium Sulfat Dekahidrat di Kabupaten Sampang

    Directory of Open Access Journals (Sweden)

    Fanny Husna Ar-rosyidah

    2017-01-01

    Full Text Available Indonesia merupakan negara berkembang yang memiliki kewajiban untuk melaksanakan pembangunan di segala bidang. Dalam hal ini, pemerintah menitikberatkan pada pembangunan di sektor industri. Salah satu produk yang dibutuhkan saat ini adalah natrium sulfat (Na2SO4. Natrium sulfat adalah garam natrium dari asam sulfur. Dalam bentuk anhidratnya, senyawa ini berbentuk padatan kristal putih dengan rumus kimia Na2SO4, atau lebih dikenal dengan mineral tenardit sedangkan bentuk dekahidratnya mempunyai rumus kimia Na2SO4.10H2O yang lebih dikenal dengan nama garam glauber atau sal mirabilis. Natrium sulfat banyak digunakan untuk memenuhi kebutuhan industri, antara lain di industri pulp dan kertas, deterjen, pembuatan flat glass, tekstil, keramik, farmasi, zat pewarna dan sebagai reagent di laboratorium kimia. Berdasarkan data yang diperoleh dari Badan Pusat Statistik dan Kementerian Perindustrian Republik Indonesia kebutuhan impor natrium sulfat di Indonesia (tahun 2010 hingga tahun 2014 rata – rata pertahunnya sebesar 218.967,238 ton. Meskipun kebutuhan industri akan natrium sulfat sangat banyak dan kegunaannya pun beragam, namun hingga saat ini Indonesia belum dapat memenuhi kebutuhan pasar dalam negeri karena produksi natrium sulfat secara komersial masih sangat rendah. Hingga saat ini Indonesia baru memiliki 3 pabrik natrium sulfat dengan total kapasitas produksi sebesar 265.000 ton/tahun. Melihat data tersebut menunjukkan bahwa persediaan akan natrium sulfat di Indonesia masih sangat minim. Sehingga, pendirian pabrik natrium sulfat dekahidrat di Indonesia selain akan menguntungkan dari segi ekonomi, juga dapat memicu berkembangnya industri – industri pengguna natrium sulfat itu sendiri, sekaligus membuka lapangan kerja sehingga mengurangi tingkat pengangguran di Indonesia. Dan ditinjau dari analisa ekonomi, didapatkan besar total investasi              : Rp 94.716.122.794; internal rate of return           : 30%; POT

  2. Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia

    Directory of Open Access Journals (Sweden)

    Abdallah I. M. Rabee

    2017-07-01

    Full Text Available New insight was gained into the acidity-reactivity relationships of sulfated zirconia (SZ catalysts prepared via (NH42SO4 impregnation of Zr(OH4 for propanoic acid esterification with methanol. A family of systematically related SZs was characterized by bulk and surface analyses including XRD, XPS, TGA-MS, N2 porosimetry, temperature-programmed propylamine decomposition, and FTIR of adsorbed pyridine, as well as methylbutynol (MBOH as a reactive probe molecule. Increasing surface sulfation induces a transition from amphoteric character for the parent zirconia and low S loadings <1.7 wt %, evidenced by MBOH conversion to 3-hydroxy-3-methyl-2-butanone, methylbutyne and acetone, with higher S loadings resulting in strong Brønsted-Lewis acid pairs upon completion of the sulfate monolayer, which favored MBOH conversion to prenal. Catalytic activity for propanoic acid esterification directly correlated with acid strength determined from propylamine decomposition, coincident with the formation of Brønsted-Lewis acid pairs identified by MBOH reactive titration. Monodispersed bisulfate species are likely responsible for superacidity at intermediate sulfur loadings.

  3. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently

  4. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells

    OpenAIRE

    Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele

    2015-01-01

    Recent studies identified PCB sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific...

  5. Detecting Adsorbed Sulfate and Phosphate on Nanophase Weathering Products on Mars

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.

    2012-12-01

    -situ observations from CheMin and SAM on Mars Science Laboratory and remote observations from OMEGA, CRISM, and TES. CheMin- and OMEGA/CRISM-relevant laboratory measurements reveal minor differences between ion-free and ion-adsorbed allophane that would not be detectable by those instruments. However, SAM-relevant evolved gas analyses of sulfate-adsorbed allophane show a high-temperature (>950 C) release related to SO2 gas. The release at high temperatures suggests that sulfate was strongly bonded to the allophane surface. TES-relevant thermal-infrared emission spectra of phosphate- and sulfate-adsorbed allophane display broad absorptions near 1000 cm-1 from P-O and S-O vibrations. Our laboratory measurements suggest that ions adsorbed onto weathering product surfaces may be recognized on Mars with in-situ measurements by SAM on MSL and with orbital measurements from TES. Future experiments will include similar laboratory measurements of phosphate- and sulfate-adsorbed nanophase ferric oxides.

  6. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin

    Science.gov (United States)

    Maltby, J.; Sommer, S.; Dale, A. W.; Treude, T.

    2016-01-01

    We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm below sea floor) at six stations (70, 145, 253, 407, 990 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0-25 cm b.s.f. of multiple cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cm b.s.f., 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis.Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cm b.s.f., were observed on the shelf (70-253 m, 0.06-0.1 and 0.5-4.7 mmol m-2 d-1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m-2 d-1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates - i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decrease of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m).Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon degradation (DIC production

  7. Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change

    Directory of Open Access Journals (Sweden)

    Michael ePester

    2012-02-01

    Full Text Available Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bisulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point towards the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change.

  8. Experimental Evidence for Weathering and Martian Sulfate Formation Under Extremely Cold Weather-Limited Environments

    Science.gov (United States)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars [1, 2]. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions [3]. However, there are several problems with the presence of prolonged surface temperatures on Mars above 273 K during the Noachian including the faint young Sun [4] and the presence of suitable greenhouse gases [5]. The geomorphic evidence for early warm conditions may instead be explained by periodic episodes of warming rather than long term prolonged warm temperatures [6]. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history [6]. This view is more consistent with the climate models, but has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars [7, 8]. This study seeks to test whether sulfate formation may be possible at temperatures well below 0 C in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars.

  9. Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Silva, Blanca M. [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216, San Luis Potosi, S.L.P. (Mexico); Briones-Gallardo, Roberto [Facultad de Ingenieria-Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi, Sierra Leona 550, Lomas 2a. Seccion, 78210, San Luis Potosi, S.L.P. (Mexico); Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216, San Luis Potosi, S.L.P. (Mexico); Celis, Lourdes B., E-mail: celis@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216, San Luis Potosi, S.L.P. (Mexico)

    2009-12-15

    This study investigated the inhibition effect of iron, cadmium and sulfide on the substrate utilization rate of sulfate reducing granular sludge. A series of batch experiments in a UASB reactor were conducted with different concentrations of iron (Fe{sup 2+}, 4.0-8.5 mM), cadmium (Cd{sup 2+}, 0.53-3.0 mM) and sulfide (4.2-10.6 mM), the reactor was fed with ethanol at 1 g chemical oxygen demand (COD)/L and sulfate to yield a COD/SO{sub 4}{sup 2-} (g/g) ratio of 0.5. The addition of iron, up to a concentration of 8.1 mM, had a positive effect on the substrate utilization rate which increased 40% compared to the rate obtained without metal addition (0.25 g COD/g VSS-d). Nonetheless, iron concentration of 8.5 mM inhibited the specific substrate utilization rate by 57% compared to the substrate utilization rate obtained in the batch amended with 4.0 mM Fe{sup 2+} (0.44 g COD/g VSS-d). Cadmium had a negative effect on the specific substrate utilization rate at the concentrations tested; at 3.0 mM Cd{sup 2+} the substrate utilization rate was inhibited by 44% compared with the substrate utilization rate without metal addition. Cadmium precipitation with sulfide did not decrease the inhibition of cadmium on sulfate reduction. These results could have important practical implications mainly when considering the application of the sulfate reducing process to treat effluents with high concentrations of sulfate and dissolved metals such as iron and cadmium.

  10. Influence of nitrate and sulfate reduction in the bioelectrochemically assisted dechlorination of cis-DCE.

    Science.gov (United States)

    Lai, Agnese; Verdini, Roberta; Aulenta, Federico; Majone, Mauro

    2015-04-01

    This paper investigated the reductive dechlorination (RD) of cis-dichloroethylene (cis-DCE) (average influent 14.2±0.7 μM) by a bioelectrochemical system (BES), in the presence of real contaminated groundwater containing high levels of nitrate and sulfate. The BES enhanced both the RD and competing reactions, such as nitrate and sulfate reductions, which occurred with neither an external organic carbon source nor any inoculum other than the indigenous microbial consortia in the real groundwater. In preliminary batch tests, RD and full nitrate removal occurred after a short lag phase, whereas sulfate reduction occurred slowly and alongside the RD. Under continuous flow conditions (hydraulic retention time, HRT, 1.4 d), the competition of different electron acceptors was strongly affected by the cathodic potential in the range -550 to -750 mV vs. standard hydrogen electrode (SHE). Nitrate reduction was driven to completion at all tested cathodic potentials, whereas sulfate reduction and the RD rate increased as the cathodic potential became more negative. At -750 mV vs. SHE, strong methanogenesis was also observed and became the most important sink of electrons. The overall coulombic efficiency decreased while the potential became more negative. The RD contribution was always less than 1%. Hence, greater energy consumption was required to obtain higher RD rate and better conversion. Anodic oxidation was only observed at -750 mV vs. SHE where almost 39% of residual vinyl chloride (VC) was oxidized and the sulfate was formed back from sulfide (further contributing to electric waste). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A protein switch sensing system for the quantification of sulfate.

    Science.gov (United States)

    Hamorsky, Krystal Teasley; Ensor, Charles Mark; Pasini, Patrizia; Daunert, Sylvia

    2012-02-01

    Protein engineering has generated versatile methods and technologies that have been instrumental in advancements in the fields of sensing, therapeutics, and diagnostics. Herein, we demonstrate the employment of rational design to engineer a unique bioluminescence-based protein switch. A fusion protein switch combines two totally unrelated proteins, with distinct characteristics, in a manner such that the function of one protein is dependent on another. Herein we report a protein switch sensing system by insertion of the sulfate-binding protein (SBP) into the structure of the photoprotein aequorin (AEQ). In the presence of sulfate, SBP undergoes a conformational change bringing the two segments of AEQ together, "turning on" bioluminescence in a dose-dependent fashion, thus allowing quantitative detection of sulfate. A calibration plot was obtained by correlating the amount of bioluminescence generated with the concentration of sulfate present. The switch demonstrated selectivity and reproducibility, and a detection limit of 1.6×10(-4)M for sulfate. Moreover, the sensing system was validated by performing sulfate detection in clinical and environmental samples, such as, serum, urine, and tap water. The detection limits and working ranges in all three samples fall within the average normal/recommended sulfate levels in the respective matrices. Published by Elsevier Inc.

  12. The Regulation of Steroid Action by Sulfation and Desulfation

    Science.gov (United States)

    Mueller, Jonathan W.; Gilligan, Lorna C.; Idkowiak, Jan; Arlt, Wiebke

    2015-01-01

    Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined. PMID:26213785

  13. Processing and properties of transparent sulfated TiO{sub 2} thin films using sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Akira [Department of Metallurgy and Ceramic Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)], E-mail: anakajim@ceram.titech.ac.jp; Nakamura, Aiko; Arimitsu, Naoki; Kameshima, Yoshikazu; Okada, Kiyoshi [Department of Metallurgy and Ceramic Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2008-07-31

    For this study, transparent sulfated TiO{sub 2} thin films were prepared from Ti alkoxide. Vacuum ultraviolet illumination in air at 180 {sup o}C was demonstrated to be an effective pretreatment for reproducible preparation of crack-free sulfated TiO{sub 2} thin films. The film provides a high photoinduced wettability conversion rate and photocatalytic decomposition efficiency on gaseous n-hexane under proper conditions. This result is attributable to the accelerated decomposition of intermediates by a strong inorganic acid on the surface or to the resultant high quantum yield by suppressing the recombination between electrons and holes on the film surface.

  14. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  15. Damage modelling in concrete subject to sulfate attack

    Directory of Open Access Journals (Sweden)

    N. Cefis

    2014-07-01

    Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.

  16. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  17. Improved biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase...... activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells....

  18. Sulfated oligosaccharide structures, as determined by NMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J. [Parana Univ., Curitiba, PR (Brazil). Dept. De Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a {lambda}-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author) 4 refs., 8 figs., 1 tabs.

  19. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  20. Modeling the Use of Sulfate Additives for Potassium Chloride Destruction in Biomass Combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Morten Nedergaard; Jespersen, Jacob Boll

    2014-01-01

    -dependent distribution of SO2 and SO3 from ammonium sulfate decomposition. On the basis of these data as well as earlier results, a detailed chemical kinetic model for sulfation of KCl by a range of sulfate additives was established. Modeling results were compared to biomass combustion experiments in a bubbling......Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4 and HCl. In the present study, the rate constants for decomposition of ammonium sulfate and aluminum...... fluidized-bed reactor using ammonium sulfate, aluminum sulfate, and ferric sulfate as additives. The simulation results for ammonium sulfate and ferric sulfate addition compared favorably to the experiments. The predictions for aluminum sulfate addition were only partly in agreement with the experimental...

  1. Sulfonation of raloxifene in HEK293 cells overexpressing SULT1A3: Involvement of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in excretion of sulfate metabolites.

    Science.gov (United States)

    Zhou, Xiaotong; Wang, Shaoxiang; Sun, Hua; Wu, Baojian

    2015-12-01

    Excretion of sulfate metabolites is an essential process in disposition of raloxifene via the sulfonation pathway. However, the transporters responsible for excretion of raloxifene sulfates remain undefined. Here, sulfonation of raloxifene and excretion of its sulfate metabolites were investigated using SULT1A3-overexpressing HEK293 cells (or SULT293 cells) with significant expression of BCRP and MRP4. SULT293 cell lysate catalyzed the sulfonation of raloxifene at both 6-OH and 4'-OH groups, generating raloxifene-6-sulfate (R-6-S) and raloxifene-4'-sulfate (R-4'-S), respectively. Sulfate formation followed the Michaelis-Menten kinetics (Km = 0.49 μM and Vmax = 5.79 pmol/min/mg for R-6-S; Km = 0.33 μM and Vmax = 1.25 pmol/min/mg for R-4'-S). As expected, the recombinant SULT1A3 enzyme showed a high similarity in raloxifene sulfonation profiles with the lysate preparation. Ko143, a selective inhibitor of BCRP, significantly decreased the excretion rates of raloxifene sulfates (maximal 66.1%) while increasing the intracellular sulfates (maximal 282%). As a result, the apparent efflux clearance (CLef,app, representing the efflux efficiency of raloxifene sulfates) was substantially reduced (maximal 85.6%). Likewise, the pan-MRP inhibitor MK-571 significantly deceased the excretion rates (maximal 69.6%) and CLef,app values (maximal 96.0%) of raloxifene sulfates while increasing the intracellular sulfates (maximal 667%). Further, the short-hairpin RNA (shRNA) targeting BCRP significantly reduced (maximal 35.0%) sulfate excretion. Use of BCRP shRNA also caused significant decreases (maximal 52.5%) in the CLef,app values. Silencing of MRP4 by shRNA led to a substantial alteration in sulfate disposition (i.e., 28.6-37.8% reductions in sulfate excretion, 30.5-59.3% elevations in intracellular sulfates, and 44.8-47.7% deceases in CLef,app values). In conclusion, two sulfate metabolites R-6-S and R-4'-S were generated from raloxifene in SULT293 cells. Cellular

  2. Indole 3-acetic acid, indoxyl sulfate and paracresyl-sulfate do not influence anemia parameters in hemodialysis patients.

    Science.gov (United States)

    Bataille, Stanislas; Pelletier, Marion; Sallée, Marion; Berland, Yvon; McKay, Nathalie; Duval, Ariane; Gentile, Stéphanie; Mouelhi, Yosra; Brunet, Philippe; Burtey, Stéphane

    2017-07-26

    The main reason for anemia in renal failure patients is the insufficient erythropoietin production by the kidneys. Beside erythropoietin deficiency, in vitro studies have incriminated uremic toxins in the pathophysiology of anemia but clinical data are sparse. In order to assess if indole 3-acetic acid (IAA), indoxyl sulfate (IS), and paracresyl sulfate (PCS) -three protein bound uremic toxins- are clinically implicated in end-stage renal disease anemia we studied the correlation between IAA, IS and PCS plasmatic concentrations with hemoglobin and Erythropoietin Stimulating Agents (ESA) use in hemodialysis patients. Between June and July 2014, we conducted an observational cross sectional study in two hemodialysis center. Three statistical approaches were conducted. First, we compared patients treated with ESA and those not treated. Second, we performed linear regression models between IAA, IS, and PCS plasma concentrations and hemoglobin, the ESA dose over hemoglobin ratio (ESA/Hemoglobin) or the ESA resistance index (ERI). Third, we used a polytomous logistic regression model to compare groups of patients with no/low/high ESA dose and low/high hemoglobin statuses. Overall, 240 patients were included in the study. Mean age ± SD was 67.6 ± 16.0 years, 55.4% were men and 42.5% had diabetes mellitus. When compared with ESA treated patients, patients with no ESA had higher hemoglobin (mean 11.4 ± 1.1 versus 10.6 ± 1.2 g/dL; p 20%) linear regression between IAA, IS or PCS and any anemia parameter did not reach significance. In the third model, univariate analysis showed no intergroup significant differences for IAA and IS. Regarding PCS, the Low Hb/High ESA group had lower concentrations. However, when we compared PCS with the other significant characteristics of the five groups to the Low Hb/high ESA (our reference group), the polytomous logistic regression model didn't show any significant difference for PCS. In our study, using three different

  3. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  4. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  5. Sulfated Zirconia as Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant ...... interact with potassium stronger than active metal species. Among potential carriers, sulfated zirconia is of high interest because its acidic and textural properties can be modified by varying preparation conditions....

  6. Development of Microarrays-Based Metagenomics Technology for Monitoring Sulfate-Reducing Bacteria in Subsurface Environments

    Energy Technology Data Exchange (ETDEWEB)

    Cindy, Shi

    2015-07-17

    At the contaminated DOE sites, sulfate-reducing bacteria (SRB) are a significant population and play an important role in the microbial community during biostimulation for metal reduction. However, the diversity, structure and dynamics of SRB communities are poorly understood. Therefore, this project aims to use high throughput sequencing-based metagenomics technologies for characterizing the diversity, structure, functions, and activities of SRB communities by developing genomic and bioinformatics tools to link the SRB biodiversity with ecosystem functioning.

  7. [How I treat … dandruff using a shampoo with a sulfate-free tensio-active].

    Science.gov (United States)

    Reygagne, P; Piérard, G E; Loussouarn, G; Le Nôtre, N; Ziane, S

    2016-09-01

    A new formulation of an anti-dandruff shampoo containing a surfactant devoid of a sulfate-type anionic part has been assessed in vivo in 41 subjects. Introducing a welltried agent, the 0.5 % piroctone olamine confers to this shampoo a high anti-dandruff efficacy, a reduction in the density in Malassezia spp, as well as a good remanence after shampoo. In addition, piroctone olamine appears to influence the sebum rheology by reducing the hair greasing.

  8. Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-07-01

    Full Text Available Abstract After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.

  9. Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration.

    Science.gov (United States)

    Yang, Sujeong; Hilton, Sam; Alves, João Nuno; Saksida, Lisa M; Bussey, Timothy; Matthews, Russell T; Kitagawa, Hiroshi; Spillantini, Maria Grazia; Kwok, Jessica C F; Fawcett, James W

    2017-11-01

    Chondroitin sulfate proteoglycans (CSPGs) are the main active component of perineuronal nets (PNNs). Digestion of the glycosaminoglycan chains of CSPGs with chondroitinase ABC or transgenic attenuation of PNNs leads to prolongation of object recognition memory and activation of various forms of plasticity in the adult central nervous system. The inhibitory properties of the CSPGs depend on the pattern of sulfation of their glycosaminoglycans, with chondroitin 4-sulfate (C4S) being the most inhibitory form. In this study, we tested a number of candidates for functional blocking of C4S, leading to selection of an antibody, Cat316, which specifically recognizes C4S and blocks its inhibitory effects on axon growth. It also partly blocks binding of semaphorin 3A to PNNs and attenuates PNN formation. We asked whether injection of Cat316 into the perirhinal cortex would have the same effects on memory as chondroitinase ABC treatment. We found that masking C4S with the Cat316 antibody extended long-term object recognition memory in normal wild-type mice to 24 hours, similarly to chondroitinase or transgenic PNN attenuation. We then tested Cat316 for restoration of memory in a neurodegeneration model. Mice expressing tau with the P301S mutation showed profound loss of object recognition memory at 4 months of age. Injection of Cat316 into the perirhinal cortex normalized object recognition at 3 hours in P301S mice. These data indicate that Cat316 binding to C4S in the extracellular matrix can restore plasticity and memory in the same way as chondroitinase ABC digestion. Our results suggest that antibodies to C4S could be a useful therapeutic to restore memory function in neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Exploring Archean seawater sulfate via triple S isotopes in carbonate associated sulfate.

    Science.gov (United States)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2015-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks provide powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. The Archean sulfur isotope record is marked by pronounced mass-independent fractionation (Δ33S≠0)—signatures widely interpreted as the result of SO2 photolysis from "short-wavelength" UV light resulting in a reduced phase carrying positive Δ33S values (ultimately recorded in pyrite) and an oxidized phase carrying negative Δ33S values carried by sulfate [2]. Support for this hypothesis rests on early laboratory experiments and observations of negative Δ33S from barite occurrences in mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes, this hypothesis is still largely untested, notably due to the lack of sulfate minerals in Archean strata. Using a new MC-ICP-MS approach combined with petrography and X-ray spectroscopy we have generated a growing S isotope dataset from CAS extracted from Archean carbonates from a range of sedimentary successions, including: the 2.6 to 2.521 Ga Campbellrand-Malmani carbonate platform (Transvaal Supergroup, South Africa), 2.7 Ga Cheshire Formation (Zimbabwe), and 2.9 Ga Steep Rock Formation (Canada). Importantly, we observe positive δ34S and Δ33S values across a range of different lithologies and depositional environments. These results demonstrate that dissolved sulfate in seawater was characterized by positive Δ33S values—a result that receives additional support from recent laboratory and theoretical experiments [e.g. 4, 5]. [1] Farquhar et al., 2000, Science [2] Farquhar et al., 2001, Journal of Geophysical Research: Planets [3] Paris et al., 2014, Science. [4] Whitehill et al., 2013, Proceedings of the National Academy of Sciences. [5] Claire et al., 2014 Geochimica et Cosmochimica Acta

  11. SO 2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium-aluminate spinel sulfur-transfer catalyst

    Science.gov (United States)

    Wang, Jin-an; Li, Cheng-lie

    2000-07-01

    Magnesium-aluminate spinel used as a sulfur-transfer catalyst in the fluid catalytic cracking units for SO x emission control was prepared by the precipitation method. The crystalline structure, textural property, and surface dehydroxylation of the sample were characterized by thermogravimetry-derivative thermogravimetry (TG-DTG), differential thermal analysis (DTA), X-ray diffraction (XRD), liquid N 2 adsorption-desorption and infrared spectroscopy (IR) measurements. The behavior of SO 2 adsorption and oxidation on the surface of catalyst was evaluated with IR from 50°C to 600°C. Particularly, the thermal stability and H 2-reducibility of the formed sulfite or sulfate during SO 2 adsorption or oxidation were tested under various conditions. In the absence of oxygen in the feed mixture, weak physically adsorbed SO 2 species and surface sulfite were identified. In the case of SO 2 oxidative adsorption, both surface sulfate and bulk-like sulfate were formed. When the sulfated sample was reduced with hydrogen, the surface sulfite and sulfates were completely removed below 550°C in vacuum. The bulk-like sulfate, however, showed a high ability to resist H 2-reduction, which indicates that the reducibility of bulk-like sulfate formed on magnesium-aluminate spinel must be enhanced when it is used as a sulfur-transfer catalyst.

  12. Situational analysis of facilitators and barriers to availability and utilization of magnesium sulfate for eclampsia and severe preeclampsia in the public health system in Brazil.

    Science.gov (United States)

    Lotufo, Fátima Aparecida; Parpinelli, Mary Angela; Osis, Maria José; Surita, Fernanda Garanhani; Costa, Maria Laura; Cecatti, José Guilherme

    2016-08-30

    Eclampsia is the main cause of maternal death in Brazil. Magnesium sulfate is the drug of choice for seizure prevention and control in the management of severe preeclampsia and eclampsia. Despite scientific evidence demonstrating its effectiveness and safety, there have been delays in managing hypertensive disorders, including timely access to magnesium sulfate. To conduct a general situational analysis on availability and use of magnesium sulfate for severe preeclampsia and eclampsia in the public health system. A situational analysis was conducted with two components: a documental analysis on information available at the official websites on the policy, regulation and availability of the medication, plus a cross sectional study with field analysis and interviews with local managers of public obstetric health services in Campinas, in the southeast of Brazil. We used the fishbone cause and effect diagram to organize study components. Interviews with managers were held during field observations using specific questionnaires. There was no access to magnesium sulfate in primary care facilities, obstetric care was excluded from urgency services and clinical protocols for professional guidance on the adequate use of magnesium sulfate were lacking in the emergency mobile care service. Magnesium sulfate is currently only administered in referral maternity hospitals. The lack of processes that promote the integration between urgency/emergency care and specialized obstetric care possibly favors the untimely use of magnesium sulfate and contributes to the high maternal morbidity/mortality rates.

  13. Electrowinning of cobalt from sulfate-chloride and sulfate solutions of cobalt and manganese under dynamic conditions

    Directory of Open Access Journals (Sweden)

    Л. П. Хоменко

    2017-08-01

    Full Text Available The design of an electrolyzer for electrowinning in dynamic conditions is developed. The dependence of the results of electrowinning of cobalt and manganese from sulfate and sulfate-chloride solutions under dynamic conditions using a titanium cathode and a lead anode with 1 % of silver was studied. It was found that the best extraction results for the current yield and the specific energy consumption were obtained by electrolysis from sulfate solutions at a low concentration of manganese in an electrolyser without a perforated baffle plate separating the cathode and anode spaces.

  14. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor

    DEFF Research Database (Denmark)

    Gustafsen, Camilla; Olsen, Ditte; Vilstrup, Joachim

    2017-01-01

    and thereby reducing LDL clearance. Here, we show that liver heparan sulfate proteoglycans are PCSK9 receptors and essential for PCSK9-induced LDLR degradation. The heparan sulfate-binding site is located in the PCSK9 prodomain and formed by surface-exposed basic residues interacting with trisulfated heparan...... complex formation. Our findings provide new insights into LDL biology and show that targeting PCSK9 using heparan sulfate mimetics is a potential therapeutic strategy in coronary artery disease.PCSK9 interacts with LDL receptor, causing its degradation, and consequently reduces the clearance of LDL. Here......, Gustafsen et al. show that PCSK9 interacts with heparan sulfate proteoglycans and this binding favors LDLR degradation. Pharmacological inhibition of this binding can be exploited as therapeutic intervention to lower LDL levels....

  15. Initial kinetics of the direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Shang, Lei; Dam-Johansen, Kim

    2008-01-01

    The initial kinetics of direct sulfation of Faxe Bryozo, a porous bryozoan limestone was studied in the temperature interval from 873 to 973 K in a pilot entrained flow reactor with very short reaction times (between 0.1 and 0.6 s). The initial conversion rate of the limestone - for conversions...... less than 0.3% - was observed to be significantly promoted by higher SO2 concentrations and lower CO2 concentrations, whereas 02 showed negligible influence. A mathematical model for the sulfation of limestone involving chemical reaction at calcite grain surfaces and solid-state diffusion of carbonate...... ions in calcite grains is established. The validity of the model is limited to the initial sulfation period, in which nucleation of the solid product calcium sulphate is not started. This theoretical reaction-diffusion model gives a good simulation of the initial kinetics of the direct sulfation...

  16. Predictive mapping of the acidifying potential for acid sulfate soils

    DEFF Research Database (Denmark)

    Boman, A; Beucher, Amélie; Mattbäck, S

    Developing methods for the predictive mapping of the potential environmental impact from acid sulfate soils is important because recent studies (e.g. Mattbäck et al., under revision) have shown that the environmental hazards (e.g. leaching of acidity) related to acid sulfate soils vary depending...... on their texture (clay, silt, sand etc.). Moreover, acidity correlates, not only with the sulfur content, but also with the electrical conductivity (EC) measured after incubation. Electromagnetic induction (EMI) data collected from an EM38 proximal sensor also enabled the detailed mapping of acid sulfate soils...... over a field (Huang et al., 2014).This study aims at assessing the use of EMI data for the predictive mapping of the acidifying potential in an acid sulfate soil area in western Finland. Different supervised classification modelling techniques, such as Artificial Neural Networks (Beucher et al., 2015...

  17. Recombinant heparan sulfate for use in tissue engineering applications

    DEFF Research Database (Denmark)

    Whitelock, J.; Ma, J.L.; Davies, N.

    2008-01-01

    Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types and diffe......Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types...... in the presence of Medium 199. It was purified as a proteoglycan with a molecular weight between 75 and 150 kDa, which was decorated with HS, chondroitin sulfate (CS) and keratan sulfate (KS) in a similar way to the full-length perlecan from the same cells. Compositional analysis of the glycosaminoglycan (GAG...

  18. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  19. Antenatal Magnesium Sulfate and Neurologic Outcome in Preterm Infants

    NARCIS (Netherlands)

    Doyle, Lex W.; Crowther, Caroline A.; Middleton, Philippa; Marret, Stephane

    OBJECTIVE: To systematically review rates of neurologic outcomes reported in childhood for the preterm fetus exposed to antenatal magnesium sulfate. DATA SOURCES: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register, CENTRAL (The Cochrane Library 2008, Issue 3), relevant

  20. ROE Wet Sulfate Deposition Raster 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 1989 to 1991. Summary data in this indicator were provided by EPA’s...

  1. Recoverable immobilization of transuranic elements in sulfate ash

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  2. Reinvestigation of growth of thiourea urea zinc sulfate crystal.

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R; Naik, Teja A; Tylczyński, Zbigniew; Priolkar, K R

    2014-01-03

    Reinvestigation of the growth of thiourea urea zinc sulfate crystal is reported. Aqueous reaction of thiourea, urea and zinc sulfate in 1:1:1 mol ratio results in the formation of the well known [Zn(tu)3(SO4)] (1) (tu=thiourea) crystal and not the 'so called' novel semiorganic nonlinear optical thiourea urea zinc sulfate (2) crystal, as claimed by Redrothu Hanumantha Rao, S. Kalainathan, Spectroscopic investigation, nucleation, growth, optical, thermal and second harmonic studies of novel semi-organic nonlinear optical crystal - Thiourea urea zinc sulfate, Spectrochim. Acta A97 (2012) 456-463. In this work, we demonstrate the usefulness of elemental analytical data, infrared and NMR spectra and X-ray powder pattern, for accurate product characterization. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California

    Science.gov (United States)

    Blum, Jodi Switzer; Kulp, Thomas R.; Han, Sukkyun; Lanoil, Brian; Saltikov, Chad W.; Stolz, John F.; Miller, Laurence G.; Oremland, Ronald S.

    2012-01-01

    A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125–330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of growth via dissimilatory arsenate-reduction and displayed an even broader range of salinity tolerance (50–330 g/L) when grown under these conditions. Strain SLSR-1 could also grow via dissimilatory nitrate reduction to ammonia. Growth experiments in the presence of high borate concentrations indicated a greater sensitivity of sulfate-reduction than arsenate-respiration to this naturally abundant anion in Searles Lake. Strain SLSR-1 contained genes involved in both sulfate-reduction (dsrAB) and arsenate respiration (arrA). Amplicons of 16S rRNA gene sequences obtained from DNA extracted from Searles Lake sediment revealed the presence of close relatives of strain SLSR-1 as part of the flora of this ecosystem despite the fact that sulfate-reduction activity could not be detected in situ. We conclude that strain SLSR-1 can only achieve growth via arsenate-reduction under the current chemical conditions prevalent at Searles Lake. Strain SLSR-1 is a deltaproteobacterium in the family Desulfohalobiacea of anaerobic, haloalkaliphilic bacteria, for which we propose the name Desulfohalophilus alkaliarsenatis gen. nov., sp. nov.

  4. Improvement of the Digestibility of Sulfated Hyaluronans by Bovine Testicular Hyaluronidase: A UV Spectroscopic and Mass Spectrometric Study

    Directory of Open Access Journals (Sweden)

    Katharina Lemmnitzer

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs such as hyaluronan (HA and chondroitin sulfate (CS are important, natural polysaccharides which occur in biological (connective tissues and have various biotechnological and medical applications. Additionally, there is increasing evidence that chemically (oversulfated GAGs possess promising properties and are useful as implant coatings. Unfortunately, a detailed characterization of these GAGs is challenging: although mass spectrometry (MS is one of the most powerful tools to elucidate the structures of (polysaccharides, MS is not applicable to high mass polysaccharides, but characteristic oligosaccharides are needed. These oligosaccharides are normally generated by enzymatic digestion. However, chemically modified (particularly sulfated GAGs are extremely refractive to enzymatic digestion. This study focuses on the investigation of the digestibility of GAGs with different degrees of sulfation by bovine testicular hyaluronidase (BTH. It will be shown by using an adapted spectrophotometric assay that all investigated GAGs can be basically digested if the reaction conditions are carefully adjusted. However, the oligosaccharide yield correlates reciprocally with the number of sulfate residues per polymer repeating unit. Finally, matrix-laser desorption and ionization (MALDI MS will be used to study the released oligosaccharides and their sulfation patterns.

  5. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Omil, F. [Agricultural Univ. of Wageningen (Netherlands). Dept. of Environmental Technology]|[Univ. of Santiago de Compostela (Spain). Dept. of Chemical Engineering; Lens, P.; Visser, A.; Hulshoff Pol, L.W.; Lettinga, G. [Agricultural Univ. of Wageningen (Netherlands). Dept. of Environmental Technology

    1998-03-20

    The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 C) upflow anaerobic sludge bed (UASB) reactors treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate, SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH ({+-}8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilizing SRB to outcompete MB.

  6. Prediction of diffuse sulfate emissions from a former mining district and associated groundwater discharges to surface waters

    Science.gov (United States)

    Graupner, Bastian J.; Koch, Christian; Prommer, Henning

    2014-05-01

    Rivers draining mining districts are often affected by the diffuse input of polluted groundwaters. The severity and longevity of the impact depends on a wide range of factors such as the source terms, the hydraulic regime, the distance between pollutant sources and discharge points and the dilution by discharge from upstream river reaches. In this study a deterministic multi-mine life-cycle model was developed. It is used to characterize pollutant sources and to quantify the resulting current and future effects on both groundwater and river water quality. Thereby sulfate acts as proxy for mining-related impacts. The model application to the Lausitz mining district (Germany) shows that the most important factors controlling concentrations and discharge of sulfate are mixing/dilution with ambient groundwater and the rates of biological sulfate reduction during subsurface transport. In contrast, future impacts originating from the unsaturated zones of the mining dumps showed to be of little importance due to the high age of the mining dumps and the associated depletion in reactive iron-sulfides. The simulations indicate that currently the groundwater borne diffuse input of sulfate into the rivers Kleine Spree and Spree is ∼2200 t/years. Our predictions suggest a future increase to ∼11,000 t/years within the next 40 years. Depending on river discharge rates this represents an increase in sulfate concentration of 40-300 mg/L. A trend reversal for the surface water discharge is not expected before 2050.

  7. Oxygen Isotopic Composition of Nitrate and Sulfate in Fog and River water in Podocarpus National Forest, Ecuador

    Science.gov (United States)

    Brothers, L. A.; Fabian, P.; Thiemens, M. H.

    2006-12-01

    The eastern slopes of the Andean rainforests of Ecuador possess some of the highest plant biodiversity found on the planet; however, these ecosystems are in jeopardy because region is experiences one of the highest deforestation rates in South America. This rainforest characterized by high acidity and low nutrient soils and experiences natural process which are both destabilizing and stabilizing to biodiversity rendering this a unique, though sensitive environment. There is increased concern that anthropogenic activities are affecting rainforests and could lead to higher extinction rates, changes in the biodiversity and far reaching effects on the global troposphere. Measurements of nitrate and sulfate in rain and fog water have shown periods of elevated concentrations in the Podocarpus National Park near Loja, Ecuador. These high episodes contribute to annual deposition rates that are comparable to polluted central Europe. Significant anthropogenic sources near this region are lacking and it is believed that the majority of the nitrate and sulfate pollution can be attributed to biomass burning in the Amazon basin. Concentration measurements do not elucidate the source of high nitrate and sulfate pollution; however, by measuring all three stable isotopes of oxygen in nitrate and sulfate from fog and river water provides a new way to examine the impacts of biomass burning on the region. By using stable isotope techniques atmospheric nitrate and sulfate can be resolved from terrestrial sources. This provides an unique way to trace the contributions from the biomass burning and farming sources. Current research at the field station monitors sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, in-situ observations and numerical models.

  8. Efficacy of intravenous magnesium sulfate in severe migraine attacks

    OpenAIRE

    Zidverc-Trajkovi?, Jasna; Pavlovi?, Aleksandra M.; Jovanovi?, Zagorka; ?terni?, Nade?da; Kosti?, Vladimir S.

    2001-01-01

    The aim of this open study was to make a preliminary estimate of the efficacy and tolerability of intravenously administered magnesium sulfate (1 g) in comparison to subcutaneously administered sumatriptan in the treatment of severe migraine attacks. The study comprised 22 consecutive patients whose attacks were treated with magnesium sulfate (5 ml of a 20% solution), and the results were compared with those of another group of 14 consecutive patients whose attacks were treated with sumatript...

  9. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    OpenAIRE

    Bizzozero, Julien; Scrivener, Karen

    2015-01-01

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate ...

  10. Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov.

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Kolganova, T.V.; Detkova, E.N.; Galinski, E.A.; Muyzer, G.

    2011-01-01

    Soda lake sediments usually contain high concentrations of sulfide indicating active sulfate reduction. Monitoring of sulfate-reducing bacteria (SRB) in soda lakes demonstrated a dominance of two groups of culturable SRB belonging to the order Desulfovibrionales specialized in utilization of

  11. Mass Change Prediction Model of Concrete Subjected to Sulfate Attack

    Directory of Open Access Journals (Sweden)

    Kwang-Myong Lee

    2015-01-01

    Full Text Available The present study suggested a mass change prediction model for sulfate attack of concrete containing mineral admixtures through an immersion test in sulfate solutions. For this, 100% OPC as well as binary and ternary blended cement concrete specimens were manufactured by changing the types and amount of mineral admixture. The concrete specimens were immersed in fresh water, 10% sodium sulfate solution, and 10% magnesium sulfate solution, respectively, and mass change of the specimens was measured at 28, 56, 91, 182, and 365 days. The experimental results indicated that resistance of concrete containing mineral admixture against sodium sulfate attack was far greater than that of 100% OPC concrete. However, in terms of resistance against magnesium sulfate attack, concrete containing mineral admixture was lower than 100% OPC concrete due to the formation of magnesium silicate hydrate (M-S-H, the noncementitious material. Ultimately, based on the experimental results, a mass change prediction model was suggested and it was found that the prediction values using the model corresponded relatively well with the experimental results.

  12. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    Science.gov (United States)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  13. Interactions between chloride and sulfate or silica removals from wastewater using an advanced lime-aluminum softening process: equilibrium modeling.

    Science.gov (United States)

    Abdel-Wahab, Ahmed; Batchelor, Bill

    2007-05-01

    Interactions among chloride, sulfate, and silica removals from recycled industrial wastewater using an ultra-high lime with aluminum process (UHLA) were studied. An equilibrium model that is able to accurately predict the chemical behavior and interactions between chloride and sulfate or silica with UHLA at various initial conditions and chemical reagents was developed. X-ray diffraction (XRD) analysis was conducted to identify the precipitated solids formed in the UHLA process. Model predictions indicated that simultaneous removal of sulfate and chloride can be best described by the formation of a solid solution containing calcium chloroaluminate, calcium sulfoaluminate (ettringite), calcium monosulfate, tricalcium hydroxyaluminate, and tetracalcium hydroxyaluminate. However, simultaneous removal of silica and chloride can be best described by precipitation of calcium silicate and calcium aluminosilicate in addition to a solid solution containing calcium chloroaluminate, tricalcium hydroxyaluminate, and tetracalcium hydroxyaluminate. The XRD results indicated the presence of the same solids assumed by the equilibrium model.

  14. Analytical methodology for determination of the sulfate in vinasse samples; Metodologia analitica para a determinacao de sulfato em vinhoto

    Energy Technology Data Exchange (ETDEWEB)

    Prada, Silvio Miranda; Guekezian, Marcia; Suarez-Ilha, Maria Encarnacion V. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    1998-05-01

    When sulfate is present in high concentrations, it acts as an inhibitor in the production of methane (Biogas Formation) in anaerobic biodigestion processes. In this way it is very important to know the sulfate concentration in vinasse samples before to make the biodigester design. A previous developed and indirect method (Anal. Chim. Acta. 1996, 329, 197), was used to determine sulfate in samples of vinasse, after previous treatments, done in order to eliminate organic matter with hydrogen peroxide 30% and concentrated nitric acid mixture (3:1), under heating. Interferent cationic ions were isolated by using ion exchange columns. The results obtained for some samples from Araraquara and Penapolis are here presented. The phosphate concentration was also determined. (author) 23 refs., 3 tabs.

  15. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library

    DEFF Research Database (Denmark)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsuasa

    2016-01-01

    Placental malaria, a serious infection caused by the parasite Plasmodium falciparum, is characterized by the selective accumulation of infected erythrocytes (IEs) in the placentas of the pregnant women. Placental adherence is mediated by the malarial VAR2CSA protein, which interacts......-sulfated CSA dodecasaccharide, and found that a highly sulfated CSA eicosasaccharide is a more potent inhibitor of rVAR2 binding than the dodecasaccharides. These results suggest that CSA derivatives may potentially serve as targets in therapeutic strategies against placental malaria....

  16. Stratospheric sulfate geoengineering impacts on global agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  17. Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan

    DEFF Research Database (Denmark)

    McCarthy, K J; Accavitti, M A; Couchman, J R

    1989-01-01

    Reichert's membrane, an extraembryonic membrane present in developing rodents, has been proposed as an in vivo model for the study of basement membranes. We have used this membrane as a source for isolation of basement membrane proteoglycans. Reichert's membranes were extracted in a guanidine/3......-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate buffer followed by cesium chloride density-gradient ultracentrifugation under dissociative conditions. The proteoglycans were subsequently purified from the two most dense fractions (greater than 1.3 g/ml) by ion-exchange chromatography. Mice were immunized...... with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were...

  18. The cough suppressive activity of sulfated glucuronoxylan from Fagus sylvatica L.

    Science.gov (United States)

    Nosáľova, G; Jureček, L; Turjan, J; Capek, P; Prisenžňáková, L; Fraňová, S

    2014-06-01

    Hemicellulose polysaccharides represent a large group of natural renewable polymers, however, their application potency is still low. In our study a hardwood 4-O-methylglucuronoxylan was isolated by alkali peroxide extraction of Fagus sylvatica sawdust and modified into sulfated water soluble derivative (MGXS). Highly sulfated MGXS was characterized by HPLC, FTIR and NMR spectroscopies, and tested in vivo on chemically induced cough reflex and smooth muscles reactivity. Farmacological tests revealed an interesting antitussive activity of MGXS. Comparative tests with drug commonly used in a clinical practice revealed that antitussive activity of MGXS was lower than that of opioid receptor agonist codeine, the strongest antitussive drug. Furthermore, the specific reactivity of airways smooth muscle was not significantly affected by MGXS, indicating thus that the polymer is not involved in the bronchodilation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite

    Science.gov (United States)

    Gooding, James L.; Zolensky, Michael E.; Wentworth, Susan J.

    1988-01-01

    Two varieties of Ca-carbonate were found in a total of three interior (greater than 2-cm depth) samples of glass inclusions from the shergottite meteorite, Elephant Moraine, Antarctica, A79001. Two of the samples, including the largest deposit around a vug near the center of the meteorite (8-cm depth), contained veins of granular calcite with significant Mg and P, either as Mg-calcite with dissolved P or as calcite with very finely intergrown Mg-bearing phosphate. The second variety, which occurred in a third sample with a previously documented high concentration of trapped gases, consisted of disseminated 10-20-micron anhedral grains of nearly pure CaCO3 and was intimately associated with laths and needles of Ca-sulfate (possibly gypsum). All evidence considered, it is probable that both varieties of Ca-carbonate (and the Ca-sulfate) formed on a planetary body (probably Mars) before the meteorite fell on earth.

  20. Thermoluminescence of sulfated zircon exposed to gamma radiation; Termoluminiscencia de circonia sulfatada expuesta a radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, E.; Castano, V.M. [Centro de Fisica Aplicada y Tecnologia Avanzada, UNAM, A.P. 1-1010, 76000 Queretaro (Mexico); Mendoza A, E.; Gonzalez, P.R. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2003-07-01

    In this work, the thermoluminescent (Tl) signal induced by gamma radiation in zirconia and sulfated zirconia samples embedded in Ptfe pellets is reported and discussed. In this case, samples were obtained through sol-gel method using zirconium n-propoxide and H{sub 2}SO{sub 4} as precursors, and later were subjected to thermal treatment at 600 C to obtain, the tetragonal phase accordingly to X-ray diffraction analysis. Experimental results show that the thermoluminescent glow peak depends on both, the crystalline structure and sulfate concentration. Two maximum peaks were observed located at 147 C and 274 C arising from the electronic transitions. Tl response as a function of the absorbed dose shows a linear increase for a wide of range exposure as well as good stability in time. The high sensitivity, dose linearity and signal stability of this material open the potential possibility to be used for the dosimetry applications. (Author)

  1. Pathogenesis of diabetic vascular disease: evidence for the role of reduced heparan sulfate proteoglycan

    DEFF Research Database (Denmark)

    Jensen, Tonny Joran

    1997-01-01

    Insulin-dependent diabetic patients with increased urinary albumin excretion are characterized by elevated blood pressure and declining kidney function. In addition, such patients have a high risk of atherosclerotic vascular disease, proliferative retinopathy, and cardiomyopathy, suggesting...... that albuminuria is a marker of widespread vascular dysfunction. Increased transport of macromolecules across the vascular wall, elevated plasma levels of von Willebrand factor, and impaired fibrinolytic capacity have been demonstrated in albuminuric patients. The cause of this vascular vulnerability...... in susceptible patients is unknown, but increasing evidence has suggested that loss of the proteoglycan heparan sulfate in the vasculature may explain the widespread nature of the disease. Heparan sulfate is important for the glomerular endothelial cell and basement membrane charge densities, the anticoagulant...

  2. Fine structural characterization of chondroitin sulfate in urine of bladder pain syndrome subjects.

    Science.gov (United States)

    Maccari, Francesca; Buzzega, Dania; Galeotti, Fabio; Volpi, Nicola

    2011-12-01

    Urothelial glycosaminoglycans (GAGs) are decreased in bladder pain syndrome (BPS), and urinary GAGs are thought to reflect this deficiency. In previous researches, urine GAG levels were found increased, decreased, or similar between BPS and controls. Additionally, no study is available on the structure characterization of urinary chondroitin sulfate (CS) in BPS patients. CS in the urine of BPS-affected patients and controls has been determined by specific electrophoresis, along with total GAGs and heparan sulfate (HS) percentage, and CS disaccharides have been quantified by high-performance liquid chromatography. No significant differences were obtained for total amount of GAGs, absolute content of CS and HS, and their relative percentages. Moreover, no differences were observed for CS structure confirming similar urine CS composition in BPS subjects and controls. This study found no significant differences of BPS and control urine GAG levels and CS structure to allow use of these parameters as diagnostic markers for BPS diagnosis.

  3. Uncovering Biphasic Catalytic Mode of C5-epimerase in Heparan Sulfate Biosynthesis*

    Science.gov (United States)

    Sheng, Juzheng; Xu, Yongmei; Dulaney, Steven B.; Huang, Xuefei; Liu, Jian

    2012-01-01

    Heparan sulfate (HS), a highly sulfated polysaccharide, is biosynthesized through a pathway involving several enzymes. C5-epimerase (C5-epi) is a key enzyme in this pathway. C5-epi is known for being a two-way catalytic enzyme, displaying a “reversible” catalytic mode by converting a glucuronic acid to an iduronic acid residue, and vice versa. Here, we discovered that C5-epi can also serve as a one-way catalyst to convert a glucuronic acid to an iduronic acid residue, displaying an “irreversible” catalytic mode. Our data indicated that the reversible or irreversible catalytic mode strictly depends on the saccharide substrate structures. The biphasic mode of C5-epi offers a novel mechanism to regulate the biosynthesis of HS with the desired biological functions. PMID:22528493

  4. Inhaled magnesium sulfate in the treatment of acute asthma.

    Science.gov (United States)

    Knightly, Rachel; Milan, Stephen J; Hughes, Rodney; Knopp-Sihota, Jennifer A; Rowe, Brian H; Normansell, Rebecca; Powell, Colin

    2017-11-28

    of participants was not stated. The design, definitions, intervention and outcomes were different in all 25 studies; this heterogeneity made direct comparisons difficult. The quality of the evidence presented ranged from high to very low, with most outcomes graded as low or very low. This was largely due to concerns about the methodological quality of the included studies and imprecision in the pooled effect estimates. Inhaled magnesium sulfate in addition to inhaled β₂-agonist and ipratropiumWe included seven studies in this comparison. Although some individual studies reported improvement in lung function indices favouring the intervention group, results were inconsistent overall and the largest study reporting this outcome found no between-group difference at 60 minutes (MD -0.3 % predicted peak expiratory flow rate (PEFR), 95% CI -2.71% to 2.11%). Admissions to hospital at initial presentation may be reduced by the addition of inhaled magnesium sulfate (RR 0.95, 95% CI 0.91 to 1.00; participants = 1308; studies = 4; I² = 52%) but no difference was detected for re-admissions or escalation of care to ITU/HDU. Serious adverse events during admission were rare. There was no difference between groups for all adverse events during admission (RD 0.01, 95% CI -0.03 to 0.05; participants = 1197; studies = 2). Inhaled magnesium sulfate in addition to inhaled β₂-agonistWe included 13 studies in this comparison. Although some individual studies reported improvement in lung function indices favouring the intervention group, none of the pooled results showed a conclusive benefit as measured by FEV1 or PEFR. Pooled results for hospital admission showed a point estimate that favoured the combination of MgSO₄ and β₂-agonist, but the confidence interval includes the possibility of admissions increasing in the intervention group (RR 0.78, 95% CI 0.52 to 1.15; participants = 375; studies = 6; I² = 0%). There were no serious adverse events reported by any of the included

  5. Requirement of keratan sulfate proteoglycan phosphacan with a specific sulfation pattern for critical period plasticity in the visual cortex.

    Science.gov (United States)

    Takeda-Uchimura, Yoshiko; Uchimura, Kenji; Sugimura, Taketoshi; Yanagawa, Yuchio; Kawasaki, Toshisuke; Komatsu, Yukio; Kadomatsu, Kenji

    2015-12-01

    Proteoglycans play important roles in regulating the development and functions of the brain. They consist of a core protein and glycosaminoglycans, which are long sugar chains of repeating disaccharide units with sulfation. A recent study demonstrated that the sulfation pattern of chondroitin sulfate on proteoglycans contributes to regulation of the critical period of experience-dependent plasticity in the mouse visual cortex. In the present study, we investigated the role of keratan sulfate (KS), another glycosaminoglycan, in critical period plasticity in the mouse visual cortex. Immunohistochemical analyses demonstrated the presence of KS containing disaccharide units of N-acetylglucosamine (GlcNAc)-6-sulfate and nonsulfated galactose during the critical period, although KS containing disaccharide units of GlcNAc-6-sulfate and galactose-6-sulfate was already known to disappear before that period. The KS chains were distributed diffusely in the extracellular space and densely around the soma of a large population of excitatory and inhibitory neurons. Electron microscopic analysis revealed that the KS was localized within the perisynaptic spaces and dendrites but not in presynaptic sites. KS was mainly located on phosphacan. In mice deficient in GlcNAc-6-O-sulfotransferase 1, which is one of the enzymes necessary for the synthesis of KS chains, the expression of KS was one half that in wild-type mice. In the knockout mice, monocular deprivation during the critical period resulted in a depression of deprived-eye responses but failed to produce potentiation of nondeprived-eye responses. In addition, T-type Ca(2+) channel-dependent long-term potentiation (LTP), which occurs only during the critical period, was not observed. These results suggest that regulation by KS-phosphacan with a specific sulfation pattern is necessary for the generation of LTP and hence the potentiation of nondeprived-eye responses after monocular deprivation. Copyright © 2015 Elsevier Inc. All

  6. Sulfate reduction at low pH to remediate acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Andrea, Irene, E-mail: irene.sanchezandrea@wur.nl [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Sanz, Jose Luis [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Bijmans, Martijn F.M. [Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Stams, Alfons J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga (Portugal)

    2014-03-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

  7. Quality medicines in maternal health: results of oxytocin, misoprostol, magnesium sulfate and calcium gluconate quality audits.

    Science.gov (United States)

    Anyakora, Chimezie; Oni, Yetunde; Ezedinachi, Uchenna; Adekoya, Adebola; Ali, Ibrahim; Nwachukwu, Charles; Esimone, Charles; Abiola, Victor; Nwokike, Jude

    2018-01-30

    The high level of maternal mortality and morbidity as a result of complications due to childbirth is unacceptable. The impact of quality medicines in the management of these complications cannot be overemphasized. Most of those medicines are sensitive to environmental conditions and must be handled properly. In this study, the quality of oxytocin injection, misoprostol tablets, magnesium sulfate, and calcium gluconate injections was assessed across the six geopolitical zones of Nigeria. Simple, stratified random sampling of health facilities in each of the political zones of Nigeria. Analysis for identification and content of active pharmaceutical ingredient was performed using high-performance liquid chromatography procedures of 159 samples of oxytocin injection and 166 samples of misoprostol tablets. Titrimetric methods were used to analyze 164 samples of magnesium sulfate and 148 samples of calcium gluconate injection. Other tests included sterility, pH measurement, and fill volume. Samples of these commodities were procured mainly from wholesale and retail pharmacies, where these were readily available, while the federal medical centers reported low availability. Approximately, 74.2% of oxytocin injection samples failed the assay test, with the northeast and southeast zones registering the highest failure rates. Misoprostol tablets recorded a percentage failure of 33.7%. Magnesium sulfate and Calcium gluconate injection samples recorded a failure rate of 6.8% and 2.4%, respectively. The prevalence of particularly of oxytocin and misoprostol commodities was of substandard quality. Strengthening the supply chain of these important medicines is paramount to ensuring their effectiveness in reducing maternal deaths in Nigeria.

  8. Thermal stability and hydration behavior of ritonavir sulfate: A vibrational spectroscopic approach

    Directory of Open Access Journals (Sweden)

    Kaweri Gambhir

    2015-12-01

    Full Text Available Ritonavir sulfate is a protease inhibitor widely used in the treatment of acquired immunodeficiency syndrome. In order to elucidate the inherent stability and sensitivity characteristics of ritonavir sulfate, it was investigated under forced thermal and hydration stress conditions as recommended by the International Conference on Harmonization guidelines. In addition, competency of vibrational (infrared and Raman spectroscopy was assessed to identify structural changes of the drug symbolizing its stress degradation. High performance liquid chromatography was used as a confirmatory technique for both thermal and hydration stress study, while thermogravimetric analysis/differential thermal analysis and atomic force microscopy substantiated the implementation of vibrational spectroscopy in this framework. The results exhibited high thermal stability of the drug as significant variations were observed in the diffuse reflectance infrared Fourier transform spectra only after the drug exposure to thermal radiations at 100 °C. Hydration behavior of ritonavir sulfate was evaluated using Raman spectroscopy and the value of critical relative humidity was found to be >67%. An important aspect of this study was to utilize vibrational spectroscopic technique to address stability issues of pharmacological molecules, not only for their processing in pharmaceutical industry, but also for predicting their shelf lives and suitable storage conditions.

  9. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    Directory of Open Access Journals (Sweden)

    Amanda J. Youker

    2013-01-01

    Full Text Available Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration on Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.

  10. Biogeochemical controls on interactions of microbial iron and sulfate reduction

    Science.gov (United States)

    Kirk, M. F.; Paper, J. M.; Haller, B. R.; Shodunke, G. O.; Marquart, K. A.; Jin, Q.

    2016-12-01

    Although iron and sulfate reduction are two of the most common microbial electron accepting processes in anoxic settings, the relative influences of environmental factors that guide interactions between each are poorly known. Identifying these factors is a key to predicting how those interactions will respond to future environmental changes. In this study, we used semi-continuous bioreactors to examine the influence of pH, electron donor flux, and sulfate availability. The reactors contained 100 mL of aqueous media and 1 g of marsh sediment amended with goethite (1 mmol). One set of reactors received acidic media (pH 6) while the other set received alkaline media (pH 7.5). Media for both sets of reactors included acetate (0.25 and 1 mM), which served as an electron donor, and sulfate (2.5 mM). We also included sets of sulfate-deficient and acetate-deficient control reactors. We maintained a fluid residence time of 35 days in the reactors by sampling and feeding them every seven days during the 91-day incubation. Our results show that, under the conditions tested, pH had a larger influence on the balance between each reaction than acetate concentration. In acidic reactors, the molar amount of iron reduced exceeded the amount of sulfate reduced by a factor of 3 in reactors receiving media with 0 and 0.25 mM acetate and a factor of 2 in reactors receiving 1 mM acetate. Under alkaline conditions, iron and sulfate were reduced in nearly equal proportions, regardless of influent acetate concentration. Results from sulfate-deficient control reactors show that the presence of sulfate reduction increased the extent of iron reduction in all reactors, but particularly those with alkaline pH. Under acidic conditions, the amount of iron reduced was greater by a factor of 1.2 if sulfate reduction occurred simultaneously than if it did not. Under alkaline conditions, that factor increased to 8.2. Hence, pH influenced the extent to which sulfate reduction promoted iron reduction.

  11. Potential influence of inter-continental transport of sulfate aerosols on air quality

    Science.gov (United States)

    Liu, Junfeng; Mauzerall, Denise L.

    2007-10-01

    In this study, we compare the potential influence of inter-continental transport of sulfate aerosols on the air quality of (different) continental regions. We use a global chemical transport model, Model of Ozone and Related Tracers, version 2 (MOZART-2), to quantify the source receptor relationships of inter-continental transport of sulfate aerosols among ten regions in 2000. In order to compare the importance of foreign with domestic emissions and to estimate the effect of future changes in emissions on human exposure, we define an 'influence potential' (IP). The IP quantifies the human exposure that occurs in a receptor region as a result of a unit of SO2 emissions from a source region. We find that due to the non-linear nature of sulfate production, regions with low SO2 emissions usually have large domestic IP, and vice versa. An exception is East Asia (EA), which has both high SO2 emissions and relatively large domestic IP, mostly caused by the spatial coincidence of emissions and population. We find that inter-continental IPs are usually less than domestic IPs by 1 3 orders of magnitude. SO2 emissions from the Middle East (ME) and Europe (EU) have the largest potential to influence populations in surrounding regions. By comparing the IP ratios (IPR) between foreign and domestic SO2 emissions, we find that the IPR values range from 0.000 01 to 0.16 and change with season. Therefore, if reducing human exposure to sulfate aerosols is the objective, all regions should first focus on reducing domestic SO2 emissions. In addition, we find that relatively high IPR values exist among the EU, ME, the former Soviet Union (FSU) and African (AF) regions. Therefore, on the basis of the IP and IPR values, we conclude that a regional agreement among EA countries, and an inter-regional agreement among EU, ME, FSU and (north) AF regions to control sulfur emissions could benefit public health in these regions.

  12. Evaluating the potential influence of inter-continental transport of sulfate aerosols on air quality

    Science.gov (United States)

    Mauzerall, D. L.; Liu, J.

    2007-12-01

    In this study, we compare the potential influence of inter-continental transport of sulfate aerosols on the air quality of continental regions. We use a global chemical transport model, Model of Ozone and Related Tracers, version 2 (MOZART-2), to quantify the source-receptor relationships of inter-continental transport of sulfate aerosols among ten regions in 2000. In order to compare the importance of foreign emissions relative to domestic emissions and estimate the effect of future changes in emissions on human exposure, we define an "influence potential" (IP). The IP quantifies the human exposure that occurs in a receptor region as a result of a unit of SO2 emissions from a source region. We find that due to the non-linear nature of sulfate production, regions with low SO2 emissions usually have large domestic IP, and vice versa. An exception is East Asia (EA), which has both high SO2 emissions and relatively large domestic IP, mostly caused by the spatial coincidence of emissions and population. We find that intercontinental IPs are usually less than domestic IPs by 1-3 orders of magnitude. SO2 emissions from the Middle East (ME) and Europe (EU) have the largest potential to influence populations in surrounding regions. By comparing the IP ratios (IPR) between foreign and domestic SO2 emissions, we find that the IPR values range from 0.00001 to 0.16 and change with season. Therefore, if reducing human exposure to sulfate aerosols is the objective, all regions should first focus on reducing domestic SO2 emissions. In addition, we find that relatively high IPR values exist among the EU, ME, the former Soviet Union (FSU) and African (AF) regions. Therefore, based on the IP and IPR values, we conclude that a regional agreement among EA countries, and an inter-regional agreement among EU, ME, FSU and north AF regions to control sulfur emissions would benefit public health in these regions.

  13. Sulfated Galactofucan from the Brown Alga Saccharina latissima—Variability of Yield, Structural Composition and Bioactivity

    Directory of Open Access Journals (Sweden)

    Karina Ehrig

    2014-12-01

    Full Text Available The fucose-containing sulfated polysaccharides (SP from brown algae exhibit a wide range of bioactivities and are, therefore, considered promising candidates for health-supporting and medicinal applications. A critical issue is their availability in high, reproducible quality. The aim of the present study was to fractionate and characterize the SP extracted from Saccharina latissima (S.l.-SP harvested from two marine habitats, the Baltic Sea and North Atlantic Ocean, in May, June and September. The fractionation of crude S.l.-SP by anion exchange chromatography including analytical investigations revealed that S.l.-SP is composed of a homogeneous fraction of sulfated galactofucan (SGF and a mixture of low-sulfated, uronic acid and protein containing heteropolysaccharides. Furthermore, the results indicated that S.l. growing at an intertidal zone with high salinity harvested at the end of the growing period delivered the highest yield of S.l.-SP with SGF as the main fraction (67%. Its SGF had the highest degree of sulfation (0.81, fucose content (86.1% and fucose/galactose ratio (7.8 and was most active (e.g., elastase inhibition: IC50 0.21 μg/mL. Thus, S.l. from the North Atlantic harvested in autumn proved to be more appropriate for the isolation of S.l.-SP than S.l. from the Baltic Sea and S.l. harvested in spring, respectively. In conclusion, this study demonstrated that habitat and harvest time of brown algae should be considered as factors influencing the yield as well as the composition and thus also the bioactivity of their SP.

  14. Post-Translational Modifications of Desulfovibrio vulgaris Hildenborough Sulfate Reduction Pathway Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gaucher, S.P.; Redding, A.M.; Mukhopadhyay, A.; Keasling, J.D.; Singh, A.K.

    2008-03-01

    Recent developments in shotgun proteomics have enabled high-throughput studies of a variety of microorganisms at a proteome level and provide experimental validation for predicted open reading frames in the corresponding genome. More importantly, advances in mass spectrometric data analysis now allow mining of large proteomics data sets for the presence of post-translational modifications(PTMs). Although PTMs are a critical aspectof cellular activity, such information eludes cell-wide studies conducted at the transcript level. Here, we analyze several mass spectrometric data sets acquired using two-dimensional liquid chromatography tandem mass spectrometry, 2D-LC/MS/MS, for the sulfate reducing bacterium, Desulfovibrio vulgaris Hildenborough. Our searches of the raw spectra led us to discover several post-translationally modified peptides in D. vulgaris. Of these, several peptides containing a lysine with a +42 Da modification were found reproducibly across all data sets. Both acetylation and trimethylation have the same nominal +42 Da mass, and are therefore candidates for this modification. Several spectra were identified having markers for trimethylation, while one is consistent with an acetylation. Surprisingly, these modified peptides predominantly mapped to proteins involved in sulfate respiration. Other highly expressed proteins in D. vulgaris, such as enzymes involved in electron transport and other central metabolic processes, did not contain this modification. Decoy database searches were used to control for random spectrum/sequence matches. Additional validation for these modifications was provided by alternate workflows, for example, two-dimensional gel electrophoresis followed by mass spectrometry analysis of the dissimilatory sulfite reductase gamma-subunit(DsrC) protein. MS data for DsrC in this alternate workflow also contained the +42 Da modification at the same loci. Furthermore, the DsrC homologue in another sulfate reducing bacterium

  15. Compositional and stable carbon isotopic fractionation during non-autocatalytic thermochemical sulfate reduction by gaseous hydrocarbons

    Science.gov (United States)

    Xia, Xinyu; Ellis, Geoffrey S.; Ma, Qisheng; Tang, Yongchun

    2014-01-01

    The possibility of autocatalysis during thermochemical sulfate reduction (TSR) by gaseous hydrocarbons was investigated by examination of previously reported laboratory and field data. This reaction was found to be a kinetically controlled non-autocatalytic process, and the apparent lack of autocatalysis is thought to be due to the absence of the required intermediate species. Kinetic parameters for chemical and carbon isotopic fractionations of gaseous hydrocarbons affected by TSR were calculated and found to be consistent with experimentally derived values for TSR involving long-chain hydrocarbons. Model predictions based on these kinetic values indicate that TSR by gaseous hydrocarbon requires high-temperature conditions. The oxidation of C2–5 hydrocarbons by sulfate reduction is accompanied by carbon isotopic fractionation with the residual C2–5 hydrocarbons becoming more enriched in 13C. Kinetic parameters were calculated for the stable carbon isotopic fractionation of gaseous hydrocarbons that have experienced TSR. Model predictions based on these kinetics indicate that it may be difficult to distinguish the effects of TSR from those of thermal maturation at lower levels of hydrocarbon oxidation; however, unusually heavy δ13C2+ values (>−10‰) can be diagnostic of high levels of conversion (>50%). Stoichiometric and stable carbon isotopic data show that methane is stable under the investigated reaction conditions and is likely a product of TSR by other gaseous hydrocarbons rather than a significant reactant. These results indicate that the overall TSR reaction mechanism for oxidation of organic substrates containing long-chain hydrocarbons involves three distinct phases as follows: (1) an initial slow and non-autocatalytic stage characterized by the reduction of reactive sulfate by long-chain saturated hydrocarbons; (2) a second autocatalytic reaction phase dominated by reactions involving reduced sulfur species and partially oxidized hydrocarbons; (3

  16. A statistical experimental design to remove sulfate by crystallization in a fluidized-bed reactor

    OpenAIRE

    Mark Daniel G. de Luna; Rance, Diana Pearl M.; Luzvisminda M. Bellotindos; Lu, Ming-Chun

    2016-01-01

    This study used crystallization in a fluidized-bed reactor as an alternative technology to the conventional chemical precipitation to remove sulfate. The Box-Behnken Design was used to study the effects and interactions of seed dosage of synthetic gypsum, initial sulfate concentration and molar ratio of calcium to sulfate on conversion and removal of sulfate. The optimum conditions of conversion and removal of sulfate were determined and used to treat the simulated acid mine drainage (AMD) wa...

  17. Balloon occluded retrograde transvenous obliteration of bleeding stomal varices using sodium tetradecyl sulfate foam: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Chang; Yang, Po Sang; Lee, Yeon Soo; Kim, Hyun Jeong; Park, Gun [Dept. of Radiology, The Catholic University of Korea College of Medicine, Daejeon St. Mary' s Hospital, Daejeon (Korea, Republic of)

    2015-05-15

    A small varix is an uncommon complication with a high mortality rate occurring secondary to portal hypertension in patients with a stoma. We describe a case of recurrent stomal varix bleeding successfully managed by balloon occluded retrograde transvenous obliteration using sodium tetradecyl sulfate foam.

  18. Computational study of the effect of glyoxal-sulfate clustering on the Henry's Law coefficient of glyoxal

    DEFF Research Database (Denmark)

    Kurtén, Theo; Elm, Jonas; Prisle, Nønne L.

    2015-01-01

    -containing aerosol particles. This promotes the participation of glyoxal in reactions leading to secondary organic aerosol formation, especially in regions with high sulfate concentrations. We used our computed equilibrium constants for the complexation reactions to assess the magnitude of the Henry's law...

  19. Adaptation of alphaviruses to heparan sulfate : Interaction of Sindbis and Semliki Forest viruses with liposomes containing lipid-conjugated heparin

    NARCIS (Netherlands)

    Smit, JM; Waarts, BL; Kimata, K; Klimstra, WB; Bittman, R; Wilschut, J

    2002-01-01

    Passage of Sindbis virus (SIN) in BHK-21 cells has been shown to select for virus mutants with high affinity for the glycosaminoglycan heparan sulfate (HS). Three loci in the viral spike protein E2 (E2:1, E2:70, and E2:114) have been identified that mutate during adaptation and independently confer

  20. Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis.

    Science.gov (United States)

    Heo, Roun; You, Dong Gil; Um, Wooram; Choi, Ki Young; Jeon, Sangmin; Park, Jong-Sung; Choi, Yuri; Kwon, Seunglee; Kim, Kwangmeyung; Kwon, Ick Chan; Jo, Dong-Gyu; Kang, Young Mo; Park, Jae Hyung

    2017-07-01

    With the aim of developing nanoparticles for targeted delivery of methotrexate (MTX) to inflamed joints in rheumatoid arthritis (RA), an amphiphilic polysaccharide was synthesized by conjugating 5β-cholanic acid to a dextran sulfate (DS) backbone. Due to its amphiphilic nature, the DS derivative self-assembled into spherical nanoparticles (220 nm in diameter) in aqueous conditions. The MTX was effectively loaded into the DS nanoparticles (loading efficiency: 73.0%) by a simple dialysis method. Interestingly, the DS nanoparticles were selectively taken up by activated macrophages, which are responsible for inflammation and joint destruction, via scavenger receptor class A-mediated endocytosis. When systemically administrated into mice with experimental collagen-induced arthritis (CIA), the DS nanoparticles effectively accumulated in inflamed joints (12-fold more than wild type mice (WT)), implying their high targetability to RA tissues. Moreover, the MTX-loaded DS nanoparticles exhibited significantly improved therapeutic efficacy against CIA in mice compared to free MTX alone. Overall, the data presented here indicate that DS nanoparticles are potentially useful nanomedicines for RA imaging and therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.