WorldWideScience

Sample records for highly stripped plasmas

  1. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  2. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  3. Electron capture by highly stripped ions

    International Nuclear Information System (INIS)

    Greenland, P.T.

    1981-06-01

    This review describes theories of electron capture suitable for the description of rearrangement collisions between atomic hydrogen and completely stripped projectiles with charge greater than unity. The region of impact velocity considered lies between 0.05 and 3 au, which is of technological importance in fusion power devices. The semiclassical, impact parameter formalism is discussed and the use of atomic expansions at medium impact velocity is described. Experimental results for both completely and partially stripped projectiles are reviewed. The use of a molecular basis at low energy, and the role of pseudocrossings peculiar to the two centre Coulomb interaction are described. Finally, purely classical techniques, in which the electron wavefunction is represented by an ensemble of Kepler orbits are considered. The review was completed in February 1981. (author)

  4. High Pressure Water Stripping Using Multi-Orifice Nozzles

    Science.gov (United States)

    Hoppe, David

    1999-01-01

    The use of multi-orifice rotary nozzles greatly increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with its transverse velocity as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Orifices at the outer edge of the nozzle head move at a faster rate than the orifices located near the center. The energy transmitted to the surface from the impact force of the water stream from an outer orifice is therefore spread over a larger area than energy from an inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the total energy transmitted from the outer orifice to compensate for the wider distribution of energy. The total flow rate from the combination of all orifices must be monitored and should be kept below the pump capacity while choosing orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all the orifices in the nozzle head pass through the center section. All orifices contribute to the stripping in the center of the path while only the outer most orifice contributes to the stripping at the edge of the nozzle. Additional orifices contribute to the stripping from the outer edge toward the center section. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation graphically indicates the cumulative affect from each parameter selected. The result from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas

  5. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  6. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  7. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to $7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of $3000\\;\\mathrm{fb}^{-1}$ and hadron fluencies over $2\\times10^{16}\\;\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^{2}$, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six disks on each side of the barrel, has resulted in the ATLAS Inner Tracker Strip Detector Technical Design R...

  8. Dynamic plasma screening effects on electron capture process in hydrogenic ion fully stripped ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on electron capture from hydrogenic ions by past fully stripped ions. The classical Bohr Lindhard model has been applied to obtain the electron capture probability. The interaction potential in dense plasmas is represented in terms of the longitudinal dielectric function. The classical straight-line trajectory approximation is applied to the motion of the projectile ion in order to visualize the electron capture probability as a function of the impact parameter, projectile energy, and plasma parameters. The electron capture probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the plasma electron thermal velocity, the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low energy projectiles. It is found that the static screening formula obtained by the Debye Hueckel model overestimates the plasma screening effects on the electron capture processes in dense plasmas. copyright 1997 American Institute of Physics

  9. Unexpected high plasma cobalamin

    DEFF Research Database (Denmark)

    Arendt, Johan F B; Nexo, Ebba

    2013-01-01

    It is well-established that more than 8% of patients examined for vitamin B12 deficiency unexpectedly have increased plasma levels of the vitamin, but so far there are no guidelines for the clinical interpretation of such findings. In this review, we summarise known associations between high plasma...... cobalamin binding proteins, transcobalamin and haptocorrin. Based on current knowledge, we suggest a strategy for the clinical interpretation of unexpected high plasma cobalamin. Since a number of the associated diseases are critical and life-threatening, the strategy promotes the concept of 'think...

  10. High Energy Cutting and Stripping Utilizing Liquid Nitrogen

    Science.gov (United States)

    Hume, Howard; Noah, Donald E.; Hayes, Paul W.

    2005-01-01

    The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal. The NitroJet(TM) is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements. The NitroJet(TM) uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals. Liquid nitrogen (LN2) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN2 to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN2 is about -250 F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 - 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about -220 F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over

  11. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  12. Brookhaven four-stage accel-decel production of low-energy highly stripped heavy ions

    International Nuclear Information System (INIS)

    Barrette, J.; Thieberger, P.

    1981-01-01

    The dual MP tandem facility at Brookhaven has been used in a four-stage accel-decel mode to produce highly stripped S ion beams (Q = 10-16 + ). Fully stripped S ions were obtained at energies down to 8 MeV. The low energy limit is presently due to the inclined field configuration of the last acceleration tube

  13. Paint stripping with high power flattened Gaussian beams

    CSIR Research Space (South Africa)

    Forbes, A

    2009-08-01

    Full Text Available In this paper the researchers present results on improved paint stripping performance with an intra-cavity generated Flattened Gaussian Beam (FGB). A resonator with suitable diffractive optical elements was designed in order to produce a single mode...

  14. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    Directory of Open Access Journals (Sweden)

    J.-P. Carneiro

    2009-04-01

    Full Text Available Numerical simulations of H^{-} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H^{-} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  15. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    manufacturing industry by lowering power consumption by as much as 30 kW per ion implanter. Major problem was meeting commercialization goals did not succeed for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. An additional noteworthy reason for failure to commercialize is the fact that the ion implantation manufacturing industry had been in a very deep bust cycle. BNL, however, has benefited from advances in high-charge state ion generation, due to the need high charge state ions in some RHIC preinjectors. Since the invention of the transistor, the trend has been to miniaturize semiconductor devices. As semiconductors become smaller (and get miniaturized), ion energy needed for implantation decreases, since shallow implantation is desired. But, due to space charge (intra-ion repulsion) effects, forming and transporting ion beams becomes a rather difficult task. A few small manufacturers of low quality semiconductors use plasma immersion to circumvent the problem. However, in plasma immersion undesired plasma impurity ions are also implanted; hence, the quality of those semiconductors is poor. For high quality miniature semiconductor manufacturing, pure, low energy ion beams are utilized. But, low energy ion implanters are characterized by low current (much lower than desirable) and, therefore, low production rates. Consequently, increasing the current of pure low energy

  16. Enhanced self-magnetic field by atomic polarization in partially stripped plasma produced by a short and intense laser pulse

    International Nuclear Information System (INIS)

    Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie

    2005-01-01

    The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam

  17. High temperature oxidation of thin FeCrAl strips

    International Nuclear Information System (INIS)

    Andrieu, E.; Germidis, A.; Molins, R.

    1997-01-01

    This study concerns the oxidation behaviour between 850 and 1100 C of FeCrAl thin strips. Oxidation kinetics have been continuously recorded on a thermobalance as well as discontinuously in an ''industrial'' furnace. Detailed observations of oxide layers have been performed in transmission electron microscopy on oxidized thin foil cross-sections. Oxide morphologies are correlated with kinetics: Slow kinetics and columnar α alumina grains above 950 C, fast kinetics and transition alumina platelets (γ-alumina) at 850 C and 900 C, followed by small α-alumina grains formation underneath. The weight gains in the industrial furnace displayed significant scatter and were generally greater than those measured in the thermobalance. The effect of extrinsic factors such as specimen size and shape, atmosphere, air flow conditions on the early formation of transition aluminas explains the observed differences. It appears then that in given cases parabolic constant identification from TGA recordings is difficult, or even impossible. This might contribute to explain the differences in the results presented in the literature. (orig.)

  18. Influence for high intensity irradiation on characteristics of silicon strip-detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Pugatch, V.M.; Zinets, O.S.

    1995-01-01

    Full text: Silicon strip detectors (SSD) are widely used for the coordinate determination of short-range as well as minimum ionizing particles with high spatial resolution. Submicron position sensitivity of strip-detectors for short-range particles has been studied by means of two dimensional analyses of charges collected by neighboring strips as well as by measurement of charge collection times [1]. Silicon strip detectors was also used for testing high energy electron beam [2]. Under large fluences the radiation defects are stored and such characteristics of strip-detectors as an accuracy of the coordinate determination and the registration efficiency are significantly changed. Radiation defects lead to a decrease of the lifetime and mobility of charge carriers and therefore to changes of conditions for the charge collection in detectors. The inhomogeneity in spatial distribution if defects and electrical field plays an important role in the charge collection. In this report the role of the diffusion and drift in the charge collection in silicon strip-detectors under irradiation up to 10 Mrad has been studied. The electric field distribution and its dependence on the radiation dose in the detector have been calculated. It is shown that for particles incident between adjacent strips the coordinate determination precision depends strongly on the detector geometry and the electric field distribution, particularly in the vicinity of strips. Measuring simultaneously the collected charges and collection times on adjacent strips one can essentially improve reliability of the coordinate determination for short-range particles. Usually SSD are fabricated on n-type wafers. It is well known that under high intensity irradiation n-Si material converts into p-Si as far as p-type silicon is more radiative hard than n-type silicon [3] it is reasonable to fabricate SSD using high resistivity p-Si. Characteristics of SSD in basis n-and P-Si have been compared and higher

  19. High-frequency plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)

    1958-07-01

    It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.

  20. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  1. Containment of high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.; Ferguson, H.R.P.; Fletcher, H. Jr.; Gardner, J.; Harrison, B.K.; Larsen, K.M.

    1973-01-01

    Apparatus is described for confining a high temperature plasma which comprises: 1) envelope means shaped to form a toroidal hollow chamber containing a plasma, 2) magnetic field line generating means for confining the plasma in a smooth toroidal shape without cusps. (R.L.)

  2. Highly efficient and reliable high power LEDs with patterned sapphire substrate and strip-shaped distributed current blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengjun [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yuan, Shu; Liu, Yingce [Quantum Wafer Inc., Foshan 528251 (China); Guo, L. Jay [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 (United States); Liu, Sheng, E-mail: victor_liu63@126.com [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Ding, Han [State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TEM is used to characterize threading dislocation existing in GaN epitaxial layer. • Effect of threading dislocation on optical and electrical of LEDs is discussed. • Strip-shaped SiO{sub 2} DCBL is designed to improve current spreading performance of LEDs. - Abstract: We demonstrated that the improvement in optical and electrical performance of high power LEDs was achieved using cone-shaped patterned sapphire substrate (PSS) and strip-shaped SiO{sub 2} distributed current blocking layer (DCBL). We found through transmission electron microscopy (TEM) observation that densities of both the screw dislocation and edge dislocation existing in GaN epitaxial layer grown on PSS were much less than that of GaN epitaxial layer grown on flat sapphire substrate (FSS). Compared to LED grown on FSS, LED grown on PSS showed higher sub-threshold forward-bias voltage and lower reverse leakage current, resulting in an enhancement in device reliability. We also designed a strip-shaped SiO{sub 2} DCBL beneath a strip-shaped p-electrode, which prevents the current from being concentrated on regions immediately adjacent the strip-shaped p-electrode, thereby facilitating uniform current spreading into the active region. By implementing strip-shaped SiO{sub 2} DCBL, light output power of high power PSS-LED chip could be further increased by 13%.

  3. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Space...

  4. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  5. Physical and clinical evaluation of new high-strip-density radiographic grids

    International Nuclear Information System (INIS)

    Doi, K.; Frank, P.H.; Chan, H.P.; Vyborny, C.J.; Makino, S.; Iida, N.; Carlin, M.

    1983-01-01

    The imaging performance of new high-strip-density (HSD) grids having 57 lines/cm was compared with that of conventional low-strip-density (LSD) grids having 33 or 40 lines/cm. The unique advantage of HSD grids is that, under most standard radiographic conditions, the grid lines are not noticeable on the final image, even if the grid is stationary. This is due to the combined effect of the high fundamental spatial frequency of HSD grids, the modulation transfer function of screen-film systems and of the human visual system, and scattered radiation. Monte Carlo simulation studies, phantom images, and clinical evaluation indicate that HSD grids can provide contrast improvement factors and Bucky factors that are comparable to or slightly better than those obtained with LSD grids. Therefore, it may now be possible to eliminate moving Bucky trays from radiographic tables and fluoroscopic devices

  6. Suspended Integrated Strip-line Transition Design for Highly Integrated Radar Systems

    Science.gov (United States)

    2017-03-01

    technology. The measured results show good correlation to the simulated results with a return loss and insertion loss of less than 10 dB and greater...SSS); Suspended Integrated Strip-line (SISL) RF packaging; Ultra-wideband (UWB). Introduction The next generation of highly integrated radar...RF Circuit Design,” Second Edition, Pearson Education, 2009. 3. B. Ma, A. Chousseaud, and S. Toutain, “A new design of compact planar microstrip

  7. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    International Nuclear Information System (INIS)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng

    2014-01-01

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β 2 -agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β 2 -agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β 2 -agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β 2 -agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL −1 , with the detection limits of 0.20 and 0.040 ng mL −1 (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β 2 -agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety

  8. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    Science.gov (United States)

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  9. A high rate, low noise, x-ray silicon strip detector system

    International Nuclear Information System (INIS)

    Ludewigt, B.; Jaklevic, J.; Kipnis, I.; Rossington, C.; Spieler, H.

    1993-11-01

    An x-ray detector system, based on a silicon strip detector wire-bonded to a low noise charge-senstive amplifier integrated circuit, has been developed for synchrotron radiation experiments which require very high count rates and good energy resolution. Noise measurements and x-ray spectra were taken using a 6 mm long, 55 μm pitch strip detector in conjunction with a prototype 16-channel charge-sensitive preamplifier, both fabricated using standard 1.2 μm CMOS technology. The detector system currently achieves an energy resolution of 350 eV FWHM at 5.9 key, 2 μs peaking time, when cooled to -5 degree C

  10. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    International Nuclear Information System (INIS)

    Gao, Zhiwen; Zhou, Youhe

    2015-01-01

    Highlights: • We studied fracture problem in HTS based on real fundamental solutions. • When the thickness of HTS strip increases the SIF decrease. • A higher applied field leads to a larger stress intensity factor. • The greater the critical current density is, the smaller values of the SIF is. - Abstract: Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E–J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss–Lobatto–Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed

  11. High rate operation of micro-strip gas chambers on diamond-coated glass

    CERN Document Server

    Bouclier, Roger; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Temmel, T; Cooke, R A; Donnel, S; Sastri, S A; Sonderer, N

    1996-01-01

    Very high rate operation of micro­strip gas chambers can be achieved using slightly conducting substrates. We describe preliminary measurements realized with detectors manufactured on boro-silicate glass coated, before the photo-lithographic processing, with a diamond layer having a surface resistivity of around 1014 ‡/o. Stable medium-term operation, and a rate capability largely exceeding the one obtained with identical plates manufactured on uncoated glass are demonstrated. If these results are confirmed by long-term measurements the diamond coating technology appears very attractive since it allows, with a moderate cost overhead, to use thin, commercially available glass with the required surface quality for the large-scale production of gas micro-strip detectors.

  12. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  13. Strip detector for the ATLAS detector upgrade for the high-luminosity LHC

    CERN Document Server

    Madaffari, Daniele; The ATLAS collaboration

    2017-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x10$^{35}$ cm$^{-2}$s$^{-1}$ after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000 fb$^{-1}$, requiring the tracking detectors to withstand hadron fluencies to over 1x10$^{16}$ 1 MeV neutron equivalent per cm$^2$. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  14. High current plasma electron emitter

    International Nuclear Information System (INIS)

    Fiksel, G.; Almagri, A.F.; Craig, D.

    1995-07-01

    A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current, small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications

  15. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  16. Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Vajpai, S.K., E-mail: vajpaisk@gmail.com [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Dube, R.K., E-mail: rkd@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Sangal, S., E-mail: sangals@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India)

    2013-05-15

    Cu–Al–Ni high temperature shape memory alloy (HTSMA) strips were successfully prepared from rapid solidified water atomized Cu–Al–Ni pre-alloyed powders via hot densification rolling of unsheathed sintered powder preforms. Finished heat-treated Cu–Al–Ni alloy strips had fine-grained structure, average grain size approximately 16 μm, and exhibited a combination of high strength and high ductility. It has been demonstrated that the redistribution of nano-sized alumina particles, present on the surface as well as inside the starting water atomized Cu–Al–Ni pre-alloyed powder particles, due to plastic deformation of starting powder particles during hot densification rolling resulted in the fine grained microstructure in the finished SMA strips. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β{sub 1}{sup ′} and γ{sub 1}{sup ′} martensite. The average fracture strength and fracture strain of the finished SMA strips were 810 MPa and 12%, respectively, and the fractured specimens exhibited primarily micro-void coalescence type ductile nature of fracture. Finished Cu–Al–Ni SMA strips exhibited high characteristic transformation temperatures and an almost 100% one-way shape recovery was obtained in the specimens up to 4% applied deformation pre-strain. The retained two-way shape memory recovery increased with increasing applied training pre-strain, achieving a maximum value of 16.25% at 5% applied training pre-strain.

  17. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    Science.gov (United States)

    Gao, Zhiwen; Zhou, Youhe

    2015-04-01

    Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.

  18. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng, E-mail: fuzf@swu.edu.cn

    2014-08-11

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β{sub 2}-agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β{sub 2}-agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β{sub 2}-agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β{sub 2}-agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL{sup −1}, with the detection limits of 0.20 and 0.040 ng mL{sup −1} (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β{sub 2}-agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety.

  19. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

    International Nuclear Information System (INIS)

    Odaka, Hirokazu; Ichinohe, Yuto; Takeda, Shin'ichiro; Fukuyama, Taro; Hagino, Koichi; Saito, Shinya; Sato, Tamotsu; Sato, Goro; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Yamaguchi, Mitsutaka

    2012-01-01

    We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-μm-thick Si-DSD and four layers of 750-μm-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250μm. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5° at 356 keV and 3.5° at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

  20. Development of gas micro-strip chambers for high rate radiation detection and tracking

    CERN Document Server

    Bouclier, Roger; Gaudaen, J; Florent, J J; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Groshev, V R; Minakov, G D; Onuchin, A P; Pestov, Yu N; Shekhtman, L I; Sidorov, V A; Dixit, M S; Oakham, G K; Møller, S; Sørensen, G; Uggerhøj, Erik; Brons, S; Brückner, W; Godbersen, M; Heidrich, M; Paul, S; Trombini, A; Werding, R; Armitage, J A; Karlen, D A; Stewart, G; Barasch, E F; McIntyre, P; Pang, Y; Trost, H J; Salomon, M; Breskin, Amos; Chechik, R; Pansky, A; CERN. Geneva. Detector Research and Development Committee

    1992-01-01

    Gas Micro-Strip Chambers (GMSC) are a promising high-rate, high resolution position detector suited for use in high luminosity hadron collider experiments, as general purpose tracker or to improve the performances of pre-shower counters, transition radiation and inner muon detectors. Large GMSC arrays have been included in proposed LHC and SSC experimental setups. The operating characteristics of GMSC make their use very attractive also for detectors at tau/charm/beauty factories, as well as for synchrotron radiation facilities and for medical applications. At the present state of the art, some problems limiting the usefulness of microstrip chambers are the observed gain changes due to charging up of the support, possible long-term degradation due to ageing, limited sizes imposed by fabrication technologies and unavailability of dedicated high-speed, high-density readout electronics. Limited experience exists of operation of GMSC in real experimental conditions, and little if anything is known about performan...

  1. Development of Gas Micro-Strip Chambers for Radiation Detection and Tracking at High Rates

    CERN Multimedia

    2002-01-01

    % RD28 \\\\ \\\\ Micro-Strip Gas Chambers (GMSC) are a promising high rate, high resolution position detector suited for use in high luminosity hadron collider experiments, as general purpose tracker or to improve the performances of preshower counters, transition radiation and inner muon detectors. Large GMSC arrays have been included in proposed LHC and SSC experimental setups. The operating characteristics of GMSC make their use very attractive also for detectors at tau/beauty/charm factories, as well as for synchrotron radiation facilities and medical applications. At the present state of the art, some problems limiting the usefulness of microstrip chambers are the observed gain changes due to charging up of the support, possible long-term degradation due to ageing, limited sizes imposed by fabrication technologies and unavailability of dedicated high-speed, high-density readout electronics. Limited experience exists of operation of GMSC in real experimental conditions, and little if anything is known about p...

  2. X-ray spectroscopic study of high-temperature plasmas by curved crystal spectrometer

    International Nuclear Information System (INIS)

    Morita, Shigeru.

    1983-07-01

    Extensive studies have been carried out on the structure of X-ray spectra from the highly stripped ions of first transition elements and their behavior in high temperature plasma, using a high resolution crystal spectrometer. Calculation was made on the design and the use of a curved crystal spectrometer for plasma diagnostics. A Johann type crystal spectrometer for measuring X-ray lines was constructed on the basis of the calculation. The characteristics of curved crystals of LiF, Ge and quartz used for the measurement of Kα lines from first transition elements were investigated. Vacuum sparks have been formed for producing high temperature plasma which emits X-ray lines from highly stripped ions. Two different structures of vacuum spark plasma were shown, that is, thermalized point plasma and extended plasma associated with non-thermal electrons. The X-ray lines from the extended plasma, those associated with the K shell from the point plasma and the Kα lines of Ti through Zn from the point plasma have been observed. (Kako, I.)

  3. Automatic Extraction of High-Resolution Rainfall Series from Rainfall Strip Charts

    Science.gov (United States)

    Saa-Requejo, Antonio; Valencia, Jose Luis; Garrido, Alberto; Tarquis, Ana M.

    2015-04-01

    Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on a host of factors, including climate, soil, topography, cropping and land management practices among others. Most models for soil erosion or hydrological processes need an accurate storm characterization. However, this data are not always available and in some cases indirect models are generated to fill this gap. In Spain, the rain intensity data known for time periods less than 24 hours back to 1924 and many studies are limited by it. In many cases this data is stored in rainfall strip charts in the meteorological stations but haven't been transfer in a numerical form. To overcome this deficiency in the raw data a process of information extraction from large amounts of rainfall strip charts is implemented by means of computer software. The method has been developed that largely automates the intensive-labour extraction work based on van Piggelen et al. (2011). The method consists of the following five basic steps: 1) scanning the charts to high-resolution digital images, 2) manually and visually registering relevant meta information from charts and pre-processing, 3) applying automatic curve extraction software in a batch process to determine the coordinates of cumulative rainfall lines on the images (main step), 4) post processing the curves that were not correctly determined in step 3, and 5) aggregating the cumulative rainfall in pixel coordinates to the desired time resolution. A colour detection procedure is introduced that automatically separates the background of the charts and rolls from the grid and subsequently the rainfall curve. The rainfall curve is detected by minimization of a cost function. Some utilities have been added to improve the previous work and automates some auxiliary processes: readjust the bands properly, merge bands when

  4. Development of anodic stripping voltametry for the determination of palladium in high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, T. K. [North Carolina State University, Raleigh (United States); Sharma, H. S.; Affarwal, S. K. [Bhabha Atomic Research Centre, Mumbai (India); Jain, P. C. [Meerut College, Meerut (India)

    2012-12-15

    Deposition potential, deposition time, square wave frequency, rotation speed of the rotating disc electrode, and palladium concentration were studied on a Glassy Carbon Electrode (GCE) in 0.01M HCl for the determination of palladium in High Level Nuclear Waste (HLNW) by anodic stripping voltammetry. Experimental conditions were optimized for the determination of palladium at two different, 10-8 and 10-7 M, levels. Error and standard deviation of this method were under 1% for all palladium standard solutions. The developed technique was successfully applied as a subsidiary method for the determination of palladium in simulated high level nuclear waste with very good precision and high accuracy (under 1 % error and standard deviation).

  5. High beta plasma operation in a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1978-01-01

    A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results

  6. Large Aircraft Robotic Paint Stripping (LARPS) system and the high pressure water process

    Science.gov (United States)

    See, David W.; Hofacker, Scott A.; Stone, M. Anthony; Harbaugh, Darcy

    1993-03-01

    The aircraft maintenance industry is beset by new Environmental Protection Agency (EPA) guidelines on air emissions, Occupational Safety and Health Administration (OSHA) standards, dwindling labor markets, Federal Aviation Administration (FAA) safety guidelines, and increased operating costs. In light of these factors, the USAF's Wright Laboratory Manufacturing Technology Directorate and the Aircraft Division of the Oklahoma City Air Logistics Center initiated a MANTECH/REPTECH effort to automate an alternate paint removal method and eliminate the current manual methylene chloride chemical stripping methods. This paper presents some of the background and history of the LARPS program, describes the LARPS system, documents the projected operational flow, quantifies some of the projected system benefits and describes the High Pressure Water Stripping Process. Certification of an alternative paint removal method to replace the current chemical process is being performed in two phases: Process Optimization and Process Validation. This paper also presents the results of the Process Optimization for metal substrates. Data on the coating removal rate, residual stresses, surface roughness, preliminary process envelopes, and technical plans for process Validation Testing will be discussed.

  7. Steam stripping of polycyclic aromatics from simulated high-level radioactive waste

    International Nuclear Information System (INIS)

    Lambert, D.P.; Shah, H.B.; Young, S.R.; Edwards, R.E.; Carter, J.T.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation, liquid-liquid extraction and decantation will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Technology Center with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Aqueous washing or nitrite destruction is used to reduce nitrite. Formic acid with a copper catalyst is used to hydrolyze tetraphenylborate (TPB). The primary offgases are benzene, carbon dioxide, nitrous oxide, and nitric oxide. Hydrolysis of TPB in the presence of nitrite results in the production of polycyclic aromatics and aromatic amines (referred as high boiling organics) such as biphenyl, diphenylamine, terphenyls etc. The decanter separates the organic (benzene) and aqueous phase, but the high boiling organic separation is difficult. This paper focuses on the evaluation of the operating strategies, including steam stripping, to maximize the removal of the high boiling organics from the aqueous stream. Two areas were investigated, (1) a stream stripping comparison of the late wash flowsheet to the HAN flowsheet and (2) the extraction performance of the original decanter to the new decanter. The focus of both studies was to minimize the high boiling organic content of the Precipitate Hydrolysis Aqueous (PHA) product in order to minimize downstream impacts caused by organic deposition

  8. Line-emission cross sections for the charge-exchange reaction between fully stripped carbon and atomic hydrogen in tokamak plasma

    International Nuclear Information System (INIS)

    Ida, K.; Kato, T.

    1992-01-01

    Line-emission cross sections of the charge-exchange reaction between fully stripped carbon and atomic hydrogen are measured in the energy range of 18 - 38 keV/amu in tokamak plasmas. The energy dependence of the emission cross sections for the transition of Δn = 8 - 7 and Δn = 7 - 6 and their ratios are compared with theoretical calculations. (author)

  9. Coordinate determination of high energy charged particles by silicon strip detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Zinets, O.S.

    2002-01-01

    The coordinate determination accuracy of minimum ionizing and short-range particles by silicon strip detectors has been considered. The charge collection on neighboring strips of the detector is studied and the influence of diffusion and the electric field distribution on the accuracy of the coordinate determination is analyzed. It has been shown that coordinates of both minimum ionizing and short-range particles can be determined with accuracy to a few microns using silicon strip detectors. 11 refs.; 8 figs

  10. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  11. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  12. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  13. Status of the silicon strip high-rate FASTBUS readout system

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, H.; Barsotti, E.; Bowden, M.; Christian, D.; Chramowicz, J.; Fachin, M.; Haldeman, M.; Hoff, J.; Holmes, S.; Rotolo, C.; Romero, A.; Slimmer, D.; Swoboda, C.; Trendler, R.; Urish, J.; Yarema, R.; Zimmerman, T.; Zimmermann, S.; Kowald, W.; MacManus, A.; Recagni, M.; Segal, J.; Spentzouris, P.

    1991-11-01

    Our new readout system was developed in collaboration with, and largely to the specification of, the E771 experimenters. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experiment will operate at rates of up to 200 million beam protons per second and 10 million interactions per second. The experimental apparatus will consist of an open geometry magnetic spectrometer featuring good muon and electron identification (much of which was used in E705), and a compact 16000 channel Silicon Strip Detector. In order to satisfy the experimenter's desire to instrument 16000 SSD elements in a package only 5 cm wide, 5 cm high, and 21 cm deep, and in order to meet the performance specifications, we have made extensive use of Application Specific Integrated Circuits'' (ASIC's).

  14. Status of the silicon strip high-rate FASTBUS readout system

    International Nuclear Information System (INIS)

    Gonzalez, H.; Barsotti, E.; Bowden, M.; Christian, D.; Chramowicz, J.; Fachin, M.; Haldeman, M.; Hoff, J.; Holmes, S.; Rotolo, C.; Romero, A.; Slimmer, D.; Swoboda, C.; Trendler, R.; Urish, J.; Yarema, R.; Zimmerman, T.; Zimmermann, S.; Kowald, W.; MacManus, A.; Recagni, M.; Segal, J.; Spentzouris, P.

    1991-11-01

    Our new readout system was developed in collaboration with, and largely to the specification of, the E771 experimenters. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experiment will operate at rates of up to 200 million beam protons per second and 10 million interactions per second. The experimental apparatus will consist of an open geometry magnetic spectrometer featuring good muon and electron identification (much of which was used in E705), and a compact 16000 channel Silicon Strip Detector. In order to satisfy the experimenter's desire to instrument 16000 SSD elements in a package only 5 cm wide, 5 cm high, and 21 cm deep, and in order to meet the performance specifications, we have made extensive use of ''Application Specific Integrated Circuits'' (ASIC's)

  15. Modern Physics in High School: Space time in Einstein’s comic strips

    Directory of Open Access Journals (Sweden)

    Francisco Caruso

    2009-08-01

    Full Text Available A   brief   summary   of   the  impact  of   Einstein's   contribution  concerning  concepts  like  space,  time,  simultaneity,  mass  and  energy is presented. Some of the main purposes of an education project through comics are sketched. The present work is inserted in this project and it shows a set of seven original comic strips which can be used by High School teachers to talk about one of Einstein’s  revolutionary  contributions  to  Modern  Physics:  Relativity.

  16. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    1999-12-01

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena  (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  17. Evaluation of high grid strip densities based on the moiré artifact analysis for quality assurance: Simulation and experiment

    Science.gov (United States)

    Je, U. K.; Park, C. K.; Lim, H. W.; Cho, H. S.; Lee, D. Y.; Lee, H. W.; Kim, K. S.; Park, S. Y.; Kim, G. A.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.

    2017-09-01

    We have recently developed precise x-ray grids having strip densities in the range of 100 - 250 lines/inch by adopting the precision sawing process and carbon interspace material for the demands of specific x-ray imaging techniques. However, quality assurance in the grid manufacturing has not yet satisfactorily conducted because grid strips of a high strip density are often invisible through an x-ray nondestructive testing with a flat-panel detector of an ordinary pixel resolution (>100 μm). In this work, we propose a useful method to evaluate actual grid strip densities over the Nyquist sampling rate based on the moiré artifact analysis. We performed a systematic simulation and experiment with several sample grids and a detector having a 143- μm pixel resolution to verify the proposed quality assurance method. According to our results, the relative differences between the nominal and the evaluated grid strip densities were within 0.2% and 1.8% in the simulation and experiment, respectively, which demonstrates that the proposed method is viable with an ordinary detector having a moderate pixel resolution for quality assurance in grid manufacturing.

  18. Highly sensitive determination of mercury using copper enhancer by diamond electrode coupled with sequential injection–anodic stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Chaiyo, Sudkate [Department of Chemistry, Faculty of Science, Srinakharinwirot University (Thailand); Chailapakul, Orawon [Department of Chemistry, Faculty of Science, Chulalongkorn University (Thailand); Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University (Thailand); Siangproh, Weena, E-mail: weena@swu.ac.th [Department of Chemistry, Faculty of Science, Srinakharinwirot University (Thailand)

    2014-12-10

    Highlights: • Highly sensitive determination of Hg(II) using SI–ASV-BDD was achieved. • Electrochemical detection of Hg(II) using Cu(II) enhancer was accomplished. • LOD and LOQ were found to be very low at 40.0 ppt and 135.0 ppt. • This method was successfully applied for determination of Hg(II) in real samples. - Abstract: A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection–anodic stripping voltammetry (SI–ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at −1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s{sup −1}. An anodic stripping voltammogram was recorded from −0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at −0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1–30.0 ng mL{sup −1} and 5.0–60.0 ng mL{sup −1}). The limit of detection (S/N = 3) obtained from the experiment was found to be 0.04 ng mL{sup −1}. The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL{sup −1}, respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg

  19. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  20. Turbulence of high-beta plasma

    International Nuclear Information System (INIS)

    Khvesyuk, V.I.; Chirkov, A.Y.

    1999-01-01

    Principals of numerical modelling of turbulence in high-beta plasma (β > 0.1) are discussed. Creation of transport model for axial symmetric nonuniform confining magnetic field is considered. Numerical model of plasma turbulence in FRC is presented. The physical and mathematical models are formulated from nonuniform axial symmetric high-beta plasma. It is shown that influence of waves arise under this plasma conditions lead to chaotic motion of charged particles across magnetic field. (author)

  1. ASBESTOS EXPOSURES DURING ROUTINE FLOOR TILE MAINTENANCE. PART 2: ULTRA HIGH SPEED BURNISHING AND WET-STRIPPING

    Science.gov (United States)

    This study was conducted to evaluate airborne asbestos concentrations during ultra high speed (UHS) burnishing and wet-stripping of asbestos-containing resilient floor tile under two levels of floor care condition (poor and good). Airborne asbestos concentrations were measured by...

  2. The honeycomb strip chamber: A two coordinate and high precision muon detector

    International Nuclear Information System (INIS)

    Tolsma, H.P.T.

    1996-01-01

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 μm rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.)

  3. The honeycomb strip chamber: A two coordinate and high precision muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Tolsma, H P.T.

    1996-04-19

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 {mu}m rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.).

  4. The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness

    International Nuclear Information System (INIS)

    Martinez, Eduardo

    2012-01-01

    The domain wall dynamics along thin ferromagnetic strips with high perpendicular magnetocrystalline anisotropy driven by either magnetic fields or spin-polarized currents is theoretically analyzed by means of full micromagnetic simulations and a one-dimensional model, including both surface roughness and thermal effects. At finite temperature, the results show a field dependence of the domain wall velocity in good qualitative agreement with available experimental measurements, indicating a low field, low velocity creep regime, and a high field, linear regime separated by a smeared depinning region. Similar behaviors were also observed under applied currents. In the low current creep regime the velocity-current characteristic does not depend significantly on the non-adiabaticity. At high currents, where the domain wall velocity becomes insensitive to surface pinning, the domain wall shows a precessional behavior even when the non-adiabatic parameter is equal to the Gilbert damping. These analyses confirm the relevance of both thermal fluctuations and surface roughness for the domain wall dynamics, and that complete micromagnetic modeling and one-dimensional studies taking into account these effects are required to interpret the experimental measurements in order to get a better understanding of the origin, the role and the magnitude of the non-adiabaticity. (paper)

  5. High-vacuum plasma pump

    International Nuclear Information System (INIS)

    Dorodnov, A.M.; Minajchev, V.E.; Miroshkin, S.I.

    1980-01-01

    The action of an electric-arc high-vacuum pump intended for evacuating the volumes in which the operation processes are followed by a high gas evolution is considered. The operation of the pump is based on the principle of controlling the getter feed according to the gas load and effect of plasma sorbtion pumping. The pump performances are given. The starting pressure is about 5 Pa, the limiting residual pressure is about 5x10 -6 Pa, the pumping out rate of nitrogen in the pressure range 5x10 -5 -5x10 -3 Pa accounts for about 4000 l/s, the power consumption comes to 6 kW. Analyzing the results of the test operation of the pump, it has been concluded that its principal advantages are the high starting pressure, controlled getter feed rate and possibility of pumping out the gases which are usually pumped out with difficulty. The operation reliability of the pump is defined mainly by reliable operation of the ignition system of the vacuum arc [ru

  6. Beam test of novel n-in-p strip sensors for high radiation environment

    Science.gov (United States)

    Kubota, T.; Kishida, T.; Jinnouchi, O.; Ikegami, Y.; Unno, Y.; Terada, S.; Mitsui, S.; Tamii, A.; Aoi, T.; Hanagaki, K.; Hara, K.; Kimura, N.; Takashima, R.; Takubo, Y.; Tojo, J.; Nagai, K.; Nakano, I.; Yorita, K.

    2013-12-01

    Highly radiation tolerant n-in-p strip sensors have been developed for the high-luminosity LHC (HL-LHC). This paper reports the results of measurements with 392 MeV kinetic energy proton beam at RCNP in December 2011. The data was taken with a new DAQ system consisting of an universal read-out board ‘SEABAS’ and beam tracking telescopes whose spacial resolution is better than 5 μm. The aim of this beam test is to evaluate the new 1 cm×1 cm n-in-p miniature sensors before and after 1015 neq cm-2 irradiation. The median charge of un-irradiated sensor is 6.2 fC at full depletion voltage, while the median charge after 1015 neq cm-2 irradiation of the sensor is 4.2 fC. The novel Punch-Through-Protection (PTP) has been implemented in these sensors. The length of active region of the sensor around PTP is observed to be decreased by 12 μm in the irradiated sensors at 1015 neq cm-2.

  7. Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production

    Institute of Scientific and Technical Information of China (English)

    Jian Zhou; Yonglin Kang; Xinping Mao

    2008-01-01

    Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti mieroalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S>2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.

  8. Two dimensional gel electrophoresis using narrow pH 3-5.6 immobilised pH gradient strips identifies potential novel disease biomarkers in plasma or serum

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Bevin Gangadharan & Nicole Zitzmann ### Abstract Two-dimensional gel electrophoresis (2-DE) is a protein separation technique often used to separate plasma or serum proteins in an attempt to identify novel biomarkers. This protocol describes how to run 2-DE gels using narrow pH 3-5.6 immobilised pH gradient strips to separate 2 mg of serum proteins. pH 3-6 ampholytes are used to enhance the solubility of proteins in this pH range before the serum proteins are separated in the...

  9. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena 
    (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.

    Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  10. Plasma Diagnostics in High Density Reactors

    International Nuclear Information System (INIS)

    Daltrini, A. M.; Moshkalyov, S.; Monteiro, M. J. R.; Machida, M.; Kostryukov, A.; Besseler, E.; Biasotto, C.; Diniz, J. A.

    2006-01-01

    Langmuir electric probes and optical emission spectroscopy diagnostics were developed for applications in high density plasmas. These diagnostics were employed in two plasma sources: an electron cyclotron resonance (ECR) plasma and an RF driven inductively coupled plasma (ICP) plasma. Langmuir probes were tested using a number of probing dimensions, probe tip materials, circuits for probe bias and filters. Then, the results were compared with the optical spectroscopy measurements. With these diagnostics, analyses of various plasma processes were performed in both reactors. For example, it has been shown that species like NH radicals generated in gas phase can have critical impact on films deposited by ECR plasmas. In the ICP source, plasmas in atomic and molecular gases were shown to have different spatial distributions, likely due to nonlocal electron heating. The low-to-high density transitions in the ICP plasma were also studied. The role of metastables is shown to be significant in Ar plasmas, in contrast to plasmas with additions of molecular gases

  11. Radiation losses from oxygen and iron impurities in a high temperature plasma

    International Nuclear Information System (INIS)

    Breton, C.; Michelis, C. de; Mattioli, M.

    1976-06-01

    Radiation and ionization losses due to impurities present in a high temperature plasma have been calculated for a light element (oxygen), which is completely stripped in the core of existing Tokamak discharges, and a heavy one (iron), which is only partially stripped. Two extreme cases have been treated: in the first one coronal equilibrium is reached; the radiated power is then equal to the product of the electron density, the impurity density, and a function of the electron temperature; in the second one impurities recycle with a constant radial velocity v 0 in a background plasma; radiation and ionization losses are proportional to the impurity flux and are a decreasing function of the diffusion velocity. The results presented can be used to evaluate losses in a practical case [fr

  12. Separation method for rare-earths using high-voltage electrophoresis on paper strip

    International Nuclear Information System (INIS)

    Clarence, J.

    1966-01-01

    The equipment includes an electrophoresis set running at 3 000 V and 20 mA. Two cooling plates are used as heat exchanger, and a pneumatic pressure device to insure an uniform pressure on the paper strip laid flat. The mobilities and the separations of the rare earths in lactic, and, α hydroxy-isobutyric acid solutions are investigated on cellulose acetate strip. Better results are obtained with α hydroxy-isobutyric acid. The method is rapid and allows a fine fractionation of rare earth elements within less than an hour. A complete separation of a Ce - Pr - Nd - Pm - Eu mixture, and a Y - Tb mixture is obtained. (author) [fr

  13. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  14. Microstrip Resonator for High Field MRI with Capacitor-Segmented Strip and Ground Plane

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2017-01-01

    ) segmenting stripe and ground plane of the resonator with series capacitors. The design equations for capacitors providing symmetric current distribution are derived. The performance of two types of segmented resonators are investigated experimentally. To authors’ knowledge, a microstrip resonator, where both......, strip and ground plane are capacitor-segmented, is shown here for the first time....

  15. Dynamic Characterizations of an 8-frame, Half-Strip, High-speed X-ray Microchannel Plate Imager

    International Nuclear Information System (INIS)

    Ken Moy; Ming Wu; Craig Kruschwitz; Aric Tibbits; Matt Griffin; Greg Rochau

    2008-01-01

    High-speed microchannel plate (MCP)-based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A multiframe design using eight half strips in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser. Electrical probe measurements taken to characterize the shape of the HV pulse propagating across the strips help to corroborate the spatial gain dependence

  16. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  17. Construction, test and operation in a high intensity beam of a small system of micro-strip gas chambers

    Science.gov (United States)

    Barr, A.; Bachmann, S.; Boimska, B.; Bouclier, R.; Braem, A.; Camps, C.; Capeáns, M.; Commichau, V.; Dominik, W.; Flügge, G.; Gómez, F.; Hammarstrom, R.; Hangarter, K.; Hoch, M.; Labbé, J. C.; Macke, D.; Manzin, G.; Meijers, F.; Million, G.; Muhlemann, K.; Nagaslaev, V.; Peisert, A.; Ropelewski, L.; Runolfsson, O.; Sauli, F.; Schulte, R.; Schulz, M.; Sharma, A.; Shekhtman, L.; Wolff, C.

    1998-02-01

    We describe the construction, test and installation procedures, and the experience gained with the operation of a small but complete system of high-rate Micro-Strip Gas Chambers, made on thin borosilicate glass with a diamond-like coating with chromium or gold strips. A set of detectors, fully equipped with read-out electronics and each with an active area of 100 × 100 mm 2, was exposed during six months to a high-intensity muon beam at CERN with a peak intensity of ˜ 10 4 mm -2s -1. Continuous monitoring of the performance of the chambers during the beam runs allowed the evaluation of detection efficiency and the monitoring of accidental rates, as well as the study of ambient induced variations and aging in realistic beam conditions. No significant difference has been found in the operation of under-and over-coated plates. Efficiencies could reach ˜ 98% in best operating conditions, although local lower values were often observed due to missing channels (open strips, broken bonds and dead electronic channels). The long-term operation of the chambers has been more difficult than expected, with the appearance of break-downs and loss of efficiency in some detectors, possibly induced by the presence of small gas leaks, to water permeation or to residual reactivity of the quencher gas (dimethylether).

  18. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.; Pichler, B. J. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen (Germany); Mantlik, F. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen (Germany); Lorenz, E. [Max Planck Institute for Physics, Föhringer Ring 6, 80805 München (Germany); Renker, D. [Department of Physics, Technische Universität München, 85748 Garching (Germany)

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  19. Continuous high-solids corn liquefaction and fermentation with stripping of ethanol.

    Science.gov (United States)

    Taylor, Frank; Marquez, Marco A; Johnston, David B; Goldberg, Neil M; Hicks, Kevin B

    2010-06-01

    Removal of ethanol from the fermentor during fermentation can increase productivity and reduce the costs for dewatering the product and coproduct. One approach is to recycle the fermentor contents through a stripping column, where a non-condensable gas removes ethanol to a condenser. Previous research showed that this approach is feasible. Savings of $0.03 per gallon were predicted at 34% corn dry solids. Greater savings were predicted at higher concentration. Now the feasibility has been demonstrated at over 40% corn dry solids, using a continuous corn liquefaction system. A pilot plant, that continuously fed corn meal at more than one bushel (25 kg) per day, was operated for 60 consecutive days, continuously converting 95% of starch and producing 88% of the maximum theoretical yield of ethanol. A computer simulation was used to analyze the results. The fermentation and stripping systems were not significantly affected when the CO(2) stripping gas was partially replaced by nitrogen or air, potentially lowering costs associated with the gas recycle loop. It was concluded that previous estimates of potential cost savings are still valid. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  20. A Highly Sensitive Immunochromatographic Strip Test for Rapid and Quantitative Detection of Saikosaponin d

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2018-02-01

    Full Text Available A quantitative lateral-flow immunoassay using gold nanoparticles (AuNPs conjugated with a monoclonal antibody (MAb against saikosaponin d (SSd was developed for the analysis of SSd. The AuNPs were prepared in our laboratory. The AuNPs were polyhedral, with an average diameter of approximately 18 nm. We used the conjugation between AuNPs and MAbs against SSd to prepare immunochromatographic strips (ICSs. For the quantitative experiment, the strips with the test results were scanned using a membrane strip reader, and a detection curve (regression equation, y = −0.113ln(x + 1.5451, R2 = 0.983, representing the averages of the scanned data, was obtained. This curve was linear from 96 ng/mL to 150 μg/mL, and the IC50 value was 10.39 μg/mL. In this study, we bring the concept of POCT (point-of-care testing to the measurement of TCM compounds, and this is the first report of quantitative detection of SSd by an ICS.

  1. Embedded pitch adapters: A high-yield interconnection solution for strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullán, M., E-mail: miguel.ullan@imb-cnm.csic.es [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Fleta, C.; Fernandez-Tejero, J.; Quirion, D. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Díez, S.; Gregor, I.M.; Lohwasser, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); and others

    2016-09-21

    A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected.

  2. Internal modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Crew, G.B.

    1983-02-01

    The linear stability of current-carrying toroidal plamsas is examined to determine the possibility of exciting global internal modes. The ideal magnetohydrodynamic (MHD) theory provides a useful framework for the analysis of these modes, which involve a kinking of the central portion of the plasma column. Non-ideal effects can also be important, and these are treated for high-temperature regimes where the plasma is collisionless

  3. Stripping Voltammetry

    Science.gov (United States)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact

  4. Construction of a high beta plasma source

    International Nuclear Information System (INIS)

    Naraghi, M.; Torabi-Fard, A.

    1976-02-01

    A high beta plasma source has been designed and constructed. This source will serve as a means of developing and exercising different diagnostic techniques as required for ALVAND I, linear theta pinch experiment. Also, it will serve to acquaint the technicians with some of the techniques and safety rules of high voltage and capacitor discharge experiments. The operating parameters of the theta pinch and Z-pinch preionization is presented and the program of diagnostic measurements on the high beta plasma source is discussed

  5. Experimental study of high beta toroidal plasmas

    International Nuclear Information System (INIS)

    Kellman, A.G.

    1983-09-01

    Experiments on the Wisconsin Levitated Toroidal Octupole have produced a wide range of stable high β plasmas with β significantly above single fluid MHD theory predictions. A stable β approx. 8% plasma, twice the fluid limit, is obtained with 5 rho/sub i/ approx. L/sub n/ and tau/sub β/ approx. = 6000 tau/sub Alfven/ = 600 μsec. The enhanced stability is explained with a kinetic treatment that includes the effect of finite ion gyroradius which couples the ballooning mode to an ion drift wave. In a more collisional, large gyroradius (2 rho/sub i/ approx. L/sub n/) regime, a stable β approx. 35% plasma is obtained with a decay time of 1000 Alfven times. Measurement of the equilibrium magnetic field in this regime indicates that the diamagnetic current density is five times smaller than predicted by ideal MHD, probably due to ion gyroviscosity. Particle transport is anomalous and ranges from agreement with the classical diffusion rate at the highest beta, lowest field plasma (B/sub P/ = 200 G), to thirteen times the classical rate in a β=11%, high field plasma (B/sub P/ = 860 G) where the level of enhancement increase with magnetic field. Fluctuations in density, electrostatic potential, and magnetic field have been studied in plasmas with β from 0.1% to 40%

  6. Effect of nano-sized precipitates on the crystallography of ferrite in high-strength strip steel

    Institute of Scientific and Technical Information of China (English)

    Jing-jing Yang; Run Wu; Wen Liang; Meng-xia Tang

    2014-01-01

    For strip steel with the thickness of 1.6 mm, the yield and tensile strengths as high as 760 and 850 MPa, respectively, were achieved using the compact strip production technology. Precipitates in the steel were characterized by scanning and transmission electron microscopy to elucidate the strengthening mechanism. In addition, intragranular misorientation, Kernel average misorientation, and stored energy were measured using electron backscatter diffraction for crystallographic analysis of ferrite grains containing precipitates and their neighbors without precipitates. It is found that precipitates in specimens primarily consist of TiC and Ti4C2S2. Ferrite grains containing pre-cipitates exhibit the high Taylor factor as well as the crystallographic orientations with{012},{011},{112}, or{221}plane parallel to the rolling plane. Compared with the intragranular orientation of adjoining grains, the intragranular misorientation of grains containing precipi-tates fluctuates more frequently and more mildly as a function of distance. Moreover, the precipitates can induce ferrite grains to store a rela-tively large amount of energy. These results suggest that a correlation exists between precipitation in ferrite grains and grain crystallographic properties.

  7. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  8. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys

    2017-10-01

    Full Text Available For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used—rectangular or non-rectangular—with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was

  9. High-frequency conductivity of photoionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anakhov, M. V.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [National Research Nuclear University “MEPhI,” (Russian Federation)

    2016-08-15

    The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.

  10. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  11. High-Latitude Space Plasma Physics

    International Nuclear Information System (INIS)

    Hultqvist, B.; Hagfors, T.

    1983-01-01

    This book constitutes the proceedings of the Nobel Symposium No. 54 on High Latitude Magnetospheric/Ionospheric Plasma Physics. The main purpose of the symposium was to prepare for the European research effort in space plasma physics in the mid-1980's, in which two major constituents are the European Incoherent Scatter Association (EISCAT) facilities and the Swedish satellite Viking. The physics of the high-latitude ionosphere and how this part of near space is affected by the properties of the solar wind and the interplanetary magnetic field are explored. A detailed discussion is provided on high-latitude magnetospheric physics at altitudes of 1-2 earth radii, the main focus of the Viking project. Specific topics considered include the role of the auroral ionosphere in magnetospheric substorms, the low altitude cleft, ionospheric modification and stimulated emissions, plasma physics on auroral field lines, solar wind-magnetosphere energy coupling, cold plasma distribution above a few thousand kilometers at high latitudes, hot electrons in and above the auroral ionosphere, the correlation of auroral kilometric radiation with visual auroras and with Birkeland currents, electrostatic waves in the topside ionosphere, solitary waves and double layers, and an Alfven wave model of auroral arcs

  12. Theory of high temperature plasmas. Final report

    International Nuclear Information System (INIS)

    Davidson, R.C.; Liu, C.S.

    1977-01-01

    This is a report on the technical progress in our analytic studies of high-temperature fusion plasmas. We also emphasize that the research summarized here makes extensive use of computational methods and therefore forms a strong interface with our numerical modeling program which is discussed later in the report

  13. Characterization of the CBC2 readout ASIC for the CMS strip-tracker high-luminosity upgrade

    International Nuclear Information System (INIS)

    Braga, D; Hall, G; Pesaresi, M; Raymond, M; Jones, L; Murray, P; Prydderch, M

    2014-01-01

    The CMS Binary Chip 2 (CBC2) is a full-scale prototype ASIC developed for the front-end readout of the high-luminosity upgrade of the CMS silicon strip tracker. The 254-channel, 130 nm CMOS ASIC is designed for the binary readout of double-layer modules, and features cluster-width discrimination and coincidence logic for detecting high-P T track candidates. The chip was delivered in January 2013 and has since been bump-bonded to a dual-chip hybrid and extensively tested. The CBC2 is fully functional and working to specification: we present the result of electrical characterization of the chip, including gain, noise, threshold scan and power consumption, together with the performance of the stub finding logic. Finally we will outline the plan for future developments towards the production version

  14. High beta plasmas in the PBX tokamak

    International Nuclear Information System (INIS)

    Bol, K.; Buchenauer, D.; Chance, M.

    1986-04-01

    Bean-shaped configurations favorable for high β discharges have been investigated in the Princeton Beta Experiment (PBX) tokamak. Strongly indented bean-shaped plasmas have been successfully formed, and beta values of over 5% have been obtained with 5 MW of injected neutral beam power. These high beta discharges still lie in the first stability regime for ballooning modes, and MHD stability analysis implicates the external kink as responsible for the present β limit

  15. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  16. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  17. The compact mirrors with high pressure plasmas

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Bagryansky, P.A.; Ivanov, A.A.; Lizunov, A.A.; Murakhtin, S.V.; Prikhodko, V.V.; Collatz, S.; Noack, K.

    2004-01-01

    The gas dynamic trap (GDP) experimental facility at the Budker Institute Novosibirsk is a long axial-symmetric mirror system with a high mirror ratio variable in the range of 12.5 - 100 for the confinement of a two-component plasma. One component is a collisional plasma with ion and electron temperatures up to 100 eV and density up to 10 14 cm -3 . The second component is the population of high-energetic fast ions with energies of 2-18 keV and a density up to 10 13 cm -3 which is produced by neutral beam injection (NBI). GDP is currently undergoing an upgrade whose first stage is the achievement of the synthesized hot ion plasmoid experiment (SHIP). This experiment aims at the investigation of plasmas and at the knowledge of plasma parameters that have never been achieved before in magnetic mirrors. The paper presents the physical concept of the SHIP experiment, the results of numerical pre-calculations and draws conclusions regarding possible scenarios of experiments. The simulation of a maximal NBI power regime with hydrogen injection gave a fast ion density of 1.2*10 14 cm -3 with a mean energy of 14 keV. The calculation of the deuterium injection regime with 2 MW NBI power gave a maximal fast ion density of 1.9*10 14 cm -3 with a beam energy of 9 keV. The calculation of an experimental scenario with reduced magnetic field resulted in a maximal β-value of 62%, so this regime is recommended for the study of high-β effects in plasmas confined in axial-symmetric mirrors

  18. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  19. Influence of partially-stripped impurity ions on the cyclotron absorption of the fast magnetosonic wave in TFR plasmas

    International Nuclear Information System (INIS)

    1985-11-01

    Injection of vanadium ions by the laser blow-off technique has permitted to modify at will the impurity content in TFR plasmas prior to ion-cyclotron resonance (ICR) heating experiments in the mode conversion regime. The initial rate of increase of the central deuteron temperature has thus been enhanced. By solving the wave propagation equation in the WKB approximation, it has been possible to account for the enhanced dTsub(D)(O)/dt value by wave energy deposition on resonating V 21+ ions, provided a fraction (of the order of 1O%) of these ions has been accelerated to the tens of keV range. Previous experimental ICR heating results, in conditions such that the proton cyclotron layer is outside the limiter radius, can be explained by similar resonance processes on intrinsic metal impurity ions

  20. High order harmonic generation from plasma mirror

    International Nuclear Information System (INIS)

    Thaury, C.

    2008-09-01

    When an intense laser beam is focused on a solid target, its surface is rapidly ionized and forms a dense plasma that reflects the incident field. For laser intensities above few 10 15 W/cm 2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as = 10 18 s), can be generated upon this reflection. Because such a plasma mirror can be used with arbitrarily high laser intensities, this process should eventually lead to the production of very intense pulses in the X-ray domain. In this thesis, we demonstrate that for laser intensities about 10 19 W/cm 2 , two mechanisms can contribute to the generation of high order harmonics: the coherent wake emission and the relativistic emission. These two mechanisms are studied both theoretically and experimentally. In particular, we show that, thanks to very different properties, the harmonics generated by these two processes can be unambiguously distinguished experimentally. We then investigate the phase properties of the harmonic, in the spectral and in the spatial domain. Finally, we illustrate how to exploit the coherence of the generation mechanisms to get information on the dynamics of the plasma electrons. (author)

  1. Structural and functional characteristics of buffer strip vegetation in an agricultural landscape - high potential for nutrient removal but low potential for plant biodiversity.

    Science.gov (United States)

    Hille, Sandra; Andersen, Dagmar Kappel; Kronvang, Brian; Baattrup-Pedersen, Annette

    2018-07-01

    Vegetated buffer strips constitute a transition zone between terrestrial and aquatic ecosystems and provide several ecosystem services. Buffer strips are often applied as a mitigation measure against diffuse pollution in agricultural areas, primarily because they may retain nutrients and in this way help protect the aquatic environment. Additionally, they can improve biodiversity in an otherwise homogenous landscape and may therefore have a value in their own right. In the present study, we characterized the structural and functional features of the vegetation in Danish buffer strips using a nationwide dataset to explore: i) their floristic quality in terms of species diversity and conservation value and ii) based on their functional characteristics, their potential to retain nutrients. Moreover, we analyzed how the structural and functional characteristics varied along gradients in the environmental features of the catchment. We found that the floristic quality of the buffer vegetation was generally low, exhibiting an average of only 3.3% of the number of species of conservation interest. Instead, Danish buffer strips were dominated by widespread and productive species that are tolerant of anthropogenic impacts in the catchment. The abundance of highly productive plant species was positively related to high intensity land use, whereas the abundance of stress-tolerant plant species was positively related to low intensity land use. The high productivity of the buffer strips implies a large bio-storage potential, and these areas might therefore offer an opportunity to remove nutrients by harvesting the plant biomass. We discuss how Danish buffer strips could be exploited via appropriate management (e.g. harvesting) to maximize nutrient retention and at the same time improve floristic quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. High-speed photography application to pulsed hot plasma investigation

    International Nuclear Information System (INIS)

    Borov'etskij, M.; Koz'yarkevich, V.; Skrzhechanovskij, V.; Socha, R.

    1986-01-01

    Plasma focus is investigated using an electron-optical chamber for high-speed photography (KSK-1). Experimental devices for studying dynamics and structure of a plasma layer in the chosen interval, recording plasma spectra with time resolution as well as for studying the dynamics and structure of a plasma layer by Schlieren- and shadow methods are briefly described. Experimental results are presented

  3. High-voltage isolation transformer for sub-nanosecond rise time pulses constructed with annular parallel-strip transmission lines.

    Science.gov (United States)

    Homma, Akira

    2011-07-01

    A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.

  4. Cross sections for one-electron capture by highly stripped ions of Be, B and C from H2 and Ar below 10 keV

    International Nuclear Information System (INIS)

    Takagi, S.; Ohtani, S.; Kadota, K.; Fujita, J.

    1982-03-01

    Cross sections for one-electron capture by highly stripped ions of Be, B and C from H 2 and Ar are measured at low energies below 10 keV. The cross sections are nearly independent of the collision energy investigated. The distinct oscillation with incident ionic charge g in the cross sections are observed. (author)

  5. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized

  6. High order harmonic generation from plasma mirrors

    International Nuclear Information System (INIS)

    George, H.

    2010-01-01

    When an intense laser beam is focused on a solid target, the target's surface is rapidly ionized and forms dense plasma that reflects the incident field. For laser intensities above few 10 to the power of 15 Wcm -2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as 10 -18 s), can be generated upon this reflection. In this thesis, we developed numerical tools to reveal original aspects of harmonic generation mechanisms in three different interaction regime: the coherent wake emission, the relativistic emission and the resonant absorption. In particular, we established the role of these mechanisms when the target is a very thin foil (thickness of the order of 100 nm). Then we study experimentally the spectral, spatial and coherence properties of the emitted light. We illustrate how to exploit these measurements to get information on the plasma mirror dynamics on the femtosecond and atto-second time scales. Last, we propose a technique for the single-shot complete characterization of the temporal structure of the harmonic light emission from the laser-plasma mirror interaction. (author)

  7. High explosive driven plasma opening switches

    International Nuclear Information System (INIS)

    Greene, A.E.; Bowers, R.L.; Brownell, J.H.; Goforth, J.H.; Oliphant, T.A.; Weiss, D.L.

    1983-01-01

    A joint theoretical and experimental effort is underway to understand and improve upon the performance of high explosive driven plasma opening switches such as those first described by Pavlovskii et al. We have modeled these switches in both planar and cylindrical geometry using a one dimensional Lagrangian MHD code. This one-dimensional analysis is now essentially complete. It has shown that simple, one-dimensional, compression of the current-carrying channel can explain the observed resistance increases during the time of flight of the HE detonation products. Our calculations imply that ionization plays an important role as an energy sink and the performance of these switches might be improved by a judicious choice of gases. We also predict improved performance by lowering the pressure in the plasma channel. The bulk of our experimental effort to date has been with planar switches. We have worked with current densities of 0.25 to 0.4 MA/cm and have observed resistance increases of 40 to 60 mΩ. Significant resistance increases are observed later than the time of flight of the HE detonation products. We suggest that these resistance increases are due to mixing between the hot plasma and the relatively cooler detonation products. Such mixing is not included in the 1-D, Lagrangian code. We are presently beginning a computational effort with a 2-D Eulerian code. The status of this effort is discussed. Experimentally we have designed an apparatus that will permit us to test the role of different gases and pressures. This system is also in a planar geometry, but the plasma channel is doughnut shaped, permitting us to avoid edge effects associated with the planar rectangular geometry. The first experiments with this design are quite encouraging and the status of this effort is also discussed

  8. Interferometric measurements of plasma density in highplasmas

    International Nuclear Information System (INIS)

    Quinn, W.E.

    1977-01-01

    The coupled-cavity laser interferometer technique is particularly applicable to the measurement of pulsed plasma densities. This technique is based on the fact that if a small fraction of a gas laser's output radiation is reflected into the laser with an external mirror, the intensity of the laser output is modulated. These amplitude or intensity modulations are produced by changes in the laser gain. A rotating corner mirror or an oscillating mirror can be used to produce a continuous feedback modulation of the interferometer which produces a continuous background fringe pattern. The presence of plasma in the outer cavity causes an additional change which results in a phase shift of the regular period of the background fringe pattern. The integral of the plasma density along the line of sight can be evaluated by comparison of the time history of the fringes obtained with and without plasma

  9. Multichannel euv spectroscopy of high temperature plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  10. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  11. A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00425747; McMahon, Stephen J

    2015-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider (LHC) that detects proton-proton collisions at a centre of mass energy of 14 TeV. The Semiconductor Tracker is part of the Inner Detector, implemented using silicon microstrip detectors with binary read-out, providing momentum measurement of charged particles with excellent resolution. The operation of the LHC and the ATLAS experiment started in 2010, with ten years of operation expected until major upgrades are needed in the accelerator and the experiments. The ATLAS tracker will need to be completely replaced due to the radiation damage and occupancy of some detector elements and the data links at high luminosities. These upgrades after the first ten years of operation are named the Phase-II Upgrade and involve a re-design of the LHC, resulting in the High Luminosity Large Hadron Collider (HL-LHC). This thesis presents the work carried out in the testing of the ATLAS Phase-II Upgrade electronic systems in the future strips tracker a...

  12. A plasma microlens for ultrashort high power lasers

    Science.gov (United States)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  13. A plasma microlens for ultrashort high power lasers

    International Nuclear Information System (INIS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-01-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  14. Foundations of High-Pressure Thermal Plasmas

    Science.gov (United States)

    Murphy, Anthony B.; Uhrlandt, Dirk

    2018-06-01

    An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.

  15. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  16. Photosensitive Strip RETHGEM

    CERN Document Server

    Peskov, Vladimir; Nappi, E.; Oliveira, R.; Paic, G.; Pietropaolo, F.; Picchi, P.

    2008-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM like amplification structure with double layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen printing technology on the top of the metallic strips grid The inner metallic grid is used for 2D position measurements whereas the resistive layer provides an efficient spark protected operation at high gains - close to the breakdown limit. Detectors with active areas of 10cm x10cm and 10cm x20cm were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  17. Lessons Learned in High Frequency Data Transmission Design: ATLAS Strips Bus Tape

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00213647; The ATLAS collaboration; Fadeyev, Vitaliy; Grillo, Alexander; Martinez-McKinney, George Forest; Phillips, Peter William; Sawyer, Craig; Sullivan, Stephanie W; Wastie, Roy; Weidberg, Anthony; Nielsen, Jason

    2017-01-01

    Requirements of HEP experiments lead to highly integrated systems with many electrical, mechanical and thermal constraints. A complex performance optimisation is therefore required. High speed data transmission lines are designed using copper-polyimide flexible bus tapes rather than cable harnesses to minimize radiation length. Methods to improve the signal integrity of point-to-point links and multi-drop configurations in an ultra-low-mass system are described. FEA calculations are an essential guide to the optimisation which allow data rates of 640 Mbps for point-to-point links over a length of up to 1.4m, as well as 160 Mbps for multi-drop configuration. The designs were validated using laboratory measurements of S-parameters and direct BER tests.

  18. Improved GAMMA 10 tandem mirror confinement in high density plasma

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Ishimoto, Y.; Itakura, A.; Katanuma, I.; Kohagura, J.; Minami, R.; Nakashima, Y.; Numakura, T.; Saito, T.; Saosaki, S.; Takemura, Y.; Tatematsu, Y.; Yoshida, M.; Yoshikawa, M.

    2003-01-01

    GAMMA 10 experiments have advanced in high density experiments after the last IAEA fusion energy conference in 2000 where we reported the production of the high density plasma through use of ion cyclotron range of frequency heating at a high harmonic frequency and neutral beam injection in the anchor cells. However, the diamagnetic signal of the plasma decreased when electron cyclotron resonance heating was applied for the potential formation. Recently a high density plasma has been obtained without degradation of the diamagnetic signal and with much improved reproducibility than before. The high density plasma was attained through adjustment of the spacing of the conducting plates installed in the anchor transition regions. The potential confinement of the plasma has been extensively studied. Dependences of the ion confinement time, ion-energy confinement time and plasma confining potential on plasma density were obtained for the first time in the high density region up to a density of 4x10 18 m -3 . (author)

  19. Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shuo, E-mail: wushuo@dlut.edu.cn [School of Chemistry, Dalian University of Technology, Dalian 116023 (China); Lan Xiaoqin; Cui Lijun; Zhang Lihui; Tao Shengyang; Wang Hainan; Han Mei; Liu Zhiguang; Meng Changgong [School of Chemistry, Dalian University of Technology, Dalian 116023 (China)

    2011-08-12

    Highlights: {yields} An electrochemical sensor is fabricated based on {beta}-CD dispersed graphene. {yields} The sensor could selectively detect organophosphate pesticide with high sensitivity. {yields} The {beta}-CD dispersed graphene owns large adsorption capacity for MP and superconductivity. {yields} The {beta}-CD dispersed graphene is superior to most of the porous sorbents ever known. - Abstract: Electrochemical reduced {beta}-cyclodextrin dispersed graphene ({beta}-CD-graphene) was developed as a sorbent for the preconcentration and electrochemical sensing of methyl parathion (MP), a representative nitroaromatic organophosphate pesticide with good redox activity. Benefited from the ultra-large surface area, large delocalized {pi}-electron system and the superconductivity of {beta}-CD-graphene, large amount of MP could be extracted on {beta}-CD-graphene modified electrode via strong {pi}-{pi} interaction and exhibited fast accumulation and electron transfer rate. Combined with differential pulse voltammetric analysis, the sensor shows ultra-high sensitivity, good selectivity and fast response. The limit of detection of 0.05 ppb is more than 10 times lower than those obtained from other sorbent based sensors. The method may open up a new possibility for the widespread use of electrochemical sensors for monitoring of ultra-trace OPs.

  20. High Precision Axial Coordinate Readout for an Axial 3-D PET Detector Module using a Wave Length Shifter Strip Matrix

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, P; De Leo, R; Nappi, E; Lustermann, W; Schinzel, D; Johnson, I; Renker, D; Albrecht, S

    2007-01-01

    We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-dimensional spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the wavelength shifting strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM).

  1. Super-high magnetic fields in spatially inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nastoyashchiy, Anatoly F.

    2012-01-01

    The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)

  2. Optical scanner system for high resolution measurement of lubricant distributions on metal strips based on laser induced fluorescence

    Science.gov (United States)

    Holz, Philipp; Lutz, Christian; Brandenburg, Albrecht

    2017-06-01

    We present a new optical setup, which uses scanning mirrors in combination with laser induced fluorescence to monitor the spatial distribution of lubricant on metal sheets. Current trends in metal processing industry require forming procedures with increasing deformations. Thus a welldefined amount of lubricant is necessary to prevent the material from rupture, to reduce the wearing of the manufacturing tool as well as to prevent problems in post-deforming procedures. Therefore spatial resolved analysis of the thickness of lubricant layers is required. Current systems capture the lubricant distribution by moving sensor heads over the object along a linear axis. However the spatial resolution of these systems is insufficient at high strip speeds, e.g. at press plants. The presented technology uses fast rotating scanner mirrors to deflect a laser beam on the surface. This 405 nm laser light excites the autofluorescence of the investigated lubricants. A coaxial optic collects the fluorescence signal which is then spectrally filtered and recorded using a photomultiplier. From the acquired signal a two dimensional image is reconstructed in real time. This paper presents the sensor setup as well as its characterization. For the calibration of the system reference targets were prepared using an ink jet printer. The presented technology for the first time allows a spatial resolution in the millimetre range at production speed. The presented test system analyses an area of 300 x 300 mm² at a spatial resolution of 1.1 mm in less than 20 seconds. Despite this high speed of the measurement the limit of detection of the system described in this paper is better than 0.05 g/m² for the certified lubricant BAM K-009.

  3. Integrated plasma control for high performance tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Deranian, R.D.; Ferron, J.R.; Johnson, R.D.; LaHaye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; Jayakumar, R.J.; Makowski, M.A.; Khayrutdinov, R.R.

    2005-01-01

    Sustaining high performance in a tokamak requires controlling many equilibrium shape and profile characteristics simultaneously with high accuracy and reliability, while suppressing a variety of MHD instabilities. Integrated plasma control, the process of designing high-performance tokamak controllers based on validated system response models and confirming their performance in detailed simulations, provides a systematic method for achieving and ensuring good control performance. For present-day devices, this approach can greatly reduce the need for machine time traditionally dedicated to control optimization, and can allow determination of high-reliability controllers prior to ever producing the target equilibrium experimentally. A full set of tools needed for this approach has recently been completed and applied to present-day devices including DIII-D, NSTX and MAST. This approach has proven essential in the design of several next-generation devices including KSTAR, EAST, JT-60SC, and ITER. We describe the method, results of design and simulation tool development, and recent research producing novel approaches to equilibrium and MHD control in DIII-D. (author)

  4. Charge exchange as a recombination mechanism in high-temperature plasmas

    International Nuclear Information System (INIS)

    Hulse, R.A.; Post, D.E.; Mikkelsen, D.R.

    1980-03-01

    Charge exchange with neutral hydrogen is examined as a recombination mechanism for multi-charged impurity ions present in high-temperature fusion plasmas. At sufficiently low electron densities, fluxes of atomic hydrogen produced by either the injection of neutral heating beams or the background of thermal neutrals can yield an important or even dominant recombination process for such ions. Equilibrium results are given for selected impurity elements showing the altered ionization balance and radiative cooling rate produced by the presence of various neutral populations. A notable result is that the stripping of impurities to relatively non-radiative ionization states with increasing electron temperature can be postponed or entirely prevented by the application of intense neutral beam heating power. A time dependent calculation modelling the behavior of iron in recent PLT tokamak high power neutral beam heating experiments is also presented

  5. Evaluation of the bulk and strip characteristics of large area n-in-p silicon sensors intended for a very high radiation environment

    Czech Academy of Sciences Publication Activity Database

    Böhm, Jan; Mikeštíková, Marcela; Affolder, A.A.; Allport, P.P.; Bates, R.; Betancourt, C.; Brown, H.; Buttar, C.; Carter, J. R.; Casse, G.

    2011-01-01

    Roč. 636, č. 1 (2011), "S104"-"S110" ISSN 0168-9002 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : silicon * micro-strip * ATLAS ID upgrade * SLHC * leakage current * depletion voltage * electrical characteristics * coupling capacitance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011 http://dx.doi.org/10.1016/j.nima.2010.04.093

  6. High-Speed Imaging of Dusty Plasma Instabilities

    International Nuclear Information System (INIS)

    Tawidian, H.; Mikikian, M.; Lecas, T.; Boufendi, L.; Coueedel, L.; Vallee, O.

    2011-01-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  7. High-Speed Imaging of Dusty Plasma Instabilities

    Science.gov (United States)

    Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.

    2011-11-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  8. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  9. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  10. Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.

    2008-04-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  11. Varicose vein stripping

    Science.gov (United States)

    ... stripping; Venous reflux - vein stripping; Venous ulcer - veins Patient Instructions Surgical wound care - open Varicose veins - what to ask your doctor Images Circulatory system References American Family Physician. Management of varicose veins. www.aafp.org/afp/2008/ ...

  12. Atomic processes in high-density plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1982-01-01

    This review covers dense atomic plasmas such as that produced in inertial confinement fusion. The target implosion physics along with the associated atomic physics, i.e., free electron collision phenomena, electron states I, electron states II, and nonequilibrium plasma states are described

  13. High-Current Plasma Electron Sources

    International Nuclear Information System (INIS)

    Gushenets, J.Z.; Krokhmal, V.A.; Krasik, Ya. E.; Felsteiner, J.; Gushenets, V.

    2002-01-01

    In this report we present the design, electrical schemes and preliminary results of a test of 4 different electron plasma cathodes operating under Kg h-voltage pulses in a vacuum diode. The first plasma cathode consists of 6 azimuthally symmetrically distributed arc guns and a hollow anode having an output window covered by a metal grid. Plasma formation is initiated by a surface discharge over a ceramic washer placed between a W-made cathode and an intermediate electrode. Further plasma expansion leads to a redistribution of the discharge between the W-cathode and the hollow anode. An accelerating pulse applied between the output anode grid and the collector extracts electrons from this plasma. The operation of another plasma cathode design is based on Penning discharge for preliminary plasma formation. The main glow discharge occurs between an intermediate electrode of the Penning gun and the hollow anode. To keep the background pressure in the accelerating gap at P S 2.5x10 4 Torr either differential pumping or a pulsed gas puff valve were used. The operation of the latter electron plasma source is based on a hollow cathode discharge. To achieve a sharp pressure gradient between the cathode cavity and the accelerating gap a pulsed gas puff valve was used. A specially designed ferroelectric plasma cathode initiated plasma formation inside the hollow cathode. This type of the hollow cathode discharge ignition allowed to achieve a discharge current of 1.2 kA at a background pressure of 2x10 4 Torr. All these cathodes were developed and initially tested inside a planar diode with a background pressure S 2x10 4 Torr under the same conditions: accelerating voltage 180 - 300 kV, pulse duration 200 - 400 ns, electron beam current - 1 - 1.5 kA, and cross-sectional area of the extracted electron beam 113 cm 2

  14. Pulsed high-density plasmas for advanced dry etching processes

    International Nuclear Information System (INIS)

    Banna, Samer; Agarwal, Ankur; Cunge, Gilles; Darnon, Maxime; Pargon, Erwine; Joubert, Olivier

    2012-01-01

    Plasma etching processes at the 22 nm technology node and below will have to satisfy multiple stringent scaling requirements of microelectronics fabrication. To satisfy these requirements simultaneously, significant improvements in controlling key plasma parameters are essential. Pulsed plasmas exhibit considerable potential to meet the majority of the scaling challenges, while leveraging the broad expertise developed over the years in conventional continuous wave plasma processing. Comprehending the underlying physics and etching mechanisms in pulsed plasma operation is, however, a complex undertaking; hence the full potential of this strategy has not yet been realized. In this review paper, we first address the general potential of pulsed plasmas for plasma etching processes followed by the dynamics of pulsed plasmas in conventional high-density plasma reactors. The authors reviewed more than 30 years of academic research on pulsed plasmas for microelectronics processing, primarily for silicon and conductor etch applications, highlighting the potential benefits to date and challenges in extending the technology for mass-production. Schemes such as source pulsing, bias pulsing, synchronous pulsing, and others in conventional high-density plasma reactors used in the semiconductor industry have demonstrated greater flexibility in controlling critical plasma parameters such as ion and radical densities, ion energies, and electron temperature. Specifically, plasma pulsing allows for independent control of ion flux and neutral radicals flux to the wafer, which is key to eliminating several feature profile distortions at the nanometer scale. However, such flexibility might also introduce some difficulty in developing new etching processes based on pulsed plasmas. Therefore, the main characteristics of continuous wave plasmas and different pulsing schemes are compared to provide guidelines for implementing different schemes in advanced plasma etching processes based on

  15. Novel approach based on one-tube nested PCR and a lateral flow strip for highly sensitive diagnosis of tuberculous meningitis.

    Science.gov (United States)

    Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui; Hu, Guohua

    2017-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation.

  16. Miniaturized high performance sensors for space plasmas

    International Nuclear Information System (INIS)

    Young, D.T.

    1996-01-01

    Operating under ever more constrained budgets, NASA has turned to a new paradigm for instrumentation and mission development in which smaller, faster, better, cheaper is of primary consideration for future space plasma investigations. The author presents several examples showing the influence of this new paradigm on sensor development and discuss certain implications for the scientific return from resource constrained sensors. The author also discusses one way to improve space plasma sensor performance which is to search out new technologies, measurement techniques and instrument analogs from related fields including among others, laboratory plasma physics

  17. Workshop on extremely high energy density plasmas and their diagnostics

    International Nuclear Information System (INIS)

    Ishii, Shozo

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  18. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  19. Spectroscopic diagnostics of high temperature plasmas

    International Nuclear Information System (INIS)

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q o and local poloidal field measurements using Zeeman polarimetry

  20. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    International Nuclear Information System (INIS)

    Barbier, G; Cadoux, F; Clark, A; Favre, Y; Ferrere, D; Gonzalez-Sevilla, S; Iacobucci, G; Marra, D La; Perrin, E; Seez, W; Endo, M; Hanagaki, K; Hara, K; Ikegami, Y; Nakamura, K; Takubo, Y; Terada, S; Jinnouchi, O; Nishimura, R; Takashima, R

    2014-01-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 10 34  cm −2  s −1 . For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described

  1. Computational Simulation of High Energy Density Plasmas

    Science.gov (United States)

    2009-10-30

    the imploding liner. The PFS depends on a lithium barrier foil slowing the advance of deuterium up the coaxial gun to the corner. There the plasma ...the coaxial gun section, and Figure 4 shows the physical state of the plasma just prior to pinch. Figure 5 shows neutron yield reaching 1014 in this...details the channel geometry between the center cylinder and coaxial gas gun . The deuterium injection starts when the pressure of the deuterium gas in

  2. Highly Supersonic Ion Pulses in a Collisionless Magnetized Plasma

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Schrittwieser, R.

    1982-01-01

    The initial transient response of a collisionless plasma to a high positive voltage step is investigated. Four different pulses are observed. An electron plasma wave pulse is followed by an ion burst. The latter is overtaken and absorbed by a highly supersonic ion pulse. Thereafter, an ion...

  3. Analysis of plasma channels in mm-scale plasmas formed by high intensity laser beams

    International Nuclear Information System (INIS)

    Murakami, R; Habara, H; Iwawaki, T; Uematsu, Y; Tanaka, K A; Ivancic, S; Anderson, K; Haberberger, D; Stoeckl, C; Theobald, W; Sakagami, H

    2016-01-01

    A plasma channel created by a high intensity infrared laser beam was observed in a long scale-length plasma (L ∼ 240 μm) with the angular filter refractometry technique, which indicated a stable channel formation up to the critical density. We analyzed the observed plasma channel using a rigorous ray-tracing technique, which provides a deep understanding of the evolution of the channel formation. (paper)

  4. PULSION registered HP: Tunable, High Productivity Plasma Doping

    International Nuclear Information System (INIS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism--deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  5. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  6. Evaporation of carbon using electrons of a high density plasma

    International Nuclear Information System (INIS)

    Muhl, S.; Camps, E.; Escobar A, L.; Garcia E, J.L.; Olea, O.

    1999-01-01

    The high density plasmas are used frequently in the preparation of thin films or surface modification, for example to nitridation. In these processes, are used mainly the ions and the neutrals which compose the plasma. However, the electrons present in the plasma are not used, except in the case of chemical reactions induced by collisions, although the electron bombardment usually get hot the work piece. Through the adequate polarization of a conductor material, it is possible to extract electrons from a high density plasma at low pressure, that could be gotten the evaporation of this material. As result of the interaction between the plasma and the electron flux with the vapor produced, this last will be ionized. In this work, it is reported the use of this novelty arrangement to prepare carbon thin films using a high density argon plasma and a high purity graphite bar as material to evaporate. It has been used substrates outside plasma and immersed in the plasma. Also it has been reported the plasma characteristics (temperature and electron density, energy and ions flux), parameters of the deposit process (deposit rate and ion/neutral rate) as well as the properties of the films obtained (IR absorption spectra and UV/Vis, elemental analysis, hardness and refractive index. (Author)

  7. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    International Nuclear Information System (INIS)

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  8. High Current, High Density Arc Plasma as a New Source for WiPAL

    Science.gov (United States)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team

    2016-10-01

    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  9. High Temperature Plasmas Theory and Mathematical Tools for Laser and Fusion Plasmas

    CERN Document Server

    Spatschek, Karl-Heinz

    2012-01-01

    Filling the gap for a treatment of the subject as an advanced course in theoretical physics with a huge potential for future applications, this monograph discusses aspects of these applications and provides theoretical methods and tools for their investigation. Throughout this coherent and up-to-date work the main emphasis is on classical plasmas at high-temperatures, drawing on the experienced author's specialist background. As such, it covers the key areas of magnetic fusion plasma, laser-plasma-interaction and astrophysical plasmas, while also including nonlinear waves and phenomena.

  10. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks

    International Nuclear Information System (INIS)

    Goodall, D.H.J.

    1982-01-01

    High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions. Several workers have filmed discharges in tokamaks including ASDEX, DITE, DIVA, ISX, JFT2, TFR and PLT. These films are discussed and examples given of the observed phenomena which include plasma limiter interactions, diverted discharges, disruptions, magnetic islands and moving glowing objects often known as 'UFOs'. Examples of plasma structures in ASDEX and DITE not previously published are also given. The paper also reports experiments in DITE to determine the origin of UFOs. (orig.)

  11. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    International Nuclear Information System (INIS)

    Matsuyama, Shoichiro; Shinohara, Shunjiro

    2001-01-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  12. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Shoichiro; Shinohara, Shunjiro [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Fukuoka (Japan)

    2001-07-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  13. MHD analysis of LHD high beta plasma

    International Nuclear Information System (INIS)

    Ichiguchi, K.; Nakajima, N.; Carreras, B.A.

    2003-01-01

    The nonlinear behavior of the interchange mode in the LHD plasma depends on the overlap of the vortices with different helicity. If the vortices are separated in the radial direction, each mode saturates mildly with generating the local flat regions in the pressure profile. In the case of the significant overlap of the vortices, the convection is enhanced and the sudden global reduction of the pressure occurs. Succession of the saturated pressure profile in the increase of beta can suppress the overlap. Self-organization of the pressure profile to suppress the overlap of the vortices can be the stabilizing mechanism in the LHD plasma. (orig.)

  14. Recent development in high energy plasma production techniques by the deflagration plasma gun

    International Nuclear Information System (INIS)

    Cheng, D.Y.; Chang, C.N.; Tripathi, P.P.

    1983-01-01

    This chapter reports experimental data and experience which establish the phenomenon of deflagration in plasma as unique and with quite different properties from the normal snowplow modes. Demonstrates that extremely high velocities and energies in plasma beams are possible with obvious applications in many field and, in particular, in fusion. Suggests that the potential of deflagration beams' scalability to very high energy quasi-neutral plasma beam is possible with present day technology. Discusses plasma deflagration in a T-tube; coaxial deflagration plasma guns; a typical deflagration gun and its operating procedures; electrical design considerations; kinetic theory point of view of the deflagration acceleration of particles; measurements and results; properties of the deflagration gun; applications; inertial confinement experiments; injection into magnetic confinement systems; interaction experiments; and highly energetic beams

  15. Stress-anneal-induced magnetic anisotropy in highly textured Fe-Ga and Fe-Al magnetostrictive strips for bending-mode vibrational energy harvesters

    Directory of Open Access Journals (Sweden)

    Jung Jin Park

    2016-05-01

    Full Text Available Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011 grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat =  λ∥ − λ⊥ of ∼280 ppm and ∼130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA. Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ∼60% to within ∼80% of λsat. The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ∼46% to ∼56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing

  16. Stress-anneal-induced magnetic anisotropy in highly textured Fe-Ga and Fe-Al magnetostrictive strips for bending-mode vibrational energy harvesters

    Science.gov (United States)

    Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.

    2016-05-01

    Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting

  17. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    Science.gov (United States)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  18. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    International Nuclear Information System (INIS)

    Rawat, R S

    2015-01-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 10 10 J/m 3 . The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I 4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  19. Rf-biasing of highly idealized plasmas

    NARCIS (Netherlands)

    Westermann, R.H.J.; Blauw, M.A.; Goedheer, W.J.; Sanden, van de M.C.M.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    Remote plasmas, which are subjected to a radio-frequency (RF) biased surface, have been investigated theoretically and experimentally for decades. The relation between the complex power (DC) voltage characteristics, the ion energy distribution and control losses of the ion bombardment are of

  20. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  1. Calorimetric low - temperature detectors for high resolution X-ray spectroscopy on stored highly stripped heavy ions

    International Nuclear Information System (INIS)

    Bleile, A.; Egelhof, P.; Kraft, S.; Meier, H.J.; Shrivastava, A.; Weber, M.; McCammon, D.; Stahle, C.K.

    2001-09-01

    The accurate determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman-α transitions in 208 Pb 81+ or 238 U 91+ with sufficient accuracy, a high resolution calorimetric detector for hard X-rays (E ≤ 100 keV) is presently being developed. The detector modules consist of arrays of silicon thermistors and of X-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3 He/ 4 He dilution refrigerator with a side arm which fits to the internal target geometry of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.2 mm 2 x 47 μm Pb absorber an energy resolution of ΔE FWHM = 65 eV is obtained for 60 keV X-rays. (orig.)

  2. Plasma focusing and diagnosis of high energy particle beams

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs

  3. Li2S/Carbon Nanocomposite Strips from a Low-Temperature Conversion of Li2SO4 as High-Performance Lithium-Sulfur Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fangmin; Noh, Hyungjun; Lee, Jin Hong; Lee, Hongkyung; Kim, Hee-Tak

    2018-03-12

    Carbothermal conversion of Li2SO4 provides a cost-effective strategy to fabricate high-capacity Li2S cathodes, however, Li2S cathodes derived from Li2SO4 at high temperatures (> 800 oC), having high crystallinity and large crystal size, result in a low utilization of Li2S. Here, we report a Li2SO4/poly(vinyl alcohol)-derived Li2S/Carbon nanocomposite (Li2S@C) strips at a record low temperature of 635 oC. These Li2S@C nanocomposite strips as a cathode shows a low initial activation potential (2.63 V), a high initial discharge capacity (805 mAh g-1 Li2S) and a high cycling stability (0.2 C and 1 C). These improvedresults could be ascribed to the nano-sized Li2S particles as well as their low crystallinity due to the PVA-induced carbon network and the low conversion temperature, respectively. An XPS analysis reveals that the C=C and C=O bonds derived from the carbonization of PVA can promote the conversion of Li2SO4 at the low temperature.

  4. Plasma resonance in anisotropic layered high-Tc superconductors

    DEFF Research Database (Denmark)

    Sakai, Shigeki; Pedersen, Niels Falsig

    1999-01-01

    The plasma resonance is described theoretically by the inductive coupling model for a large stacked Josephson-junction system such as the intrinsic Josephson-junction array in anisotropic high- T-c superconductors. Eigenmodes of the plasma oscillation are analytically described and a numerical...

  5. Corrosion properties of plasma deposited high-alloy steel

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Neufuss, Karel

    2002-01-01

    Roč. 47, - (2002), s. 243-254 ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, high-alloy steel, polarization curves, corrosion test Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Annotated bibliography of highly ionized atoms of importance to plasmas

    International Nuclear Information System (INIS)

    Schmieder, R.W.

    1975-04-01

    A bibliography is presented of the literature on highly ionized atoms which have relevance to plasmas. The bibliography is annotated with keywords, and indexed by subjects and authors. It should be of greatest use to researchers working on the problems of impurity cooling and diagnostics of CTR plasmas. (U.S.)

  7. Development and testing of a three-stage double tandem accelerator-decelerator system for low energy, highly stripped ions. Progress report, March 1, 1978--February 28, 1979

    International Nuclear Information System (INIS)

    Bayfield, J.E.

    1978-11-01

    Three-stage operation of the University of Pittsburgh accel-decel double tandem source of highly stripped ion beams is described. The system has produced 0 5+ , 0 6+ , 0 7+ , and 0 8+ ions at specific energies as low as 15 keV per AMU. The design of the new decelerator tubes is discussed. The present performance and limitations of the overall system are outlined. Some new charge exchange cross sections have been measured, for combined higher ion charge states and lower ion energies than heretofore was possible. Future four-stage operation with very heavy ions is considered

  8. High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Erik Nicolai; Christensen, Jesper Bjerge

    2017-01-01

    We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber......-to-chip coupling and on-chip suppression of generated spontaneous Raman scattering noise. We measure a minimum heralded second-order correlation of g(H)((2)) (0) = 0.12, demonstrating that our source operates in the single- photon regime with low noise. (C) 2017 The Japan Society of Applied Physics...

  9. High-beta plasma effects in a low-pressure helicon plasma

    International Nuclear Information System (INIS)

    Corr, C. S.; Boswell, R. W.

    2007-01-01

    In this work, high-beta plasma effects are investigated in a low-pressure helicon plasma source attached to a large volume diffusion chamber. When operating above an input power of 900 W and a magnetic field of 30 G a narrow column of bright blue light (due to Ar II radiation) is observed along the axis of the diffusion chamber. With this blue mode, the plasma density is axially very uniform in the diffusion chamber; however, the radial profiles are not, suggesting that a large diamagnetic current might be induced. The diamagnetic behavior of the plasma has been investigated by measuring the temporal evolution of the magnetic field (B z ) and the plasma kinetic pressure when operating in a pulsed discharge mode. It is found that although the electron pressure can exceed the magnetic field pressure by a factor of 2, a complete expulsion of the magnetic field from the plasma interior is not observed. In fact, under our operating conditions with magnetized ions, the maximum diamagnetism observed is ∼2%. It is observed that the magnetic field displays the strongest change at the plasma centre, which corresponds to the maximum in the plasma kinetic pressure. These results suggest that the magnetic field diffuses into the plasma sufficiently quickly that on a long time scale only a slight perturbation of the magnetic field is ever observed

  10. High-frequency heating of plasma with two ion species

    International Nuclear Information System (INIS)

    Klima, R.; Longinov, A.V.; Stepanov, K.N.

    1975-01-01

    The authors consider the penetration of electromagnetic waves with a frequency of the order of the ion cyclotron frequencies and with a fixed longitudinal wave number ksub(long), so that Nsub(long)=ksub(long)c/ω>>1 deep into an inhomogeneous plasma with two ion species. The propagation of two kinds of waves (fast and slow) with widely differing polarization and transverse refraction index is possible. For both types of waves there is an evanescence region at the plasma periphery. The evanescence region is narrow for slow waves and they easily penetrate the plasma. In a dense plasma they become electrostatic and can reach the ion-ion hybrid resonance region. However, the damping of these waves due to Cherenkov interaction with electrons in a high-temperature plasma is strong and therefore they are not suitable for heating plasma of large dimensions, as they are absorbed at the plasma periphery. The fast waves have a wider evanescence region and can be excited effectively only if N 2 is not too high. These waves can be completely absorbed in the plasma (due to Cherenkov interaction with electrons) if xi approximately (v 2 sub(Ti)/v 2 sub(A))Zsub(e)(ωsub(pi)a/c)exp(-Zsub(e) 2 ) > 1, where a is the plasma radius and Zsub(e) = ω/(√2 ksub(long)vsub(Te)). Fast waves can also reach the region where they are transformed into slow waves. In this region their damping increases considerably. It is shown that the transformation region in an inhomogeneous plasma with two ion species in a non-uniform magnetic field may be at the centre of the plasma. Fast waves can be used effectively for heating plasma of large dimensions. (author)

  11. An investigation of pulsed high density plasmas

    International Nuclear Information System (INIS)

    Timmermans, C.J.

    1984-01-01

    In this thesis a wall-stabilized argon cascade arc is studied at values of pulsed pressure up to 14 bar and a pulsed current range up to 2200 A with a time duration of about 2 ms. The basic plasma is a CW cascade arc with a 5 mm diameter plasma column and a length of 90 mm, which operates at a 60 A DC current and at one atmosphere filling pressure. The author starts with an extensive summary of the CW arc investigations. After a brief introduction of the basic transport equations the mass equations of the constituent particles are treated using the extended collisional radiative model. The energy balance equations and the momentum balance are discussed. The electron density is determined from measurements of the continuum radiation. The final chapter contains the experimental results on the electron temperatures and electron densities in the pressure and current pulsed plasma. Attention is given to the deviations from local thermodynamic equilibrium values of the ground level densities of the different argon systems. (Auth.)

  12. High performance deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Bell, M.G.

    1995-03-01

    Plasmas composed of nominally equal concentrations of deuterium and tritium (DT) have been created in TFTR with the goals of producing significant levels of fusion power and of examining the effects of DT fusion alpha particles. Conditioning of the limiter by the injection of lithium pellets has led to an approximate doubling of the energy confinement time, τ E , in supershot plasmas at high plasma current (I p ≤ 2.5 MA) and high heating power (P b ≤ 33 MW). Operation with DT typically results in an additional 20% increase in τ E . In the high poloidal beta, advanced tokamak regime in TFTR, confinement enhancement H triple-bond τ E /τ E ITER-89P > 4 has been obtained in a limiter H-mode configuration at moderate plasma current I p = 0.85 - 1.5 MA. By peaking the plasma current profile, β N dia triple-bond 10 8 tperpendicular > aB 0 /I p = 3 has been obtained in these plasmas, exceeding the β N limit for TFTR plasmas with lower internal inductance, l i . Confinement of alpha particles appears to be classical and losses due to collective effects have not been observed. While small fluctuations in fusion product loss were observed during ELMs, no large loss was detected in DT plasmas

  13. Divertor, thermonuclear device and method of neutralizing high temperature plasma

    International Nuclear Information System (INIS)

    Ikegami, Hideo.

    1995-01-01

    The thermonuclear device comprises a thermonuclear reactor for taking place fusion reactions to emit fusion plasmas, and a divertor made of a hydrogen occluding material, and the divertor is disposed at a position being in contact with the fusion plasmas after nuclear fusion reaction. The divertor is heated by fusion plasmas after nuclear fusion reaction, and hydrogen is released from the hydrogen occluding material as a constituent material. A gas blanket is formed by the released hydrogen to cool and neutralize the supplied high temperature nuclear fusion plasmas. This prevents the high temperature plasmas from hitting against the divertor, elimination of the divertor by melting and evaporation, and solve a problem of processing a divertor activated by neutrons. In addition, it is possible to utilize hydrogen isotopes of fuels effectively and remove unnecessary helium. Inflow of impurities from out of the system can also be prevented. (N.H.)

  14. To the probe theory in a highly-ionized high-pressure plasma

    International Nuclear Information System (INIS)

    Baksht, F.G.; Rybakov, A.B.

    1997-01-01

    The probe theory in highly-ionized high-pressure plasma is presented. The situation typical for high-pressure plasma, when the plasma in the main part of the near-probe layer is in the state of local ionization equilibrium with general temperature for electrons and heavy particles. Possibility is discussed for determining the parameters of non-perturbed plasma through analysis of the probe characteristic at place of ion saturation, transition area and by the probe floating potential. The experiments were carried out by example of highly-ionized xenon plasma under atmospheric pressure

  15. Plasma characteristics of a high power helicon discharge

    International Nuclear Information System (INIS)

    Ziemba, T; Euripides, P; Slough, J; Winglee, R; Giersch, L; Carscadden, J; Schnackenberg, T; Isley, S

    2006-01-01

    A new high power helicon (HPH) plasma system has been designed to provide input powers of several tens of kilowatts to produce a large area (0.5 m 2 ) of uniform high-density, of at least 5 x 10 17 m -3 , plasma downstream from the helicon coil. Axial and radial plasma characteristics show that the plasma is to a lesser extent created in and near the helicon coil and then is accelerated into the axial and equatorial regions. The bulk acceleration of the plasma is believed to be due to a coupling of the bulk of the electrons to the helicon field, which in turn transfers energy to the ions via ambipolar diffusion. The plasma beta is near unity a few centimetres away from the HPH system and Bdot measurements show ΔB perturbations in the order of the vacuum magnetic field magnitude. In the equatorial region, a magnetic separatrix is seen to develop roughly at the mid-point between the helicon and chamber wall. The magnetic perturbation develops on the time scale of the plasma flow speed and upon the plasma reaching the chamber wall decays to the vacuum magnetic field configuration within 200 μs

  16. Plasma characteristics of a high power helicon discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ziemba, T; Euripides, P; Slough, J; Winglee, R; Giersch, L; Carscadden, J; Schnackenberg, T; Isley, S [Box 351310, University of Washington, Seattle WA, 98195 (United States)

    2006-08-01

    A new high power helicon (HPH) plasma system has been designed to provide input powers of several tens of kilowatts to produce a large area (0.5 m{sup 2}) of uniform high-density, of at least 5 x 10{sup 17} m{sup -3}, plasma downstream from the helicon coil. Axial and radial plasma characteristics show that the plasma is to a lesser extent created in and near the helicon coil and then is accelerated into the axial and equatorial regions. The bulk acceleration of the plasma is believed to be due to a coupling of the bulk of the electrons to the helicon field, which in turn transfers energy to the ions via ambipolar diffusion. The plasma beta is near unity a few centimetres away from the HPH system and Bdot measurements show {delta}B perturbations in the order of the vacuum magnetic field magnitude. In the equatorial region, a magnetic separatrix is seen to develop roughly at the mid-point between the helicon and chamber wall. The magnetic perturbation develops on the time scale of the plasma flow speed and upon the plasma reaching the chamber wall decays to the vacuum magnetic field configuration within 200 {mu}s.

  17. Second topical conference on high-temperature plasma diagnostics

    International Nuclear Information System (INIS)

    Jahoda, F.C.; Freese, K.B.

    1978-02-01

    This report contains the program and abstracts of papers presented at the Second American Physical Society Topical Conference on High Temperature Plasma Diagnostics, March 1-3, 1978, Santa Fe, New Mexico

  18. HIGH FREQUENCY ELECTROSTATIC INSTABILITIES IN A PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M W; Auer, P L

    1963-06-15

    The dispersion relation is examined for a collisionless infinite plasma in the presence of an anisotropic Maxwellian velocity distribution and a uniform external magnetic field. Unstable solutions exist below the muitiples of the electron cyclotron frequency provided the temperature anisotropy is sufficiently large. The dependence of the growth rate upon harmonic number, density, angle of propagation with respect to the magnetic field, and frequency is discussed for zero as well as non-zero parallel temperatures. In the latter case, the waves are strongly damped as their frequency approaches a multiple of the gyro- frequency. (auth)

  19. High density plasmas formation in Inertial Confinement Fusion and Astrophysics

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.

    2005-01-01

    In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression

  20. Radiation Hard GaNFET High Voltage Multiplexing (HV Mux) for the ATLAS Upgrade Silicon Strip Tracker

    CERN Document Server

    Lynn, David; The ATLAS collaboration

    2017-01-01

    The outer radii of the inner tracker (ITk) for the Phase-II Upgrade of the ATLAS experiment will consist of groups of silicon strip sensors mounted on common support structures. Lack of space creates a need to remotely disable a failing sensor from the common HV bus. We have developed circuitry consisting of a GaNFET transistor and a HV Multiplier circuit to disable a failed sensor. We will present two variants of the HV Mux circuitry and show irradiation results on individual components with an emphasis on the GaNFET results. We will also discuss the reliability of the HV Mux circuitry and show plans to ensure reliability during production.

  1. The Strip Module

    DEFF Research Database (Denmark)

    Pedersen, Tommy

    1996-01-01

    When the behaviour of a ship in waves is to be predicted it is convenient to have a tool which includes different approaches to the problem.The aim of this project is to develop such a tool named the strip theory module. The strip theory module will consist of submodules dependent on the I...

  2. Science Comic Strips

    Science.gov (United States)

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  3. Anatomy Comic Strips

    Science.gov (United States)

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  4. Engaging high school students as plasma science outreach ambassadors

    Science.gov (United States)

    Wendt, Amy; Boffard, John

    2017-10-01

    Exposure to plasma science among future scientists and engineers is haphazard. In the U.S., plasma science is rare (or absent) in mainstream high school and introductory college physics curricula. As a result, talented students may be drawn to other careers simply due to a lack of awareness of the stimulating science and wide array of fulfilling career opportunities involving plasmas. In the interest of enabling informed decisions about career options, we have initiated an outreach collaboration with the Madison West High School Rocket Club. Rocket Club members regularly exhibit their activities at public venues, including large-scale expos that draw large audiences of all ages. Building on their historical emphasis on small scale rockets with chemical motors, we worked with the group to add a new feature to their exhibit that highlights plasma-based spacecraft propulsion for interplanetary probes. This new exhibit includes a model satellite with a working (low power) plasma thruster. The participating high school students led the development process, to be described, and enthusiastically learned to articulate concepts related to plasma thruster operation and to compare the relative advantages of chemical vs. plasma/electrical propulsion systems for different scenarios. Supported by NSF Grant PHY-1617602.

  5. Charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.; Beuttenmuller, R.; Ludlam, T.; Hanson, A.L.; Jones, K.W.; Radeka, V.; Heijne, E.H.M.

    1982-11-01

    The use of position sensitive silicon detectors as very high resolution tracking devices in high energy physics experiments has been a subject of intense development over the past few years. Typical applications call for the detection of minimum ionizing particles with position measurement accuracy of 10 μm in each detector plane. The most straightforward detector geometry is that in which one of the collecting electrodes is subdivided into closely spaced strips, giving a high degree of segmentation in one coordinate. Each strip may be read out as a separate detection element, or, alternatively, resistive and/or capacitive coupling between adjacent strips may be exploited to interpolate the position via charge division measrurements. With readout techniques that couple several strips, the numer of readout channels can, in principle, be reduced by large factors without sacrificing the intrinsic position accuracy. The testing of individual strip properties and charge division between strips has been carried out with minimum ionizing particles or beams for the most part except in one case which used alphs particless scans. This paper describes the use of a highly collimated MeV proton beam for studies of the position sensing properties of representative one dimensional strip detectors

  6. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O' Brien, Kevin

    2014-03-31

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily

  7. [High plasma folate in patients with phenylketonuria].

    Science.gov (United States)

    Zielińska, Magdalena; Żółkowska, Joanna; Przybylska-Kruszewska, Amanda; Gładysz, Dominika; Korycińska-Chaaban, Dorota; Nowacka, Maria; Hozyasz, Kamil K

    2016-04-01

    Phenylketonuria is an inborn error of metabolism treated with a closely monitored low phenylalanine diet. Protein substitutes used for treatment are supplemented with vitamins and micronutrients. The aim of this study was to investigate plasma folic acid concentrations in children with phenylketonuria. Retrospective analysis of medical records of 73 patients with phenylketonuria and 28 with mild hyperphenylalaninemia (on normal diet) was carried out. Intake of folic acid was calculated on the basis of protein substitute intake. Folate concentrations were analyzed according to their intake, and concentration of homocysteine and phenylalanine. In 76.7% patients with phenylketonuria intake of folic acid exceeded recommended dietary allowance. Serum folic acid concentrations above upper reference level were detected in 75.3% patients with phenylketonuria and only in 25% patients with hyperphenylalaninemia (pphenylketonuria requires further detailed research. © 2016 MEDPRESS.

  8. The challenge of building large area, high precision small-strip Thin Gap Trigger Chambers for the upgrade of the ATLAS experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon endcap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 m2 in size and totaling an active area of 1200 m2 will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 μm to allow the Level-1 trigger track segments to be reconstructed with an angular resolution of 1mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 30 µm along the precision coordinate and 80 µm along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of construction and integrati...

  9. The Challenge of Building Large Area, High Precision Small-Strip Thin Gap Trigger Chambers for the Upgrade of the ATLAS Experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon end-cap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 $m^2$ in size and totaling an active area of 1200 $m^2$ will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 $\\mu m$ while the Level-1 trigger track segments need to be reconstructed with an angular resolution of 1 mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 40 $\\mu m$ along the precision coordinate and 80 $\\mu m$ along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of cons...

  10. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  11. Physics of high performance deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    McGuire, K.M.; Batha, S.

    1996-11-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I i ) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I i discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed

  12. Interaction of High Intensity Electromagnetic Waves with Plasmas: Final Report

    International Nuclear Information System (INIS)

    Shvets, G.

    2008-01-01

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  13. Electromagnetic-implosion generation of pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.

    1983-01-01

    This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source

  14. High resolution X-ray spectroscopy of thermal plasmas

    International Nuclear Information System (INIS)

    Canizares, C.R.

    1990-01-01

    This paper concentrates on reviewing highlights of the Focal Plane Crystal Spectrometer (FPCS) results on thermal plasmas, particularly supernova remnants (SNRs) and clusters of galaxies from the Einstein observatory. During Einstein's short but happy life, we made over 400 observations with the FPCS of 40 different objects. Three quarters of these were objects in which the emission was primarily from optically thin thermal plasma, primarily supernova remnants (SNRs) and clusters of galaxies. Thermal plasmas provide an excellent illustration of how spectral data, particularly high resolution spectral data, can be an important tool for probing the physical properties of astrophysical objects. (author)

  15. Topics in high-intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1991-01-01

    The interaction of high intensity laser pulses with pre-formed and laser-produced plasmas is studied. Through experiments and simulations we have investigated stimulated Compton scattering in preformed plasmas and the plasma physics aspects of tunnel-ionized gases. A theoretical study is presented on the nonlinear dynamics of relativistic plasma waves driven by colinear optical mixing. The electron density-fluctuation spectra induced by stimulated Compton scattering have been directly observed for the first time. A CO2 laser was focused into pre-formed plasmas with densities n(e) varied from 0.4-6 x 10(exp 16) cu cm. The fluctuations corresponding to backscatter were probed using Thomson scattering. At low n(e), the scattered spectra peak at a frequency shift Delta omega is approximately kv e and appears to be in a linear regime. At the highest n(e), a nonlinear saturation of the SCS instability is observed due to a self-induced perturbation of the electron distribution function. Tunnel-ionized plasmas have been studied through experiments and particle simulations. Experimentally, qualitative evidence for plasma temperature control by varying the laser polarization was obtained by the measurement of stimulated Compton scattering fluctuation spectra and x-ray emission from such plasmas. A higher parallel temperature than expected from the single-particle tunneling model was observed. Simulations indicate that stochastic heating and the Weibel instability play an important role in plasma heating in all directions and isotropization. The non-linear dynamics associated with beatwave (Delta omega, Delta k) excited long wavelength plasma waves in the presence of strong, short wavelength density ripple have been examined, using the relativistic Lagrangian oscillator model. This model shows period doubling that roughly follows Feigenbaum scaling, and a transition to chaos

  16. Edge density profiles in high-performance JET plasmas

    International Nuclear Information System (INIS)

    Summers, D.D.R.; Viaccoz, B.; Vince, J.

    1997-01-01

    Detailed electron density profiles of the scrape-off layer in high-performance JET plasmas (plasma current, I p nbi ∝17 MW) have been measured by means of a lithium beam diagnostic system featuring high spatial resolution [Kadota (1978)[. Measurements were taken over a period of several seconds, allowing examination of the evolution of the edge profile at a location upstream from the divertor target. The data clearly show the effects of the H-mode transition - an increase in density near the plasma separatrix and a reduction in density scrape-off length. The profiles obtained under various plasma conditions are compared firstly with data from other diagnostics, located elsewhere in the vessel, and also with the predictions of an 'onion-skin' model (DIVIMP), which used, as initial parameters, data from an array of probes located in the divertor target. (orig.)

  17. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  18. Characteristics of MHD stability of high beta plasmas in LHD

    International Nuclear Information System (INIS)

    Sato, M.; Nakajima, N.; Watanabe, K.Y.; Todo, Y.; Suzuki, Y.

    2012-11-01

    In order to understand characteristics of the MHD stability of high beta plasmas obtained in the LHD experiments, full MHD simulations have been performed for the first time. Since there is a magnetic hill in a plasma peripheral region, the ballooning modes extending into the plasma peripheral region with a chaotic magnetic field are destabilized. However, in the nonlinear phase, the core region comes under the in influence of the instabilities and the central pressure decreases. There is a tendency that modes are suppressed as the beta value and/or magnetic Reynolds number increase, which is consistent with a result that high beta plasmas enter the second stable region of the ideal ballooning modes as beta increases and remaining destabilized ballooning modes are considered to be resistive type. (author)

  19. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  20. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  1. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    International Nuclear Information System (INIS)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N.; Yu, He

    2014-01-01

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n e ) and temperature (T e ) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n e peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n e increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n e and T e data, and ion extraction efficiency based on the measured plasma potential (V p ) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T e and inefficient ion extraction in a larger pre-sheath potential.

  2. The Honeycomb Strip Chamber

    International Nuclear Information System (INIS)

    Graaf, Harry van der; Buskens, Joop; Rewiersma, Paul; Koenig, Adriaan; Wijnen, Thei

    1991-06-01

    The Honeycomb Strip Chamber (HSC) is a new position sensitive detector. It consists of a stack of folded foils, forming a rigid honeycomb structure. In the centre of each hexagonal cell a wire is strung. Conducting strips on the foils, perpendicular to the wires, pick up the induced avalanche charge. Test results of a prototype show that processing the signals form three adjacent strips nearest to the track gives a spatial resolution better than 64 μm for perpendicular incident tracks. The chamber performance is only slightly affected by a magnetic field. (author). 25 refs.; 21 figs

  3. Control and metrology of high harmonic generation on plasma mirrors

    International Nuclear Information System (INIS)

    Monchoce, Sylvain

    2014-01-01

    When an ultra intense femtosecond laser with high contrast is focused on a solid target, the laser field at focus is sufficient enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This dense plasma entirely reflects the incident beam in the specular direction: this is a so-called plasma mirror. As the interaction between the laser and the plasma mirror is highly non-linear, it thus leads to the high harmonic generation (HHG) in the reflected beam. In the temporal domain, this harmonic spectrum is associated to a train of atto-second pulses. The aim of my PhD were to experimentally control this HHG and to measure the properties of the harmonics. We first studied the optimization of the harmonic signal, and then the spatial characterization of the harmonic beam in the far-field (harmonic divergence). These characterizations are not only important to develop an intense XUV/atto-second light source, but also to get a better understanding of the laser-matter interaction at very high intensity. We have thus been able to get crucial information of the electrons and ions dynamics of the plasma, showing that the harmonics can also be used as a diagnostic of the laser-plasma interaction. We then developed a new general approach for optically-controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultra-intense laser pulse to establish their usability at relativistically high intensities. We then show how these gratings can be used as a 'spatial ruler' to determine the source size of the high-order harmonic beams produced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh

  4. High resolution X-ray spectroscopy of laser generated plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Skobelev, I.Yu.; Rosmej, F.B.

    1999-01-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.)

  5. High resolution X-ray spectroscopy of laser generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1999-11-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.) 28 refs.

  6. Anomalous high-frequency resistivity of a plasma

    International Nuclear Information System (INIS)

    Kruer, W.L.; Dawson, J.M.

    1971-06-01

    In one- and two-dimensional computer simulations we investigate anomalous high-frequency resistivity in a plasma driven by a large electric field oscillating near the electron plasma frequency. The large field excites the oscillating two-stream and the ion-acoustic decay instabilities in agreement with the linear theory. When the ion and electron fluctuations saturate, a strong anomalous heating of the plasma sets in. This strong heating is due to an efficient coupling of the externally imposed large electric field to the plasma by ion fluctuations. We determine the anomalous collision frequency and the saturation fluctuation amplitudes as a function of the external field amplitude and frequency, and the electron-ion mass ratio. A simple nonlinear theory gives results in reasonable agreement with simulations. 24 refs., 10 figs

  7. High frequency parametric wave phenomena and plasma heating: a review

    International Nuclear Information System (INIS)

    Porkolab, M.

    1975-11-01

    A survey of parametric instabilities in plasma, and associated particle heating, is presented. A brief summary of linear theory is given. The physical mechanism of decay instability, the purely growing mode (oscillating two-stream instability) and soliton and density cavity formation is presented. Effects of density gradients are discussed. Possible nonlinear saturation mechanisms are pointed out. Experimental evidence for the existence of parametric instabilities in both unmagnetized and magnetized plasmas is reviewed in some detail. Experimental observation of plasma heating associated with the presence of parametric instabilities is demonstrated by a number of examples. Possible application of these phenomena to heating of pellets by lasers and heating of magnetically confined fusion plasmas by high power microwave sources is discussed

  8. Fabrication of high permeability non-oriented electrical steels by increasing 〈0 0 1〉 recrystallization texture using compacted strip casting processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, PO Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Schneider, J. [Institut für Metallformung, Technische Universität Bergakademie Freiberg, Bernhard-von-Cotta-Str. 4, D-09596 Freiberg (Germany); Li, Hua-Long [Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Sun, Yu; Gao, Fei; Lu, Hui-Hu; Song, Hong-Yu [State Key Laboratory of Rolling and Automation, Northeastern University, PO Box 105, Shenyang 110819 (China); Li, Lei; Geng, Dian-Qiao [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, PO Box 105, Shenyang 110819 (China)

    2015-01-15

    In this paper we will report on the application of the twin-roll casting technique to get a 2 mm thick material of Fe-3.2%Si alloy, which was finally hot rolled, cold rolled and annealed. After a mild hot rolling to a thickness of 1 mm and a mild cold rolling to a thickness of 0.35 mm, we obtained a high intensity of λ-fiber (〈0 0 1〉|| ND) and η-fiber (〈0 0 1〉|| RD) texture concentrated on cube ({0 0 1}〈0 1 0〉) component and a diminishing intensity of the γ-fiber (〈1 1 1〉|| ND) texture, and a large average grain size in the final processed material. The experimental results for the evolution of the microstructure and texture along the used processing routes were described within the paper in detail. The formation mechanism for the desired recrystallization textures were explained in terms of oriented nucleation, micro-growth selection, accumulated deformation stored energy, geometric softening and orientation pinning. It will be demonstrated that this new processing route using the compact strip casting offers the possibility to fabricate high permeability non-oriented electrical steels without additional fabrication steps like hot band annealing or two step cold rolling with intermediate annealing as in the case of conventional processing route. - Highlights: • High permeability non-oriented electrical steel was fabricated by strip casting processes. • Hot band annealing or two step cold rolling with intermediate annealing was eliminated. • Prevailing of 〈0 0 1〉|| ND and 〈0 0 1〉|| RD textures over diminishing 〈1 1 1〉|| ND texture was realized. • Evolution of microstructure and texture along the used processing routes were described.

  9. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Todome, K., E-mail: todome@hep.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Jinnouchi, O. [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Takashima, R. [Department of Science Education, Kyoto University of Education, Kyoto 612-8522 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Tojo, J. [Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Kono, T. [Ochadai Academic Production, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); and others

    2016-09-21

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the “super-module” in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  10. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    Science.gov (United States)

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  11. [High beta tokamak research and plasma theory

    International Nuclear Information System (INIS)

    1990-01-01

    Our activities on High Beta Tokamak Research during the past 12 months of the present budget period can be divided into four areas: completion of kink mode studies in HBT; completion of carbon impurity transport studies in HBT; design of HBT-EP; and construction of HBT-EP. Each of these is described briefly in the sections of this progress report

  12. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  13. Characteristics of extreme ultraviolet emission from high-Z plasmas

    International Nuclear Information System (INIS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-01-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics. (paper)

  14. Observation of high-temperature bubbles in an ECR plasma

    Science.gov (United States)

    Terasaka, K.; Yoshimura, S.; Tanaka, M. Y.

    2018-05-01

    Creation and annihilation of high-temperature bubbles have been observed in an electron cyclotron resonance plasma. The electron temperature in the bubble core is three times higher than that in the ambient region, and the size perpendicular to the magnetic field is much smaller than the plasma diameter. Formation of a bubble accompanies large negative spikes in the floating potential of a Langmuir probe, and the spatiotemporal behavior of the bubble has been visualized with a high-impedance wire grid detector. It is found that the bubble is in a prolate spheroidal shape with the axis along the magnetic field and occurs randomly in time and independently in space.

  15. High speed photography diagnostics in laser-plasma interaction experiments

    International Nuclear Information System (INIS)

    Andre, M.L.

    1988-01-01

    The authors report on their effort in the development of techniques involved in laser-plasma experiments. This includes not only laser technology but also diagnostics studies and targets design and fabrication. Among the different kind of diagnostics currently used are high speed streak cameras, fast oscilloscopes and detectors sensitive in the i.r., visible, the u.v. region and the x-rays. In this presentation the authors describe the three high power lasers which are still in operation (P 102, OctAL and PHEBUS) and the main diagnostics used to characterize the plasma

  16. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  17. Hybrid simulation of electrode plasmas in high-power diodes

    International Nuclear Information System (INIS)

    Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.; Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.

    2009-01-01

    New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss.

  18. Caustic-Side Solvent Extraction: Anti-Caking Surfactants Found to be Cause of Apparent Effect of High Nitrite Concentration on Cesium Stripping

    Energy Technology Data Exchange (ETDEWEB)

    Delmau, L.H.

    2002-06-13

    Experiments conducted in FY01 previously indicated a potential cesium stripping problem in the CSSX process due to the presence of nitrite in the waste simulant. The stripping issue seemed all the more important as the nitrite concentration increased. Experiments presented in this work have demonstrated that the true reason for the cesium stripping problem was in fact the presence of an anti-caking agent in the,sodium nitrite. used for the preparation of the simulants. The anti-caking agent is actually a mixture of well-known surfactants, sodium mono- and di-methyl naphthalene sulfonate that can partition into the organic-phase on extraction, then retain cesium upon stripping. The effect was demonstrated by adding known amounts of the anti-caking agent to clean systems. Data suggest that rejuvenation of the solvent can be obtained by a caustic wash following the stripping stage.

  19. The charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Boehringer, T.; Hubbeling, L.; Weilhammer, P.; Kemmer, J.; Koetz, U.; Riebesell, M.; Belau, E.; Klanner, R.; Lutz, G.; Neugebauer, E.; Seebrunner, H.J.; Wylie, A.

    1983-02-01

    The charge collection in silicon detectors has been studied, by measuring the response to high-energy particles of a 20μm pitch strip detector as a function of applied voltage and magnetic field. The results are well described by a simple model. The model is used to predict the spatial resolution of silicon strip detectors and to propose a detector with optimized spatial resolution. (orig.)

  20. Studies on the propagation of relativistic plasma waves in high density plasmas produced by hypersonic ionizing shock waves

    International Nuclear Information System (INIS)

    Williams, R.L.; Johnson, J.A. III

    1993-01-01

    The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed

  1. Sheath impedance effects in very high frequency plasma experiments

    International Nuclear Information System (INIS)

    Schwarzenbach, W.; Howling, A.A.; Fivaz, M.; Brunner, S.; Hollenstein, C.

    1995-05-01

    The frequency dependence (13.56 MHz to 70 MHz) of the ion energy distribution at the ground electrode was measured by mass spectrometry in a symmetrical capacitive argon discharge. Reduced sheath impedance at Very High Frequency allows high levels of plasma power and substrate ion flux whilst maintaining low levels of ion energy and electrode voltage. The lower limit of ion bombardment energy is fixed by the sheath floating potential at high frequency, in contrast to low frequencies where only the rf voltage amplitude is determinant. The capacitive sheaths are thinner at high frequencies which accentuates the high frequency reduction in sheath impedance. It is argued that the frequency dependence of sheath impedance is responsible for the principal characteristics of Very High Frequency plasmas. The measurements are summarised by simple physical descriptions and compared with a Particle-In-Cell simulation. (author) figs., tabs., refs

  2. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Sand, D. J.; Crnojević, D. [Texas Tech University, Physics and Astronomy Department, Box 41051, Lubbock, TX 79409-1051 (United States); Seth, A. C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Spekkens, K. [Royal Military College of Canada, Department of Physics, P.O. Box 17000, Station Forces, Kingston, Ontario, K7K 7B4 (Canada); Strader, J. [Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 (United States); Adams, E. A. K. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7900 AA Dwingeloo (Netherlands); Caldwell, N.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kenney, J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Simon, J. D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Toloba, E. [Department of Physics, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211 (United States); Willman, B., E-mail: david.sand@ttu.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-07-10

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.

  3. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  4. On impurity handling in high performance stellarator/heliotron plasmas

    International Nuclear Information System (INIS)

    Burhenn, R.; Feng, Y.; Ida, K.

    2008-10-01

    The Large Helical Device (LHD) and Wendelstein 7-X (W7-X, under construction) are experiments specially designed to demonstrate long pulse (quasi steady-state) operation, which is an intrinsic property of Stellarators and Heliotrons. Significant progress was made in establishment of high performance plasmas. A crucial point is the increasing impurity confinement towards high density as observed at several machines (TJ-II, W7-AS, LHD) which can lead to impurity accumulation and early pulse termination by radiation collapse at high density. In addition, theoretical predictions for non-axisymmetric configurations prognosticate the absence of impurity screening by ion temperature gradients in standard ion root plasmas. Nevertheless, scenarios were found where impurity accumulation was successfully avoided in LHD and/or W7-AS by the onset of drag forces in the high density and low temperature scrape-off-layer, the generation of magnetic islands at the plasma boundary and to a certain degree also by ELMs, flushing out impurities and reducing the net-impurity influx into the core. Additionally, a reduction of impurity core confinement was observed in the W7-AS High Density H-mode (HDH) regime and by application of sufficient ECRH heating power. The exploration of such purification mechanisms is a demanding task for successful steady-state operation. The impurity transport at the plasma edge/SOL was identified to play a major role for the global impurity behaviour in addition to the core confinement. (author)

  5. Operation of the ORNL High Particle Flux Helicon Plasma Source

    International Nuclear Information System (INIS)

    Goulding, Richard Howell; Biewer, Theodore M.; Caughman, John B.; Chen, Guangye; Owen, Larry W.; Sparks, Dennis O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.

  6. Operation of the ORNL High Particle Flux Helicon Plasma Source

    International Nuclear Information System (INIS)

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Chen, G. C.; Owen, L. W.; Sparks, D. O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Γ p 10 23 m -3 s -1 , and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of ∼10 MW/m 2 . An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to ∼0.15 T. Maximum densities of 3x10 19 m -3 in He and 2.5x10 19 m -3 in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.

  7. High resolution X-ray spectromicroscopy of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [Multi-charged Ions Spectra Data Center of VNIIFTRI (MISDC), Mendeleevo, Moscow region, (Russian Federation)

    2000-01-01

    In recent years new classes of X-ray spectroscopic instruments possessing both dispersive and focusing properties have been manufactured. Their principal advantage over more traditional instruments is that they combine very high luminosity with high spatial resolution, while preserving the highest possible spectral resolution of their dispersive elements. These instruments opened up the registration of plasmas in new regimes and surroundings. The measurements delivered new information about the properties of even previously studied traditional plasma objects (e.g. ns-laser produced plasmas). Also the detailed investigation of relatively new plasma laboratory sources with very small dimensions and low energy content (e.g. mJ fs-laser pulses) became possible. The purpose of this report is to give a short review of the experimental and theoretical results obtained in the past few years by MISDC (Multi-charged Ions Spectra Data Center) research team in the field of X-ray spectroscopy of a laser-produced plasma. Experimental spectra have been obtained at various laser installations with nanosecond, sub-nanosecond, picosecond and sub-picosecond pulses interacting with solid, gaseous or cluster targets in collaborations with research teams from Russia, USA, Germany, France, Poland, Belgium, Italy, China and Israel. Practically all results have been obtained with the help of spectrographs with spherically bent mica crystals operating in FSSR-1D, 2D schemes. (author)

  8. Large strip RPCs for the LEPS2 TOF system

    Energy Technology Data Exchange (ETDEWEB)

    Tomida, N., E-mail: natsuki@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Niiyama, M. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Ohnishi, H. [RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198 (Japan); Tran, N. [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Hsieh, C.-Y.; Chu, M.-L.; Chang, W.-C. [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Chen, J.-Y. [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China)

    2014-12-01

    High time-resolution resistive plate chambers (RPCs) with large-size readout strips are developed for the time-of-flight (TOF) detector system of the LEPS2 experiment at SPring-8. The experimental requirement is a 50-ps time resolution for a strip size larger than 100 cm{sup 2}/channel. We are able to achieve 50-ps time resolutions with 2.5×100 cm{sup 2} strips by directly connecting the amplifiers to strips. With the same time resolution, the number of front-end electronics (FEE) is also reduced by signal addition. - Highlights: • Find a way to achieve a good time resolution with a large strip RPC. • 2.5 cm narrow strips have better resolutions than 5.0 cm ones. • The 0.5 mm narrow strip interval shows flat time resolutions between strips. • FEEs directly connected to strips make the signal reflection at the strip edge small. • A time resolution of 50 ps was achieved with 2.5 cm×100 cm strips.

  9. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    Science.gov (United States)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  10. Development of dispersion interferometer for magnetic confinement plasmas and high-pressure plasmas

    Science.gov (United States)

    Akiyama, T.; Yasuhara, R.; Kawahata, K.; Nakayama, K.; Okajima, S.; Urabe, K.; Terashima, K.; Shirai, N.

    2015-09-01

    A CO2 laser dispersion interferometer (DI) has been developed for both magnetically fusion plasmas and high pressure industrial plasmas. The DI measures the phase shift caused by dispersion in a medium. Therefore, it is insensitive to the mechanical vibrations and changes in the neutral gas density, which degrade the resolution of the electron density measurement. We installed the DI on the Large Helical Device (LHD) and demonstrated a high density resolution of 2× 1017 m-3 without any vibration-free bench. The measured electron density with the DI shows good agreement with results of the existing far infrared laser (a wavelength of 119 μ m) interferometer. The DI system is also applied to the electron density measurement of high-pressure small-scale plasmas. The significant suppression of the phase shift caused by the neutral gas is proven. The achieved density resolution was 1.5× 1019 m-3 with a response time of 100 μ s. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  11. Electrostatic and electromagnetic traps for high-temperature plasma

    International Nuclear Information System (INIS)

    Lavrent'ev, O.A.

    Theoretical and experimental aspects of thermal isolation are considered for a high-temperature plasma in systems with electrostatic as well as electric and magnetic fields. Specific types of traps are discussed, together with diagnostic methods and fundamental experimental results. (U.S.)

  12. A high-voltage pulse generator for corona plasma generation

    NARCIS (Netherlands)

    Yan, K.; Heesch, van E.J.M.; Pemen, A.J.M.; Huijbrechts, P.A.H.J.; Gompel, van F.M.; Leuken, van H.E.M.; Matyas, Z.

    2002-01-01

    This paper discusses a high-voltage pulse generator for producing corona plasma. The generator consists of three resonant charging circuits, a transmission line transformer, and a triggered spark-gap switch. Voltage pulses in the order of 30-100 kV with a rise time of 10-20 ns, a pulse duration of

  13. Simulation of transition dynamics to high confinement in fusion plasmas

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Xu, G. S.; Madsen, Jens

    2015-01-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST...

  14. Discharge efficiency in high-Xe-content plasma display panels

    NARCIS (Netherlands)

    Hayashi, D.; Kroesen, G.M.W.; Hagelaar, G.J.M.; Heusler, G.

    2004-01-01

    We study theoretically the overall output performance and the dominating reaction processes of the vacuum ultraviolet (UV) radiation production in high-Xe partial pressures in plasma display panels (PDPs) with Ne-Xe gas mixtures. A two-dimensional self-consistent fluid model is applied for the

  15. Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes-Filho, Z O; Santos Lima, G Z dos; Caldas, I L; Nascimento, I C; Kuznetsov, Yu K [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Viana, R L, E-mail: viana@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, PR (Brazil)

    2010-09-01

    One of the challenges in obtaining long lasting magnetic confinement of fusion plasmas in tokamaks is to control electrostatic turbulence near the vessel wall. A necessary step towards achieving this goal is to characterize the turbulence level and so as to quantify its effect on the transport of energy and particles of the plasma. In this paper we present experimental results on the characterization of electrostatic turbulence in Tokamak Chauffage Alfven Bresilien (TCABR), operating in the Institute of Physics of University of Sao Paulo, Brazil. In particular, we investigate the effect of certain magnetic field fluctuations, due to magnetohydrodynamical (MHD) instabilities activity, on the spectral properties of electrostatic turbulence at plasma edge. In some TCABR discharges we observe that this MHD activity may increase spontaneously, following changes in the edge safety factor, or after changes in the radial electric field achieved by electrode biasing. During the high MHD activity, the magnetic oscillations and the plasma edge electrostatic turbulence present several common linear spectral features with a noticeable dominant peak in the same frequency. In this article, dynamical analyses were applied to find other alterations on turbulence characteristics due to the MHD activity and turbulence enhancement. A recurrence quantification analysis shows that the turbulence determinism radial profile is substantially changed, becoming more radially uniform, during the high MHD activity. Moreover, the bicoherence spectra of these two kinds of fluctuations are similar and present high bicoherence levels associated with the MHD frequency. In contrast with the bicoherence spectral changes, that are radially localized at the plasma edge, the turbulence recurrence is broadly altered at the plasma edge and the scrape-off layer.

  16. High-speed photographic observation of plasma-limiter interactions in ISX-B

    International Nuclear Information System (INIS)

    Clausing, R.E.; Emerson, L.C.; Heatherly, L.

    1981-01-01

    High-speed motion pictures confirm that arcing occurs during periods of plasma instability in ISX-B. Various types of plasma-limiter interactions are described and illustrated. Arcing and other visible phenomena are correlated to plasma parameters

  17. Internal Kink Mode Dynamics in High-β NSTX Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Stutman, D.; Tritz, K.; Zhu, W.

    2004-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data

  18. Internal kink mode dynamics in high-β NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Zhu, W.; Stutman, D.; Tritz, K.

    2005-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode non-linear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experiment. (author)

  19. Endogenous magnetic reconnection and associated high energy plasma processes

    Science.gov (United States)

    Coppi, B.; Basu, B.

    2018-02-01

    An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.

  20. 14th High-Tech Plasma Processes Conference (HTPP 14)

    Science.gov (United States)

    2017-04-01

    Preface The High-Tech Plasma Processes Conference (HTPP) is a bi-annual international conference based in Europe with topics encompassing the whole area of plasma processing science. This conference is open to all the international community in the world involved in plasma science and plasma technology. The aim of the conference is to bring different scientific communities together, facilitate the contacts between science, technology and industry and provide a platform for the exploration of both fundamental topics and new applications of plasmas. For this edition of HTPP, as was the case for the last, we have achieved a well balanced participation from the communities of both thermal and non-thermal plasma researchers. 75 people from 17 countries attended the conference with the total number of contributions being 74, consisting of 19 invited talks and 55 poster contributions. As a HTPP tradition a poster competition has been carried out during the conference. The winner of the poster competition was Fabrice Mavier from Université de Limoges, France with his paper “Pulsed arc plasma jet synchronized with drop-on-demand dispenser” All the participants also ejoyed the social program including an “unconventional” tour of the city, the visit to the famous Hofbräuhaus and the dinner at the Blutenburg, a beautiful inner-city castle. We have received papers corresponding to the contributions of HTPP-2014 that have been submitted for publication in this volume of Journal of Physics: Conference Series. Each submitted contribution has been peer reviewed and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In total, 18 manuscripts have been accepted for publication covering a range of topics of plasma processing science from plasma fundamentals to process applications through to experiments, diagnostics and modelling. We deeply thank the authors for their enthusiastic and high-grade contributions and we

  1. Conference on atomic processes in high temperature plasmas: a topical conference of the American Physical Society Division of Plasma Physics

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts are included for approximately 100 of the papers presented at the meeting. The following sessions were held at the conference: (1) electron ionization and excitation rates, (2) radiation from low density plasmas, (3) electron-ion cross sections and rates, (4) oscillator strengths and atomic structure, (5) spectroscopy and atomic structure, (6) astrophysical plasmas, (7) particle transport, (8) ion-atom cross sections and rates, (9) wall effects in laboratory plasmas, (10) spectroscopy and photoionization, and (11) radiation from high density plasmas

  2. Wall stabilization of high beta plasmas in DIII-D

    International Nuclear Information System (INIS)

    Taylor, T.S.; Strait, E.J.; Lao, L.L.; Turnbull, A.D.; Burrell, K.H.; Chu, M.S.; Ferron, J.R.; Groebner, R.J.; La Haye, R.J.; Mauel, M.

    1995-02-01

    Detailed analysis of recent high beta discharges in the DIII-D tokamak demonstrates that the resistive vacuum vessel can provide stabilization of low n magnetohydrodynamic (MHD) modes. The experimental beta values reaching up to β T = 12.6% are more than 30% larger than the maximum stable beta calculated with no wall stabilization. Plasma rotation is essential for stabilization. When the plasma rotation slows sufficiently, unstable modes with the characteristics of the predicted open-quotes resistive wallclose quotes mode are observed. Through slowing of the plasma rotation between the q = 2 and q = 3 surfaces with the application of a non-axisymmetric field, the authors have determined that the rotation at the outer rational surfaces is most important, and that the critical rotation frequency is of the order of Ω/2π = 1 kHz

  3. Angular dependence of high Mach number plasma interactions

    International Nuclear Information System (INIS)

    Thomas, V.A.; Brecht, S.H.

    1987-01-01

    In this paper a 2-1/2-dimensional hybrid code is used to examine the collisionless large spatial scale (kc/ω pi ∼ 1) low-frequency (ω ∼ ω ci ) interaction initiated by a plasma shell of finite width traveling at high Alfven Mach number relative to a uniform background plasma. Particular attention is given to the angle of the relative velocity relative to the ambient magnetic field for the range of angles O < θ < π/2. An attempt is made to parameterize some of the important physics including the Alfven ion cyclotron instability, the field-aligned electromagnetic ion counter streaming instability, mixing of the plasma shell with the background ions, and structuring of the interaction region. These results are applicable to various astrophysical interactions such as bow shocks and interplanetary shocks

  4. High intensity surface plasma waves, theory and PIC simulations

    Science.gov (United States)

    Raynaud, M.; Héron, A.; Adam, J.-C.

    2018-01-01

    With the development of intense (>1019 W cm-2) short pulses (≤25 fs) laser with very high contrast, surface plasma wave (SPW) can be explored in the relativistic regime. As the SPW propagates with a phase velocity close to the speed of light it may results in a strong acceleration of electron bunches along the surface permitting them to reach relativistic energies. This may be important e.g. for applications in the field of plasma-based accelerators. We investigate in this work the excitation of SPWs on grating preformed over-dense plasmas for laser intensities ranging from 1019 up to 1021 W cm-2. We discuss the nature of the interaction with respect to the solid case in which surface plasmon can be resonantly excited with weak laser intensity. In particular, we show the importance of the pulse duration and focalization of the laser beam on the amplitude of the SPW.

  5. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  6. High speed and high functional inverter power supplies for plasma generation and control, and their performance

    International Nuclear Information System (INIS)

    Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro

    2003-01-01

    The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak. (author)

  7. Tungsten and carbon surface change under high dose plasma exposure

    International Nuclear Information System (INIS)

    Martynenko, Y.V.; Khripunov, B.I.; Petrov, V.B.

    2009-01-01

    Study of surface composition dynamics has been made on the LENTA linear plasma simulator. Experiments have been made on tungsten and carbon materials subjected to steady-state plasma exposure. The achieved ion doses on the surface were 10 21 ion cm -2 . WL 10 tungsten containing 1% of La2O3 oxide and titanium-doped graphite RG-T were studied. The following experimental conditions were varied in these experiments: energy of ions, surface temperature, working gas. Irradiations of tungsten WL 10 were executed in deuterium plasma at low ion energies (about 20 eV) and at 200 eV for temperatures below 340 K. Graphite RG-T was exposed at 1300 K. Elevated surface temperature (about 1050K) was also characteristic of experiments on tungsten sample under nitrogen plasma impact (simulated inter-ELMs condition). Surface microstructure modification has been observed and surface composition changes were found on the materials showing influence of high dose plasma irradiations on element redistribution in the near surface layers. (author)

  8. High frequency electric field spikes formed by electron beam-plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-02-01

    In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs

  9. High levels of circulating triiodothyronine induce plasma cell differentiation.

    Science.gov (United States)

    Bloise, Flavia Fonseca; Oliveira, Felipe Leite de; Nobrega, Alberto Félix; Vasconcellos, Rita; Cordeiro, Aline; Paiva, Luciana Souza de; Taub, Dennis D; Borojevic, Radovan; Pazos-Moura, Carmen Cabanelas; Mello-Coelho, Valéria de

    2014-03-01

    The effects of hyperthyroidism on B-cell physiology are still poorly known. In this study, we evaluated the influence of high-circulating levels of 3,5,3'-triiodothyronine (T3) on bone marrow, blood, and spleen B-cell subsets, more specifically on B-cell differentiation into plasma cells, in C57BL/6 mice receiving daily injections of T3 for 14 days. As analyzed by flow cytometry, T3-treated mice exhibited increased frequencies of pre-B and immature B-cells and decreased percentages of mature B-cells in the bone marrow, accompanied by an increased frequency of blood B-cells, splenic newly formed B-cells, and total CD19(+)B-cells. T3 administration also promoted an increase in the size and cellularity of the spleen as well as in the white pulp areas of the organ, as evidenced by histological analyses. In addition, a decreased frequency of splenic B220(+) cells correlating with an increased percentage of CD138(+) plasma cells was observed in the spleen and bone marrow of T3-treated mice. Using enzyme-linked immunospot assay, an increased number of splenic immunoglobulin-secreting B-cells from T3-treated mice was detected ex vivo. Similar results were observed in mice immunized with hen egg lysozyme and aluminum adjuvant alone or together with treatment with T3. In conclusion, we provide evidence that high-circulating levels of T3 stimulate plasma cytogenesis favoring an increase in plasma cells in the bone marrow, a long-lived plasma cell survival niche. These findings indicate that a stimulatory effect on plasma cell differentiation could occur in untreated patients with Graves' disease.

  10. Resistive wall mode stabilization in slowly rotating high beta plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H [Columbia University, New York, NY 10027 (United States); Garofalo, A M [Columbia University, New York, NY 10027 (United States); Okabayashi, M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Strait, E J [General Atomics, San Diego, CA 92186-5608 (United States); Betti, R [University of Rochester, Rochester, NY 14627 (United States); Chu, M S [General Atomics, San Diego, CA 92186-5608 (United States); Hu, B [University of Rochester, Rochester, NY 14627 (United States); In, Y [FAR-TECH, Inc., San Diego, CA 92121 (United States); Jackson, G L [General Atomics, San Diego, CA 92186-5608 (United States); La Haye, R J [General Atomics, San Diego, CA 92186-5608 (United States); Lanctot, M J [Columbia University, New York, NY 10027 (United States); Liu, Y Q [Chalmers University of Technology, S-412 96 Goeteborg (Sweden); Navratil, G A [Columbia University, New York, NY 10027 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Takahashi, H [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Groebner, R J [General Atomics, San Diego, CA 92186-5608 (United States)

    2007-12-15

    DIII-D experiments show that the resistive wall mode (RWM) can remain stable in high {beta} scenarios despite a low net torque from nearly balanced neutral beam injection heating. The minimization of magnetic field asymmetries is essential for operation at the resulting low plasma rotation of less than 20 krad s{sup -1} (measured with charge exchange recombination spectroscopy using C VI emission) corresponding to less than 1% of the Alfven velocity or less than 10% of the ion thermal velocity. In the presence of n = 1 field asymmetries the rotation required for stability is significantly higher and depends on the torque input and momentum confinement, which suggests that a loss of torque-balance can lead to an effective rotation threshold above the linear RWM stability threshold. Without an externally applied field the measured rotation can be too low to neglect the diamagnetic rotation. A comparison of the instability onset in plasmas rotating with and against the direction of the plasma current indicates the importance of the toroidal flow driven by the radial electric field in the stabilization process. Observed rotation thresholds are compared with predictions for the semi-kinetic damping model, which generally underestimates the rotation required for stability. A more detailed modeling of kinetic damping including diamagnetic and precession drift frequencies can lead to stability without plasma rotation. However, even with corrected error fields and fast plasma rotation, plasma generated perturbations, such as edge localized modes, can nonlinearly destabilize the RWM. In these cases feedback control can increase the damping of the magnetic perturbation and is effective in extending the duration of high {beta} discharges.

  11. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  12. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  13. High density plasma via hole etching in SiC

    International Nuclear Information System (INIS)

    Cho, H.; Lee, K.P.; Leerungnawarat, P.; Chu, S.N.G.; Ren, F.; Pearton, S.J.; Zetterling, C.-M.

    2001-01-01

    Throughwafer vias up to 100 μm deep were formed in 4H-SiC substrates by inductively coupled plasma etching with SF 6 /O 2 at a controlled rate of ∼0.6 μm min-1 and use of Al masks. Selectivities of >50 for SiC over Al were achieved. Electrical (capacitance-voltage: current-voltage) and chemical (Auger electron spectroscopy) analysis techniques showed that the etching produced only minor changes in reverse breakdown voltage, Schottky barrier height, and near surface stoichiometry of the SiC and had high selectivity over common frontside metallization. The SiC etch rate was a strong function of the incident ion energy during plasma exposure. This process is attractive for power SiC transistors intended for high current, high temperature applications and also for SiC micromachining

  14. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  15. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  16. High-order harmonics generation from overdense plasmas

    International Nuclear Information System (INIS)

    Quere, F.; Thaury, C.; Monot, P.; Martin, Ph.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.

    2006-01-01

    Complete test of publication follows. When an intense laser beam reflects on an overdense plasma generated on a solid target, high-order harmonics of the incident laser frequency are observed in the reflected beam. This process provides a way to produce XUV femtosecond and attosecond pulses in the μJ range from ultrafast ultraintense lasers. Studying the mechanisms responsible for this harmonic emission is also of strong fundamental interest: just as HHG in gases has been instrumental in providing a comprehensive understanding of basic intense laser-atom interactions, HHG from solid-density plasmas is likely to become a unique tool to investigate many key features of laser-plasma interactions at high intensities. We will present both experimental and theoretical evidence that two mechanisms contribute to this harmonic emission: - Coherent Wake Emission: in this process, harmonics are emitted by plasma oscillations in te overdense plasma, triggered in the wake of jets of Brunel electrons generated by the laser field. - The relativistic oscillating mirror: in this process, the intense laser field drives a relativistic oscillation of the plasma surface, which in turn gives rise to a periodic phase modulation of the reflected beam, and hence to the generation of harmonics of the incident frequency. Left graph: experimental harmonic spectrum from a polypropylene target, obtained with 60 fs laser pulses at 10 19 W/cm 2 , with a very high temporal contrast (10 10 ). The plasma frequency of this target corresponds to harmonics 15-16, thus excluding the CWE mechanism for the generation of harmonics of higher orders. Images on the right: harmonic spectra from orders 13 et 18, for different distances z between the target and the best focus. At the highest intensity (z=0), harmonics emitted by the ROM mechanism are observed above the 15th order. These harmonics have a much smaller spectral width then those due to CWE (below the 15th order). These ROM harmonics vanish as soon

  17. Comparison of high ligation and stripping of the great saphenous vein combined with foam sclerotherapy versus conventional surgery for the treatment of superficial venous varicosities of the lower extremity

    Science.gov (United States)

    Zhao, Zi-Yuan; Zhang, Xiu-Jun; Li, Jun-Hai; Huang, Mei

    2015-01-01

    The aim of this study was to compare the results of high ligation and stripping of the great saphenous vein (GSV) trunk combined with foam sclerotherapy with conventional surgery for the treatment of superficial venous varicosities of the lower extremity. One hundred and thirty eight patients with primary or secondary superficial venous varicosities of the lower extremity were included. 60 underwent conventional surgery and 78 were treated with high ligation and stripping of the GSV trunk and foam sclerotherapy of GSV branches, spider veins, and reticular veins. Surgical time and amount of bleeding of single limb, recurrence of varicose vein, complications and patients satisfactory were recorded. Compared with the conventional surgery group, the GSV trunk stripping and foam sclerotherapy group had a significantly lower surgical time (P 0.05). GSV trunk stripping and foam sclerotherapy group at a 6 months of follow up had a higher recurrence rate of varicosity as compared to the conventional surgery group (P sclerotherapy prior to conventional surgery for patients with superficial venous varicosities of the lower extremity with a shorter surgical time, fewer bleeding, duration of hospital stays and higher patients satisfactory scores. PMID:26221338

  18. Selective chemical stripping

    Science.gov (United States)

    Malavallon, Olivier

    1995-04-01

    At the end of the 80's, some of the large European airlines expressed a wish for paint systems with improved strippability on their aircraft, allowing the possibility to strip down to the primer without altering it, using 'mild' chemical strippers based on methylene chloride. These improvements were initially intended to reduce costs and stripping cycle times while facilitating rapid repainting, and this without the need to change the conventionally used industrial facilities. The level of in-service performance of these paint systems was to be the same as the previous ones. Requirements related to hygiene safety and the environment were added to these initial requirements. To meet customers' expectations, Aerospatiale, within the Airbus Industry GIE, formed a work group. This group was given the task of specifying, following up the elaboration and qualifying the paint systems allowing requirements to be met, in relation with the paint suppliers and the airlines. The analysis made in this report showed the interest of transferring as far upstream as possible (to paint conception level) most of the technical constraints related to stripping. Thus, the concept retained for the paint system, allowing selective chemical stripping, is a 3-coat system with characteristics as near as possible to the previously used paints.

  19. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  20. Service behaviour of high speed steel rolling rolls used in hot strip mills; Comportamiento en servicio de los aceros rapidos utilizados en la fabricacion de los cilindros de trabajo de los trenes de bandas en caliente

    Energy Technology Data Exchange (ETDEWEB)

    Ziadi, A.; Belzunce, F. J.; Rodriguez, C.; Fernandez, I.

    2005-07-01

    Work rolls used in hot strip mills may be able to carry out severe actions: very high thermal stresses and wear, along with mechanical stresses due to normal rolling loads, which develop in the presence of cracks, produced by the former actions. The microstructure and the mechanical behaviour (strength and toughness) of high speed steels, which recently have been introduced in this applications, were studied in this work in comparison with high chromium cast irons. (Author) 7 refs.

  1. A cold plasma plume with a highly conductive liquid electrode

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Wenxing; Chen Shihua; Yang Size

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 10 11 /cm 3 , respectively. The length of plasma plume can reach 5 cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O * , O 3 ) in the downstream oxygen (O2) gas of the plume have been applied to treat the landfill leachate. The results show that the activated O 2 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively. (fluids, plasmas and electric discharges)

  2. High performance liquid chromatographic determination of glucosamine in rat plasma.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Sattari, Saeed; Pasutto, Franco; Jamali, Fakhreddin

    2002-01-01

    A high performance liquid chromatographic method was developed for the determination of glucosamine (GlcN) in rat plasma. Internal standard, galactosamine, was added to 100 micro L of plasma containing GlcN followed by precipitation of plasma proteins with acetonitrile. Evaporation of the decanted supernatant solution was accelerated by the addition of methanol. GlcN was derivatized by addition of a solution containing 1-naphthyl isothiocyanate. Sample cleanup included passage through an anion exchange cartridge. Analysis was accomplished by injection of 0.1 mL of the sample solution into an isocratic HPLC system consisting of a C18 column, a mobile phase of acetonitrile: water: acetic acid: triethylamine (4.5: 95.5:0.1:0.05), a flow rate of 0.9 mL/min, and a UV detector set at 254 nm. Galactosamine and GlcN appeared 26 and 29 min post-injection, respectively. The assay was linear over the range of 1.25-400 micro g/mL (CV<10%) with a detection limit of 0.63 microg/mL and a limit of quantification of 1.25 microg/mL. The method was applied to the determination of GlcN in rat plasma after oral administration of 350 mg/kg of GlcN hydrochloride. The present assay is specific, sensitive, precise, and accurate and is suitable for pharmacokinetic studies.

  3. High speed manyframe optical methods for plasma diagnostics

    International Nuclear Information System (INIS)

    Erokhin, A.A.; Shikanov, A.S.; Sklizkov, G.V.; Zakharenkov, Yu.A.; Zorev, N.N.

    1979-01-01

    A complex of active optical plasma and strong ionized shock wave diagnostics is described. The complex consisted of a specially developed high speed manyframe systems of shadow, schlieren and interferometric photography. The comparison of results obtained by a simultaneous registration of investigated object by means of different optical methods allowed us to determine optimal employment range for the methods. The sensitivity, temporal and space resolution of each optical method under conditions of high probe radiation refraction are discussed. The application boundaries of these methods for ionized shock wave investigation were found to depend on the shock wave front width. The methods described were used for the study of laser-produced plasma phenomena, occuring in the experiments on powerful nine-channel laser installation ''Kalmar''. (author)

  4. Simulation of plasma loading of high-pressure RF cavities

    Science.gov (United States)

    Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.

    2018-01-01

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.

  5. Simulation of plasma loading of high-pressure RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Computational Science Initiative; Samulyak, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Computational Science Initiative; Stony Brook Univ., NY (United States). Dept. of Applied Mathematics and Statistics; Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Freemire, B. [Northern Illinois Univ., DeKalb, IL (United States)

    2018-01-11

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.

  6. Analytic analysis on asymmetrical micro arcing in high plasma potential RF plasma systems

    International Nuclear Information System (INIS)

    Yin, Y; McKenzie, D R; Bilek, M M M

    2006-01-01

    We report experimental and analytical results on asymmetrical micro arcing in a RF (radio frequency) plasma. Micro arcing, resulting from high plasma potential, in RF plasma was found to occur only on the grounded electrode for a variety of electrode and surface configurations. The analytic derivation was based on a simple RF time-dependent Child-Langmuir sheath model and electric current continuity. We found that the minimum potential difference in one RF period across the grounded electrode sheath depends on the area ratio of the grounded electrode to the powered electrode. As the area ratio increases, the minimum potential difference across a sheath increases for the grounded electrode but not for the RF powered electrode. We showed that discharge time in micro arcing is more than 100 RF periods; thus the presence of a continuous high electric field in one RF cycle results in micro arcing on the grounded electrode. However, the minimum potential difference in one RF period across the powered electrode sheath is always small so that it prevents micro arcing occurring even though the average sheath voltage can be large. This simple analytic model is consistent with particle-in-cell simulation results

  7. Collisional and radiative processes in high-pressure discharge plasmas

    Science.gov (United States)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  8. Plasma polymerized high energy density dielectric films for capacitors

    Science.gov (United States)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  9. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  10. High density plasma heating in the Tokamak à configuration variable

    International Nuclear Information System (INIS)

    Curchod, L.

    2011-04-01

    The Tokamak à Configuration Variable (TCV) is a medium size magnetic confinement thermonuclear fusion experiment designed for the study of the plasma performances as a function of its shape. It is equipped with a high power and highly flexible electron cyclotron heating (ECH) and current drive (ECCD) system. Up to 3 MW of 2 nd harmonic EC power in ordinary (O 2 ) or extraordinary (X 2 ) polarization can be injected from TCV low-field side via six independently steerable launchers. In addition, up to 1.5 MW of 3 rd harmonic EC power (X 3 ) can be launched along the EC resonance from the top of TCV vacuum vessel. At high density, standard ECH and ECCD are prevented by the appearance of a cutoff layer screening the access to the EC resonance at the plasma center. As a consequence, less than 50% of TCV density operational domain is accessible to X 2 and X 3 ECH. The electron Bernstein waves (EBW) have been proposed to overcome this limitation. EBW is an electrostatic mode propagating beyond the plasma cutoff without upper density limit. Since it cannot propagate in vacuum, it has to be excited by mode conversion of EC waves in the plasma. Efficient electron Bernstein waves heating (EBH) and current drive (EBCD) were previously performed in several fusion devices, in particular in the W7-AS stellarator and in the MAST spherical tokamak. In TCV, the conditions for an efficient O-X-B mode conversion (i.e. a steep density gradient at the O 2 plasma cutoff) are met at the edge of high confinement (H-mode) plasmas characterized by the appearance of a pedestal in the electron temperature and density profiles. TCV experiments have demonstrated the first EBW coupling to overdense plasmas in a medium aspect-ratio tokamak via O-X-B mode conversion. This thesis work focuses on several aspects of ECH and EBH in low and high density plasmas. Firstly, the experimental optimum angles for the O-X-B mode conversion is successfully compared to the full-wave mode conversion calculation

  11. Beam foil spectroscopy of N = 3 to N = 2 transitions in highly stripped heavy ions. Revision 1

    International Nuclear Information System (INIS)

    Dietrich, D.D.; Chandler, G.A.; Egan, P.O.; Ziock, K.P.; Mokler, P.H.; Reusch, S.; Hoffmann, D.H.H.

    1986-09-01

    The spectroscopy of very highly ionized atoms provides an important testing ground for multi-electron atomic theory. We report preliminary experimental results on the n = 3 → 2 spectra of Bi +73 and A +69 obtained at the GSI UNILAC accelerator. 19 refs., 4 figs

  12. Development of floating strip micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, Jonathan

    2014-04-28

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the

  13. Development of floating strip micromegas detectors

    International Nuclear Information System (INIS)

    Bortfeldt, Jonathan

    2014-01-01

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10 34 cm -2 s -1 around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm 2 floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm 2 floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm 2 floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the track inclination in a single

  14. Strip interpolation in silicon and germanium strip detectors

    International Nuclear Information System (INIS)

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

  15. Collisions of highly stripped ions at MeV energies in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1980-01-01

    Cross sections have been measured for charge transfer and ionization in H 2 and rare-gas targets by fast, highly ionized carbon, iron, niobium, and lead ions in charge states +3 to +59, with energies in the range 0.1 to 4.8 MeV/amu. Experimental results are compared with classical-trajectory calculations; agreement is generally good. For a given target, the cross sections for net ionization reduce to a common curve when plotted as cross section divided by charge state versus energy per nucleon divided by charge state

  16. High-performance liquid chromatographic radioenzymatic assay for plasma catecyholamines

    International Nuclear Information System (INIS)

    Klaniecki, T.S.; Corder, C.N.; McDonald, R.H. Jr.; Feldman, J.A.

    1977-01-01

    A new assay method for plasma catecholamimes (CA) requiring only 50 μl has been developed, which uses high performance liquid chromatography (HPLC). The norepinephrine (NE), dopamine (D), and epinephrine (E) compounds found in plasma are radioactively o-methylated with S-[methyl- 3 H]-adenosyl-L-methionine ( 3 H-SAM) 3 H-SAM by the reaction of catechol-o-methyl transferase (COMT). The reaction is terminated and a standard mixture of nonradioactive o-methylated analogues of NE, D, and E is added to act as a carrier. Following separation by HPLC, the D,L-normetanephrine (NMN), 3-methoxy-4-hydroxyphenylethyl-amine or 3-methoxytyramine (3-MOT), and metanephrine (MN) radioactive peaks are collected which represent NE, D, and E, respectively. Then MNM and MN are oxidized to vanillin, and 3-MOT is acetylated. The products are subsequently separated by solvent extraction. This is necessary in order to avoid high radioactive blanks and to allow quantitation of the radioactivity by liquid scintillation spectrometry. The mean supine levels of NE, D, and E in normal subjects were respectively 182, 33, and 87 pg/ml of plasma. Similar assays on patients with pheochromocytoma revealed 797, 80, and 470 pg/ml

  17. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Science.gov (United States)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  18. Statistical approach for calculating opacities of high-Z plasmas

    International Nuclear Information System (INIS)

    Nishikawa, Takeshi; Nakamura, Shinji; Takabe, Hideaki; Mima, Kunioki

    1992-01-01

    For simulating the X-ray radiation from laser produced high-Z plasma, an appropriate atomic modeling is necessary. Based on the average ion model, we have used a rather simple atomic model for opacity calculation in a hydrodynamic code and obtained a fairly good agreement with the experiment on the X-ray spectra from the laser-produced plasmas. We have investigated the accuracy of the atomic model used in the hydrodynamic code. It is found that transition energies of 4p-4d, 4d-4f, 4p-5d, 4d-5f and 4f-5g, which are important in laser produced high-Z plasma, can be given within an error of 15 % compared to the values by the Hartree-Fock-Slater (HFS) calculation and their oscillator strengths obtained by HFS calculation vary by a factor two according to the difference of charge state. We also propose a statistical method to carry out detail configuration accounting for electronic state by use of the population of bound electrons calculated with the average ion model. The statistical method is relatively simple and provides much improvement in calculating spectral opacities of line radiation, when we use the average ion model to determine electronic state. (author)

  19. Shear and bulk viscosity of high-temperature gluon plasma

    Science.gov (United States)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  20. Dynamic behaviour of the high confinement mode of fusion plasmas

    International Nuclear Information System (INIS)

    Zohm, H.

    1995-05-01

    This paper describes the dynamic behaviour of the High Confinement mode (H-mode) of fusion plasmas, which is one of the most promising regimes of enhanced energy confinement in magnetic fusion research. The physics of the H-mode is not yet fully understood, and the detailed behaviour is complex. However, we establish a simple physics picture of the phenomenon. Although a first principles theory of the anomalous transport processes in a fusion plasma has not yet been given, we show that within the picture developed here, it is possible to describe the dynamic behaviour of the H-mode, namely the dynamics of the L-H transition and the occurrence of edge localized modes (ELMs). (orig.)

  1. High-throughput anisotropic plasma etching of polyimide for MEMS

    International Nuclear Information System (INIS)

    Bliznetsov, Vladimir; Manickam, Anbumalar; Ranganathan, Nagarajan; Chen, Junwei

    2011-01-01

    This note describes a new high-throughput process of polyimide etching for the fabrication of MEMS devices with an organic sacrificial layer approach. Using dual frequency superimposed capacitively coupled plasma we achieved a vertical profile of polyimide with an etching rate as high as 3.5 µm min −1 . After the fabrication of vertical structures in a polyimide material, additional steps were performed to fabricate structural elements of MEMS by deposition of a SiO 2 layer and performing release etching of polyimide. (technical note)

  2. Very high energy probes of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Ludlam, T.; Paige, F.; Madansky, L.

    1984-01-01

    Among the penetrating probes of nuclear matter the most frequently discussed have been those which involve the detection of photons or leptons with m/sub T/ approx. = P/sub T/ < 3 GeV. This is the expected range of emission from a hot, thermalized plasma of quarks and gluons. The suggestion has been made that in very high energy collisions of nuclei the properties of high P/sub T/ jets may also reflect the characteristics of the nuclear medium through which the parent partons have propagated just after the collision. In this note we expand on the possible uses of such a probe

  3. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  4. Strip type radiation detector and method of making same

    International Nuclear Information System (INIS)

    Jantsch, O.; Feigt, I.; Willig, W.R.

    1976-01-01

    An improved strip detector and a method for making such a detector in which a high resistivity N conduction semiconductor body has electrode strips formed thereon by diffusion is described. The strips are formed so as to be covered by an oxide layer at the surface point of the PN junction and in which the opposite side of the semiconductor body then has a substantial amount of material etched away to form a thin semiconductor upon which strip electrodes which are perpendicular to the electrodes on the first side are then placed

  5. 13. TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    International Nuclear Information System (INIS)

    Barnes, C.

    2000-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. ω pe >> (Omega) ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K i . This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼ 2 kG, e > ∼ 10 13 cm -3 and T e ∼ 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤ T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T e . Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >> (Omega) ce

  6. Operational characteristics of the high flux plasma generator magnum-PSI

    NARCIS (Netherlands)

    Van Eck, H.J.N.; Abrams, T.; Van Den Berg, M.A.; Brons, S.D.N.; Van Eden, G.G.; Jaworski, M.A.; Kaita, R.; Van Der Meiden, H.J.; Morgan, T.W.; van de Pol, Marc J.; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; De Vries, P.C.; Zeijlmans Van Emmichoven, P.A.

    2014-01-01

    In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions

  7. Assessing the Contribution of the CFRP Strip of Bearing the Applied Load Using Near-Surface Mounted Strengthening Technique with Innovative High-Strength Self-Compacting Cementitious Adhesive (IHSSC-CA

    Directory of Open Access Journals (Sweden)

    Alyaa Mohammed

    2018-01-01

    Full Text Available Efficient transfer of load between concrete substrate and fibre reinforced polymer (FRP by the bonding agent is the key factor in any FRP strengthening system. An innovative high-strength self-compacting non-polymer cementitious adhesive (IHSSC-CA was recently developed by the authors and has been used in a number of studies. Graphene oxide and cementitious materials are used to synthesise the new adhesive. The successful implementation of IHSSC-CA significantly increases carbon FRP (CFRP strip utilization and the load-bearing capacity of the near-surface mounted (NSM CFRP strengthening system. A number of tests were used to inspect the interfacial zone in the bonding area of NSM CFRP strips, including physical examination, pore structure analysis, and three-dimensional laser profilometery analysis. It was deduced from the physical inspection of NSM CFRP specimens made with IHSSC-CA that a smooth surface for load transfer was found in the CFRP strip without stress concentrations in some local regions. A smooth surface of the adhesive layer is very important for preventing localized brittle failure in the concrete. The pore structure analysis also confirmed that IHSSC-CA has better composite action between NSM CFRP strips and concrete substrate than other adhesives, resulting in the NSM CFRP specimens made with IHSSC-CA sustaining a greater load. Finally, the results of three-dimensional laser profilometery revealed a greater degree of roughness and less deformation on the surface of the CFRP strip when IHSSC-CA was used compared to other adhesives.

  8. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  9. High density high performance plasma with internal diffusion barrier in Large Helical Device

    International Nuclear Information System (INIS)

    Sakamoto, R.; Kobayashi, M.; Miyazawa, J.

    2008-10-01

    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1x10 21 m -3 . Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0)=5.5% at B t =2.57 T. (author)

  10. High density turbulent plasma processes from a shock tube

    International Nuclear Information System (INIS)

    Oyedeji, O.; Johnson, J.A. III

    1991-01-01

    We have finished the first stages of our experimental and theoretical investigations on models for energy and momentum transport and for photon-particle collision processes in a turbulent quasi-stationary high density plasma. The system is explored by beginning to determine the turbulence phenomenology associated with an ionizing shock wave. The theoretical underpinnings are explored for phonon particle collisions by determining the collisional redistribution function, using Lioville Space Green's Function, which will characterize the inelastic scattering of the radiation from one frequency to another. We have observed that a weak magnetic field tends to increase the apparent random-like behaviors in a collisional turbulent plasma. On the theoretical side, we have been able to achieve a form for the collisional redistribution function. It remains to apply these concepts to a stationary turbulent plasma in the reflected ionizing shock wave and to exercise the implications of evaluations of the collisional redistribution function for such a system when it is probed by a strong radiation source. These results are discussed in detail in the publications, which have resulted from the this effort, cited at the end of the report

  11. High latitude plasma convection: Predictions for EISCAT and Sondre Stromfjord

    International Nuclear Information System (INIS)

    Sojka, J.J.; Raitt, W.J.; Schunk, R.W.

    1979-01-01

    We have used a plasma convection model to predict diurnal patterns of horizontal drift velocities in the vicinity of the EISCAT incoherent scatter facility at Tromso, Norway and for Sondre Stromfjord, Greenland, a proposed new incoherent scatter facility site. The convection model includes the offset of 11.4 0 between the geographic and geomagnetic poles (northern hemisphere), the tendency of plasma to corotate about the geographic pole, and a magnetospheric electric field mapped to a circle about a center offset by 5 0 in the antisunward direction from the magnetic pole. Four different magnetospheric electric field configurations were considered, including a constant cross-tail electric field, asymmetric electric fields with enhancements on the dawn and dusk sides of the polar cap, and an electric field pattern that is not aligned parallel to the noon-midnight magnetic meridian. The different electric field configurations produce different signatures in the plasma convection pattern which are clearly identified. Both of the high-latitude sites are better suited to study magnetospheric convection effects than either Chatanika, Alaska or Millstone Hill, Massachusetts. Also, each site appears to have unique capabilities with regard to studying certain aspects of the magnetospheric electric field

  12. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  13. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  14. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  15. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  16. Properties isotropy of magnesium alloy strip workpieces

    Directory of Open Access Journals (Sweden)

    Р. Кавалла

    2016-12-01

    Full Text Available The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling and annealing. The principal causes of anisotropic mechanical properties of metal strips produced by the combined casting and rolling technique are the character of distribution of intermetallic compounds in the strip, orientation of phases of metal defects and the residual tensions. One of the tasks in increasing the output of fit products during stamping operations consists in minimizing the amount of defects. To lower the level of anisotropy in mechanical properties various ways of treating the melt during casting are suggested. Designing the technology of producing strips of magnesium alloys opens a possibility of using them in automobile industry to manufacture light-weight body elements instead of those made of steel.

  17. Strip defect recognition in electrical tests of silicon microstrip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Valentan, Manfred, E-mail: valentan@mpp.mpg.de

    2017-02-11

    This contribution describes the measurement procedure and data analysis of AC-coupled double-sided silicon microstrip sensors with polysilicon resistor biasing. The most thorough test of a strip sensor is an electrical measurement of all strips of the sensor; the measured observables include e.g. the strip's current and the coupling capacitance. These measurements are performed to find defective strips, e.g. broken capacitors (pinholes) or implant shorts between two adjacent strips. When a strip has a defect, its observables will show a deviation from the “typical value”. To recognize and quantify certain defects, it is necessary to determine these typical values, i.e. the values the observables would have without the defect. As a novel approach, local least-median-of-squares linear fits are applied to determine these “would-be” values of the observables. A least-median-of-squares fit is robust against outliers, i.e. it ignores the observable values of defective strips. Knowing the typical values allows to recognize, distinguish and quantify a whole range of strip defects. This contribution explains how the various defects appear in the data and in which order the defects can be recognized. The method has been used to find strip defects on 30 double-sided trapezoidal microstrip sensors for the Belle II Silicon Vertex Detector, which have been measured at the Institute of High Energy Physics, Vienna (Austria).

  18. High density plasmas and new diagnostics: An overview (invited)

    International Nuclear Information System (INIS)

    Celona, L.; Gammino, S.; Mascali, D.

    2016-01-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including “volume-integrated” X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a “pin-hole camera” has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines

  19. Radial convection of finite ion temperature, high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Wiesenberger, M.; Madsen, Jens; Kendl, Alexander

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line......-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross...

  20. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yongqi

    2014-02-01

    This report summarizes the methodology and preliminary results of a techno-economic analysis on a hot carbonate absorption process (Hot-CAP) with crystallization-enabled high pressure stripping for post-combustion CO{sub 2} capture (PCC). This analysis was based on the Hot-CAP that is fully integrated with a sub-critical steam cycle, pulverized coal-fired power plant adopted in Case 10 of the DOE/NETL’s Cost and Performance Baseline for Fossil Energy Plants. The techno-economic analysis addressed several important aspects of the Hot-CAP for PCC application, including process design and simulation, equipment sizing, technical risk and mitigation strategy, performance evaluation, and cost analysis. Results show that the net power produced in the subcritical power plant equipped with Hot-CAP is 611 MWe, greater than that with Econoamine (550 MWe). The total capital cost for the Hot-CAP, including CO{sub 2} compression, is $399 million, less than that for the Econoamine PCC ($493 million). O&M costs for the power plant with Hot-CAP is $175 million annually, less than that with Econoamine ($178 million). The 20-year levelized cost of electricity (LCOE) for the power plant with Hot-CAP, including CO2 transportation and storage, is 119.4 mills/kWh, a 59% increase over that for the plant without CO2 capture. The LCOE increase caused by CO{sub 2} capture for the Hot-CAP is 31% lower than that for its Econoamine counterpart.

  1. Environmental and Energy Quality Technologies. Task Order 0005: Organic Finishing Technologies, Sub Task 11: High Speed, Substrate Safe Specialty Coating Laser Stripping : Project: WP 2146

    Science.gov (United States)

    2015-06-22

    79 Figure 72. Baseline Wipe Sample Collected From TEKA Hopper ...79 Figure 73. Wipe Sample Taken From TEKA Hopper after Laser Stripping ............................... 83 v Distribution A. Approved...in industrial applications. Fiber lasers are typically smaller and lighter in weight than traditional lasers, saving valuable floor space. While

  2. ENVIRONMENTAL AND ENERGY QUALITY TECHNOLOGIES Task Order 0005: Organic Finishing Technologies Sub Task 11: High Speed, Substrate Safe Specialty Coating Laser Stripping

    Science.gov (United States)

    2015-06-22

    79 Figure 72. Baseline Wipe Sample Collected From TEKA Hopper ...79 Figure 73. Wipe Sample Taken From TEKA Hopper after Laser Stripping ............................... 83 v Distribution A. Approved...in industrial applications. Fiber lasers are typically smaller and lighter in weight than traditional lasers, saving valuable floor space. While

  3. Forbidden lines of highly ionized ions for localized plasma diagnostics

    International Nuclear Information System (INIS)

    Hinnov, E.; Fonck, R.; Suckewer, S.

    1980-06-01

    Numerous optically forbidden lines resulting from magnetic dipole transitions in low-lying electron configurations of highly ionized Fe, Ti and Cr atoms have been identified in PLT and PDX tokamak discharges, and applied for localized diagnostics in the high-temperature (0.5 to 3.0 keV) interior of these plasmas. The measurements include determination of local ion densities and their variation in time, and of ion motions (ion temperature, plasma rotations) through Doppler effect of the lines. These forbidden lines are particularly appropriate for such measurements because under typical tokamak conditions their emissivities are quite high (10 11 to 10 14 photons/cm 3 -sec), and their relatively long wavelengths allow the use of intricate optical techniques and instrumentation. The spatial location of the emissivity is directly measurable, and tends to occur near radii where the ionization potential of the ion in question is equal to the local electron temperature. In future larger and presumably higher-temperature tokamaks analogous measurements with somewhat heavier atoms, particularly krypton, and perhaps zirconium appear both feasible and desirable

  4. High plasma uric acid concentration: causes and consequences

    Directory of Open Access Journals (Sweden)

    de Oliveira Erick

    2012-04-01

    Full Text Available Abstract High plasma uric acid (UA is a precipitating factor for gout and renal calculi as well as a strong risk factor for Metabolic Syndrome and cardiovascular disease. The main causes for higher plasma UA are either lower excretion, higher synthesis or both. Higher waist circumference and the BMI are associated with higher insulin resistance and leptin production, and both reduce uric acid excretion. The synthesis of fatty acids (tryglicerides in the liver is associated with the de novo synthesis of purine, accelerating UA production. The role played by diet on hyperuricemia has not yet been fully clarified, but high intake of fructose-rich industrialized food and high alcohol intake (particularly beer seem to influence uricemia. It is not known whether UA would be a causal factor or an antioxidant protective response. Most authors do not consider the UA as a risk factor, but presenting antioxidant function. UA contributes to > 50% of the antioxidant capacity of the blood. There is still no consensus if UA is a protective or a risk factor, however, it seems that acute elevation is a protective factor, whereas chronic elevation a risk for disease.

  5. Wide Strip Casting Technology of Magnesium Alloys

    Science.gov (United States)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  6. The Whipple Strip Sky Survey

    Science.gov (United States)

    Kertzman, M. P.

    As part of the normal operation of the Whipple 10m Gamma Ray telescope, ten minute drift scan “zenith” runs are made each night of observation for use as calibration. Most of the events recorded during a zenith run are due to the background of cosmic ray showers. However, it would be possible for a hitherto unknown source of gamma rays to drift through the field. This paper reports the results of a search for serendipitous high energy gamma ray sources in the Whipple 10m nightly calibration zenith data. From 2000-2004 nightly calibration runs were taken at an elevation of 89 º. A 2- D analysis of these drift scan runs produces a strip of width ~ 3.5º in declination and spanning the full range of right ascension. In the 2004-05 observing season the calibration runs were taken at elevations of 86° and 83°. Beginning in the 2005-06 season, the nightly calibration runs were taken at an elevation of 80º. Collectively, these drift scans cover a strip approximately 12.5º wide in declination, centered at declination 37.18º, and spanning the full range of RA. The analysis procedures developed for drift scan data, the sensitivity of the method, and the results will be presented.

  7. Interaction of energetic ions with high-density plasmas

    International Nuclear Information System (INIS)

    Gericke, D.O.; Edie, D.; Grinenko, A.; Vorberger, J.

    2010-01-01

    Complete text of publication follows. The talk will review the importance of energetic ions in different inertial confinement fusion scenarios: i) heavy ion beams are very efficient drivers that can deliver the energy for compression in indirect as well as direct drive approaches; ii) the interaction of α-particles, that are created in a burning plasma, with the surrounding cold plasma is essential for creating a burn wave; iii) laser-produced ion beams are also a strong candidate to create the hot spot needed for fast ignition. In all applications the ions interact with dense matter that is characterized by strongly coupled ions and (possibly) partially degenerate electrons. Moreover, the coupling between beam ions and target electrons can be strong as well. Under these conditions, standard approaches for the beam-plasma interactions process are known to fail. The presentation will demonstrate how advanced models for the energy loss of ions in dense plasmas can resolve the issues mentioned above. These models are largely built on quantum kinetic theory that is able to describe degeneracy and strong coupling in a systematic way. In particular, strong interactions require a quantum description for electron-ion collisions in dense plasma environments, which is done by direct solutions of the Schroedinger equation. Degeneracy and collective excitations can be included via the Lenard-Balescu description where strong interactions may be included via a pseudo-potential approach. Finally, results are shown for all three fusion applications described above. The effects related to strong coupling and degeneracy mainly concern the end of the stopping range where the beam ion dose not have enough energy to excite all possible degrees of freedom and, thus, certain processes are frozen out. However, we also find a significant reduction of the range for swift heavy ions in the GeV-range when stopping in dense matter is considered. The stopping range of α-particles in the

  8. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...

  9. Sustained high βN plasmas on EAST tokamak

    Science.gov (United States)

    Gao, Xiang; the EAST team

    2018-05-01

    Sustained high normalized beta (βN ∼ 1.9) plasmas with an ITER-like tungsten divertor have been achieved on EAST tokamak recently. The high power NBI heating system of 4.8 MW and the 4.6 GHz lower hybrid wave of 1 MW were developed and applied to produce edge and internal transport barriers in high βN discharges. The central flat q profile with q (ρ) ∼ 1 at ρ safety factor q95 = 4.7 is identified by the multi-channel far-infrared laser polarimeter and the EFIT code. The fraction of non-inductive current is about 40%. The relation between fishbone activity and ITB formation is observed and discussed.

  10. Testbeam evaluation of silicon strip modules for ATLAS Phase - II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration; Ai, Xiaocong; Allport, Phillip; Arling, Jan-Hendrik; Atkin, Ryan Justin; Bruni, Lucrezia Stella; Carli, Ina; Casse, Gianluigi; Chen, Liejian; Chisholm, Andrew; Cormier, Kyle James Read; Cunningham, William Reilly; Dervan, Paul; Diez Cornell, Sergio; Dolezal, Zdenek; Dopke, Jens; Dreyer, Etienne; Dreyling-Eschweiler, Jan Linus Roderik; Escobar, Carlos; Fabiani, Veronica; Fadeyev, Vitaliy; Fernandez Tejero, Javier; Fleta Corral, Maria Celeste; Gallop, Bruce; Garcia-Argos, Carlos; Greenall, Ashley; Gregor, Ingrid-Maria; Greig, Graham George; Guescini, Francesco; Hara, Kazuhiko; Hauser, Marc Manuel; Huang, Yanping; Hunter, Robert Francis Holub; Keller, John; Klein, Christoph; Kodys, Peter; Koffas, Thomas; Kotek, Zdenek; Kroll, Jiri; Kuehn, Susanne; Lee, Steven Juhyung; Liu, Yi; Lohwasser, Kristin; Meszarosova, Lucia; Mikestikova, Marcela; Mi\\~nano Moya, Mercedes; Mori, Riccardo; Moser, Brian; Nikolopoulos, Konstantinos; Peschke, Richard; Pezzullo, Giuseppe; Phillips, Peter William; Poley, Anne-luise; Queitsch-Maitland, Michaela; Ravotti, Federico; Rodriguez Rodriguez, Daniel

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of \\mbox{$7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$}. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over $1x10^{15}$ 1 MeV neutron equivalent per $cm^{2}$ in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II test beam facility to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before irradiation. The DURANTA telescope was used to obtain a pointing...

  11. High-Q plasmas in the TFTR tokamak

    International Nuclear Information System (INIS)

    Jassby, D.L.; Barnes, C.W.; Bell, M.G.; Bitter, M.; Boivin, R.; Bretz, N.L.; Budny, R.V.; Bush, C.E.; Dylla, H.F.; Efthimion, P.C.; Fredrickson, E.D.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Hsuan, H.; Janos, A.C.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kieras-Phillips, C.; Kilpatrick, S.J.; LaMarche, P.H.; LeBlanc, B.; Mansfield, D.K.; Marmar, E.S.; McCune, D.C.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mueller, D.; Owens, D.K.; Park, H.K.; Paul, S.F.; Pitcher, S.; Ramsey, A.T.; Redi, M.H.; Sabbagh, S.A.; Scott, S.D.; Snipes, J.; Stevens, J.; Strachan, J.D.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Terry, J.L.; Timberlake, J.R.; Towner, H.H.; Ulrickson, M.; von Goeler, S.; Wieland, R.M.; Williams, M.; Wilson, J.R.; Wong, K.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.

    1991-01-01

    In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 26, 11 (1984)], the highest neutron source strength S n and D--D fusion power gain Q DD are realized in the neutral-beam-fueled and heated ''supershot'' regime that occurs after extensive wall conditioning to minimize recycling. For the best supershots, S n increases approximately as P 1.8 b . The highest-Q shots are characterized by high T e (up to 12 keV), T i (up to 34 keV), and stored energy (up to 4.7 MJ), highly peaked density profiles, broad T e profiles, and lower Z eff . Replacement of critical areas of the graphite limiter tiles with carbon-fiber composite tiles and improved alignment with the plasma have mitigated the ''carbon bloom.'' Wall conditioning by lithium pellet injection prior to the beam pulse reduces carbon influx and particle recycling. Empirically, Q DD increases with decreasing pre-injection carbon radiation, and increases strongly with density peakedness [n e (0)/left-angle n e right-angle] during the beam pulse. To date, the best fusion results are S n =5x10 16 n/sec, Q DD =1.85x10 -3 , and neutron yield=4.0x10 16 n/pulse, obtained at I p =1.6--1.9 MA and beam energy E b =95--103 keV, with nearly balanced co- and counter-injected beam power. Computer simulations of supershot plasmas show that typically 50%--60% of S n arises from beam--target reactions, with the remainder divided between beam--beam and thermonuclear reactions, the thermonuclear fraction increasing with P b

  12. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    Science.gov (United States)

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  13. High density plasma gun generates plasmas at 190 kilometers per second

    Science.gov (United States)

    Espy, P. N.

    1971-01-01

    Gun has thin metal foil disc which positions or localizes gas to be ionized during electrical discharge cycle, overcoming major limiting factor in obtaining such plasmas. Expanding plasma front travels at 190 km/sec, compared to plasmas of 50 to 60 km/sec previously achieved.

  14. Thermal history of the plasma and high-frequency gravitons

    CERN Document Server

    Giovannini, Massimo

    2009-01-01

    Possible deviations from a radiation-dominated evolution, occurring prior the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the $\\Lambda$CDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infra-red region of the graviton energy spectrum is nearly scale-invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma is smaller than the speed of light. Current (e.g. low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three la...

  15. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  16. Physics of high performance JET plasmas in D-T

    International Nuclear Information System (INIS)

    2001-01-01

    JET has recently operated with deuterium-tritium (D-T) mixtures, carried out an ITER physics campaign in hydrogen, deuterium, D-T and tritium, installed the Mark IIGB ''Gas Box'' divertor fully by remote handling and started physics experiments with this more closed divertor. The D-T experiments set records for fusion power (16.1 MW), ratio of fusion power to plasma input power (0.62, and 0.95±0.17 if a similar plasma could be obtained in steady-state) and fusion duration (4 MW for 4 s). A large scale tritium supply and processing plant, the first of its kind, allowed the repeated use of the 20 g tritium on site to supply 99.3 g of tritium to the machine. The H-mode threshold power is significantly lower in D-T, but the global energy confinement time is practically unchanged (no isotope effect). Dimensionless scaling ''Wind Tunnel'' experiments in D-T extrapolate to ignition with ITER parameters. The scaling is close to gyroBohm, but the mass dependence is not correct. Separating the thermal plasma energy into core and pedestal contributions could resolve this discrepancy (leading to proper gyroBohm scaling for the core) and also account for confinement degradation at high density and at high radiated power. Four radio frequency heating schemes have been tested successfully in D-T, showing good agreement with calculations. Alpha particle heating has been clearly observed and is consistent with classical expectations. Internal transport barriers have been established in optimised magnetic shear discharges for the first time in D-T and steady-state conditions have been approached with simultaneous internal and edge transport barriers. First results with the newly installed Mark IIGB divertor show that the in/out symmetry of the divertor plasma can be modified using differential gas fuelling, that optimised shear discharges can be produced, and that krypton gas puffing is effective in restoring L-mode edge conditions and establishing an internal transport barrier in

  17. Physics of high performance jet plasmas in D-T

    International Nuclear Information System (INIS)

    1999-01-01

    JET has recently operated with deuterium-tritium (D-T) mixtures, carried out an ITER physics campaign in hydrogen, deuterium, D-T and tritium, installed the Mark IIGB 'Gas Box' divertor fully by remote handling and started physics experiments with this more closed divertor. The D-T experiments set records for fusion power (16.1 MW), ratio of fusion power to plasma input power (0.62, and 0.95±0.17 if a similar plasma could be obtained in steady-state) and fusion duration (4 MW for 4 s). A large scale tritium supply and processing plant, the first of its kind, allowed the repeated use of the 20 g tritium on site to supply 99.3 g of tritium to the machine. The H-mode threshold power is significantly lower in D-T, but the global energy confinement time is practically unchanged (no isotope effect). Dimensionless scaling 'Wind Tunnel' experiments in D-T extrapolate to ignition with ITER parameters. The scaling is close to gyroBohm, but the mass dependence is not correct. Separating the thermal plasma energy into core and pedestal contributions could resolve this discrepancy (leading to proper gyroBohm scaling for the core) and also account for confinement degradation at high density and at high radiated power. Four radio frequency heating schemes have been tested successfully in D-T, showing good agreement with calculations. Alpha particle heating has been clearly observed and is consistent with classical expectations. Internal transport barriers have been established in optimised magnetic shear discharges for the first time in D-T and steady-state conditions have been approached with simultaneous internal and edge transport barriers. First results with the newly installed Mark IIGB divertor show that the in/out symmetry of the divertor plasma can be modified using differential gas fuelling, that optimised shear discharges can be produced, and that krypton gas puffing is effective in restoring L-mode edge conditions and establishing an internal transport barrier in such

  18. Physics of integrated high-performance NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J. E.; Bell, M. G.; Bell, R. E.; Fredrickson, E. D.; Gates, D. A.; Heidbrink, W.; Kaita, R.; Kaye, S. M.; Kessel, C. E.; Kugel, H.; LeBlanc, B. P.; Lee, K. C.; Levinton, F. M.; Maingi, R.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S. F.; Peebles, T.; Peng, M.; Raman, R.; Redi, M.; Roquemore, L.; Sabbagh, S. A.; Skiner, C. H.; Sontag, A.; Soukhanovskii, V.; Stratton, B.; Stutman, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; Wade, M.; Wilson, J. R.; Zhu, W.

    2005-01-01

    An overarching goal of magnetic fusion research is the integration of steady state operation with high fusion power density, high plasma β, good thermal and fast particle confinement, and manageable heat and particle fluxes to reactor internal components. NSTX has made significant progress in integrating and understanding the interplay between these competing elements. Sustained high elongation up to 2.5 and H-mode transitions during the I p ramp-up have increased β p and reduced l i at high current resulting in I p flat-top durations exceeding 0.8s for I p >0.8MA. These shape and profile changes delay the onset of deleterious global MHD activity yielding β N values >4.5 and β T ∼20% maintained for several current diffusion times. Higher ∫ N discharges operating above the non-wall limit are sustained via rotational stabilization of the RWM. H-mode confinement scaling factors relative to H98(y,2) span the range 1±0.4 for B T >4kG and show a stron (Nearly linear) residual scaling with B T . Power balance analysis indicates the electron thermal transport dominates the loss power in beam-heated H m ode discharges, but the core χ e can be significantly reduced through current profile modification consistent with reversed magnetic shear. Small ELM regimes have been obtained in high performance plasmas on NSTX, but the ELM type and associated pedestal energy loss are found to depend sensitively on the boundary elongation, magnetic balance, and edge collisionality. NPA data and TRANSP analysis suggest resonant interactions with mid-radius tearing modes may lead to large fast-ion transport. The associated fast-ion diffusion and/or loss likely impact(s) both the driven current and power deposition profiles from NBI heating. Results from experiments to initiate the plasma without the ohmic solenoid and integrated scenario with the TSC code will also be described. (Author)

  19. Strip casting apparatus and method

    Science.gov (United States)

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  20. Ulysses solar wind plasma observations at high southerly latitudes.

    Science.gov (United States)

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures.

  1. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  2. Vortices, Reconnection and Turbulence in High Electron-Beta Plasmas

    International Nuclear Information System (INIS)

    Stenzel, R. L.

    2004-01-01

    Plasmas in which the kinetic energy exceeds the magnetic energy by a significant factor are common in space and in the laboratory. Such plasmas can convect magnetic fields and create null points in whose vicinity first the ions become unmagnetized, then the electrons. This project focuses on the detailed study of the transition regime of these plasmas

  3. A high-current pulsed cathodic vacuum arc plasma source

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs (CVAs) are well established as a method for producing metal plasmas for thin film deposition and as a source of metal ions. Fundamental differences exist between direct current (dc) and pulsed CVAs. We present here results of our investigations into the design and construction of a high-current center-triggered pulsed CVA. Power supply design based on electrolytic capacitors is discussed and optimized based on obtaining the most effective utilization of the cathode material. Anode configuration is also discussed with respect to the optimization of the electron collection capability. Type I and II cathode spots are observed and discussed with respect to cathode surface contamination. An unfiltered deposition rate of 1.7 nm per pulse, at a distance of 100 mm from the source, has been demonstrated. Instantaneous plasma densities in excess of 1x10 19 m -3 are observed after magnetic filtering. Time averaged densities an order of magnitude greater than common dc arc densities have been demonstrated, limited by pulse repetition rate and filter efficiency

  4. High-Intensity High-order Harmonics Generated from Low-Density Plasma

    International Nuclear Information System (INIS)

    Ozaki, T.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ganeev, R. A.; Haessler, S.; Salieres, P.

    2009-01-01

    We study the generation of high-order harmonics from lowly ionized plasma, using the 10 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on the enhancement of a single order of the high-order harmonic spectrum generated in plasma using the fundamental and second harmonic of the ALLS beam line. We observe quasi-monochromatic harmonics for various targets, including Mn, Cr, Sn, and In. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. We demonstrate intensity enhancements of the 13th, 17th, 29th, and 33rd harmonics from these targets using the 800 nm pump laser and varying its chirp. We also characterized the attosecond nature of such plasma harmonics, measuring attosecond pulse trains with 360 as duration for chromium plasma, using the technique of ''Reconstruction of Attosecond Beating by Interference of Two-photon Transitions''(RABBIT). These results show that plasma harmonics are intense source of ultrashort coherent soft x-rays.

  5. Role of impurities in magnetically confined high temperature plasmas

    International Nuclear Information System (INIS)

    Barnett, C.F.

    1976-01-01

    A summary is given of the atomic physics concerned with plasma cooling by impurities and the limiting effect that impurities may have on heating of plasmas by neutral injection. A general description is given of the tokamak concept and the present and next generation experiments are described. The time and spatial behavior of O and Mo multicharged ions in present hydrogen plasmas is presented. This is followed by a discussion of the power loss from a plasma containing one percent Fe. Finally, the limitation of plasma heating by energetic H or D injection is summarized

  6. SiliPET: An ultra-high resolution design of a small animal PET scanner based on stacks of double-sided silicon strip detector

    International Nuclear Information System (INIS)

    Di Domenico, Giovanni; Zavattini, Guido; Cesca, Nicola; Auricchio, Natalia; Andritschke, Robert; Schopper, Florian; Kanbach, Gottfried

    2007-01-01

    We investigated with Monte Carlo simulations, using the EGSNrcMP code, the capabilities of a small animal PET scanner based on four stacks of double-sided silicon strip detectors. Each stack consists of 40 silicon detectors with dimension of 60x60x1 mm 3 and 128 orthogonal strips on each side. Two coordinates of the interaction are given by the strips, whereas the third coordinate is given by the detector number in the stack. The stacks are arranged to form a box of 5x5x6 cm 3 with minor sides opened; the box represents the minimal FOV of the scanner. The performance parameters of the SiliPET scanner have been estimated giving a (positron range limited) spatial resolution of 0.52 mm FWHM, and an absolute sensitivity of 5.1% at the center of system. Preliminary results of a proof of principle measurement done with the MEGA advanced Compton imager using a ∼1 mm diameter 22 Na source, showed a focal ray tracing FWHM of 1 mm

  7. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    International Nuclear Information System (INIS)

    Javanbakht, Mehran; Divsar, Faten; Badiei, Alireza; Fatollahi, Fatemeh; Khaniani, Yeganeh; Ganjali, Mohammad Reza; Norouzi, Parviz; Chaloosi, Marzieh; Ziarani, Ghodsi Mohammadi

    2009-01-01

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s -1 in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  8. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Javanbakht, Mehran [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nano Science and Technology Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: mehranjavanbakht@gmail.com; Divsar, Faten [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Fatollahi, Fatemeh [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khaniani, Yeganeh [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza; Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Chaloosi, Marzieh [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Department of Chemistry, University of Alzahra, Tehran (Iran, Islamic Republic of)

    2009-09-30

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s{sup -1} in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  9. The CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Bartalini, P.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Raffaelli, F.; Raso, G.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Wang, Y.; Watts, S.; Wittmer, B.

    1999-01-01

    The Silicon Strip Tracker (SST) is the intermediate part of the CMS Central Tracker System. SST is based on microstrip silicon devices and in combination with pixel detectors and the Microstrip Gas Chambers aims at performing pattern recognition, track reconstruction and momentum measurements for all tracks with p T ≥2 GeV/c originating from high luminosity interactions at √s=14 TeV at LHC. We aim at exploiting the advantages and the physics potential of the precise tracking performance provided by the microstrip silicon detectors on a large scale apparatus and in a much more difficult environment than ever. In this paper we describe the actual SST layout and the readout system. (author)

  10. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  11. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  12. Eddy current distribution and lift force for finite MAGLEV strips

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L; Eastham, A R; Fombrun, C; Chong, M

    1974-07-01

    The transverse distribution of induced eddy currents across a flat conducing strip of finite width, due to a rectangular dc magnet moving above it, was modelled experimentally, and was compared with that calculated for an infinite sheet. The electrodynamic suspension was simulated by means of a stationary ac-excited copper magnet suspended above an aluminum strip, and the induced surface current density was measured by a voltage pickup probe connected to a lock-in amplifier. The effect of reducing strip width is examined and shown to produce high current densities close to the edges. These results are related to the variation of lift force with strip width, determined by impedance modelling. A slight enhancement of lift is evident for intermediate strip widths.

  13. On the atomic line profiles in high pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, J. F. J.; Gnybida, M.; Rijke, A. J.; Dijk, J. van [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Suijker, J. L. G. [Philips Lighting R and D Category Professional Lamps, P.O. Box 80020, 5600 JM Eindhoven (Netherlands)

    2013-11-14

    In a previous contribution to this journal [H. P. Stormberg, J. Appl. Phys. 51(4), 1963 (1980)], Stormberg presented an analytical expression for the convolution of Lorentz and Levy line profiles, which models atomic radiative transitions in high pressure plasmas. Unfortunately, the derivations are flawed with errors and the final expression, while correct, is accompanied by misguiding comments about the meaning of the symbols used therein, in particular the “complex error function.” In this paper, we discuss the broadening mechanisms that give rise to Stormberg's model and present a correct derivation of his final result. We will also provide an alternative expression, based on the Faddeeva function, which has decisive computational advantages and emphasizes the real-valuedness of the result. The MATLAB/Octave scripts of our implementation have been made available on the publisher's website for future reference.

  14. Properties of partially ionized hydrogen plasmas in high electric fields

    International Nuclear Information System (INIS)

    Morawetz, K.

    1993-03-01

    In this thesis the fundamental equations of many-particle quantum-statistics of nonequilibrium are treated in respect to arbitrary high electric fields. Generalizations are found for the T-matrix approximation as well as for the shielded potential approximation valid for any field strength. These result in a non-Markovian behavior of the obtained collision integrals, also known as intra-collisional-field-effect (ICFE), and in a broadening of the energy conservation, the so-called collisional broadening (CB), caused by applied electric fields. In linear response it is shown in a new way, how the Debye-Onsager relaxation effect can be rederived from these collision integrals. Furthermore the complete quantum result is presented. Both effects, ICFE and CB, contribute to the right classical limit. The quantum result yields an surprising maximum of this field effects in dependence of the interacting mass ratio, which may be important in exciton-plasmas and semiconductors. (orig.)

  15. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  16. High power light gas helicon plasma source for VASIMR

    International Nuclear Information System (INIS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; McCaskill, Greg E.; Winter, D. Scott; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2006-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition

  17. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  18. Dispersion relation and Landau damping of waves in high-energy density plasmas

    International Nuclear Information System (INIS)

    Zhu Jun; Ji Peiyong

    2012-01-01

    We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi–Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters. (paper)

  19. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NARCIS (Netherlands)

    N. den Harder,; D.C. Schram,; W. J. Goedheer,; de Blank, H. J.; M. C. M. van de Sanden,; van Rooij, G. J.

    2015-01-01

    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1–5 × 10 20  m −3 ) low temperature (∼3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center,

  20. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    Berg, van den M.A.; Bystrov, K.E.; Pasquet, R.; Zielinski, J.J.; De Temmerman, G.C.

    2013-01-01

    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m-3) and plasma composition (H2, Ar, N2) relevant for the ITER divertor plasma. The 2D surface

  1. The role of high speed photography in plasma instability research on the AEC tokamak

    International Nuclear Information System (INIS)

    Fletcher, J.D.; Coster, D.P.; De Villiers, J.A.M.; Kotze, P.B.; Nothnagel, G.; O'Mahony, J.R.; Roberts, D.E.; Sherwell, D.

    1986-01-01

    High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions in fusion research devices like tokamaks. Such a system has been installed on the AEC tokamak. This paper reports some preliminary results obtained during typical plasma discharges

  2. Bremsstrahlung spectra for Al, Cs, and Au atoms in high-temperature, high-density plasmas

    International Nuclear Information System (INIS)

    Kim, L.; Pratt, R.H.; Tseng, H.K.

    1985-01-01

    Results are presented from a numerical calculation for the bremsstrahlung spectrum and Gaunt factors of Al, Cs, and Au atoms in high-temperature (-T), high-density (-rho) plasmas. Plasma temperatures kT = 0.1 and 1.0 keV and plasma densities rho = rho 0 (the normal solid density) and rho = 100rho 0 are considered. This allows us to determine the generality and identify the origins of features which we had previously identified in calculations for Cs. We also now present results for the total energy loss of an electron in such a plasma. We use a relativistic multipole code which treats the bremsstrahlung process as a single-electron transition in a static screened central potential. We take for the static potential corresponding to an atom in a hot dense plasma the finite-temperature, finite-density Thomas-Fermi model. This approach corresponds to an average atom in local thermodynamic equilibrium. In comparison to isolated-neutral-atom results we observe general suppression of cross sections and a particular suppression in the tip region of the spectrum. Within this model, both superscreening and shape resonances are found in the circumstances of extreme density. At more normal densities and except for the soft-photon end, the spectrum at these energies for an atom in a hot plasma (characterized by an average degree of ionization) can be well represented by the spectrum of the corresponding isolated ion, which has a similar potential shape at the distances which characterize the process

  3. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Czech Academy of Sciences Publication Activity Database

    Vesel, A.; Drenik, A.; Elersic, K.; Mozetič, M.; Kovač, J.; Gyergyek, T.; Stöckel, Jan; Varju, Jozef; Pánek, Radomír; Balat-Pichelin, M.

    2014-01-01

    Roč. 305, June (2014), s. 674-682 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : Inconel * Oxidation * High temperature * Oxygen plasma * Hydrogen plasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.711, year: 2014 https://www.sciencedirect.com/science/article/pii/S0169433214007119

  4. Plasma properties and atomic processes at medium and high pressures

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1979-01-01

    When the state of a plasma deviates from local thermodynamic equilibrium (L.T.E.) the equilibrium relations cannot be applied. The thermodynamic properties must then be described on the basis of models in which the individual atomic properties and elementary reactions intervene. The first part of the paper gives a schematic description of a plasma suffering power input, power losses and external constraints in the form of initial and boundary conditions. The rate equations for particle density, momentum and energy of open systems are summarized, including nuclear reactions. The second part gives a review of the progress made in understanding the properties of special types of non-L.T.E. plasmas such as glow discharge plasmas, negative ion plasmas (with application to the physics of SF 6 circuit-breakers) and Tokamak plasmas on the basis of these rate equations

  5. Physics of Collisional Plasmas Introduction to High-Frequency Discharges

    CERN Document Server

    Moisan, Michel

    2012-01-01

    The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...

  6. Stability in high gain plasmas in DIII-D

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Houlberg, W.A.; Murakami, M.; Wade, M.R.

    1996-10-01

    Fusion power gain has been increased by a factor of 3 in DIII-D plasmas through the use of strong discharge shaping and tailoring of the pressure and current density profiles. H-mode plasmas with weak or negative central magnetic shear are found to have neoclassical ion confinement throughout most of the plasma volume. Improved MHD stability is achieved by controlling the plasma pressure profile width. The highest fusion power gain Q (ratio of fusion power to input power) in deuterium plasmas was 0.0015, which extrapolates to an equivalent Q of 0.32 in a deuterium-tritium plasma and is similar to values achieved in tokamaks of larger size and magnetic fields

  7. Transport of high fluxes of hydrogen plasma in a linear plasma generator

    NARCIS (Netherlands)

    Vijvers, W.A.J.; Al, R.S.; Lopes Cardozo, N.J.; Goedheer, W.J.; Groot, de B.; Kleyn, A.W.; Meiden, van der H.J.; Peppel, van de R.J.E.; Schram, D.C.; Shumack, A.E.; Westerhout, J.; Rooij, van G.J.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    A study was made to quantify the losses during the convective hydrogen plasma transport in the linear plasma generator Pilot-PSI due to volume recombination. A transport efficiency of 35% was achieved at neutral background pressures below ~7 Pa in a magnetic field of 1.2 T. This efficiency decreased

  8. Silicon micromachining using a high-density plasma source

    International Nuclear Information System (INIS)

    McAuley, S.A.; Ashraf, H.; Atabo, L.; Chambers, A.; Hall, S.; Hopkins, J.; Nicholls, G.

    2001-01-01

    Dry etching of Si is critical in satisfying the demands of the micromachining industry. The micro-electro-mechanical systems (MEMS) community requires etches capable of high aspect ratios, vertical profiles, good feature size control and etch uniformity along with high throughput to satisfy production requirements. Surface technology systems' (STS's) high-density inductively coupled plasma (ICP) etch tool enables a wide range of applications to be realized whilst optimizing the above parameters. Components manufactured from Si using an STS ICP include accelerometers and gyroscopes for military, automotive and domestic applications. STS's advanced silicon etch (ASE TM ) has also allowed the first generation of MEMS-based optical switches and attenuators to reach the marketplace. In addition, a specialized application for fabricating the next generation photolithography exposure masks has been optimized for 200 mm diameter wafers, to depths of ∼750 μm. Where the profile is not critical, etch rates of greater than 8 μm min -1 have been realized to replace previous methods such as wet etching. This is also the case for printer applications. Specialized applications that require etching down to pyrex or oxide often result in the loss of feature size control at the interface; this is an industry wide problem. STS have developed a technique to address this. The rapid progression of the industry has led to development of the STS ICP etch tool, as well as the process. (author)

  9. Coaxial plasma thrusters for high specific impulse propulsion

    Science.gov (United States)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  10. Mapping high-latitude plasma convection with coherent HF radars

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.-P.; Hanuise, C.; Kelly, J.

    1989-01-01

    In this decade, a new technique for the study of ionosphere electrodynamics has been implemented in an evolving generation of high-latitude HF radars. Coherent backscatter from electron density irregularities at F region altitudes is utilized to observe convective plasma motion. The electronic beam forming and scanning capabilities of the radars afford an excellent combination of spatial (∼50 km) and temporal (∼1 min) resolution of the large-scale (∼10 6 km 2 ) convection pattern. In this paper, we outline the methods developed to synthesize the HF radar data into two-dimensional maps of convection velocity. Although any single radar can directly measure only the line-of-sight, or radial, component of the plasma motion, the convection pattern is sometimes so uniform and stable that scanning in azimuth serves to determine the transverse component as well. Under more variable conditions, data from a second radar are necessary to unambiguously resolve velocity vectors. In either case, a limited region of vector solution can be expanded into contiguous areas of single-radar radial velocity data by noting that the convection must everywhere be divergence-free, i.e., ∇·v=0. It is thus often possible to map velocity vectors without extensive second-radar coverage. We present several examples of two-dimensional velocity maps. These show instances of L shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft. We include a study of merged coherent and incoherent radar data that illustrates the applicability of these methods to other ionospheric radar systems. copyright American Geophysical Union 1989

  11. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    Science.gov (United States)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  12. Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Grigorev, Petr, E-mail: grigorievpit@gmail.com [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg (Russian Federation); Matveev, Dmitry [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Trilateral Euregio Cluster, 52425, Jülich (Germany); Bakaeva, Anastasiia [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Department of Applied Physics, Ghent University (Belgium); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg (Russian Federation); Van Oost, Guido [Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Noterdaeme, Jean-Marie [Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2016-12-01

    Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 10{sup 24} D/m{sup 2}/s and fluence of 10{sup 26} D/m{sup 2}) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10{sup −5} at{sup −1}, while the bulk retention is about 4 × 10{sup −7} at{sup −1}, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.

  13. Calculation of high-pressure argon plasma parameters produced by excimer laser

    International Nuclear Information System (INIS)

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  14. Results from core-edge experiments in high Power, high performance plasmas on DIII-D

    Directory of Open Access Journals (Sweden)

    T.W. Petrie

    2017-08-01

    Full Text Available Significant challenges to reducing divertor heat flux in highly powered near-double null divertor (DND hybrid plasmas, while still maintaining both high performance metrics and low enough density for application of RF heating, are identified. For these DNDs on DIII-D, the scaling of the peak heat flux at the outer target (q⊥P ∝ [PSOL x IP] 0.92 for PSOL= 8−19MW and IP= 1.0–1.4MA, and is consistent with standard ITPA scaling for single-null H-mode plasmas. Two divertor heat flux reduction methods were tested. First, applying the puff-and-pump radiating divertor to DIII-D plasmas may be problematical at high power and H98 (≥ 1.5 due to improvement in confinement time with deuterium gas puffing which can lead to unacceptably high core density under certain conditions. Second, q⊥P for these high performance DNDs was reduced by ≈35% when an open divertor is closed on the common flux side of the outer divertor target (“semi-slot” but also that heating near the slot opening is a significant source for impurity contamination of the core.

  15. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  16. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  17. SiliPET: An ultra high resolution design of a small animal PET scanner based on double sided silicon strip detector stacks

    International Nuclear Information System (INIS)

    Zavattini, G.; Cesca, N.; Di Domenico, G.; Moretti, E.; Sabba, N.

    2006-01-01

    We investigated the capabilities of a small animal PET scanner, named SiliPET, based on four stacks of double sided silicon strips detectors. Each stack consists of 40 silicon detectors with dimension 60x60x1mm 3 . These are arranged to form a box 5x5x6cm 3 with minor sides opened; the box represents the maximal FOV of the scanner. The performance parameters of SiliPET scanner have been estimated, giving an intrinsic spatial resolution of 0.52mm and a sensitivity of 5.1% at the center of the system

  18. Design of Tokamak plasma with high Tc superconducting coils

    International Nuclear Information System (INIS)

    Uchimoto, T.; Miya, K.; Yoshida, Y.; Yamada, T.

    1999-01-01

    This paper presents a design of tokamak plasma in light of how the small ignited tokamak is possible with use of the HTSC coils as plasma stabilizer. The same data base and formulas as ITER are here used and any innovative technology other than the HTSC stabilizing coils is not assumed. (author)

  19. Controllers for high-performance nuclear fusion plasmas

    NARCIS (Netherlands)

    Baar, de M.R.

    2012-01-01

    A succesful nuclear fusion reactor will confine plasma at hig temperatures and densities, with low thermal losses. The workhorse of the nuclear fusion community is the tokamak, a toroidal device in which plasmas are confined by poloidal and toroidal magnetic fields. Ideally, the confirming magnetic

  20. Continuous Strip Reduction Test Simulating Tribological Conditions in Ironing

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Nielsen, Chris Valentin; Christiansen, Peter

    2017-01-01

    materials, surface roughnesses, normal pressure, sliding length, sliding speed, interface temperature and lubrication. This paper proposes a new Strip Reduction Test (SRT) for industrial ironing processes that is capable of replicating the highly severe tribological conditions that are experienced during...

  1. High density internal transport barriers for burning plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Ridolfini, V Pericoli [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Barbato, E [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Buratti, P [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy)] (and others)

    2005-12-15

    A tokamak plasma with internal transport barriers (ITBs) is the best candidate for a steady ITER operation, since the high energy confinement allows working at plasma currents (I{sub p}) lower than the reference scenario. To build and sustain an ITB at the ITER high density ({>=}10{sup 20} m{sup -3}) and largely dominant electron (e{sup -}) heating is not trivial in most existing tokamaks. FTU can instead meet both requests, thanks to its radiofrequency heating systems, lower hybrid (LH, up to 1.9 MW) and electron cyclotron (EC up to 1.2 MW). By the combined use of them, ITBs are obtained up to peak densities n{sub e0} > 1.3 x 10{sup 20} m{sup -3}, with central e{sup -} temperatures T{sub e0} {approx} 5.5 keV, and are sustained for as long as the heating pulse is applied (>35 confinement times, {tau}{sub E}). At n{sub e0} {approx} 0.8 x 10{sup 20} m{sup -3} T{sub e0} can be larger than 11 keV. Almost full current drive (CD) and an overall good steadiness is attained within about one {tau}{sub E}, 20 times faster than the ohmic current relaxation time. The ITB extends over a central region with an almost flat or slightly reversed q profile and q{sub min} {approx} 1.3 that is fully sustained by off-axis lower hybrid current drive. Consequent to this is the beneficial good alignment of the bootstrap current, generated by the ITB large pressure gradients, with the LH driven current. Reflectometry shows a clear change in the turbulence close to the ITB radius, consistent with the reduced e{sup -} transport. Ions (i{sup +}) are significantly heated via collisions, but thermal equilibrium with electrons cannot be attained since the e{sup -}-i{sup +} equipartition time is always 4-5 times longer than {tau}{sub E}. No degradation of the overall ion transport, rather a reduction of the i{sup +} heat diffusivity, is observed inside the ITB. The global confinement has been improved up to 1.6 times over the scaling predictions. The ITB radius can be controlled by adjusting the

  2. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  3. The application of high-speed photography and spectrography for investigations of erosive pulsed plasma streams

    International Nuclear Information System (INIS)

    Kiselevskiy, L.I.; Minko, L.Ja.

    The extensive information of pulsed plasma dynamic processes related to formation and interaction of plasma streams with a surrounding medium and obstacles is obtained with the help of high-speed photo and spectrography. The wave structure of pulsed supersonic under-expanded erosive plasma jets is studied. Some physical processes which are due to interactions of laser radiation with the laser-produced erosive plasma and of this plasma with a surrounding medium are investigated. The wide possibilities of frame photography of spectra quantitative spectroscopic investigations of fast-proceeding plasma processes are shown on the basis of joint use of high-speed photographic apparatus (type SFR) and standard spectrographs. The radial distribution of charged-particle concentrations at separate moments of time is obtained from the broadening of spectral lines at the brightness of the continuous spectrum of an erosive plasma jet from a pulsed accelerator

  4. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.

    2000-12-01

    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  5. High-Density Plasma-Induced Etch Damage of GaN

    International Nuclear Information System (INIS)

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-01-01

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN

  6. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  7. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    International Nuclear Information System (INIS)

    McGrath, R.T.; Yamashina, T.

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition

  8. Separation method for rare-earths using high-voltage electrophoresis on paper strip; Methode de separation des terres rares par electrophorese a haute tension sur papier - support

    Energy Technology Data Exchange (ETDEWEB)

    Clarence, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    The equipment includes an electrophoresis set running at 3 000 V and 20 mA. Two cooling plates are used as heat exchanger, and a pneumatic pressure device to insure an uniform pressure on the paper strip laid flat. The mobilities and the separations of the rare earths in lactic, and, {alpha} hydroxy-isobutyric acid solutions are investigated on cellulose acetate strip. Better results are obtained with {alpha} hydroxy-isobutyric acid. The method is rapid and allows a fine fractionation of rare earth elements within less than an hour. A complete separation of a Ce - Pr - Nd - Pm - Eu mixture, and a Y - Tb mixture is obtained. (author) [French] L'equipement comporte un appareil d'electrophorese fonctionnant sous 3000 V a 20 mA. Deux plaques refrigerantes absorbent la chaleur dissipee, et un coussin pneumatique assure une pression uniforme sur le papier support. Les mobilites et les separations des terres rares sont etudiees en milieux lactiques et {alpha} hydroxyisobutyriques sur papier d'acetate de cellulose. De meilleurs resultats sont obtenus avec l'acide {alpha} hydroxyisobutyrique. La methode est tres rapide et permet de separer un melange de terres rares radioactives en moins d'une heure. Des separations fines d'un melange Ce, Pr, Nd, Pm, Eu, et d'un melange Y, Tb sont egalement obtenues. (auteur)

  9. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  10. Characterization of galvannealed strip

    International Nuclear Information System (INIS)

    Moreas, G.; Hardy, Y.

    1999-01-01

    With the aim of enhancing coating quality control during galvannealing process, an online microscopic image acquisition sensor has been developed at CRM. In galvannealing process, the ζ phase surface density is a coating quality characteristic, and the on-line microscope, equipped with optics placed at 20 mm from the surface, grabs 250 μm x 190 μm images on which ζ crystals (approximate dimensions: 1 μm x 10 μm) can be clearly identified. On-line, the sensor is mounted in front of a roll where the strip has a stable position. The coating surface to sensor optics distance is continuously measured by an accurate triangulation sensor (1 μm repeatability) and is adjusted in such a way that, due to roll eccentricity, the image is focused at least twice per revolution. When focused, image of moving product is frozen by a short (10 ns) laser light pulse and is grabbed. The obtained image is then processed to extract ζ phase percentage and allows adjustment of process parameters to reach the desired coating characteristics. (author)

  11. Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.

    Science.gov (United States)

    Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo

    2016-05-06

    We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.

  12. Supersonic plasma flow between high latitude conjugate ionospheres

    International Nuclear Information System (INIS)

    Roesler, G.

    1975-01-01

    The polar wind problem has been investigated for closed field lines in situations where one of the two conjugate ionospheric regions is fully illuminated by the sun and the other darkness (solstices at high latitudes). A supersonic flow between hemispheres is possible; the magnetospheric part of this flow must be symmetric with respect to the equator. The daytime fluxes are proportional to the neutral hydrogen density. Fluxes of the order of 10 8 cm -2 sec -1 are only possible with density considerably higher than given by CIRA models. For stationary solutions higher flow speeds are needed on the dark side than provided from the illuminated side. It is concluded that shock waves with upward velocities of about 5 km/sec would form above the dark ionosphere. This implies a reduction by a factor of 3 to 5 of the plasma influx into the dark hemisphere, whereby F-layer densities of only up to 2 x 10 4 cm -3 can be maintained. (orig.) [de

  13. Miniaturized heat flux sensor for high enthalpy plasma flow characterization

    International Nuclear Information System (INIS)

    Gardarein, Jean-Laurent; Battaglia, Jean-Luc; Lohlec, Stefan; Jullien, Pierre; Van Ootegemd, Bruno; Couzie, Jacques; Lasserre, Jean-Pierre

    2013-01-01

    An improved miniaturized heat flux sensor is presented aiming at measuring extreme heat fluxes of plasma wind tunnel flows. The sensor concept is based on an in-depth thermocouple measurement with a miniaturized design and an advanced calibration approach. Moreover, a better spatial estimation of the heat flux profile along the flow cross section is realized with this improved small sensor design. Based on the linearity assumption, the heat flux is determined using the impulse response of the sensor relating the heat flux to the temperature of the embedded thermocouple. The non-integer system identification (NISI) procedure is applied that allows a calculation of the impulse response from transient calibration measurements with a known heat flux of a laser source. The results show that the new sensor leads to radially highly resolved heat flux measurement for a flow with only a few centimetres in diameter, the so far not understood non-symmetric heat flux profiles do not occur with the new sensor design. It is shown that this former effect is not a physical effect of the flow, but a drawback of the classical sensor design. (authors)

  14. Laser-produced dense plasma in extremely high pressure gas and its application to a plasma-bridged gap switch

    International Nuclear Information System (INIS)

    Yamada, J.; Okuda, A.

    1989-01-01

    When an extremely high pressure gas is irradiated by an intense laser light, a dense plasma produced at the focal spot moves towards the focusing lens with a high velocity. Making use of this phenomenon, a new plasma-bridged gap switch is proposed and its switching characteristics is experimentally examined. From the experiments, it is confirmed that the switching time is almost constant with the applied voltage only when the focal spot is just on the positive electrode, indicating that the bridging of gap is caused by the laser light. (author)

  15. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  16. Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2018-03-01

    The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.

  17. The theta-pinch - a versatile tool for the generation and study of high temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hintz, E. [Inst. fuer Plasmaphysik, Forschungszentrum-Juelich GmbH (Germany)

    2004-07-01

    The more general technical and physical features of theta-pinches are described. Special field of their application are high-ss plasmas. Two examples are analysed and studied in more detail: a high density plasma near thermal equilibrium and a low density plasma far from equilibrium. The latter is of special interest for future investigations. Possibilities of field-reversed configurations are pointed out. (orig.)

  18. The theta-pinch - a versatile tool for the generation and study of high temperature plasmas

    International Nuclear Information System (INIS)

    Hintz, E.

    2004-01-01

    The more general technical and physical features of theta-pinches are described. Special field of their application are high-ss plasmas. Two examples are analysed and studied in more detail: a high density plasma near thermal equilibrium and a low density plasma far from equilibrium. The latter is of special interest for future investigations. Possibilities of field-reversed configurations are pointed out. (orig.)

  19. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  20. Buffers and vegetative filter strips

    Science.gov (United States)

    Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney

    2008-01-01

    This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.

  1. High energy particle acceleration by relativistic plasma waves

    International Nuclear Information System (INIS)

    Amiranoff, F.; Jacquet, F.; Mora, P.; Matthieussent, G.

    1991-01-01

    Accelerating schemes using plasmas, lasers or electron beams are proposed and compared to electron bunches in dielectric media or laser propagation through a slow wave structure made of liquid droplets. (L.C.J.A.). 33 refs, 20 figs

  2. Electron Cyclotron Resonance Heating of a High-Density Plasma

    DEFF Research Database (Denmark)

    Hansen, F. Ramskov

    1986-01-01

    Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...... of the electron cyclotron frequency. These are injected obliquely from the outside of the tokamak near an optimal angle to the magnetic field lines. This method involves two mode conversions. The ordinary waves are converted into extraordinary waves near the plasma cut-off layer. The extraordinary waves...... are subsequently converted into electrostatic electron Bernstein waves at the upper hybrid resonance layer, and the Bernstein waves are completely absorbed close to the plasma centre. Results are presented from ray-tracinq calculations in full three-dimensional geometry using the dispersion function for a hot non...

  3. Laboratory of plasma studies. Papers on high power particle beams

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains paper on Exploding metal film active anode sources experiments on the Lion extractor Ion Diode; Long conductor time plasma opening switch experiments; and Focusing studies of an applied B r extraction diode on the Lion accelerator

  4. Magnetic stripping studies for SPL

    CERN Document Server

    Posocco, P; CERN. Geneva. BE Department

    2010-01-01

    Magnetic stripping of H- can seriously enhance the beam losses along the SPL machine. These losses depend on the beam energy, on the beam transverse distribution and on the intensity of the magnetic field. For radioprotection issues the losses must be limited to 1 W/m. In this paper we will concentrate on the stripping phenomena inside the quadrupole magnets with the aim of defining the quadrupole range for the design phase of SPL.

  5. Active neutral particle diagnostics for high temperature plasma

    International Nuclear Information System (INIS)

    Tobita, Kenji

    1993-01-01

    This paper describes experimental studies related to active neutral particle diagnostics in the JT-60 tokamak. Detection efficiencies of a micro-channel plate (MCP), which has widely used in plasma diagnostics, were determined for ions and neutrals. Multi-step processes for a neutral beam is predicted to enhance the beam stopping cross section in a plasma. In order to confirm the predictions, shine-through for a hydrogen and for a helium beam was measured in the JT-60 ohmic plasmas. The measurements for a hydrogen beam resulted in the cross sectional enhancement in the beam stopping. The same experiment using a helium beam indicated that the cross sectional enhancement for helium was much smaller than that for hydrogen at almost same plasma parameters. Ion temperature diagnostic using active beam scattering was developed in data processing technique, in consideration of the device function of a neutral particle analyzer and in estimation of the effect of beam ion component. Fundamental experiments for detecting helium ions in a plasma were performed using two-electron transfer reaction between a helium atomic beam and helium ions, and the energy distribution and the density of the helium ions were determined. These experiments demonstrated promise of the two-electron transfer reaction as an alpha ash detection in a burning plasma. A parasitic neutral efflux accompanied by active beam injection was investigated. (J.P.N.)

  6. Simulation of cold plasma in a chamber under high- and low-frequency voltage conditions for a capacitively coupled plasma

    Institute of Scientific and Technical Information of China (English)

    Hao Daoxin; Cheng Jia; Ji Linhong; Sun Yuchun

    2012-01-01

    The characteristics of cold plasma,especially for a dual-frequency capacitively coupled plasma (CCP),play an important role for plasma enhanced chemical vapor deposition,which stimulates further studies using different methods.In this paper,a 2D fluid model was constructed for N2 gas plasma simulations with CFD-ACE+,a commercial multi-physical software package.First,the distributions of electric potential (Epot),electron number density (Ne),N number density (N) and electron temperature (Te) are described under the condition of high frequency (HF),13.56 MHz,HF voltage,300 V,and low-frequency (LF) voltage,0 V,particularly in the sheath.Based on this,the influence of HF on Ne is further discussed under different HF voltages of 200 V,300 V,400 V,separately,along with the influence of LF,0.3 MHz,and various LF voltages of 500 V,600 V,700 V.The results show that sheaths of about 3 mm are formed near the two electrodes,in which Epot and Te vary extensively with time and space,while in the plasma bulk Epot changes synchronously with an electric potential of about 70 V and Te varies only in a small range.N is also modulated by the radio frequency,but the relative change in N is small.Ne varies only in the sheath,while in the bulk it is steady at different time steps.So,by comparing Ne in the plasma bulk at the steady state,we can see that Ne will increase when HF voltage increases.Yet,Ne will slightly decrease with the increase of LF voltage.At the same time,the homogeneity will change in both x and y directions.So both HF and LF voltages should be carefully considered in order to obtain a high-density,homogeneous plasma.

  7. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    International Nuclear Information System (INIS)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.

    2001-01-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed

  8. Compatibility of advanced tokamak plasma with high density and high radiation loss operation in JT-60U

    International Nuclear Information System (INIS)

    Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; Porter, G.D.; Rognlien, T.D.; Rensink, M.E.

    2005-01-01

    Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high β p H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operation regime is extended to high density above the Greenwald density (n GW ) with high confinement (HH y2 >1) and high radiation loss fraction (f rad >0.9) by tailoring the internal transport barriers (ITBs). High confinement of HH y2 =1.2 is sustained even with 80% radiation from the main plasma enhanced by accumulated metal impurity. The divertor radiation is enhanced by Ne seeding and the ratio of the divertor radiation to the total radiation is increased from 20% without seeding to 40% with Ne seeding. In the high β p H-mode plasmas, high confinement (HH y2 =0.96) is maintained at high density (n-bar e /n GW =0.92) with high radiation loss fraction (f rad ∼1) by utilizing high-field-side pellets and Ar injections. The high n-bar e /n GW is obtained due to a formation of clear density ITB. Strong core-edge parameter linkage is observed, as well as without Ar injection. In this linkage, the pedestal β p , defined as β p ped =p ped /(B p 2 /2μ 0 ) where p ped is the plasma pressure at the pedestal top, is enhanced with the total β p . The radiation profile in the main plasma is peaked due to Ar accumulation inside the ITB and the measured central radiation is ascribed to Ar. The impurity transport analyses indicate that Ar accumulation by a factor of 2 more than the electron, as observed in the high β p H-mode plasma, is acceptable even with peaked density profile in a fusion reactor for impurity seeding. (author)

  9. Planned upgrade to the coaxial plasma source facility for high heat flux plasma flows relevant to tokamak disruption simulations

    International Nuclear Information System (INIS)

    Caress, R.W.; Mayo, R.M.; Carter, T.A.

    1995-01-01

    Plasma disruptions in tokamaks remain serious obstacles to the demonstration of economical fusion power. In disruption simulation experiments, some important effects have not been taken into account. Present disruption simulation experimental data do not include effects of the high magnetic fields expected near the PFCs in a tokamak major disruption. In addition, temporal and spatial scales are much too short in present simulation devices to be of direct relevance to tokamak disruptions. To address some of these inadequacies, an experimental program is planned at North Carolina State University employing an upgrade to the Coaxial Plasma Source (CPS-1) magnetized coaxial plasma gun facility. The advantages of the CPS-1 plasma source over present disruption simulation devices include the ability to irradiate large material samples at extremely high areal energy densities, and the ability to perform these material studies in the presence of a high magnetic field. Other tokamak disruption relevant features of CPS-1U include a high ion temperature, high electron temperature, and long pulse length

  10. DAMAVAND - An Iranian tokamak with a highly elongated plasma cross-section

    International Nuclear Information System (INIS)

    Amrollahi, R.

    1997-01-01

    The ''DAMAVAND'' facility is an Iranian Tokamak with a highly elongated plasma cross-section and with a poloidal divertor. This Tokamak has the advantage to allow the plasma physics research under the conditions similar to those of ITER magnetic configuration. For example, the opportunity to reproduce partially the plasma disruptions without sacrificing the studies of: equilibrium, stability and control over the elongated plasma cross-section; processes in the near-wall plasma; auxiliary heating systems, etc. The range of plasma parameters, the configuration of ''DAMAVAND'' magnetic coils and passive loops, and their location within the vacuum chamber allow the creation of the plasma at the center of the vacuum chamber and the production of two poloidal volumes (upper and lower) for the divertor. (author)

  11. Josephson plasma resonance in vortex filament state of high temperature superconductors

    International Nuclear Information System (INIS)

    Matsuda, Yuji; Gaifullin, M.B.

    1996-01-01

    High temperature superconductors have the crystalline structure in which two-dimensional CuO 2 planes are piled in layers, consequently, the anisotropy of electroconductivity arises, and this brings about stable and low energy Josephson plasma in superconducting state. Also as to the vortex filament state of high temperature superconductors, the effect of thermal fluctuation due to low dimensionality, short coherence length and high transition temperature becomes conspicuous. In reality, these plasma and vortex filament state are related closely. Light reflection and plasma edge in superconducting state, Josephson plasma resonance in the vortex filament state of BiO 2 Sr 2 CaCu 2 O 8+δ , the plasma vibration in Josephson junction, Josephson plasma in magnetic field, Josephson plasma in the liquid state of vortex filament, Josephson plasma in the solid state of vortex filament, and Josephson plasma in parallel magnetic field are reported. The Josephson plasma resonance is the experimental means for exploring vortex filament state from microscopic standpoint, and its development hereafter is expected. (K.I.)

  12. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    Mueller, D.; Grisham, L.; Kaganovich, I.; Watson, R. L.; Horvat, V.; Zaharakis, K. E.; Peng, Y.

    2002-01-01

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  13. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  14. Clinical characteristics of high plasma adiponectin and high plasma leptin as risk factors for arterial stiffness and related end-organ damage.

    Science.gov (United States)

    Kohara, Katsuhiko; Ochi, Masayuki; Okada, Yoko; Yamashita, Taiji; Ohara, Maya; Kato, Takeaki; Nagai, Tokihisa; Tabara, Yasuharu; Igase, Michiya; Miki, Tetsuro

    2014-08-01

    The relationship between plasma levels of adiponectin and cardiovascular events is inconclusive. We evaluated the clinical characteristics of people with high plasma adiponectin and high plasma leptin levels. Thousand seven hundred participants recruited from visitors to the Anti-Aging Doc were divided into four groups by combining the bipartiles of plasma adiponectin and leptin levels in men and women separately: AL, high adiponectin and high leptin; Al, high adiponectin and low leptin; al, low adiponectin and low leptin; aL, low adiponectin and high leptin. Body composition, including visceral fat area and thigh muscle cross-sectional area (CSA), brachial-ankle pulse wave velocity (baPWV), periventricular hyperintensity, and urinary albumin excretion, were determined. Twenty percent of the studied population fell within the AL group. This group had a significantly higher visceral fat area than the Al group. Thigh muscle CSA was lowest in the AL group among groups. baPWV, brain white matter lesions, and albuminuria findings in the AL group were significantly higher than those of the Al group. Multiple and logistic regression analyses with confounding parameters further confirmed that plasma adiponectin was not an independent determinant for brain and renal small vessel-related disease. These findings suggest that the plasma level of adiponectin alone is not enough for the risk stratification of cardiovascular disease. Leptin resistance associated with skeletal muscle loss in addition to obesity may need to be addressed to identify high risk people with high plasma adiponectin levels. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. High-throughput fractionation of human plasma for fast enrichment of low- and high-abundance proteins.

    Science.gov (United States)

    Breen, Lucas; Cao, Lulu; Eom, Kirsten; Srajer Gajdosik, Martina; Camara, Lila; Giacometti, Jasminka; Dupuy, Damian E; Josic, Djuro

    2012-05-01

    Fast, cost-effective and reproducible isolation of IgM from plasma is invaluable to the study of IgM and subsequent understanding of the human immune system. Additionally, vast amounts of information regarding human physiology and disease can be derived from analysis of the low abundance proteome of the plasma. In this study, methods were optimized for both the high-throughput isolation of IgM from human plasma, and the high-throughput isolation and fractionation of low abundance plasma proteins. To optimize the chromatographic isolation of IgM from human plasma, many variables were examined including chromatography resin, mobile phases, and order of chromatographic separations. Purification of IgM was achieved most successfully through isolation of immunoglobulin from human plasma using Protein A chromatography with a specific resin followed by subsequent fractionation using QA strong anion exchange chromatography. Through these optimization experiments, an additional method was established to prepare plasma for analysis of low abundance proteins. This method involved chromatographic depletion of high-abundance plasma proteins and reduction of plasma proteome complexity through further chromatographic fractionation. Purification of IgM was achieved with high purity as confirmed by SDS-PAGE and IgM-specific immunoblot. Isolation and fractionation of low abundance protein was also performed successfully, as confirmed by SDS-PAGE and mass spectrometry analysis followed by label-free quantitative spectral analysis. The level of purity of the isolated IgM allows for further IgM-specific analysis of plasma samples. The developed fractionation scheme can be used for high throughput screening of human plasma in order to identify low and high abundance proteins as potential prognostic and diagnostic disease biomarkers.

  16. Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding

    International Nuclear Information System (INIS)

    Wang Teng; Gao Xiangdong; Seiji, Katayama; Jin, Xiaoli

    2012-01-01

    High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface plasma region was developed in order to improve the accuracy of image processing. With a comparative analysis of the plasma features, i.e., area and height, and the characteristics of the welded seam, the relationship between the surface plasma and the stability of the laser welding process was characterized, which provides a basic understanding for the real-time monitoring of laser welding.

  17. High-power heating experiment of spherical tokamaks by use of plasma merging

    International Nuclear Information System (INIS)

    Ueda, Yoshinobu; Ono, Yasushi

    1999-01-01

    High-power heating of spherical tokamaks (STs) has been investigated experimentally by use of plasma merging effect. When two STs were coaxially collided, thermal energy of a colliding ST was injected into a target ST during short reconnection time (Alfven time). Though the thermal energy increment increased with decreasing plasma q value, thermal energy loss during the following relaxation, tended to be smaller with increasing q. The produced high-β STs had hallower current profiles and weaker paramagnetic toroidal field than those of single STs. Those heating properties indicate the plasma merging to be a promising initial heating method of ST plasmas. (author)

  18. Targets on the basis of ferrites and high-temperature superconductors for ion-plasma sputtering

    International Nuclear Information System (INIS)

    Lepeshev, A.A.; Saunin, V.N.; Telegin, S.V.; Polyakova, K.P.; Seredkin, V.A.; Pol'skij, A.I.

    2000-01-01

    Paper describes a method to produce targets for ion-plasma sputtering using plasma splaying of the appropriate powders on a cooled metal basis. Application of the plasma process was demonstrated to enable to produce complex shaped targets under the controlled atmosphere on the basis of ceramic materials ensuring their high composition homogeneity, as well as, reliable mechanical and thermal contact of the resultant coating with the base. One carried out experiments in ion-plasma sputtering of targets to prepare ferrite polycrystalline films to be used in magnetooptics and to prepare high-temperature superconductor epitaxial films [ru

  19. Achieving a long-lived high-beta plasma state by energetic beam injection

    Science.gov (United States)

    Guo, H. Y.; Binderbauer, M. W.; Tajima, T.; Milroy, R. D.; Steinhauer, L. C.; Yang, X.; Garate, E. G.; Gota, H.; Korepanov, S.; Necas, A.; Roche, T.; Smirnov, A.; Trask, E.

    2015-04-01

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  20. High fidelity kinetic modeling of magnetic reconnection in laboratory plasma

    Science.gov (United States)

    Stanier, A.; Daughton, W. S.

    2017-12-01

    Over the past decade, a great deal of progress has been made towards understanding the physics of magnetic reconnection in weakly collisional regimes of relevance to both fusion devices, and to space and astrophysical plasmas. However, there remain some outstanding unsolved problems in reconnection physics, such as the generation and influence of plasmoids (flux ropes) within reconnection layers, the development of magnetic turbulence, the role of current driven and streaming instabilities, and the influence of electron pressure anisotropy on the layer structure. Due to the importance of these questions, new laboratory reconnection experiments are being built to allow controlled and reproducible study of such questions with the simultaneous acquisition of high time resolution measurements at a large number of spatial points. These experiments include the FLARE facility at Princeton University and the T-REX experiment at the University of Wisconsin. To guide and interpret these new experiments, and to extrapolate the results to space applications, new investments in kinetic modeling tools are required. We have recently developed a cylindrical version of the VPIC Particle-In-Cell code with the capability to perform first-principles kinetic simulations that approach experimental device size with more realistic geometry and drive coils. This cylindrical version inherits much of the optimization work that has been done recently for the next generation many-cores architectures with wider vector registers, and achieves comparable conservation properties as the Cartesian code. Namely it features exact discrete charge conservation, and a so-called "energy-conserving" scheme where the energy is conserved in the limit of continuous time, i.e. without contribution from spatial discretization (Lewis, 1970). We will present initial results of modeling magnetic reconnection in the experiments mentioned above. Since the VPIC code is open source (https

  1. Simulative research on the expansion of cathode plasma in high-current electron beam diode

    International Nuclear Information System (INIS)

    Xu Qifu; Liu Lie

    2012-01-01

    The expansion of cathode plasma has long been recognized as a limiting factor in the impedance lifetime of high-current electron beam diode. Realistic modeling of such plasma is of great necessity in order to discuss the dynamics of cathode plasma. Using the method of particle-in-cell, the expansion of cathode plasma is simulated in this paper by a scaled-down diode model. It is found that the formation of cathode plasma increases the current density in the diode. This consequently leads to the decrease of the potential at plasma front. Once the current density has been increased to a certain value, the potential at plasma front would then be equal to or lower than the plasma potential. Then the ions would move towards the anode, and the expansion of cathode plasma is thereby formed. Different factors affecting the plasma expansion velocity are discussed in this paper. It is shown that the decrease of proton genatation rate has the benefit of reducing the plasma expansion velocity.

  2. Formation and termination of High ion temperature mode in Heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Ida, K.; Kondo, K.; Nagasaki, K.

    1997-01-01

    Physics of the formation and termination of High ion temperature mode (high T i mode) are studied by controlling density profiles and radial electric field. High ion temperature mode is observed for neutral beam heated plasmas in Heliotron/torsatron plasmas (Heliotron-E). This high T i mode plasma is characterized by a peaked ion temperature profile and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. This high T i mode is terminated by flattening the electron density caused by either gas puffing or second harmonic ECH (core density 'pump-out'). (author)

  3. The Argonne silicon strip-detector array

    Energy Technology Data Exchange (ETDEWEB)

    Wuosmaa, A H; Back, B B; Betts, R R; Freer, M; Gehring, J; Glagola, B G; Happ, Th; Henderson, D J; Wilt, P [Argonne National Lab., IL (United States); Bearden, I G [Purdue Univ., Lafayette, IN (United States). Dept. of Physics

    1992-08-01

    Many nuclear physics experiments require the ability to analyze events in which large numbers of charged particles are detected and identified simultaneously, with good resolution and high efficiency, either alone, or in coincidence with gamma rays. The authors have constructed a compact large-area detector array to measure these processes efficiently and with excellent energy resolution. The array consists of four double-sided silicon strip detectors, each 5x5 cm{sup 2} in area, with front and back sides divided into 16 strips. To exploit the capability of the device fully, a system to read each strip-detector segment has been designed and constructed, based around a custom-built multi-channel preamplifier. The remainder of the system consists of high-density CAMAC modules, including multi-channel discriminators, charge-sensing analog-to-digital converters, and time-to-digital converters. The array`s performance has been evaluated using alpha-particle sources, and in a number of experiments conducted at Argonne and elsewhere. Energy resolutions of {Delta}E {approx} 20-30 keV have been observed for 5 to 8 MeV alpha particles, as well as time resolutions {Delta}T {<=} 500 ps. 4 figs.

  4. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...

    Science.gov (United States)

    Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge-and-trap vessel is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar and nonpolar solvents, concentrated, and directly analyzed by high resolution gas chromatography coupled to a mass spectrometer operating in the selected ion monitoring mode. In this paper, we analyzed two homogenized samples of whole fish tissues with spiked synthetic musk compounds using closed-loop stripping analysis (CLSA) and pressurized liquid extraction (PLE). The analytes were not recovered quantitatively but the extraction yield was sufficiently reproducible for at least semi-quantitative purposes (screening). The method was less expensive to implement and required significantly less sample preparation than the PLE technique. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water,

  5. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    Science.gov (United States)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Higginson, D. P.; Wilks, S. C.; Haberberger, D.; Katz, J.; Froula, D. H.; Hoffman, N. M.; Kagan, G.; Keenan, B. D.; Vold, E. L.

    2018-03-01

    The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M ˜11 ) propagating through a low-density (ρ ˜0.01 mg /cc ) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

  6. Experimental high power plasma-filled backward wave oscillator results

    International Nuclear Information System (INIS)

    Minami, K.; Lou, W.R.; Destler, W.W.; Kehs, R.A.; Granatstein, V.L.; Carmel, Y.

    1988-01-01

    Previous results have indicated that a background gas can be used to increase the output microwave power of relativistic backward wave oscillators (BWOs) two or three times the vacuum case. In their experiments, two methods of plasma production are investigated in detail: the use of the electron beam to ionize a background gas, and the use of a plasma gun to inject a background plasma into the slow-wave structure of a BWO. It is found in the first case that there was a resonant increase in microwave power at a particular pressure of the background gas by a factor of ten. In the second case, power also increased compared with power production in vacuum. Detailed results are presented and the relative merits of the two approaches is discussed and compared with theoretical expectations

  7. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, M.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: mroshan20@yahoo.com; Rawat, R.S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Babazadeh, A.R.; Emami, M.; Sadat Kiai, S.M. [Plasma Physics Research Center, AEOI, 14155-1339 Tehran (Iran, Islamic Republic of); Verma, R.; Lin, J.J.; Talebitaher, A.R.; Lee, P.; Springham, S.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2008-12-30

    High energy ions and energetic plasma irradiation of aluminum cathode inserts have been accomplished in nitrogen and argon filled plasma focus device. The Filippov-type plasma focus facility, Dena, with 288 {mu}F capacitor bank and charging voltage of 25 kV (90 kJ maximum storage energy) was first optimized for strong ion beam generation for nitrogen and argon gases by maximizing hard X-ray emission efficiency. X-ray diffraction analysis as well as scanning electron microscopy along with energy dispersive X-ray spectroscopy carried out to study the structural, morphological and compositional profile of the treated samples. Change in preferred orientation, emergence of meta-stable phases, generation of copper micro-droplets, and production of cracks across the sample are demonstrated and discussed. The micro-hardness measurements in Vickers scale reveal that after ion irradiation, the surface hardness of samples is reduced.

  8. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    International Nuclear Information System (INIS)

    Gounder, J.D.; Kutne, P.; Meier, W.

    2012-01-01

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 °C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 °C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled laboratory

  9. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gounder, J.D., E-mail: James.Gounder@dlr.de; Kutne, P.; Meier, W.

    2012-08-15

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 Degree-Sign C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 Degree-Sign C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled

  10. Ion production and bipolar fluxes in a high-current plasma-filled diode

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.

    1982-01-01

    The model and the evolution of behaviour of binary layers (BL) in expanding plasma of high current plasma-filled diode are described. The model estimates ion current and the laws of plasma expansion at the stage of BL intensive growth. The density range (10 12 -10 15 cm -3 ) is determined in which diode impedance growth takes place in connection with BL appearance. The density of ion current at the outlet of diode is 10 A/cm 2

  11. Determination of boldine in plasma by high-performance liquid chromatography.

    Science.gov (United States)

    Speisky, H; Cassels, B K; Nieto, S; Valenzuela, A; Nuñez-Vergara, L J

    1993-02-26

    A sensitive method for the determination of boldine in blood plasma is described. The procedure involves a direct pH-buffered chloroform extraction of boldine from blood plasma, followed by its assay under isocratic conditions by HPLC with UV detection. The extraction recovery is excellent, and sensitivity and precision of the method are very high, when applied to plasma samples containing pharmacologically relevant concentrations of boldine.

  12. Absolute decay parametric instability of high-temperature plasma

    International Nuclear Information System (INIS)

    Zozulya, A.A.; Silin, V.P.; Tikhonchuk, V.T.

    1986-01-01

    A new absolute decay parametric instability having wide spatial localization region is shown to be possible near critical plasma density. Its excitation is conditioned by distributed feedback of counter-running Langmuir waves occurring during parametric decay of incident and reflected pumping wave components. In a hot plasma with the temperature of the order of kiloelectronvolt its threshold is lower than that of a known convective decay parametric instability. Minimum absolute instability threshold is shown to be realized under conditions of spatial parametric resonance of higher orders

  13. Electromagnetically induced transparency in high-temperature magnetoactive plasma

    International Nuclear Information System (INIS)

    Kryachko, A.Yu.; Litvak, A.G.; Tokman, M.D.

    2002-01-01

    The classical analog of the presently popular in the quantum electronics effect of the electromagnetically induced transparency (EIT) is studied. The EIT effect is considered for the electron-cyclotron waves in the plasma with the finite temperature. The expression for the effective index of the electromagnetic wave refraction is identified and the dispersion law and this wave absorption under the EIT conditions are studied. It is shown, that accounting for the thermal motion, which radically changes the behavior of the signal wave dispersion curves in the EIT area, as compared with the cold plasma case [ru

  14. High-frequency microinstabilities in hot-electron plasmas

    International Nuclear Information System (INIS)

    Chen, Y.J.; Nevins, W.M.; Smith, G.R.

    1981-01-01

    Instabilities with frequencies in the neighborhood of the electron cyclotron frequency are of interest in determining stable operating regimes of hot-electron plasmas in EBT devices and in tandem mirrors. Previous work used model distributions significantly different than those suggested by recent Fokker-Planck studies. We use much more realistic model distributions in a computer code that solves the full electromagnetic dispersion relation governing longitudinal and transverse waves in a uniform plasma. We allow for an arbitrary direction of wave propagation. Results for the whistler and upper-hybrid loss-cone instabilities are presented

  15. Removal of nitrogen from swine manure by ammonia stripping; Reduccion del contenido en nitrogeno amoniacal del purin procino mediante la tecnica de stripping

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, M. D.; Alamo, J. del; Nunez, U.; Irusta, R. [Grupo de Tecnologia Ambiental . Laboratorio de Analisis y Estudios Medioambientales. Valladolid (Spain)

    2001-07-01

    Lab scale experiments were undertaken to investigate air stripping as method for removing ammonia from cattle effluents and, more concretely, from the liquid fraction of swine manure. The effects of packet size, influent pH, air to liquid flow ratio and liquid recirculation flow in the stripping tower were investigated. The high ammonia removal efficiency of the air stripping method indicates that it could provide an interim solution for current waste management problems in the swine industry. (Author) 5 refs.

  16. Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak

    Directory of Open Access Journals (Sweden)

    Casali L.

    2014-01-01

    Full Text Available Future fusion reactors, foreseen in the “European road map” such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.

  17. The Panda Strip Asic: Pasta

    Science.gov (United States)

    Lai, A.

    2018-01-01

    PASTA is the 64 channel front-end chip, designed in a 110 nm CMOS technology to read out the strip sensors of the Micro Vertex Detector (MVD) of the PANDA experiment. This chip provides high resolution timestamp and deposited charge information by means of the time-over-threshold technique. Its working principle is based on a predecessor, the TOFPET ASIC, that was designed for medical applications. A general restructuring of the architecture was needed, in order to meet the specific requirements imposed by the physics programme of PANDA, especially in terms of radiation tolerance, spatial constraints, and readout in absence of a first level hardware trigger. The first revision of PASTA is currently under evaluation at the Forschungszentrum Jülich, where a data acquisition system dedicated to the MVD prototypes has been developed. This paper describes the main aspect of the chip design, gives an overview of the data acquisition system used for the verification, and shows the first results regarding the performance of PASTA.

  18. Non-equilibrium plasma chemistry at high pressure and its applications

    International Nuclear Information System (INIS)

    Bai Xiyao; Zhang Zhitao; Bai Mindong; Zhu Qiaoying

    2000-01-01

    A review is presented of research and development of gas discharge and non-equilibrium plasma including, new ideas of non-equilibrium plasma at high gas pressure. With special technology, strong electric fields (>400 Td) can be achieved by which electrons are accelerated suddenly, becoming high energy electrons (> 10 eV) at high pressure. On impact with the electrons, the gas molecules dissociate into ions, atomic ions, atoms and free radicals, and new substances or molecules can be synthesized through custom design. Chemical reaction difficult to achieve by conventional method can be realized or accelerated. Non-equilibrium plasma chemistry at high pressure has wide application prospects

  19. Features of laser spectroscopy and diagnostics of plasma ions in high magnetic fields

    International Nuclear Information System (INIS)

    Semerok, A F; Fomichev, S V

    2003-01-01

    Laser induced fluorescence and laser absorption spectroscopies of plasma ions in high magnetic fields have been investigated. Both the high degree of Zeeman splitting of the resonant transitions and the ion rotational movement drastically change the properties of the resonance interaction of the continuous wave laser radiation with ions in highly magnetized plasma. Numerical solution of the density matrix equation for a dissipative two-level system with time-dependent detuning from resonance was used to analyse this interaction. A theoretical simulation was performed and compared with the experimental results obtained from the laser spectroscopy diagnostics of barium plasma ions in high magnetic fields in the several tesla range

  20. X radiation diagnostics of high-temperature laser plasma

    International Nuclear Information System (INIS)

    Marsak, Z.; Bryknar, Z.; Legova, S.; Pina, L.

    1980-01-01

    Main aspects of X-ray emission from plasma heated by a pulsed laser and methods of its detection are presented, especially using a pinhole camera and a multichannel spectrometer with p-i-n diodes and Be-filters for measurement in the energy range 0.5 keV to 3 keV. (author)

  1. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  2. Accurate methods for calculating atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Keady, J.J.; Abdallah, J.A. Jr.; Clark, R.E.H.

    1992-01-01

    A technique for computing monochromatic X-ray absorption is described and compared to experimental data. Calculations of power loss from carbon plasmas with comprehensive new datasets confirm that the direct inclusion of metastable states can noticeably decrease the calculated power loss

  3. Charge modes of pulsed high energy and high density plasma injection source

    International Nuclear Information System (INIS)

    Cheng, D.Y.

    1974-01-01

    Detonation (snowplow), deflagration and other modes of discharge can be produced in a single coaxial plasma gun. Conservation laws of mass, momentum and energy together with the entropy production condition of the discharge phenomena are used to identify dense discharge modes. The Rankine-Hugoniot relation for a magnetized plasma is derived. Discussions of how to design a deflagration plasma gun to yield a prescribed plasma kinetic energy and plasma beam density are given

  4. Development of suspension plasma sprayed alumina coatings with high enthalpy plasma torch

    Czech Academy of Sciences Publication Activity Database

    Tesař, Tomáš; Mušálek, Radek; Medřický, Jan; Kotlan, Jiří; Lukáč, František; Pala, Zdeněk; Ctibor, Pavel; Chráska, Tomáš; Houdková, Š.; Rimal, V.; Curry, N.

    2017-01-01

    Roč. 325, September (2017), s. 277-288 ISSN 0257-8972 R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Suspension plasma spraying * Aluminium oxide * Mechanical properties * Hardness * Adhesion * Wear resistance Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897217306424

  5. Excitation of a plasma by high frequencies for illumination purposes

    International Nuclear Information System (INIS)

    Valdivia B, R.

    2003-01-01

    The power electronics plays a very important paper so much in the national as international industrial development. For that reason, many of the works are focused in the one analysis and amplification of this area with the purpose of finding improvements in the existent systems and always looking for oneself end: the energy saving. Moreover, in the last years has occurred great interest to other very important area given their properties of energy profit, novelty and mainly their wide range of applications. This area is the study and use of the plasma. Many institutions with international recognition already invest and they develop systems in these two big areas of the technology among those that is the National Institute of Nuclear Research (INlN) with some laboratories dedicated to the work of the plasma, one of them the Laboratory of Thermal Plasma Applications (LAPT). The conjugation of both areas was analysed and developed in the present work with the one purpose of designing a system to generate thermal plasma and to give him one or but applications like it is to produce a luminous source as like to degrade organic gases as the Methane or Acetylene. This was developed by means of a resonant inverter with the help of MOSFET IRFK2D450 transistors and a load L C in a serial-parallel configuration with the purpose to profit their condition of resonance to have the maximum transfer of energy to the plasma. For to have a best profit of the energy it was realized an analysis of design for to oblige to the transistors to commute in zero voltage (ZVS) and to avoid then lost of power of C A. (Author)

  6. Two new planar coil designs for a high pressure radio frequency plasma source

    Science.gov (United States)

    Munsat, T.; Hooke, W. M.; Bozeman, S. P.; Washburn, S.

    1995-04-01

    Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used ``spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents.

  7. SCREENING OF HIGH-Z GRAINS AND RELATED PHENOMENA IN COLLOIDAL PLASMAS

    Directory of Open Access Journals (Sweden)

    O.Bystrenko

    2003-01-01

    Full Text Available Recent important results are briefly presented concerning the screening of high-Z impurities in colloidal plasmas. The review focuses on the phenomenon of nonlinear screening and its effects on the structure of colloidal plasmas, the role of trapped ions in grain screening, and the effects of strong collisions in the plasma background. It is shown that the above effects may strongly modify the properties of the grain screening giving rise to considerable deviations from the conventional Debye-Huckel theory as dependent on the physical processes in the plasma background.

  8. Emissions from heavy current carrying high density plasma and their diagnostics

    International Nuclear Information System (INIS)

    Hirano, Katsumi

    1987-06-01

    Workshop on ''Emissions from heavy current carrying high density plasma and diagnostics'' was held at Institute of Plasma Physics, Nagoya University on 3. and 4. December 1986 under a collaborating research Program. The workshop was attended by 43 researchers from 19 labolatories. A total of 22 papers were submitted and are presented in these proceedings. The largest group of papers was that on soft X-ray emission. It seems this topic is a foremost interest for groups which engaged in research of the Z pinch and the plasma focus. A variety of problems in pinched dense plasmas, namely spectroscopy, diagnostics, pinch dynamics, and related engineering aspects were also discussed. (author)

  9. Electron current generated in a toroidal plasma on injection of high-energy neutrals

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Reznik, S.N.

    1981-01-01

    Problem of generation of electron current in toroidal plasma with a high-energy ion beam produced during neutral injection has been considered. The analysis was performed on the assumption that plasma is in the regime of rare collisions (banana regime) and ion beam velocity is considerably lower than thermal velocity of plasma ions. Formulae establishing the relation between beam current and electron current have been derived. It follows from them that toroidal affect considerably plasma current generated with the beam and under certain conditions result in changing this current direction in an area remoted from magne-- tic axis [ru

  10. Deuterium-tritium TFTR plasmas in the high poloidal beta regime

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.

    1995-03-01

    Deuterium-tritium plasmas with enhanced energy confinement and stability have been produced in the high poloidal beta, advanced tokamak regime in TFTR. Confinement enhancement H triple-bond τ E /τ E ITER-89P > 4 has been obtained in a limiter H-mode configuration at moderate plasma current I p = 0.85 - 1.46 MA. By peaking the plasma current profile, β N dia triple-bond 10 8 tperpendicular > aB 0 /I p = 3 has been obtained in these plasma,s exceeding the β N limit for TFTR plasmas with lower internal inductance, l i . Fusion power exceeding 6.7 MW with a fusion power gain Q DT = 0.22 has been produced with reduced alpha particle first orbit loss provided by the increased l i

  11. Confinement properties of high energy density plasmas in the Wisconsin levitated octupole

    International Nuclear Information System (INIS)

    Twichell, J.C.

    1984-08-01

    The confinement of particles and energy is critically dependent on the plasma-wall interaction. Results of a study detailing this interaction are presented. High power ICRF heated and gun afterglow plasmas were studied to detail the mechanisms determining particle and energy confinement. An extensive zero-D simulation code is used to assist in interpreting the experimental data. Physically reasonable models for plasma surface interactions, time dependent coronal treatment of impurities and multiple region treatment of neutrals are used in modeling the plasma. Extensive diagnostic data are used to verify the model. Non-heated plasmas decay from 28 to 3 eV allowing clear identification of wall impact energy thresholds for desorption and particle reflection. The charge state distribution of impurities verifies the reflux to plasma diffusion rate ratio. Close agreement between the simulation and experimental data is found

  12. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    International Nuclear Information System (INIS)

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-01-01

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered

  13. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Bakaeva, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Pardoen, T.; Favache, A. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain-la-Neuve (Belgium); Zhurkin, E.E. [Department of Experimental Nuclear Physics K-89, Faculty of Physics and Mechanics, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)

    2016-08-01

    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities – signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasma-induced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions.

  14. Potential formation and confinement in high density plasma on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.

    2002-01-01

    After the attainment of doubling of the density due to the potential confinement, GAMMA 10 experiments have been directed to realization of a high density plasma and also to study dependence of the confining potential and confinement time on the plasma density. These problems are important to understand the physics of potential formation in tandem mirrors and also for the development of a tandem mirror reactor. We reported high density plasma production by using an ion cyclotron range of frequency heating at a high harmonic frequency in the last IAEA Conference. However, the diamagnetic signal of the high density plasma decreased when electron cyclotron resonance heating (ECRH) was applied due to some instabilities. Recently, the high density plasma production was much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions, which enabled us to produce a high density plasma without degradation of the diamagnetic signal with ECRH and also to study the density dependence. In this paper we report production of a high density plasma and dependence of the confining potential and the confinement time on the density. (author)

  15. A high-performance channel engineered charge-plasma-based MOSFET with high-κ spacer

    Science.gov (United States)

    Shan, Chan; Wang, Ying; Luo, Xin; Bao, Meng-tian; Yu, Cheng-hao; Cao, Fei

    2017-12-01

    In this paper, the performance of graded channel double-gate MOSFET (GC-DGFET) that utilizes the charge-plasma concept and a high-κ spacer is investigated through 2-D device simulations. The results demonstrate that GC-DGFET with high-κ spacer can effectively improve the ON-state driving current (ION) and reduce the OFF-leakage current (IOFF). We find that reduction of the initial energy barrier between the source and channel is the origin of this ION enhancement. The reason for the IOFF reduction is identified to be the extension of the effective channel length owing to the fringing field via high-κ spacers. Consequently, these devices offer enhanced performance by reducing the total gate-to-gate capacitance (Cgg) and decreasing the intrinsic delay (τ).

  16. Linked tandem mirror configuration as a possible steady state high β plasma container

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1982-04-01

    A possibility of achieving steady state high β plasma confinement in toroidal geometry is considered in detail by closing off the ends of tandem mirrors entirely by flux bridges, where β is the ratio of plasma pressure to the magnetic pressure. The key problem of this approach seems to be the magnetic design of magneto-hydrodynamically stabilized, preferentially leaky bridges. (author)

  17. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    NARCIS (Netherlands)

    Eck, van H.J.N.; Koppers, W.R.; Rooij, van G.J.; Goedheer, W.J.; Engeln, R.A.H.; Schram, D.C.; Lopes Cardozo, N.J.; Kleyn, A.W.

    2009-01-01

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial

  18. Advanced Thomson scattering system for high-flux linear plasma generator

    NARCIS (Netherlands)

    Meiden, van der H.J.; Lof, A.R.; Berg, van den M.A.; Brons, S.; Donné, A.J.H.; Eck, van H.J.N.; Koelman, Peter; Koppers, W.R.; Kruijt, O.G.; Naumenko, N.N.; Oyevaar, T.; Prins, P.R.; Rapp, J.; Scholten, J.; Schram, D.C.; Smeets, P.H.M.; Star, van der G.; Tugarinov, S.N.; Zeijlmans van Emmichoven, P.A.

    2012-01-01

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating

  19. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    NARCIS (Netherlands)

    Xu, H.Y.; De Temmerman, G.C.; Luo, G.-N.; Jia, Y.Z.; Yuan, Y.; Fu, B.Q.; Godfrey, A.; Liu, W.

    2015-01-01

    PLASMA-SURFACE INTERACTIONS 21 — Proceedings of the 21st International Conference on Plasma-Surface Interactions in Controlled Fusion Devices Kanazawa, Japan May 26-30, 2014 Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux

  20. Operational characteristics of the high flux plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Eck, H.J.N. van, E-mail: h.j.n.vaneck@differ.nl [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Berg, M.A. van den; Brons, S.; Eden, G.G. van [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Meiden, H.J. van der; Morgan, T.W.; Pol, M.J. van de; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; Vries, P.C. de; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •We have described the design and capabilities of the plasma experiment Magnum-PSI. •The plasma conditions are well suited for PSI studies in support of ITER. •Quasi steady state heat fluxes over 10 MW m{sup −2} have been achieved. •Transient heat and particle loads can be generated to simulate ELM instabilities. •Lithium coating can be applied to the surfaces of samples under vacuum. -- Abstract: In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma–surface interactions in the regime relevant for fusion reactors such as ITER: 10{sup 23}–10{sup 25} m{sup −2} s{sup −1} hydrogen plasma flux densities at 1–5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.

  1. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  2. High density plasma productions by hydrogen storage electrode in the Tohoku University Heliac

    International Nuclear Information System (INIS)

    Utoh, H.; Takahashi, H.; Tanaka, Y.; Takenaga, M.; Ogawa, M.; Shinde, J.; Iwazaki, K.; Shinto, K.; Kitajima, S.; Sasao, M.; Nishimura, K.; Inagaki, S.

    2005-01-01

    In the Tohoku University Heliac (TU-Heliac), the influence of a radial electric field on improved modes has been investigated by an electrode biasing. In both positive and negative biasing experiments by the stainless steel (SUS) electrode (cold-electron or ion collection), the improvement of plasma confinement was clearly observed. Furthermore, by negative biasing with a hot cathode (electron injection), the radial electric fields can be actively controlled as a consequence of the control of the electrode current I E . By using the electrode made of a hydrogen storage metal, for example Titanium (Ti) or Vanadium (V), the following possibility can be expected: (1) ions accelerated from the positive biased electrode allow the simulation for the orbit loss of high-energy particles, (2) the electrons/neutral- particles injected from the negative biased electrode provide the production of the high- density plasma, if hydrogen are successfully stored in the electrode. In this present work, several methods were tried as the treatment for hydrogen storage. In the case of the Ti electrode biased positively after the treatment, the improvement of plasma confinement was observed in He plasma, which were same as the experimental results of the SUS electrode. However, in the electron density profiles inside the electrode position there was difference between the biased plasma by the Ti electrode and that by the SUS electrode. In some of Ar discharges biased negatively with the Ti electrode after the treatment, the electron density and the line intensity of H α increased about 10 times of those before biasing. This phenomenon has not been observed in the Ar plasma biased by the SUS electrode. This result suggested that the Ti electrode injected electrons/neutral-hydrogen into the plasma. This high-density plasma productions were observed only 1 ∼ 3 times in the one treatment for hydrogen storage. By using a Vanadium (V) electrode, productions of the high-density plasma

  3. Immunochromatographic Strip Test for Rapid Detection of Diphtheria Toxin: Description and Multicenter Evaluation in Areas of Low and High Prevalence of Diphtheria

    Science.gov (United States)

    Engler, K. H.; Efstratiou, A.; Norn, D.; Kozlov, R. S.; Selga, I.; Glushkevich, T. G.; Tam, M.; Melnikov, V. G.; Mazurova, I. K.; Kim, V. E.; Tseneva, G. Y.; Titov, L. P.; George, R. C.

    2002-01-01

    An immunochromatographic strip (ICS) test was developed for the detection of diphtheria toxin by using an equine polyclonal antibody as the capture antibody and colloidal gold-labeled monoclonal antibodies specific for fragment A of the diphtheria toxin molecule as the detection antibody. The ICS test has been fully optimized for the detection of toxin from bacterial cultures; the limit of detection was approximately 0.5 ng of diphtheria toxin per ml within 10 min. In a comparative study with 915 pure clinical isolates of Corynebacterium spp., the results of the ICS test were in complete agreement with those of the conventional Elek test. The ICS test was also evaluated for its ability to detect toxigenicity from clinical specimens (throat swabs) in two field studies conducted within areas of the former USSR where diphtheria is epidemic. Eight hundred fifty throat swabs were examined by conventional culture and by use of directly inoculated broth cultures for the ICS test. The results showed 99% concordance (848 of 850 specimens), and the sensitivity and specificity of the ICS test were 98% (95% confidence interval, 91 to 99%) and 99% (95% confidence interval, 99 to 100%), respectively. PMID:11773096

  4. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  5. Repetitive plasma opening switch for powerful high-voltage pulse generators

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Zakatov, L.P.; Nitishinskii, M.S.; Ushakov, A.G.

    1998-01-01

    Results are presented of experimental studies of plasma opening switches that serve to sharpen the pulses of inductive microsecond high-voltage pulse generators. It is demonstrated that repetitive plasma opening switches can be used to create super-powerful generators operating in a quasi-continuous regime. An erosion switching mechanism and the problem of magnetic insulation in repetitive switches are considered. Achieving super-high peak power in plasma switches makes it possible to develop new types of high-power generators of electron beams and X radiation. Possible implementations and the efficiency of these generators are discussed

  6. Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [TU-Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Auguste, T.; D' Oliveira, P.; Hulin, S.; Monot, P. [Commissariat a lEnergie Atomique DSM/DRECAM/SPAM, Gif-Sur-Yvette Cedex (France); Andreev, N.E.; Chegotov, M.V.; Veisman, M.E. [High Energy Density Research Centre, Institute of High Temperatures of Russian Academy of Sciences, Moscow (Russian Federation)

    1999-03-14

    For the first time registration of high-resolution soft x-ray emission and atomic data calculations of hollow-atom dielectronic satellite spectra of highly charged nitrogen have been performed. Double-electron charge-exchange processes from excited states are proposed for the formation of autoionizing levels nln'l' in high-intensity laser-produced plasmas, when field-ionized ions penetrate into the residual gas. Good agreement is found between theory and experiment. Plasma spectroscopy with hollow ions is proposed and a temperature diagnostic for laser-produced plasmas in the long-lasting recombining regime is developed. (author). Letter-to-the-editor.

  7. Magnetic ring for stripping enhancement

    International Nuclear Information System (INIS)

    Selph, F.

    1992-10-01

    A ring designed to recycle ions through a stripping medium offers the possibility for increasing output of the desired charge state by up to 4x. This could be a very important component of a Radioactive Nuclear Beam Facility. In order for such a ring to work effectively it must satisfy certain design conditions. These include achromaticity at the stripper, a dispersed region for an extraction magnet, and a number of first and higher order optics constraints which are necessary to insure that the beam emittance is not degraded unduly by the ring. An example is given of a candidate design of a stripping ring

  8. Resonant magnetohydrodynamic waves in high-beta plasmas

    International Nuclear Information System (INIS)

    Ruderman, M. S.

    2009-01-01

    When a global magnetohydrodynamic (MHD) wave propagates in a weakly dissipative inhomogeneous plasma, the resonant interaction of this wave with either local Alfven or slow MHD waves is possible. This interaction occurs at the resonant position where the phase velocity of the global wave coincides with the phase velocity of either Alfven or slow MHD waves. As a result of this interaction a dissipative layer embracing the resonant position is formed, its thickness being proportional to R -1/3 , where R>>1 is the Reynolds number. The wave motion in the resonant layer is characterized by large amplitudes and large gradients. The presence of large gradients causes strong dissipation of the global wave even in very weakly dissipative plasmas. Very often the global wave motion is characterized by the presence of both Alfven and slow resonances. In plasmas with small or moderate plasma beta β, the resonance positions corresponding to the Alfven and slow resonances are well separated, so that the wave motion in the Alfven and slow dissipative layers embracing the Alfven and slow resonant positions, respectively, can be studied separately. However, when β > or approx. R 1/3 , the two resonance positions are so close that the two dissipative layers overlap. In this case, instead of two dissipative layers, there is one mixed Alfven-slow dissipative layer. In this paper the wave motion in such a mixed dissipative layer is studied. It is shown that this motion is a linear superposition of two motions, one corresponding to the Alfven and the other to the slow dissipative layer. The jump of normal velocity across the mixed dissipative layer related to the energy dissipation rate is equal to the sum of two jumps, one that occurs across the Alfven dissipative layer and the other across the slow dissipative layer.

  9. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    Pollock, B. B.; Froula, D. H.; Davis, P. F.; Ross, J. S.; Fulkerson, S.; Bower, J.; Satariano, J.; Price, D.; Krushelnick, K.; Glenzer, S. H.

    2006-01-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  10. High power RF heating and nonthermal distributions in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, A.G.

    1994-12-13

    This thesis discusses the nonthermal effects in the electron population of a tokamak, that are generated by the inductive electric field and electron cyclotron resonant heating. The kinetic description of the plasma is given by a Boltzmann equation for the electron velocity distribution, in which the many small angle scattering Coulomb collisions that occur in the plasma are modelled by a Fokker-Planck collision term. These collisions drive the distribution towards the Maxwellian distribution of thermodynamic equilibrium. The energy absorption from the electron cyclotron waves and the acceleration by the toroidal electric field lead to deviations from the Maxwellian destribution. The interaction of the electron cyclotron waves with the plasma is treated within quasilinear theory. Resonant interaction occurs when the wave frequency matches one of the harmonics of the gyration frequency of the electrons in the static magnetic field. The waves generate a diffusion of resonant electrons in velocity space. The inductive electric field accelerates the electrons in the direction prallel to the magnetic field and leads to a convection in velocity space. The equilibrium that is reached between the driving forces of the electric field and the electron cyclotron waves and the restoring force of the collisions is studied in this thesis. The specific geometry of the tokamak is incorporated in the model through an average of the kinetic equation over the electron orbits. (orig./WL).

  11. High power RF heating and nonthermal distributions in tokamak plasmas

    International Nuclear Information System (INIS)

    Peeters, A.G.

    1994-01-01

    This thesis discusses the nonthermal effects in the electron population of a tokamak, that are generated by the inductive electric field and electron cyclotron resonant heating. The kinetic description of the plasma is given by a Boltzmann equation for the electron velocity distribution, in which the many small angle scattering Coulomb collisions that occur in the plasma are modelled by a Fokker-Planck collision term. These collisions drive the distribution towards the Maxwellian distribution of thermodynamic equilibrium. The energy absorption from the electron cyclotron waves and the acceleration by the toroidal electric field lead to deviations from the Maxwellian destribution. The interaction of the electron cyclotron waves with the plasma is treated within quasilinear theory. Resonant interaction occurs when the wave frequency matches one of the harmonics of the gyration frequency of the electrons in the static magnetic field. The waves generate a diffusion of resonant electrons in velocity space. The inductive electric field accelerates the electrons in the direction prallel to the magnetic field and leads to a convection in velocity space. The equilibrium that is reached between the driving forces of the electric field and the electron cyclotron waves and the restoring force of the collisions is studied in this thesis. The specific geometry of the tokamak is incorporated in the model through an average of the kinetic equation over the electron orbits. (orig./WL)

  12. Production and study of high-beta plasma confined by a superconducting dipole magnet

    International Nuclear Information System (INIS)

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-01-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large

  13. A new strips tracker for the upgraded ATLAS ITk detector

    Science.gov (United States)

    David, C.

    2018-01-01

    The ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the fluences and radiation levels will be higher by as much as a factor of ten. The new sub-detectors must thus be faster, of larger area, more segmented and more radiation hard while the amount of inactive material should be minimized and the power supply to the front-end systems should be increased. For those reasons, the current inner tracker of the ATLAS detector will be fully replaced by an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large area strip tracker surrounding it. This document gives an overview of the design of the strip inner tracker (Strip ITk) and summarises the intensive R&D activities performed over the last years by the numerous institutes within the Strips ITk collaboration. These studies are accompanied with a strong prototyping effort to contribute to the optimisation of the Strip ITk's structure and components. This effort culminated recently in the release of the ATLAS Strips ITk Technical Design Report (TDR).

  14. Power absorption of high-frequency electromagnetic waves in a partially ionized magnetized plasma

    International Nuclear Information System (INIS)

    Guo Bin; Wang Xiaogang

    2005-01-01

    Power absorption of high-frequency electromagnetic waves in a uniformly magnetized plasma layer covering a highly conducting surface is studied under atmosphere conditions. It is assumed that the system consists of not only electrons and positive ions but negative ions as well. By a general formula derived in our previous work [B. Guo and X. G. Wang, Plasma Sci. Tech. 7, 2645 (2005)], the total power absorption in the plasma layer with multiple reflections between an air-plasma interface and the conducting surface is computed. The results show that although the existence of negative ions greatly reduces the total power absorption, the magnetization of the plasma can, however, partially enhance it. Parameter dependence of the effects is calculated and discussed

  15. Impurity screening in high density plasmas in tokamaks with a limiter configuration

    International Nuclear Information System (INIS)

    Ferro, C.; Zanino, R.

    1992-01-01

    Impurity screening in high density plasmas in tokamaks with a limiter configuration is investigated by means of a simple semi-analytical model. An iterative scheme is devised, in order to determine self-consistently the values of scrape-off layer thickness, edge electron density and temperature, and main plasma contamination parameter Z eff , as a function of given average electron density and temperature in the main plasma and given input power. The model is applied to the poloidal limiter case of the Frascati Tokamak Upgrade, and results are compared with experimental data. A reasonable agreement between the trends is found, emphasizing the importance of a high edge plasma density for obtaining a clean main plasma in limiter tokamaks. (orig.)

  16. Femtosecond envelope of the high-harmonic emission from ablation plasmas

    International Nuclear Information System (INIS)

    Haessler, S; Gobert, O; Hergott, J-F; Lepetit, F; Perdrix, M; Carré, B; Salières, P; Bom, L B Elouga; Ozaki, T

    2012-01-01

    We characterize the temporal profile of the high-order harmonic emission from ablation plasma plumes using cross-correlations with the infrared (IR) laser beam provided by two-photon harmonic+IR ionization of rare gas atoms. We study both non-resonant plasmas (lead, gold and chrome) and resonant plasmas (indium and tin), i.e. plasmas presenting in the singly charged ions a strong radiative transition coinciding with a harmonic order. The cross-correlation traces are found to be very similar for all harmonic orders and all plasma targets. The recovered harmonic pulse durations are very similar to the driving laser, with a tendency towards being shorter, demonstrating that the emission is a directly laser-driven process even in the case of resonant harmonics. This provides a valuable input for theories describing resonant-harmonic emission and opens the perspective of a very high flux tabletop XUV source for applications. (paper)

  17. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  18. Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2012-01-01

    The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (∼0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (∼10 −4 s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.

  19. Test-beam evaluation of heavily irradiated silicon strip modules for ATLAS Phase-II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of 7.5x1034cm−2s−1. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over 1x1015 1 MeV neutron equivalent per cm2 in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II and CERN SPS test beam facilities to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before and after irradiation with 8x1014neqcm−2 protons and a total ionising dose of 37.2MRad. The DURA...

  20. Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    2014-04-01

    Full Text Available In this paper, the propagation characteristics of spoof surface plasmon polaritons (SPPs on infinitely thin corrugated metal strips are theoretically analyzed. Compared with the situations of infinitely thick lateral thickness, the infinitely thin lateral thickness leads to lower plasma frequency according to the analyses. The propagation lengths and the binding capacity of the spoof SPPs are evaluated based on the derived dispersion equation. The effects of different lateral thicknesses are also investigated. At the end, a surface wave splitter is presented using infinitely thin corrugated metal strip. Other functional planar or flexible devices can also be designed using these metal strips in microwave or terahertz regimes.

  1. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice

    NARCIS (Netherlands)

    M.J. van Haperen (Rien); A. van Tol (Arie); P. Vermeulen; M. Jauhiainen; T. van Gent (Teus); P.M. van den Berg (Paul); S. Ehnholm (Sonja); A.W.M. van der Kamp (Arthur); M.P.G. de Crom (Rini); F.G. Grosveld (Frank)

    2000-01-01

    textabstractPlasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoprotein particles and alters high density lipoprotein (HDL) subfraction patterns in vitro, but its physiological function is poorly understood. Transgenic mice that overexpress

  2. Construction of control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen

    International Nuclear Information System (INIS)

    Saminto; Eko Priyono; Sugeng Riyanto

    2013-01-01

    A control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen have been made. This device consists of the software and hardware component. Hardware component consists of SCR phase angle controller LPC-50HDA type, T100MD1616+ PLC, high voltage transformer and voltage rectifier system. Software component used a LADDER program and TBasic serves to control of the high voltage output. The components in these devices have been tested in the double chamber plasma nitrogen. Its performance meet with the design criteria that can supply of plasma nitrogen operation voltage in the range 290 Vdc to 851 Vdc with glow discharge current 0.4 A to 1.4 A. In general it can be said that the control and instrumentation devices of high voltage power supply is ready for use at the double chamber plasma nitrogen device. (author)

  3. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  4. Determination of trimethyllead reference material using high performance liquid chromatography-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lu Hai; Wei Chao; Wang Jun; Chao Jingbo; Zhou Tao; Chen Dazhou

    2005-01-01

    A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) was combined, and the chromatography conditions were optimized. The stability and homogeneity of a trimethyllead reference material were determined using this method. (authors)

  5. Equilibrium and stability of highplasmas in W7-AS

    International Nuclear Information System (INIS)

    Geiger, J.; Weller, A.; Nuehrenberg, C.; Werner, A.; Zarnstorff, M.; Kolesnichenko, Ya.I.

    2003-01-01

    In this paper the optimization of equilibrium and stability of highplasmas by means of the reduction of the Pfirsch-Schlueter currents is described. Furthermore the Alfven modes driven by neutral-beam injection are considered. (HSI)

  6. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  7. Stochastic clustering of material surface under high-heat plasma load

    Science.gov (United States)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  8. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  9. Boundary layer plasmas as a source for high-latitude, early afternoon, auroral arcs

    International Nuclear Information System (INIS)

    Lundin, R.; Evans, D.S.

    1985-02-01

    Simultaneous measurements of hot boundary layer plasma from PROGNOZ-7 and particle precipitation from the TIROS/NOAA satellite in nearly magnetically conjugate regions have been used to study the dynamo process responsible for the formation of high latitude, early afternoon, auroral arcs. Characteristic for the PROGNOZ-7 observations in the dayside boundary layer at high latitudes is the frequent occurrence of regions with injected magnetosheath plasma embedded in a 'halo' of antisunward flowing magnetosphere plasma. The injected magnetosheath plasma have several features which indicate that it also acts as a local source of EMF in the boundary layer. The process resembles that of a local MHD dynamo driven by the excess drift velocity of the injected magnetosheath plasma relative to the background magnetospheric plasma. The dynamo region is capable of driving fielc-aligned currents that couple to the ionosphere, where the upward current is associated with the high latitude auroral arcs. We demonstrate that the large-scale morphology as well as the detailed data intercomparison between PROGNOZ-7 and TIROS-N both agree well with a local injection of magnetosheath plasma into the dayside boundary layer as the main dynamo process powering the high-latitude, early afternoon auroral arcs. (Author)

  10. Initial evolution of nonlinear magnetic islands in high temperature plasmas

    International Nuclear Information System (INIS)

    Kotschenreuther, M.

    1988-06-01

    The evolution of nonlinear magnetic islands is computed in the kinetic collisionality regime called the semicollisional regime, which is appropriate to present fusion confinement devices. Realistic effects are included, such as the presence of small external field errors, radial electric fields, and omega. When present simultaneously, these effects can greatly change the stability of small amplitude nonlinear islands. Islands with Δ' > O can sometimes be prevented from growing to macroscopic size; it is also possible to produce moderate mode-number nonlinear instabilities in the plasma edge. Furthermore, island growth can be prevented by application of external fields with suitably chosen amplitude and frequency

  11. High-power laser-plasma chemistry in planetary atmospheres

    Czech Academy of Sciences Publication Activity Database

    Juha, Libor; Ferus, Martin; Kubelík, Petr; Krása, Josef; Skála, Jiří; Pfeifer, Miroslav; Civiš, Svatopluk; Cihelka, Jaroslav; Babánková, Dagmar

    2007-01-01

    Roč. 7, č. 3 (2007), s. 516-517 ISSN 1531-1074. [Bioastronomy 2007. San Juach, 16.07.2007-20.07.2007] R&D Projects: GA ČR GA203/06/1278; GA MŠk(CZ) LC528; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40400503 Keywords : laser spark * laser-produced plasma * chemical evolution * plasmachemistry Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.025, year: 2007

  12. Mass analyzer ``MASHA'' high temperature target and plasma ion source

    Science.gov (United States)

    Semchenkov, A. G.; Rassadov, D. N.; Bekhterev, V. V.; Bystrov, V. A.; Chizov, A. Yu.; Dmitriev, S. N.; Efremov, A. A.; Guljaev, A. V.; Kozulin, E. M.; Oganessian, Yu. Ts.; Starodub, G. Ya.; Voskresensky, V. M.; Bogomolov, S. L.; Paschenko, S. V.; Zelenak, A.; Tikhonov, V. I.

    2004-05-01

    A new separator and mass analyzer of super heavy atoms (MASHA) has been created at the FLNR JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10-3. First experiments with the FEBIAD plasma ion source have been done and give an efficiency of ionization of up to 20% for Kr with a low flow test leak (6 particle μA). We suppose a magnetic field optimization, using the additional electrode (einzel lens type) in the extracting system, and an improving of the vacuum conditions in order to increase the ion source efficiency.

  13. Mass analyzer 'MASHA' high temperature target and plasma ion source

    International Nuclear Information System (INIS)

    Semchenkov, A.G.; Rassadov, D.N.; Bekhterev, V.V.; Bystrov, V.A.; Chizov, A.Yu.; Dmitriev, S.N.; Efremov, A.A.; Guljaev, A.V.; Kozulin, E.M.; Oganessian, Yu.Ts.; Starodub, G.Ya.; Voskresensky, V.M.; Bogomolov, S.L.; Paschenko, S.V.; Zelenak, A.; Tikhonov, V.I.

    2004-01-01

    A new separator and mass analyzer of super heavy atoms (MASHA) has been created at the FLNR JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . First experiments with the FEBIAD plasma ion source have been done and give an efficiency of ionization of up to 20% for Kr with a low flow test leak (6 particle μA). We suppose a magnetic field optimization, using the additional electrode (einzel lens type) in the extracting system, and an improving of the vacuum conditions in order to increase the ion source efficiency

  14. Propagation of highly aberrated laser beams in nonquadratic plasma waveguides

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.; Morris, J.R.

    1977-01-01

    The propagation of a laser beam in a plasma column several meters long with a realistic electron density distribution is examined. The electron density distribution is based on laser-beam heating at z=0, but is otherwise uncoupled to the laser beam. The aberrated nature of the resulting lenslike medium leads to essentially aperiodic beam properties, which contrast with the completely periodic properties of Gaussian beams propagating in quadratic lenslike media. The beam is nonetheless stably trapped. These aberrated-beam properties also help to stabilize the beam against axial variations in refractive index

  15. The effect of chronic erythrocytic polycythemia and high altitude upon plasma and blood volumes.

    Science.gov (United States)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Comparison of two kinds of physiological chronic erythrocytic polycythemias in order to differentiate the specific effect of erythrocytic polycythemia from the general effects of high altitude upon the plasma volume. The two kinds were produced hormonally in female chickens, at sea level, or by protracted high-altitude exposures. It appears that the vascular system of the body may account for an increase in red blood cell mass either by reduction in plasma volume, or by no change in plasma volume, resulting in differential changes in total blood volumes.

  16. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  17. Confinement and heating of high beta plasma with emphasis on compact toroids. Compact toroid research

    International Nuclear Information System (INIS)

    Vlases, G.C.; Pietrzyk, Z.A.

    1984-11-01

    Two older projects associated with very high energy density plasmas, specifically the High Density Field Reversed Configuration and the Liner Plasma Compression Experiment, have been completed. Attention has been turned to compact toroid experiments of more conventional density, and three experiments have been initiated. These include the Coaxial Slow Source Experiment, the Variable Length FRC Experiment, and Variable Angle CthetaP Experiment. In each case, the project was begun in order to provide basic plasma physics information on specific unresolved issues of progammatic importance to the national CT Program

  18. Plasma resonance and flux dynamics in layered high-Tc superconductors

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S.

    2000-01-01

    Flux dynamics of layered high Tc superconductors are considered with special emphasis on the small oscillation modes. In particular we find the dispersion relation for the plasma modes and discuss the spectra to be observed in microwave experiments.......Flux dynamics of layered high Tc superconductors are considered with special emphasis on the small oscillation modes. In particular we find the dispersion relation for the plasma modes and discuss the spectra to be observed in microwave experiments....

  19. Effect on antenna structure of high power rf during plasma operation

    International Nuclear Information System (INIS)

    Haste, G.R.; Thomas, C.E.; Fadnek, A.; Carter, M.D.; Beaumont, B.; Becoulet, A.; Kuus, H.; Saoutic, B.

    1993-01-01

    High-power, long-pulse operation on the Tore Supra tokamak results in considerable stress on the plasma-facing components. The ICH antennas must deliver high-power rf(up to 4 MW per antenna) in this environment. The antenna structure is therefore subjected to the power flux resulting from the interaction between rf and the edge plasma. The structure's response during operation is described, as is the condition of the antenna after prolonged use

  20. Validity of HydraTrend reagent strips for the assessment of hydration status.

    Science.gov (United States)

    Abbey, Bryce M; Heelan, Kate A; Brown, Gregory A; Bartee, Rodrick T

    2014-09-01

    Hydration is used by athletic governing organizations for weight class eligibility. The measurement of urine specific gravity (USG) as a measure of hydration by reagent strips is a controversial issue. The purpose of this study was to determine the validity of HydraTrend reagent strips that facilitate the correction of USG for alkaline urine samples against refractometry for the assessment of USG. Fifty-one participants (33 males, age = 22.3 ± 1.3 years; 18 females, age = 22.4 ± 1.2 years) provided 84 urine samples. The samples were tested for USG using refractometry and reagent strips and for pH using reagent strips and a digital pH meter. Strong correlation coefficients were found between refractometry and reagent strips for USG (rs(82) = 0.812, p refractometry with USG >1.020, pass reagent strips with USG ≤1.020) occurred 39% (33/84) of the time and false negative results for National Federation of State High School Association (NFHS) requirements (fail refractometry with USG >1.025, pass reagent strips with USG ≤1.025) occurred 14% (12/84) of the time. There were no false positives (pass refractometry and fail reagent strips) for NCAA or NFHS requirements. These data show that refractometry and reagent strips have strong positive correlations. However, the risk of a false negative result leading to incorrect certification of euhydration status outweighs the benefits of the HydraTrend reagent strips for the measurement of USG.

  1. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  2. The role of plasma induced substrate heating during high rate deposition of microcrystalline solar cells

    NARCIS (Netherlands)

    van den Donker, M.N.; Schmitz, R.; Appenzeller, W.; Rech, B.; Kessels, W.M.M.; Sanden, van de M.C.M.

    2006-01-01

    A 13.56 MHz parallel plate hydrogen-dild. silane plasma, operated at high pressure and high power, was used to deposit microcryst. silicon solar cells with efficiencies of 6-9% at high deposition rates of 0.4-1.2 nm/s. In this regime new challenges arise regarding temp. control, since the high

  3. Plasma-Wall Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Li, J; Chen, J L [Institute of Plasma Physics, Chinese Academy of Sciences (China); Guo, H Y [Tri Alpha Energy (United States); Institute of Plasma Physics, Chinese Academy of Sciences (China); McCracken, G M [Culham Science Centre, UKAEA, Abingdon (United Kingdom)

    2012-09-15

    The problem of impurities in fusion plasmas has been recognized since the beginning of the fusion programme. Early experiments in glass vacuum vessels released gas from the wall to such an extent that the radiation from the impurities prevented the plasma from being heated above about 50 eV. The radiative power loss is principally due to line radiation from partially stripped ions, which is particularly a problem during the plasma startup phase. Another problem is fuel dilution, which arises because impurity atoms produce many electrons and, for a given plasma pressure, these electrons take the place of fuel particles. Impurities can also lead to disruptions, as a result of edge cooling and consequent current profile modification. The fractional impurity level which radiates 10% of the total thermonuclear power for a 10 keV plasma is 50% for helium, 7% for carbon, and less than 0.1% for molybdenum. Clearly, impurities of low atomic number are a much less serious problem than those of high atomic number. (author)

  4. Plasma and process characterization of high power magnetron physical vapor deposition with integrated plasma equipment--feature profile model

    International Nuclear Information System (INIS)

    Zhang Da; Stout, Phillip J.; Ventzek, Peter L.G.

    2003-01-01

    High power magnetron physical vapor deposition (HPM-PVD) has recently emerged for metal deposition into deep submicron features in state of the art integrated circuit fabrication. However, the plasma characteristics and process mechanism are not well known. An integrated plasma equipment-feature profile modeling infrastructure has therefore been developed for HPM-PVD deposition, and it has been applied to simulating copper seed deposition with an Ar background gas for damascene metalization. The equipment scale model is based on the hybrid plasma equipment model [M. Grapperhaus et al., J. Appl. Phys. 83, 35 (1998); J. Lu and M. J. Kushner, ibid., 89, 878 (2001)], which couples a three-dimensional Monte Carlo sputtering module within a two-dimensional fluid model. The plasma kinetics of thermalized, athermal, and ionized metals and the contributions of these species in feature deposition are resolved. A Monte Carlo technique is used to derive the angular distribution of athermal metals. Simulations show that in typical HPM-PVD processing, Ar + is the dominant ionized species driving sputtering. Athermal metal neutrals are the dominant deposition precursors due to the operation at high target power and low pressure. The angular distribution of athermals is off axis and more focused than thermal neutrals. The athermal characteristics favor sufficient and uniform deposition on the sidewall of the feature, which is the critical area in small feature filling. In addition, athermals lead to a thick bottom coverage. An appreciable fraction (∼10%) of the metals incident to the wafer are ionized. The ionized metals also contribute to bottom deposition in the absence of sputtering. We have studied the impact of process and equipment parameters on HPM-PVD. Simulations show that target power impacts both plasma ionization and target sputtering. The Ar + ion density increases nearly linearly with target power, different from the behavior of typical ionized PVD processing. The

  5. Kinetic theory of interaction of high frequency waves with a rotating plasma

    International Nuclear Information System (INIS)

    Chiu, S. C.; Chan, V. S.; Chu, M. S.; Lin-Liu, Y. R.

    2000-01-01

    The equations of motion of charged particles of a strongly magnetized flowing plasma under the influence of high frequency waves are derived in the guiding center approximation. A quasilinear theory of the interactions of waves with rotating plasmas is formulated. This is applied to investigate the effect of radio frequency waves on a rotating tokamak plasma with a heated minority species. The angular momentum drive is mainly due to the rf-induced radial minority current. The return current by the bulk plasma gives an equal and opposite rotation drive on the bulk. Using moment equations and a small banana width approximation, the JxB drive was evaluated for the bulk plasma. Quite remarkably, although collisions are included, the net rotation drive is due to a term which can be obtained by neglecting collisions. (c) 2000 American Institute of Physics

  6. Study of dense-plasma properties using very high-frequency electromagnetic waves (light waves)

    International Nuclear Information System (INIS)

    Gormezano, C.

    1966-06-01

    A study is made of methods based on the use of lasers for measuring the electronic density and temperature of dense plasmas (N e > 10 15 e/cm 3 ): - an interferometric method using a gas laser, based on the. properties of the Perot-Fabry cavities; - a method making use of the 90 deg C scattering produced by the plasma on light emitted by a ruby laser. These methods have been applied to various dense plasmas: - high-frequency plasma torch; - azimuth compression; - plasma bursts produced by focussing a laser beam on a metal target. The measurements have also been carried out using conventional methods of diagnosis. It has thus been possible to measure densities of between 5.10 15 and 10 19 e/cm 3 and temperatures of between 3 and 10 eV. These different-methods are then compared, (author) [fr

  7. Toroidal confinement of non-neutral plasma - A new approach to high-beta equilibrium

    International Nuclear Information System (INIS)

    Yoshida, Z.; Ogawa, Y.; Morikawa, J.

    2001-01-01

    Departure from the quasi-neutral condition allows us to apply significant two-fluid effects that impart a new freedom to the design of high-performance fusion plasma. The self-electric field in a non-neutralized plasma induces a strong ExB-drift flow. A fast flow produces a large hydrodynamic pressure that can balance with the thermal pressure of the plasma. Basic concepts to produce a toroidal non-neutral plasma have been examined on the internal-conductor toroidal confinement device Proto-RT. A magnetic separatrix determines the boundary of the confinement region. Electrons describe chaotic orbits in the neighborhood of the magnetic null point on the separatrix. The chaos yields collisionless diffusion of electrons from the particle source (electron gun) towards the confinement region. Collisionless heating also occurs in the magnetic null region, which can be applied to produce a plasma. (author)

  8. Propagation Characteristics of High-Power Vortex Laguerre-Gaussian Laser Beams in Plasma

    Directory of Open Access Journals (Sweden)

    Zhili Lin

    2018-04-01

    Full Text Available The propagation characteristics of high-power laser beams in plasma is an important research topic and has many potential applications in fields such as laser machining, laser-driven accelerators and laser-driven inertial confined fusion. The dynamic evolution of high-power Laguerre-Gaussian (LG beams in plasma is numerically investigated by using the finite-difference time-domain (FDTD method based on the nonlinear Drude model, with both plasma frequency and collision frequency modulated by the light intensity of laser beam. The numerical algorithms and implementation techniques of FDTD method are presented for numerically simulating the nonlinear permittivity model of plasma and generating the LG beams with predefined parameters. The simulation results show that the plasma has different field modulation effects on the two exemplified LG beams with different cross-sectional patterns. The self-focusing and stochastic absorption phenomena of high-power laser beam in plasma are also demonstrated. This research also provides a new means for the field modulation of laser beams by plasma.

  9. Plasma skin regeneration technology.

    Science.gov (United States)

    Bogle, M A

    2006-09-01

    Plasma skin regeneration (PSR) technology uses energy delivered from plasma rather than light or radiofrequency. Plasma is the fourth state of matter in which electrons are stripped from atoms to form an ionized gas. The plasma is emitted in a millisecond pulse to deliver energy to target tissue upon contact without reliance on skin chromophores. The technology can be used at varying energies for different depths of effect, from superficial epidermal sloughing to deeper dermal heating. With the Portrait PSR device (Rhytec, Inc.) there are three treatment guidelines termed PSR1, PSR2, and PSR3. The PSR1 protocol uses a series of low-energy treatments (1.0,1.2 Joules) spaced 3 weeks apart. The PSR2 protocol uses one high-energy pass (3.0, 4.0 Joules) performed in a single treatment, and the PSR3 protocol uses two high-energy passes (3.0 4.0 Joules) performed in a single treatment. All protocols improve fine lines, textural irregularities, and dyspigmentation; however, skin tightening is probably more pronounced with the high-energy treatments.

  10. Electron stripping cross sections for light impurity ions in colliding with atomic hydrogens relevant to fusion research

    International Nuclear Information System (INIS)

    Tawara, H.

    1992-04-01

    Electron stripping (ionization) cross sections for impurity (carbon) ions with various charge states in collisions with atomic hydrogens have been surveyed. It has been found that these data are relatively limited both in collision energy and charge state and, in particular those necessary for high energy neutral beam injection (NBI) heating in fusion plasma research are scarce. Some relevant cross sections for carbon ions, C q+ (q = 0-5) have been estimated, based upon the existing data, empirical behavior and electron impact ionization data. (author)

  11. Using Comic Strips in Language Classes

    Science.gov (United States)

    Csabay, Noémi

    2006-01-01

    The author believes that using comic strips in language-learning classes has three main benefits. First, comic strips motivate younger learners. Second, they provide a context and logically connected sentences to help language learning. Third, their visual information is helpful for comprehension. The author argues that comic strips can be used in…

  12. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    International Nuclear Information System (INIS)

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data

  13. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  14. Treatment of refractory powders by a novel, high enthalpy dc plasma

    Science.gov (United States)

    Pershin, L.; Mitrasinovic, A.; Mostaghimi, J.

    2013-06-01

    Thermophysical properties of CO2-CH4 mixtures at high temperatures are very attractive for materials processing. In comparison with argon, at the same temperature, such a mixture possesses much higher enthalpy and higher thermal conductivity. At high temperatures, CO2-CH4 mixture has a complex composition with strong presence of CO which, in the case of powder treatment, could reduce oxidation. In this work, a dc plasma torch with graphite cathode was used to study the effect of plasma gas composition on spheroidization of tungsten carbide and alumina powders. Two different gas compositions were used to generate the plasma while the torch current was kept at 300 A. Various techniques were employed to assess the average concentration of carbides and oxides and the final shape of the treated powders. Process parameters such as input power and plasma gas composition allow controlling the degree of powder oxidation and spheroidization of high melting point ceramic powders.

  15. Treatment of refractory powders by a novel, high enthalpy dc plasma

    International Nuclear Information System (INIS)

    Pershin, L; Mitrasinovic, A; Mostaghimi, J

    2013-01-01

    Thermophysical properties of CO 2 –CH 4 mixtures at high temperatures are very attractive for materials processing. In comparison with argon, at the same temperature, such a mixture possesses much higher enthalpy and higher thermal conductivity. At high temperatures, CO 2 –CH 4 mixture has a complex composition with strong presence of CO which, in the case of powder treatment, could reduce oxidation. In this work, a dc plasma torch with graphite cathode was used to study the effect of plasma gas composition on spheroidization of tungsten carbide and alumina powders. Two different gas compositions were used to generate the plasma while the torch current was kept at 300 A. Various techniques were employed to assess the average concentration of carbides and oxides and the final shape of the treated powders. Process parameters such as input power and plasma gas composition allow controlling the degree of powder oxidation and spheroidization of high melting point ceramic powders. (paper)

  16. X-ray spectroscopic diagnostics of high-temperature dense plasmas created in different gaseous media

    International Nuclear Information System (INIS)

    Skobelev, I.Y.; Dyakin, V.M.; Faenov, A.Y.

    1997-01-01

    The investigations of emission x-ray spectra of multicharged ions of some chemical elements (S, F, Ar, Fr, O) have been carried out. These atoms are contained in gases and consequently can be used as diagnostic elements in a dense plasma focus experiments. The investigations were done in the dense high-temperature plasma (N e ∼ 10 21 cm -3 , T e ∼ 500 eV) created by laser heating of high-pressure gas puff targets, and X-ray spectrographs with a spherically bent mica crystals were used for spectra observations. Some new spectroscopic results (line identifications, high-precision wavelength measurements) have been obtained and have been applied to determine a spatial distribution of plasma parameters. It is shown that spectroscopic techniques used is a very suitable tool for studies of a plasma with complicated spatial structure

  17. D-T plasma of self-sustained burning under high performance

    International Nuclear Information System (INIS)

    Gong Xueyu

    2003-01-01

    By adopting a Bohm-type thermal diffusion coefficient related to the energy confinement enhancement factor H within the conventional magnetic shear regime, and a mixed Bohm-gyro-Bohm thermal diffusion coefficient related to the shear within the negative central magnetic shear regime, considering the effect of the α particle anomalous diffusion and the dynamic feedback heating, and starting from energy transport of electrons and ions, we have studied the high performance self-sustaining burning deuterium-tritium plasma under a given plasma density profile for the two different kinds of magnetic shear regimes. Some conclusions are obtained: under the conventional shear, only when H≥3, the D-T burning can produce a large power output, and when H is larger than a certain value (H≅4), D-T plasma self-sustained burning can be maintained without the dynamic feedback heating; under the negative central shear, the plasmas have a higher plasma performance and a larger power output than that under conventional shear, and D-T plasma self-sustained burning can be maintained without the dynamic feedback heating power, the suitable alpha particle diffusion is advantage ous to D-T plasma burning under the conventional shear, and D-T self-sustained burning cannot be maintained under a large α particle anomalous diffusion for the negative central shear. The dynamic feedback heating power is important for sustaining D-T plasma burning under the conventional shear

  18. Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas

    Science.gov (United States)

    Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.

    2017-10-01

    KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.

  19. Tritium stripping by a catalytic exchange stripper

    International Nuclear Information System (INIS)

    Heung, L.K.; Gibson, G.W.; Ortman, M.S.

    1991-01-01

    A catalytic exchange process for stripping elemental tritium from gas streams has been demonstrated. The process uses a catalyzed isotopic exchange reaction between tritium in the gas phase and protium or deuterium in the solid phase on alumina. The reaction is catalyzed by platinum deposited on the alumina. The process has been tested with both tritium and deuterium. Decontamination factors (ration of inlet and outlet tritium concentrations) as high as 1000 have been achieved, depending on inlet concentration. The test results and some demonstrated applications are presented

  20. Energy Fuels Nuclear, Inc. Arizona Strip Operations

    International Nuclear Information System (INIS)

    Pool, T.C.

    1993-01-01

    Founded in 1975 by uranium pioneer, Robert W. Adams, Energy Fuels Nuclear, Inc. (EFNI) emerged as the largest US uranium mining company by the mid-1980s. Confronting the challenges of declining uranium market prices and the development of high-grade ore bodies in Australia and Canada, EFNI aggressively pursued exploration and development of breccia-pipe ore bodies in Northwestern Arizona. As a result, EFNI's production for the Arizona Strip of 18.9 million pounds U 3 O 8 over the period 1980 through 1991, maintained the company's status as a leading US uranium producer