WorldWideScience

Sample records for highly stressed components

  1. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  2. Stress relief of ceramic components in high voltage assemblies. Final report

    International Nuclear Information System (INIS)

    Heinen, R.J.

    1979-02-01

    Two types of ceramic packages were evaluated to determine the effectiveness of encapsulating the ceramic components in beta eucryptite filled epoxy. The requirements (no high voltage breakdown, no ceramic cracking, and no encapsulant cracking) were met by the spark gap assembly, but the sprytron assembly had cracking in the encapsulant after thermal cycling. The encapsulation of the ceramic component in beta eucryptite filled epoxy with a stress decoupling material selectively applied in the stress concentrated areas were used to prevent cracking in the sprytron encapsulant. This method is proposed as the standard encapsulation process for high voltage ceramic components

  3. Stresses evolution at high temperature (200°C on the interface of thin films in magnetic components

    Directory of Open Access Journals (Sweden)

    Doumit Nicole

    2014-07-01

    Full Text Available In the field of electronics, the increase of operating temperatures is a major industrial and scientific challenge because it allows reducing mass and volume of components especially in the aeronautic domain. So minimizing our components reduce masses and the use of cooling systems. For that, the behaviours and interface stresses of our components (in particular magnetic inductors and transformers that are constituted of one magnetic layer (YIG or an alumina substrate (Al2O3 representing the substrate and a thin copper film are studied at high temperature (200°C. COMSOL Multiphysics is used to simulate our work and to validate our measurements results. In this paper, we will present stresses results according to the geometrical copper parameters necessary for the component fabrication. Results show that stresses increase with temperature and copper’s thickness while remaining always lower than 200MPa which is the rupture stress value.

  4. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  5. The influence of cellular structures on flow stress of high strength components manufactured using SLM

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing has shown significant improvement in material and machines for high-quality solid freeform fabrication processes such as selective laser melting (SLM). In particular, manufacturing lattice structures using the SLM procedure is of interest. This research examines the effect...... of cellular materials on compression strength. The specimens are manufactured additively using industrial 3D printing systems from high-strength alloy. The material has the right mechanical properties for manufacturing tool components. This includes samples with solid and lattice structures. The Compression...

  6. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Majumdar, Saurindranath; Srinivasan, Makuteswara

    2013-01-01

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite

  7. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Majumdar, Saurindranath [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-07-15

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite.

  8. Usefulness of creep work-time relation for determining stress intensity limit of high-temperature components

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Lee, Kyung Yong

    2003-01-01

    In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W c t p = B (where W c = σ ε is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this purpose, the creep tests for generating 1.0% strain for commercial type 316 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593 .deg. C. The plots of log W c - log t showed a good linear relation up to 10 5 hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of Isochronous Stress-Strain Curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials

  9. Metallic materials for heat exchanger components and highly stressed internal of HTR reactors for nuclear process heat generation

    International Nuclear Information System (INIS)

    1982-01-01

    The programme was aimed at the development and improvement of materials for the high-temperature heat exchanger components of a process steam HTR. The materials must have high resistance to corrosion, i.e. carburisation and internal oxidation, and high long-term toughness over a wide range of temperatures. They must also meet the requirements set in the nuclear licensing procedure, i.e. resistance to cyclic stress and irradiation, non-destructive testing, etc. Initially, it was only intended to improve and qualify commercial alloys. Later on an alloy development programme was initiated in which new, non-commercial alloys were produced and modified for use in a nuclear process heat facility. Separate abstracts were prepared for 19 pays of this volume. (orig./IHOE) [de

  10. T-stresses for internally cracked components

    International Nuclear Information System (INIS)

    Fett, T.

    1997-12-01

    The failure of cracked components is governed by the stresses in the vicinity of the crack tip. The singular stress contribution is characterised by the stress intensity factor K, the first regular stress term is represented by the so-called T-stress. T-stress solutions for components containing an internal crack were computed by application of the Bundary Collocation Method (BCM). The results are compiled in form of tables or approximative relations. In addition a Green's function of T-stresses is proposed for internal cracks which enables to compute T-stress terms for any given stress distribution in the uncracked body. (orig.) [de

  11. High thermal load component

    International Nuclear Information System (INIS)

    Fuse, Toshiaki; Tachikawa, Nobuo.

    1996-01-01

    A cooling tube made of a pure copper is connected to the inner portion of an armour (heat resistant member) made of an anisotropic carbon/carbon composite (CFC) material. The CFC material has a high heat conductivity in longitudinal direction of fibers and has low conductivity in perpendicular thereto. Fibers extending in the armour from a heat receiving surface just above the cooling tube are directly connected to the cooling tube. A portion of the fibers extending from a heat receiving surface other than portions not just above the cooling tube is directly bonded to the cooling tube. Remaining fibers are disposed so as to surround the cooling tube. The armour and the cooling tube are soldered using an active metal flux. With such procedures, high thermal load components for use in a thermonuclear reactor are formed, which are excellent in a heat removing characteristic and hardly causes defects such as crackings and peeling. (I.N.)

  12. Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yu-En Wu

    2016-09-01

    Full Text Available In this study, a novel, non-isolated, cascade-type, single-switch, high step-up DC/DC converter was developed for green energy systems. An integrated coupled inductor and voltage lift circuit were applied to simplify the converter structure and satisfy the requirements of high efficiency and high voltage gain ratios. In addition, the proposed structure is controllable with a single switch, which effectively reduces the circuit cost and simplifies the control circuit. With the leakage inductor energy recovery function and active voltage clamp characteristics being present, the circuit yields optimizable conversion efficiency and low component voltage stress. After the operating principles of the proposed structure and characteristics of a steady-state circuit were analyzed, a converter prototype with 450 W, 40 V of input voltage, 400 V of output voltage, and 95% operating efficiency was fabricated. The Renesas MCU RX62T was employed to control the circuits. Experimental results were analyzed to validate the feasibility and effectiveness of the proposed system.

  13. Measurements for stresses in machine components

    CERN Document Server

    Yakovlev, V F

    1964-01-01

    Measurements for Stresses in Machine Components focuses on the state of stress and strain of components and members, which determines the service life and strength of machines and structures. This book is divided into four chapters. Chapter I describes the physical basis of several methods of measuring strains, which includes strain gauges, photoelasticity, X-ray diffraction, brittle coatings, and dividing grids. The basic concepts of the electric strain gauge method for measuring stresses inside machine components are covered in Chapter II. Chapter III elaborates on the results of experim

  14. Brown rice and its component, γ-oryzanol, attenuate the preference for high-fat diet by decreasing hypothalamic endoplasmic reticulum stress in mice.

    Science.gov (United States)

    Kozuka, Chisayo; Yabiku, Kouichi; Sunagawa, Sumito; Ueda, Rei; Taira, Shin-Ichiro; Ohshiro, Hiroyuki; Ikema, Tomomi; Yamakawa, Ken; Higa, Moritake; Tanaka, Hideaki; Takayama, Chitoshi; Matsushita, Masayuki; Oyadomari, Seiichi; Shimabukuro, Michio; Masuzaki, Hiroaki

    2012-12-01

    Brown rice is known to improve glucose intolerance and prevent the onset of diabetes. However, the underlying mechanisms remain obscure. In the current study, we investigated the effect of brown rice and its major component, γ-oryzanol (Orz), on feeding behavior and fuel homeostasis in mice. When mice were allowed free access to a brown rice-containing chow diet (CD) and a high-fat diet (HFD), they significantly preferred CD to HFD. To reduce hypothalamic endoplasmic reticulum (ER) stress on an HFD, mice were administered with 4-phenylbutyric acid, a chemical chaperone, which caused them to prefer the CD. Notably, oral administration of Orz, a mixture of major bioactive components in brown rice, also improved glucose intolerance and attenuated hypothalamic ER stress in mice fed the HFD. In murine primary neuronal cells, Orz attenuated the tunicamycin-induced ER stress. In luciferase reporter assays in human embryonic kidney 293 cells, Orz suppressed the activation of ER stress-responsive cis-acting elements and unfolded protein response element, suggesting that Orz acts as a chemical chaperone in viable cells. Collectively, the current study is the first demonstration that brown rice and Orz improve glucose metabolism, reduce hypothalamic ER stress, and, consequently, attenuate the preference for dietary fat in mice fed an HFD.

  15. Dynamics stresses in pipelines and components

    International Nuclear Information System (INIS)

    Prates, C.L.M.; Stukart, R.N.L.; Halbritter, A.L.

    1982-01-01

    The procedure to generate the dynamic stresses caused by external events, necessary for the structural calculation of pipelines and components in nuclear power plants is presented. A special attention is given to the stress caused by the action of earthquakes and exterior explosions. In the dynamic analysis of pipeline and components is usually to show the stresses procedured by these events under the response spectra form. The methodology to obtain these response spectra is shown and discussed. Some pratical examples of spectra from nuclear power plant building are still shown. (E.G.) [pt

  16. Methods of measuring residual stresses in components

    International Nuclear Information System (INIS)

    Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G.

    2012-01-01

    Highlights: ► Defining the different methods of measuring residual stresses in manufactured components. ► Comprehensive study on the hole drilling, neutron diffraction and other techniques. ► Evaluating advantage and disadvantage of each method. ► Advising the reader with the appropriate method to use. -- Abstract: Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non-destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments.

  17. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd

  18. Reliability of mechanical components subjected to combined alternating and mean stresses with a nonconstant stress ratio

    International Nuclear Information System (INIS)

    Kececioglu, D.; Lamarre, G.B.

    1979-01-01

    The reliability of reactor mechanical components and structural members, submitted to external loads which induce alternating bending stresses and mean shear stresses at the critical section where failure has a high probability of occurring, is predicted assuming that the ratio of the distributed alternating stress to the mean stress is also distributed and yields a bivariate failure-governing, combined alternating and mean, stress distribution. A computer programmed methodology is developed to calculate the reliability under these conditions given the associated distributional Goodman diagram for a reactor component or structural member. (orig.)

  19. Residual stress improving method for reactor structural component and residual stress improving device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Kunio; Otaka, Masahiro; Kurosawa, Koichi; Saito, Hideyo; Tsujimura, Hiroshi; Tamai, Yasukata; Urashiro, Keiichi; Mochizuki, Masato

    1996-09-03

    The present invention is applied to a BWR type reactor, in which a high speed jetting flow incorporating cavities is collided against the surface of reactor structural components to form residual compression stresses on the surface layer of the reactor structural components thereby improving the stresses on the surface. Namely, a water jetting means is inserted into the reactor container filled with reactor water. Purified water is pressurized by a pump and introduced to the water jetting means. The purified water jetted from the water jetting means and entraining cavities is abutted against the surface of the reactor structural components. With such procedures, since the purified water is introduced to the water jetting means by the pump, the pump is free from contamination of radioactive materials. As a result, maintenance and inspection for the pump can be facilitated. Further, since the purified water injection flow entraining cavities is abutted against the surface of the reactor structural components being in contact with reactor water, residual compression stresses are exerted on the surface of the reactor structural components. As a result, occurrence of stress corrosion crackings of reactor structural components is suppressed. (I.S.)

  20. Residual stress improving method for reactor structural component and residual stress improving device therefor

    International Nuclear Information System (INIS)

    Enomoto, Kunio; Otaka, Masahiro; Kurosawa, Koichi; Saito, Hideyo; Tsujimura, Hiroshi; Tamai, Yasukata; Urashiro, Keiichi; Mochizuki, Masato.

    1996-01-01

    The present invention is applied to a BWR type reactor, in which a high speed jetting flow incorporating cavities is collided against the surface of reactor structural components to form residual compression stresses on the surface layer of the reactor structural components thereby improving the stresses on the surface. Namely, a water jetting means is inserted into the reactor container filled with reactor water. Purified water is pressurized by a pump and introduced to the water jetting means. The purified water jetted from the water jetting means and entraining cavities is abutted against the surface of the reactor structural components. With such procedures, since the purified water is introduced to the water jetting means by the pump, the pump is free from contamination of radioactive materials. As a result, maintenance and inspection for the pump can be facilitated. Further, since the purified water injection flow entraining cavities is abutted against the surface of the reactor structural components being in contact with reactor water, residual compression stresses are exerted on the surface of the reactor structural components. As a result, occurrence of stress corrosion crackings of reactor structural components is suppressed. (I.S.)

  1. Stress analysis for nuclear power plant components

    International Nuclear Information System (INIS)

    Mueller, R.A.

    1981-09-01

    The general procedure for a meaningful stress evaluation will be outlined. The extremely aggravated conditions prevailing at elevated temperatures, at which creep effects can no longer be neglected, will also be touched upon briefly. (E.G.) [pt

  2. Problems of stress analysis of fuelling machine head components

    International Nuclear Information System (INIS)

    Mathur, D.D.

    1975-01-01

    The problem of stress analysis of fuelling machine head components are discussed. To fulfil the functional requirements, the components are required to have certain shapes where stress problems cannot be matched to a catalogue of pre-determined solutions. The areas where complex systems of loading due to hydrostatic pressure, weight, moments and temperature gradients coupled with the intricate shapes of the components make it difficult to arrive at satisfactory solutions. Particularly, the analysis requirements of the magazine housing, end cover, gravloc clamps and centre support are highlighted. An experimental stress analysis programme together with a theoretical finite element analysis is perhaps the answer. (author)

  3. High temperature component life assessment

    CERN Document Server

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  4. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  5. Compressive residual stresses as a preventive measure against stress corrosion cracking on turbine components

    International Nuclear Information System (INIS)

    Berger, C.; Ewald, J.; Fischer, K.; Gruendler, O.; Potthast, E.; Stuecker, E.; Winzen, G.

    1987-01-01

    Disk type low pressure turbine rotors have been designed for a large variety of power plant applications. Developing disk type rotors required a concerted effort to design a shaft/disk shrink fit with a minimum of tensile stress concentrations in order to aim for the lowest possible susceptibility to corrosive attack, i.e. stress corrosion cracking. As a result of stresses, the regions of greatest concern are the shrink fit boundaries and the keyways of turbine disks. These stresses are caused by service loading, i.e. centrifugal and shrinkage stresses and by manufacturing procedure, i.e. residual stresses. The compressive residual stresses partly compensate the tensile service stresses so that an increase of compressive residual stresses decreases the whole stress state of the component. Special manufacturing procedures, e.g. accelerated cooling after tempering can induce compressive residual stresses up to about 400 MPa in the hub bore region of turbine disk

  6. Identification of Neuregulin-2 as a novel stress granule component.

    Science.gov (United States)

    Kim, Jin Ah; Jayabalan, Aravinth Kumar; Kothandan, Vinoth Kumar; Mariappan, Ramesh; Kee, Younghoon; Ohn, Takbum

    2016-08-01

    Stress Granules (SGs) are microscopically visible, phase dense aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes formed in response to distinct stress conditions. It is generally considered that SG formation is induced to protect cells from conditions of stress. The precise constituents of SGs and the mechanism through which SGs are dynamically regulated in response to stress are not completely understood. Hence, it is important to identify proteins which regulate SG assembly and disassembly. In the present study, we report Neuregulin-2 (NRG2) as a novel component of SGs; furthermore, depletion of NRG2 potently inhibits SG formation. We also demonstrate that NRG2 specifically localizes to SGs under various stress conditions. Knockdown of NRG2 has no effect on stress-induced polysome disassembly, suggesting that the component does not influence early step of SG formation. It was also observed that reduced expression of NRG2 led to marginal increase in cell survival under arsenite-induced stress. [BMB Reports 2016; 49(8): 449-454].

  7. Welding residual stress improvement in internal components by water jet peening

    International Nuclear Information System (INIS)

    Enomoto, K.; Hirano, K.; Hayashi, M.; Hayashi, E.

    1996-01-01

    Cavitations are generated when highly pressurized water is jetted in water. Surface residual stress is improved remarkably due to the peening effect of extremely high pressure caused by the collapse of cavitation bubbles. This technique is called water jet peening (WJP). WJP is expected to be an effective maintenance technique for the prevention of stress corrosion cracking caused by residual stress in various components of power generating plants. Various kinds of specimens were water jet peened to evaluate the fundamental characteristics of WJP and to select the most appropriate conditions for the residual stress improvement. Test results showed that WJP markedly improved the tensile residual stress caused by welding and grinding to the high compressive residual stress and seems to prevent the stress corrosion cracking

  8. Classification of stresses in pressure components using the GLOSS diagram

    International Nuclear Information System (INIS)

    Seshadri, R.

    1990-01-01

    Discontinuity stresses in pressure components are classified as secondary stresses at temperatures below the creep range. The stresses are considered to be deformation-controlled in that shakedown occurs after several load cycles. There are situations, however, where the discontinuity stresses may not be deformation-controlled, and follow-up action might occur. A conservative approach would be to classify the resulting mixed-mode response as a load-controlled situation. The subsequent design could then be unduly wasteful. A simple method for evaluating the mixed-mode response is a technique known as the generalized local stress-strain (GLOSS) analysis. The underlying theory relates the follow-up process to the deformation-controlled uniaxial relaxation. The slope of the mixed-mode response trajectory on the GLOSS diagram determines the relative proportions of deformation and load-controlled actions. In this paper, use is made of the GLOSS diagram to classify stresses or damage due to follow-up in pressure components for temperature below the creep range and elevated temperatures. Some ASME code related perspectives are also discussed in the paper

  9. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  10. Fatigue assessment of laserbeam welded PM steel components by the notch stress approach

    Energy Technology Data Exchange (ETDEWEB)

    Waterkotte, R. [Schaeffler Technologies GmbH and Co. KG, Herzogenaurach (Germany); Sonsino, C.M. [Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt (Germany); Baumgartner, J.

    2011-10-15

    The local fatigue strength of a laserbeam weld of a complex engine component, which joins a PM with a formed sheet component, was assessed by the notch stress concept with the fictitious reference radius of r{sub ref}= 0.05 mm. First, simplified specimens, following the main geometric dimensions of the parts, were manufactured. On these specimens the fatigue strength was identified by tests and the notch stresses calculated by finite element analysis. Based on these results a design SN-curve was derived to assess the fatigue strength of the engine component. The numerical assessment of the welded joint was verified by proof tests with the component. The assessment could be improved by considering statistical and stress gradient dependent size effects according to the concept of the highly stressed volume. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Sleep in High Stress Occupations

    Science.gov (United States)

    Flynn-Evans, Erin

    2014-01-01

    High stress occupations are associated with sleep restriction, circadian misalignment and demanding workload. This presentation will provide an overview of sleep duration, circadian misalignment and fatigue countermeasures and performance outcomes during spaceflight and commercial aviation.

  12. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  13. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of real component geometries (phase 1). Final report

    International Nuclear Information System (INIS)

    Nau, Andreas; Scholtes, B.

    2014-01-01

    Residual stresses can be result in both detrimental as well as beneficial consequences on the component's strength and lifetime. A most detailed knowledge of the residual stress state is a pre-requisite for the assessment of the component's performance. The mechanical methods for residual stress measurements are classified in non-destructive, destructive and semi-destructive methods. The two commonly used (semi-destructive) mechanical methods are the hole drilling and the ring core method. In the context of reactor safety research of the Federal Ministry of Economic Affairs and Energy (BMWi), two fundamental and interacting weak points of the hole drilling as well as of the ring core method are investigated. On the one hand, there are effects concerning geometrical boundary conditions of the components and on the other hand, there are influences of plasticity due to notch effects. Both aspects affect the released strain field, when the material is removed and finally, the calculated residual stresses. The first issue mentioned above is under the responsibility of Institute of Materials Engineering - Metallic Materials (Kassel University) and the last one will be investigated by University of Stuttgart-Otto-Graf-Institut - materials testing institute. Within the framework of this project it could be demonstrated that updated calibration coefficients lead to more reliable residual stress calculation in contrast to existing ones. These findings are valid for points of measurements on components without geometrical boundary effects like edges or shoulders. Reasons are high developed Finite-Element software packages and the opportunity of modelling the point of measurement (hole geometry, layout of the strain gauges) and its vicinity more in detail. Special challenges are multi-axial residual stress depth distributions and the geometry of components composing edges and claddings. Unlike existing analyses considering uni-axial and homogeneous stress states, bi

  14. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  15. High Frequency Components Recovery in Music Signals

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    1999-04-01

    Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.

  16. High power RF transmission line component development

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  17. High power RF transmission line component development

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  18. X-ray and neutron diffraction determination of residual stresses in a pressed and welded component

    International Nuclear Information System (INIS)

    Albertini, G.; Broda, M.; Fiori, F.; Girardin, E.; Giuliani, A.; Quadrini, E.

    1999-01-01

    Complete text of publication follows. Problems connected with welding and pressing are very important in mechanical design, as these processed create microstructural alterations and internal stresses in the material that cannot be neglected. A pressing steel (FEP13) machine element is considered, designed to support a scooter engine. Two kinds of fatigue are to be supported by the component during operation: high loads at low frequency, due to the interaction of the scooter with the soil and low loads at high frequency due to the engine. The knowledge of the residual stress field occurring before operation is fundamental in order to perform theoretical predictions of the stress state during operation, and also to determine the loads to be used in fatigue tests which the component will be submitted to. The results of X-ray and neutron experiments are presented, carried out across a 'critical' weld in the component. (author)

  19. Path Analysis of Acculturative Stress Components and Their Relationship with Depression Among International Students in China.

    Science.gov (United States)

    Liu, Yang; Chen, Xinguang; Li, Shiyue; Yu, Bin; Wang, Yan; Yan, Hong

    2016-12-01

    Acculturative stress prevents international students from adapting to the host culture, increasing their risk for depression. International students in China are a growing and at-risk population for acculturative stress and depression. With data from the International Student Health and Behaviour Survey (Yu et al., ) in China, seven acculturative stress components were detected in a previous study (Yu et al., ), including a central component (self-confidence), three distal components (value conflict, identity threat and rejection) and three proximal components (poor cultural competence, opportunity deprivation and homesickness). The current study extended the previous study to investigate the relationship between these components and depression with data also from International Student Health and Behaviour Survey. Participants were 567 students (59% male, 40.4% African, mean age = 22.75, SD = 4.11) recruited in Wuhan, China. The sample scored high on the Acculturative Stress Scale for International Students (M = 92.81, SD = 23.93) and Center for Epidemiologic Studies Short Depression Scale (M = 0.97, SD = 0.53). Acculturative stress was positively associated with depression; the association between the three distal stress components and depression was fully mediated through self-confidence, while the three proximal components had a direct effect and a self-confidence-mediated indirect effect. These findings extended the value of the previous study, highlighted the central role of self-confidence in understanding acculturative stress and depression and provided new data supporting more effective counselling for international students in China. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. EU Development of High Heat Flux Components

    International Nuclear Information System (INIS)

    Linke, J.; Lorenzetto, P.; Majerus, P.; Merola, M.; Pitzer, D.; Roedig, M.

    2005-01-01

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20 MWm -2 , off-normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scale of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view.The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of 1 dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a nonnegligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads

  1. Prediction of retained residual stresses in laboratory fracture mechanics specimens extracted from welded components

    International Nuclear Information System (INIS)

    Hurlston, R.G.; Sherry, A.H.; James, P.; Sharples, J.K.

    2015-01-01

    The measurement of weld material fracture toughness properties is important for the structural integrity assessment of engineering components. However, welds can contain high levels of residual stress and these can be retained in fracture mechanics specimens, particularly when machined from non-stress relieved welds. Retained residual stresses can make the measurement of valid fracture toughness properties difficult. This paper describes the results of analytical work undertaken to investigate factors that can influence the magnitude and distribution of residual stresses retained in fracture mechanics specimen blanks extracted from as-welded ferritic and austenitic stainless steel plates. The results indicate that significant levels of residual stress can be retained in specimen blanks prior to notching, and that the magnitude and distribution of stress is dependent upon material properties, specimen geometry and size, and extraction location through the thickness of the weld. Finite element modelling is shown to provide a useful approach for estimating the level and distributions of retained residual stresses. A new stress partitioning approach has been developed to estimate retained stress levels and results compare favourably with FE analysis and available experimental data. The approach can help guide the selection of specimen geometry and machining strategies to minimise the level of residual stresses retained in fracture mechanics specimen blanks extracted from non stress-relieved welds and thus improve the measurement of weld fracture toughness properties. - Highlights: • A simplified method for generating realistic weld residual stresses has been developed. • It has been shown that significant levels of residual stress can be retained within laboratory fracture mechanics specimens. • The level and distribution is dependant upon material, specimen type, specimen size and extraction location. • A method has been developed to allow estimates of the

  2. Material laws for room temperature and high temperature, automatic adaptation to experimental data sets and applications to components under multiaxial stress; Stoffgesetze fuer Raum- und Hochtemperatur, automatisierte Anpassung an experimentelle Datensaetze und Anwendungen auf mehrachsig belastete Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Mohrmann, R.

    1998-12-01

    Models of materials mechanics were applied and improved, and a universal method for adapting the model parameters was developed. Measurements of several steels were processed by this method. The efficiency of the models and method was established by a comparison with measurements of components under multiaxial stress and components with FEA predictions. [German] Im Rahmen dieser Arbeit wurden werkstoffmechanische Modelle angewendet und weiterentwickelt. Fuer diese Modelle wurde eine universelle Methode zur Anpassung der Modellparameter entwickelt. Es wurden Messergebnisse verschiedener Stahlwerkstoffe mit dieser Methode bearbeitet. Die Leistungsfaehigkeit der untersuchten Modelle bzw. der entwickelten Methode wurde durch den Vergleich von Messergebnissen mehrachsig belasteter Komponenten bzw. Bauteilen mit Finite-Element Vorhersagen nachgewiesen. (orig.)

  3. Effect of the weld joint configuration on stressed components, residual stresses and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cevik, Bekir; Oezer, Alpay; Oezcatalbas, Yusuf [Gazi Univ., Ankara (Turkey)

    2014-03-01

    The effect of the weld joint configuration on components has been studied, which are under service loads, under repair or construction and the residual stresses as well as the mechanical properties of the joint have been determined. For this purpose, a horizontal positioned tensile testing device and a semi-automatic MIG welding machine have been used and then the weld joints of the plates were subjected to different elastic stresses. When the temperature of the joined elements decreased to room temperature, applied elastic stresses were released. By this means, the effects of the existing tensile stresses in the joined parts and the tensile stresses created by the welding processes were investigated. The tensile stresses occurring in the joined elements were determined by using the photo-elasticity analysis method and the hole-drilling method. Also, tensile-shear tests were applied in order to determine the effect of permanent tensile loads on the mechanical properties of the joint. Experimental results showed that the application of corner welded lap joints for components under tensile loading significantly decrease the shear strength and yielding capacities of the joint. (orig.)

  4. The application of linear elastic fracture mechanics to thermally stressed welded components

    International Nuclear Information System (INIS)

    Green, D.

    1981-01-01

    Linear Elastic Fracture Mechanics techniques are applied to components constructed from brittle materials and operating at low or ambient temperatures. It is argued that these techniques can justifiably be applied to components at high temperature provided that stresses are thermally induced, self-equilibrating and cyclic. Such loading conditions occur for example in an LMFBR and a simple welded detail containing a crevice is taken as an example. Theoretical and experimental estimates of crack growth in this component are compared and good agreement is shown. (author)

  5. Understanding susceptibility of in-core components to irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1991-03-01

    As nuclear plants age and accumulated fluences of core structural components increase, susceptibility of the components to irradiation-assisted stress corrosion cracking (IASCC) is also expected to increase. Irradiation-induced sensitization, commonly associated with an IASCC failure, was investigated in this study to provide a better understanding of long-term structural integrity of safety-significant in-core components. Irradiation-induced sensitization of high- and commercial-purity Type 304 stainless steels irradiated in BWRs was analyzed. 7 refs., 8 figs

  6. Optimism and pessimism are related to different components of the stress response in healthy older people.

    Science.gov (United States)

    Puig-Perez, Sara; Villada, Carolina; Pulopulos, Matias M; Almela, Mercedes; Hidalgo, Vanesa; Salvador, Alicia

    2015-11-01

    Some personality traits have key importance for health because they can affect the maintenance and evolution of different disorders with a high prevalence in older people, including stress pathologies and diseases. In this study we investigated how two relevant personality traits, optimism and pessimism, affect the psychophysiological response of 72 healthy participants (55 to 76 years old) exposed to either a psychosocial stress task (Trier Social Stress Test, TSST) or a control task; salivary cortisol, heart rate (HR) and situational appraisal were measured. Our results showed that optimism was related to faster cortisol recovery after exposure to stress. Pessimism was not related to the physiological stress response, but it was associated with the perception of the stress task as more difficult. Thus, higher optimism was associated with better physiological adjustment to a stressful situation, while higher pessimism was associated with worse psychological adjustment to stress. These results highlight different patterns of relationships, with optimism playing a more important role in the physiological component of the stress response, and pessimism having a greater effect on situational appraisal. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of the Cognitive-Behavioral Therapy for Stress Management on Executive Function Components.

    Science.gov (United States)

    Santos-Ruiz, Ana; Robles-Ortega, Humbelina; Pérez-García, Miguel; Peralta-Ramírez, María Isabel

    2017-02-13

    This study aims to determine whether it is possible to modify executive function in stressed individuals by means of cognitive-behavioral therapy for stress management. Thirty-one people with high levels of perceived stress were recruited into the study (treatment group = 18; wait-list group = 13). The treatment group received 14 weeks of stress management program. Psychological and executive function variables were evaluated in both groups pre and post-intervention. The treatment group showed improved psychological variables of perceived stress (t = 5.492; p = .001), vulnerability to stress (t = 4.061; p = .001) and superstitious thinking (t = 2.961; p = .009). Likewise, the results showed statistically significant differences in personality variables related to executive function, positive urgency (t = 3.585; p = .002) and sensitivity to reward (t = -2.201; p = .042), which improved after the therapy. These variables showed a moderate to high effect size (oscillates between 1.30 for perceived stress and .566 for sensitivity to reward). The cognitive-behavioral therapy for stress management may be an appropriate strategy for improving personality construct components related to executive function, however effects of the therapy are not showed on performance on the tests of executive function applied, as presented studies previous.

  8. Experimental stress analysis for determination of residual stresses and integrity monitoring of components and systems

    International Nuclear Information System (INIS)

    1993-01-01

    For an analysis of the safety-related significance of residual stresses, mechanical, magnetic as well as ultrasonic and diffraction methods can be applied as testing methods. The results of an interlaboratory test concerning the experimental determination of residual stresses in a railway track are included. Further, questions are analyzed concerning the in-service inspections of components and systems with regard to their operational safety and life. Measurement methods are explained by examples from power plant engineering, nuclear power plant engineering, construction and traffic engineering as well as aeronautics. (DG) [de

  9. NDE of stresses in thick-walled components by ultrasonic methods

    International Nuclear Information System (INIS)

    Goebbels, K.; Pitsch, H.; Schneider, E.; Nowack, H.

    1985-01-01

    The possibilty of measuring stresses - especially residual stresses - by ultrasonic methods has been presented at the 4th and 5th International Conference on NDE in Nuclear Industry. This contribution now presents results of several applications to thick walled components such as turbines and generators for power plants. The measurement technique using linearly polarized shear waves allows one to characterize the homogeneitry of the residual stress situation along and around cylindrically shaped components. Some important results show that the stress distribution integrated over the cross section of the component has not followed in any case the simple relations derived by stress analysts. Conclusions referring to the stress situation inside the components are discussed

  10. Background of SIFs and Stress Indices for Moment Loadings of Piping Components

    International Nuclear Information System (INIS)

    Wais, E. A.; Rodabaugh, E. C.

    2005-01-01

    This report provides background information, references, and equations for twenty-four piping components (thirteen component SIFs and eleven component stress indices) that justify the values or expressions for the SIFs and indices

  11. Grain Flow at High Stresses

    Science.gov (United States)

    McSaveney, M. J.

    2015-12-01

    The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?

  12. Numerical analysis of residual stresses reconstruction for axisymmetric glass components

    Science.gov (United States)

    Tao, Bo; Xu, Shuang; Yao, Honghui

    2018-01-01

    A non-destructive measurement method for 3D stress state in a glass cylinder using photoelasticity has been analyzed by simulation in this research. Based on simulated stresses in a glass cylinder, intensity of the cylinder in a circular polariscope can be calculated by Jones calculus. Therefore, the isoclinic angle and optical retardation can be obtained by six steps phase shifting technique. Through the isoclinic angle and optical retardation, the magnitude and distribution of residual stresses inside the glass cylinder in cylindrical coordinate system can be reconstructed. Comparing the reconstructed stresses with numerical simulated stresses, the results verify this non-destructive method can be used to reconstruct the 3D stresses. However, there are some mismatches in axial stress, radial stress and circumferential stress.

  13. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  14. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    well below the yield strength of the material, the residual stresses highly affect the simulation results while the effect of local material behavior is low. As the applied load increases and the stress level in the component approaches and passes the yield strength, the effect of residual stresses diminishes while the effect of local mechanical behavior increases. In particular the predicted strain level is heavily affected by the use of local mechanical behavior. It is proposed that it is important to include both local mechanical behavior and residual stresses in stress-strain simulations to predict the true mechanical behavior of the component.

  15. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis [Experiment 2

    Data.gov (United States)

    National Aeronautics and Space Administration — Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology yet the apparent components of hypobaria are stresses...

  16. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis [Experiment 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology yet the apparent components of hypobaria are stresses...

  17. Validation of stress prediction during solidification of cast components

    CSIR Research Space (South Africa)

    Paine, AP

    2007-07-01

    Full Text Available to solidify and undergoes changes in phases where different material laws are valid. In the fluid state the metal is almost stress free but as the part starts to solidify and shrink, stresses are induced in the casting due to constraints from the mould. Some...

  18. Status of design code work for metallic high temperature components

    International Nuclear Information System (INIS)

    Bieniussa, K.; Seehafer, H.J.; Over, H.H.; Hughes, P.

    1984-01-01

    The mechanical components of high temperature gas-cooled reactors, HTGR, are exposed to temperatures up to about 1000 deg. C and this in a more or less corrosive gas environment. Under these conditions metallic structural materials show a time-dependent structural behavior. Furthermore changes in the structure of the material and loss of material in the surface can result. The structural material of the components will be stressed originating from load-controlled quantities, for example pressure or dead weight, and/or deformation-controlled quantities, for example thermal expansion or temperature distribution, and thus it can suffer rowing permanent strains and deformations and an exhaustion of the material (damage) both followed by failure. To avoid a failure of the components the design requires the consideration of the following structural failure modes: ductile rupture due to short-term loadings; creep rupture due to long-term loadings; reep-fatigue failure due to cyclic loadings excessive strains due to incremental deformation or creep ratcheting; loss of function due to excessive deformations; loss of stability due to short-term loadings; loss of stability due to long-term loadings; environmentally caused material failure (excessive corrosion); fast fracture due to instable crack growth

  19. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Friction & Wear Under Very High Electromagnetic Stress

    National Research Council Canada - National Science Library

    Cowan, Richard S; Danyluk, Steven; Moon, Francis; Ford, J. C; Brenner, Donald W

    2004-01-01

    This document summarizes initial progress toward advancing the fundamental understanding of the friction, wear and mechanics of interfaces subjected to extreme electromagnetic stress, high relative...

  1. Neutron diffraction measurements of residual stress in a powder metallurgy component

    International Nuclear Information System (INIS)

    Schneider, L.C.R.; Hainsworth, S.V.; Cocks, A.C.F.; Fitzpatrick, M.E.

    2005-01-01

    Residual stresses in a typical industrial green component were determined using neutron diffraction. The measured residual stresses were found to correlate with cross-sectional variations. Residual stress at the edge of the compact in contact with the die wall during compaction reached up to +80 MPa (tension) and -100 MPa (compression)

  2. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    Directory of Open Access Journals (Sweden)

    Hsiang-Ting Huang

    Full Text Available Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  3. Mining highly stressed areas, part 1.

    CSIR Research Space (South Africa)

    Johnson, R

    1995-12-01

    Full Text Available The aim of this long-term project has been to focus on the extreme high-stress end of the mining spectrum. Such high stress conditions will prevail in certain ultra-deep mining operation of the near future, and are already being experienced...

  4. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The importance of stress ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  5. Stress corrosion on austenitic stainless steels components after sodium draining

    International Nuclear Information System (INIS)

    Champeix, L.; Baque, P.; Chairat, C.

    1980-04-01

    The damage study performed on 316 pipes of a loop after two leakages allows to conclude that a stress corrosion process in sodium hydroxide environment has induced trans-crystaline cracks. The research of conditions inducing such a phenomenon is developed, including parametric tests under uniaxial load and some tests on pipe with welded joints. In aqueous sodium hydroxide, two corrosion processes have been revealed: a general oxidization increasing with environment aeration and a transcrystalline cracking appearing for stresses of the order of yield strength. Other conditions such a temperature (upper than 100 0 C) and time exposures (some tens of hours) are necessary. Cautions in order to limit introduction of wet air into drained loop and a choice of appropriate preheating conditions when restarting the installation must permit to avoid such a type of incident

  6. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  7. Biobehavioral Intervention for Cancer Stress: Conceptualization, Components, and Intervention Strategies

    Science.gov (United States)

    Andersen, Barbara L.; Golden-Kreutz, Deanna M.; Emery, Charles F.; Thiel, Debora L.

    2009-01-01

    Trials testing the efficacy of psychological interventions for cancer patients had their beginnings in the 1970s. Since then, hundreds of trials have found interventions to be generally efficacious. In this article, we describe an intervention grounded in a conceptual model that includes psychological, behavioral, and biological components. It is…

  8. Effects of Drought Stress on Canola (Brassica napus L. Genotypes Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    R Khani

    2018-02-01

    Full Text Available Introduction Canola (Brassica napus L. genotypes with wide adaptability to environmental conditions could play a major role in Iran’s oilseed crop production. Selection of high performing genotypes is very important for developing canola cultivation. Water stress can reduce crop yield by affecting both source and sink for assimilation. Canola yield depends on genotype and environmental conditions and response of genotypes to environmental factors. Canola genotypes response to stress depends on the developmental stage and the events occurring prior to and during flowering stage. Resistance to water stress is divided to avoidance and tolerance. Some species are tolerable against water stress. In a while, other species respond ending life cycle, falling leaves and other reactions into water stress. Therefore, investigation of canola genotypes response to water stress in phenological growth stages can be valuable in order to determine resistant or tolerant genotypes. Materials and Methods In order to study the effect of drought stress on canola genotypes yield and its components, an experiment was conducted in 2013-2014 as a split plot based on randomized complete block design with three replications at the research farm, Agricultural and Natural Resources Research Center of East-Azarbaijan, Tabriz-Iran. Three levels of drought stress were considered as main plot (No-stress, stress at the flowering and pod setting growth stages and 18 canola genotypes including HW113, RS12, Karaj1, KR18, L73, L72, HW101, L146, L210, L183, SW101, L5, L201, HW118, KR4, Karaj2, Karaj3 and KS7 as subplots. Flood irrigation was scheduled at 50% field capacity, 30 and 30% field capacity for no-stress, stress at the flowering and pod setting growth stages, respectively; i.e. soil moisture capacity was maintained at 30% by irrigating to 100% field capacity when available moisture reached 30% in drought stress treatments. An ANOVA was conducted using the PROC-GLM procedure

  9. Genetic Components of Root Architecture Remodeling in Response to Salt Stress

    KAUST Repository

    Julkowska, Magdalena; Koevoets, Iko Tamar; Mol, Selena; Hoefsloot, Huub CJ; Feron, Richard; Tester, Mark A.; Keurentjes, Joost J.B.; Korte, Arthur; Haring, Michel A; de Boer, Gert-Jan; Testerink, Christa

    2017-01-01

    Salinity of the soil is highly detrimental to plant growth. Plants respond by a redistribution of root mass between main and lateral roots, yet the genetic machinery underlying this process is still largely unknown. Here, we describe the natural variation among 347 Arabidopsis thaliana accessions in root system architecture (RSA) and identify the traits with highest natural variation in their response to salt. Salt-induced changes in RSA were associated with 100 genetic loci using genome-wide association studies (GWAS). Two candidate loci associated with lateral root development were validated and further investigated. Changes in CYP79B2 expression in salt stress positively correlated with lateral root development in accessions, and cyp79b2 cyp79b3 double mutants developed fewer and shorter lateral roots under salt stress, but not in control conditions. By contrast, high HKT1 expression in the root repressed lateral root development, which could be partially rescued by addition of potassium. The collected data and Multi-Variate analysis of multiple RSA traits, available through the Salt_NV_Root App, capture root responses to salinity. Together, our results provide a better understanding of effective RSA remodeling responses, and the genetic components involved, for plant performance in stress conditions.

  10. Genetic Components of Root Architecture Remodeling in Response to Salt Stress

    KAUST Repository

    Julkowska, Magdalena

    2017-11-07

    Salinity of the soil is highly detrimental to plant growth. Plants respond by a redistribution of root mass between main and lateral roots, yet the genetic machinery underlying this process is still largely unknown. Here, we describe the natural variation among 347 Arabidopsis thaliana accessions in root system architecture (RSA) and identify the traits with highest natural variation in their response to salt. Salt-induced changes in RSA were associated with 100 genetic loci using genome-wide association studies (GWAS). Two candidate loci associated with lateral root development were validated and further investigated. Changes in CYP79B2 expression in salt stress positively correlated with lateral root development in accessions, and cyp79b2 cyp79b3 double mutants developed fewer and shorter lateral roots under salt stress, but not in control conditions. By contrast, high HKT1 expression in the root repressed lateral root development, which could be partially rescued by addition of potassium. The collected data and Multi-Variate analysis of multiple RSA traits, available through the Salt_NV_Root App, capture root responses to salinity. Together, our results provide a better understanding of effective RSA remodeling responses, and the genetic components involved, for plant performance in stress conditions.

  11. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  12. Fatigue life estimation considering welding residual stress and hot-spot stress of welded components

    International Nuclear Information System (INIS)

    Han, S. H.; Lee, T. K.; Shin, B. C.

    2002-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation have to be considered quantitatively which are equivalent to mean stress by external loads. The hot-spot stress concept should be also adopted which can be reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which are composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is confirmed that this model can be applied to predict reasonably their fatigue lives

  13. Design of components of reinforced concrete stressed by seismic loads

    International Nuclear Information System (INIS)

    Sitka, R.

    1980-01-01

    The example of the type of frame investigated shows that the ductility of the system assumed for standard dimensioning of such a frame lies between two and four. According to the system and the loading different requirements may result for the cross-section, that will have to be observed in design. Derived from these requirements rules are given for the design of frames stiffening in horizontal direction that will guarantee a minimum level of ductility. These rules concern the design of joint and node regions, utilization of the compressive force of the concrete as well as guidance and graduation of the reinforcement according to stud and bolt. By means of some examples of damaged components the effects of violating these rules are made clear. (orig./DG) [de

  14. Development of damage functions for high-rise building components

    International Nuclear Information System (INIS)

    Kustu, O.; Miller, D.D.; Brokken, S.T.

    1982-10-01

    The component approach for predicting the effects that ground motion from underground nuclear explosions will have on structures involves predicting the damage to each structural and nonstructural component of a building on the basis of the expected local deformation that most affects the damage to the component. This study was conducted to provide the basic data necessary to evaluate the component approach. Available published laboratory test data for various high-rise building components were collected. These data were analyzed statistically to determine damage threshold values and their variabilities, which in turn were used to derive component damage functions. The portion of construction costs attributable to various building components was determined statistically. This information was needed because component damage functions define damage as a percentage of the replacement values of the component, and, in order to calculate the overall building damage factor, the relative cost of each component must be estimated. The feasibility of the component approach to damage prediction is demonstrated. It is recommended that further experimental research directed towards developing an adequate data base of component damage thresholds for all significant building components should be encouraged. Parallel to this effort, detailed damage data from specific buildings damaged in earthquakes should be collected to verify the theoretical procedure

  15. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    Science.gov (United States)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  16. A generic approach for a linear elastic fracture mechanics analysis of components containing residual stress

    International Nuclear Information System (INIS)

    Lee, Hyeong Y.; Nikbin, Kamran M.; O'Dowd, Noel P.

    2005-01-01

    A review of through thickness transverse residual stress distribution measurements in a number of components, manufactured from a range of steels, has been carried out. Residual stresses introduced by welding and mechanical deformation have been considered. The geometries consisted of welded T-plate joints, pipe butt joints, tube-on-plate joints, tubular Y-joints and tubular T-joints as well as cold bent tubes and repair welds. In addition, the collected data cover a range of engineering steels including ferritic, austenitic, C-Mn and Cr-Mo steels. The methods used to measure the residual stresses also varied. These included neutron diffraction, X-ray diffraction and deep hole drilling techniques. Measured residual stress data, normalised by their respective yield stress have shown an inverse linear correlation versus the normalised depth of the region containing the residual stress (up to 0.5 of the component thickness). A simplified generic residual stress profile based on a linear fit to the data is proposed for the case of a transverse residual tensile stress field. Whereas the profiles in assessment procedures are case specific the proposed linear profile can be varied to produce a combination of membrane and bending stress distributions to give lower or higher levels of conservatism on stress intensity factors, depending on the amount of case specific data available or the degree of safety required

  17. A countermeasure for external stress corrosion cracking in piping components by means of residual stress improvement on the outer surface

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiro; Umemoto, Tadahiro

    1988-01-01

    Many techniques have been proposed as countermeasures for the External Stress Corrosion Cracking (ESCC) on austenitic stainless steel piping caused by sea salt particles. However, not one seems perfect. The method proposed here is an expansion of IHSI (Induction Heating Stress Improvement) which has been successfully implemented in many nuclear power plants as a remedy for Intergranular Stress Corrossion Cracking. The proposed method named EIHSI (External IHSI) can make the residual stress compressive on the outer surface of the piping components. In order to confirm the effectiveness of EIHSI, one series of tests were conducted on a weld joint between the pipe flange and the straight pipe. The measured residual stresses and also the results of the cracking test revealed that EIHSI is a superior method to suppress the ESCC. The outline of EIHSI and the verification tests are presented in this paper. (author)

  18. Stress analysis of two-dimensional C/C composite components for HTGR's core restraint techanism

    International Nuclear Information System (INIS)

    Satoshi Hanawa; Taiju Shibata; Jyunya Sumita; Masahiro Ishihara; Tatsuo Iyoku; Kazuhiro Sawa

    2005-01-01

    Carbon fiber reinforced carbon matrix composite (C/C composite) is one of the most promising materials for HTGRs core components due to their high strength as well as high temperature resistibility. One of the most attractive applications of C/C composite is the core restraint mechanism. The core restraint mechanism is located around the reflector block and it works to tighten reactor core blocks so as to restrict un-supposition flow pass of coolant gas (bypass flow) in the core. The restriction of bypass flow reads to the high efficiency of coolant flow rate inside of the reactor core. For the future HTGRs and VHTR (Very High Temperature Reactor), it is important to develop the core restraint mechanism with C/C composite substitute for metallic materials as used for HTTR. For the application of C/C composite to core restraint mechanism, it is important to investigate the applicability of C/C composite in viewpoint of structural integrity. In the present study, supposing the application of 2D-C/C composite to core restraint mechanism, thermal stress behavior was analyzed by considering the thickness of the C/C composite and the gap between reflector block and core restraint. It was shown from the thermal stress analysis that the circumferential stress decreases with increasing the gap and that the restraint force increases with increasing the thickness. By optimizing the thickness of C/C composite and gap between reflector block and core restraint, the C/C composite is applicable to the core restraint mechanism. (authors)

  19. Numerical simulation of residual stress in piping components at Framatome-ANP

    International Nuclear Information System (INIS)

    Gilies, P.; Franco, C.; Cipiere, M.-F.; Ould, P.

    2005-01-01

    Numerous manufacturing processes induce residual stresses and distortions in piping components and associated welds: quenching of cast pipings, machining and welding. In Pressurized Water Reactors, most of the components have a large thickness for sustaining pressure and distortions are a minor source of concern. This is not the case for residual stresses which may have a strong influence on several type of damage such as fatigue, corrosion, brittle fracture. In low toughness components, residual stress fields may contribute to ductile tearing initiation. These potential damages are mitigated after welding by stress relief heat treatment, which is applied in a systematic manner to ferritic components of the primary system in nuclear reactors. This treatment is not applied on austenitic piping for which the heat treatment temperature is limited due to the risk of sensitization and residual stresses are difficult to eliminate completely. Since on site measurements are costly and difficult to perform, numerical simulation appears to be an attractive tool for estimating residual stress distributions. Framatome-ANP is working on modelling manufacturing processes with that purpose in mind. This paper presents three kinds of applications illustrating efforts on welding, quenching and machining simulation. First a comparison is shown between computations and measurements of residual stress induced by welding of a dissimilar weld metal junction. Then numerical simulations of quenching of a cast stainless steel nozzle are presented. Finally quenching followed by machining and grinding of this cast component are considered in a full simulation of the manufacturing process. Computed distortions and residual stresses are compared with experimental measurements at different stages of the manufacturing process. (authors)

  20. A novel two-component system involved in secretion stress response in Streptomyces lividans.

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    Full Text Available BACKGROUND: Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. METHODOLOGY/PRINCIPAL FINDINGS: Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155 that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.

  1. Effect of the combined stress on the life of components under thermal cycling conditions

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1987-01-01

    The life of structural components subjected to temperature changes is affected, among other factors, by the nature of the stress field. If life prediction for axially stressed components can be accomplished with a number of well established techniques, the behaviour under a complex state of stress and varying temperature conditions still is the object of intensive research. The present study was aimed at assessing the influence of the stress field upon the life of specimens made of chromium-nickel H23N18 steel under thermal cycling conditions. The designation of steel is in accordance with Polish Standards. The experiments were made on thin-walled tubular specimens loaded with various combinations of a static axial force and a static torque. (orig./GL)

  2. High-temperature-structural design and research and development for reactor system components

    International Nuclear Information System (INIS)

    Matsumura, Makoto; Hada, Mikio

    1985-01-01

    The design of reactor system components requires high-temperature-structural design guide with the consideration of the creep effect of materials related to research and development on structural design. The high-temperature-structural design guideline for the fast prototype reactor MONJU has been developed under the active leadership by Power Reactor and Nuclear Fuel Development Corporation and Toshiba has actively participated to this work with responsibility on in-vessel components, performing research and development programs. This paper reports the current status of high-temperature-structural-design-oriented research and development programs and development of analytical system including stress-evaluation program. (author)

  3. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis.

    Science.gov (United States)

    Zhou, Mingqi; Callaham, Jordan B; Reyes, Matthew; Stasiak, Michael; Riva, Alberto; Zupanska, Agata K; Dixon, Mike A; Paul, Anna-Lisa; Ferl, Robert J

    2017-01-01

    Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology, yet the apparent components of hypobaria are stresses typical of terrestrial ecosystems. High altitude, for example, presents terrestrial hypobaria always with hypoxia as a component stress, since the relative partial pressure of O 2 is constant in the atmosphere. Laboratory-controlled hypobaria, however, allows the dissection of pressure effects away from the effects typically associated with altitude, in particular hypoxia, as the partial pressure of O 2 can be varied. In this study, whole transcriptomes of plants grown in ambient (97 kPa/pO 2 = 21 kPa) atmospheric conditions were compared to those of plants transferred to five different atmospheres of varying pressure and oxygen composition for 24 h: 50 kPa/pO 2 = 10 kPa, 25 kPa/pO 2 = 5 kPa, 50 kPa/pO 2 = 21 kPa, 25 kPa/pO 2 = 21 kPa, or 97 kPa/pO 2 = 5 kPa. The plants exposed to these environments were 10 day old Arabidopsis seedlings grown vertically on hydrated nutrient plates. In addition, 5 day old plants were also exposed for 24 h to the 50 kPa and ambient environments to evaluate age-dependent responses. The gene expression profiles from roots and shoots showed that the hypobaric response contained more complex gene regulation than simple hypoxia, and that adding back oxygen to normoxic conditions did not completely alleviate gene expression changes in hypobaric responses.

  4. X-Ray Diffraction Techniques and Finite Element Modeling to Control Residual Stress in High-Temperature Pressure Vessels

    National Research Council Canada - National Science Library

    Lee, S

    1999-01-01

    Manufacturing operations, such as swage autofrettage, shot peening, and overload processes, have been used to impart advantageous residual stresses to improve fatigue life in components used in high...

  5. The effect of crack branching on the residual lifetime of machine components containing stress corrosion cracks

    International Nuclear Information System (INIS)

    Magdowski, R.M.; Uggowitzer, P.J.; Speidel, M.O.

    1985-01-01

    A comparison is presented of theoretical, numerical and experimental investigations concerning the effect of crack branching on the reduction of stress intensity at the tip of single cracks. The results indicate that the division of a single crack into n branches reduces the stress intensity at the branch tips by a factor of about 1/√n. This permits branched cracks to grow to larger depths before becoming critical. The implication is that longer residual lifetimes and longer operating times between inspections can be calculated for machine components with growing branched stress corrosion cracks. (author)

  6. Stress and High Blood Pressure: What's the Connection?

    Science.gov (United States)

    Stress and high blood pressure: What's the connection? Stress and long-term high blood pressure may not be linked, but taking steps to reduce your stress can improve your general health, including your blood ...

  7. Measuring multiple residual-stress components using the contour method and multiple cuts

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Swenson, Hunter [Los Alamos National Laboratory; Pagliaro, Pierluigi [U. PALERMO; Zuccarello, Bernardo [U. PALERMO

    2009-01-01

    The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.

  8. Simplified calculation of thermal stresses - on the reduction of effort in the stress analysis of reactor components

    International Nuclear Information System (INIS)

    Karow, K.

    1984-01-01

    The fatigue behaviour of reactor components is predominantly determined from the in-service thermal stresses. The calculation of such stresses for a number of temperature transients in the adjacent fluid may be expensive, particularly with complicated structures. Under certain conditions this expense can be reduced considerably with the aid of a rule, which permits interpolation of thermal stresses from known reference values instead of calculation. This paper presents the derivation and method of application of this interpolation rule. The derivation procedure is based on well-known proportionalities between thermal stress range Δsigma in the structure and temperature change ΔT and rate of change T of the fluid in the extreme cases of an ideal thermal shock and quasi-steady-state conditions, respectively. For the real transients in between the relationship Δsigma proportional (ΔT)sup(x) Tsup(1-x)αsup(y) is proposed, where x is the shock-degree and lies between 0 and 1, and, additionally, y designates the influence of the heat transfer coefficient α. This formula yields the interpolation rule. The rule permits interpolation of stress ranges for additional thermal transients from at least 3 reference stresses via x and y. The procedure is applicable to any metallic structure, reduces fatigue analysis effort considerably and yields excellent results. The paper is split up into 2 parts. In the following the derivation of the rule is presented. The second part describes its application and will be published shortly. (orig.)

  9. Mining highly stressed areas, part 2.

    CSIR Research Space (South Africa)

    Johnson, R

    1995-12-01

    Full Text Available A questionnaire related to mining at great depth and in very high stress conditions has been completed with the assistance of mine rock mechanics personnel on over twenty mines in all mining districts, and covering all deep level mines...

  10. High-level Component Interfaces for Collaborative Development: A Proposal

    Directory of Open Access Journals (Sweden)

    Thomas Marlowe

    2009-12-01

    Full Text Available Software development has rapidly moved toward collaborative development models where multiple partners collaborate in creating and evolving software intensive systems or components of sophisticated ubiquitous socio-technical-ecosystems. In this paper we extend the concept of software interface to a flexible high-level interface as means for accommodating change and localizing, controlling and managing the exchange of knowledge and functional, behavioral, quality, project and business related information between the partners and between the developed components.

  11. Dimerisation of n-butenes for high octane gasoline components

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, J.

    2000-01-01

    Dimerization of linear olefins represents an attractive route for the production of high octane number blending components. The oligomerization needs not only to be high conversion and to produce mainly dimers but also to be selective within the dimer range, as only certain isomers have advantageous

  12. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  13. Multiple Two-Component Systems of Streptococcus mutans Regulate Agmatine Deiminase Gene Expression and Stress Tolerance▿

    OpenAIRE

    Liu, Yaling; Burne, Robert A.

    2009-01-01

    Induction of the agmatine deiminase system (AgDS) of Streptococcus mutans requires agmatine and is optimal at low pH. We show here that the VicRK, ComDE, and CiaRH two-component systems influence AgDS gene expression in response to acidic and thermal stresses.

  14. Effect of water stress on yield and yield components of sunflower ...

    African Journals Online (AJOL)

    A field experiment during year 2009 was conducted in the research station of the University of Tehran, College of Abouraihan in Pakdasht region, Iran. The study was aimed to investigate the effect of water stress on seed yield, yield component and some quantitative traits of four sunflower hybrids namely Azargol, Alstar, ...

  15. Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses.

    Directory of Open Access Journals (Sweden)

    Lindsey N Shaw

    Full Text Available S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (sigma(S, that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that sigma(S is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that sigma(S is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a sigma(S mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days, or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72 h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination

  16. Age-Specific Determinants of Pulse Wave Velocity among Metabolic Syndrome Components, Inflammatory Markers, and Oxidative Stress.

    Science.gov (United States)

    Kim, Minkyung; Kim, Minjoo; Yoo, Hye Jin; Lee, Seung Yeon; Lee, Sang-Hyun; Lee, Jong Ho

    2018-02-01

    Pulse wave velocity (PWV) is thought to have different relationships with metabolic syndrome (MS) components, inflammatory markers, and oxidative stress, according to age. However, age-specific determinants of PWV have not yet been studied. We investigated age-dependent relationships among PWV and MS components, inflammatory markers, and oxidative stress. A total of 4,318 subjects were divided into 4 groups: 19-34 y (n=687), 35-44 y (n=1,413), 45-54 y (n=1,384), and 55-79 y (n=834). MS components, brachial-ankle PWV (baPWV), high-sensitivity C-reactive protein (hs-CRP), and oxidative stress markers were measured. There were age-related increases in MS, body mass index (BMI), waist circumference, systolic blood pressure (SBP), diastolic BP (DBP), triglycerides, glucose, hs-CRP, oxidized low-density lipoprotein (LDL), 8-epi-prostaglandin F 2α (8-epi-PGF 2α ), and baPWV. BaPWV was significantly associated with sex and elevated BP in the 19-34 y group; with age, sex, BMI, elevated BP and triglycerides in the 35-44 y group; with age, sex, elevated BP, fasting glucose, hs-CRP and oxidized LDL in the 45-54 y group; and with age, BMI, elevated BP, fasting glucose and oxidized LDL in the 55-79 y group. Our results show that age-related increases in baPWV are associated with age-related changes in MS components, inflammatory markers, and oxidative stress. However, each of these factors has an age-specific, different impact on arterial stiffness. In particular, oxidative stress may be independently associated with arterial stiffness in individuals older than 45 y.

  17. Investigation of effective factors of transient thermal stress of the MONJU-System components

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masaaki; Hirayama, Hiroshi; Kimura, Kimitaka; Jinbo, M. [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-03-01

    Transient thermal stress of each system Component in the fast breeder reactor is an uncertain factor on it's structural design. The temperature distribution in a system component changes over a wide range in time and in space. An unified evaluation technique of thermal, hydraulic, and structural analysis, in which includes thermal striping, temperature stratification, transient thermal stress and the integrity of the system components, is required for the optimum design of tho fast reactor plant. Thermal boundary conditions should be set up by both the transient thermal stress analysis and the structural integrity evaluation of each system component. The reasonable thermal boundary conditions for the design of the MONJU and a demonstration fast reactor, are investigated. The temperature distribution analysis models and the thermal boundary conditions on the Y-piece structural parts of each system component, such as reactor vessel, intermediate heat exchanger, primary main circulation pump, steam generator, superheater and upper structure of reactor core, are illustrated in the report. (M. Suetake)

  18. Residual stress in a thick section high strength T-butt weld

    International Nuclear Information System (INIS)

    Pearce, S.V.; Linton, V.M.; Oliver, E.C.

    2008-01-01

    Residual stresses in a structure are generated as a result of the various fabrication and welding processes used to make the component. Being able to quantify these residual stresses is a key step in determining the continuing integrity of a structure in service. In this work, the residual stresses around a high strength, quenched and tempered steel T-butt web to curved plate weld have been measured using neutron strain scanning. The results show that the residual stresses near the weld were dominated by the welding residual stresses, while the stresses further from the weld were dominated by the bending residual stresses. The results suggest that the combination of welding-induced residual stress and significant pre-welding residual stress, as in the case of a thick bent section of plate can significantly alter the residual stress profile from that in a flat plate

  19. Service Life Of Main Piping Component Due To Low Thermal Stresses.Fatigue

    International Nuclear Information System (INIS)

    Miroshnik, R.; Jeager, A.; Ben Haim, H.

    1998-01-01

    The paper deals with estimating the service life of the power station Main piping component and describing the repair process for extending of its service life. After a long period of service, several circular fatigue cracks have been discovered at the bottom of the Main piping component chamber. Finite element analyses of transient thermal stresses, caused by power station startup, are carried out in the paper. The calculation results show good agreement between the theoretical locations of the maximum stresses and the actual locations of the cracks. There is a good agreement between theoretical evaluation and actual service life, as well. The possibility of machining out the cracks in order to prevent their growing is examined here. The machining enables us to extend the power station component's life service

  20. Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials

    Science.gov (United States)

    Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)

    2015-01-01

    A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.

  1. Investigation and evaluation of electron radiation damage on TiC and TiN protective coatings of Molybdenum for highly stressed first-wall components of fusion machines

    International Nuclear Information System (INIS)

    Wallura, E.; Hoven, H.; Koizlik, K.; Kny, E.

    1995-01-01

    The components of the plasma chamber of fusion reactors are subjected to the plasma wall interaction, a complex system of mechanical, thermal, and irradiation loadings. To investigate special modes of individual load processes (thermal shock, thermal fatigue, erosion) specific laboratory tests in an electron beam welding machine have been carried out. The materials Mo, Mo coated with TiC and with TiN, and bulk sintered TiC and TiN were examined in the tests. The 'post mortem' characterization of the material samples was done by secondary electron microscopy and metallography. One important aim was to determine critical loads as defined by the applied beam power density and the effective beam pulse duration, and to deduce from this load limit curves as a type of quantification of acceptable plasma wall interaction intensity. Below these load limits, Mo showed no induced material defects - neither in the uncoated nor in the coated quality. Above the critical heat load (100 MWm -2 ) severe melting occured in the surface of the uncoated as well as in the coated version - the TiC- and the TiN-coatings were completely eroded or vaporized in the molten crater. An influence of the coatings on the recrystallization of the Mo-melt was not detectable. Outside the molten area the coatings showed honeycombed cracking by thermal shock. In the case of bulk sintered TiC and TiN, marked thermal shock cracking appeared already after loadings with 10 MWm -2 and pulse duration of 0.1 sec. (author)

  2. Heavy steel casting components for power plants 'mega-components' made of high Cr-steels

    Energy Technology Data Exchange (ETDEWEB)

    Hanus, Reinhold [voestalpine Giesserei Linz GmbH, Linz (Austria)

    2010-07-01

    solutions to process related problems such as deoxidation, solidification behavior, heat treatment with long hold times, welding on the casting, stresses, etc. Cast components for power plants, made of high Cr-steels and Ni-base alloys are becoming bigger. Development work and investments in new processes and technologies are necessary, process-modelling is an indispensable tool for the ability to produce also these 'mega-components'. (orig.)

  3. Gender and suppression of mid-latency ERP components during stress.

    Science.gov (United States)

    White, Patricia M; Kanazawa, Asako; Yee, Cindy M

    2005-11-01

    Substantial research evidence suggests that women may be more reactive to stress than men. This study examined the influence of gender and stress on suppression of the P50 and N100 components of the auditory event-related potential. During a stressor task, women (n=13) showed disrupted P50 and N100 suppression whereas men (n=15) exhibited only alterations in N100 suppression. Additionally, reduced skin conductance level during stress correlated with impaired P50 suppression and elevated Click 2 amplitude of the P50 response in women. These data suggest that gender differences in response to perceived stress may be an important factor to consider in studies relying upon the P50 suppression paradigm.

  4. Prefrontal cortex activity is associated with biobehavioral components of the stress response

    Directory of Open Access Journals (Sweden)

    Muriah D Wheelock

    2016-11-01

    Full Text Available Contemporary theory suggests that prefrontal cortex (PFC function is associated with individual variability in the psychobiology of the stress response. Advancing our understanding of this complex biobehavioral pathway has potential to provide insight into processes that determine individual differences in stress susceptibility. The present study used functional magnetic resonance imaging (fMRI to examine brain activity during a variation of the Montreal Imaging Stress Task (MIST in fifty-three young adults. Salivary cortisol was assessed as an index of the stress response, trait anxiety was assessed as an index of an individual’s disposition towards negative affectivity, and self-reported stress was assessed as an index of an individual’s subjective psychological experience. Heart rate and skin conductance responses were also assessed as additional measures of physiological reactivity. Dorsomedial PFC, dorsolateral PFC, and inferior parietal lobule demonstrated differential activity during the MIST. Further, differences in salivary cortisol reactivity to the MIST were associated with ventromedial PFC and posterior cingulate activity, while trait anxiety and self-reported stress were associated with dorsomedial and ventromedial PFC activity respectively. These findings underscore that PFC activity regulates behavioral and psychobiological components of the stress response.

  5. High power rf component testing for the NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    1998-09-01

    In the Next Linear Collider (NLC), the high power rf components must be capable of handling peak rf power levels in excess of 600 MW. In the current view of the NLC, even the rectangular waveguide components must transmit at least 300 MW rf power. At this power level, peak rf fields can greatly exceed 100 MV/m. The authors present recent results of high power tests performed at the Accelerator Structure Test Area (ASTA) at SLAC. These tests are designed to investigate the rf breakdown limits of several new components potentially useful for the NLC. In particular, the authors tested a new TE 01 --TE 10 circular to rectangular wrap-around mode converter, a modified (internal fin) Magic Tee hybrid, and an upgraded flower petal mode converter

  6. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  7. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Stephen [Cleveland State Univ., Cleveland, OH (United States)

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  8. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H. E-mail: jeong-ha.you@ipp.mpg.de; Bolt, H

    2001-10-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.

  9. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2001-01-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other

  10. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    International Nuclear Information System (INIS)

    Duffy, Stephen

    2013-01-01

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  11. Measurement of residual stresses in deposited films of SOFC component materials

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y. [Electrotechnical Lab., Ibaraki (Japan)

    1996-12-31

    The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.

  12. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    Energy Technology Data Exchange (ETDEWEB)

    Araki, M.; Kitamura, K.; Suzuki, S. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Urata, K. [Mitsubishi Geavy Industries Ltd., 2-5-1, Marunouchi,Chiyoda-ku, Tokyo 100 (Japan)

    1998-09-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.) 20 refs.

  13. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    International Nuclear Information System (INIS)

    Araki, M.; Kitamura, K.; Suzuki, S.

    1998-01-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.)

  14. [High-frequency components of occlusal sound in sliding movement].

    Science.gov (United States)

    Nagai, K

    1990-03-01

    We postulated that high-frequency components of the occlusal sound occurring due to the characteristic vibration of teeth can be useful data for confirmation of the stability in occlusion, and studied the high-frequency components in the cases both of an experimental sliding movement and a normal occlusion. The results obtained were as follows. 1. A study on high-frequency components of the occlusal sound in an experimental sliding movement. 1) A study on wave type of the occlusal sound revealed one damped oscillation in an impact form and two in a slide form. 2) Spectrum analysis of the damped oscillation showed a similar spectrum pattern with a peak existing between 16KHz or more and 17KHz or less in both impact and slide cases. 2. A study on high-frequency components of the occlusal sound in a normal occlusion case. 1) The wave type in occlusal sound we have observed in a normal occlusion group and in a prosthetic or operative group was as follows: One damped oscillation shown in an impact form and two damped oscillation in a slide form which were the same as those shown in the case where an interference device was attached. 2) Duration of the sliding movement was short in a normal occlusion group, but was prolonged in a prosthetic or operative group. 3) The incidence of the wave type in occlusal sound was 56.7% in a prosthetic or operative group as compared to 87.8% in a normal occlusion group in an impact form. In contrast, the incidence was 43.3% in a prosthetic or operative group as compared to 12.2% in a normal occlusion group in a slide form. Such difference in the incidence between the wave types suggested that high-frequency components of occlusal sound can be an index for judgement of the stability in occlusion.

  15. Integrative Medicine Patients Have High Stress, Pain, and Psychological Symptoms.

    Science.gov (United States)

    Wolever, Ruth Q; Goel, Nikita S; Roberts, Rhonda S; Caldwell, Karen; Kligler, Benjamin; Dusek, Jeffery A; Perlman, Adam; Dolor, Rowena; Abrams, Donald I

    2015-01-01

    Integrative medicine (IM) is a rapidly growing field whose providers report clinical success in treating significant stress, chronic pain, and depressive and anxiety symptoms. While IM therapies have demonstrated efficacy for numerous medical conditions, IM for psychological symptoms has been slower to gain recognition in the medical community. This large, cross-sectional study is the first of its kind to document the psychosocial profiles of 4182 patients at 9 IM clinics that form the BraveNet Practice-Based Research Network (PBRN). IM patients reported higher levels of perceived stress, pain, and depressive symptoms, and lower levels of quality of life compared with national norms. Per provider reports, 60% of patients had at least one of the following: stress (9.3%), fatigue (10.2%), anxiety (7.7%), depression (7.2%), and/or sleep disorders (4.8%). Pain, having both physiological and psychological components, was also included and is the most common condition treated at IM clinics. Those with high stress, psychological conditions, and pain were most frequently treated with acupuncture, IM physician consultation, exercise, chiropractic services, diet/nutrition counseling, and massage. With baseline information on clinical presentation and service utilization, future PBRN studies can examine promising interventions delivered at the clinic to treat stress and psychological conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Techniques for preventing damage to high power laser components

    International Nuclear Information System (INIS)

    Stowers, I.F.; Patton, H.G.; Jones, W.A.; Wentworth, D.E.

    1977-09-01

    Techniques for preventing damage to components of the LASL Shiva high power laser system were briefly presented. Optical element damage in the disk amplifier from the combined fluence of the primary laser beam and the Xenon flash lamps that pump the cavity was discussed. Assembly and cleaning techniques were described which have improved optical element life by minimizing particulate and optically absorbing film contamination on assembled amplifier structures. A Class-100 vertical flaw clean room used for assembly and inspection of laser components was also described. The life of a disk amplifier was extended from less than 50 shots to 500 shots through application of these assembly and cleaning techniques

  17. Component-based software for high-performance scientific computing

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  18. Fatigue qualification of high thickness composite rotor components

    Science.gov (United States)

    Raggi, M.; Mariani, U.; Zaffaroni, G.

    Fatigue qualification aspects of composite rotor components are presented according with the safe life procedure usually applied by helicopter manufacturers. Test activities are identified at three levels of specimen complexity: coupon, structural element and full scale component. Particular attention is given to high thickness laminates qualification as far as environmental exposure is concerned. A practical approach for an accelerated conditioning procedure is described. The application to a main rotor tension link is presented showing the negligible effect of the moisture absorption on its fatigue strength.

  19. Component-based software for high-performance scientific computing

    International Nuclear Information System (INIS)

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly

  20. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    Science.gov (United States)

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  1. [The relationship between four components of assertiveness and interpersonal behaviors, interpersonal adjustment in high school students' friendship].

    Science.gov (United States)

    Watanabe, Asami

    2010-04-01

    This study examines the relationship between four components of assertiveness ("open expression", "control of emotion", "consideration for others" and "self-direction") and interpersonal behaviors on friends, interpersonal stress events, social anxiety. A questionnaire which included scales to measure the four components of assertiveness, activities with friend, considerate behavior for friends, interpersonal stress events and social anxiety was completed by 177 high school students. The results showed that "self-direction" had curvilinear relations with considerate behavior for friends, interpersonal stress events. An excessively high score for "self-direction" was associated with fewer considerate behavior and interpersonal stress events. An optimum score for "self-direction" was associated with more considerate behavior and interpersonal stress events.

  2. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  3. A Survey of the Relationship between Climatic Heat Stress Indices and Fundamental Milk Components Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Marami Milani

    2015-11-01

    Full Text Available The main purpose of this study is to assess the relationship between four bioclimatic indices for cattle (environmental stress, heat load, modified heat load, and respiratory rate predictor indices and three main milk components (fat, protein, and milk yield considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when the cows use the natural pasture. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty information in the confidence intervals. The main results identify an interesting relationship between the milk compounds and climate indices under all climate conditions. During spring, there are reasonably high correlations between the fat and protein concentrations vs. the climate indices, whereas there are insignificant dependencies between the milk yield and climate indices. During summer, the correlation between the fat and protein concentrations with the climate indices decreased in comparison with the spring results, whereas the correlation for the milk yield increased. This methodology is suggested for studies investigating the impacts of climate variability/change on food and agriculture using short term data considering uncertainty.

  4. Experience with high heat flux components in large tokamaks

    International Nuclear Information System (INIS)

    Chappuis, P.; Dietz, K.J.; Ulrickson, M.

    1991-01-01

    The large present day tokamaks. i.e.JET, TFTR, JT-60, DIII-D and Tore Supra are machines capable of sustaining plasma currents of several million amperes. Pulse durations range from a few seconds up to a minute. These large machines have been in operation for several years and there exists wide experience with materials for plasma facing components. Bare and coated metals, bare and coated graphites and beryllium were used for walls, limiters and divertors. High heat flux components are mainly radiation cooled, but stationary cooling for long pulse duration is also employed. This paper summarizes the experience gained in the large machines with respect to material selection, component design, problem areas, and plasma performance. 2 tabs., 26 figs., 50 refs

  5. Prognostic Role of Spiritual Intelligence Components in Pregnant Women’s Depression, Anxiety, and Stress

    Directory of Open Access Journals (Sweden)

    Batul Khodakarami

    2016-06-01

    Full Text Available Background and Objectives: Physiological changes and psychological adaptations during pregnancy period expose pregnant mothers to increased risk of depression, anxiety, and stress. Presently, spiritual intelligence is addressed as one of the most influential issues in mental and emotional health of individuals. This study was conducted aimed at examination of the relationship between spiritual intelligence, on the one hand, and depression, anxiety, and stress, on the other, among pregnant women. Methods: This descriptive-correlative study was performed on 182 pregnant women using Stratified Random Sampling method. Depression, Anxiety, and Stress Scale (DASS-21 and King Spiritual Intelligence Self-Report Inventory were used to evaluate and compare research’s variables. SPSS, version 16, and descriptive-analytical statistical methods were employed to analyze data. Results: Results indicated that there was a negative, significant relationship between all scales of spiritual intelligence components and subscales of depression and stress during pregnancy period (P<0.05. There was a negative, significant relationship between critical existential thinking and personal meaning production, on the one hand, and stress, on the other, in pregnancy period (P<0.05. Multiple regressions analysis indicated that predictor variables explain criterion variables in a significant way. Conclusion: Pregnant women with higher degrees of spiritual intelligence tend to have lower degrees of depression, anxiety, and stress during their pregnancy period.

  6. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    International Nuclear Information System (INIS)

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-01-01

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures

  7. Language interoperability for high-performance parallel scientific components

    International Nuclear Information System (INIS)

    Elliot, N; Kohn, S; Smolinski, B

    1999-01-01

    With the increasing complexity and interdisciplinary nature of scientific applications, code reuse is becoming increasingly important in scientific computing. One method for facilitating code reuse is the use of components technologies, which have been used widely in industry. However, components have only recently worked their way into scientific computing. Language interoperability is an important underlying technology for these component architectures. In this paper, we present an approach to language interoperability for a high-performance parallel, component architecture being developed by the Common Component Architecture (CCA) group. Our approach is based on Interface Definition Language (IDL) techniques. We have developed a Scientific Interface Definition Language (SIDL), as well as bindings to C and Fortran. We have also developed a SIDL compiler and run-time library support for reference counting, reflection, object management, and exception handling (Babel). Results from using Babel to call a standard numerical solver library (written in C) from C and Fortran show that the cost of using Babel is minimal, where as the savings in development time and the benefits of object-oriented development support for C and Fortran far outweigh the costs

  8. A study of stresses in powder compacted components during and after ejection

    DEFF Research Database (Denmark)

    Redanz, Pia

    2001-01-01

    A finite strain finite element method is used to examine the residual stresses in a cup-shaped powder compact. Two rate-independent strain hardening porous material models are used: the combined material model (Fleck, N.A., Kuhn, L.T., McMeeking, R.M., 1992a. J. Mech. Phys. Solids 40 (5), 1139......-1162) and a material model which includes the dependency of inter-particle cohesive strength (Fleck, N.A., 1995. J. Mech. Phys. Solids 43, 1409-1431). The residual stress state in the unloaded cup is highly dependent on the compaction process and less dependent on the ejection route. The maximum principal stress...... plotted during ejection shows that higher stresses are found during the ejection process than those found in the completely unloaded specimen. The degree of inter-particle cohesive strength has hardly any effect on the porosity distributions in the compacts but it has a strong influence on the stress...

  9. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. (Kansas City Plant, Kansas City, MO); Austin, Kevin N.; Adolf, Douglas Brian; Spangler, Scott W.; Neidigk, Matthew Aaron; Chambers, Robert S.

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analyses of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.

  10. Development of fiber-delivered laser peening system to prevent stress corrosion cracking of reactor components

    International Nuclear Information System (INIS)

    Sano, Y.; Kimura, M.; Yoda, M.; Mukai, N.; Sato, K.; Uehara, T.; Ito, T.; Shimamura, M.; Sudo, A.; Suezono, N.

    2001-01-01

    The authors have developed a system to deliver water-penetrable intense laser pulses of frequency-doubled Nd:YAG laser through optical fiber. The system is capable of improving a residual stress on water immersed metal material remotely, which is effective to prevent the initiation of stress corrosion cracking (SCC) of reactor components. Experimental results showed that a compressive residual stress with enough amplitude and depth was built in the surface layer of type 304 stainless steel (SUS304) by irradiating laser pulses through optical fiber with diameter of 1 mm. A prototype peening head with miniaturized dimensions of 88 mm x 46 mm x 25 mm was assembled to con-firm the accessibility to the heat affected zone (HAZ) along weld lines of a reactor core shroud. The accessibility was significantly improved owing to the flexible optical fiber and the miniaturized peening head. The fiber delivered system opens up the possibility of new applications of laser peening. (author)

  11. Computer-aided stress analysis system for nuclear plant primary components

    International Nuclear Information System (INIS)

    Murai, Tsutomu; Tokumaru, Yoshio; Yamazaki, Junko.

    1980-06-01

    Generally it needs a vast quantity of calculation to make the stress analysis reports of nuclear plant primary components. In Japan, especially, stress analysis reports are under obligation to make for each plant. In Mitsubishi Heavy Industries, Ltd., We have been making great efforts to rationalize the process of analysis for about these ten years. As the result of rationalization up to now, a computer-aided stress analysis system using graphic display, graphic tablet, data file, etc. was accomplished and it needs us only the least hand work. In addition we developed a fracture safety analysis system. And we are going to develop the input generator system for 3-dimensional FEM analysis by graphics terminals in the near future. We expect that when the above-mentioned input generator system is accomplished, it will be possible for us to solve instantly any case of problem. (author)

  12. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  13. Life extension of components with high cumulative fatigue usage

    International Nuclear Information System (INIS)

    Server, W.L.

    1985-01-01

    The current ASME Boiler and Pressure Vessel Code fatigue design approach has significant margins of safety as evidenced by fatigue data on full-scale vessels. In order to extend qualification (life) of components which have reached the Code design usage limit of unity, improved criteria are needed which address crack initiation and propagation separately such that safe operation of these components is ensured. The fatigue initiation phase is composed of two processes: initial microcracking of internal particles or accumulation of local strain (cyclic slip) creating discontinuities which form microcracks, and the growth of the microcracks in a noncontinuum manner. The microcracks which initiate will eventually grow to a size in which continuum mechanics apply, and fracture mechanics concepts have been employed. The later propagation to failure of a component is also composed of two parts, continuum crack growth in a stable manner and eventual unstable fracture of the remaining ligament of material. This paper reviews the current status of technology in assessing initiation and propagation relative to the current design Code and suggests areas of improvement to cover extended life of high usage factor components. To illustrate some of these considerations, a case study for a small manufacturing defect was reviewed. A realistic component was analyzed to investigate the interrelationship between the ASME Code Section III design life and crack propagation behavior of a small manufacturing defect. A pressurized water reactor (PWR) primary coolant system was used in the analysis, and the terminal end of the hot-leg pipe at the safe end weld was selected since usage factors as high as 0.95 had been reported. The particular plant chosen was Zion-1 because the necessary information on loading, including thermal transients, was available in the open literature. 11 refs., 1 fig., 1 tab

  14. Stress-based fatigue assessment of major component in NPP using modified Green's function approach

    International Nuclear Information System (INIS)

    Ko, Han Ok; Jhung, Myung Jo; Choi, Jae Boong

    2013-01-01

    In this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using a neural network (NN) and weight factor. To verify the modified GFA, thermal stresses by the proposed method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed to show applicability of them. In this paper, the modified GFA considering temperature-dependent material properties is proposed by using NN and weight factor. To verify the proposed method, thermal stresses by the modified Green's function are compared with those by FEM and the results between two methods show a good agreement. Finally, it is anticipated that more precise fatigue evaluation is performed by using the proposed method. Recently, 434 nuclear reactors are being operated in the world. Among them, about 40% reactors are being operated beyond their design life or will be approaching their life. During the long term operation, various degradation mechanisms are occurred. Fatigue damage caused by alternating operational stresses in terms of temperature or pressure change is the one of important damage mechanisms in the nuclear power plants (NPPs). Although components important to safety were designed to withstand the fatigue damage, cumulative usage factor (CUF) at some locations can exceed the design limit beyond the design life. So, it is necessary to monitor the fatigue damage of major components during the long term operation. Researches on fatigue monitoring system (FMS) have been widely performed. In USA, the FatiguePro was developed by EPRI and was applied to the CE, WEC, B and W and GE type reactors. In Korea, the Kori unit 1 which started commercial operation in 1978 is being operated beyond its design life. At the stage of the license renewal, various plans for degradation mechanisms were established and reviewed. And, in case of fatigue damage, to monitor the fatigue damage of major components

  15. Fabrication of high performance components for Indian nuclear reactors

    International Nuclear Information System (INIS)

    Jayaraj, R.N.

    2011-01-01

    Nuclear Fuel Complex (NFC), a Unit of the Department of Atomic Energy (DAE) has been engaged for well over three-and-half decades in the manufacture of fuels for Pressurized Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs). All the fuel assembly components, like, fuel clad tubes, end plugs, spacers, spacer grids etc. are also being manufactured at NFC in Zirconium alloy material. Apart from the regular production of these components and finished fuel assemblies, NFC has also been engaged in the production of Zirconium alloy reactor core structurals, like, pressure tubes, calandria tubes, garter springs and reactivity control mechanisms for PHWRs and square channels for BWRs. While all these structural components are produced through standardized flow sheets, there have been continuous innovations carried out in the processes to meet the ever increasing end-use characteristics laid down by the utilities. The paper enumerates various aspects of different technologies developed at NFC for the manufacture of high performance components for reactor applications

  16. What characterizes persons with high levels of perceived stress in Denmark? A national representative study.

    Science.gov (United States)

    Nielsen, Line; Curtis, Tine; Kristensen, Tage S; Rod Nielsen, Naja

    2008-06-01

    Stress is a growing public health problem, but there are only a few studies with national representative samples on the occurrence of stress. The aim of this study was to assess the level of stress, measured by the Perceived Stress Scale, in Denmark, and to identify and characterize the group with high levels of stress by factors measured at both the individual and neighbourhood levels in a national representative sample of the Danish population. The 10,022 participants in the National Health Interview Survey 2005 were asked about perceived stress and individual factors in a cross-sectional design. Information on neighbourhood factors was derived from a national registry. Data were analysed by means of logistic regression models. Low education, heavy smoking, physical inactivity, lack of social network and poor working conditions were associated with perceived stress. For women, living in a neighbourhood with low average education, and for men, living in a neighbourhood with a high rate of crime and a low degree of ethnic diversity, were associated with higher perceived stress. Perceived stress was also related to indicators of morbidity. The group with high perceived stress is characterized by individual and neighbourhood factors with negative impacts on quality of life and risk of illness. This knowledge can guide future stress prevention efforts. Additionally, the results suggest a negative social component where perceived stress, unhealthy lifestyle and low social status are accumulated, and perceived stress might be used as a measure to identify groups characterized by accumulation of risk factors.

  17. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Shabala, Lana; Mackay, Alex; Tian, Yu; Jacobsen, Sven-Erik; Zhou, Daowei; Shabala, Sergey

    2012-09-01

    Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions. Copyright © Physiologia Plantarum 2012.

  18. Various cellular stress components change as the rat ages: An insight into the putative overall age-related cellular stress network.

    Science.gov (United States)

    Cueno, Marni E; Imai, Kenichi

    2018-02-01

    Cellular stress is mainly comprised of oxidative, nitrosative, and endoplasmic reticulum stresses and has long been correlated to the ageing process. Surprisingly, the age-related difference among the various components in each independent stress pathway and the possible significance of these components in relation to the overall cellular stress network remain to be clearly elucidated. In this study, we obtained blood from ageing rats upon reaching 20-, 40-, and 72-wk.-old. Subsequently, we measured representative cellular stress-linked biomolecules (H 2 O 2 , glutathione reductase, heme, NADPH, NADP, nitric oxide, GADD153) and cell signals [substance P (SP), free fatty acid, calcium, NF-κB] in either or both blood serum and cytosol. Subsequently, network analysis of the overall cellular stress network was performed. Our results show that there are changes affecting stress-linked biomolecules and cell signals as the rat ages. Additionally, based on our network analysis data, we postulate that NADPH, H 2 O 2 , GADD153, and SP are the key components and the interactions between these components are central to the overall age-related cellular stress network in the rat blood. Thus, we propose that the main pathway affecting the overall age-related cellular stress network in the rat blood would entail NADPH-related oxidative stress (involving H 2 O 2 ) triggering GADD153 activation leading to SP induction which in-turn affects other cell signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effect of residual stresses on the reliability of components under fatigue

    International Nuclear Information System (INIS)

    Ruestenberg, I.

    1995-01-01

    The assurance of the reliability of mechanical components relative to a variety of failure mechanisms is of decisive technical, industrial, and economic importance. In this dissertation, the reliability, i.e. the probability that the lifetime does not fall below a given value, is examined with respect to the particularly important failure mechanisms of fracture and fatigue. The general problem of uniaxial fatigue is studied on the basis of both continuum damage mechanics and crack mechanics. In particular, the mechanisms of crack initiation, as characterized by the Coffin-Manson-Neuber local strain-life equations for notched components as well as the mechanism of crack growth, as governed by the Paris-Erdogang relation, are taken into account. The nonlinear fatigue damage accumulation process for components subjected to general, cyclic loading histories is modeled by a multilinear damage law which allows, in principle, to characterize the subsequent activation of different fatigue mechanisms. Explicit equations are developed for quintuple-, quadruple-, and triple-linear damage accumulation. Particularly promising appears the triple-linear damage approach which allows, in principle, the identification of a nucleation, an initiation, and a final growth stage up to rupture of fatigue cracks. The beneficial effect of intentionally induced compressive residual stresses on the lifetime of the component is investigated. To this end, an elasto-plastic contact problem, based on Prandtl-Reuss' constitutive equations, is numerically solved, and the residual stress field, as it is typically produced by the mechanical process of cold rolling, is established. Assessments of the effect of adaptation, i.e. the subsequent reduction of the residual stresses due to cyclic in-service loading as well as of the effect of unavoidable surface roughness, introduced by manufacturing processes like forging, are carried out. (author) figs., tabs., refs

  20. LTCC magnetic components for high density power converter

    Science.gov (United States)

    Lebourgeois, Richard; Labouré, Eric; Lembeye, Yves; Ferrieux, Jean-Paul

    2018-04-01

    This paper deals with multilayer magnetic components for power electronics application and specifically for high frequency switching. New formulations based on nickel-zinc-copper spinel ferrites were developed for high power and high frequency applications. These ferrites can be sintered at low temperature (around 900°C) which makes them compatible with the LTCC (Low Temperature Co-fired Ceramics) technology. Metallic parts of silver or gold can be fully integrated inside the ferrite while guaranteeing the integrity of both the ferrite and the metal. To make inductors or transformers with the required properties, it is mandatory to have nonmagnetic parts between the turns of the winding. Then it is essential to find a dielectric material, which can be co-sintered both with the ferrite and the metal. We will present the solution we found to this problem and we will describe the results we obtained for a multilayer co-sintered transformer. We will see that these new components have good performance compared with the state of the art and are very promising for developing high density switching mode power supplies.

  1. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Schmidt, A.; Riccardi, B.; Bobin-Vastra, I.

    2011-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  2. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Schmidt, A., E-mail: a.schmidt@fz-juelich.de [Forschungszentrum Juelich, IFE-2 (Germany); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion For Energy, E-08019 Barcelona (Spain); Bobin-Vastra, I., E-mail: isabelle.bobinvastra@areva.com [AREVA-NP, 71200 Le Creusot (France)

    2011-10-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  3. The Effect of Drought Stress on Morphological Characteristics and Yield Components of Medicinal Plant Fenugreek

    Directory of Open Access Journals (Sweden)

    N. Bazzazi

    2013-06-01

    Full Text Available Fenugreek (Trigonella foenum-graecum L. is one of the oldest medicinal plants. In order to study water-stress effects on some morphological characteristics of fenugreek, an experiment was carried out in a strip plots based on randomized complete blocks design with three replicates, at Research Farm of Shahrekord University, Shahrekord, Iran, in 2010. The first factor was allocated to four water stress levels (irrigation after depletion of 20 (as control, 40, 60 and 80% of available soil moisture and the second factor was six fenugreek landraces (Shiraz, Ardestan, Tirancheh, Yazd, Jahrom and Hindi. The results of ANOVA and comparison of means indicated that the effect of water stress was significant for all traits and variation was observed among landraces for all the studied characteristics. Mean comparison showed that drought stress reduced days to flowering, days to maturity, plant height and yield components (number of pods per plant, number of seeds per pod and 1000-kernel weight. It was also revealed that water stress caused reduction in biological yield (43% and grain yield (42.3% of all genotypes. Comparison between landraces indicated that maximum biological and grain yield belonged to Ardestan landrace. Assessment of cluster analysis showed that it was possible to classify Ardestan, Shiraz and Tirancheh as a single group having tolerance to water stress. In general, based on obtained results, the Ardestan landrace, with 22.37 g/plant, had the highest biological yield and Hindi landrace, with 73.83 days to maturity, was the most early-maturing one.

  4. Carbon-carbon composite and copper-composite bond damages for high flux component controlled fusion

    International Nuclear Information System (INIS)

    Chevet, G.

    2010-01-01

    Plasma facing components constitute the first wall in contact with plasma in fusion machines such as Tore Supra and ITER. These components have to sustain high heat flux and consequently elevated temperatures. They are made up of an armour material, the carbon-carbon composite, a heat sink structure material, the copper chromium zirconium, and a material, the OFHC copper, which is used as a compliant layer between the carbon-carbon composite and the copper chromium zirconium. Using different materials leads to the apparition of strong residual stresses during manufacturing, because of the thermal expansion mismatch between the materials, and compromises the lasting operation of fusion machines as damage which appeared during manufacturing may propagate. The objective of this study is to understand the damage mechanisms of the carbon-carbon composite and the composite-copper bond under solicitations that plasma facing components may suffer during their life. The mechanical behaviours of carbon-carbon composite and composite-copper bond were studied in order to define the most suitable models to describe these behaviours. With these models, thermomechanical calculations were performed on plasma facing components with the finite element code Cast3M. The manufacturing of the components induces high stresses which damage the carbon-carbon composite and the composite-copper bond. The damage propagates during the cooling down to room temperature and not under heat flux. Alternative geometries for the plasma facing components were studied to reduce damage. The relation between the damage of the carbon-carbon composite and its thermal conductivity was also demonstrated. (author) [fr

  5. The very low-frequency band of heart rate variability represents the slow recovery component after a mental stress task.

    Directory of Open Access Journals (Sweden)

    Harunobu Usui

    Full Text Available The very low-frequency (VLF band of heart rate variability (HRV has different characteristics compared with other HRV components. Here we investigated differences in HRV changes after a mental stress task. After the task, the high-frequency (HF band and ratio of high- to low-frequency bands (LF/HF immediately returned to baseline. We evaluated the characteristics of VLF band changes after a mental stress task. We hypothesized that the VLF band decreases during the Stroop color word task and there would be a delayed recovery for 2 h after the task (i.e., the VLF change would exhibit a "slow recovery". Nineteen healthy, young subjects were instructed to rest for 10 min, followed by a Stroop color word task for 20 min. After the task, the subjects were instructed to rest for 120 min. For all subjects, R-R interval data were collected; analysis was performed for VLF, HF, and LF/HF ratio. HRV during the rest time and each 15-min interval of the recovery time were compared. An analysis of the covariance was performed to adjust for the HF band and LF/HF ratio as confounding variables of the VLF component. HF and VLF bands significantly decreased and the LF/HF ratio significantly increased during the task compared with those during rest time. During recovery, the VLF band was significantly decreased compared with the rest time. After the task, the HF band and LF/HF ratio immediately returned to baseline and were not significantly different from the resting values. After adjusting for HF and LF/HF ratio, the VLF band had significantly decreased compared with that during rest. The VLF band is the "slow recovery" component and the HF band and LF/HF ratio are the "quick recovery" components of HRV. This VLF characteristic may clarify the unexplained association of the VLF band in cardiovascular disease prevention.

  6. The very low-frequency band of heart rate variability represents the slow recovery component after a mental stress task.

    Science.gov (United States)

    Usui, Harunobu; Nishida, Yusuke

    2017-01-01

    The very low-frequency (VLF) band of heart rate variability (HRV) has different characteristics compared with other HRV components. Here we investigated differences in HRV changes after a mental stress task. After the task, the high-frequency (HF) band and ratio of high- to low-frequency bands (LF/HF) immediately returned to baseline. We evaluated the characteristics of VLF band changes after a mental stress task. We hypothesized that the VLF band decreases during the Stroop color word task and there would be a delayed recovery for 2 h after the task (i.e., the VLF change would exhibit a "slow recovery"). Nineteen healthy, young subjects were instructed to rest for 10 min, followed by a Stroop color word task for 20 min. After the task, the subjects were instructed to rest for 120 min. For all subjects, R-R interval data were collected; analysis was performed for VLF, HF, and LF/HF ratio. HRV during the rest time and each 15-min interval of the recovery time were compared. An analysis of the covariance was performed to adjust for the HF band and LF/HF ratio as confounding variables of the VLF component. HF and VLF bands significantly decreased and the LF/HF ratio significantly increased during the task compared with those during rest time. During recovery, the VLF band was significantly decreased compared with the rest time. After the task, the HF band and LF/HF ratio immediately returned to baseline and were not significantly different from the resting values. After adjusting for HF and LF/HF ratio, the VLF band had significantly decreased compared with that during rest. The VLF band is the "slow recovery" component and the HF band and LF/HF ratio are the "quick recovery" components of HRV. This VLF characteristic may clarify the unexplained association of the VLF band in cardiovascular disease prevention.

  7. Turbine component casting core with high resolution region

    Science.gov (United States)

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  8. Trending analysis of incidents involving primary water stress corrosion cracking on Alloy 600 components at U.S. PWRs

    International Nuclear Information System (INIS)

    Takahara, Shogo; Watanabe, Norio

    2006-01-01

    Primary Water Stress Corrosion Cracking (PWSCC) which occurs on Nickel based alloy (Alloy 600) is a worldwide concern since early 1980's. Recently several significant degradations that originate from PWSCC in the reactor coolant pressure boundary (RCPB) components have been observed at U.S. PWR plants (e.g. Oconee-3, Davis Besse). The United States Nuclear Regulation Commission (NRC) has issued generic communications to address this problem and, in response to the Davis Besse event in 2002, gave the inspection order EA-03-009 for the PWR licensees to implement the inspection of the reactor vessel heads depending upon the effective degradation years. As well, in Japan, PWSCC is considered one of the safety issues, in particular, for aged nuclear power plants and actually, some plants have experienced PWSCC on RCPB components. In the present study, we analyzed the U.S. experience with Alloy 600 degradation by reviewing the licensee event reports from 1999 to 2005 and examined the trend of them mainly focusing on affected components, characteristics of cracking and inspection approaches for detecting the PWSCC. This study indicates that PWSCC is found to be occurred on the RCPB components exposed to the environment with high temperature such as the reactor vessel head, and has the tendency to happen for specific manufactures and material according to the RCPB components. As well, it is shown that for several components, the non-destructive examination is generally needed to detect and/or confirm the PWSCC after the visual inspection and different repair techniques are applied depending on the components affected. (author)

  9. A proposal to develop a high temperature structural design guideline for HTGR components

    International Nuclear Information System (INIS)

    Hada, K.

    1989-01-01

    This paper presents some proposals for developing a high-temperature structural design guideline for HTGR structural components. It is appropriate that a basis for developing high-temperature structural design rules is rested on well-established elevated-temperature design guidelines, if the same failure modes are expected for high-temperature components as considered in such design guidelines. As for the applicability of ASME B and PV Code Case N-47 to structural design rules for high-temperature components (service temperatures ≥ 900 deg. C), the following critical issues on material properties and service life evaluation rules have been pointed out. (i) no work-hardening of stress-strain curves at high temperatures due to dynamic recrystallization; (ii) issues relating to very significant creep; (iii) ductility loss after long-term ageing at high temperatures; (iv) validity of life-fraction rule (Robinson-Taira rule) as creep-fatigue damage evaluation rule. Furthermore, the validity of design margins of elevated-temperature structural design guidelines to high-temperature design rules should be clarified. Solutions and proposals to these issues are presented in this paper. Concerning no work-hardening due to dynamic recrystallization, it is shown that viscous effects cannot be neglected even at high extension rate for tensile tests, and that changes in viscous deformation rates by dynamic recrystallization should be taken into account. The extension rate for tensile tests is proposed to change at high temperatures. The solutions and proposals to the above-mentioned issues lead to the conclusion that the design methodologies of N-47 are basically applicable to the high-temperature structural design guideline for HTGR structural components in service at about 900 deg. C. (author). 9 refs, 5 figs

  10. Integration Test of the High Voltage Hall Accelerator System Components

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  11. Determination of the usage factor of components after cyclic loading using high-resolution microstructural investigations

    International Nuclear Information System (INIS)

    Seibold, A.; Scheibe, A.; Assmann, H.D.

    1989-01-01

    The usage factor can be derived from the quantification of the structure changes and the allocation of the microstructural state to the fatigue curves of the component materials. Using the example of the low alloy fine grain structural steel 20 Mn Mo Ni 5 5 (annealed structure), the relationship between micro-structure and the number of load cycles is shown in the form of a calibration curve. By high resolution structural investigation, the usage factor can be determined to n = N/N B ≅ 0.5 under given vibration stress. Only a small volume sample is required for the electron microscope examination. (orig./DG) [de

  12. Flaw assessment procedure for high temperature reactor components

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-01-01

    An interim high-temperature flaw assessment procedure is described. This is a result of a collaborative effort between Electric Power Research Institute in the USA, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the UK. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack growth laws may be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. Some of these limitations are to be addressed in an extension of the current collaborative program. 20 refs

  13. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability.

    Science.gov (United States)

    Nakajima, Yoshie; Tanaka, Naofumi; Mima, Tatsuya; Izumi, Shin-Ichi

    Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplified. To measure autonomic response, we calculated the high-frequency normalized unit (HFnu), low-frequency normalized unit, and the LF/HF ratio from the heart rate using electrocardiography. We defined the stress recovery ratio as the value obtained after participants listened to music following scratching noise, normalized by the value obtained after participants listened to white noise after the stress noise, in terms of the HFnu, low-frequency normalized unit, LF/HF ratio, and heart rate. Results indicated that high-frequency amplified music had the highest HFnu of the three versions. The stress recovery ratio of HFnu under the high-frequency amplified stimulus was significantly larger than that under the low-frequency stimulus. Our results suggest that the high-frequency component of music plays a greater role in stress relief than low-frequency components.

  14. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T. [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W. [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J. [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H. [Siemens Power Generation (Germany)

    1998-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  15. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H [Siemens Power Generation (Germany)

    1999-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  16. Application of Ultra High Pressure Cavitation Peening to Prevent PWSCC on Primary Plant Components

    Energy Technology Data Exchange (ETDEWEB)

    Poling, G.R.

    2015-07-01

    Primary Water Stress Corrosion Cracking (PWSCC) on Alloy 600/82/182 susceptible materials can lead to increased costs for maintenance and repair/replacement activities on nuclear power plant primary components. A process called Ultra High Pressure (UHP) cavitation peening can be safely and cost effectively applied to the susceptible materials to generate compressive stresses on the surface and prevent PWSCC initiation. AREVA has developed the tooling systems to apply the UHP cavitation peening process on reactor vessel head penetration nozzles, bottom mounted nozzles and primary nozzles. Applying the UHP cavitation peening process before PWSCC initiation will prevent future repairs/replacements, reduce maintenance costs, and provide more effective on-time for the reactor. (Author)

  17. High energy nucleonic component of cosmic rays at mountain altitudes

    CERN Document Server

    Stora, Raymond Félix

    The diffusion equations describing the unidimensional propagation of .the high energy nucleonic component of cosmic rays throughout the atmosphere are sol"V'ed under two assumptions: (l) The nucleon-nucleon collisions are described according to Fermi's therlnOdynamical model involving completely inelastic pion and.nucleon-antinucleon pair production. (2) A somewhat opposite assumption is made assuming partially elastic collisions without nucleon-anti.nucleon pair production. Due to the present inaccuracy of experiments, we are able to derive only tentati v.e conclusions. The values computed under both hypotheses for the absorption mean free path and the charged to neutral particles ratio are found in acceptable ranges when compared to experimental data. The diffeential energy spectrum at a given depth is always found steeper than the primary, and steeper than indicated by experimental values if the primary is taken proportional to the 2.5 inverse power of energy.

  18. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  19. High Q, Miniaturized LCP-Based Passive Components

    KAUST Repository

    Shamim, Atif

    2014-10-16

    Various methods and systems are provided for high Q, miniaturized LCP-based passive components. In one embodiment, among others, a spiral inductor includes a center connection and a plurality of inductors formed on a liquid crystal polymer (LCP) layer, the plurality of inductors concentrically spiraling out from the center connection. In another embodiment, a vertically intertwined inductor includes first and second inductors including a first section disposed on a side of the LCP layer forming a fraction of a turn and a second section disposed on another side of the LCP layer. At least a portion of the first section of the first inductor is substantially aligned with at least a portion of the second section of the second inductor and at least a portion of the first section of the second inductor is substantially aligned with at least a portion of the second section of the first inductor.

  20. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Maile, K; Jovanovic, A [MPA Stuttgart (Germany)

    1999-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  1. High Q, Miniaturized LCP-Based Passive Components

    KAUST Repository

    Shamim, Atif; Arabi, Eyad A.

    2014-01-01

    Various methods and systems are provided for high Q, miniaturized LCP-based passive components. In one embodiment, among others, a spiral inductor includes a center connection and a plurality of inductors formed on a liquid crystal polymer (LCP) layer, the plurality of inductors concentrically spiraling out from the center connection. In another embodiment, a vertically intertwined inductor includes first and second inductors including a first section disposed on a side of the LCP layer forming a fraction of a turn and a second section disposed on another side of the LCP layer. At least a portion of the first section of the first inductor is substantially aligned with at least a portion of the second section of the second inductor and at least a portion of the first section of the second inductor is substantially aligned with at least a portion of the second section of the first inductor.

  2. Thermomechanical fatigue life prediction of high temperature components

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Thomas; Hartrott, Philipp von; Riedel, Hermann; Siegele, Dieter [Fraunhofer-Inst. fuer Werkstoffmechanik (IWM), Freiburg (Germany)

    2009-07-01

    The aim of the work described in this paper is to provide a computational method for fatigue life prediction of high temperature components, in which the time and temperature dependent fatigue crack growth is a relevant damage mechanism. The fatigue life prediction is based on a law for microcrack growth and a fracture mechanics estimate of the cyclic crack tip opening displacement. In addition, a powerful model for nonisothermal cyclic plasticity is employed, and an efficient laboratory test procedure is proposed for the determination of the model parameters. The models are efficiently implemented into finite element programs and are used to predict the fatigue life of a cast iron exhaust manifold and a notch in the perimeter of a turbine rotor made of a ferritic/martensitic 10%-chromium steel. (orig.)

  3. Initiation and propagation of damage in actively cooled CFC armoured high heat flux components in fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.; Escourbiac, F.

    2009-01-01

    Plasma facing components (PFCs) in magnetic confinement controlled fusion machines are armoured with carbon fibre composite (CFC) bonded to a copper alloy heat sink. The manufacturing process induces high level of residual stresses due to the thermal expansion mismatch between CFC and copper and PFCs have to withstand strong stress ranges during operation. To study the initiation and propagation of damage in the CFC part, the ONERA damage model is used to describe the behaviour of the N11 material. The finite element simulations show that the damage is located near the interface and develops during the manufacturing of the PFCs as a consequence of the high amplitude of shear stresses. Under high heat flux, stresses decrease and the damage does not evolve. Further studies will take into account the damageable behaviour of the composite/copper interface, which will lead to geometrical optimisations and better knowledge of the link between damage and conductivity.

  4. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  5. Analysis of Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Chlupová, Alice

    2011-01-01

    Roč. 278, 4 July (2011), s. 393-398 ISSN 1022-6680. [European Symposium on Superalloys and their Application. Wildbad Kreuth, 25.5.2010-28.5.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : low cycle fatigue * superalloys * high temperature * hysteresis loop * effective and internal stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFM-A)

  6. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.

    Science.gov (United States)

    Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey

    2017-06-19

    While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well

  7. Finite element based design optimization of WENDELSTEIN 7-X divertor components under high heat flux loading

    International Nuclear Information System (INIS)

    Plankensteiner, A.; Leuprecht, A.; Schedler, B.; Scheiber, K.-H.; Greuner, H.

    2007-01-01

    In the divertor of the nuclear fusion experiment WENDELSTEIN 7-X (W7-X) plasma facing high heat flux target elements have to withstand severe loading conditions. The thermally induced mechanical stressing turns out to be most critical with respect to lifetime predictions of the target elements. Therefore, different design variants of those CFC flat tile armoured high heat flux components have been analysed via the finite element package ABAQUS aiming at derivation of an optimized component design under high heat flux conditions. The investigated design variants comprise also promising alterations in the cooling channel design and castellation of the CFC flat tiles which, however, from a system integration and manufacturing standpoint of view, respectively, are evaluated to be critical. Therefore, the numerical study as presented here mainly comprises a reference variant that is comparatively studied with a variant incorporating a bi-layer-type AMC-Cu/OF-Cu interlayer at the CFC/Cu-interface. The thermo-mechanical material characteristics are accounted for in the finite element models with elastic-plastic properties being assigned to the metallic sections CuCrZr, AMC-Cu and OF-Cu, respectively, and orthotropic nonlinear-elastic properties being used for the CFC sections. The calculated temporal and spatial evolution of temperatures, stresses, and strains for the individual design variants are evaluated with special attention being paid to stress measures, plastic strains, and damage parameters indicating the risk of failure of CFC and the CFC/Cu-interface, respectively. This way the finite element analysis allows to numerically derive an optimized design variant within the framework of expected operating conditions in W7-X

  8. Biochemical components and dry matter of lemon and mandarin hybrids under salt stress

    Directory of Open Access Journals (Sweden)

    Francisco V. da S. Sá

    Full Text Available ABSTRACT The objective was to study the biochemical changes and dry matter content in lemon and mandarin hybrids under salt stress during rootstock formation. For this, a study was conducted in randomized complete block, using a 2 x 5 factorial scheme, with two salinity levels (0.3 and 4.0 dS m-1 applied in five citrus rootstock genotypes (1. TSKC x CTARG - 019; 2. LRF; 3. TSKC x (LCR x TR - 040; 4. LCRSTC and 5. LVK, with three replicates and four plants per plot. At 90 days after sowing, saline treatments started to be applied and continued until 120 days after sowing, the moment in which the plants were collected for evaluation of biochemical characteristics and phytomass accumulation. The increase in water salinity negatively affected the biochemical components and dry matter accumulation of citrus genotypes. The genotypes TSKC x (LCR x TR - 040, LCRSTC and LVK were the least affected by salt stress, standing out as the materials most tolerant to salinity.

  9. Experimental and numerical simulation of the behaviour of building components under alternating thermal stresses

    International Nuclear Information System (INIS)

    Stegmeyer, R.

    1985-01-01

    This publication is intended to clear up to what extent the results from laboratory experiments on components thermally stressed on several axes can be transferred. The turbine shaft was used for this purpose and was geometrically simulated on a reduced scale by means of a test body (model). The deviations of shape due to the design, such as shaft shoulders, grooves etc. were simulated by notches and the position of the expected crack was defined in this way. A 1% Cr steel was selected as the material, for which many results of experiments on laboratory samples were available. The turbine shaft steel 28 CrMoNiV 4 9 was used. With a specially designed experimental rig, it was possible to expose the model to a changing temperature stress, as it occurs during starting and shutdown of turbines. Different notch radii made it possible to vary the strains at the bottom of the notches due to temperature gradients. After developing special travel transducers, the strain behaviour of the sample could be determined relative to the temperature. The crack characteristics obtained were compared with the characteristics of single axis experiments at constant temperature. Fractographic examination of fatigue cracks made it possible to determine the growth of cracks per load change from the existing vibration strip (da/dN). The stress intensity factor was derived from a modified theoretical expression and the characteristic designed from it was compared with crack growth measurements on CT samples. Accompanying numerical and empirical processes (according to Neuber) were examined by direct comparison of the measured strains with the calculated or estimated strains. Finally, regulations such as the ASME code and TRD 301 were applied to the model experiments and evaluated. (orig.) [de

  10. Multi-component solid solution alloys having high mixing entropy

    Science.gov (United States)

    Bei, Hongbin

    2015-10-06

    A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.

  11. HTR-E project. High-temperature components and systems

    International Nuclear Information System (INIS)

    Breuil, E.; Exner, R.

    2002-01-01

    The HTR-E European project (four years project) is proposed for the 5th Framework Programme and concerns the technical developments needed for the innovative components of a modern HTR with a direct cycle. These components have been selected with reference to the present projects (GT-MHR, PBMR): (1) the helium turbine, the recuperator heat exchanger, the electro-magnetic bearings and the helium rotating seal; (2) the tribology. Sliding innovative components in helium environment are particularly concerned. (3) the helium purification system. Recommendations on impurities contents have to be provided in accordance with the materials proposed for the innovative components. The main outcomes expected from the HTR-E project are the design recommendations and identification of further R and D needs for these components. This will be based: (1) on experience feedback from European past helium test loops and reactors; (2) on design studies, thermal-hydraulic and structural analyses; (3) and on experimental tests

  12. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of real component geometries (phase 1). Final report; Erhoehung der Komponentensicherheit durch verbesserte Verfahren zur Eigenspannungsanalyse. Teilvorhaben. Beruecksichtigung realer Komponentengeometrien (Phase 1). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nau, Andreas; Scholtes, B.

    2014-07-24

    Residual stresses can be result in both detrimental as well as beneficial consequences on the component's strength and lifetime. A most detailed knowledge of the residual stress state is a pre-requisite for the assessment of the component's performance. The mechanical methods for residual stress measurements are classified in non-destructive, destructive and semi-destructive methods. The two commonly used (semi-destructive) mechanical methods are the hole drilling and the ring core method. In the context of reactor safety research of the Federal Ministry of Economic Affairs and Energy (BMWi), two fundamental and interacting weak points of the hole drilling as well as of the ring core method are investigated. On the one hand, there are effects concerning geometrical boundary conditions of the components and on the other hand, there are influences of plasticity due to notch effects. Both aspects affect the released strain field, when the material is removed and finally, the calculated residual stresses. The first issue mentioned above is under the responsibility of Institute of Materials Engineering - Metallic Materials (Kassel University) and the last one will be investigated by University of Stuttgart-Otto-Graf-Institut - materials testing institute. Within the framework of this project it could be demonstrated that updated calibration coefficients lead to more reliable residual stress calculation in contrast to existing ones. These findings are valid for points of measurements on components without geometrical boundary effects like edges or shoulders. Reasons are high developed Finite-Element software packages and the opportunity of modelling the point of measurement (hole geometry, layout of the strain gauges) and its vicinity more in detail. Special challenges are multi-axial residual stress depth distributions and the geometry of components composing edges and claddings. Unlike existing analyses considering uni-axial and homogeneous stress states, bi

  13. The Impact of Stress Urinary Incontinence on Individual Components of Quality of Life in Malaysian Women.

    Science.gov (United States)

    Lim, Renly; Liong, Men Long; Leong, Wing Seng; Lau, Yong Khee; Khan, Nurzalina Abdul Karim; Yuen, Kah Hay

    2018-02-01

    To assess the impact of stress urinary incontinence (SUI) on individual components of quality of life (QoL) using both condition-specific and generic questionnaires, and to compare the results of the 2 instruments with a control group. Women with or without SUI aged ≥21 years old were recruited. Subjects completed the International Consultation of Incontinence-Urinary Incontinence Short Form (ICIQ-UI-SF), International Consultation of Incontinence-Lower Urinary Tract Symptoms Quality of Life (ICIQ-LUTSqol), and EQ-5D questionnaires. A total of 120 women with SUI and 145 controls participated. The ICIQ-LUTSqol total score (mean ± standard deviation) was significantly higher in the SUI group (38.96 ± 10.28) compared with the control group (20.78 ± 2.73) (P women with SUI affected "moderately" or "a lot." When measured using the EQ-5D questionnaire, there were significantly higher percentages of patients with SUI who had problems with usual activities, pain or discomfort, and anxiety or depression (P Women suffering from SUI have significantly poorer QoL compared with continent women when measured using both condition-specific and generic QoL measures. Clinicians should pay closer attention to the impact of SUI on individual components of QoL, particularly limitations on physical activities and jobs, which were the 2 most impairing and frequently reported components of QoL. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin

    2018-06-01

    Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.

  15. Elevated level of serum triglyceride among high risk stress bank ...

    African Journals Online (AJOL)

    The objective of this study was to estimate lipid profile among high risk stress bank employees' correlated with heart disorders in Riyadh, Saudi Arabia. A total of 129 patients with high risk stress employees were involved in this study, which were divided into 69 males and 60 females between the age of 25 to 55 years.

  16. High-resolution stress measurements for microsystem and semiconductor applications

    Science.gov (United States)

    Vogel, Dietmar; Keller, Juergen; Michel, Bernd

    2006-04-01

    Research results obtained for local stress determination on micro and nanotechnology components are summarized. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.

  17. Evaluation of Integrated High Temperature Component Testing Needs

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  18. Minimum component high frequency current mode rectifier | Sampe ...

    African Journals Online (AJOL)

    In this paper a current mode full wave rectifier circuit is proposed. The current mode rectifier circuit is implemented utilizing a floating current source (FCS) as an active element. The minimum component full wave rectifier utilizes only a single floating current source, two diodes and two grounded resistors. The extremely ...

  19. Achieving high aspect ratio wrinkles by modifying material network stress.

    Science.gov (United States)

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  20. High-temperature, high-pressure bonding of nested tubular metallic components

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hotpress evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity

  1. High-temperature, high-pressure bonding of nested tubular metallic components

    Science.gov (United States)

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  2. Highly stressed carbon film coatings on silicon potential applications

    CERN Multimedia

    Sharda, T

    2002-01-01

    The fabrication of highly stressed and strongly adhered nanocrystalline diamond films on Si substrates is presented. A microwave plasma CVD method with controlled and continuous bias current density was used to grow the films. The stress/curvature of the films can be varied and controlled by altering the BCD. Potential applications for these films include particle physics and x-ray optics.

  3. MODELING OF SYSTEM COMPONENTS OF EDUCATIONAL PROGRAMS IN HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    E. K. Samerkhanova

    2016-01-01

    Full Text Available Based on the principles of System Studies, describes the components of the educational programs of the control system. Educational Program Management is a set of substantive, procedural, resource, subject-activity, efficiently and evaluation components, which ensures the integrity of integration processes at all levels of education. Ensuring stability and development in the management of educational programs is achieved by identifying and securing social norms, the status of the educational institution program managers to ensure the achievement of modern quality of education.Content Management provides the relevant educational content in accordance with the requirements of the educational and professional standards; process control ensures the efficient organization of rational distribution process flows; Resource Management provides optimal distribution of personnel, information and methodological, material and technical equipment of the educational program; contingent management provides subject-activity interaction of participants of the educational process; quality control ensures the quality of educational services.

  4. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  5. Effects of heat production on the temperature pattern and stresses on frictional hardening of cylindrical components

    International Nuclear Information System (INIS)

    Maksimovich, V.M.; Kratyuk, P.B.; Babei, Yu.I.; Maksimishin, M.D.

    1992-01-01

    Metal heating occurs during pulse hardening which influences the structure, state of strain, and physicomechanical properties, which in turn affects the viability. Difficulties exists in measuring the resulting temperature distributions because of the lag in existing methods. More accurate estimates of temperature distributions may often be obtained using theoretical methods, which involve solving coupled problems in the theory of elasticity and thermal conductivity. In this work, a planar contact case in thermoelasticity is considered for frictional hardening, in which the friction disk and the workpiece are represented as an elastic plunger and the body.It is assumed that the contact normal and tangential stresses are related by Coulomb's law. Also given is a method of solving which enables the definition of the thermoelastic state with a given accuracy in the contact region for high disk speeds. 5 refs., 2 figs., 1 tab

  6. Consideration of microstructure evolution and residual stress measurement near severe worked surface using high energy x-ray

    International Nuclear Information System (INIS)

    Hashimoto, Tadafumi; Mochizuki, Masahito; Shobu, Takahisa

    2012-01-01

    It is necessary to establish a measurement method that can evaluate accurate stress on the surface. However, the microstructure evolution takes place near the surface due to severe plastic deformation, since structural members have been superpositioned a lot of working processes to complete. As well known, a plane stress can't be assumed on the severe worked surface. Therefore we have been proposed the measurement method that can be measured the in-depth distribution of residual stress components by using high energy X-ray from a synchrotron radiation source. There is the combination of the constant penetration depth method and tri-axial stress analysis. Measurements were performed by diffraction planes for the orientation parameter Γ=0.25 of which elastic constants are nearly equal to the mechanical one. The stress components obtained must be converted to the stress components in real space by using optimization technique, since it corresponds to the weighted average stress components associated with the attenuation of X-ray in materials. The predicted stress components distribution agrees very well with the corrected one which was measured by the conventional removal method. To verify the availability of the proposed method, thermal aging variation of residual stress components on the severe worked surface under elevated temperature was investigated using specimen superpositioned working processes (i.e., welding, machining, peening). It is clarified that the residual stress components increase with thermal aging, using the diffraction planes in hard elastic constants to the bulk. This result suggests that the thermal stability of residual stress has the dependence of the diffraction plane. (author)

  7. The Effect of Malrotation of Tibial Component of Total Knee Arthroplasty on Tibial Insert during High Flexion Using a Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Kei Osano

    2014-01-01

    Full Text Available One of the most common errors of total knee arthroplasty procedure is a malrotation of tibial component. The stress on tibial insert is closely related to polyethylene failure. The objective of this study is to analyze the effect of malrotation of tibial component for the stress on tibial insert during high flexion using a finite element analysis. We used Stryker NRG PS for analysis. Three different initial conditions of tibial component including normal, 15° internal malrotation, and 15° external malrotation were analyzed. The tibial insert made from ultra-high-molecular-weight polyethylene was assumed to be elastic-plastic while femoral and tibial metal components were assumed to be rigid. Four nonlinear springs attached to tibial component represented soft tissues around the knee. Vertical load was applied to femoral component which rotated from 0° to 135° while horizontal load along the anterior posterior axis was applied to tibial component during flexion. Maximum equivalent stresses on the surface were analyzed. Internal malrotation caused the highest stress which arose up to 160% of normal position. External malrotation also caused higher stress. Implanting prosthesis in correct position is important for reducing the risk of abnormal wear and failure.

  8. On the use of flat tile armour in high heat flux components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M.; Vieider, G

    1998-10-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution. (orig.) 7 refs.

  9. On the use of flat tile armour in high heat flux components

    Science.gov (United States)

    Merola, M.; Vieider, G.

    1998-10-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution.

  10. On the use of flat tile armour in high heat flux components

    International Nuclear Information System (INIS)

    Merola, M.; Vieider, G.

    1998-01-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution. (orig.)

  11. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    Energy Technology Data Exchange (ETDEWEB)

    N. Lybeck; B. Pham; M. Tawfik; J. B. Coble; R. M. Meyer; P. Ramuhalli; L. J. Bond

    2011-08-01

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and

  12. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    International Nuclear Information System (INIS)

    Lybeck, N.; Pham, B.; Tawfik, M.; Coble, J.B.; Meyer, R.M.; Ramuhalli, P.; Bond, L.J.

    2011-01-01

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and

  13. Manufacturing of ultra high vacuum compatible accelerator and laser components

    International Nuclear Information System (INIS)

    Mundra, G.; Sharma, S.D.; Bhatnagar, V.

    2015-01-01

    For carrying out advanced basic research, Raja Ramanna Centre for Advanced Technology, (RRCAT) had set up 450 MeV and 2.5 GeV Synchrotron Radiation Sources. Many beamlines are being utilized by researchers from various universities and institutions of the country. Centre has also developed various lasers that find application in various front line areas like medicine, industry and research. To cater the need of manufacturing for these programs, an advanced and versatile manufacturing development center was established, called Accelerator Components Design and Fabrication Section (ACDFS),

  14. A high-temperature silicon-on-insulator stress sensor

    International Nuclear Information System (INIS)

    Wang Zheyao; Tian Kuo; Zhou Youzheng; Pan Liyang; Liu Litian; Hu Chaohong

    2008-01-01

    A piezoresistive stress sensor is developed using silicon-on-insulator (SOI) wafers and calibrated for stress measurement for high-temperature applications. The stress sensor consists of 'silicon-island-like' piezoresistor rosettes that are etched on the SOI layer. This eliminates leakage current and enables excellent electrical insulation at high temperature. To compensate for the measurement errors caused by the misalignment of the piezoresistor rosettes with respect to the crystallographic axes, an anisotropic micromachining technique, tetramethylammonium hydroxide etching, is employed to alleviate the misalignment issue. To realize temperature-compensated stress measurement, a planar diode is fabricated as a temperature sensor to decouple the temperature information from the piezoresistors, which are sensitive to both stress and temperature. Design, fabrication and calibration of the piezoresistors are given. SOI-related characteristics such as piezoresistive coefficients and temperature coefficients as well as the influence of the buried oxide layer are discussed in detail

  15. Estimation of spacial geo-stress components in rock samples by using the Kaiser effect of acoustic emission

    International Nuclear Information System (INIS)

    Kanagawa, Tadashi; Hayashi, Masao; Nakasa, Hiroyasu.

    1976-01-01

    The spacial remaining stress component of the rock core sample is experimentally obtained by using Kaiser effect of acoustic emission (AE), and the estimated ground pressure is compared with the natural ground pressure measured by the conventional over-coring method, in order to see the feasiblity of AE method. In this experiments of AE, 111 specimens were cut out in all directions of the rock cores (tuff) sampled from the place where the ground pressure was measured by the over-coring method, and the generation of AE caused by the load was measured. Whereby, the stress components in three directions are determined. As a result of comparison, t the AE method is proved to be effective enough to estimate the ground pressure of rock geo-dynamically. In the application of the Kaiser effect to the estimation of the geo-stress in rock samples, one of the most difficult problems is how to eliminate the obstruction of erroneous AE signals caused by the strong stress concentration at the end corners of the rock specimen. As the result of comparison, the values obtained by the AE method have a tendency of greater than the values obtained by the over-coring method. It is conceived that the AE method can easily detect the maximum stress value for geo historical long time, and that the stress concentration is apt to mix in AE method by boring. (Iwakiri, K.)

  16. Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women.

    Science.gov (United States)

    Tomiyama, A Janet; Dallman, Mary F; Epel, Elissa S

    2011-11-01

    Chronically stressed rodents who are allowed to eat calorie-dense "comfort" food develop greater mesenteric fat, which in turn dampens hypothalamic-pituitary-adrenocortical (HPA) axis activity. We tested whether similar relations exist in humans, at least cross-sectionally. Fifty-nine healthy premenopausal women were exposed to a standard laboratory stressor to examine HPA response to acute stress and underwent diurnal saliva sampling for basal cortisol and response to dexamethasone administration. Based on perceived stress scores, women were divided into extreme quartiles of low versus high stress categories. We found as hypothesized that the high stress group had significantly greater BMI and sagittal diameter, and reported greater emotional eating. In response to acute lab stressor, the high stress group showed a blunted cortisol response, lower diurnal cortisol levels, and greater suppression in response to dexamethasone. These cross-sectional findings support the animal model, which suggests that long-term adaptation to chronic stress in the face of dense calories result in greater visceral fat accumulation (via ingestion of calorie-dense food), which in turn modulates HPA axis response, resulting in lower cortisol levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    Science.gov (United States)

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  18. High-Risk Stress Fractures: Diagnosis and Management.

    Science.gov (United States)

    McInnis, Kelly C; Ramey, Lindsay N

    2016-03-01

    Stress fractures are common overuse injuries in athletes. They occur during periods of increased training without adequate rest, disrupting normal bone reparative mechanisms. There are a host of intrinsic and extrinsic factors, including biochemical and biomechanical, that put athletes at risk. In most stress fractures, the diagnosis is primarily clinical, with imaging indicated at times, and management focused on symptom-free relative rest with advancement of activity as tolerated. Overall, stress fractures in athletes have an excellent prognosis for return to sport, with little risk of complication. There is a subset of injuries that have a greater risk of fracture progression, delayed healing, and nonunion and are generally more challenging to treat with nonoperative care. Specific locations of high-risk stress fracture include the femoral neck (tension side), patella, anterior tibia, medial malleolus, talus, tarsal navicular, proximal fifth metatarsal, and great toe sesamoids. These sites share a characteristic region of high tensile load and low blood flow. High-risk stress fractures require a more aggressive approach to evaluation, with imaging often necessary, to confirm early and accurate diagnosis and initiate immediate treatment. Treatment consists of nonweight-bearing immobilization, often with a prolonged period away from sport, and a more methodic and careful reintroduction to athletic activity. These stress fractures may require surgical intervention. A high index of suspicion is essential to avoid delayed diagnosis and optimize outcomes in this subset of stress fractures. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  19. Work stress: its components and its association with self-reported health outcomes in a garment factory in Bangladesh-Findings from a cross-sectional study.

    Science.gov (United States)

    Steinisch, Maria; Yusuf, Rita; Li, Jian; Rahman, Omar; Ashraf, Hasan M; Strümpell, Christian; Fischer, Joachim E; Loerbroks, Adrian

    2013-11-01

    Bangladesh is one of the leading exporters of ready-made garments (RMG) worldwide producing at very low cost almost exclusively for Western markets. Empirical evidence on psychologically adverse working conditions and their association with health in the RMG setting remains sparse. Drawing on insights from previous ethnographic research, we conducted a cross-sectional epidemiological study among 332 RMG workers in Dhaka, Bangladesh. High work-related demands and poor interpersonal resources represented key components of work stress and were important determinants of poor health. The key work stress components observed in this study partly differed from those identified in Western work place settings. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  20. High quality actively cooled plasma facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.

    1993-01-01

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed

  1. Fibre and components induced limitations in high capacity optical networks

    DEFF Research Database (Denmark)

    Peucheret, Christophe

    2003-01-01

    The design of future all-optical networks relies on the knowledge of the physical layer transport properties. In this thesis, we focus on two types of system impairments: those induced by the non-ideal transfer functions of optical filters to be found in network elements such as optical add...... design in order to maximise the spectral efficiency in a four add-drop node ring network. The concept of "normalised transmission sections" is introduced in order to ease the dimensioning of transparent domains in future all-optical networks. Normalised sections based on standard single mode fibre (SMF......-drop multiplexers (OADM) and optical cross-connects (OXC), as well as those due to the interaction of group-velocity dispersion, optical fibre non-linearities and accumulation of amplifier noise in the transmission path. The dispersion of fibre optics components is shown to limit their cascadability. Dispersion...

  2. Electronic components with yttrium- and bismuth-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Daginnus, M.; Guettler, B.

    1992-01-01

    This project investigates the fabrication of microwave components by use of high-Tc superconductors. Detailed descriptions are given of the manufacturing and use of active Y-Ba-Cu-O components. The surface resistance of thin films used in high-quality passive microwave components such as resonators and filters is measured and optimized. (orig./MM) [de

  3. Applicability of copper alloys for DEMO high heat flux components

    Science.gov (United States)

    Zinkle, Steven J.

    2016-02-01

    The current state of knowledge of the mechanical and thermal properties of high-strength, high conductivity Cu alloys relevant for fusion energy high heat flux applications is reviewed, including effects of thermomechanical and joining processes and neutron irradiation on precipitation- or dispersion-strengthened CuCrZr, Cu-Al2O3, CuNiBe, CuNiSiCr and CuCrNb (GRCop-84). The prospects for designing improved versions of wrought copper alloys and for utilizing advanced fabrication processes such as additive manufacturing based on electron beam and laser consolidation methods are discussed. The importance of developing improved structural materials design criteria is also noted.

  4. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    International Nuclear Information System (INIS)

    Araki, Masanori

    1993-03-01

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 ± 1 MW/m 2 was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate has been analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads. (J.P.N.) 62 refs

  5. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NARCIS (Netherlands)

    Bonte, M.H.A.; de Boer, Andries; Liebregts, R.

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the

  6. High quality actively cooled plasma-facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1995-01-01

    This paper interweaves some suggestions for developing actively cooled plasma-facing components (PFCs) for future fusion devices, with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III outboard pump limiter (OPL). This actively cooled midplane limiter, designed for heat and particle removal during long-pulse operation, has been operated under essentially thermally steady state conditions. Testing to identify braze flaws, analysis of the impact of joining flaws on the thermal-hydraulic performance of the OPL, and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed. This experience suggests that, for PFCs in future fusion devices, flaw-tolerant designs are possible; analyses of the impacts of flaws on performance can provide criteria for quality assurance; and validating appropriate methods of inspection for such flaws early in the design development of PFCs is prudent. The need for in-service monitoring is also discussed. (orig.)

  7. Technical report of electronics shop characteristics of high speed electronics component, (1)

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiino, Kazuo.

    1975-01-01

    We must develop electronics circuits for high speed signals. The electronics components of the circuits make use of the special components. This report treats a pulse response of the electronics components (i.e. coaxial cable, connector, resistor, capacitor, diode, transistor) for high speed electronics. The results of this report was already applied constructions of high speed electronics circuits and experimental equipments of the High Energy Physics Division. (auth.)

  8. Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children

    Science.gov (United States)

    MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne

    2014-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary…

  9. High occupational stress and low career satisfaction of Korean surgeons.

    Science.gov (United States)

    Kang, Sang Hee; Boo, Yoon Jung; Lee, Ji Sung; Han, Hyung Joon; Jung, Cheol Woong; Kim, Chong Suk

    2015-02-01

    Surgery is a demanding and stressful field in Korea. Occupational stress can adversely affect the quality of care, decrease job satisfaction, and potentially increase medical errors. The aim of this study was to investigate the occupational stress and career satisfaction of Korean surgeons. We have conducted an electronic survey of 621 Korean surgeons for the occupational stress. Sixty-five questions were used to assess practical and personal characteristics and occupational stress using the Korean occupational stress scale (KOSS). The mean KOSS score was 49.31, which was higher than the average of Korean occupational stress (45.86) or that of other specialized professions (46.03). Young age, female gender, long working hours, and frequent night duties were significantly related to the higher KOSS score. Having spouse, having hobby and regular exercise decreased the KOSS score. Multiple linear regression analysis showed that long working hours and regular exercise were the independent factors associated with the KOSS score. Less than 50% of surgeons answered that they would become a surgeon again. Most surgeons (82.5%) did not want to recommend their child follow their career. Korean Surgeons have high occupational stress and low level of career satisfaction.

  10. High Dose Ascorbate Causes Both Genotoxic and Metabolic Stress in Glioma Cells

    Science.gov (United States)

    Castro, Maria Leticia; Carson, Georgia M.; McConnell, Melanie J.; Herst, Patries M.

    2017-01-01

    We have previously shown that exposure to high dose ascorbate causes double stranded breaks (DSBs) and a build-up in S-phase in glioblastoma (GBM) cell lines. Here we investigated whether or not this was due to genotoxic stress as well as metabolic stress generated by exposure to high dose ascorbate, radiation, ascorbate plus radiation and H2O2 in established and primary GBM cell lines. Genotoxic stress was measured as phosphorylation of the variant histone protein, H2AX, 8-oxo-7,8-dihydroguanine (8OH-dG) positive cells and cells with comet tails. Metabolic stress was measured as a decrease in NADH flux, mitochondrial membrane potential (by CMXRos), ATP levels (by ATP luminescence) and mitochondrial superoxide production (by mitoSOX). High dose ascorbate, ascorbate plus radiation, and H2O2 treatments induced both genotoxic and metabolic stress. Exposure to high dose ascorbate blocked DNA synthesis in both DNA damaged and undamaged cell of ascorbate sensitive GBM cell lines. H2O2 treatment blocked DNA synthesis in all cell lines with and without DNA damage. DNA synthesis arrest in cells with damaged DNA is likely due to both genotoxic and metabolic stress. However, arrest in DNA synthesis in cells with undamaged DNA is likely due to oxidative damage to components of the mitochondrial energy metabolism pathway. PMID:28737676

  11. Optimization of high-efficiency components; Optimieren auf hohem Niveau

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Eva

    2009-07-01

    High efficiency is a common feature of modern current inverters and is not a unique selling proposition. Other factors that influence the buyer's decision are cost reduction, reliability and service, optimum grid integration, and the challenges of the competitive thin film technology. (orig.)

  12. Deep Reactive Ion Etching for High Aspect Ratio Microelectromechanical Components

    DEFF Research Database (Denmark)

    Jensen, Søren; Yalcinkaya, Arda Deniz; Jacobsen, S.

    2004-01-01

    A deep reactive ion etch (DRIE) process for fabrication of high aspect ratio trenches has been developed. Trenches with aspect ratios exceeding 20 and vertical sidewalls with low roughness have been demonstrated. The process has successfully been used in the fabrication of silicon-on-insulator (SOI...

  13. PWSCC Growth Assessment Model Considering Stress Triaxiality Factor for Primary Alloy 600 Components

    Directory of Open Access Journals (Sweden)

    Jong-Sung Kim

    2016-08-01

    Full Text Available We propose a primary water stress corrosion cracking (PWSCC initiation model of Alloy 600 that considers the stress triaxiality factor to apply to finite element analysis. We investigated the correlation between stress triaxiality effects and PWSCC growth behavior in cold-worked Alloy 600 stream generator tubes, and identified an additional stress triaxiality factor that can be added to Garud's PWSCC initiation model. By applying the proposed PWSCC initiation model considering the stress triaxiality factor, PWSCC growth simulations based on the macroscopic phenomenological damage mechanics approach were carried out on the PWSCC growth tests of various cold-worked Alloy 600 steam generator tubes and compact tension specimens. As a result, PWSCC growth behavior results from the finite element prediction are in good agreement with the experimental results.

  14. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    Science.gov (United States)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  15. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    Science.gov (United States)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock

  16. Hypercholesterolemia Up-Regulates the Expression of Intermedin and Its Receptor Components in the Aorta of Rats via Inducing the Oxidative Stress.

    Science.gov (United States)

    Meng, Qingtao; Shi, Di; Feng, Jiayue; Su, Yanling; Long, Yang; He, Sen; Wang, Si; Wang, Yong; Zhang, Xiangxun; Chen, Xiaoping

    2016-01-01

    Hypercholesterolemia can cause damage to the artery. Intermedin (IMD) is a novel member of the calcitonin gene-related peptide family. This study aims to investigate the aortic expression of IMD and its receptors in hypercholesterolemia without atherosclerosis. Male Wistar rats were fed with high cholesterol diet, with or without simvastatin and vitamin C. Both the malondialdehyde (MDA) and superoxide dismutase (SOD) in plasma and aorta were determined as the oxidative stress biomarkers. The plasma IMD was assessed by radioimmunoassay. Within the aorta, the mRNA expression of IMD along with its receptor components was determined, and the corresponding protein level of the CRLR/RAMPs was also assessed. The hypercholesterolemia rats without atherosclerotic lesion manifested a higher level of MDA and SOD and the plasma IMD elevated. Increased expression of IMD and all its receptor components (CRLR, RAMP1, RAMP2, and RAMP3) were displayed within the aorta. The simvastatin indirectly attenuated oxidative stress by improving lipid profiles, while the vitamin C directly reduced oxidative stress without interfering with the serum lipids. Both simvastatin and vitamin C ameliorated the aortic injury, decreased the plasma IMD level, and recovered the expression of IMD and its receptors within the aorta. The up-regulated expression of IMD is observed within the aorta of the hypercholesterolemia rats. In addition, the oxidative stress participates in the up-regulation. © 2016 by the Association of Clinical Scientists, Inc.

  17. A comparative study of different techniques in the stress analysis of a nuclear component

    International Nuclear Information System (INIS)

    Dickenson, P.W.; Floyd, C.G.

    1985-01-01

    The inner surface stresses around the corner between the cylindrical wall and end plate of a flat ended pressure vessel have been determined using finite element, boundary element and photoelastic techniques. The results demonstrate severe deficiencies under certain conditions in the performance of the quadrilateral axisymmetric finite element which is commonly used in this type of analysis. The boundary element method is shown to provide an alternative analysis route giving more accurate results. The hybrid formulation finite element is also found to give reasonable results for the analysis of stresses in regions of rapidly varying stress. (orig.)

  18. The iron-sulfur cluster assembly network component NARFL is a key element in the cellular defense against oxidative stress.

    Science.gov (United States)

    Corbin, Monique V; Rockx, Davy A P; Oostra, Anneke B; Joenje, Hans; Dorsman, Josephine C

    2015-12-01

    Aim of this study was to explore cellular changes associated with increased resistance to atmospheric oxygen using high-resolution DNA and RNA profiling combined with functional studies. Two independently selected oxygen-resistant substrains of HeLa cells (capable of proliferating at >80% O2, i.e. hyperoxia) were compared with their parental cells (adapted to growth at 20% O2, but unable to grow at >80% O2). A striking consistent alteration found to be associated with the oxygen-resistant state appeared to be an amplified and overexpressed region on chromosome 16p13.3 harboring 21 genes. The driver gene of this amplification was identified by functional studies as NARFL, which encodes a component of the cytosolic iron-sulfur cluster assembly system. In line with this result we found the cytosolic c-aconitase activity as well as the nuclear protein RTEL1, both Fe-S dependent proteins, to be protected by NARFL overexpression under hyperoxia. In addition, we observed a protective effect of NARFL against hyperoxia-induced loss of sister-chromatid cohesion. NARFL thus appeared to be a key factor in the cellular defense against hyperoxia-induced oxidative stress in human cells. Our findings suggest that new insight into age-related degenerative processes may come from studies that specifically address the involvement of iron-sulfur proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The effects of stress-induced blood components on protein synthesis and secretion in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Ritchie, A.L.

    1990-01-01

    The effect of stress-induced blood components were examined, specifically adrenaline and noradrenaline, in the presence and absence of rabbit serum or foetal calf serum, on soluble protein synthesis and secretion by isolated hepatocytes maintained in monolayer culture. Rabbit serum and low doses of adrenaline stimulated soluble protein synthesis and secretion whereas foetal calf serum and high doses of noradrenaline were inhibitory. The effect of noradrenaline on soluble protein synthesis and secretion ocurred in the first 12 hours of incubation. The stimulatory effect of adrenaline was still present after 24 hours of incubation. Preloading of the medium with [ 3 H]-leucine i.e. before the addition of sera and/or catecholamines, showed the [ 3 H]-leucine uptake to have occured to a large extent within the first hour of incubation. Noradrenaline supplementation of the medium at two hourly intervals showed no effect on protein synthesis and secretion. The stability of the cetecholamines and the status of the receptors need to be determined for the effective analysis of the results at any point during the incubation. 17 figs., 15 tabs., 83 refs

  20. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes

    Science.gov (United States)

    Rurek, Michał; Czołpińska, Magdalena; Pawłowski, Tomasz Andrzej; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria. PMID:29547512

  1. Inclusive reactions and high momentum components in nuclei

    International Nuclear Information System (INIS)

    Frankel, S.

    1977-01-01

    A summary is given of the activity in the last two years, both experimental and theoretical, aimed at understanding high momentum nuclear phenomena. Most of the data that are useful come from the inclusive production of protons (p + A → p + A). Some of it comes from production of antiprotons (p + A → anti p + A) in nuclei at energies below threshold for free p-p interactions. Inclusive proton production by protons is concentrated on and a review is given of the data and the theoretical attempts to understand the data on the basis of different models. The different momentum distributions that enter into the models are then examined. Finally, problems and avenues for the present theory and new experiments that could be designed to distinguish between or further probe present models are discussed

  2. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  3. The study on stress-strain state of the spring at high temperature using ABAQUS

    Directory of Open Access Journals (Sweden)

    H Sun

    2014-01-01

    Full Text Available Cylindrical helical springs are widely used in the elements of thermal energy devices. It is necessary to guarantee the stability of the stress state of spring in high temperature. Relaxation phenomenon of stress is studied in this paper. Calculations are carried out in the environment of ABAQUS. The verification is taken out using analytical calculations.This paper describes the distribution and character of stress contour lines on the cross section of spring under the condition of instantaneous load, explicates the relaxation law with time. Research object is cylindrical helical spring, that working at high temperature. The purpose of this work is to get the stress relaxation law of spring, and to guarantee the long-term strength.This article presents the basic theory of helical spring. Establishes spring mathematical model of creep under the loads of compression and torsion. The stress formulas of each component in the cross section of spring are given. The calculation process of relaxation is analyzed in the program ABAQUS.In this paper compare the analytical formulas of spring stress with the simulation results, which are created by program ABAQUS.Finite element model for stress creep analysis in the cross section is created, material of spring – stainless steel 10X18N9T, springs are used at the temperature 650℃.At the beginning, stress-stain of spring is in the elastic state. Analyzes the change law of creep stress under the condition of constant load and a fixed compression.When analyzing under the condition of a fixed compression, the stresses are quickly decreased in most area in the cross section of spring, and the point of minimum shear stress gradually moves to the direction of outer diameter, because of this, stresses in a small area near the center increase slowly at first then decrease gradually with time. When analyzing under the condition of constant load, the stresses are quickly decreased in the around area and in creased

  4. High precision stress measurements in semiconductor structures by Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, Benjamin

    2009-07-01

    Stress in silicon structures plays an essential role in modern semiconductor technology. This stress has to be measured and due to the ongoing miniaturization in today's semiconductor industry, the measuring method has to meet certain requirements. The present thesis deals with the question how Raman spectroscopy can be used to measure the state of stress in semiconductor structures. In the first chapter the relation between Raman peakshift and stress in the material is explained. It is shown that detailed stress maps with a spatial resolution close to the diffraction limit can be obtained in structured semiconductor samples. Furthermore a novel procedure, the so called Stokes-AntiStokes-Difference method is introduced. With this method, topography, tool or drift effects can be distinguished from stress related influences in the sample. In the next chapter Tip-enhanced Raman Scattering (TERS) and its application for an improvement in lateral resolution is discussed. For this, a study is presented, which shows the influence of metal particles on the intensity and localization of the Raman signal. A method to attach metal particles to scannable tips is successfully applied. First TERS scans are shown and their impact on and challenges for high resolution stress measurements on semiconductor structures is explained. (orig.)

  5. Feasibility study on measuring axial and transverse stress/strain components in composite materials using Bragg sensors

    Science.gov (United States)

    Luyckx, G.; Degrieck, J.; De Waele, W.; Van Paepegem, W.; Van Roosbroeck, J.; Chah, K.; Vlekken, J.; McKenzie, I.; Obst, A.

    2017-11-01

    A fibre optic sensor design is proposed for simultaneously measuring the 3D stress (or strain) components and temperature inside thermo hardened composite materials. The sensor is based on two fibre Bragg gratings written in polarisation maintaining fibre. Based on calculations of the condition number, it will be shown that reasonable accuracies are to be expected. First tests on the bare sensors and on the sensors embedded in composite material, which confirm the expected behaviour, will be presented.

  6. Stress and sleep quality in high school brazilian adolescents

    Directory of Open Access Journals (Sweden)

    Gema Mesquita

    2010-06-01

    Full Text Available OBJECTIVE: The objective of the present study is to analyze the effect of stress on sleep quality in a group of adolescents. METHOD: Two high schools in Alfenas, southern Minas Gerais State, Brazil, were chosen to participate in the study. The sample consisted of both genders (n=160 with 65.63% females. The age range of participants was 15 to18 years. The Pittsburgh Sleep Quality Index (PSQI was applied for collection of data to quantify sleep quality. The Lipp Inventory of Stress Symptoms that objectively identifies symptoms of stress was applied. RESULTS: It was observed that 23.53% of stressed students and 45.33% of unstressed ones sleep well; 76.47% of stressed pupils and 54.67% of those unstressed do not sleep well. With regard to school performance, a mean of 0.65 was found for stressed students and 0.60 for those without stress, Mann-Whitney (p=0.0596. CONCLUSION: Stress contributed to raising the percentage of poor sleepers, as ell as increasing ean school performance.OBJETIVO: O objetivo do presente estudo foi analisar a influência do stress sobre a qualidade do sono em um grupo de adolescentes. MÉTODO: Foram escolhidas duas instituições educacionais do ensino médio, na cidade de Alfenas, sul de Minas Gerais, Brasil. A amostra foi composta por ambos os sexos (n=160, com 65,63% do sexo feminino. A faixa etária dos participantes foi de 15 a 18 anos. Para a coleta de dados aplicou-se: Índice de Qualidade de Sono de Pittsburgh (IQSP utilizado para quantificar a qualidade do sono; o Inventário de Sintomas de Stress para Adultos de Lipp (ISSL que identifica de modo objetivo a sintomatologia de stress foi aplicado. RESULTADOS: Observou-se que 23,53% dos estressados dormem bem e 45,33% dos não estressados dormem bem; 76,47% dos estressados não dormem bem e 54,67% dos não estressados não dormem bem. Quanto ao rendimento escolar têm-se as médias 0,65 para os alunos estressados e 0,60 para aqueles que não sofrem de stress, Mann

  7. A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans

    Science.gov (United States)

    Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.

    2006-01-01

    The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377

  8. Recover the story of a component or the determination of the welding residual stresses

    International Nuclear Information System (INIS)

    Genette, P.; Dupas, Ph.; Waeckel, F.

    1998-01-01

    Mechanical components in nuclear power plants can keep track of the welding processes they had undergone before to entrying into service. The memory of these past events can postpone or enhance possible damage phenomena on these components. Nowadays, numerical simulation software, such as the Code ASTER, enable to reproduce numerically these welding processes so that their mechanical consequences be retrieved. (authors)

  9. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  10. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.

    2011-01-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  11. Effects of high mean stress on the high-cycle fatigue behavior of PWA 1480

    International Nuclear Information System (INIS)

    Majumdar, S.; Antolovich, S.; Milligan, W.

    1985-03-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the Space Shuttle Main Engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. This paper describes results obtained in an ongoing program to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material

  12. Inverse method for stress monitoring in pressure components of steam generators

    International Nuclear Information System (INIS)

    Duda, P.

    2003-01-01

    The purpose of this work is to formulate a space marching method, which can be used to solve inverse multidimensional heat conduction problems. The method is designed to reconstruct the transient temperature distribution in a whole construction element based on measured temperatures taken at selected points inside or on the outer surface of the construction element. Next, the Finite Element Method is used to calculate thermal stresses and stresses caused by other loads such as, for instance, internal pressure. The developed method for solving temperature and total stress distribution will be tested using the measured temperatures generated from a direct solution. Transient temperature and total stress distribution obtained from method presented below will be compared with the values obtained from the direct solution. Finally, the presented method will be applied in order to monitor temperature and stress distribution in an outlet header using the real measured temperature values at seven points on the header's outer surface during the power boiler's shut down operation. The presented method allows to optimize the power block's start-up and shut-down operations, contributes to the reduction of heat loss during these operations and to the extension of power block's life. The fatigue and creep usage factor can be computed in an on-line mode. The presented method herein can be applied to monitoring systems that work in conventional as well as in nuclear power plants. (author)

  13. Application of photoelasticity to study stress in component of the fuel element of nuclear reator

    International Nuclear Information System (INIS)

    Diniz, S.M.C.

    1987-11-01

    The fuel assembly, in the core of the nuclear reactor, is submitted to a system of forces (weight, buoyancy and hydraulic lift-up) with a resultant oriented in the direction of the coolant flow. To assure the assembly stability, under all operation conditions of the nuclear reactor, a holding-down device composed of four leaf springs is used. The safe/operation of the reactor depends on the capacity of such springs to support the maximum loads applied on them. The strictly mathematical methods for stress analysis of these springs are very complex, due to several factors such as: tri-dimensional geometry, changing loading, plastic strains and stress concentration. The stress analysis of these springs was performed using the photoelastic method. This technique has been proved to be adequate to the leaf spring analysis. In order to permit the evaluation of the potentialities of the employed method the Photoelasticity is decribed in its multiples purposes; that is, two-dimensional problems, stress frozen technique and reflection photoelasticity. The results obtained certify the role of the Photoelasticity, as a powerfull tool to the stress analyst and to the nuclear industry as well. (author) [pt

  14. A comparative transcriptomic analysis reveals the core genetic components of salt and osmotic stress responses in Braya humilis.

    Directory of Open Access Journals (Sweden)

    Pengshan Zhao

    Full Text Available Braya humilis is a member of the Euclidieae tribe within the family Brassicaceae. This species exhibits a broad range of adaptations to different climatic zones and latitudes as it has a distribution that ranges from northern Asia to the arctic-alpine regions of northern North America. In China, B. humilis is mainly found on the Qinghai-Tibetan Plateau (QTP and in adjacent arid regions. In this study, we sequenced a sample from an arid region adjacent to the QTP using the Illumina platform generating a total of 46,485 highly accurate unigenes, of which 78.41% were annotated by BLASTing versus public protein databases. The B. humilis transcriptome is characterized by a high level of sequence conservation compared with its close relative, Arabidopsis thaliana. We also used reciprocal blast to identify shared orthologous genes between B. humilis and four other sequenced Brassicaceae species (i.e. A. thaliana, A. lyrata, Capsella rubella, and Thellungiella parvula. To enable precise characterization of orthologous genes, the early-diverging basal angiosperm Amborella trichopoda was also included. A total of 6,689 orthologous genes were identified before stricter criteria for the determination of e-values, amino acid hit lengths, and identity values was applied to further reduce this list. This led to a final list of 381 core orthologous genes for B. humilis; 39 out of these genes are involved in salt and osmotic stress responses and estimations of nonsynonymous/synonymous substitution ratios for this species and A. thaliana orthologs show that these genes are under purifying selection in B. humilis. Expression of six genes was detected in B. humilis seedlings under salt and osmotic stress treatments. Comparable expression patterns to their counterparts in Arabidopsis suggest that these orthologous genes are both sequence and functional conservation. The results of this study demonstrate that the environmental adaptations of B. humilis are mainly the

  15. Storage-induced increase in biomarkers of oxidative stress and inflammation in red blood cell components

    DEFF Research Database (Denmark)

    Kücükakin, Bülent; Kocak, Volkan; Lykkesfeldt, Jens

    2011-01-01

    of buffy-coat reduced red cells in SAG-M additive solution, by assessing biomarkers of oxidative and inflammatory stress during a storage period of 35 days. Study design and methods. Ten units of RBCs were stored for 35 days. Samples were collected from the units at storage days 1, 3, 7, 14, 21, 28 and 35......, respectively. The samples were analysed for various biomarkers expressing the oxidative stress and inflammation, including malondialdehyde (MDA), α-tocopherol (AT), dehydroascorbic acid (DHA), ascorbate (ASC), YKL-40 and interleukin-6 (IL-6). Results. The levels ofMDA, ASC, DHA, IL-6 and YKL-40 changed...... significantly during the storage period (p oxidative and inflammatory stress during a storage period...

  16. Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component.

    Science.gov (United States)

    Hernandez, Carina; Birktoft, Jens J; Ohayon, Yoel P; Chandrasekaran, Arun Richard; Abdallah, Hatem; Sha, Ruojie; Stojanoff, Vivian; Mao, Chengde; Seeman, Nadrian C

    2017-11-16

    There is an increasing appreciation for structural diversity of DNA that is of interest to both DNA nanotechnology and basic biology. Here, we have explored how DNA responds to torsional stress by building on a previously reported two-turn DNA tensegrity triangle and demonstrating that we could introduce an extra nucleotide pair (np) into the original sequence without affecting assembly and crystallization. The extra np imposes a significant torsional stress, which is accommodated by global changes throughout the B-DNA duplex and the DNA lattice. The work reveals a near-atomic structure of naked DNA under a torsional stress of approximately 14%, and thus provides an example of DNA distortions that occur without a requirement for either an external energy source or the free energy available from protein or drug binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Integrated circuits and molecular components for stress and feeding: implications for eating disorders.

    Science.gov (United States)

    Hardaway, J A; Crowley, N A; Bulik, C M; Kash, T L

    2015-01-01

    Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Job satisfaction, occupational stress, burnout and work engagement as components of work-related wellbeing

    Directory of Open Access Journals (Sweden)

    Sebastiaan Rothmann

    2008-11-01

    Full Text Available The objective of this study was to investigate the relationship between job satisfaction, occupational stress, burnout and work engagement as dimensions of work-related wellbeing in a sample of members of the police force in South Africa. A survey design was used. Stratifed random samples of members of the police force (N = 677 were taken in the North West Province of South Africa. The Minnesota Job Satisfaction Questionnaire, Police Stress Inventory, Maslach Burnout Inventory – General Survey and Utrecht Work Engagement Scale were used as measuring instruments. The results provided support for a four-factorial model of work-related wellbeing consisting of the following dimensions: job satisfaction (indicating pleasure vs. displeasure, occupational stress (indicating anxiety vs. comfort, burnout (indicating fatigue vs. vigour, and engagement (indicating enthusiasm vs. depression.

  19. Stress and fatigue analyses of primary circuit components of NPP using FEM

    International Nuclear Information System (INIS)

    Gal, P.

    2015-01-01

    This poster is a short illustration of the numerical assessment of the VVER-440 reactor pressure vessel (RPV) main flange. RPV main flange consists in free flange, pressure ring, flange bolts, nut and nickel gasket. Operating temperature transient modes, like heat up regime can lead to serious tension in bolts. So temperature fields have to be calculated. The fatigue assessment of the main flange bolt requires the determination of the coefficient of stress concentrators in bolt thread. Stress concentrators can be computed through FEM or given by norms (PNAEG). The most significant value of fatigue usage factor is in the first thread connection between bolt and nut. A finite element method (FEM) is used for calculation stress and temperature distribution in the reactor flange. The reassessment was performed according Czech normative document NTD-A.S.I. and VERLIFE

  20. [Relationship between four components of assertiveness and mental health among high school students].

    Science.gov (United States)

    Watanabe, Asami

    2009-04-01

    This study examines the relationship between four components of assertiveness ("open expression", "control of emotion", "consideration for others" and "self-direction") and mental health. In Study 1, the analysis of interviews with thirteen high school students suggested that some components did not have a positive relationship with mental health. In Study 2, 176 high school students completed a questionnaire which included the UCLA isolation scale, the General Health Questionnaire (GHQ) and a scale to measure the four components of assertiveness. The results showed that an excessively high score for "consideration for others" was associated with mental unhealthiness. This component probably has an optimum level to maintain mental health.

  1. Modeling of Residual Stress and Machining Distortion in Aerospace Components (PREPRINT)

    Science.gov (United States)

    2010-03-01

    John Gayda, “The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys,” NASA/TM-2001-210717. 2...Wei-Tsu Wu, Guoji Li, Juipeng Tang, Shesh Srivatsa, Ravi Shankar, Ron Wallis, Padu Ramasundaram and John Gayda, “A process modeling system for heat...Materials Processing Technology 98 (2000) 189-195. 6. M.A. Rist, S. Tin, B.A. Roder, J.A. James, and M.R. Daymond , “Residual Stresses in a

  2. Structural analysis and stress criteria of advanced LMFBR-fuel element components

    International Nuclear Information System (INIS)

    Seehafer, H.-J.

    1975-01-01

    As the use of tie rods in the core means a loss of reactor power, new grid attachment concepts have been developed within the SNR-project providing the attachment of the grids at the wrapper tubes. The purpose of this report is to describe the mechanical design procedure for grid spacers, to find out the most promising grid attachment and to investigate the influence of uncertain conditions on the stress level in grid spacers. The stress which is expected to relax due to irradiation-induced creep has been estimated

  3. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance.

    Science.gov (United States)

    Cao, Qi; Feng, Fenfen; Wang, Huan; Xu, Xiaojuan; Chen, Huanchun; Cai, Xuwang; Wang, Xiangru

    2018-01-01

    Haemophilus parasuis is an opportunistic pathogen localized in the upper respiratory tracts of pigs, its infection begins from bacterial survival under complex conditions, like hyperosmosis, oxidative stress, phagocytosis, and sometimes antibiotics as well. The two-component signal transduction (TCST) system serves as a common stimulus-response mechanism that allows microbes to sense and respond to diverse environmental conditions via a series of phosphorylation reactions. In this study, we investigated the role of TCST system CpxRA in H. parasuis in response to different environmental stimuli by constructing the ΔcpxA and ΔcpxR single deletion mutants as well as the ΔcpxRA double deletion mutant from H. parasuis serotype 4 isolate JS0135. We demonstrated that H. parasuis TCST system CpxRA confers bacterial tolerance to stresses and bactericidal antibiotics. The CpxR was found to play essential roles in mediating oxidative stress, osmotic stresses and alkaline pH stress tolerance, as well as macrolide resistance (i.e. erythromycin), but the CpxA deletion did not decrease bacterial resistance to abovementioned stresses. Moreover, we found via RT-qPCR approach that HAPS_RS00160 and HAPS_RS09425, both encoding multidrug efflux pumps, were significantly decreased in erythromycin challenged ΔcpxR and ΔcpxRA mutants compared with wild-type strain JS0135. These findings characterize the role of the TCST system CpxRA in H. parasuis conferring stress response tolerance and bactericidal resistance, which will deepen our understanding of the pathogenic mechanism in H. parasuis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Internal Stresses in Wires for High Field Magnets

    International Nuclear Information System (INIS)

    Han, K.; Embury, J.D.; Lawson, A.C.; Von Dreele, R.B.; Wood, J.T.; Richardson, J.W. Jr.

    1998-01-01

    The codeformation of Cu-Ag or Cu-Nb composite wires used for high field magnets has a number of important microstructural consequences, including the production of very fine scale structures, the development of very high internal surface area to volume ratios during the drawing and the storage of defects at interphase interfaces. In addition, the fabrication and codeformation of phases which differ in crystal structure, thermal expansion, elastic modulus and lattice parameter lead to the development of short wavelength internal stresses. These internal stresses are measured by neutron diffraction and transmission electron microscopy as a function of the imposed drawing strain. The internal stresses lead to important changes in elastic plastic response which can be related to both magnet design and service life and these aspects will be described in detail

  5. Machine Learning for High-Throughput Stress Phenotyping in Plants.

    Science.gov (United States)

    Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh Kumar; Sarkar, Soumik

    2016-02-01

    Advances in automated and high-throughput imaging technologies have resulted in a deluge of high-resolution images and sensor data of plants. However, extracting patterns and features from this large corpus of data requires the use of machine learning (ML) tools to enable data assimilation and feature identification for stress phenotyping. Four stages of the decision cycle in plant stress phenotyping and plant breeding activities where different ML approaches can be deployed are (i) identification, (ii) classification, (iii) quantification, and (iv) prediction (ICQP). We provide here a comprehensive overview and user-friendly taxonomy of ML tools to enable the plant community to correctly and easily apply the appropriate ML tools and best-practice guidelines for various biotic and abiotic stress traits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of Mulch and Water Stress on Some Physiological Traits, Yield Components and Grain Yield of Red Kidney bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    R Amini

    2016-02-01

    that of cv. Akhtar. This result could be related to the longer growth period of cv. Naz than cv. Akhtar. The effects of water stress, mulch, cultivar and the all interaction effects were significant on red kidney bean grain yield. The mulch application increased the grain yield by 18%. The effect of water stress  mulch cultivar indicated that the cv. Akhatr in full irrigation treatment and application of straw mulch had the highest grain yield (3135 kg ha-1. Also the cv. Naz in water stress treatment and application of without mulch application had the lowest grain yield (1340 kg ha-1. The cv. Akhtar had a bush type growth pattern and a lower green cover than cv. Naz, therefore mulch application on the soil surface could increase the available water for red kidney bean. Conclusions At water limitation conditions by mulch application, the available water, yield components and grain yield of red kidney bean could be increased. Under drought and aridity conditions, field management practices such as selecting high-yielding cultivars and reducing soil evaporation by using of mulch increased the grain yield especially in water limitation condition. Investigating the response of other common bean cultivars to water stress and mulch could be effective for identifying the common bean cultivars with high grain yield at water stress condition with mulch application that is consistent with sustainable agriculture.

  7. Emotional-volitional components of operator reliability. [sensorimotor function testing under stress

    Science.gov (United States)

    Mileryan, Y. A.

    1975-01-01

    Sensorimotor function testing in a tracking task under stressfull working conditions established a psychological characterization for a successful aviation pilot: Motivation significantly increased the reliability and effectiveness of their work. Their acitivities were aimed at suppressing weariness and the feeling of fear caused by the stress factors; they showed patience, endurance, persistence, and a capacity for lengthy volitional efforts.

  8. Precipitate growth in multi-component systems with stress relaxation by diffusion and creep

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Riedel, H.; Kozeschnik, E.

    2016-01-01

    Roč. 82, JUL (2016), s. 112-126 ISSN 0749-6419 EU Projects: European Commission(XE) 309916 Institutional support: RVO:68081723 Keywords : Strengthening mechanisms * Phase transformation * Creep * Stress relaxation * Precipitation kinetics Subject RIV: BJ - Thermodynamics Impact factor: 5.702, year: 2016

  9. Effects of high concentration of chromium stress on physiological ...

    African Journals Online (AJOL)

    We studied the effects of high concentration of chromium (Cr) stress on physiological and biochemical characters and accumulation of Cr in Pingyang Tezao tea [Camellia sinensis (L) O. Kutze 'Pingyangtezao'] through a pot experiment. The results show that the indicators of photosynthesis were all suppressed with ...

  10. A perspective on the design of high-temperature boiler components

    International Nuclear Information System (INIS)

    Perrin, I.J.; Fishburn, J.D.

    2008-01-01

    Boiler pressure parts are designed to formalize codes such as the ASME Boiler and Pressure Vessel Code. These codes employ a 'design-by-rule' approach, which is based on a combination of sound structural mechanics and boiler design and operating experience. These codes have served the industry well, but the need for a number of enhancements has been highlighted by the widespread use of creep strength-enhanced steels, the advent of ultrasupercritical boilers constructed from nickel-based alloys, and the cyclic duty required for some plants. The need for these enhancements is discussed to explain their origin and key challenges that must be tackled to provide robust design methods for the future. In particular, the use of reference stress concepts and design-by-analysis are discussed to highlight some practical issues. Weldments are identified as a particular concern because they are often a life-limiting feature, and since existing code rules do not adequately consider the high-temperature creep failure modes that can arise as a function of geometry, loading and material combination. Associated with the behavior of welds, multiaxial creep rupture is also identified as a topic that requires further study. The discussion illustrates the multidisciplinary nature of design and need for the materials and structural mechanics communities to work together. This should optimize the use of advanced, expensive alloys and reduce component wall thickness, facilitating pressure part manufacture and enhancing operational flexibility without compromising safety

  11. Geodatabase compilation of hydrogeologic, remote sensing, and water-budget-component data for the High Plains aquifer, 2011

    Science.gov (United States)

    Houston, Natalie A.; Gonzales-Bradford, Sophia L.; Flynn, Amanda T.; Qi, Sharon L.; Peterson, Steven M.; Stanton, Jennifer S.; Ryter, Derek W.; Sohl, Terry L.; Senay, Gabriel B.

    2013-01-01

    The High Plains aquifer underlies almost 112 million acres in the central United States. It is one of the largest aquifers in the Nation in terms of annual groundwater withdrawals and provides drinking water for 2.3 million people. The High Plains aquifer has gained national and international attention as a highly stressed groundwater supply primarily because it has been appreciably depleted in some areas. The U.S. Geological Survey has an active program to monitor the changes in groundwater levels for the High Plains aquifer and has documented substantial water-level changes since predevelopment: the High Plains Groundwater Availability Study is part of a series of regional groundwater availability studies conducted to evaluate the availability and sustainability of major aquifers across the Nation. The goals of the regional groundwater studies are to quantify current groundwater resources in an aquifer system, evaluate how these resources have changed over time, and provide tools to better understand a systems response to future demands and environmental stresses. The purpose of this report is to present selected data developed and synthesized for the High Plains aquifer as part of the High Plains Groundwater Availability Study. The High Plains Groundwater Availability Study includes the development of a water-budget-component analysis for the High Plains completed in 2011 and development of a groundwater-flow model for the northern High Plains aquifer. Both of these tasks require large amounts of data about the High Plains aquifer. Data pertaining to the High Plains aquifer were collected, synthesized, and then organized into digital data containers called geodatabases. There are 8 geodatabases, 1 file geodatabase and 7 personal geodatabases, that have been grouped in three categories: hydrogeologic data, remote sensing data, and water-budget-component data. The hydrogeologic data pertaining to the northern High Plains aquifer is included in three separate

  12. Mechanical properties, reliability assessment and design of ceramic components used in high temperature assemblies

    International Nuclear Information System (INIS)

    Bendeich, P.J.

    2002-01-01

    The use of ceramic materials in high temperature structural components holds may advantages over conventional materials such as metals. These include high temperature strength, creep resistance, wear resistance, corrosion resistance, and stiffness. The tradeoff for these improved properties is the brittle nature of ceramics and their tendency for catastrophic failure and lack of damage tolerance. In this work some the various strategies available to overcome these limitations are reviewed. These include stochastic design strategies using the Weibull and Batdorf methods of failure probability prediction rather than the more familiar deterministic methods. Fracture mechanics analysis is also used extensively in this work to predict damage tolerance and failure conditions. A range of testing methods was utilised to provide material information for the methods outlined above. These included: flexural strength measurement for the determination of failure probability parameters; fracture toughness measurement using indentation methods and crack growth measurement; thermal expansion measurement; temperature dependant dynamic Young's modulus measurement; and thermal shock testing using a central heating laser. A new inverse method for measuring specific heat was developed and critically examined for practical use. This is particularly valuable in modelling transient thermal conditions for use in thermal shock analysis. A shape optimisation technique utilising a biological growth law was adapted for use with ceramic components utilising failure probability as the objective function. These methods were utilised in the design and subsequent failure analysis of a high temperature hotpress ram. The results of the failure probability analysis showed that the design had a very low probability of failure under normal operating conditions. Fracture mechanics analysis indicated that damage tolerance in the critical retaining bolt mechanism was high with damage likely to cause

  13. Component-oriented approach to the development and use of numerical models in high energy physics

    International Nuclear Information System (INIS)

    Amelin, N.S.; Komogorov, M.Eh.

    2002-01-01

    We discuss the main concepts of a component approach to the development and use of numerical models in high energy physics. This approach is realized as the NiMax software system. The discussed concepts are illustrated by numerous examples of the system user session. In appendix chapter we describe physics and numerical algorithms of the model components to perform simulation of hadronic and nuclear collisions at high energies. These components are members of hadronic application modules that have been developed with the help of the NiMax system. Given report is served as an early release of the NiMax manual mainly for model component users

  14. High salt intake enhances swim stress-induced PVN vasopressin cell activation and active stress coping.

    Science.gov (United States)

    Mitchell, N C; Gilman, T L; Daws, L C; Toney, G M

    2018-07-01

    Stress contributes to many psychiatric disorders; however, responsivity to stressors can vary depending on previous or current stress exposure. Relatively innocuous heterotypic (differing in type) stressors can summate to result in exaggerated neuronal and behavioral responses. Here we investigated the ability of prior high dietary sodium chloride (salt) intake, a dehydrating osmotic stressor, to enhance neuronal and behavioral responses of mice to an acute psychogenic swim stress (SS). Further, we evaluated the contribution of the osmo-regulatory stress-related neuropeptide arginine vasopressin (VP) in the hypothalamic paraventricular nucleus (PVN), one of only a few brain regions that synthesize VP. The purpose of this study was to determine the impact of high dietary salt intake on responsivity to heterotypic stress and the potential contribution of VPergic-mediated neuronal activity on high salt-induced stress modulation, thereby providing insight into how dietary (homeostatic) and environmental (psychogenic) stressors might interact to facilitate psychiatric disorder vulnerability. Salt loading (SL) with 4% saline for 7 days was used to dehydrate and osmotically stress mice prior to exposure to an acute SS. Fluid intake and hematological measurements were taken to quantify osmotic dehydration, and serum corticosterone levels were measured to index stress axis activation. Immunohistochemistry (IHC) was used to stain for the immediate early gene product c-Fos to quantify effects of SL on SS-induced activation of neurons in the PVN and extended amygdala - brain regions that are synaptically connected and implicated in responding to osmotic stress and in modulation of SS behavior, respectively. Lastly, the role of VPergic PVN neurons and VP type 1 receptor (V1R) activity in the amygdala in mediating effects of SL on SS behavior was evaluated by quantifying c-Fos activation of VPergic PVN neurons and, in functional experiments, by nano-injecting the V1R selective

  15. The stress components effect on the Fe-based microwires magnetostatic and magnetostrictive properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodionova, V. [Institute of Physics & Technology and STP “Fabrika” Immanuel Kant Baltic Federal University, A. Nevskogo 14, Kaliningrad 236041 (Russian Federation); National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Baraban, I.; Chichay, K.; Litvinova, A. [Institute of Physics & Technology and STP “Fabrika” Immanuel Kant Baltic Federal University, A. Nevskogo 14, Kaliningrad 236041 (Russian Federation); Perov, N. [Institute of Physics & Technology and STP “Fabrika” Immanuel Kant Baltic Federal University, A. Nevskogo 14, Kaliningrad 236041 (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991 (Russian Federation)

    2017-01-15

    For glass-coated amorphous ferromagnetic Fe-based microwires both joint and separate effect of metallic nucleus diameter, d, and the ratio of metallic nucleus diameter to the total diameter of microwire in glass shell, d/D, on magnetic properties is investigated. Thereby the contribution of both shell-induced stresses, associated with the ratio of diameters, and internal nucleus stresses (residual, quenching), associated with the diameter of the nucleus are estimated. A strong and non-monotonic effect of the metallic nucleus diameter and metallic nucleus diameter/total microwire diameter ratio on magnetostatic and magnetostrictive properties was established. For analysis, we considered magnetically bi-stable microwires of “classic” Fe{sub 77.5}Si{sub 7.5}B{sub 15} alloy with positive magnetostriction coefficient.

  16. The stress components effect on the Fe-based microwires magnetostatic and magnetostrictive properties

    International Nuclear Information System (INIS)

    Rodionova, V.; Baraban, I.; Chichay, K.; Litvinova, A.; Perov, N.

    2017-01-01

    For glass-coated amorphous ferromagnetic Fe-based microwires both joint and separate effect of metallic nucleus diameter, d, and the ratio of metallic nucleus diameter to the total diameter of microwire in glass shell, d/D, on magnetic properties is investigated. Thereby the contribution of both shell-induced stresses, associated with the ratio of diameters, and internal nucleus stresses (residual, quenching), associated with the diameter of the nucleus are estimated. A strong and non-monotonic effect of the metallic nucleus diameter and metallic nucleus diameter/total microwire diameter ratio on magnetostatic and magnetostrictive properties was established. For analysis, we considered magnetically bi-stable microwires of “classic” Fe_7_7_._5Si_7_._5B_1_5 alloy with positive magnetostriction coefficient.

  17. Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure

    Science.gov (United States)

    Pestrenin, V. M.; Pestrenina, I. V.

    2017-03-01

    The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.

  18. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    Science.gov (United States)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  19. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for estimation stress intensity factor. Surface crack on ICM housing for penetration in reactor vessel

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  20. Evaluation of Chitosan Nanoparticles Effects on Yield and Yield Components of Barley (Hordeum vulgare L. under Late Season Drought Stress

    Directory of Open Access Journals (Sweden)

    Faride Behboudi

    2018-01-01

    Full Text Available As a step towards the profitable employment of nanoparticles (NPs in agriculture, effects of chitosan NPs was probed on barley plants under late season drought stress. A factorial experiment was performed based on a randomized complete block design with three replications. The experimental factors included the chitosan NPs concentrations (0 (control, 30, 60 and 90 ppm, application methods (foliar and soil application and irrigation regimes (well-watered and withholding of irrigation for 15 days after pollination. The barley seeds were separately planted in pots. Then, the NPs were added to them through the soil and foliar application at three stages. The results indicated that using the chitosan NPs, especially 60 and 90 ppm, significantly increased the leaf area (LA, the leaf color (SPAD, the number of grain per spike, the grain yield and the harvest index compared to the control. Also, drought stress significantly decreased the yield and yield components compared to the well-watered plants. In contrast, using the chitosan NPs in plants under drought stress significantly increased the relative water content (RWC, the 1000-grain weight, the grain protein, the proline content, the catalase (CAT and the superoxide dismutase (SOD compared to the control. There was no a significant difference between two methods of using NPs in most studied traits. The results highlighted that using the chitosan NPs, especially 60 and 90 ppm, in both irrigation regimes can significantly improve the majority of the studied traits compared to the control and mitigate the harmful effects of drought stress.

  1. Cyclic stress-strain behaviour under thermomechanical fatigue conditions - Modeling by means of an enhanced multi-component model

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H J [Institut fuer Werkstofftechnik, Universitaet Siegen, D-57068 Siegen (Germany); Bauer, V, E-mail: hans-juergen.christ@uni-siegen.d [Wieland Werke AG, Graf-Arco Str. 36, D-89072 Ulm (Germany)

    2010-07-01

    The cyclic stress-strain behaviour of metals and alloys in cyclic saturation can reasonably be described by means of simple multi-component models, such as the model based on a parallel arrangement of elastic-perfectly plastic elements, which was originally proposed by Masing already in 1923. This model concept was applied to thermomechanical fatigue loading of two metallic engineering materials which were found to be rather oppositional with respect to cyclic plastic deformation. One material is an austenitic stainless steel of type AISI304L which shows dynamic strain aging (DSA) and serves as an example for a rather ductile alloy. A dislocation arrangement was found after TMF testing deviating characteristically from the corresponding isothermal microstructures. The second material is a third-generation near-gamma TiAl alloy which is characterized by a very pronounced ductile-to-brittle transition (DBT) within the temperature range of TMF cycling. Isothermal fatigue testing at temperatures below the DBT temperature leads to cyclic hardening, while cyclic softening was found to occur above DBT. The combined effect under TMF leads to a continuously developing mean stress. The experimental observations regarding isothermal and non-isothermal stress-strain behaviour and the correlation to the underlying microstructural processes was used to further develop the TMF multi-composite model in order to accurately predict the TMF stress-strain response by taking the alloy-specific features into account.

  2. Fatigue crack closure behavior at high stress ratios

    Science.gov (United States)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  3. Ka-Band Rf Transmission Line Components for a High-Gradient Linear Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2005-01-01

    High-power, high-vacuum prototypes of a variety of components for use at 34 GHz were developed. These include waveguide tapers, right-angle miter bends, windows, mode converters, power combiners, mode launchers, phase shifters, dual directional couplers, and loads. High-power, high-vacuum prototypes of all the components were built and tested up to 45 MW, using the Omega-P 34-GHz magnicon. Peak power limits for the components were determined using a quasi-optical rf pulse compressor, developed under a companion project. The components and the magnicon were configured into a user's facility for research and development by others on high-gradient accelerator structures for a future high-energy electron-positron collider.

  4. Individual differences in anxiety responses to stressful situations : A three-mode component analysis model

    NARCIS (Netherlands)

    Van Mechelen, Iven; Kiers, Henk A.L.

    1999-01-01

    The three-mode component analysis model is discussed as a tool for a contextualized study of personality. When applied to person x situation x response data, the model includes sets of latent dimensions for persons, situations, and responses as well as a so-called core array, which may be considered

  5. Psychological stress in high level sailors during competition

    Directory of Open Access Journals (Sweden)

    Luciana Segato

    2010-09-01

    Full Text Available The purpose of this work was to investigate the psychological stress present in elite sailors in a competition. Based on a descriptive field research, 31 elite sailors volunteered to participate. They answered the Perceived Stress Scale (Cohen & Williamson, 1988 and also specific questions on self-control, sources and strategies of coping. Data were analyzed by using descriptive and inferential (Student t test and Pearson's correlation statistics. These athletes revealed low and moderate scores (M = 20.00, DP = 6.83 of stress originated from both intrinsic (ship troubles, team disorders and extrinsic (study, working and training, family and financial problems sources. The group reported good stress control during competition through the use of cognitive (avoidance and somatic (listening music, resting/sleeping, talk to friends strategies. It is important that sailors are able to control and cope with high levels of psychological stress and to understand how to proceed when under unstable and unexpected situations that arise during competition.

  6. Psychological stress in high level sailors during competition

    Directory of Open Access Journals (Sweden)

    L. Segato

    2010-01-01

    Full Text Available The purpose of this work was to investigate the psychological stress present in elite sailors in a competition. Based on a descriptive field research, 31 elite sailors volunteered to participate. They answered the Perceived Stress Scale (Cohen & Williamson, 1988 and also specific questions on self-control, sources and strategies of coping. Data were analyzed by using descriptive and inferential (Student t test and Pearson's correlation statistics. These athletes revealed low and moderate scores (M = 20.00, DP = 6.83 of stress originated from both intrinsic (ship troubles, team disorders and extrinsic (study, working and training, family and financial problems sources. The group reported good stress control during competition through the use of cognitive (avoidance and somatic (listening music, resting/sleeping, talk to friends strategies. It is important that sailors are able to control and cope with high levels of psychological stress and to understand how to proceed when under unstable and unexpected situations that arise during competition.

  7. A Component-Minimized Single-Phase Active Power Decoupling Circuit with Reduced Current Stress to Semiconductor Switches

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede

    2015-01-01

    inductor. With such a configuration, this leg can control the current going into the two output capacitors connected in series for power decoupling, and the other leg can control the line current according to active and reactive power requirement. The proposed topology does not require additional passive...... component, e.g. inductors or film capacitors for ripple energy storage because this task can be accomplished by the dc-link capacitors, and therefore its implementation cost can be minimized. Another unique feature of the proposed topology is that the current stress of power semiconductors can be reduced...

  8. Modelling Of Residual Stresses Induced By High Speed Milling Process

    International Nuclear Information System (INIS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-01-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  9. Evaluation of Relationship Between Auxin and Cytokinine Hormones on Yield and Yield Components of Maize under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    A Mahrokh

    2016-10-01

    , Karaj, Iran, in 2013. Indole-3-butyric acid and N6-benzyladenin were used as auxin and cytokinin hormones, respectively. Concentration of auxine and cytokinine hormones were 10 and 50 mg per liter, respectively. Harvesting was done from 4.5 m2 at field maturity stage with 14 % grain moisture for estimating grain yield and yield components. SAS software (version 9.1 was used for statistical analysis. Traits means were compared by Duncan's multiple range tests in 5% probably level. Results and Discussion Drought stress effect was significant (P≤0.01 for ear number per plant, row/ear, grain number per m2, 1000 kernels weight and grain yield and it wasn’t significant for kernels/row. Spraying cytokinine hormone was significant (P≤0.01 on ear number per plant, row/ear, grain number per m2 and it was also (P≤0.05 significant for 1000 kernels weight but it wasn’t significant for kernels/row and grain yield. Spraying auxine hormone was significant (P≤0.01 for1000 kernels weight and grain yield and it wasn’t significant forother yield components. The maximum yield was obtained 12.80 and 12.24 tons per hectare in non-stress environment and using auxin hormone in silk emergence stage, respectively. Grain yield was decreased 49.21% under reproductive drought stress and grain yield difference between non drought stress and vegetative drought stress was not significant. Spraying cytokinine hormone increased ear number by 10% in V8-V10 stage. The maximum row/ear was 16.16 kernels per row which was obtained by spraying cytokinine hormone in V8-V10 stage. Spraying cytokinine hormone increased grain number per m2 up to 20.75% in V8-V10 stage but it decreased 1000 kernels weight up to 13.76% in the same stage. The maximum 1000 kernels weight was 313.87 gr that was obtained by spraying auxine hormone in silk emergence stage. Spraying auxine hormone increased grain yield up to 23.38% in silk emergence stage. Conclusions Based on the results of this experiment, maize was

  10. Adolescents' sleep in low-stress and high-stress (exam) times: a prospective quasi-experiment

    NARCIS (Netherlands)

    Dewald, J.F.; Meijer, A.M.; Oort, F.J.; Kerkhof, G.A.; Bögels, S.M.

    2014-01-01

    This prospective quasi-experiment (N=175; mean age: 15.14 years) investigates changes in adolescents' sleep from low-stress (regular school week) to high-stress times (exam week) and examines the (moderating) role of chronic sleep reduction, baseline stress, and gender. Sleep was monitored over

  11. Adolescents' Sleep in Low-Stress and High-Stress (Exam) Times: A Prospective Quasi-Experiment

    NARCIS (Netherlands)

    Dewald, Julia F.; Meijer, Anne Marie; Oort, Frans J.; Kerkhof, Gerard A.; Bögels, Susan M.

    2014-01-01

    This prospective quasi-experiment (N = 175; mean age = 15.14 years) investigates changes in adolescents' sleep from low-stress (regular school week) to high-stress times (exam week), and examines the (moderating) role of chronic sleep reduction, baseline stress, and gender. Sleep was monitored over

  12. Study for stress analysis and defect evaluation of reactor components using holographic interferometry

    International Nuclear Information System (INIS)

    Jueptner, W.; Geldmacher, J.; Kreis, T.

    1989-07-01

    The results of the studies in phases 1 and 2 of the project RS 1500 699/9 have shown that both in flat and curved structures, materials defects develop under loading stresses very characteristic deformation patterns at the specimens surface. These deformation patterns can be recorded and made visible by holographic interferometry if one uses a method that is capable of measuring exactly even between the interference bands. The best suitable of the tested methods is the phase-shifting method which has been further developed to meet the requirements of the project tasks. The development work achieved better measurements at non-vibration-isolated specimens, and improved hardware and software for digital image processing. This was a vital task, as only computerized image processing allows an economically sensible evaluation of the interferograms. (orig./DG) [de

  13. Electromagnetic and ultrasonic techniques to evaluate stress states of components; Elektromagnetische und Ultraschallverfahren zur Spannungsanalyse an Bauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.; Kern, R.; Theiner, W.A. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, IZFP, Saarbruecken (Germany)

    1999-08-01

    The electromagnetic and ultrasonic techniques are comparably recent NDT methods for determination of stress states of components. They are simple in application, but require pre-measurement preparation: Electromagnetic techniques need calibration, and quantitative stress analysis by ultrasonic techniques needs reference values, i.e. verified materials-specific quantities to be obtained with representative specimens. Electromagnetic and ultrasonic techniques have been developed for specific tests at defined components, and the corresponding instruments and sensors have been used in practice for several years now. The paper summarizes fundamental aspects and explains the state of the art by means of several examples. (orig./CB) [Deutsch] Elektromagnetische und Ultraschallverfahren sind vergleichsweise neue zerstoerungsfreie Verfahren zur Bestimmung von Eigenspannungen in Bauteilen. Ihre Anwendung ist einfach, setzt aber Vorarbeiten voraus: Elektromagnetische Verfahren muessen kalibriert und zur quantitativen Spannungsanalyse mittels Ultraschallverfahren muessen materialspezifische Kenngroessen an repraesentativen Materialproben ermittelt werden. Elektromagnetische und Ultraschallverfahren sind fuer konkrete Anwendungen an Bauteilen entwickelt, angepasste Geraete und Sensoren seit Jahren in der Nutzung. Der Beitrag fasst die Grundlagen zusammen und stellt den Stand der Technik anhand ausgewaehlter Anwendungen dar. (orig.)

  14. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  15. Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats.

    Science.gov (United States)

    Corona-Pérez, Adriana; Díaz-Muñoz, Mauricio; Cuevas-Romero, Estela; Luna-Moreno, Dalia; Valente-Godínez, Héctor; Vázquez-Martínez, Olivia; Martínez-Gómez, Margarita; Rodríguez-Antolín, Jorge; Nicolás-Toledo, Leticia

    2017-11-01

    Glucocorticoids have been implicated in nonalcoholic fatty liver diseases (NAFLD). The influence of a palatable diet on the response to stress is controversial. This study explored whether a high-sucrose diet could protect from hepatic steatosis induced by chronic restraint stress in young adult rats. Male Wistar rats aged 21 days were allocated into four groups (n = 6-8 per group): control, chronic restraint stress, 30% sucrose diet, and 30% sucrose diet plus chronic restraint stress. After being exposed to either tap water or sucrose solution during eight weeks, half of the rats belonging to each group were subject or not to repeated restraint stress (1 h per day, 5 days per week) during four weeks. Triacylglycerol (TAG), oxidative stress, activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1), infiltration of immune cells, and glycogen amount in the liver were quantified. Serum concentrations of corticosterone and testosterone were also measured. The stressed group showed normal serum concentrations of corticosterone and did not have hepatic steatosis. However, this group showed increased glycogen, inflammation, mild fibrosis, oxidative stress, and a high activity of 11β-HSD-1 in the liver. The group exposed to the high-sucrose diet had lower concentrations of corticosterone, hepatic steatosis and moderate fibrosis. The group subject to high-sucrose diet plus chronic restraint stress showed low concentrations of corticosterone, hepatic steatosis, oxidative stress, and high concentrations of testosterone. Thus, restraint stress and a high-sucrose diet each generate different components of nonalcoholic fatty liver in young adult rats. The combination of both the factors could promote a faster development of NAFLD.

  16. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    Science.gov (United States)

    Ali, Mohammed Ali Nasser

    The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the

  17. Beta-lipotropin is the major component of the plasma opioid response to surgical stress in humans

    Energy Technology Data Exchange (ETDEWEB)

    Porro, C.A.; Facchinetti, F.; Bertellini, E.; Petraglia, F.; Stacca, R.; Barbieri, G.C.; Genazzani, A.R.

    1987-12-07

    There is growing experimental evidence that beta-endorphin immunoreactivity is raised by surgical stress in patients undergoing general anesthesia. As the assay methods employed to date did not allow to fully discriminate between beta-endorphin and its immediate precursor, beta-lipotropin, the authors have investigated in the present study plasma levels of these two peptides by separating them by chromatography on plasma extracts prior to radioimmunoassay. Beta-lipotropin, but not beta-endorphin, plasma levels were found to be significantly elevated during surgery in the general anesthesia group, while no change was found in either peptide concentration in the spinal one. Cortisol plasma levels also increased significantly 90 minutes after the beginning of surgery. Although the sampling time they adopted may have prevented them from detecting an early peak of beta-endorphin during the first 30 minutes of surgery, the major component of the pituitary opioid response to surgical stress appears to be related to beta-lipotropin. This is in agreement with results of experimental work on various kinds of stress in animals and humans and seems to rule out a role for plasma beta-endorphin in post-operative analgesia. 38 references, 1 figure, 1 table.

  18. What characterizes persons with high levels of perceived stress in Denmark? A national representative study

    DEFF Research Database (Denmark)

    Nielsen, Line; Curtis, Tine; Kristensen, Tage S

    2008-01-01

    perceived stress is characterized by individual and neighbourhood factors with negative impacts on quality of life and risk of illness. This knowledge can guide future stress prevention efforts. Additionally, the results suggest a negative social component where perceived stress, unhealthy lifestyle and low...

  19. The reliability of the repair weld joints of aged high temperature components in fossil power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Ohtani, Ryuichi [Kyoto Univ. (Japan); Fujii, Kazuya [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Yokoyama, Tomomitsu; Nishimura, Nobuhiko [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Suzuki, Komei [Japan Steel Works Ltd., Tokyo (Japan)

    1998-11-01

    It is of fundamental engineering importance to be able to give reliable assessments of the effective service life of the critical components used within fossil power plants, particularly for those operating for prolonged periods. It is common practice for such assessments to have been estimated using destructive tests, typically the stress rupture test, this having been recognized as one of the most reliable evaluation methods available. Its only drawback is that it often does not permit the component to be in use following the sampling of the test specimen without repairing. The current piece of work focuses on the reliability of the repair welds of components for specimens taken from fossil power plants, having been in service for prolonged periods. Several such repairs to welds have been made to an old power boiler, in particular to a superheater header which is fabricated from 2.25Cr-1Mo steel. Under close examination the repairs to the girth weldment showed susceptibilities of weld cracking, similar to that observed in as-manufactured material. Within the repaired region of the welded joint the microstructure, tensile properties and toughness seemed to be unaffected. The hardness attained its minimum value within the heat affected zone, HAZ of the repair weld, overlapping that of original girth weld HAZ. Furthermore, the stress rupture strength achieved its minimum value at the same position taking on the same value as the strength associated with the aged girth welded joint. (orig.)

  20. Metallurgical considerations in the design of creep exposed, high temperature components for advanced power plants

    International Nuclear Information System (INIS)

    Schubert, F.

    1990-08-01

    Metallic components in advanced power generating plants are subjected to temperatures at which the material properties are significantly time-dependent, so that the creep properties become dominant for the design. In this investigation, methods by which such components are to be designed are given, taking into account metallurgical principles. Experimental structure mechanics testing of component related specimens carried out for representative loading conditions has confirmed the proposed methods. The determination of time-dependent design values is based on a scatterband evaluation of long-term testing data obtained for a number of different heats of a given alloy. The application of computer-based databank systems is recommendable. The description of the technically important secondary creep rate based on physical metallurgy principles can be obtained using the exponential relationship originally formulated by Norton, ε min = k.σ n . The deformation of tubes observed under internal pressure with a superimposed static or cyclic tensile stress and a torsion loading can be adequately described with the derived, three-dimensional creep equation (Norton). This is also true for the description of creep ratcheting and creep buckling phenomena. By superimposing a cyclic stress, the average creep rate is increased in one of the principal deformation axes. This is also true for the creep crack growth rate. The Norton equation can be used to derive this type of deformation behaviour. (orig.) [de

  1. Experiment planning using high-level component models at W7-X

    International Nuclear Information System (INIS)

    Lewerentz, Marc; Spring, Anett; Bluhm, Torsten; Heimann, Peter; Hennig, Christine; Kühner, Georg; Kroiss, Hugo; Krom, Johannes G.; Laqua, Heike; Maier, Josef; Riemann, Heike; Schacht, Jörg; Werner, Andreas; Zilker, Manfred

    2012-01-01

    Highlights: ► Introduction of models for an abstract description of fusion experiments. ► Component models support creating feasible experiment programs at planning time. ► Component models contain knowledge about physical and technical constraints. ► Generated views on models allow to present crucial information. - Abstract: The superconducting stellarator Wendelstein 7-X (W7-X) is a fusion device, which is capable of steady state operation. Furthermore W7-X is a very complex technical system. To cope with these requirements a modular and strongly hierarchical component-based control and data acquisition system has been designed. The behavior of W7-X is characterized by thousands of technical parameters of the participating components. The intended sequential change of those parameters during an experiment is defined in an experiment program. Planning such an experiment program is a crucial and complex task. To reduce the complexity an abstract, more physics-oriented high-level layer has been introduced earlier. The so-called high-level (physics) parameters are used to encapsulate technical details. This contribution will focus on the extension of this layer to a high-level component model. It completely describes the behavior of a component for a certain period of time. It allows not only defining simple value ranges but also complex dependencies between physics parameters. This can be: dependencies within components, dependencies between components or temporal dependencies. Component models can now be analyzed to generate various views of an experiment. A first implementation of such an analyze process is already finished. A graphical preview of a planned discharge can be generated from a chronological sequence of component models. This allows physicists to survey complex planned experiment programs at a glance.

  2. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  3. Effects of Methanol Spraying on Qualitative traits, Yield and Yield Components of Soybean (Glycine max L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    J Esazadeh Panjali Kharabasi

    2017-12-01

    Full Text Available Introduction Soybean (Glycin max L. is one of the most important oilseed crops in the world. It can provide oil and vegetable protein suitable for feeding humans as well as animals. The productivity Increasing of this crop in Iran has been the subject of continuous investigation over the past few years. It is well known that adequate water supply is considered as a very important factor to affect the accumulation of dry matter in the plant as well as vegetative growth of most crops. Irrigation is an important factor affecting soybean growth and yield and its related components. Exposing soybean plants to soil moisture stress at any phase of its life cycle may lead to a detrimental effect on growth, yield and its components. The methanol spraying can lead to increase in yield, expediting in maturity and reduction in drought stress impacts and water requirement of crops. Material and Methods The experiment was conducted as split plots based on randomized complete block design with three replications at the Research Farm, Faculty of Agriculture of Moghan, Iran, in 2011. Treatments included three levels of drought stress as follows irrigation after, 40 (control, 55 and 70 percentage of available soil moisture depletion as main plots, and four levels of methanol spraying including 0 (control, 7, 21 and 35 volumetric percentage as sub plots. The studied traits were included plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents. Statistical analysis was carried out using SAS version 9.1 software. Significant difference was set at p ≤ 0.05 by using Duncan’s multiple range test. Results and Discussion The results showed that the plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents as well as number of leaf per plant significantly affected by drought stress and methanol

  4. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  5. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  6. Adolescents' sleep in low-stress and high-stress (exam) times: a prospective quasi-experiment.

    Science.gov (United States)

    Dewald, Julia F; Meijer, Anne Marie; Oort, Frans J; Kerkhof, Gerard A; Bögels, Susan M

    2014-01-01

    This prospective quasi-experiment (N = 175; mean age = 15.14 years) investigates changes in adolescents' sleep from low-stress (regular school week) to high-stress times (exam week), and examines the (moderating) role of chronic sleep reduction, baseline stress, and gender. Sleep was monitored over three consecutive weeks using actigraphy. Adolescents' sleep was more fragmented during the high-stress time than during the low-stress time, meaning that individuals slept more restless during stressful times. However, sleep efficiency, total sleep time, and sleep onset latency remained stable throughout the three consecutive weeks. High chronic sleep reduction was related to later bedtimes, later sleep start times, later sleep end times, later getting up times, and more time spent in bed. Furthermore, low chronic sleep reduction and high baseline stress levels were related to more fragmented sleep during stressful times. This study shows that stressful times can have negative effects on adolescents' sleep fragmentation, especially for adolescents with low chronic sleep reduction or high baseline stress levels.

  7. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  8. Feasibility of underwater welding of highly irradiated in-vessel components of boiling-water reactors: A literature review

    International Nuclear Information System (INIS)

    Lund, A.L.

    1997-11-01

    In February 1997, the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), initiated a literature review to assess the state of underwater welding technology. In particular, the objective of this literature review was to evaluate the viability of underwater welding in-vessel components of boiling water reactor (BWR) in-vessel components, especially those components fabricated from stainless steels that are subjected to high neutron fluences. This assessment was requested because of the recent increased level of activity in the commercial nuclear industry to address generic issues concerning the reactor vessel and internals, especially those issues related to repair options. This literature review revealed a preponderance of general information about underwater welding technology, as a result of the active research in this field sponsored by the U.S. Navy and offshore oil and gas industry concerns. However, the literature search yielded only a limited amount of information about underwater welding of components in low-fluence areas of BWR in-vessel environments, and no information at all concerning underwater welding experiences in high-fluence environments. Research reported by the staff of the U.S. Department of Energy (DOE) Savannah River Site and researchers from the DOE fusion reactor program proved more fruitful. This research documented relevant experience concerning welding of stainless steel materials in air environments exposed to high neutron fluences. It also addressed problems with welding highly irradiated materials, and primarily attributed those problems to helium-induced cracking in the material. (Helium is produced from the neutron irradiation of boron, an impurity, and nickel.) The researchers found that the amount of helium-induced cracking could be controlled, or even eliminated, by reducing the heat input into the weld and applying a compressive stress perpendicular to the weld path

  9. Novel processing of Barkhausen noise signal for assessment of residual stress in surface ground components exhibiting poor magnetic response

    International Nuclear Information System (INIS)

    Vashista, M.; Paul, S.

    2011-01-01

    The Barkhausen Noise Analysis (BNA) technique has been utilised to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal and two newly proposed parameters, namely 'count' and 'event', have been shown to correlate linearly with the residual stress upon grinding, with judicious choice of user defined 'threshold', even when the micro-magnetic response of the work material is poor. In the present study, residual stress induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with unhardened bearing steel for benchmarking. Moreover, similar correlation has been established, when primarily compressive stress is induced upon high speed grinding using cBN wheel with moderately deep cut suppressing the micro-magnetic response from the ground medium carbon steel as the work material. - Highlights: → The problem of work materials exhibiting poor BN response and poor Barkhausen Noise response is identified. → A novel signal processing strategy is introduced to address the issue of poor micro-magnetic response of some ferromagnetic material. → Potential of newly introduced BN parameters has been studied. → These two BN parameters exhibited linear correlation with residual stress for work material with poor micro-magnetic response.

  10. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)], E-mail: frederic.escourbiac@cea.fr; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France); Merola, M.; Tivey, R. [ITER Team, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)

    2007-10-15

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC.

  11. Research on Evaluation Methodology for High Temperature Components and Technical Issues

    International Nuclear Information System (INIS)

    Kim, Y.J.; Han, S.B.

    2007-03-01

    The research on evaluation methodology for high temperature components and technical issues includes the comparison of evaluation technology of Very High Temperature Reactors(VHTRs) with that of present commercial reactors, the review of Hot Gas Duct(HGD) insulation designs, the analysis of the codes related to VHTR component construction and the analysis of technical issues on application of present codes to HGD construction. Codes to assure the integrity of the VHTR components are not fully prepared yet in any country. To understand the evaluation technology of the VHTR-related codes, key requirements of ASME B and PV Code Section III, Subsection NB and NH were compared. Six kinds of HGD designs were reviewed and compared. A reference which analyzed seven kinds of present component codes were reviewed and the limitations of them were summarized. Especially it was found that the selection of materials is limited, material property data are not enough, and design analysis methodology is not fully specified

  12. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    International Nuclear Information System (INIS)

    Escourbiac, F.; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J.; Merola, M.; Tivey, R.

    2007-01-01

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC

  13. Calorimetric Measuring Systems for Characterizing High Frequency Power Losses in Power Electronic Components and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Pedersen, John Kim; Ritchie, Andrew Ewen

    2002-01-01

    High frequency power losses in power electronic components and systems are very difficult to measure. The same applies to the efficiency of high-efficiency systems and components. An important method to measure losses with high accuracy is the calorimetric measuring systems. This paper describes...... to calibrate such systems are proposed and different applications of the system are given. Two practical examples end the description of the research. It is concluded that such systems have a relative long time-constant but they are accurate and useful for precise power loss measurement....

  14. Review of 20 years research in fatigue of high pressure loaded components

    Energy Technology Data Exchange (ETDEWEB)

    Thumser, Rayk [Bauhaus Univ. Weimar (Germany). Materialforschungs- und -pruefanstalt; Scheibe, Wolfgang

    2011-07-01

    This paper gives an overview of the research in fatigue of high pressure loaded components. In the last 20 years the main research was carried out in Germany. This research was mainly driven by the fatigue requirements for high pressure loaded Diesel engine injection parts as common rails, injectors and pipes. (orig.)

  15. High Throughput Integrated Technologies for Multimaterial Functional Micro Components (EU FP7 HINMICO 2013-2016)

    DEFF Research Database (Denmark)

    Azcarate, Sabino; Esmoris, Joseba; Dimov, Stefan

    2016-01-01

    The objective of the HINMICO project is the development and optimization of manufacturing processes for the production of high-added value high quality multi-material micro-components, with the possibility of additional, functionalities, through more integrated, efficient and cost-effective proce...

  16. Omethoate treatment mitigates high salt stress inhibited maize seed germination.

    Science.gov (United States)

    Yang, Kejun; Zhang, Yifei; Zhu, Lianhua; Li, Zuotong; Deng, Benliang

    2018-01-01

    Omethoate (OM) is a highly toxic organophophate insecticide, which is resistant to biodegradation in the environment and is widely used for pest control in agriculture. The effect of OM on maize seed germination was evaluated under salt stress. Salt (800mM) greatly reduced germination of maize seed and this could be reversed by OM. Additionally, H 2 O 2 treatment further improved the effect of OM on seed germination. Higher H 2 O 2 content was measured in OM treated seed compared to those with salt stress alone. Dimethylthiourea (DTMU), a specific scavenger of reactive oxygen species (ROS), inhibited the effect of OM on seed germination, as did IMZ (imidazole), an inhibitor of NADPH oxidase. Abscisic acid (ABA) inhibited the effect of OM on seed germination, whereas fluridone, a specific inhibitor of ABA biosynthesis, enhanced the effect of OM. Taken together, these findings suggest a role of ROS and ABA in the promotion of maize seed germination by OM under salt stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  18. An Investigation of the Correlation among Sources of Stress, Perceived Stress, and Coping styles in High School Students

    Directory of Open Access Journals (Sweden)

    Farhadh Asghari

    2016-07-01

    Full Text Available Background and Objectives: Coping with stress is an important issue, especially in regard to source of stress and perceived stress in adolescence period. In this research, the correlation among stress sources, perceived stress, and coping styles was investigated in high school students. Methods: The present research was a descriptive correlational study. The research sample consisted of 575 high school students from the families of personnel of Bushehr University of Medical Sciences in education year 2014-15 who were selected by multistage cluster sampling method. Stress source scale, perceived stress scale and Tehran coping styles scale, were used for data collection. The data were analyzed using statistical methods, including Pearson correlation coefficient and multivariate regression analysis. Results: In this study, 50% of students had perceived stress higher than cut-off point. Stress sources of students were related to school and maturity. There was a positive correlation between problem-oriented coping style and perceived stress, and there was a negative and inverse correlation between problem-oriented coping style and stress related to school and maturity. There was a positive correlation between positive emotion-oriented coping style and perceived stress, but there was a negative and inverse correlation between problem-oriented coping style and stress related to school and maturity. There was no significant correlation between emotion-oriented coping style and stress related to school, maturity, family, and peers. There was a positive correlation between negative emotion-oriented coping style and stress related to school, maturity, and peers. Conclusion: According to the findings of this study, the level of correlation was not significant and no significant relationship could be found between the variables with this level of correlation. Therefore, it is suggested that more extensive researches be conducted on the relationship between

  19. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  20. Tensile stress corrosion cracking of type 304 stainless steel irradiated to very high dose

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.

    2001-09-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20--100 displacement per atom or dpa) by the end of life. The data bases and mechanistic understanding of, the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high dose, i.e., is it purely mechanical failure or is it stress-commotion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-11 reactor after irradiation to {approximately}50 dpa at {approximately}370 C. Slow-strain-rate tensile tests were conducted at 289 C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microcopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at low ECP, and this susceptibility led to poor work-hardening capability and low ductility.

  1. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  2. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  3. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  4. Effect of Zeolite, Selenium and Silicon on Yield, Yield Components and Some Physiological Traits of Canola under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Bybordi

    2016-07-01

    Full Text Available Introduction Canola can be cultivated in large areas of the country due to its specific characteristics such as suitable composition of the fatty acids, its germination ability under low temperature, as well as its good compatibility with different climates. Canola is a high demanding crop in terms of fertilizers so that it uptakes considerable amount of nutrients from the soil during the growing season. Canola cultivation in poor soils or application of imbalanced fertilizers, especially nitrogen, can reduce qualitaty and quantity of final yield. On the other hand, salinity is known as one of the major limiting factors in canola production. Therefore, the aim of this study is the application of zeolite, selenium and silicon treatments to amend soil and increasing salinity tolerance in canola. Materials and Methods In order to study the effect of soil applied zeolite and foliar application of selenium and silicon on yield, yield components and some physiological traits of canola grown under salinity stress, a factorial experiment in randomized complete block design was conducted in Agriculture and Natural Resource Research Center in East Azerbaijan during 2011-2013 cropping seasons. Zeolite was applied at three levels (0, 5 and 10 ton ha-1 and foliar selenium and silicon were applied at three levels as well (each one zero, 2 and 4 g l-1. For this purpose, seedbed was prepared using plow and disk and then plot were designed. Canola seeds, cultivar Okapi, were sown in sandy loam soil with 4 dS.m-1 salinity at the depth of 2-3 cm. Irrigation was performed using local well based on 60% field capacity using the closed irrigation system. Potassium selentae and potassium silicate were used for selenium and silicon treatments. Treatments at rosette and stem elongation stages were sprayed on plants using a calibrated pressurized backpack sprayer. At flowering stage, photosynthesis rate was recorded. Then leaf samples were randomly collected to assay

  5. Friction and wear studies of nuclear power plant components in pressurized high temperature water environments

    International Nuclear Information System (INIS)

    Ko, P.L.; Zbinden, M.; Taponat, M.C.; Robertson, M.F.

    1997-01-01

    The present paper is part of a series of papers aiming to present the friction and wear results of a collaborative study on nuclear power plant components tested in pressurized high temperature water. The high temperature test facilities and the methodology in presenting the kinetics and wear results are described in detail. The results of the same material combinations obtained from two very different high temperature test facilities (NRCC and EDF) are presented and discussed. (K.A.)

  6. Evaluation of High Pressure Components of Fuel Injection Systems Using Speckle Interferometry

    OpenAIRE

    Basara, Adis

    2007-01-01

    The modern high pressure fuel injection systems installed in engines provide a highly efficient combustion process accompanied by low emissions of exhaust gases and an impressive level of dynamic response. The design and development of mechanical components for such systems pose a great challenge, since they have to operate under extremely high fluctuating pressures (e.g. up to 2000 bar) for a long lifetime (more than 1000 injections per minute). The permanent change between a higher and a lo...

  7. Oxidative stress at high altitude: genotype–phenotype correlations

    Directory of Open Access Journals (Sweden)

    Pandey P

    2014-05-01

    Full Text Available Priyanka Pandey,1,2 MA Qadar Pasha1,2 1CSIR-Institute of Genomics and Integrative Biology, Delhi, India; 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India Abstract: It has been well-documented that the hypobaric hypoxic environment at high altitude (HA causes stress to both the permanent residents of HA and the sojourners. This oxidative stress primarily disturbs the oxygen-sensing and vascular homeostasis pathways, thereby upsetting normal human physiology, especially in sojourners. These environmental challenges have caused dynamic evolutionary changes within natives of HA, allowing them to develop adaptive plasticity. This review focuses on the genomic and biochemical features of the molecules involved in the oxygen-sensing and vascular homeostasis pathways with respect to HA pulmonary edema (HAPE and adaptation. We review the role of genetic markers such as HIF-prolyl hydroxylase 2, endothelial PAS domain-containing protein 1, endothelial nitric oxide synthase, endothelin 1, cytochrome b-245 alpha polypeptide, and glutathione S-transferase pi 1, as well as three circulatory biomarkers (nitric oxide, endothelin 1, and 8-iso-prostaglandin F2α, by highlighting approaches such as candidate gene and genome-wide, adopted in deciphering the pathways. A disagreement between the two approaches has also been highlighted. In addition, we discuss that an overrepresentation of wild-type alleles in HA natives and mutant alleles of same polymorphisms in HAPE patients implies that the allelic variants at the same locus are involved in adaptation and HAPE, respectively. Moreover, healthy sojourners present a number of genomic features similar to HA natives, further strengthening the concept of genetic predisposition. A trend in correlation between protective and risk alleles and altered levels of circulatory markers clearly documents the phenomenon of genotype–phenotype correlations. We conclude that the genetic and biochemical

  8. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Cheevadhanarak Supapon

    2009-09-01

    Full Text Available Abstract The present study examined the changes in protein expression in Spirulina platensis upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

  9. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    Science.gov (United States)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  10. High-efficient extraction of principal medicinal components from fresh Phellodendron bark (cortex phellodendri

    Directory of Open Access Journals (Sweden)

    Keqin Xu

    2018-05-01

    Full Text Available There are three key medicinal components (phellodendrine, berberine and palmatine in the extracts of Phellodendron bark, as one of the fundamental herbs of traditional Chinese medicine. Different extraction methods and solvent combinations were investigated to obtain the optimal technologies for high-efficient extraction of these medicinal components. Results: The results showed that combined solvents have higher extracting effect of phellodendrine, berberine and palmatine than single solvent, and the effect of ultrasonic extraction is distinctly better than those of distillation and soxhlet extraction. Conclusion: The hydrochloric acid/methanol-ultrasonic extraction has the best effect for three medicinal components of fresh Phellodendron bark, providing an extraction yield of 103.12 mg/g berberine, 24.41 mg/g phellodendrine, 1.25 mg/g palmatine. Keywords: Phellodendron, Cortex phellodendri, Extraction methods, Medicinal components

  11. Principal component analysis for neural electron/jet discrimination in highly segmented calorimeters

    International Nuclear Information System (INIS)

    Vassali, M.R.; Seixas, J.M.

    2001-01-01

    A neural electron/jet discriminator based on calorimetry is developed for the second-level trigger system of the ATLAS detector. As preprocessing of the calorimeter information, a principal component analysis is performed on each segment of the two sections (electromagnetic and hadronic) of the calorimeter system, in order to reduce significantly the dimension of the input data space and fully explore the detailed energy deposition profile, which is provided by the highly-segmented calorimeter system. It is shown that projecting calorimeter data onto 33 segmented principal components, the discrimination efficiency of the neural classifier reaches 98.9% for electrons (with only 1% of false alarm probability). Furthermore, restricting data projection onto only 9 components, an electron efficiency of 99.1% is achieved (with 3% of false alarm), which confirms that a fast triggering system may be designed using few components

  12. Effects of radiation and high heat flux on the performance of first-wall components. Final report

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1985-10-01

    The performance of high-heat-flux components in present and future fusion devices is strongly affected by materials properties and their changes with radiation exposure and helium content. In addition, plasma disruptions and thermal fatigue are major life-limiting aspects. A multidisciplinary approach is therefore required in the performance analysis, and the following results have been accomplished. An equation of state for helium has been derived and applied to helium bubble formation by various growth processes. Models for various radiation effects have been developed and perfected to analyze radiation-induced swelling and embrittlement for high-heat flux materials. Computer codes have been developed to predict melting, evaporation, and melt-layer stability during plasma disruptions. A structural analysis code was perfected to evaluate the stress distribution and crack propagation in a high-heat-flux component or first wall. This code was applied to a duplex structure consisting of a beryllium coating on a copper substrate. It was also used to compare the lifetimes of a first wall in a tokamak reactor made of ferritic or austenitic steel

  13. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of real component geometries (phase 2). Final report; Erhoehung der Komponentensicherheit durch verbesserte Verfahren zur Eigenspannungsanalyse. Teilvorhaben. Beruecksichtigung realer Komponentengeometrien (Phase 2). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Scholtes, B.; Nau, Andreas

    2015-06-01

    Residual stresses can be result in both detrimental as well as beneficial consequences on the component's strength and lifetime. A most detailed knowledge of the residual stress state is a pre-requisite for the assessment of the component's performance. The mechanical methods for residual stress measurements are classified in non-destructive, destructive and semi-destructive methods. The two commonly used (semi-destructive) mechanical methods are the hole drilling and the ring core method. In the context of reactor safety research of the Federal Ministry of Economic Affairs and Energy (BMWi), two fundamental and interacting weak points of the hole drilling as well as ofthe ring core method are investigated. On the one hand, there are effects concerning geometricalboundary conditions of the components and on the other hand, there are influences of plasticity due to notch effects. Both aspects affect the released strain field, when the material is removed and finally, the calculated residual stresses. The first issue mentioned above is under the responsibility of Institute of Materials Engineering - Metallic Materials (KasselUniversity) and the last one will be investigated by University of Stuttgart-Otto-Graf-Institut - materials testing institute. As a consequence of a successful project, the present knowledgebase will be considerably improved and will be available for various engineering fields. Especially,the quantitative consideration of real residual stress states for optimized component designs will be feasible and finally the consequences of residual stresses on the component's safety, which are used in nuclear facilities, can be evaluated. The findings of the application-oriented research period (phase 2) at Kassel University are documented in this report.

  14. Stress corrosion cracking of highly irradiated 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko; Nakajima, Nobuo; Furutani, Gen [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Mechanical property tests, grain boundary (GB) composition analysis and slow strain rate test (SSRT) in simulated PWR primary water changing dissolved hydrogen (DH) and dissolved oxygen (DO) content were carried out on cold-worked (CW) 316 stainless steels which were irradiated to 1-8x10{sup 26} n/m{sup 2} (E>0.1 MeV) in a Japanese PWR in order to evaluate irradiation-assisted stress corrosion cracking (IASCC) susceptibility. Highly irradiated stainless steels were susceptible to intergranular stress corrosion cracking (IGSCC) in both hydrogenated water and oxygenated water and to intergranular cracking in inert gas atmosphere. IASCC susceptibility increased with increasing DH content (0-45 ccH{sub 2}/kgH{sub 2}O). Hydrogen content of the section containing fracture surface was higher than that of the section far from fracture surface. These results suggest that hydrogen would have an important role for IASCC. While mechanical property was saturated, GB segregation and IASCC susceptibility increased with an increase in fluence, suggesting that GB segregation would have a dominant role for an increase in IASCC susceptibility at this high fluence region. (author)

  15. High lung volume increases stress failure in pulmonary capillaries

    Science.gov (United States)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  16. Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses.

    Science.gov (United States)

    Pöntinen, Anna; Lindström, Miia; Skurnik, Mikael; Korkeala, Hannu

    2017-08-01

    To study the role of each two-component system (TCS) histidine kinase (HK) in stress tolerance of Listeria monocytogenes EGD-e, we monitored the growth of individual HK deletion mutant strains under heat (42.5 °C), acid (pH 5.6), alkali (pH 9.4), osmotic (6% NaCl), ethanol (3.5 vol%), and oxidative (5 mM H 2 O 2 ) stresses. The growth of ΔliaS (Δlmo1021) strain was impaired under each stress, with the most notable decrease under heat and osmotic stresses. The ΔvirS (Δlmo1741) strain showed nearly completely restricted growth at high temperature and impaired growth in ethanol. The growth of ΔagrC (Δlmo0050) strain was impaired under osmotic stress and slightly under oxidative stress. We successfully complemented the HK mutations using a novel allelic exchange based approach. This approach avoided the copy-number problems associated with in trans complementation from a plasmid. The mutant phenotypes were restored to the wild-type level in the complemented strains. This study reveals novel knowledge on the HKs needed for growth of L. monocytogenes EGD-e under abovementioned stress conditions, with LiaS playing multiple roles in stress tolerance of L. monocytogenes EGD-e. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology

    Science.gov (United States)

    Hoy, Scott D.; Figueiredo, Marco A.

    2006-01-01

    Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability:

  18. A multi-scale approach for high cycle anisotropic fatigue resistance: Application to forged components

    International Nuclear Information System (INIS)

    Milesi, M.; Chastel, Y.; Hachem, E.; Bernacki, M.; Loge, R.E.; Bouchard, P.O.

    2010-01-01

    Forged components exhibit good mechanical strength, particularly in terms of high cycle fatigue properties. This is due to the specific microstructure resulting from large plastic deformation as in a forging process. The goal of this study is to account for critical phenomena such as the anisotropy of the fatigue resistance in order to perform high cycle fatigue simulations on industrial forged components. Standard high cycle fatigue criteria usually give good results for isotropic behaviors but are not suitable for components with anisotropic features. The aim is to represent explicitly this anisotropy at a lower scale compared to the process scale and determined local coefficients needed to simulate a real case. We developed a multi-scale approach by considering the statistical morphology and mechanical characteristics of the microstructure to represent explicitly each element. From stochastic experimental data, realistic microstructures were reconstructed in order to perform high cycle fatigue simulations on it with different orientations. The meshing was improved by a local refinement of each interface and simulations were performed on each representative elementary volume. The local mechanical anisotropy is taken into account through the distribution of particles. Fatigue parameters identified at the microscale can then be used at the macroscale on the forged component. The linkage of these data and the process scale is the fiber vector and the deformation state, used to calculate global mechanical anisotropy. Numerical results reveal an expected behavior compared to experimental tendencies. We proved numerically the dependence of the anisotropy direction and the deformation state on the endurance limit evolution.

  19. The Order of Importance of Component Parts of the Biblical Worldview in Christian High School Students

    Science.gov (United States)

    Van Meter, Kenneth G.

    2009-01-01

    This micro-ethnographic study is an exploration of the relative degree of importance of the several components of a worldview as articulated by a purposive sample of fourteen upper division students currently enrolled in advance placement classes in ACSI and WASC accredited Christian high schools in Northern California. The research design uses an…

  20. Behaviour of alkali halides as materials for optical components of high power lasers

    International Nuclear Information System (INIS)

    Apostol, D.I.; Mihailescu, N.I.; Ghiordanescu, V.; Nistor, C.L.; Nistor, V.S.; Teodorescu, V.; Voda, M.

    1978-01-01

    The physical phenomena taking place in alkali halides when a CO 2 laser radiation is passing through have been reviewed. A special emphasis has been put on the specific qualities which such materials should have for being used as components for high power lasers. (author)

  1. A model-based software development methodology for high-end automotive components

    NARCIS (Netherlands)

    Ravanan, Mahmoud

    2014-01-01

    This report provides a model-based software development methodology for high-end automotive components. The V-model is used as a process model throughout the development of the software platform. It offers a framework that simplifies the relation between requirements, design, implementation,

  2. High temperature brazing of primary-system components in the nuclear field

    International Nuclear Information System (INIS)

    Belicic, M.; Fricker, H.W.; Iversen, K.; Leukert, W.

    1981-01-01

    Apart from the well-known welding procedures, high-temperature brazing is successfully applied in the manufacture of primary components in the field of nuclear reactor construction. This technique is applied in all cases where apart from sufficient resistance and high production safety importance is laid on dimensional stability without subsequent mechanical processing of the components. High-temperature brazing is therefore very important in the manufacture of fuel rod spacers or control rod guide tubes. In this context, during one brazing process many brazing seams have to be produced in extremely narrow areas and within small tolerances. As basic materials precipitation hardening alloys with a high nickel percentage, austenitic Cr-Ni-steels or the zirconium alloy Zry 4 are used. Generally applied are: boron free nickel or zirconium brazing filler metals. (orig.)

  3. Application of new design methodologies to very high-temperature metallic components of the HTTR

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Ohkubo, Minoru; Baba, Osamu

    1991-01-01

    The high-temperature piping and helium-to-helium intermediate heat exchanger of the High-Temperature Engineering Test Reactor (HTTR) are designed to be operating at very high temperatures of about 900deg C among the class 1 components of the HTTR. At such a high temperature, mechanical strength of heat-resistant metallic materials is very low and thermal expansions of structural members are large. Therefore, innovative design methodologies are needed to reduce both mechanical and thermal loads acting on these components. To the HTTR, the design methodologies which can separate the heat-resistant function from the pressure-retaining functions and allow them to expand freely are applied to reduce pressure and thermal loads. Since these design methodologies need to verify their applicability, the Japan Atomic Energy Research Institute (JAERI) has been performing many design and research works on their verifications. The details of the design methodologies and their verifications are given in this paper. (orig.)

  4. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Niedra, J.M.; Frasca, A.J.; Wieserman, W.R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare-earth permanent magnets

  5. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    International Nuclear Information System (INIS)

    Shwarze, G.E.; Wieserman, W.R.

    1994-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets

  6. Effect of ash components on the ignition and burnout of high ash coals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Yan, R.; Zheng, C.G. [Huazhong University of Science and Technology, Wuhan (China). National Laboratory of Coal Combustion

    1998-11-01

    The effect of the ash components on the ignition and burnout of four Chinese high ash coals were studied by thermogravimetric analysis. To investigate the influence of the ash components, comparative experiments were carried out with original, deashed and impregnated coals. Eleven types of ash components, such as SiO{sub 2}, CaCO{sub 3}, MgO, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, Al{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, FeS{sub 2}, NH{sub 4}Fe(SO{sub 4}){sub 2}{center_dot}12H{sub 2}O and FeSO{sub 4},(NH{sub 4}){center_dot}6H{sub 2}O were used in the present study. It was found that most of the ash components have negative effects. The strong influence of some ash components suggests that the combustion characteristics of high ash coal may be determined by the ash composition. 5 refs., 2 figs., 2 tabs.

  7. Stress/strain/time properties of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-05-01

    In this paper, a recently developed creep theory based on statistical mechanics has been used to analyze a number of experimental creep curves, the conclusion being that the creep behavior of dense MX-80 bentonite is in agreement with the physical model, and that the average bond strength is within the hydrogen bond region. The latter conclusion thus indicates that interparticle displacements leading to macroscopic creep takes place in interparticle and intraparticle water lattices. These findings were taken as a justification to apply the creep theory to a prediction of the settlement over a one million year period. It gave an estimated settlement of 1 cm at maximum, which is of no practical significance. The thixotropic and viscous properties of highly compacted bentonite present certain difficulties in the determination and evaluation of the stress/strain/time parameters that are required for ordinary elastic and elasto-plastic analyses. Still, these parameters could be sufficiently well identified to allow for a preliminary estimation of the stresses induced in the metal canisters by slight rock displacements. The analysis, suggests that a 1 cm rapid shear perpendicular to the axes of the canisters can take place without harming them. (author)

  8. Biochemical basis of the high resistance to oxidative stress in ...

    Indian Academy of Sciences (India)

    Unknown

    581. Keywords. Apoptosis; D. discoideum; oxidative stress; antioxidant enzymes; lipid peroxidation ..... multiple toxic effects of oxidative stress that is related to several pathological conditions ... culture. This work was supported by a grant to RB.

  9. Biochemical basis of the high resistance to oxidative stress

    Indian Academy of Sciences (India)

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments.

  10. Effects of Coenzyme Q10 and Vitamin C on Growth Performance and Blood Components in Broiler Chickens under Heat Stress

    Directory of Open Access Journals (Sweden)

    Raeisi-Zeydabad S

    2017-10-01

    Full Text Available This experiment was carried out to study the effects of Coenzyme Q10 (CoQ10 and vitamin C (VC on growth performance and blood biochemistry in broiler chickens under heat stress conditions. One of three levels of CoQ10 (0, 20, and 40 mg/kg of diet and one of two levels of VC (0 and 250 mg/kg of diet were supplemented to diets of chicks (from 1-42 d of age in a 3 × 2 factorial arrangement. Each dietary treatment had four replicate pens (10 chicks/pen. In order to create chronic heat stress, the house temperature was set at an ambient temperature of 35±2°C for 8 hrs daily (09:00 to 17:00 between 25-42 d of age. Feed intake, body weight gain (BWG, and feed to gain ratio (F:G were recorded at d 10, 25 and 42. At the end of experiment, two chicks/pen were randomly selected to assess blood components. CoQ10 supplementation improved BWG and F:G during 11-25 days, 26-42 days, and the whole period of the experiment (P < 0.05, while VC supplementation improved BWG and F:G only during 11-25 d of age. Blood glucose, cholesterol and triglycerides concentrations were reduced (P < 0.05 by addition of CoQ10 to the diet. Both Supplementation of CoQ10 and VC together lowered heterophil (H count but increased lymphocyte (L count, thereby reducing H/L ratio (P < 0.05. Serum concentrations of corticosterone and T4 were positively affected by dietary supplementation of CoQ10 (P < 0.05, but no differences were obtained with addition of VC to the diet. In conclusion, our observations demonstrated that dietary supplementation of 40 mg/kg CoQ10 or 250 mg/kg VC improves the growth performance of broiler chickens under the heat stress.

  11. Associations of Extrinsic and Intrinsic Components of Work Stress with Health: A Systematic Review of Evidence on the Effort-Reward Imbalance Model.

    Science.gov (United States)

    Siegrist, Johannes; Li, Jian

    2016-04-19

    Mainstream psychological stress theory claims that it is important to include information on people's ways of coping with work stress when assessing the impact of stressful psychosocial work environments on health. Yet, some widely used respective theoretical models focus exclusively on extrinsic factors. The model of effort-reward imbalance (ERI) differs from them as it explicitly combines information on extrinsic and intrinsic factors in studying workers' health. As a growing number of studies used the ERI model in recent past, we conducted a systematic review of available evidence, with a special focus on the distinct contribution of its intrinsic component, the coping pattern "over-commitment", towards explaining health. Moreover, we explore whether the interaction of intrinsic and extrinsic components exceeds the size of effects on health attributable to single components. Results based on 51 reports document an independent explanatory role of "over-commitment" in explaining workers' health in a majority of studies. However, support in favour of the interaction hypothesis is limited and requires further exploration. In conclusion, the findings of this review support the usefulness of a work stress model that combines extrinsic and intrinsic components in terms of scientific explanation and of designing more comprehensive worksite stress prevention programs.

  12. Associations of Extrinsic and Intrinsic Components of Work Stress with Health: A Systematic Review of Evidence on the Effort-Reward Imbalance Model

    Directory of Open Access Journals (Sweden)

    Johannes Siegrist

    2016-04-01

    Full Text Available Mainstream psychological stress theory claims that it is important to include information on people’s ways of coping with work stress when assessing the impact of stressful psychosocial work environments on health. Yet, some widely used respective theoretical models focus exclusively on extrinsic factors. The model of effort-reward imbalance (ERI differs from them as it explicitly combines information on extrinsic and intrinsic factors in studying workers’ health. As a growing number of studies used the ERI model in recent past, we conducted a systematic review of available evidence, with a special focus on the distinct contribution of its intrinsic component, the coping pattern “over-commitment”, towards explaining health. Moreover, we explore whether the interaction of intrinsic and extrinsic components exceeds the size of effects on health attributable to single components. Results based on 51 reports document an independent explanatory role of “over-commitment” in explaining workers’ health in a majority of studies. However, support in favour of the interaction hypothesis is limited and requires further exploration. In conclusion, the findings of this review support the usefulness of a work stress model that combines extrinsic and intrinsic components in terms of scientific explanation and of designing more comprehensive worksite stress prevention programs.

  13. Associations of Extrinsic and Intrinsic Components of Work Stress with Health: A Systematic Review of Evidence on the Effort-Reward Imbalance Model

    Science.gov (United States)

    Siegrist, Johannes; Li, Jian

    2016-01-01

    Mainstream psychological stress theory claims that it is important to include information on people’s ways of coping with work stress when assessing the impact of stressful psychosocial work environments on health. Yet, some widely used respective theoretical models focus exclusively on extrinsic factors. The model of effort-reward imbalance (ERI) differs from them as it explicitly combines information on extrinsic and intrinsic factors in studying workers’ health. As a growing number of studies used the ERI model in recent past, we conducted a systematic review of available evidence, with a special focus on the distinct contribution of its intrinsic component, the coping pattern “over-commitment”, towards explaining health. Moreover, we explore whether the interaction of intrinsic and extrinsic components exceeds the size of effects on health attributable to single components. Results based on 51 reports document an independent explanatory role of “over-commitment” in explaining workers’ health in a majority of studies. However, support in favour of the interaction hypothesis is limited and requires further exploration. In conclusion, the findings of this review support the usefulness of a work stress model that combines extrinsic and intrinsic components in terms of scientific explanation and of designing more comprehensive worksite stress prevention programs. PMID:27104548

  14. Primitive Path Analysis and Stress Distribution in Highly Strained Macromolecules.

    Science.gov (United States)

    Hsu, Hsiao-Ping; Kremer, Kurt

    2018-01-16

    Polymer material properties are strongly affected by entanglement effects. For long polymer chains and composite materials, they are expected to be at the origin of many technically important phenomena, such as shear thinning or the Mullins effect, which microscopically can be related to topological constraints between chains. Starting from fully equilibrated highly entangled polymer melts, we investigate the effect of isochoric elongation on the entanglement structure and force distribution of such systems. Theoretically, the related viscoelastic response usually is discussed in terms of the tube model. We relate stress relaxation in the linear and nonlinear viscoelastic regimes to a primitive path analysis (PPA) and show that tension forces both along the original paths and along primitive paths, that is, the backbone of the tube, in the stretching direction correspond to each other. Unlike homogeneous relaxation along the chain contour, the PPA reveals a so far not observed long-lived clustering of topological constraints along the chains in the deformed state.

  15. Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress

    Directory of Open Access Journals (Sweden)

    Hemmat A. Ibrahim

    2016-12-01

    Full Text Available In the greenhouse experiment, wheat plants (Triticum aestivum L. cv. Giza 168 were treated with 10 mM of maltose and trehalose as foliar spray using Tween 20 as wetting agent at 15, 30 and 45 days post sowing with two times of irrigation at 10 and 20 days intervals. Two samples were taken after 45 and 120 days from planting. At the first sample date, plant height, shoot fresh and dry weights and leaf area were recorded. At harvesting time (the second sample no. of spikes/plant, no. of spikelets/plant and weight of 1000 grains were taken. Chemical analyses were conducted in leaves at the first sample date for determination of phenolic compounds, flavonoids, amino acids, reducing sugars, total soluble sugars, protein, proline, PAL, POD, ascorbate peroxidase, catalase, PPO and MDA. The obtained results indicated that maltose and trehalose had significant and positive effect on most growth parameters. Opposite trend was found in plant height, no. of spike/plant and weight of 1000 grains by drought treatment. Maltose and trehalose treatments enhanced in the most biochemical components whereas they decreased PAL and catalase activity. Variable trends in amino acids and ascorbate peroxidase were observed by drought. However, the drought has more stimulative effect in most cases than the first time period of irrigation. The results concluded that foliar applications with maltose or trehalose induced water stress tolerance in wheat plants. Maltose treatment gave the best results in most morphological parameters, grains yield and biochemical components than trehalose treatment.

  16. Encoding negative events under stress: high subjective arousal is related to accurate emotional memory despite misinformation exposure.

    Science.gov (United States)

    Hoscheidt, Siobhan M; LaBar, Kevin S; Ryan, Lee; Jacobs, W Jake; Nadel, Lynn

    2014-07-01

    Stress at encoding affects memory processes, typically enhancing, or preserving, memory for emotional information. These effects have interesting implications for eyewitness accounts, which in real-world contexts typically involve encoding an aversive event under stressful conditions followed by potential exposure to misinformation. The present study investigated memory for a negative event encoded under stress and subsequent misinformation endorsement. Healthy young adults participated in a between-groups design with three experimental sessions conducted 48 h apart. Session one consisted of a psychosocial stress induction (or control task) followed by incidental encoding of a negative slideshow. During session two, participants were asked questions about the slideshow, during which a random subgroup was exposed to misinformation. Memory for the slideshow was tested during the third session. Assessment of memory accuracy across stress and no-stress groups revealed that stress induced just prior to encoding led to significantly better memory for the slideshow overall. The classic misinformation effect was also observed - participants exposed to misinformation were significantly more likely to endorse false information during memory testing. In the stress group, however, memory accuracy and misinformation effects were moderated by arousal experienced during encoding of the negative event. Misinformed-stress group participants who reported that the negative slideshow elicited high arousal during encoding were less likely to endorse misinformation for the most aversive phase of the story. Furthermore, these individuals showed better memory for components of the aversive slideshow phase that had been directly misinformed. Results from the current study provide evidence that stress and high subjective arousal elicited by a negative event act concomitantly during encoding to enhance emotional memory such that the most aversive aspects of the event are well remembered and

  17. Mechanics of brazed joints and compliant layers in high heat flux components

    International Nuclear Information System (INIS)

    Lovato, G.; Moret, F.; Chaumat, G.; Cailletaud, G.; Pilvin, P.

    1995-01-01

    Soft layers are of great interest for the joining of dissimilar materials like beryllium, tungsten or carbone base refractory tiles for plasma interface and cooled structures made of copper or molybdenum. Soft layers reduce the residual and in-service stress/strain level without reducing the thermal capability. Thin soft layers interfaces are produced during the brazing or HIP bonding cycles. However, the numerical modelling of the mechanical effect of such soft layers remains largely inaccurate. The camber of [CFC tiles (A05, N11, N112)/Ag-Cu-Ti filler metal/OFHC or TZM substrate] assemblies is recorded during the whole brazing thermal cycle and subsequent thermal fatigue cycles using a special vertical dilatometer. An inverse method based on Finite Element modelling of the samples is used to determine the joint constitutive law. Then, by comparing experiments and FEM calculations, the effects of distributed damage of the CFC and of the strain hardening and thermal softening of OFHC on the in-service stress/strain state of the component are observed. (orig.)

  18. Mechanics of brazed joints and compliant layers in high heat flux components

    International Nuclear Information System (INIS)

    Lovato, G.; Moret, F.; Chaumat, G.

    1994-01-01

    Soft layers are of great interest for the joining of dissimilar materials like beryllium, tungsten or carbon base refractory tiles for plasma interface and cooled structures made of copper or molybdenum. Soft layers reduce the residual and in-service stress/strain level without reducing the thermal capability. Thin soft layers interfaces are produced during the brazing or HIP bonding cycles. However, the numerical modelling of the mechanical effect of such soft layers remains largely inaccurate. The camber of [CFC tiles (A05, N11, N112)/Ag-Cu-Ti filler metal/OFHC or TZM substrate] assemblies is recorded during the whole brazing thermal cycle and subsequent thermal fatigue cycles using a special vertical dilatometer. An inverse method based on Finite Element modelling of the samples is used to determine the joint constitutive law. Then, by comparing experiments and FEM calculations, the effects of distributed damage of the CFC and of the strain hardening and thermal softening of OFHC on the in-service stress/strain state of the component are observed. (authors). 5 refs., 7 figs

  19. Method of forming components for a high-temperature secondary electrochemical cell

    Science.gov (United States)

    Mrazek, Franklin C.; Battles, James E.

    1983-01-01

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  20. High-efficient extraction of principal medicinal components from fresh Phellodendron bark (cortex phellodendri).

    Science.gov (United States)

    Xu, Keqin; He, Gongxiu; Qin, Jieming; Cheng, Xuexiang; He, Hanjie; Zhang, Dangquan; Peng, Wanxi

    2018-05-01

    There are three key medicinal components (phellodendrine, berberine and palmatine) in the extracts of Phellodendron bark, as one of the fundamental herbs of traditional Chinese medicine. Different extraction methods and solvent combinations were investigated to obtain the optimal technologies for high-efficient extraction of these medicinal components. The results showed that combined solvents have higher extracting effect of phellodendrine, berberine and palmatine than single solvent, and the effect of ultrasonic extraction is distinctly better than those of distillation and soxhlet extraction. The hydrochloric acid/methanol-ultrasonic extraction has the best effect for three medicinal components of fresh Phellodendron bark, providing an extraction yield of 103.12 mg/g berberine, 24.41 mg/g phellodendrine, 1.25 mg/g palmatine.

  1. Design and Fabrication Technique of the Key Components for Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Song, Ki Nam; Kim, Yong Wan

    2006-12-15

    The gas outlet temperature of Very High Temperature Reactor (VHTR) may be beyond the capability of conventional metallic materials. The requirement of the gas outlet temperature of 950 .deg. C will result in operating temperatures for metallic core components that will approach very high temperature on some cases. The materials that are capable of withstanding this temperature should be prepared, or nonmetallic materials will be required for limited components. The Ni-base alloys such as Alloy 617, Hastelloy X, XR, Incoloy 800H, and Haynes 230 are being investigated to apply them on components operated in high temperature. Currently available national and international codes and procedures are needed reviewed to design the components for HTGR/VHTR. Seven codes and procedures, including five ASME Codes and Code cases, one French code (RCC-MR), and on British Procedure (R5) were reviewed. The scope of the code and code cases needs to be expanded to include the materials with allowable temperatures of 950 .deg. C and higher. The selection of compact heat exchangers technology depends on the operating conditions such as pressure, flow rates, temperature, but also on other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. Welding, brazing, and diffusion bonding are considered proper joining processes for the heat exchanger operating in the high temperature and high pressure conditions without leakage. Because VHTRs require high temperature operations, various controlled materials, thick vessels, dissimilar metal joints, and precise controls of microstructure in weldment, the more advanced joining processes are needed than PWRs. The improved solid joining techniques are considered for the IHX fabrication. The weldability for Alloy 617 and Haynes 230 using GTAW and SMAW processes was investigated by CEA.

  2. Design and Fabrication Technique of the Key Components for Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Song, Ki Nam; Kim, Yong Wan

    2006-12-01

    The gas outlet temperature of Very High Temperature Reactor (VHTR) may be beyond the capability of conventional metallic materials. The requirement of the gas outlet temperature of 950 .deg. C will result in operating temperatures for metallic core components that will approach very high temperature on some cases. The materials that are capable of withstanding this temperature should be prepared, or nonmetallic materials will be required for limited components. The Ni-base alloys such as Alloy 617, Hastelloy X, XR, Incoloy 800H, and Haynes 230 are being investigated to apply them on components operated in high temperature. Currently available national and international codes and procedures are needed reviewed to design the components for HTGR/VHTR. Seven codes and procedures, including five ASME Codes and Code cases, one French code (RCC-MR), and on British Procedure (R5) were reviewed. The scope of the code and code cases needs to be expanded to include the materials with allowable temperatures of 950 .deg. C and higher. The selection of compact heat exchangers technology depends on the operating conditions such as pressure, flow rates, temperature, but also on other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. Welding, brazing, and diffusion bonding are considered proper joining processes for the heat exchanger operating in the high temperature and high pressure conditions without leakage. Because VHTRs require high temperature operations, various controlled materials, thick vessels, dissimilar metal joints, and precise controls of microstructure in weldment, the more advanced joining processes are needed than PWRs. The improved solid joining techniques are considered for the IHX fabrication. The weldability for Alloy 617 and Haynes 230 using GTAW and SMAW processes was investigated by CEA

  3. High-temperature stability of laser-joined silicon carbide components

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Marion, E-mail: marion.herrmann@tu-dresden.de; Lippmann, Wolfgang; Hurtado, Antonio

    2013-11-15

    Silicon carbide is recommended for applications in energy technology due to its good high-temperature corrosion resistance, mechanical durability, and abrasion resistance. The prerequisite for use is often the availability of suitable technologies for joining or sealing the components. A laser-induced process using fillers and local heating of the components represents a possible low-cost option. Investigations in which yttrium aluminosilicate glass was used for laser-induced brazing of SiC components of varying geometry are presented. A four-point bending strength of 112 MPa was found for these joints. In burst tests, laser-joined components were found to withstand internal pressures of up to 54 MPa. Helium leak tests yielded leak rates of less than 10{sup –8} mbar l s{sup −1}, even after 300 h at 900 °C. In contrast, the assemblies showed an increased leak rate after annealing at 1050 °C. The short process time of the laser technique – in the range of a few seconds to a few minutes – results in high temperature gradients and transients. SEM analysis showed that the filler in the seam predominantly solidifies in a glassy state. Crystallization occurred during later thermal loading of the joined components, with chemical equilibrium being established. Differences in seam structures yielded from different cooling rates in the laser process could not be equalized by annealing. The results demonstrated the long-term stability of laser-brazed SiC assemblies to temperatures in the range of glass transformation (900 °C) of the yttrium aluminosilicate filler. In technological investigations, the suitability of the laser joining technique for sealing of SiC components with a geometry approximating that of a fuel element sleeve pin (pin) in a gas-cooled fast reactor was proven.

  4. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales

  5. Quality assurance in ceramic materials and components. High-resolution non-destructive testing especially of ceramic surfaces

    International Nuclear Information System (INIS)

    Reiter, H.; Hoffmann, B.; Morsch, A.; Arnold, W.; Schneider, E.

    1988-01-01

    This report discusses the influence of defects on the failure behavior of ceramic materials under four-point bending stress. In this connection various Si 3 N 4 and SiC materials with and without artificially introduced defect particles (Fe, WC, Si, pores) were examined by the following non-destructive test methods: photoacoustic microscopy, scanning laser acoustic microscopy, microfocus roentgenoscopy and ultrasound transit-time measurements. Finally, a four-point bending test and a fracture-mechanical evaluation of the fracture-incuding defects were carried out at the Institute for reliability and failure studies in mechanical engineering of the University of Karlsruhe. According to the type of stress the samples predominantly failed in the case of defects in the surface zone of the side in tension. Among the ndt methods applied the photoacoustic microscopy as a typical surface testing method could predict most of the fracture-inducing defects (30-50 %) without causing destruction. In this connection a different detection sensitivity which corresponds to the thermal reflection factors became apparent according to the type of defect. Furthermore the reports describes the results of some preliminary tests on ndt of green ceramics. In these investigations both the microfocus roentgenoscopy test and the roentgen computed tomography showed a high potential of detecting inhomogeneities and defects in green Si 3 N 4 and SiC components. (orig.) [de

  6. High-power corrugates waveguide components for mm-wave fusion heating systems

    International Nuclear Information System (INIS)

    Olstad, R.A.; Doane, J.L.; Moeller, C.P.; O'Neill, R.C.; Di Martino, M.

    1996-10-01

    Considerable progress has been made over the last year in the U.S., Japan, Russia, and Europe in developing high power long pulse gyrotrons for fusion plasma heating and current drive. These advanced gyrotrons typically operate at a frequency in the range 82 GHz to 170 GHz at nearly megawatt power levels for pulse lengths up to 5 s. To take advantage of these new microwave sources for fusion research, new and improved transmission line components are needed to reliably transmit microwave power to plasmas with minimal losses. Over the last year, General Atomics and collaborating companies (Spinner GmbH in Europe and Toshiba Corporation in Japan) have developed a wide variety of new components which meet the demanding power, pulse length, frequency, and vacuum requirements for effective utilization of the new generation of gyrotrons. These components include low-loss straight corrugated waveguides, miter bends, miter bend polarizers, power monitors, waveguide bellows, de breaks, waveguide switches, dummy loads, and distributed windows. These components have been developed with several different waveguide diameters (32, 64, and 89 mm) and frequency ranges (82 GHz to 170 GHz). This paper describes the design requirements of selected components and their calculated and measured performance characteristics

  7. Contribution to improving reliability assessments of mechanical structural components requiring a high degree of safety using weighted Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kutter, R

    1981-12-04

    Physical theories to inquire lifetime and reliability of mechanical structures or components under multiscale random stress do not exist. Today those dates were examinated e.g. in development of aircrafts and motorcars by fatigue-testing of original components and sections during long terms. Knowing the distributions of stress and material-parameters the same testing is to be realized simulationary on highspeed computers. This study gives methods to reduce the necessary computation time to attending ones even to proof reliability up to R=1-10/sup -9/. These methods were of Monte-Carlo-Simulation with weighted parameters and respect to life-history.

  8. Effect of Drought Stress onYield and Yield Components of Sesame cultivars under Kerman conditions (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    S Farahbakhsh

    2015-04-01

    Full Text Available To investigate effects of drought stress on yield and yield components of sesame in Kerman region a split-plot experiment based onn compelet randomised block design with three replications was carried out in 1388. Irrigation levels (Normal irrigation in all growth stages, witholding water after 50% flowering, witholding water after 50% pod setting and differen t sesame landraces (Jiroft, Shiraz, Ardestan, Dezful, Shahr babak, Gorgan, Sirjan, Markazi, Birjand and Orzueieh were considered as main plots and sub-plots respectively. Plant height, the biggest pod length, noumber of grain per pod, noumber of pod per plant, grain weight per plant, thousand grain weight and grain yield were the measured traits. Results showed all the measured traits were significantly affected by the irrigation treatments. The effects of different landraces on all traits except noumber of grain per plant were significant. Irrigation × landraces interaction affected all measured traits except the biggest pod length significantly. The highest grain yield was recorde for Markezi landrace (845.2 kg –ha under normal irrigation and the lowest one was obtained from Jiroft landrace (104.8 kg –ha with witholding irrigation after 50% flowering.

  9. Development of strength evaluation method for high-pressure ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Hiroaki, E-mail: takegami.hiroaki@jaea.go.jp; Terada, Atsuhiko; Inagaki, Yoshiyuki

    2014-05-01

    Japan Atomic Energy Agency is conducting R and D on nuclear hydrogen production by the Iodine-Sulfur (IS) process. Since highly corrosive materials such as sulfuric and hydriodic acids are used in the IS process, it is very important to develop components made of corrosion resistant materials. Therefore, we have been developing a sulfuric acid decomposer made of a ceramic material, that is, silicon carbide (SiC), which shows excellent corrosion resistance to sulfuric acid. One of the key technological challenges for the practical use of a ceramic sulfuric acid decomposer made of SiC is to be licensed in accordance with the High Pressure Gas Safety Act for high-pressure operations of the IS process. Since the strength of a ceramic material depends on its geometric form, etc., the strength evaluation method required for a pressure design is not established. Therefore, we propose a novel strength evaluation method for SiC structures based on the effective volume theory in order to extend the range of application of the effective volume. We also developed a design method for ceramic apparatus with the strength evaluation method in order to obtain a license in accordance with the High Pressure Gas Safety Act. In this paper, the minimum strength of SiC components was calculated by Monte Carlo simulation, and the minimum strength evaluation method of SiC components was developed by using the results of simulation. The method was confirmed by fracture test of tube model and reference data.

  10. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  11. Automated packaging platform for low-cost high-performance optical components manufacturing

    Science.gov (United States)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  12. High carotenoids content can enhance resistance of selected Pinctada fucata families to high temperature stress.

    Science.gov (United States)

    Meng, Zihao; Zhang, Bo; Liu, Baosuo; Li, Haimei; Fan, Sigang; Yu, Dahui

    2017-02-01

    Carotenoids are a class of natural antioxidants widely found in aquatic, and they have significant effects on the growth, survival, and immunity of these organisms. To investigate the mechanisms of carotenoids in high temperature resistance, we observed the immune response of selected pearl oyster Pinctada fucata (Akoya pearl oyster) families with different carotenoids contents to high temperature stress. The results indicated that the survival rate (SR) of P. fucata decreased significantly with increase in temperature from 26 °C to 34 °C and with the decrease of total carotenoids content (TCC); when the TCC was higher, the SR tended to be higher. TCC and total antioxidant capacity (TAC) decreased significantly at 30 °C with increasing stress time. Correlation analysis indicated that TAC was positively and linearly correlated with TCC, and SR was S-type correlated with TCC and TAC. Immune analysis indicated that levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in selected families (with higher TCC) under temperature stress (at 30 °C) were generally significantly lower than in the control group (with lowest TCC) and from 0 to 96 h, the levels of each of these substances varied significantly. Levels of SOD, CAT, and MDA within each family first rose from 0 to 3 h, then decreased to their lowest point after 24 h, and then rose again to their highest levels at 96 h. When TCC was higher, the levels of SOD, CAT, and MDA tended to be lower. These findings indicated that carotenoids play an important role in improving survival rates of P. fucata under high temperature stress by enhancing animals' antioxidant system, and could serve as an index for breeding stress-resistant lines in selective breeding practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The ATLAS online High Level Trigger framework experience reusing offline software components in the ATLAS trigger

    CERN Document Server

    Wiedenmann, W

    2009-01-01

    Event selection in the Atlas High Level Trigger is accomplished to a large extent by reusing software components and event selection algorithms developed and tested in an offline environment. Many of these offline software modules are not specifically designed to run in a heavily multi-threaded online data flow environment. The Atlas High Level Trigger (HLT) framework based on the Gaudi and Atlas Athena frameworks, forms the interface layer, which allows the execution of the HLT selection and monitoring code within the online run control and data flow software. While such an approach provides a unified environment for trigger event selection across all of Atlas, it also poses strict requirements on the reused software components in terms of performance, memory usage and stability. Experience of running the HLT selection software in the different environments and especially on large multi-node trigger farms has been gained in several commissioning periods using preloaded Monte Carlo events, in data taking peri...

  14. Static and kinetic friction of granite at high normal stress

    Science.gov (United States)

    Byerlee, J.D.

    1970-01-01

    Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.

  15. HELCZA-High heat flux test facility for testing ITER EU first wall components.

    Czech Academy of Sciences Publication Activity Database

    Prokůpek, J.; Samec, K.; Jílek, R.; Gavila, P.; Neufuss, S.; Entler, Slavomír

    2017-01-01

    Roč. 124, November (2017), s. 187-190 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] Institutional support: RVO:61389021 Keywords : HELCZA * High heat flux * Electron beam testing * Test facility * Plasma facing components * First wall * Divertora Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 www.sciencedirect.com/science/article/pii/S0920379617302818

  16. Effects of heat from high-level waste on performance of deep geological repository components

    International Nuclear Information System (INIS)

    1984-11-01

    This report discusses the effects of heat on the deep geological repository systems and its different components. The report is focussed specifically on effects due to thermal energy release solely from high-level waste or spent fuel. It reviews the experimental data and theoretical models of the effects of heat both on the behaviour of engineered and natural barriers. A summary of the current status of research and repository development including underground test facilities is presented

  17. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  18. A study of the components of an active substance of high alkaline alkylsalicylate oil additives

    Energy Technology Data Exchange (ETDEWEB)

    Kravchuk, G G; Glavati, O L; Glavati, Ye V; Zhurba, A S

    1981-01-01

    The active substance of aklylsalicylate additives (Pr) MACK, dispersal-1 and AS-6OC (from Shell Oil) is isolated and studied. It is shown that the Pr is provided by the presence of both a neutral salicylate, as well as that of a high alkaline component (colloid CaCtheta/sub 3/, stabilized by salicylate). The free alkylphenols present in the Pr do not deteriorate its quality.

  19. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  20. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    Science.gov (United States)

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Laser rapid forming technology of high-performance dense metal components with complex structure

    Science.gov (United States)

    Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin

    2005-01-01

    Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.

  2. Influence of non-metallic second phases on fatigue behaviour of high strength steel components

    International Nuclear Information System (INIS)

    Gonzalez, L.; Elvira, R.; Garcia de Andoin, A.; Pizarro, R.; Bertrand, C.

    2005-01-01

    To assess the real effect of the inclusion type on fatigue life of ultra clean high strength steels mechanical components made of 100Cr6 steel were fatigue tested and fracture surfaces analysed to determine the origin of fatigue cracks.Two heats proceedings from different steelmaking routes were taken for the tests. The material were forged into ring shape components which were fatigue tested under compression-compression loads. Failures were analysed by SFEM (Scanning field Emission Microscopy), proving that most of failures at high loads were originated by manganese sulphides of small size (10-70 micros), while less than 40% of all fatigue cracks due to inclusions were caused by titanium carbonitrides and hard oxides. It has been demonstrated that once number and size of hard inclusions have been reduced, the hazardous effect of oxides and carbonitrides on the fatigue life decreases also. However, softer inclusions as manganese sulphides, currently considered as less hazardous, play a more relevant role as direct cause of fatigue failure and they should be taken into account in a deeper way in order to balance both machinability and fatigue life requirements in high strength steel components. (Author) 11 refs

  3. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of the elastic-plastic material properties (phase 1). Final report

    International Nuclear Information System (INIS)

    Mirbach, David von

    2014-01-01

    Residual stresses in mechanical components can result in both detrimental but also beneficial effects on the strength and lifetime of the components. The most detailed knowledge of the residual stress state is of advantage or a pre-requisite for the assessment of the component performance. The mechanical methods for residual stress measurement are divided into the groups of non-destructive and destructive methods. Two commonly used mechanical methods for determination of residual stresses are the hole drilling method and the ring core method which can be regarded as semi-destructive methods. In the context of reactor safety research of the German Federal Ministry of Economic and Technology (BMWi) two fundamental and interacting weak points of the hole drilling method as well as of the ring core method, respectively, in order to determine residual stresses are going to be investigated. As a consequence reliability of the methods will be improved in this joint research project. On the one hand there are effects of geometrical boundary conditions of the components and on the other hand there is the influence of plasticity due to notch effects both affecting the released strain field after removing material and after all the calculated residual stresses. The first issue mentioned above is under the responsibility of the Institute of Materials Engineering (Kassel University) and the last one is investigated by Universitaet of Stuttgart-Otto-Graf-Institut - materials testing institute. As a consequence of a successful project the knowledge base will be considerably improved resulting in benefits for various engineering fields. Especially the quantitative consideration of real residual stress states for optimized component designs will be possible and after all the consequences of residual stresses on safety of components which are used in nuclear facilities can be evaluated. The state of art was reground in the first research chapter and the analysed strain gauges where

  4. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  5. Development of high performance scientific components for interoperability of computing packages

    Energy Technology Data Exchange (ETDEWEB)

    Gulabani, Teena Pratap [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achieved by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.

  6. Specification of optical components for a high average-power laser environment

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  7. The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory

    OpenAIRE

    Bradley, Claire; Pearson, Joel

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their...

  8. One-pot multi-component green synthesis of highly substituted piperidines

    Directory of Open Access Journals (Sweden)

    Ravi Bansal

    2017-05-01

    Full Text Available An effective and expeditious method of the synthesis of a highly functionalized piperidines, catalyzed by nontoxic, recyclable and environment friendly sodium lauryl sulfate (SLS, via one-pot multi-component condensation of aldehydes, amines and β-ketoesters in water at room temperature, has been developed. This new protocol has advantages such as moderate to high yields of products obtained after simple post reaction workup. Structure of the synthesized compounds 4a–4j have been elucidated based on the 1H NMR, 13C NMR, FT-IR spectroscopy and elemental analysis.

  9. The sensory components of high-capacity iconic memory and visual working memory

    OpenAIRE

    Claire eBradley; Claire eBradley; Joel ePearson

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their c...

  10. Method and alloys for fabricating wrought components for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thompson, L.D.; Johnson, W.R.

    1983-01-01

    Wrought, nickel-based alloys, suitable for components of a high-temperature gas-cooled reactor exhibit strength and excellent resistance to carburization at elevated temperatures and include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength. The range of compositions of these alloys is given. (author)

  11. Progress of High Heat Flux Component Manufacture and Heat Load Experiments in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Lian, Y.; Xu, Z.; Chen, J.; Chen, L.; Wang, Q.; Duan, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengu (China); Luo, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yan, Q. [University of Science and Technology Beijing, Beijing (China)

    2012-09-15

    Full text: High heat flux components for first wall and divertor are the key subassembly of the present fusion experiment apparatus and fusion reactors in the future. It is requested the metallurgical bonding among the plasma facing materials (PFMs), heat sink and support materials. As to PFMs, ITER grade vacuum hot pressed beryllium CN-G01 was developed in China and has been accepted as the reference material of ITER first wall. Additionally pure tungsten and tungsten alloys, as well as chemical vapor deposition (CVD) W coating are being developed for the aims of ITER divertor application and the demand of domestic fusion devices, and significant progress has been achieved. For plasma facing components (PFCs), high heat flux components used for divertor chamber are being studied according to the development program of the fusion experiment reactor of China. Two reference joining techniques of W/Cu mockups for ITER divertor chamber are being developed, one is mono-block structure by pure copper casting of tungsten surface following by hot iso-static press (HIP), and another is flat structure by brazing. The critical acceptance criteria of high heat flux components are their high heat load performance. A 60 kW Electron-beam Material testing Scenario (EMS-60) has been constructed at Southwestern Institute of Physics (SWIP),which adopts an electron beam welding gun with maximum energy of 150 keV and 150 x 150 mm{sup 2} scanning area by maximum frame rate of 30 kHz. Furthermore, an Engineering Mockup testing Scenario (EMS-400) facility with 400 kW electron-beam melting gun is under construction and will be available by the end of this year. After that, China will have the comprehensive capability of high heat load evaluation from PFMs and small-scale mockups to engineering full scale PFCs. A brazed W/CuCrZr mockup with 25 x 25 x 40 mm{sup 3} in dimension was tested at EMS-60. The heating and cooling time are 10 seconds and 15 seconds, respectively. The experiment

  12. Convergence of PASTA kinase and two-component signaling in response to cell wall stress in Enterococcus faecalis.

    Science.gov (United States)

    Kellogg, Stephanie L; Kristich, Christopher J

    2018-04-09

    Two common signal transduction mechanisms used by bacteria to sense and respond to changing environments are two-component systems (TCSs) and eukaryotic-like Ser/Thr kinases and phosphatases (eSTK/Ps). Enterococcus faecalis is a Gram-positive bacterium and serious opportunistic pathogen that relies on both a TCS and an eSTK/P pathway for intrinsic resistance to cell wall-targeting antibiotics. The TCS consists of a histidine kinase (CroS) and response regulator (CroR) that become activated upon exposure of cells to cell wall-targeting antibiotics, leading to modulation of gene expression. The eSTK/P pathway consists of a transmembrane kinase (IreK) and its cognate phosphatase (IreP), which act antagonistically to mediate antibiotic resistance through an unknown mechanism. Because both CroS/R and IreK/P contribute to enterococcal resistance towards cell wall-targeting antibiotics, we hypothesized these signaling systems are intertwined. To test this hypothesis, we analyzed CroR phosphorylation and CroS/R-dependent gene expression to probe the influence of IreK and IreP on CroS/R signaling. In addition, we analyzed the phosphorylation state of CroS which revealed IreK-dependent phosphorylation of a Thr residue important for CroS function. Our results are consistent with a model in which IreK positively influences CroR-dependent gene expression through phosphorylation of CroS to promote antimicrobial resistance in E. faecalis Importance Two-component signaling systems (TCSs) and eukaryotic-like Ser/Thr kinases (eSTKs) are used by bacteria to sense and adapt to changing environments. Understanding how these pathways are regulated to promote bacterial survival is critical for a more complete understanding of bacterial stress responses and physiology. The opportunistic pathogen Enterococcus faecalis relies on both a TCS (CroS/R) and an eSTK (IreK) for intrinsic resistance to cell wall-targeting antibiotics. We probed the relationship between CroS/R and IreK, revealing

  13. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    Science.gov (United States)

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition

  14. Design and component specifications for high average power laser optical systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  15. Design and component specifications for high average power laser optical systems

    International Nuclear Information System (INIS)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs

  16. Effect of Drought Stress at Different Growth Stages on Yield and Yield Components of Six Rice (Oryza sativa L. Genotypes

    Directory of Open Access Journals (Sweden)

    Sharifunnessa Moonmoon

    2017-12-01

    Full Text Available Drought stress affects plant growth and development and ultimately, reduced grain yield of rice. But stress at different growth stages may respond differently which is still unclear. Therefore, a pot experiment was carried out with six rice genotypes to determine the critical growth stage where drought stress effect on yield reduction and to find stress tolerance mechanism in rice genotypes. Drought stress (control i.e. no stress and 40% field capacity, FC was imposed on Binadhan-13, Kalizira, BRRI dhan34, Ukunimodhu, RM-100-16 and NERICA mutant rice genotypes at maximum tillering, panicle initiation and grain filling stages and discontinued when the specific stage was over. The experiment was laid out in a complete randomized design with three replications. Drought stress affected number of effective tiller hill-1, number of spikelets panicle-1, filled grains hill-1, 1000-grain weight and grain yield. Binadhan-13 produced the highest grain yield and the lowest sterility under drought stress at grain filling stage. Percentage of spikelet sterility increased under drought stress (40% FC especially at the panicle initiation stage resulting low grain yield. Among the tested genotypes Binadhan-13 performed well by reducing spikelet sterility under drought stress condition. For 1000-grain weight and grain yield, grain filling stage was found more crucial. From the current research, drought tolerance mechanism was found in genotypes Binadhan-13 and NERICA mutant. [Fundam Appl Agric 2017; 2(3.000: 285-289

  17. Academic stress levels were positively associated with sweet food consumption among Korean high-school students.

    Science.gov (United States)

    Kim, Yeonsoo; Yang, Hye Young; Kim, Ae-Jung; Lim, Yunsook

    2013-01-01

    The objectives of the present study were to identify the association among levels of persistent academic stress, appetite, and dietary habits and to determine the specific types of sweet foods consumed by Korean high-school students according to their academic stress levels. The study participants included 333 high-school students in the 10th to 12th grades in Kyunggi Province, Korea. The level of academic stress was scored with a 75-item academic stress scale and was categorized as high, medium, or low. A food-frequency questionnaire was used to measure the sugar intake from sweet foods. Korean high-school students with a high academic stress level had larger meals than the other students. Compared with students with low academic stress, the students with high academic stress had a higher frequency of sugar intake from the following food types: confectionaries, candies and chocolates, breads, and flavored milk. Moreover, compared with students with low academic stress, the students with high academic stress had a higher total intake of sugar from the following food types: confectionaries, candies, chocolates, flavored milk, traditional Korean beverages, and spicy, sweet, and fried rice cakes. Unhealthy stress-related food choices may compromise high-school students' health and contribute to their morbidity. The findings of the present study could be used to help nutritionists develop effective strategies for nutritional education and counseling to improve adolescent health. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Calculation of the TeV prompt muon component in very high energy cosmic ray showers

    International Nuclear Information System (INIS)

    Battistoni, G.; Bloise, C.; Forti, C.; Tanzini, A.

    1995-07-01

    HEMAS-DPM is a Monte Carlo for the simulation of very high energy cosmic ray showers, which includes the DPMJET-II code based on the two component Dual Parton Model. DPMJET-II provides also charm production in agreement with data and, for p exceeding 5 GeV/c, with perturbative QCD results in hadron-nucleus and nucleus-nucleus interactions. In this respect, a new scheme has been considered for the inclusive production of D mesons at large p in hadronic collisions in the frame work of perturbative fragmentation functions, allowing an analysis at the NLO (next to leading order) level which goes beyond the fixed O(α s 3 ) perturbative theory of open charm production. HEMAS-DPM has been applied to the calculation of the prompt muon component for E μ ≥1 TeV in air showers considering the two extreme cases of primary protons and Fe nuclei

  19. A Cure for Variance Inflation in High Dimensional Kernel Principal Component Analysis

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2011-01-01

    Small sample high-dimensional principal component analysis (PCA) suffers from variance inflation and lack of generalizability. It has earlier been pointed out that a simple leave-one-out variance renormalization scheme can cure the problem. In this paper we generalize the cure in two directions......: First, we propose a computationally less intensive approximate leave-one-out estimator, secondly, we show that variance inflation is also present in kernel principal component analysis (kPCA) and we provide a non-parametric renormalization scheme which can quite efficiently restore generalizability in kPCA....... As for PCA our analysis also suggests a simplified approximate expression. © 2011 Trine J. Abrahamsen and Lars K. Hansen....

  20. Existence of a component corotating with the earth in high-latitude disturbance magnetic fields

    Science.gov (United States)

    Suzuki, A.; Kim, J. S.; Sugiura, M.

    1982-01-01

    A study of the data from the high-latitude North American IMS network of magnetic stations suggests that there is a component in substorm perturbations that corotates with the earth. It is as yet not certain whether the existence of this component stems from the corotation of a part of the magnetospheric plasma involved in the substorm mechanism or if it is a 'phase change' resulting from the control of the substorm manifestations by the earth's main magnetic field which is not axially symmetric. There are other geophysical phenomena showing a persistence of longitudinal variations corotating with the earth. These phenomena are of significance for a better understanding of ionosphere-magnetosphere coupling.

  1. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  2. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    International Nuclear Information System (INIS)

    McGrath, R.T.; Yamashina, T.

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition

  3. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  4. Determination of dose components in mixed gamma neutron fields by use of high pressure ionization chambers

    International Nuclear Information System (INIS)

    Golnik, N.; Pliszczynski, T.; Wysocka, A.; Zielczynski, M.

    1985-01-01

    The two ionization chamber method for determination of dose components in mixed γ-neutron field has been improved by increasing gas pressure in the chambers up to some milions pascals. Advantages of high pressure gas filling are the followings: 1) significant reduction of the ratio of neutron-to gamma sensitivity for the hydrogen-free chamber, 2) possibility of sensitivity correction for both chambers by application of appropriate voltage, 3) high sensitivity for small detectors. High-pressure, pen-like ionization chambers have been examined in fields of different neutron sources: a TE-chamber, filled with 0.2 MPa of quasi-TE-gas and a conductive PTFE chamber, filled with 3.1 MPa of CO 2 . The ratio of neutron-to-gamma sensitivity for the PTFE chamber, operated at electrical field strength below 100 V/cm, has not exceeded 0.01 for neutrons with energy below 8 MeV. Formula is presented for calculation of this ratio for any high-pressure, CO 2 -filled ionization chamber. Contribution of gamma component to total tissue dose in the field of typical neutron sources has been found to be 3 to 70%

  5. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of the elastic-plastic material properties (Phase 2). Final report

    International Nuclear Information System (INIS)

    Mirbach, David von

    2015-01-01

    Residual stresses in mechanical components can result in both detrimental but also beneficial effects on the strength and lifetime of the components. The most detailed knowledge of the residual stress state is of advantage or a pre-requisite for the assessment of the component performance. Two commonly used methods for determination of residual stresses are the hole drilling method and the ring core method which can be regarded to the mechanical methods. In the context of reactor safety research of the German Federal Ministry of Economic and Energy (BMWi) two fundamental and interacting weak points of the hole drilling method as well as of the ring core method, respectively, in order to determine residual stresses are going to be investigated. As a consequence reliability of the methods will be improved in this joint research project. On the one hand there are effects of geometrical boundary conditions of the components and on the other hand there is the influence of plasticity due to notch effects both affecting the released strain field after removing material and after all the calculated residual stresses. The first issue mentioned above is under the responsibility of the Institute of Materials Engineering (Kassel University) and the last one is investigated by materials testing institute university Stuttgart. As a consequence of a successful project the knowledge base will be considerably improved resulting in benefits for various engineering fields. Especially the quantitative consideration of real residual stress states for optimized component designs will be possible and after all the consequences of residual stresses on safety of components which are used in nuclear facilities can be evaluated. In this second experimental research chapter (phase 2) the findings of the first numerical and theoretical research chapter (phase 1) where proofed. The developed differential calculation method with the method of adaptive calibration functions were compared with the

  6. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  7. Adverse effect of high migration stress on mental health during pregnancy: a case report.

    Science.gov (United States)

    Lecompte, Vanessa; Richard-Fortier, Zoé; Rousseau, Cécile

    2017-02-01

    Despite empirical evidence on the numerous consequences associated with high migration stress and mental health problems during pregnancy, a psychosocial stress assessment is rarely done, leaving it largely unaddressed. This case illustration sheds light on the common multiple risk factors related to migration stress that have to be taken into consideration when addressing perinatal mental health, and highlights the importance of obstetric appointments as a unique opportunity to assess psychosocial stress and mobilize interdisciplinary interventions.

  8. Assessment of Reynolds stress components and turbulent pressure loss using 4D flow MRI with extended motion encoding.

    Science.gov (United States)

    Haraldsson, Henrik; Kefayati, Sarah; Ahn, Sinyeob; Dyverfeldt, Petter; Lantz, Jonas; Karlsson, Matts; Laub, Gerhard; Ebbers, Tino; Saloner, David

    2018-04-01

    To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P Reynolds stress (P Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  10. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  11. Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Arnaud Tauffenberger

    2014-05-01

    Full Text Available Glucose is a major energy source and is a key regulator of metabolism but excessive dietary glucose is linked to several disorders including type 2 diabetes, obesity and cardiac dysfunction. Dietary intake greatly influences organismal survival but whether the effects of nutritional status are transmitted to the offspring is an unresolved question. Here we show that exposing Caenorhabditis elegans to high glucose concentrations in the parental generation leads to opposing negative effects on fecundity, while having protective effects against cellular stress in the descendent progeny. The transgenerational inheritance of glucose-mediated phenotypes is dependent on the insulin/IGF-like signalling pathway and components of the histone H3 lysine 4 trimethylase complex are essential for transmission of inherited phenotypes. Thus dietary over-consumption phenotypes are heritable with profound effects on the health and survival of descendants.

  12. Phenome data - High-sugar stress - DGBY | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...s.zip File size: 90KB File name: Original file: High-sugar_stress.xls File URL: ftp://ftp.biosciencedbc.jp/archive/dgby/LATEST/Hi... Center for Protein Sequences) About This Database Database Description Download License Update History of Thi...s Database Site Policy | Contact Us Phenome data - High-sugar stress - DGBY | LSDB Archive ... ...List Contact us DGBY Phenome data - High-sugar stress Data detail Data name Phenome data - High-sugar stress

  13. Thermal fatigue equipment to test joints of materials for high heat flux components

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Orsini, A.; Riccardi, B.; Sacchetti, M.

    2000-01-01

    The activity, carried out in the framework of an ITER divertor task, was aimed at defining a suitable method in order to qualify junctions between armour materials and heat sink of plasma-facing components (PFCs) mock-ups. An equipment able to perform thermal fatigue testing by electrical heating and active water-cooling was constructed and a standard for the sample was defined. In this equipment, during operation cycles, two samples are heated by thermal contact up to a relevant temperature value (350 deg. C) and then the water flow is switched on, thus producing fast cooling with time constants and gradients close to the real operating conditions. The equipment works with a test cycle of about 60 s and is suitable for continuous operation. A complete test consists of about 10000 cycles. After the assembling, the equipment and the control software were optimized to obtain a good reliability. Preliminary tests on mock-ups with flat CFC tiles joined to copper heat sink were performed. Finite-elements calculations were carried out in order to estimate the value of the thermal stresses arising close to the joint under the transient conditions that are characteristic of this equipment

  14. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  15. Surrounding rock stress analysis of underground high level waste repository

    International Nuclear Information System (INIS)

    Liu Wengang; Wang Ju; Wang Guangdi

    2006-01-01

    During decay of nuclear waste, enormous energy was released, which results in temperature change of surrounding rock of depository. Thermal stress was produced because thermal expansion of rock was controlled. Internal structure of surrounding rock was damaged and strength of rock was weakened. So, variation of stress was a dynamic process with the variation of temperature. BeiShan region of Gansu province was determined to be the depository field in the future, it is essential to make research on granite in this region. In the process of experiment, basic physical parameters of granite were analyzed preliminary with MTS. Long range temperature and stress filed was simulated considering the damage effect of surrounding rock, and rules of temperature and stress was achieved. (authors)

  16. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik

    2005-01-01

    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  17. Is China only assembling parts and components?: the recent spurt in high tech industry

    Directory of Open Access Journals (Sweden)

    Marcelo José Braga Nonnenberg

    2012-08-01

    Full Text Available The purpose of this paper is to evaluate to which degree China is climbing up the technology ladder and increasing its domestic content in high tech industry. More specifically, we will assess whether China has increased its share in world trade of high tech goods and, at the same time, increased its domestic content, changing its role from a mere final assembler to a producer of more intense technology goods. We have built an indicator of domestic value added calculated as the difference between exports of final goods and imports of its parts and components. The main conclusion is that this measure has increased significantly since the early 1990ís, putting in evidence the profound changes that occurred in Chinaís high tech exports in the last two decades.

  18. High frequent modelling of a modular multilevel converter using passive components

    DEFF Research Database (Denmark)

    El-Khatib, Walid Ziad; Holbøll, Joachim; Rasmussen, Tonny Wederberg

    2013-01-01

    ). This means that a high frequency model of the converter has to be designed, which gives a better overview of the impact of high frequency transients etc. The functionality of the model is demonstrated by application to grid connections of off-shore wind power plants. Grid connection of an offshore wind power...... wind power plant employing HVDC. In the present study, a back to back HVDC transmission system is designed in PSCAD/EMTDC. Simulations and results showing the importance of high frequent modeling are presented....... plant using HVDC fundamentally changes the electrical environment for the power plant. Detailed knowledge and understanding of the characteristics and behavior of all relevant power system components under all conditions, including under transients, are required in order to develop reliable offshore...

  19. Microstructural investigation of vintage pipeline steels highly susceptible to stress corrosion cracking

    Science.gov (United States)

    Torres, Monica

    The use of pipelines for the transmission of gas offers not only efficiency, but a number of economic advantages. Nevertheless, pipelines are subject to aggressive operating conditions and environments which can lead to in-service degradation [1] and thus to failures. These failures can have catastrophic consequences, such as environmental damage and loss of life [2]. One of the most dangerous threats to pipeline integrity is stress corrosion cracking (SCC). Despite the substantial progress that has been achieved in the field, due to the complex nature of this phenomenon there is still not a complete understanding of this form of external corrosion. This makes its detection and prevention a challenge and therefore a risk to pipeline integrity, and most importantly, to the safety of the population. SCC cracks are the result of the interaction between a corrosive environment, applied stresses, and a susceptible microstructure. To date, what defines a susceptible microstructure remains ambiguous, as SCC has been observed in a range of steel grades, microstructures, chemical composition, and grain sizes. Therefore, in order to be able to accurately predict and prevent this hazardous form of corrosion, it is imperative to advance our knowledge on the subject and gain a better understanding on the microstructural features of highly susceptible pipeline materials, especially in the subsurface zone where crack nucleation must take place. Therefore, a microstructural characterization of the region near the surface layer was carried-out utilizing TEM. TEM analysis revealed the dislocation character, ferrite morphology, and apparent carbide precipitation in some grain boundaries. Furthermore, light microscopy, SEM, and hardness testing were performed to expand our knowledge on the microscopical features of highly SCC susceptible service components. This investigation presents a new approach to SCC characterization, which exposed the sub-surface region microscopical

  20. The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J-M. [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Kavelaars, J. J. [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Gladman, B. J.; Van Laerhoven, C.; Lawler, S. M. [Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC (Canada); Jones, R. L. [Department of Astronomy, University of Washington, Seattle, WA (United States); Parker, J. Wm.; Bieryla, A. [Planetary Science Directorate, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Pike, R. E. [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Nicholson, P. [Cornell University, Space Sciences Building, Ithaca, NY 14853 (United States); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-01

    The High Ecliptic Latitude (HiLat) extension of the Canada–France Ecliptic Plane Survey (CFEPS), conducted from 2006 June to 2009 July, discovered a set of Trans-Neptunian objects (TNOs) that we report here. The HiLat component was designed to address one of the shortcomings of ecliptic surveys (like CFEPS), their low sensitivity to high-inclination objects. We searched 701 deg{sup 2} of sky ranging from 12° to 85° ecliptic latitude and discovered 24 TNOs, with inclinations between 15° and 104°. This survey places a very strong constraint on the inclination distribution of the hot component of the classical Kuiper Belt, ruling out any possibility of a large intrinsic fraction of highly inclined orbits. Using the parameterization of Brown, the HiLat sample combined with CFEPS imposes a width 14° ≤  σ  ≤ 15.°5, with a best match for σ  = 14.°5. HiLat discovered the first retrograde TNO, 2008 KV{sub 42}, with an almost polar orbit with inclination 104°, and (418993) = 2009 MS{sub 9}, a scattering object with perihelion in the region of Saturn’s influence, with a  ∼ 400 au and i  = 68°.

  1. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  2. An approach to development of structural design criteria for highly irradiated core components

    International Nuclear Information System (INIS)

    Nelson, D.V.

    1980-01-01

    The advent of the fast breeder reactor presents novel challenges in structural design and materials engineering. For instance, the core components of these reactors experience high energy neutron irradiation at elevated temperature, which causes significant time-dependent changes in material behaviour, such as a progressive loss of ductility. New structural design criteria are needed to extend elevated temperature design-by-analysis to account for these changes. Alloys best able to cope with the demands of the core operating environment are being explored and their structural behaviour characterized. The purpose of this paper is to illustrate an approach used in the development of core component structural design criteria. To do this, several design rules, plus brief rationale, from draft RDT Standards F9-7, -8 and -9 will be presented. These recently completed standards ('Structural Design Guidelines for Breeder Reactor Core Components') were prepared for the U.S. Department of Energy and represent a consensus among most organizations participating in the U.S. breeder program. (author)

  3. High temperature testing - a contribution to alloy development, alloy qualification and simulation of component Loading

    International Nuclear Information System (INIS)

    Scholz, A.; Schwienheer, M.; Mueller, F.; Linn, S.; Schein, M.; Walther, C.; Berger, C.

    2007-01-01

    In parallel to continued developments of steam and gas turbines as well as traffic engineering machines on the one hand, and marginal conditions like low specific fuel consumption and sufficient environment-friendliness on the other hand, the aim of improving the degree of efficiency by augmenting process parameters such as temperature and pressure is being followed. These efforts impact especially components of thermic machines and facilities subject to high thermal and mechanic exposure. Still largely unexplored is the interaction between microstructure characteristics determined through chemical composition, production processes and heat treatment, changes in the microstructure due to multiaxial load and the time-dependent deformation and stability resulting hereof. With regard to this background, improved methods of material properties determination, their modelling and transfer on the component enable to optimize wall thicknesses and degrees of efficiency. In the course of evaluation of static and cyclic material properties carried out also on faulty specimens, uncertainties occur which can originate from the testing process and analysis, as well as being influenced by the material itself and its process of production. Altogether, the demand for reliable determination of material properties and methods of scatterband treatment and their mathematical-statistical evaluation is in business. For simulation, consistent material datasets that describe the complex interaction between temperature, period of exposure and type of exposure are needed. Summarizing, the tasks dealt with qualify the entire process from production to the operational behaviour of components. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [de

  4. Pyrochemical separation of radioactive components from inert materials in ICPP high-level calcined waste

    International Nuclear Information System (INIS)

    Del Debbio, J.A.; Nelson, L.O.; Todd, T.A.

    1995-05-01

    Since 1963, calcination of aqueous wastes from reprocessing of DOE-owned spent nuclear fuels has resulted in the accumulation of approximately 3800 m 3 of high-level waste (HLW) at the Idaho Chemical Processing Plant (ICPP). The waste is in the form of a granular solid called calcine and is stored on site in stainless steel bins which are encased in concrete. Due to the leachability of 137 Cs and 90 Sr and possibly other radioactive components, the calcine is not suitable for final disposal. Hence, a process to immobilize calcine in glass is being developed. Since radioactive components represent less than 1 wt % of the calcine, separation of actinides and fission products from inert components is being considered to reduce the volume of HLW requiring final disposal. Current estimates indicate that compared to direct vitrification, a volume reduction factor of 10 could result in significant cost savings. Aqueous processes, which involve calcine dissolution in nitric acid followed by separation of actinide and fission products by solvent extraction and ion exchange methods, are being developed. Pyrochemical separation methods, which generate small volumes of aqueous wastes and do not require calcine dissolution, have been evaluated as alternatives to aqueous processes. This report describes three proposed pyrochemical flowsheets and presents the results of experimental studies conducted to evaluate their feasibility. The information presented is a consolidation of three reports, which should be consulted for experimental details

  5. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  6. Experience feedback from high heat flux component manufacturing for Tore Supra

    International Nuclear Information System (INIS)

    Schlosser, J.; Durocher, A.; Huber, T.; Garin, P.; Schedler, B.; Agarici, G.

    2001-01-01

    Tore Supra is involved in flat tile carbon armoured plasma facing components (PFCs) since 1985. In 1997, a third generation of components, based on the original concept developed with Plansee Company, called active metal casting (AMC[reg]), has been launched. Since 1998, 660 elementary components for the toroidal pump limiter (TPL) are in production. The route of the manufacture is rather complex and many controls were requested all along the fabrication to insure a high reliability of the elements. One of the main controls is the final infrared (IR) test allowing to determine the quality of the bonding between the carbon fibre composite (CFC) tiles and the heat sink made of copper-chromium-zirconium alloy (CuCrZr). Although results for the first batch of elements were as expected (less than 5% rejected at the final test), unexpected defects appeared with the followings batches. Investigations on the fabrication processes underlined the importance of having a better heat treatment of the pieces in copper alloy (CuCrZr), however this was not sufficient to completely explain the observed defects

  7. High-throughput screening for bioactive components from traditional Chinese medicine.

    Science.gov (United States)

    Zhu, Yanhui; Zhang, Zhiyun; Zhang, Meng; Mais, Dale E; Wang, Ming-Wei

    2010-12-01

    Throughout the centuries, traditional Chinese medicine has been a rich resource in the development of new drugs. Modern drug discovery, which relies increasingly on automated high throughput screening and quick hit-to-lead development, however, is confronted with the challenges of the chemical complexity associated with natural products. New technologies for biological screening as well as library building are in great demand in order to meet the requirements. Here we review the developments in these techniques under the perspective of their applicability in natural product drug discovery. Methods in library building, component characterizing, biological evaluation, and other screening methods including NMR and X-ray diffraction are discussed.

  8. Backward elastic p3He-scattering and high momentum components of 3He wave function

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.

    1998-01-01

    It is shown that owing to a dominance of np-pair transfer mechanism of backward elastic p 3 He-scattering for incident proton kinetic energies T p > 1 GeV the cross section of this process is defined mainly by the values of the Faddeev component of the wave function of 3 He nucleus, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ∼ 0 - 0.2 GeV/c

  9. Development of high thermal flux components for continuous operation in Tokamaks

    International Nuclear Information System (INIS)

    Schlosser, J.; Chappuis, P.; Coston, J.F.; Deschamps, P.; Lipa, M.

    1991-01-01

    High heat flux plasma facing components are under development and appropriate experimental evaluations have been carried out in order to operate during cycles of several hundred seconds. In Tore Supra, a large tokamak with a plasma nominal duration in excess of 30 seconds, solutions are tested that could be later applied to the NET/ITER tokamak, where peaked heat flux values of 15 MW/m 2 on the divertor plates are foreseen. The proposed concept is a swirl square tube design protected with brazed CFC flat tiles. Development programs and validation tests are presented. The tests results are compared with calculations

  10. Field-theoretic model of Harari's two component phenomenological theory of high energy hadron scattering

    International Nuclear Information System (INIS)

    Dymski, T.C.

    1976-01-01

    For high energy scattering of pseudoscalar particles on spin 1 / 2 particles, the transition amplitude (for a given signature) is constructed as an infinite sum over spin of boson exchange graphs of the Feynman type, each of which has impact parameters up to some value R completely removed. This amplitude is advanced as a field theoretic realization of the nondiffractive component of Harari's dual absorption model. Comparing with π/sup +-/p→π/sup +-/p and π - p→π 0 n data shows that the imaginary parts of both helicity amplitudes are excellent, for either signature

  11. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components

    Science.gov (United States)

    Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.

    2017-07-01

    It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.

  12. Future needs for inelastic analysis in design of high-temperature nuclear plant components

    International Nuclear Information System (INIS)

    Corum, J.M.

    1980-01-01

    The role that inelastic analyses play in the design of high-temperature nuclear plant components is described. The design methodology, which explicitly accounts for nonlinear material deformation and time-dependent failure modes, requires a significant level of realism in the prediction of structural response. Thus, material deformation and failure modeling are, along with computational procedures, key parts of the methodology. Each of these is briefly discussed along with validation by comparisons with benchmark structural tests, and problem areas and needs are discussed for each

  13. Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress

    Science.gov (United States)

    Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.

    2013-06-01

    The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.

  14. Effect of prior machining deformation on the development of tensile residual stresses in weld-fabricated nuclear components

    International Nuclear Information System (INIS)

    Prevey, P.S.; Mason, P.W.; Hornbach, D.J.; Molkenthin, J.P.

    1996-01-01

    Austenitic alloy weldments in nuclear systems may be subject to stress-corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x-ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside-diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line-broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside-diameter surface in a narrow region adjacent to the weld heat-affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding

  15. Testing of high heat flux components manufactured by ENEA for ITER divertor

    International Nuclear Information System (INIS)

    Visca, Eliseo; Escourbiac, F.; Libera, S.; Mancini, A.; Mazzone, G.; Merola, M.; Pizzuto, A.

    2009-01-01

    ENEA is involved in the International Thermonuclear Experimental Reactor (ITER) R and D activities and in particular in the manufacturing of high heat flux plasma-facing components, such as the divertor targets. During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and HIPping. A new manufacturing process that combines two main techniques PBC (Pre-Brazed Casting) and the HRP (Hot Radial Pressing) has been set up and widely tested. A full monoblock medium scale vertical target, having a straight CFC armoured part and a curved W armoured part, was manufactured using this process. The ultrasonic method was used for the non-destructive examinations performed during the manufacturing of the component, from the monoblock preparation up to the final mock-up assembling. The component was also examined by thermography on SATIR facility (CEA, France), afterwards it was thermal fatigue tested at FE200 (200 kW electron beam facility, CEA/AREVA France). The successful results of the thermal fatigue testing performed according the ITER requirements (10 MW/m 2 , 3000 cycles of 10 s on both CFC and W part, then 20/15 MW/m 2 , 2000 cycles of 10 s on CFC/W part, respectively) have confirmed that the developed process can be considerate a candidate for the manufacturing of monoblock divertor components. Furthermore, a 35-MW/m 2 Critical Heat Flux was measured at relevant thermal-hydraulics conditions at the end of the testing campaign. This paper reports the manufacturing route, the thermal fatigue testing results, the pre and post non-destructive examination and the destructive examination performed on the ITER vertical target medium scale mock-up. These activities were performed in the frame of EFDA contracts (04-1218 with CEA, 93-851 JN with AREVA and 03-1054 with ENEA).

  16. Application of tungsten-fibre-reinforced copper matrix composites to a high-heat-flux component: A design study by dual scale finite element analysis

    International Nuclear Information System (INIS)

    Jeong-Ha You

    2006-01-01

    According to the European Power Plant Conceptual Study, actively cooled tungsten mono-block is one of the divertor design options for fusion reactors. In this study the coolant tube acts as a heat sink and the tungsten block as plasma-facing armour. A key material issue here is how to achieve high temperature strength and high heat conductivity of the heat sink tube simultaneously. Copper matrix composite reinforced with continuous strong fibres has been considered as a candidate material for heat sink of high-heat-flux components. Refractory tungsten wire is a promising reinforcement material due to its high strength, winding flexibility and good interfacial wetting with copper. We studied the applicability of tungsten-fibre-reinforced copper matrix composite heat sink tubes for the tungsten mono-block divertor by means of dual-scale finite element analysis. Thermo-elasto-plastic micro-mechanics homogenisation technique was applied. A heat flux of 15 MW/m 2 with cooling water temperature of 320 o C was considered. Effective stress-free temperature was assumed to be 500 o C. Between the tungsten block and the composite heat sink tube interlayer (1 mm thick) of soft Cu was inserted. The finite element analysis yields the following results: The predicted maximum temperature at steady state is 1223 o C at the surface and 562 o C at the interface between tube and copper layer. On the macroscopic scale, residual stress is generated during fabrication due to differences in thermal expansion coefficients of the materials. Strong compressive stress occurs in the tungsten block around the tube while weak tensile stress is present in the interlayer. The local and global probability of brittle failure of the tungsten block was also estimated using the probabilistic failure theories. The thermal stresses are significantly decreased upon subsequent heat flux loading. Resolving the composite stress on microscopic scale yields a maximum fibre axial stress of 3000 MPa after

  17. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    International Nuclear Information System (INIS)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K.

    1995-01-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress

  18. Notch size effects on high cycle fatigue limit stress of Udimet 720

    International Nuclear Information System (INIS)

    Ren Weiju; Nicholas, Theodore

    2003-01-01

    Notch size effects on the high cycle fatigue (HCF) limit stress of Ni-base superalloy Udimet 720 were investigated on cylindrical specimens with three notch sizes of the same stress concentration factor K t =2.74. The HCF limit stress corresponding to a life of 10 6 cycles was experimentally determined at a stress ratio of 0.1 and a frequency of 25 Hz at room temperature. The stresses were calculated using finite element analysis (FEA) and the specimens analyzed using scanning electron microscopy (SEM). Test results show that at the same K t value, notch size can slightly affect the HCF limit stress of U720 when notch root plasticity occurs. FEA and SEM results reveal that the notch size effects are influenced by a complicated combination of the stress and plastic strain fields at the notch tip, the nominal stress, and the effects of prior plastic deformation on fatigue crack initiation

  19. Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity

    Directory of Open Access Journals (Sweden)

    Ch. Cherif

    2018-03-01

    Full Text Available A stable and reproducible bi-component melt spinning process on an industrial scale incorporating Phase Change Material (PCM into textile fibres has been successfully developed and carried out using a melt spinning machine. The key factor for a successful bi-component melt spinning process is that a deep insight into the thermal and rheological behaviour of PCM using Difference Scanning Calorimetry (DSC, Thermogravimetric Analysis (TGA, and an oscillatory rheological investigation. PCM is very sensitive to the temperature and residence time of the melt spinning process. It is found that the optimal process temperature of PCM is 210 °C. The textile-physical properties and the morphology of the melt spun and further drawn bi-component core and sheath fibres (bico fibres were investigated and interpreted. The heat capacities of PCM incorporated in bico fibres were also determined by means of DSC. The melt spun bico fibres integrating PCM provide a high latent heat of up to 22 J/g, which is three times higher than that of state-of-the-art fibres, which were also obtained using the melt spinning process. Therefore, they have the potential to be used as smart polymer fibres for textile and other technical applications.

  20. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Analysis model of dissimilar metal weld joint applied post weld heat treatment (PWHT)

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  1. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques

    DEFF Research Database (Denmark)

    Tuenter, A.; Selwaness, M.; Arias Lorza, A.

    2016-01-01

    estimating equations analysis, adjusting for age, sex and carotid wall thickness. RESULTS: The study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log......BACKGROUND AND AIMS: Carotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque...... formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons. METHODS: Participants (n = 74) from the population-based Rotterdam...

  2. Fabrication and characterization of powder metallurgy tantalum components prepared by high compaction pressure technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmoo [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Agency for Defense Development, Yuseong, P.O. Box 35, Yuseong-gu, Daejeon 34186, Republic of Korea. (Korea, Republic of); Lee, Dongju [Korea Atomic Energy Research Institute, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Hwang, Jaewon [Samsung Electronics, 129 Samsung-ro, Youngtong-gu, Suwon 16677 (Korea, Republic of); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Hong, Soon Hyung, E-mail: shhong@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-04-15

    The present study has investigated the consolidation behaviors of tantalum powders during compaction and sintering, and the characteristics of sintered components. For die compaction, the densification behaviors of the powders are simulated by finite element analyses based on the yield function proposed by Shima and Oyane. Accordingly, the green density distribution for coarser particles is predicted to be more uniform because they exhibits higher initial relative tap density owing to lower interparticle friction. It is also found that cold isostatic pressing is capable of producing higher dense compacts compared to the die pressing. However, unlike the compaction behavior, the sintered density of smaller particles is found to be higher than those of coarser ones owing to their higher specific surface area. The maximum sintered density was found to be 0.96 of theoretical density where smaller particles were pressed isostatically at 400 MPa followed by sintering at 2000 °C. Moreover, the effects of processing conditions on grain size and texture were also investigated. The average grain size of the sintered specimen is 30.29 μm and its texture is less than 2 times random intensity. Consequently, it is concluded that the higher pressure compaction technique is beneficial to produce high dense and texture-free tantalum components compared to hot pressing and spark plasma sintering. - Highlights: • Higher Ta density is obtained from higher pressure and sintering temperature. • High compaction method enables P/M Ta to achieve the density of 16.00 g·cm{sup −3}. • A P/M Ta component with fine microstructure and random orientation is developed.

  3. Rationale and study protocol for a multi-component Health Information Technology (HIT) screening tool for depression and post-traumatic stress disorder in the primary care setting.

    Science.gov (United States)

    Biegler, Kelly; Mollica, Richard; Sim, Susan Elliott; Nicholas, Elisa; Chandler, Maria; Ngo-Metzger, Quyen; Paigne, Kittya; Paigne, Sompia; Nguyen, Danh V; Sorkin, Dara H

    2016-09-01

    The prevalence rate of depression in primary care is high. Primary care providers serve as the initial point of contact for the majority of patients with depression, yet, approximately 50% of cases remain unrecognized. The under-diagnosis of depression may be further exacerbated in limited English-language proficient (LEP) populations. Language barriers may result in less discussion of patients' mental health needs and fewer referrals to mental health services, particularly given competing priorities of other medical conditions and providers' time pressures. Recent advances in Health Information Technology (HIT) may facilitate novel ways to screen for depression and other mental health disorders in LEP populations. The purpose of this paper is to describe the rationale and protocol of a clustered randomized controlled trial that will test the effectiveness of an HIT intervention that provides a multi-component approach to delivering culturally competent, mental health care in the primary care setting. The HIT intervention has four components: 1) web-based provider training, 2) multimedia electronic screening of depression and PTSD in the patients' primary language, 3) Computer generated risk assessment scores delivered directly to the provider, and 4) clinical decision support. The outcomes of the study include assessing the potential of the HIT intervention to improve screening rates, clinical detection, provider initiation of treatment, and patient outcomes for depression and post-traumatic stress disorder (PTSD) among LEP Cambodian refugees who experienced war atrocities and trauma during the Khmer Rouge. This technology has the potential to be adapted to any LEP population in order to facilitate mental health screening and treatment in the primary care setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. High-resolution endovaginal MR imaging in stress urinary incontinence

    Energy Technology Data Exchange (ETDEWEB)

    Stoker, Jaap; Lameris, Johan S. [Department of Radiology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE, Amsterdam (Netherlands); Rociu, Elena [Department of Radiology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE, Amsterdam (Netherlands); Department of Radiology, Erasmus Medical Center, 3015 GD, Rotterdam (Netherlands); Bosch, J.L.H. Ruud [Department of Urology, Erasmus Medical Center, 3015 GD, Rotterdam (Netherlands); Messelink, Embert J. [Department of Urology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE, Amsterdam (Netherlands); Department of Urology, Onze Lieve Vrouwe Gasthuis, 1091 HA, Amsterdam (Netherlands); Hulst, Victor P.M. van der [Department of Radiology, Onze Lieve Vrouwe Gasthuis, 1091 HA, Amsterdam (Netherlands); Groenendijk, Annette G. [Department of Gynecology, Onze Lieve Vrouwe Gasthuis, 1091 HA, Amsterdam (Netherlands); Eijkemans, Marinus J.C. [Department of Public Health, Erasmus Medical Center, 3015 GD, Rotterdam (Netherlands)

    2003-08-01

    The causes of stress urinary incontinence are not completely known. Recent papers have stressed the importance of more anatomical information, which may help to elucidate the mechanism of stress urinary incontinence. The purpose of this study was to evaluate the prevalence of lesions of the urethral support mechanism and lesions (defects and scars, thinning) of levator ani muscle with endovaginal MRI in a case-control study. Forty women (median age 52 years, age range 40-65 years) - 20 patients with stress urinary incontinence (cases) and 20 age-matched healthy volunteers (controls) - underwent endovaginal MRI: axial, coronal, and sagittal T2-weighted turbo spin echo. The examinations were evaluated for the presence of lesions of urethral supporting structures and levator ani and scar tissue of the levator ani. The thickness of the levator ani muscle was measured. Lesions of the urethral support system and levator ani were significantly more prevalent in cases than in controls (p<0.01). Median levator ani thickness in patients was significantly lower than in healthy controls [2.5 mm (range 0.9-4.1 mm) vs 3.9 mm (range 1.4-7 mm)] (p<0.01). This study indicates a relationship between stress urine incontinence and the presence of lesions of the urethral support and levator ani and levator ani thinning. (orig.)

  5. The ATLAS online High Level Trigger framework: Experience reusing offline software components in the ATLAS trigger

    International Nuclear Information System (INIS)

    Wiedenmann, Werner

    2010-01-01

    Event selection in the ATLAS High Level Trigger is accomplished to a large extent by reusing software components and event selection algorithms developed and tested in an offline environment. Many of these offline software modules are not specifically designed to run in a heavily multi-threaded online data flow environment. The ATLAS High Level Trigger (HLT) framework based on the GAUDI and ATLAS ATHENA frameworks, forms the interface layer, which allows the execution of the HLT selection and monitoring code within the online run control and data flow software. While such an approach provides a unified environment for trigger event selection across all of ATLAS, it also poses strict requirements on the reused software components in terms of performance, memory usage and stability. Experience of running the HLT selection software in the different environments and especially on large multi-node trigger farms has been gained in several commissioning periods using preloaded Monte Carlo events, in data taking periods with cosmic events and in a short period with proton beams from LHC. The contribution discusses the architectural aspects of the HLT framework, its performance and its software environment within the ATLAS computing, trigger and data flow projects. Emphasis is also put on the architectural implications for the software by the use of multi-core processors in the computing farms and the experiences gained with multi-threading and multi-process technologies.

  6. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    Science.gov (United States)

    Neu, R.

    2006-04-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.

  7. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    International Nuclear Information System (INIS)

    Neu, R.

    2006-01-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures

  8. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    Science.gov (United States)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  9. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Hassanein, A.

    2002-01-01

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices

  10. Small punch creep test: A promising methodology for high temperature plant components life evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, S. [CISE SpA, Milan (Italy); Crudeli, R. [ENEL SpA, Milan (Italy)

    1998-12-31

    CISE and ENEL are involved for years in a miniaturization creep methodology project to obtain similar non-destructive test with the same standard creep test reliability. The goal can be reached with `Small punch creep test` that collect all the requested characteristics; quasi nondestructive disk specimens extracted both on external or internal side of components, than accurately machined and tested on little and cheap apparatus. CISE has developed complete creep small punch procedure that involved peculiar test facility and correlation`s law comparable with the more diffused isostress methodology for residual life evaluation on ex-serviced high temperature plant components. The aim of this work is to obtain a simple and immediately applicable relationship useful for plant maintenance managing. More added work is need to validate the Small Punch methodology and for relationship calibration on most diffusion high temperature structural materials. First obtained results on a comparative work on ASTM A355 P12 ex-serviced pipe material are presented joint with a description of the Small Punch apparatus realized in CISE. (orig.) 6 refs.

  11. Small punch creep test: A promising methodology for high temperature plant components life evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, S [CISE SpA, Milan (Italy); Crudeli, R [ENEL SpA, Milan (Italy)

    1999-12-31

    CISE and ENEL are involved for years in a miniaturization creep methodology project to obtain similar non-destructive test with the same standard creep test reliability. The goal can be reached with `Small punch creep test` that collect all the requested characteristics; quasi nondestructive disk specimens extracted both on external or internal side of components, than accurately machined and tested on little and cheap apparatus. CISE has developed complete creep small punch procedure that involved peculiar test facility and correlation`s law comparable with the more diffused isostress methodology for residual life evaluation on ex-serviced high temperature plant components. The aim of this work is to obtain a simple and immediately applicable relationship useful for plant maintenance managing. More added work is need to validate the Small Punch methodology and for relationship calibration on most diffusion high temperature structural materials. First obtained results on a comparative work on ASTM A355 P12 ex-serviced pipe material are presented joint with a description of the Small Punch apparatus realized in CISE. (orig.) 6 refs.

  12. The stress-strain relationship for multilayers of the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Hidaka, H.; Yamamura, H.

    1988-01-01

    This paper reports the calculation of the stress-strain relationship for multilayers of the high Tc superconducting oxides. The elucidation of this relationship is expected quite helpful for the preparation of high-quality multilayers of these materials. This calculation is possible to do in the same way of Timoshenko's bi-metal treatment. The authors did computation of the residual stress and strain, and the state of stress and strain for these multilayers has been acquired in detail by this calculation

  13. Parenting stress and parent support among mothers with high and low education

    OpenAIRE

    Parkes, Alison; Sweeting, Helen; Wight, Daniel

    2015-01-01

    Current theorizing and evidence suggest that parenting stress might be greater among parents from both low and high socioeconomic positions (SEP) compared with those from intermediate levels because of material hardship among parents of low SEP and employment demands among parents of high SEP. However, little is known about how this socioeconomic variation in stress relates to the support that parents receive. This study explored whether variation in maternal parenting stress in a population ...

  14. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  15. Frontier: High Performance Database Access Using Standard Web Components in a Scalable Multi-Tier Architecture

    International Nuclear Information System (INIS)

    Kosyakov, S.; Kowalkowski, J.; Litvintsev, D.; Lueking, L.; Paterno, M.; White, S.P.; Autio, Lauri; Blumenfeld, B.; Maksimovic, P.; Mathis, M.

    2004-01-01

    A high performance system has been assembled using standard web components to deliver database information to a large number of broadly distributed clients. The CDF Experiment at Fermilab is establishing processing centers around the world imposing a high demand on their database repository. For delivering read-only data, such as calibrations, trigger information, and run conditions data, we have abstracted the interface that clients use to retrieve data objects. A middle tier is deployed that translates client requests into database specific queries and returns the data to the client as XML datagrams. The database connection management, request translation, and data encoding are accomplished in servlets running under Tomcat. Squid Proxy caching layers are deployed near the Tomcat servers, as well as close to the clients, to significantly reduce the load on the database and provide a scalable deployment model. Details the system's construction and use are presented, including its architecture, design, interfaces, administration, performance measurements, and deployment plan

  16. ARCHER Project: Progress on Material and component activities for the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) integrated project is a four year project which was started in 2011 as part of the European Commission 7th Framework Programme (FP7) to perform High Temperature Reactor technology R&D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research & Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on ARCHER materials and component activities since the start of the project and underlines some of the main conclusions reached. (author)

  17. Material and component progress within ARCHER for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.; Davies, M.; Pra, F.; Bonnamy, P.; Fokkens, J.; Heijna, M.; Bout, N. de; Vreeling, A.; Bourlier, F.; Lhachemi, D.; Woayehune, A.; Dubiez-le-Goff, S.; Hahner, P.; Futterer, M.; Berka, J.; Kalivodora, J.; Pouchon, M.A.; Schmitt, R.; Homerin, P.; Marsden, B.; Mummery, P.; Mutch, G.; Ponca, D.; Buhl, P.; Hoffmann, M.; Rondet, F.; Pecherty, A.; Baurand, F.; Alenda, F.; Esch, M.; Kohlz, N.; Reed, J.; Fachinger, J.; Klower, Dr.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R and D) integrated project started in 2011 as part of the European Commission 7. Framework Programme (FP7) for a period of four years to perform High Temperature Reactor technology R and D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research and Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on materials and component technologies within ARCHER over the first two years of the project. (authors)

  18. Overview of the EU small scale mock-up tests for ITER high heat flux components

    International Nuclear Information System (INIS)

    Vieider, G.; Barabash, V.; Cardella, A.

    1998-01-01

    This task within the EU R and D for ITER was aimed at the development of basic manufacturing solutions for the high heat flux plasma facing components such as the divertor targets, the baffles and limiters. More than 50 representative small-scale mock-ups have been manufactured with beryllium, carbon and tungsten armour using various joining technologies. High heat flux testing of 20 of these mock-ups showed the carbon mono-blocks to be the most robust solution, surviving 2000 cycles at absorbed heat fluxes of up to 24 MW m -2 . With flat armour tiles rapid joint failures occurred at 5-16 MW m -2 depending on joining technology and armour material. These test results serve as a basis for the selection of manufacturing options and materials for the prototypes now being ordered. (orig.)

  19. Development and simulation of RF components for high power millimeter wave gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereyaslavets, M.; Sato, M.; Shimozuma, T.; Takita, Y.; Idei, H.; Kubo, S.; Ohkubo, K.; Hayashi, K.

    1996-11-01

    To test gyrotron RF components, efficient low-power generators for rotating high-order modes of high purity are necessary. Designs of generators for the TE{sub 15,3} mode at 84 GHz and for the TE{sub 31,8} mode at 168 GHz are presented and some preliminary test results are discussed. In addition, Toshiba gyrotron cavities at 168 GHz were analyzed for leakage of RF power in the beam tunnel. To decrease RF power leakage, the declination angle of the cut-off cavity cross section has to be decreased. A TE{sub 15,3} waveguide nonlinear uptaper is analyzed at 84 GHz as well as 168 GHz uptapers. Since the calculated conversion losses are slightly higher than designed value, an optimization of those uptapers may be required. (author)

  20. Next-generation fiber lasers enabled by high-performance components

    Science.gov (United States)

    Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.

    2018-02-01

    Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.

  1. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  2. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  3. Online stress corrosion crack and fatigue usages factor monitoring and prognostics in light water reactor components: Probabilistic modeling, system identification and data fusion based big data analytics approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jagielo, Bryan J. [Argonne National Lab. (ANL), Argonne, IL (United States); Oakland Univ., Rochester, MI (United States); Iverson, William I. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois at Urbana-Champaign, Champaign, IL (United States); Bhan, Chi Bum [Argonne National Lab. (ANL), Argonne, IL (United States); Pusan National Univ., Busan (Korea, Republic of); Soppet, William S. [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin M. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-12-10

    Nuclear reactors in the United States account for roughly 20% of the nation's total electric energy generation, and maintaining their safety in regards to key component structural integrity is critical not only for long term use of such plants but also for the safety of personnel and the public living around the plant. Early detection of damage signature such as of stress corrosion cracking, thermal-mechanical loading related material degradation in safety-critical components is a necessary requirement for long-term and safe operation of nuclear power plant systems.

  4. Stress corrosion in high-strength aluminum alloys

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  5. Momordica charantia (bitter melon attenuates high-fat diet-associated oxidative stress and neuroinflammation

    Directory of Open Access Journals (Sweden)

    Feher Domonkos

    2011-06-01

    Full Text Available Abstract Background The rising epidemic of obesity is associated with cognitive decline and is considered as one of the major risk factors for neurodegenerative diseases. Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases. Increased metabolic flux to the brain during overnutrition and obesity can orchestrate stress response, blood-brain barrier (BBB disruption, recruitment of inflammatory immune cells from peripheral blood and microglial cells activation leading to neuroinflammation. The lack of an effective treatment for obesity-associated brain dysfunction may have far-reaching public health ramifications, urgently necessitating the identification of appropriate preventive and therapeutic strategies. The objective of our study was to investigate the neuroprotective effects of Momordica charantia (bitter melon on high-fat diet (HFD-associated BBB disruption, stress and neuroinflammatory cytokines. Methods C57BL/6 female mice were fed HFD with and without bitter melon (BM for 16 weeks. BBB disruption was analyzed using Evans blue dye. Phosphate-buffered saline (PBS perfused brains were analyzed for neuroinflammatory markers such as interleukin-22 (IL-22, IL-17R, IL-16, NF-κB1, and glial cells activation markers such as Iba1, CD11b, GFAP and S100β. Additionally, antioxidant enzymes, ER-stress proteins, and stress-resistant transcription factors, sirtuin 1 (Sirt1 and forkhead box class O transcription factor (FoxO were analyzed using microarray, quantitative real-time RT-PCR, western immunoblotting and enzymatic assays. Systemic inflammation was analyzed using cytokine antibody array. Results BM ameliorated HFD-associated changes in BBB permeability as evident by reduced leakage of Evans blue dye. HFD-induced glial cells activation and expression of neuroinflammatory markers such as NF-κB1, IL-16, IL-22 as well as IL-17R were normalized in the brains of mice supplemented with BM

  6. Job Satisfaction, Stress and Coping Strategies among Moroccan High School Teachers.

    Science.gov (United States)

    Benmansour, Naima

    1998-01-01

    Studied job stress, job satisfaction, and coping strategies through self-report measures from 153 Moroccan high school teachers. Results show that 45% of the teachers were satisfied with their jobs, but over half reported high levels of stress, negatively correlated with job satisfaction. Factor analysis of 16 coping strategies produced four…

  7. The measurement of internal stress fields in weldments and around cracks using high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Allen, A.J.; Hutchings, M.T.; Windsor, C.G.

    1987-01-01

    The paper describes and illustrates the capability of neutron diffraction to measure the complete internal lattice macrostrain field, and hence the stress field, within steel components and weldments arising from their fabrication. A brief outline is given of the theory of the neutron method. The experimental considerations are discussed. The method is illustrated by its application to the measurement of the stress distribution in a:- uniaxially stressed mild steel rod, a double - V test weld, a tube-plate weld, and a cracked fatigue test specimen. (U.K.)

  8. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  9. Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method

    Directory of Open Access Journals (Sweden)

    Zhao Fang

    2017-01-01

    Full Text Available Welded beam-to-column connections of high-rise steel structures are susceptive to fatigue damage under wind loading. However, most fatigue assessments in the field of civil engineering are mainly based on nominal stress or hot spot stress theories, which has the disadvantage of dependence on the meshing styles and massive curves selected. To address this problem, in this paper, the equivalent structural stress method with advantages of mesh-insensitive quality and capability of unifying different stress-life curves (S-N curves into one is introduced to the wind-induced fatigue assessment of a large-scale complicated high-rise steel structure. The multi-scale finite element model is established and the corresponding wind loading is simulated. Fatigue life assessments using equivalent structural stress method, hot spot stress method and nominal stress method are performed, and the results are verified and comparisons are made. The mesh-insensitive quality is also verified. The results show that the lateral weld toe of the butt weld connecting the beam flange plate and the column is the location where fatigue damage most likely happens. Nominal stress method considers fatigue assessment of welds in a more global way by averaging all the stress on the weld section while in equivalent structural stress method and hot spot method local stress concentration can be taken into account more precisely.

  10. Power increases the socially toxic component of narcissism among individuals with high baseline testosterone.

    Science.gov (United States)

    Mead, Nicole L; Baumeister, Roy F; Stuppy, Anika; Vohs, Kathleen D

    2018-04-01

    The corrosive effects of power have been noted for centuries, but the self-related changes responsible for those effects have remained somewhat elusive. Narcissists tend to rise to-and abuse-positions of power, so we considered the possibility that positions of power may corrupt because they inflate narcissism. Two pathways were considered: Powerholders abuse their power because having power over others makes them feel superior (grandiosity pathway) or deserving of special treatment (entitlement pathway). Supporting the entitlement pathway, assigning participants to a position of power (vs. equal control) over a group task increased scores on the Exploitative/Entitlement component of narcissism among those with high baseline testosterone. What is more, heightened Exploitative/Entitlement scores among high-testosterone participants endowed with power (vs. equal control) statistically explained amplified self-reported willingness to misuse their power (e.g., taking fringe benefits as extra compensation). The grandiosity pathway was not well supported. The Superiority/Arrogance, Self-Absorption/Self-Admiration, and Leadership/Authority facets of narcissism did not change as a function of the power manipulation and testosterone levels. Taken together, these results suggest that people with high (but not low) testosterone may be inclined to misuse their power because having power over others makes them feel entitled to special treatment. This work identifies testosterone as a characteristic that contributes to the development of the socially toxic component of narcissism (Exploitative/Entitlement). It points to the possibility that structural positions of power and individual differences in narcissism may be mutually reinforcing, suggesting a vicious cycle with personal, relational, and societal implications. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Evaluation of internal boiler components and gases using a high-temperature infrared (IR) lens

    Science.gov (United States)

    Hammaker, Robert G.; Colsher, Richard J.; Miles, Jonathan J.; Madding, Robert P.

    1996-03-01

    Fuel accounts for an average of seventy percent of the yearly operational and maintenance costs of all the fossil stations in the United States. This amounts to 30 billion dollars spent for fuel each year. In addition, federal and state environmental codes have been enforcing stricter regulations that demand cleaner environments, such as the reduction of nitrogen oxides (NOx), which are a by-product of the fossil fuel flame. If the burn of the flame inside a boiler could be optimized, the usage of fuel and the amounts of pollution produced would be significantly reduced, and many of the common boiler tube failures can be avoided. This would result in a major dollar savings to the utility industry, and would provide a cleaner environment. Accomplishing these goals will require a major effort from the designers and operators that manufacture, operate, and maintain the fossil stations. Over the past few years re-designed burners have been installed in many boilers to help control the temperatures and shape of the flame for better performance and NOx reduction. However, the measurement of the processes and components inside the furnace, that could assist in determining the desired conditions, can at times be very difficult due to the hostile hot environment. In an attempt to resolve these problems, the EPRI M&D Center and a core group of EPRI member utilities have undertaken a two-year project with various optical manufacturers, IR manufacturers, and IR specialists, to fully develop an optical lens that will withstand the high furnace temperatures. The purpose of the lens is to explore the possibilities of making accurate high temperature measurements of the furnace processes and components in an ever-changing harsh environment. This paper provides an introduction to EPRI's internal boiler investigation using an IR high temperature lens (HTL). The paper describes the objectives, approach, benefits, and project progress.

  12. High CO2 Primes Plant Biotic Stress Defences through Redox-Linked Pathways.

    Science.gov (United States)

    Mhamdi, Amna; Noctor, Graham

    2016-10-01

    Industrial activities have caused tropospheric CO 2 concentrations to increase over the last two centuries, a trend that is predicted to continue for at least the next several decades. Here, we report that growth of plants in a CO 2 -enriched environment activates responses that are central to defense against pathogenic attack. Salicylic acid accumulation was triggered by high-growth CO 2 in Arabidopsis (Arabidopsis thaliana) and other plants such as bean (Phaseolus vulgaris). A detailed analysis in Arabidopsis revealed that elevated CO 2 primes multiple defense pathways, leading to increased resistance to bacterial and fungal challenge. Analysis of gene-specific mutants provided no evidence that activation of plant defense pathways by high CO 2 was caused by stomatal closure. Rather, the activation is partly linked to metabolic effects involving redox signaling. In support of this, genetic modification of redox components (glutathione contents and NADPH-generating enzymes) prevents full priming of the salicylic acid pathway and associated resistance by high CO 2 The data point to a particularly influential role for the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a cytosolic enzyme whose role in plants remains unclear. Our observations add new information on relationships between high CO 2 and oxidative signaling and provide novel insight into plant stress responses in conditions of increased CO 2 . © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. High CO2 Primes Plant Biotic Stress Defences through Redox-Linked Pathways1[OPEN

    Science.gov (United States)

    2016-01-01

    Industrial activities have caused tropospheric CO2 concentrations to increase over the last two centuries, a trend that is predicted to continue for at least the next several decades. Here, we report that growth of plants in a CO2-enriched environment activates responses that are central to defense against pathogenic attack. Salicylic acid accumulation was triggered by high-growth CO2 in Arabidopsis (Arabidopsis thaliana) and other plants such as bean (Phaseolus vulgaris). A detailed analysis in Arabidopsis revealed that elevated CO2 primes multiple defense pathways, leading to increased resistance to bacterial and fungal challenge. Analysis of gene-specific mutants provided no evidence that activation of plant defense pathways by high CO2 was caused by stomatal closure. Rather, the activation is partly linked to metabolic effects involving redox signaling. In support of this, genetic modification of redox components (glutathione contents and NADPH-generating enzymes) prevents full priming of the salicylic acid pathway and associated resistance by high CO2. The data point to a particularly influential role for the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a cytosolic enzyme whose role in plants remains unclear. Our observations add new information on relationships between high CO2 and oxidative signaling and provide novel insight into plant stress responses in conditions of increased CO2. PMID:27578552

  14. Effect of Foliar Application of Chelate Iron in Common and Nanoparticles Forms on Yield and Yield Components of Cumin (Cuminum cyminum L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Nasiri Dehsorkhi

    2018-05-01

    Full Text Available Introduction Cumin is a member of Apiaceae family and annual plant which is widely cultivated in arid and semi-arid zone. Iran is one of the main producers of this plant. Water deficit is the major limiting factor in crops production. Proper nutrition management under stress conditions could partly help the plant to tolerate different stresses. Various studies were carried out to understand the effect of nanoparticles on the growth of plants. For example, Hong et al. (2005 and Yang et al. (2006 reported that a proper concentration of nano-TiO2 was found to improve the growth of spinach by promoting photosynthesis and nitrogen metabolism. Iran a country with arid and semi-arid climate, always face water deficiency. Thus the aim of this research was investigate the effect of foliar application of chelate iron in common and nanoparticles forms on yield and yield components of cumin (Cuminum cyminum L. under drought stress conditions. Materials and Methods A field experiment was conducted as a split plot in complete randomized block design with three replications in Esfahan city, during the growing season of 2015-2016. Treatments were included three irrigation intervals (5, 10 and 15 days as main plots and Fe foliar application in four levels (control, 2 g L-1 iron chelate, 2 g L-1 Nano-iron chelate, 4 g L-1 iron chelate, 4 g L-1 nano-iron chelate. Foliar application of Fe chelate on leaves was done two times at before and after flowering stage. The plots were 16 m2 with 4 sowing rows, 4 m long. Seeds were placed at 2 to 4 cm depth in each row. All data collected were subjected of analysis of variance (ANOVA using MSTATC software. Significant differences between means refer to the probability level of 0.05 by LSD test. Results and Discussion The results indicated that drought stress decreased the investigated traits significantly but the effect of irrigation by 15 days interval was more than 10 days. Plots which irrigated by 15 days interval showed

  15. Social stress induces high intensity sleep in rats

    NARCIS (Netherlands)

    Meerlo, P; Pragt, Bertrand J.; Daan, S

    1997-01-01

    We studied the effect of social stress on sleep electroencephalogram (EEG) in rats. Animals were subjected to a single social defeat by introducing them in the cage of an aggressive male conspecific for 1 h. The animals responded to the social conflict by a sharp increase in EEG slow-wave activity

  16. Additive Manufacturing of Hierarchical Multi-Phase High-Entropy Alloys for Nuclear Component

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-10

    In recent years, high entropy alloys (HEAs), composed of four or more metallic elements mixed in equal or near equal atomic percent, have attracted significant attention due to their excellent mechanical properties and good corrosion resistance. They show significant promise as candidates for high temperature fission and fusion structural applications. However, the conventional synthesis methods are unlikely to present an industrially suitable route for the production and use of HEAs. Recognizing rapidly evolving additive manufacturing (AM) techniques, the goal of this proposal is to optimize the AM process to fabricate HEAs with predesigned chemical compositions and phase morphologies for nuclear components. For this project, two HEAs FeCrNiMn and FeCrNiMnAl have been successfully synthesized. Correlated mechanical response has been systematically characterized under a variety of laser processing and ion irradiations. Both high entropy alloys are found to present comparable swelling and extraordinary irradiation tolerance (limited voids and stabilized phase structure under high irradiation dose). In addition, the microstructure and radiation-induced hardening can be tailored by laser processing under additive manufacturing. And we have assembled at LANL a unique database of HEAs containing a total of 674 compositions with Phase Stability information. Based on this, the machine learning and Artificial Intelligence capability now are established to predict the microstructure of casted HEAs by given chemical compositions. This unique integration will lead to an optimal AM recipe for fabricating radiation tolerant HEAs. The development of both modeling models and experimental capability will also benefit other programs at LANL.

  17. Results of high heat flux qualification tests of W monoblock components for WEST

    Science.gov (United States)

    Greuner, H.; Böswirth, B.; Lipa, M.; Missirlian, M.; Richou, M.

    2017-12-01

    One goal of the WEST project (W Environment in Steady-state Tokamak) is the manufacturing, quality assessment and operation of ITER-like actively water-cooled divertor plasma facing components made of tungsten. Six W monoblock plasma facing units (PFUs) from different suppliers have been successfully evaluated in the high heat flux test facility GLADIS at IPP. Each PFU is equipped with 35 W monoblocks of an ITER-like geometry. However, the W blocks are made of different tungsten grades and the suppliers applied different bonding techniques between tungsten and the inserted Cu-alloy cooling tubes. The intention of the HHF test campaign was to assess the manufacturing quality of the PFUs on the basis of a statistical analysis of the surface temperature evolution of the individual W monoblocks during thermal loading with 100 cycles at 10 MW m-2. These tests confirm the non-destructive examinations performed by the manufacturer and CEA prior to the installation of the WEST platform, and no defects of the components were detected.

  18. Automated alignment of optical components for high-power diode lasers

    Science.gov (United States)

    Brecher, C.; Pyschny, N.; Haag, S.; Guerrero Lule, V.

    2012-03-01

    Despite major progress in developing brilliant laser sources a huge potential for cost reductions can be found in simpler setups and automated assembly processes, especially for large volume applications. In this presentation, a concept for flexible automation in optics assembly is presented which is based on standard micro assembly systems with relatively large workspace and modular micromanipulators to enhance the system with additional degrees of freedom and a very high motion resolution. The core component is a compact flexure-based micromanipulator especially designed for the alignment of micro optical components which will be described in detail. The manipulator has been applied in different scenarios to develop and investigate automated alignment processes. This paper focuses on the automated alignment of fast axis collimation (FAC) lenses which is a crucial step during the production of diode lasers. The handling and positioning system, the measuring arrangement for process feedback during active alignment as well as the alignment strategy will be described. The fine alignment of the FAC lens is performed with the micromanipulator under concurrent analysis of the far and the near field intensity distribution. An optimization of the image processing chains for the alignment of a FAC in front of a diode bar led to cycle times of less than 30 seconds. An outlook on other applications and future work regarding the development of automated assembly processes as well as new ideas for flexible assembly systems with desktop robots will close the talk.

  19. Estimation of the transit dose component in high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Garcia Romero, A.; Millan Cebrian, E.; Lozano Flores, F.J.; Lope Lope, R.; Canellas Anoz, M.

    2001-01-01

    Current high dose rate brachytherapy (HDR) treatment planning systems usually calculate dose only from source stopping positions (stationary component), but fails to account for the administered dose when the source is moving (dynamic component or transit dose). Numerical values of this transit dose depends upon the source velocity, implant geometry, source activity and prescribed dose. In some HDR treatments using particular geometry the transit dose cannot be ignored because it increases the dose at the prescriptions points and also could increase potential late tissue complications as predicted by the linear quadratic model. International protocols recommend to verify this parameter. The aim of this paper has been to establish a procedure for the transit dose calculation for the Gammamed 12i equipment at the RT Department in the Clinical University Hospital (Zaragoza-Spain). A numeric algorithm was implemented based on a dynamic point approximation for the moving HDR source and the calculated results for the entrance-exit transit dose was compared with TLD measurements made in some discrete points. (author) [es

  20. Secreted Progranulin Is a Homodimer and Is Not a Component of High Density Lipoproteins (HDL)*

    Science.gov (United States)

    Nguyen, Andrew D.; Nguyen, Thi A.; Cenik, Basar; Yu, Gang; Herz, Joachim; Walther, Tobias C.; Davidson, W. Sean; Farese, Robert V.

    2013-01-01

    Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170–180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180–190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL. PMID:23364791

  1. Secreted progranulin is a homodimer and is not a component of high density lipoproteins (HDL).

    Science.gov (United States)

    Nguyen, Andrew D; Nguyen, Thi A; Cenik, Basar; Yu, Gang; Herz, Joachim; Walther, Tobias C; Davidson, W Sean; Farese, Robert V

    2013-03-22

    Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170-180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180-190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL.

  2. High flux testing reactor Petten. Replacement of the reactor vessel and connected components. Overall report

    International Nuclear Information System (INIS)

    Chrysochoides, N.G.; Cundy, M.R.; Von der Hardt, P.; Husmann, K.; Swanenburg de Veye, R.J.; Tas, A.

    1985-01-01

    The project of replacing the HFR originated in 1974 when results of several research programmes confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report contains the detailed chronology of events concerning preparation and execution of the replacement. After a 14 months' outage the reactor resumed routine operation on 14th February, 1985. At the end of several years of planning and preparation the reconstruction proceded in the following steps: unloading of the old core, decay of short-lived radioactivity in December 1983, removal of the old tank and of its peripheral equipment in January-February 1984, segmentation and waste disposal of the removed components in March-April, decontamination of the pools, bottom penetration overhauling in May-June, installation of the new tank and other new components in July-September, testing and commissioning, including minor modifications in October-December, and, trials runs and start-up preparation in January-February 1985. The new HFR Petten features increased and improved experimental facilities. Among others the obsolete thermal columns was replaced by two high flux beam tubes. Moreover the new plant has been designed for future increases of reactor power and neutron fluxes. For the next three to four years the reactor has to cope with a large irradiation programme, claiming its capacity to nearly 100%

  3. Results of high heat flux qualification tests of W monoblock components for WEST

    International Nuclear Information System (INIS)

    Greuner, H; Böswirth, B; Lipa, M; Missirlian, M; Richou, M

    2017-01-01

    One goal of the WEST project (W Environment in Steady-state Tokamak) is the manufacturing, quality assessment and operation of ITER-like actively water-cooled divertor plasma facing components made of tungsten. Six W monoblock plasma facing units (PFUs) from different suppliers have been successfully evaluated in the high heat flux test facility GLADIS at IPP. Each PFU is equipped with 35 W monoblocks of an ITER-like geometry. However, the W blocks are made of different tungsten grades and the suppliers applied different bonding techniques between tungsten and the inserted Cu-alloy cooling tubes. The intention of the HHF test campaign was to assess the manufacturing quality of the PFUs on the basis of a statistical analysis of the surface temperature evolution of the individual W monoblocks during thermal loading with 100 cycles at 10 MW m −2 . These tests confirm the non-destructive examinations performed by the manufacturer and CEA prior to the installation of the WEST platform, and no defects of the components were detected. (paper)

  4. Qualification of high heat flux components: application to target elements of W7-X divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Durocher, A; Grosman, A; Schlosser, J; Boscary, J; Escourbiac, F; Cismondi, F

    2007-01-01

    The development of actively cooled plasma-facing components (PFC) represents one of fusion's most challenging engineering efforts. In this frame, a high-quality bonding between the refractory armour and the heat sink is essential to ensure the heat removal capability and the thermal performances of PFC. Experience gained during manufacturing of Tore Supra actively cooled PFC led to the establishment of a qualification methodology and provided a large experience of acceptance criteria using an active infrared thermography (systeme d'acquisition de traitement infra-rouge, SATIR). This paper presents the application of this qualification process to the W7-X pre-series components, with the objective of assessing and defining workable acceptance criteria that enable reliable predictions of performance at the nominal heat flux requirements in W7-X. Finally, to check the reliability of the non-destructive examination (NDE) method by transient infrared thermography, the newly defined acceptance criteria were applied to W7-X pre-series target elements (batch no. 3). The SATIR results, benchmarked with HHF tests performed on the GLADIS ion beam facility were discussed to assess the ability to detect critical defects at the interface between tiles and heat sink

  5. Flaw assessment guide for high-temperature reactor components subject to creep-fatigue loading

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-10-01

    A high-temperature flaw assessment procedure is described. This procedure is a result of a collaborative effort between Electric Power Research Institute in the United States, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the United Kingdom. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack-growth laws can be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. 25 refs., 1 fig

  6. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.

    2004-01-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m 2 of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m 2 TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  7. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m{sup 2} of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m{sup 2} TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  8. Optimization of armour geometry and bonding techniques for tungsten-armoured high heat flux components

    International Nuclear Information System (INIS)

    Giniyatulin, R.N.; Komarov, V.L.; Kuzmin, E.G.; Makhankov, A.N.; Mazul, I.V.; Yablokov, N.A.; Zhuk, A.N.

    2002-01-01

    Joining of tungsten with copper-based cooling structure and armour geometry optimization are the major aspects in development of the tungsten-armoured plasma facing components (PFC). Fabrication techniques and high heat flux (HHF) tests of tungsten-armoured components have to reflect different PFC designs and acceptable manufacturing cost. The authors present the recent results of tungsten-armoured mock-ups development based on manufacturing and HHF tests. Two aspects were investigated--selection of armour geometry and examination of tungsten-copper bonding techniques. Brazing and casting tungsten-copper bonding techniques were used in small mock-ups. The mock-ups with armour tiles (20x5x10, 10x10x10, 20x20x10, 27x27x10) mm 3 in dimensions were tested by cyclic heat fluxes in the range of (5-20) MW/m 2 , the number of thermal cycles varied from hundreds to several thousands for each mock-up. The results of the tests show the applicability of different geometry and different bonding technique to corresponding heat loading. A medium-scale mock-up 0.6-m in length was manufactured and tested. HHF tests of the medium-scale mock-up have demonstrated the applicability of the applied bonding techniques and armour geometry for full-scale PFC's manufacturing

  9. Initial results for a 170 GHz high power ITER waveguide component test stand

    Science.gov (United States)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  10. Creative design-by-analysis solutions applied to high-temperature components

    International Nuclear Information System (INIS)

    Dhalla, A.K.

    1993-01-01

    Elevated temperature design has evolved over the last two decades from design-by-formula philosophy of the ASME Boiler and Pressure Vessel Code, Sections I and VIII (Division 1), to the design-by-analysis philosophy of Section III, Code Case N-47. The benefits of design-by-analysis procedures, which were developed under a US-DOE-sponsored high-temperature structural design (HTSD) program, are illustrated in the paper through five design examples taken from two U.S. liquid metal reactor (LMR) plants. Emphasis in the paper is placed upon the use of a detailed, nonlinear finite element analysis method to understand the structural response and to suggest design optimization so as to comply with Code Case N-47 criteria. A detailed analysis is cost-effective, if selectively used, to qualify an LMR component for service when long-lead-time structural forgings, procured based upon simplified preliminary analysis, do not meet the design criteria, or the operational loads are increased after the components have been fabricated. In the future, the overall costs of a detailed analysis will be reduced even further with the availability of finite element software used on workstations or PCs

  11. Families OverComing under Stress (FOCUS) for Early Childhood: Building Resilience for Young Children in High Stress Families

    Science.gov (United States)

    Mogil, Catherine; Paley, Blair; Doud, Tricia; Havens, Linda; Moore-Tyson, Jessica; Beardslee, William R.; Lester, Patricia

    2010-01-01

    Parental distress and trauma affects the entire family, including the youngest children. Families OverComing Under Stress (FOCUS) is a targeted prevention program for high-risk families that aims to enhance family cohesion, support the parent-child relationship, and build emotional regulation, communication, and problem-solving skills across the…

  12. Soil mechanical stresses in high wheel load agricultural field traffic: a case study

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2017-01-01

    highly skewed. Across tyres, the maximum stress in the contact area correlated linearly with, but was much higher than, the mean ground pressure. For each of the three soil depths, the maximum stresses under the tyres were significantly correlated with the wheel load, but not with other loading......Subsoil compaction is a serious long-term threat to soil functions. Only a few studies have quantified the mechanical stresses reaching deep subsoil layers for modern high wheel load machinery. In the present study we measured the vertical stresses in the tyre–soil contact area and at 0.3, 0...

  13. Residual stress evaluation by Barkhausen signals with a magnetic field sensor for high efficiency electrical motors

    Science.gov (United States)

    Tsuchida, Yuji; Enokizono, Masato

    2018-04-01

    The iron loss of industrial motors increases by residual stress during manufacturing processes. It is very important to make clear the distribution of the residual stress in the motor cores to reduce the iron loss in the motors. Barkhausen signals which occur on electrical steel sheets can be used for the evaluation of the residual stress because they are very sensitive to the material properties. Generally, a B-sensor is used to measure Barkhausen signals, however, we developed a new H-sensor to measure them and applied it into the stress evaluation. It is supposed that the Barkhausen signals by using a H-sensor can be much effective to the residual stress on the electrical steel sheets by referring our results regarding to the stress evaluations. We evaluated the tensile stress of the electrical steel sheets by measuring Barkhausen signals by using our developed H-sensor for high efficiency electrical motors.

  14. Materials, manufacture and testing of pressurized components of high-power steam power plants

    International Nuclear Information System (INIS)

    Blind, D.; Foehl, J.; Issler, L.; Schellhammer, W.; Sturm, D.; Kussmaul, K.; Heinrich, D.; Meyer, H.J.; Prestel, W.

    1981-01-01

    This is the first German review of materials, production and testing of pressure components of high-capacity steam power plants. The authors have been working in this field for years; their special subject has been the availability and reliability of pressure vessels, in particular in nuclear engineering. Fundamentals are presented as well as the findings obtained at the state Materials Testing Institute in Stuttgart. The material is presented in a well-structured classification; the most recent international findings, especially of the USA, are presented. This is possible due to the close cooperation between the Stuttgart institute and a number of US research institutes. The new subject of fracture mechanics is treated in some detail; its fundamentals are discussed from the American point of view while German considerations - in particular of the Reactor Safety Commission - are taken into account in the field of applications. (orig.) [de

  15. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    Science.gov (United States)

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  16. High dose effect of gamma and neutrons on the N-JFET electronic components

    International Nuclear Information System (INIS)

    Assaf, Jamal-Eddin

    2006-11-01

    Two types of N-JFET components have been irradiated by high doses of thermal neutrons and gamma rays up to 2000x10 12 n/cm 2 and 1000 kGy, respectively. The static tests show a decrease of the g m and I d s parameters. The behaviour of electronic noise on the output was the principal dynamic test after irradiation. The result of this test gives an increase of the noise with radiation dose increasing. The noise was described as the Equivalent Noise of Charge (ENC) at the output of the measurements set-up. The quantities and the qualities of the noise depend on the N-JEET type and the type of radiation (neutrons or gamma). Other tests were carried out like the relaxation or recovery phenomena after radiation, and the superposed effects of gamma and neutrons.(author)

  17. Development of high power radio frequency components for fusion plasma heating. Final report, Revision 3

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this CRADA was to develop advanced microwave heating systems for both ion cyclotron heating and electron cyclotron heating for magnetic fusion reactors. This involved low-frequency (UHF), high-power (millimeter-wave) microwave components, such as antennas, windows, and matching elements. This CRADA also involved developing conceptual designs for new microwave sources. General Atomics built and tested the distributed cooled window and provided LLNL with transmission and reflection test data in order to then benchmark the EM computer codes. The combline antenna built and analyzed by LLNL was based on a GA design. GA provided LLNL with a number of niobium plates for hot pressing and provided the necessary guidance to allow successful bonding. GA representatives were on site at LLNL on numerous occasions to consult and give guidance on the ferroelectric tuner, combline antenna and distributed window analysis

  18. Imaging the Danish Chalk Group with high resolution, 3-component seismics

    Science.gov (United States)

    Kammann, J.; Rasmussen, S. L.; Nielsen, L.; Malehmir, A.; Stemmerik, L.

    2016-12-01

    The Chalk Group in the Danish Basin forms important reservoirs to hydrocarbons as well as water resources, and it has been subject to several seismic studies to determine e.g. structural elements, deposition and burial history. This study focuses on the high quality seismic response of a survey acquired with an accelerated 45 kg weight drop and 3-component MEMS-based sensors and additional wireless vertical-type sensors. The 500 m long profile was acquired during one day close to a chalk quarry and chalk cliffs of the Stevns peninsula in eastern Denmark where the well-known K-T (Cretaceous-Tertiary) boundary and different chalk lithologies are well-exposed. With this simple and fast procedure we were able to achieve deep P-wave penetration to the base of the Chalk Group at about 900 m depth. Additionally, the CMP-processed seismic image of the vertical component stands out by its high resolution. Sedimentary features are imaged in the near-surface Danian, as well as in the deeper Maastrichtian and Upper Campanian parts of the Chalk Group. Integration with borehole data suggests that changes in composition, in particular clay content, correlate with changes in reflectivity of the seismic data set. While the pure chalk in the Maastrichtian deposits shows rather low reflectivity, succession enriched in clay appear to be more reflective. The integration of the mentioned methods gives the opportunity to connect changes in facies to the elastic response of the Chalk Group in its natural environmental conditions.

  19. Complex demodulation in VLBI estimation of high frequency Earth rotation components

    Science.gov (United States)

    Böhm, S.; Brzeziński, A.; Schuh, H.

    2012-12-01

    The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of

  20. Multi-component fits to high energy pp and anti pp scattering

    International Nuclear Information System (INIS)

    Haim, D.; Maor, U.

    1992-01-01

    A method for the analysis and description of high energy elastic scattering amplitudes in the forward direction is proposed. In this method each component of the hadronic amplitude acquires its own nuclear slope. We fit the data for the differential cross section, which was obtained at the ISR and the CERN Spanti pS colliders, using the multi-component amplitude. As a result, two asymptotically (s→∞) different modes emerge. One is compatible with a black disk, which yields a ratio for the elastic to the total cross section σ el /σ tot =0.5 as s→∞, and the other is a white-grey disk model which yields σ el /σ tot =0.07 as s→∞. Both models have the same results for σ tot and ρ for all √s which are experimentally accessible. Our results show that all the data can be fitted under the same amplitude to a better degree, point by point, than the low momentum transfer amplitude, which was used by the experiments. In addition, our ratio of real to imaginary part of the hadronic amplitude at the CERN Spanti pS, ρ=0.14, resolves the ambiguity about the high value which was measured by the UA4 Collaboration. Our predicted total cross section at the Tevatron, σ tot =73.9 mb, is in good agreement with the recent measurement of the E-710 Collaboration. As a final step, we make predictions for the LHC and the SSC colliders. (orig.)

  1. High-resolution mapping reveals links of HP1 with active and inactive chromatin components.

    Directory of Open Access Journals (Sweden)

    Elzo de Wit

    2007-03-01

    Full Text Available Heterochromatin protein 1 (HP1 is commonly seen as a key factor of repressive heterochromatin, even though a few genes are known to require HP1-chromatin for their expression. To obtain insight into the targeting of HP1 and its interplay with other chromatin components, we have mapped HP1-binding sites on Chromosomes 2 and 4 in Drosophila Kc cells using high-density oligonucleotide arrays and the DNA adenine methyltransferase identification (DamID technique. The resulting high-resolution maps show that HP1 forms large domains in pericentric regions, but is targeted to single genes on chromosome arms. Intriguingly, HP1 shows a striking preference for exon-dense genes on chromosome arms. Furthermore, HP1 binds along entire transcription units, except for 5' regions. Comparison with expression data shows that most of these genes are actively transcribed. HP1 target genes are also marked by the histone variant H3.3 and dimethylated histone 3 lysine 4 (H3K4me2, which are both typical of active chromatin. Interestingly, H3.3 deposition, which is usually observed along entire transcription units, is limited to the 5' ends of HP1-bound genes. Thus, H3.3 and HP1 are mutually exclusive marks on active chromatin. Additionally, we observed that HP1-chromatin and Polycomb-chromatin are nonoverlapping, but often closely juxtaposed, suggesting an interplay between both types of chromatin. These results demonstrate that HP1-chromatin is transcriptionally active and has extensive links with several other chromatin components.

  2. A Simplified Multipath Component Modeling Approach for High-Speed Train Channel Based on Ray Tracing

    Directory of Open Access Journals (Sweden)

    Jingya Yang

    2017-01-01

    Full Text Available High-speed train (HST communications at millimeter-wave (mmWave band have received a lot of attention due to their numerous high-data-rate applications enabling smart rail mobility. Accurate and effective channel models are always critical to the HST system design, assessment, and optimization. A distinctive feature of the mmWave HST channel is that it is rapidly time-varying. To depict this feature, a geometry-based multipath model is established for the dominant multipath behavior in delay and Doppler domains. Because of insufficient mmWave HST channel measurement with high mobility, the model is developed by a measurement-validated ray tracing (RT simulator. Different from conventional models, the temporal evolution of dominant multipath behavior is characterized by its geometry factor that represents the geometrical relationship of the dominant multipath component (MPC to HST environment. Actually, during each dominant multipath lifetime, its geometry factor is fixed. To statistically model the geometry factor and its lifetime, the dominant MPCs are extracted within each local wide-sense stationary (WSS region and are tracked over different WSS regions to identify its “birth” and “death” regions. Then, complex attenuation of dominant MPC is jointly modeled by its delay and Doppler shift both which are derived from its geometry factor. Finally, the model implementation is verified by comparison between RT simulated and modeled delay and Doppler spreads.

  3. Minor component study for simulated high-level nuclear waste glasses (Draft)

    International Nuclear Information System (INIS)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation

  4. Thick-Film and LTCC Passive Components for High-Temperature Electronics

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2013-04-01

    Full Text Available At this very moment an increasing interest in the field of high-temperature electronics is observed. This is a result of development in the area of wide-band semiconductors’ engineering but this also generates needs for passives with appropriate characteristics. This paper presents fabrication as well as electrical and stability properties of passive components (resistors, capacitors, inductors made in thick-film or Low-Temperature Co-fired Ceramics (LTCC technologies fulfilling demands of high-temperature electronics. Passives with standard dimensions usually are prepared by screen-printing whereas combination of standard screen-printing with photolithography or laser shaping are recommenced for fabrication of micropassives. Attainment of proper characteristics versus temperature as well as satisfactory long-term high-temperature stability of micropassives is more difficult than for structures with typical dimensions for thick-film and LTCC technologies because of increase of interfacial processes’ importance. However it is shown that proper selection of thick-film inks together with proper deposition method permit to prepare thick-film micropassives (microresistors, air-cored microinductors and interdigital microcapacitors suitable for the temperature range between 150°C and 400°C.

  5. Rules for design of Alloy 617 nuclear components to very high temperatures

    International Nuclear Information System (INIS)

    Corum, J.M.; Blass, J.J.

    1991-01-01

    Very-high-temperature gas-cooled reactors provide attractive options for electric power generation using a direct gas-turbine cycle and for process-heat applications. For the latter, temperatures of at least 950 degree C (1742 degree F) are desirable. As a first step to providing rules for the design of nuclear components operating at very high temperatures, a draft ASME Boiler and Pressure Vessel Code Case has been prepared by an ad hoc Code task force. The Case, which is patterned after the high-temperature nuclear Code Case N-47, covers Ni-Cr-Co-Mo Alloy 617 for temperatures to 982 degree C (1800 degree F). The purpose of this paper is to provide a synopsis of the draft Case and the significant differences between it and Case N-47. Particular emphasis is placed on the material behavior and allowables. The paper also recommends some materials and structures development activities that are needed to place the design methodology on a sound and defensible footing. 4 refs., 9 figs., 1 tab

  6. The sensory components of high-capacity iconic memory and visual working memory.

    Science.gov (United States)

    Bradley, Claire; Pearson, Joel

    2012-01-01

    EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.

  7. Study on applicability of highly corrosion-resistant amorphous coating techniques to components of reprocessing plant

    International Nuclear Information System (INIS)

    Ebata, Makoto; Okuyama, Gen; Chiba, Shigeru; Matsunaga, Tsunebumi

    1991-01-01

    In view of the growing need for prolongation of lives of reprocessing plant installations, we recently investigated the applicability of highly corrosion-resistant amorphous coating techniques to such plant components as to be subjected to a badly corrosive environment created by high temperatures, boiling nitric acid (HNO 3 ), etc. As the result, giving a preference to the Ta-based amorphous alloys exhibiting high corrosion-resistance in HNO 3 solutions, we made specimens of stainless steel plates coated with the above amorphous alloys through the sputtering process thereof. To our satisfaction, these specimens successfully passed various HNO 3 corrosion tests as described later on. Ta-based amorphous films give cathodic protection to 310 Nb stainless steel plates, and that with extremely low corrosion rates of themselves as protecting agents. For these reasons, we are confident that there will be no practical problems at all, in case we adopt stainless steel plates partially coated with such amorphous alloys for use in a nitric-acid environment. In this paper, we explain the comparative tests for various amorphous alloys with different compositions, referring also to the thus-selected Ta-based amorphous alloy along with several kinds of corrosion tests specially arranged for the same alloy. (author)

  8. The sensory components of high-capacity iconic memory and visual working memory

    Directory of Open Access Journals (Sweden)

    Claire eBradley

    2012-09-01

    Full Text Available Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of 3 different visual features (colour, orientation and motion across a range of durations from 0 to 6 seconds. We found that the amount of information stored in iconic memory is smaller for motion than for colour or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ~2 seconds. Further experiments showed that performance for the 10 items at 1 second was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory and an effortful ‘lower-capacity’ visual working memory.

  9. Study of stress corrosion cracking initiation of high alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav [Department of Materials Engineering, VSB - Technical University of Ostrava, tr. 17. listopadu 15, 708 33 Ostrava - Poruba (Czech Republic)

    2004-07-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  10. Study of stress corrosion cracking initiation of high alloy materials

    International Nuclear Information System (INIS)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav

    2004-01-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  11. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Directory of Open Access Journals (Sweden)

    Arumugam Muthu

    2016-11-01

    Full Text Available Abiotic stress in oleaginous microalgae enhances lipid accumulation and is stored in a specialised organelle called lipid droplets (LDs. Both the LDs and body are enriched with major lipid droplet protein (MLDP. It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of S. quadricauda under the salt stress of 10mM concentration is about 0.174μ and in control, the SGR is 0.241μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17. The dry biomass content also decreased drastically at 50mM salt-treated cells (129mg/L compared to control (236mg/L on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  12. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    International Nuclear Information System (INIS)

    Javee, Anand; Sulochana, Sujitha Balakrishnan; Pallissery, Steffi James; Arumugam, Muthu

    2016-01-01

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  13. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Energy Technology Data Exchange (ETDEWEB)

    Javee, Anand [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Sulochana, Sujitha Balakrishnan [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Pallissery, Steffi James [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Arumugam, Muthu, E-mail: arumugam@niist.res.in [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-11-23

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  14. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    Science.gov (United States)

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Hyoung Yool; Back, Kyoungwhan

    2018-05-16

    In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in Arabidopsis thaliana with a simultaneous increase in the expression of melatonin biosynthetic genes, including serotonin N-acetyltransferase1 (SNAT1). Transient induction of melatonin was also observed in the flu mutant, a singlet oxygen ( 1 O 2 )-producing mutant, upon light exposure, suggestive of melatonin induction by chloroplastidic 1 O 2 against HL stress. An Arabidopsis snat1 mutant was devoid of melatonin induction upon HL stress, resulting in high susceptibility to HL stress. Exogenous melatonin treatment mitigated damage caused by HL stress in the snat1 mutant by reducing O 2 - production and increasing the expression of various ROS-responsive genes. In analogy, an Arabidopsis SNAT1-overexpressing line showed increased tolerance of HL stress concomitant with a reduction in malondialdehyde and ion leakage. A complementation line expressing an Arabidopsis SNAT1 genomic fragment in the snat1 mutant completely restored HL stress susceptibility in the snat1 mutant to levels comparable to that of wild-type Col-0 plants. The results of the analysis of several Arabidopsis genetic lines reveal for the first time at the genetic level that melatonin is involved in conferring HL stress tolerance in plants. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Evolution of Grain Yield and its Components Relationships in Bread Wheat Genotypes under Full Irrigation and Terminal Water Stress Conditions Using Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    S Mohammadi

    2014-07-01

    Full Text Available To study relationships between effective traits on wheat grain yield, the varieties Zarrin and Alvand, and some promising lines i.e. C-81-4, C-81-10, C-81-14 and C-82-12 were investigated at three sowing dates including 10 October, 1 November and 21 November. The experiment was carried out using strip plot in RCBD with three replications under two different water conditions including full-irrigation and terminal water stress at Miyandoab Agricultural Research Station in 2005-06 and 2006-07 cropping seasons. The results showed that under both full irrigation and terminal water stress conditions, grain yield had positive and significant correlation with days to heading, days to maturity, plant height, number of spikes/m2 and 1000 grain weight. Stepwise regression analysis revealed that 83 percent of yield variation under non-stressed conditions could be determined by days to maturity and number of spikes/m2 (R2 = 83% whereas these traits explained 87% of yield variation under stress conditions (R2= 87%. Path analysis indicated that number of spikes/m2 and days to maturity had the greatest positive direct and indirect effect on grain yield, under both conditions. The results of factor analysis under non-stressed condition showed that three factors explained 77% of total variation; these factors were called grain yield components, grain characteristics and plant phonology. Under non-stressed condition two factors (that were called grain yield and phenology, and plant morphology explained 88% of total variation. Cluster analysis through ward method, classified days to maturity and number of spikes/m2 in the same cluster where the grain yield was put under both conditions. It was concluded that under different sowing dates, selection based on days to maturity and number spikes/m2 could indirectly led to higher yield under both normal and water stress conditions.

  17. High novelty-seeking rats are resilient to negative physiological effects of the early life stress.

    Science.gov (United States)

    Clinton, Sarah M; Watson, Stanley J; Akil, Huda

    2014-01-01

    Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine function. Using rats bred for novelty-seeking differences and known to display divergent anxiety, depression, and stress vulnerability, we examined the interaction between early life adversity and genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal separation (MS) stress postnatal days 1-14. We hypothesized that MS stress would differentially impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field test and elevated plus maze, it exacerbated bLRs' already high physiological response to stress - stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-induced defecation compared to bLR controls while bHR offspring were unaffected. MS also selectively impacted bLRs' (but not bHRs') neuroendocrine stress reactivity, producing an exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These findings highlight how genetic predisposition shapes individuals' response to early life stress. Future work will explore neural mechanisms underlying the distinct behavioral and neuroendocrine consequences of MS in bHR/bLR animals.

  18. High vacuum test of the dynamic components of the cyclotron dee chamber at the 224 cm variable energy cyclotron

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Bandopadhyay, D.K.; Ghosh, D.K.; Gowariker, S.R.

    1979-01-01

    The 224 cm Variable Energy Cyclotron constructed and commissioned at Calcutta comprises a number of dynamic components in the high vacuum Dee Chamber. The static and dynamic conditions of these components have to be tested for high vacuum worthiness prior to their installation in the Dee Tank. A special set up was fabricated and used for simulating the Dee Chamber conditions and testing the components. A high vacuum of the order of 1 x 10 -5 torr was achieved under both dynamic and static conditions with and without coolant hydraulic pressures. The details of the set up, methods employed for the various tests carried out and the results obtained are described. (auth.)

  19. Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework

    Energy Technology Data Exchange (ETDEWEB)

    Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Toloczko, Mychailo B.; Johnson, Kenneth I.; Sanborn, Scott E.

    2011-07-01

    This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.

  20. Effect of Drought Stress on Water Use Efficiency and Its Components in Several Genotypes and Cultivars of Foxtail Millet (Setaria italica L.