WorldWideScience

Sample records for highly stratified water

  1. Water Tank Experiments on Stratified Flow over Double Mountain-Shaped Obstacles at High-Reynolds Number

    Directory of Open Access Journals (Sweden)

    Ivana Stiperski

    2017-01-01

    Full Text Available In this article, we present an overview of the HyIV-CNRS-SecORo (Hydralab IV-CNRS-Secondary Orography and Rotors Experiments laboratory experiments carried out in the CNRM (Centre National de Recherches Météorologiques large stratified water flume. The experiments were designed to systematically study the influence of double obstacles on stably stratified flow. The experimental set-up consists of a two-layer flow in the water tank, with a lower neutral and an upper stable layer separated by a sharp density discontinuity. This type of layering over terrain is known to be conducive to a variety of possible responses in the atmosphere, from hydraulic jumps to lee waves and highly turbulent rotors. In each experiment, obstacles were towed through the tank at a constant speed. The towing speed and the size of the tank allowed high Reynolds-number flow similar to the atmosphere. Here, we present the experimental design, together with an overview of laboratory experiments conducted and their results. We develop a regime diagram for flow over single and double obstacles and examine the parameter space where the secondary obstacle has the largest influence on the flow. Trapped lee waves, rotors, hydraulic jumps, lee-wave interference and flushing of the valley atmosphere are successfully reproduced in the stratified water tank. Obstacle height and ridge separation distance are shown to control lee-wave interference. Results, however, differ partially from previous findings on the flow over double ridges reported in the literature due to the presence of nonlinearities and possible differences in the boundary layer structure. The secondary obstacle also influences the transition between different flow regimes and makes trapped lee waves possible for higher Froude numbers than expected for an isolated obstacle.

  2. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  3. Thermal stratification built up in hot water tank with different inlet stratifiers

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Dannemand, Mark

    2017-01-01

    Thermal stratification in a water storage tank can strongly increase the thermal performance of solar heating systems. Thermal stratification can be built up in a storage tank during charge, if the heated water enters through an inlet stratifier. Experiments with a test tank have been carried out...... in order to elucidate how well thermal stratification is established in the tank with differently designed inlet stratifiers under different controlled laboratory conditions. The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies ApS. The inlet stratifier from Solvis Gmb...... for Solvis GmbH & Co KG had a better performance at 4 l/min. In the intermediate charge test the stratifier from EyeCular Technologies ApS had a better performance in terms of maintaining the thermal stratification in the storage tank while charging with a relative low temperature. [All rights reserved...

  4. Exploring the role of wave drag in the stable stratified oceanic and atmospheric bottom boundary layer in the cnrs-toulouse (cnrm-game) large stratified water flume

    NARCIS (Netherlands)

    Kleczek, M.; Steeneveld, G.J.; Paci, A.; Calmer, R.; Belleudy, A.; Canonici, J.C.; Murguet, F.; Valette, V.

    2014-01-01

    This paper reports on a laboratory experiment in the CNRM-GAME (Toulouse) stratified water flume of a stably stratified boundary layer, in order to quantify the momentum transfer due to orographically induced gravity waves by gently undulating hills in a boundary layer flow. In a stratified fluid, a

  5. Experimental Validation of a Domestic Stratified Hot Water Tank Model in Modelica for Annual Performance Assessment

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2015-01-01

    The use of stratified hot water tanks in solar energy systems - including ORC systems - as well as heat pump systems is paramount for a better performance of these systems. However, the availability of effective and reliable models to predict the annual performance of stratified hot water tanks...

  6. Local properties of countercurrent stratified steam-water flow

    International Nuclear Information System (INIS)

    Kim, H.J.

    1985-10-01

    A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4 0 -87 0 ) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed

  7. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  8. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  9. Investigation and mitigation of condensation induced water hammer by stratified flow experiments

    Science.gov (United States)

    Kadakia, Hiral J.

    This research primarily focuses on the possibility of using stratified flow in preventing an occurrence of condensation induced water hammer (CIWH) in horizontal pipe involving steam and subcooled water. A two-phase flow loop simulating the passive safety systems of an advanced light water reactor was constructed and a series of stratified flow experiments were carried out involving a system of subcooled water, saturated water, and steam. Special instruments were designed to measure steam flow rate and subcooled liquid velocity. These experiments showed that when flow field conditions meet certain criteria CIWH does occur. Flow conditions used in experiments were typically observed in passive safety systems of an advanced light water cooled reactor. This research summarizes a) literature research and other experimental data that signify an occurrence of CIWH, b) experiments in an effort to show an occurrence of CIWH and the ability to prevent CIWH, c) qualitative and quantitative results to underline the mechanism of CIWH, d) experiments that show CIWH can be prevented under certain conditions, and e) guidelines for the safe operating conditions. Based on initial experiment results it was observed that Bernoulli's effect can play an important role in wave formation and instability. A separate effect table top experiment was constructed with plexi-glass. A series of entrance effect tests and stratified experiments were carried out with different fluids to study wave formation and wave bridging. Special test series experiments were carried out to investigate the presence of a saturated layer. The effect of subcooled water and steam flow on wedge length and depth were recorded. These experiments helped create a model which calculates wedge and depth of wedge for a given condition of steam and subcooled water. A very good comparison between the experiment results and the model was obtained. These experiments also showed that the presence of saturated layer can mitigate

  10. An analysis direct-contact condensation in horizontal cocurrent stratified flow of steam and cold water

    International Nuclear Information System (INIS)

    Lee, Suk Ho; Kim, Hho Jung

    1992-01-01

    The physical benchmark problem on the direct-contact condensation under the horizontal cocurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was performed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range. (Author)

  11. Yield and quality of ground water from stratified-drift aquifers, Taunton River basin, Massachusetts : executive summary

    Science.gov (United States)

    Lapham, Wayne W.; Olimpio, Julio C.

    1989-01-01

    Water shortages are a chronic problem in parts of the Taunton River basin and are caused by a combination of factors. Water use in this part of the Boston metropolitan area is likely to increase during the next decade. The Massachusetts Division of Water Resources projects that about 50% of the cities and towns within and on the perimeter of the basin may have water supply deficits by 1990 if water management projects are not pursued throughout the 1980s. Estimates of the long-term yield of the 26 regional aquifers indicate that the yields of the two most productive aquifers equal or exceed 11.9 and 11.3 cu ft/sec, 90% of the time, respectively, if minimum stream discharge is maintained at 99.5% flow duration. Eighteen of the 26 aquifers were pumped for public water supply during 1983. Further analysis of the yield characteristics of these 18 aquifers indicates that the 1983 pumping rate of each of these 18 aquifers can be sustained at least 70% of the time. Selected physical properties and concentrations of major chemical constituents in groundwater from the stratified-drift aquifers at 80 sampling sites were used to characterize general water quality in aquifers throughout the basin. The pH of the groundwater ranged from 5.4 to 7.0. Natural elevated concentrations of Fe and Mn in water in the stratified-drift aquifers are present locally in the basin. Natural concentrations of these two metals commonly exceed the limits of 0.3 mg/L for Fe and 0.05 mg/L for Mn recommended for drinking water. Fifty-one analyses of selected trace metals in groundwater samples from stratified-drift aquifers throughout the basin were used to characterize trace metal concentrations in the groundwater. Of the 10 constituents sampled that have US EPA limits recommended for drinking water, only the Pb concentration in water at one site (60 micrograms/L) exceeded the recommended limit of 50 micrograms/L. Analyses of selected organic compounds in water in the stratified-drift aquifers at 74

  12. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  13. Velocity distribution around a sphere descending in a salt-stratified water

    Science.gov (United States)

    Hanazaki, Hideshi; Akiyama, Shinsaku; Okino, Shinya

    2017-11-01

    When a sphere descends at constant speed in a salt-stratified water, a thin and high-speed jet is often generated above the sphere. The phenomenon has first been observed by shadowgraph and then has been investigated numerically. In this study, a systematic measurement by particle image velocimetry (PIV) has been performed for a wide range of Froude number Fr and Reynolds number Re , to actually observe the numerically simulated velocity distributions and confirm the accuracy of the numerical simulations for a very high Schmidt (Prandtl) number of Sc =(Pr =) 700 . The results show that the radius of the jet is proportional to both Fr 1 / 2 and Re - 1 / 2 , meaning that it is proportional to √{ Fr / Re } (when F < 1). The boundary layer on the sphere surface has a thickness comparable to the jet radius, and it is also proportional to √{ Fr / Re }. These results are in agreement with the recent numerical simulations and a simple dimensional analysis. Typical diverging internal-wave patterns, whose vertical wavelength has been predicted to be proportional to Fr , could also be observed.

  14. An extension of theoretical analysis for the onset of slugging criterion in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Lee, Byung Ryung

    1997-02-01

    This paper presents an experimental and theoretical investigation of interfacial friction factor, wave height and transition criterion from wavy to slug flow in a long horizontal air-water countercurrent stratified flow condition. A series of experiments have been conducted in adiabatic countercurrent stratified flow with the round pipe and rectangular duct test section to develop the interfacial friction factor and the criterion of onset of slugging in horizontal air-water countercurrent stratified flow. An adiabatic semi-empirical correlation for interfacial friction factor has been developed based on the surface roughness concept. A comparison of the measured data in this study and of other investigators with the predictions of the present correlation shows that the agreement is within ±30% error, and that the present correlation is applicable to a broader range of water flow rate than the correlations of previous investigators. The theories which can calculate the wave height and criteria of onset of slug flow in a stratified wavy flow regime have been developed based on the concept of total energy conservation and also wave theory. This theoretical criteria agree better with the measured data than the other criteria available in the literature, but the criteria range about 92∼107% of the measured data. An empirical formula for the criterion has been also developed and compared with the formula in the literatures. Comparison between the measured data and the predictions of the present theory shows that the agreement is within ±8%

  15. The vulnerability of oil collection pipelines to corrosion under conditions of stratified oil-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Marichev, F N; Chernobay, L A; Teterina, O P; Yarmizin, V G

    1980-01-01

    Problems with oil industry equipment and pipeline corrosion have recently highlighted the problems of increased water content in oil and the presence of biogenic hydrogen sulphide in petroleum matter. These findings underscore the importance of taking these problems into consideration when formulating long-term production plans. A study of pipeline corrosion and its causes, as well as other factors, has permitted researchers to correlate hydrodynamic parameters for gas-fluid transportability and structural contour flows. The water phase simultaneously carries corrosion-active ions of dissolved hydrogen sulphide and material which interact to corrode metal in the lower sections of pipelines. In order to determine the susceptibility of pipelines to corrosion, it is necessary to establish the presence of stratified fluids in oil and water as well as the gas-fluid flow. Analysis has shown that those sections with stratified emulsion could be identified and that it is necessary to disclose the pipeline's ability to withstand such conditions. The proper selection of transport parameters permits the technological protection of the oil collection pipelines. Partially as a result of the increased flow speed guaranteeing an emulsion flow regime for the gas-water-oil flow, it was found that the operational service-life of pipelines could be prolonged by a reduction of corrosion in oil collection pipelines.

  16. Identification of major planktonic sulfur oxidizers in stratified freshwater lake.

    Directory of Open Access Journals (Sweden)

    Hisaya Kojima

    Full Text Available Planktonic sulfur oxidizers are important constituents of ecosystems in stratified water bodies, and contribute to sulfide detoxification. In contrast to marine environments, taxonomic identities of major planktonic sulfur oxidizers in freshwater lakes still remain largely unknown. Bacterioplankton community structure was analyzed in a stratified freshwater lake, Lake Mizugaki in Japan. In the clone libraries of 16S rRNA gene, clones very closely related to a sulfur oxidizer isolated from this lake, Sulfuritalea hydrogenivorans, were detected in deep anoxic water, and occupied up to 12.5% in each library of different water depth. Assemblages of planktonic sulfur oxidizers were specifically analyzed by constructing clone libraries of genes involved in sulfur oxidation, aprA, dsrA, soxB and sqr. In the libraries, clones related to betaproteobacteria were detected with high frequencies, including the close relatives of Sulfuritalea hydrogenivorans.

  17. Experimental investigation on the droplet entrainment from interfacial waves in air-water horizontal stratified flow

    International Nuclear Information System (INIS)

    Bae, Byeong Geon; Yun, Byong Jo; Kim, Kyoung Du

    2014-01-01

    It was mainly due to the fact that droplet entrainment affects the Peak Cladding Temperature (PCT) of the nuclear fuel rod in the Postulated accident conditions of NPP. Recently, droplet entrainment in the horizontally arranged primary piping system for the NPP is of interest because it affects directly the steam binding phenomena in the steam generators. Pan and Hanratty correlation is the only applicable one for the droplet entrainment rate model for horizontal flow. Moreover, there are no efforts for the model development on the basis of the droplet entrainment principal and physics phenomena. More recently, Korea Atomic Energy Research Institute (KAERI) proposed a new mechanistic droplet generation model applicable in the horizontal pipe for the SPACE code. However, constitutive relations in this new model require three model coefficients which have not yet been decided. The purpose of present work is determining three model coefficients by visualization experiment. For these model coefficients, the major physical parameters regarding the interfacial disturbance wave should be measured in this experiments. There are the wave slope, liquid fraction, wave hypotenuse length, wave velocity, wave frequency, and wavelength in the major physical parameters. The experiment was conducted at an air water horizontal rectangular channel with the PIV system. In this study, the experimental conditions were stratified-way flow during the droplet generation. Three coefficients were determined based on several data related to the interfacial wave. Additionally, we manufactured the parallel wire conductance probe to measure the fluctuating water level over time, and compared the wave height measured by the parallel wire conductance probe and image processing from images taken by high speed camera. Experimental investigation was performed for droplet entrainment from phase interface wave in an air-water stratified flow. In the experiments, we measured major physical parameters

  18. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs.

    Science.gov (United States)

    Jeong, Eun Gyo; Kwon, Seonil; Han, Jun Hee; Im, Hyeon-Gyun; Bae, Byeong-Soo; Choi, Kyung Cheol

    2017-05-18

    Understanding the mechanical behaviors of encapsulation barriers under bending stress is important when fabricating flexible organic light-emitting diodes (FOLEDs). The enhanced mechanical characteristics of a nano-stratified barrier were analyzed based on a defect suppression mechanism, and then experimentally demonstrated. Following the Griffith model, naturally-occurring cracks, which were caused by Zn etching at the interface of the nano-stratified structure, can curb the propagation of defects. Cross-section images after bending tests provided remarkable evidence to support the existence of a defect suppression mechanism. Many visible cracks were found in a single Al 2 O 3 layer, but not in the nano-stratified structure, due to the mechanism. The nano-stratified structure also enhanced the barrier's physical properties by changing the crystalline phase of ZnO. In addition, experimental results demonstrated the effect of the mechanism in various ways. The nano-stratified barrier maintained a low water vapor transmission rate after 1000 iterations of a 1 cm bending radius test. Using this mechanically enhanced hybrid nano-stratified barrier, FOLEDs were successfully encapsulated without losing mechanical or electrical performance. Finally, comparative lifetime measurements were conducted to determine reliability. After 2000 hours of constant current driving and 1000 iterations with a 1 cm bending radius, the FOLEDs retained 52.37% of their initial luminance, which is comparable to glass-lid encapsulation, with 55.96% retention. Herein, we report a mechanically enhanced encapsulation technology for FOLEDs using a nano-stratified structure with a defect suppression mechanism.

  19. Experimental investigation of droplet separation in a horizontal counter-current air/water stratified flow

    International Nuclear Information System (INIS)

    Gabriel, Stephan Gerhard

    2015-01-01

    A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV

  20. Hydrogeology and water quality of the stratified-drift aquifer in the Pony Hollow Creek Valley, Tompkins County, New York

    Science.gov (United States)

    Bugliosi, Edward F.; Miller, Todd S.; Reynolds, Richard J.

    2014-01-01

    The lithology, areal extent, and the water-table configuration in stratified-drift aquifers in the northern part of the Pony Hollow Creek valley in the Town of Newfield, New York, were mapped as part of an ongoing aquifer mapping program in Tompkins County. Surficial geologic and soil maps, well and test-boring records, light detection and ranging (lidar) data, water-level measurements, and passive-seismic surveys were used to map the aquifer geometry, construct geologic sections, and determine the depth to bedrock at selected locations throughout the valley. Additionally, water-quality samples were collected from selected streams and wells to characterize the quality of surface and groundwater in the study area. Sedimentary bedrock underlies the study area and is overlain by unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent post glacial alluvium. The major type of unconsolidated, water-yielding material in the study area is stratified drift, which consists of glaciofluvial sand and gravel, and is present in sufficient amounts in most places to form an extensive unconfined aquifer throughout the study area, which is the source of water for most residents, farms, and businesses in the valleys. A map of the water table in the unconfined aquifer was constructed by using (1) measurements made between the mid-1960s through 2010, (2) control on the altitudes of perennial streams at 10-foot contour intervals from lidar data collected by Tompkins County, and (3) water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. Water-table contours indicate that the direction of groundwater flow within the stratified-drift aquifer is predominantly from the valley walls toward the streams and ponds in the central part of the valley where groundwater then flows southwestward (down valley) toward the confluence with the Cayuta Creek valley. Locally, the direction of groundwater flow is radially

  1. Investigation of temperature fluctuation phenomena in a stratified steam-water two-phase flow in a simulating pressurizer spray pipe of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi

    2017-05-15

    Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.

  2. Hydrogeology and water quality of the Nanticoke Creek stratified-drift aquifer, near Endicott, New York

    Science.gov (United States)

    Kreitinger, Elizabeth A.; Kappel, William M.

    2014-01-01

    The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal

  3. Geohydrology and water quality of stratified-drift aquifers in the lower Merrimack and coastal river basins, southeastern New Hampshire

    Science.gov (United States)

    Stekl, Peter J.; Flanagan, Sarah M.

    1992-01-01

    Communities in the lower Merrimack River basin and coastal river basins of southeastern New Hampshire are experiencing increased demands for water because of a rapid increase in population. The population in 1987 was 225,495 and is expected to increase by 30 percent during the next decade. As of 1987, five towns used the stratified-drift aquifers for municipal supply and withdrew an estimated 6 million gallons per day. Four towns used the bedrock aquifer for municipal supply and withdrew an average of 1 .6 million gallons per day. Stratified-drift deposits cover 78 of the 327 square miles of the study area. These deposits are generally less than 10 square miles in areal extent, and their saturated thickness ranges front less than 20 feet to as much as 100 feet . Transinissivity exceeds 4,000 square feet per day in several locations. Stratified-drift aquifers in the eastern part are predominantly small ice-contact deposits surrounded by marine sediments or till of low hydraulic conductivity. Stratified-drift aquifers in the western part consist of ice-contact and proglacial deposits that are large in areal extent and are commonly in contact with surface-water bodies. Five stratified-drift aquifers, in the towns of Derry, Windham, Kingston, North Hampton, and Greenland, have the greatest potential to supply additional amounts of water. Potential yields and contributing areas of hypothetical supply wells were estimated for an aquifer in Windham near Cobbetts Pond and for an aquifer in Kingston along the Powwow River by use of a method analogous to superposition in conjunction with a numerical ground-waterflow model. The potential yield is estimated to be 0 .6 million gallons per day for the Windham-Cobbetts Pond aquifer and 4 .0 million gallons per day for the Kingston-Powwow River aquifer. Contributing recharge area for supply wells is estimated to be 1.6 square miles in the Windham-Cobbetts Pond aquifer and 4.9 square miles in the Kingston-Powwow River aquifer

  4. Condensation heat transfer coefficient in horizontal stratified cocurrent flow of steam and cold water

    International Nuclear Information System (INIS)

    Kim, Kap; Kim, Hho Jung

    1986-01-01

    Some studies on direct-contact condensation in cocurrent stratified flow of steam and subcooled water were reviewed. Several approaches have been performed to develop the condensation heat transfer coefficient relationship. The local Nusselt number is correlated in terms of the local water Reynolds and Prandtl numbers as well as the steam Froude number. In addition, a turbulence-centered model, developed principally for gas absorption in several geometries, is modified by using calculated interfacial parameters for the turbulent velocity and length scales. These approaches result in a fairly good agreement with the data, whereas, the turbulence-centered model is here recommended since it is based on the turbulent properties which may be closely related to the condensation phenomena. (Author)

  5. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    International Nuclear Information System (INIS)

    Terzuoli, F.; Galassi, M.C.; Mazzini, D.; D'Auria, F.

    2008-01-01

    Pressurized thermal shock (PTS) modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV) lifetime is the cold water emergency core cooling (ECC) injection into the cold leg during a loss of coolant accident (LOCA). Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM) Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs) code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mecanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX), and a research code (NEPTUNE CFD). The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling

  6. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    Directory of Open Access Journals (Sweden)

    F. Terzuoli

    2008-01-01

    Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.

  7. Free Falling in Stratified Fluids

    Science.gov (United States)

    Lam, Try; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.

  8. Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water

    Directory of Open Access Journals (Sweden)

    N. Stashchuk

    2005-01-01

    Full Text Available We present the results of numerical experiments performed with the use of a fully non-linear non-hydrostatic numerical model to study the baroclinic response of a long narrow tank filled with stratified water to an initially tilted interface. Upon release, the system starts to oscillate with an eigen frequency corresponding to basin-scale baroclinic gravitational seiches. Field observations suggest that the disintegration of basin-scale internal waves into packets of solitary waves, shear instabilities, billows and spots of mixed water are important mechanisms for the transfer of energy within stratified lakes. Laboratory experiments performed by D. A. Horn, J. Imberger and G. N. Ivey (JFM, 2001 reproduced several regimes, which include damped linear waves and solitary waves. The generation of billows and shear instabilities induced by the basin-scale wave was, however, not sufficiently studied. The developed numerical model computes a variety of flows, which were not observed with the experimental set-up. In particular, the model results showed that under conditions of low dissipation, the regimes of billows and supercritical flows may transform into a solitary wave regime. The obtained results can help in the interpretation of numerous observations of mixing processes in real lakes.

  9. MC3D modelling of stratified explosion

    International Nuclear Information System (INIS)

    Picchi, S.; Berthoud, G.

    1999-01-01

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  10. MC3D modelling of stratified explosion

    Energy Technology Data Exchange (ETDEWEB)

    Picchi, S.; Berthoud, G. [DTP/SMTH/LM2, CEA, 38 - Grenoble (France)

    1999-07-01

    It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)

  11. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  12. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  13. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  14. Two-phase pressurized thermal shock investigations using a 3D two-fluid modeling of stratified flow with condensation

    International Nuclear Information System (INIS)

    Yao, W.; Coste, P.; Bestion, D.; Boucker, M.

    2003-01-01

    In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow

  15. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study

    DEFF Research Database (Denmark)

    Wakeham, Stuart G.; Amann, Rudi; Freemann, Katherine H.

    2007-01-01

    The stratified water column of the Black Sea is partitioned into oxic, suboxic, and euxinic zones, each characterized by different biogeochemical processes and by distinct microbial communities. In 2003, we collected particulate matter by large volume in situ filtration at the highest resolution...... reduction, and sulfide oxidation at the chemocline, and bacterial sulfate reduction and anaerobic oxidation of methane by archaea in the anoxic zone. Cell densities for archaea and sulfate reducing bacteria are estimated based on water column biomarker concentrations and compared with CARD-FISH results....

  16. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  17. Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions

    Science.gov (United States)

    Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji

    The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.

  18. An experimental investigation of the interfacial condensation heat transfer in steam/water countercurrent stratified flow in a horizontal pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In Cheol; Yu, Seon Oh; Chun, Moon Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Byong Sup; Kim, Yang Seok; Kim, In Hwan; Lee, Sang Won [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within {+-} 15%. 5 refs., 6 figs. (Author)

  19. Ecosystem metabolism in a stratified lake

    DEFF Research Database (Denmark)

    Stæhr, Peter Anton; Christensen, Jesper Philip Aagaard; Batt, Ryan D.

    2012-01-01

    , differences were not significant. During stratification, daily variability in epilimnetic DO was dominated by metabolism (46%) and air-water gas exchange (44%). Fluxes related to mixed-layer deepening dominated in meta- and hypolimnic waters (49% and 64%), while eddy diffusion (1% and 14%) was less important....... Although air-water gas exchange rates differed among the three formulations of gas-transfer velocity, this had no significant effect on metabolic rates....... that integrates rates across the entire depth profile and includes DO exchange between depth layers driven by mixed-layer deepening and eddy diffusivity. During full mixing, NEP was close to zero throughout the water column, and GPP and R were reduced 2-10 times compared to stratified periods. When present...

  20. Stratified flow instability and slug formation leading to condensation-induced water hammer in a horizontal refrigerant pipe

    International Nuclear Information System (INIS)

    Samuel Martin, C.

    2005-01-01

    Full text of publication follows: An experimental apparatus was designed for the purpose of investigating the phenomenon of condensation-induced water hammer in an ammonia refrigeration system. Water hammer was initiated by introducing warm ammonia gas over static subcooled ammonia liquid placed in a horizontal 146.3 mm diameter carbon steel pipe 6.0 m in length. By means of fast response piezoelectric pressure transducers and a high speed data acquisition system rapid dynamic pressures were recorded whenever a shock event occurred. Moreover, by means of top-mounted diaphragm pressure transducers the speed of liquid slugs propagating along the pipe was determined. The occurrence of condensation induced water hammer depended upon three major variables; namely, (1) initial liquid depth, (2) liquid temperature, and (3) mass flow rate of warm gas. For given liquid depth and temperature, once the warm gas threshold conditions were exceeded shocks occurred with greater magnitude as the mass flow rate of gas input was increased. With adequate subcooling condensation-induced water hammer occurred for initial liquid depths ranging from 25% to 95% of internal pipe diameter. The threshold mass flow rate of warm gas necessary to initiate water hammer was greater as the initial liquid depth was lowered. Based upon experimental results obtained from four pressure transducers located on the top of the test pipe conditions corresponding to bridging were ascertained. For various initial liquid depths the onset of instability from stratified flow to bridging was correlated with the Taitel-Dukler instability criterion. (author)

  1. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    Science.gov (United States)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  2. Design of a high-performance rotary stratified-charge research aircraft engine

    Science.gov (United States)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  3. Direct contact condensation induced transition from stratified to slug flow

    International Nuclear Information System (INIS)

    Strubelj, Luka; Ezsoel, Gyoergy; Tiselj, Iztok

    2010-01-01

    Selected condensation-induced water hammer experiments performed on PMK-2 device were numerically modelled with three-dimensional two-fluid models of computer codes NEPTUNE C FD and CFX. Experimental setup consists of the horizontal pipe filled with the hot steam that is being slowly flooded with cold water. In most of the experimental cases, slow flooding of the pipe was abruptly interrupted by a strong slugging and water hammer, while in the selected experimental runs performed at higher initial pressures and temperatures that are analysed in the present work, the transition from the stratified into the slug flow was not accompanied by the water hammer pressure peak. That makes these cases more suitable tests for evaluation of the various condensation models in the horizontally stratified flows and puts them in the range of the available CFD (Computational Fluid Dynamics) codes. The key models for successful simulation appear to be the condensation model of the hot vapour on the cold liquid and the interfacial momentum transfer model. The surface renewal types of condensation correlations, developed for condensation in the stratified flows, were used in the simulations and were applied also in the regions of the slug flow. The 'large interface' model for inter-phase momentum transfer model was compared to the bubble drag model. The CFD simulations quantitatively captured the main phenomena of the experiments, while the stochastic nature of the particular condensation-induced water hammer experiments did not allow detailed prediction of the time and position of the slug formation in the pipe. We have clearly shown that even the selected experiments without water hammer present a tough test for the applied CFD codes, while modelling of the water hammer pressure peaks in two-phase flow, being a strongly compressible flow phenomena, is beyond the capability of the current CFD codes.

  4. Investigations on flow reversal in stratified horizontal flow

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2005-01-01

    The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing

  5. High-resolution time-resolved Experiments on mixing and entrainment of buoyant jets in stratified environments

    Energy Technology Data Exchange (ETDEWEB)

    Manera, Annalisa; Bardet, Philippe; Petrov, Victor

    2018-03-29

    Fluid jets interacting with a stratified layer play an important role in the safety of several reactor designs. In the containment of nuclear power plants, fluid jets dominate the transport and mixing of gaseous species and consequent hydrogen distribution in case of a severe accident. The mixing phenomena in the containment are driven by buoyant high-momentum injections (jets) and low momentum injection plumes. Mixing near the postulated break is initially dominated by high flow velocities. Plumes with moderate flow velocities are instead relevant in the break compartment during the long-term pressurization phase, or in any of the apertures between two connected compartments if the mass flows are sufficiently high and the density differences between efflux and ambient are sufficiently low. Phenomena of interest include free plumes (as produced by the efflux from the break compartment in a larger room or directly from a break flow), wall plumes (such those produced by low mass flows through inter-compartment apertures), and propagating stratification fronts in the ambient (for any stably stratified conditions). These phenomena have been highly ranked about nuclear reactor design, especially regarding of safety protocols. During a Pressurized Thermal Shock (PTS) scenario, the interaction between the cold ECCS injection plume and the stratified fluid present in the cold (or hot) leg is important in order to determine the temperature at the time-dependent temperature at the inlet of the reactor pressure vessel (RPV) and the potential to cause a thermal shock on the RPV wall. In sodium-cooled fast reactors (SFRs), core channels are typically hydro-dynamically isolated so that there exists a considerable temperature variation at the exit of adjacent fuel assemblies. All the above phenomena are characterized by the interaction of buoyant jets with the stratified flow. In stratified layers baroclinic forces create significant redistribution of turbulent kinetic energy and

  6. Technetium reduction and removal in a stratified fjord

    International Nuclear Information System (INIS)

    Keith-Roach, M.; Roos, P.

    2002-01-01

    The distribution of Tc in the water columns of a stratified fjord has been measured to investigate the behaviour and fate of Tc on reaching reducing waters. Slow mixing in the water column of the fjord results in vertical transport of the dissolved Tc to the oxic/anoxic interface. Tc is reduced just below the interface and at 21 m 60% is sorbed to particulate and colloidal material. Tc is carried to the sediments sorbed to the particulate material, where there is a current inventory of approximately 3 Bq m -2 . (LN)

  7. Technetium reduction and removal in a stratified fjord

    Energy Technology Data Exchange (ETDEWEB)

    Keith-Roach, M.; Roos, P. [Risoe National Lab., Roskilde (Denmark)

    2002-04-01

    The distribution of Tc in the water columns of a stratified fjord has been measured to investigate the behaviour and fate of Tc on reaching reducing waters. Slow mixing in the water column of the fjord results in vertical transport of the dissolved Tc to the oxic/anoxic interface. Tc is reduced just below the interface and at 21 m 60% is sorbed to particulate and colloidal material. Tc is carried to the sediments sorbed to the particulate material, where there is a current inventory of approximately 3 Bq m{sup -2}. (LN)

  8. Experimental CFD grade data for stratified two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe, E-mail: c.vallee@fzd.d [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, D-01314 Dresden (Germany); Lucas, Dirk; Beyer, Matthias; Pietruske, Heiko; Schuetz, Peter; Carl, Helmar [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, D-01314 Dresden (Germany)

    2010-09-15

    Stratified two-phase flows were investigated at two test facilities with horizontal test-sections. For both, rectangular channel cross-sections were chosen to provide optimal observation possibilities for the application of optical measurement techniques. In order to show the local flow structure, high-speed video observation was applied, which delivers the high-resolution in space and time needed for CFD code validation. The first investigations were performed in the Horizontal Air/Water Channel (HAWAC), which is made of acrylic glass and allows the investigation of air/water co-current flows at atmospheric pressure and room temperature. At the channel inlet, a special device was designed for well-defined and adjustable inlet boundary conditions. For the quantitative analysis of the optical measurements performed at the HAWAC, an algorithm was developed to recognise the stratified interface in the camera frames. This allows to make statistical treatments for comparison with CFD calculation results. As an example, the unstable wave growth leading to slug flow is shown from the test-section inlet. Moreover, the hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was investigated in this closed channel. The structure of the hydraulic jump over time is revealed by the calculation of the probability density of the water level. A series of experiments show that the hydraulic jump profile and its position from the inlet vary substantially with the inlet boundary conditions due to the momentum exchange between the phases. The second channel is built in the pressure chamber of the TOPFLOW test facility, which is used to perform air/water and steam/water experiments at pressures of up to 5.0 MPa and temperatures of up to 264 {sup o}C, but under pressure equilibrium with the vessel inside. In the present experiment, the test-section represents a flat model of the hot leg of the German Konvoi pressurised water reactor scaled at

  9. Experimental CFD grade data for stratified two-phase flows

    International Nuclear Information System (INIS)

    Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Pietruske, Heiko; Schuetz, Peter; Carl, Helmar

    2010-01-01

    Stratified two-phase flows were investigated at two test facilities with horizontal test-sections. For both, rectangular channel cross-sections were chosen to provide optimal observation possibilities for the application of optical measurement techniques. In order to show the local flow structure, high-speed video observation was applied, which delivers the high-resolution in space and time needed for CFD code validation. The first investigations were performed in the Horizontal Air/Water Channel (HAWAC), which is made of acrylic glass and allows the investigation of air/water co-current flows at atmospheric pressure and room temperature. At the channel inlet, a special device was designed for well-defined and adjustable inlet boundary conditions. For the quantitative analysis of the optical measurements performed at the HAWAC, an algorithm was developed to recognise the stratified interface in the camera frames. This allows to make statistical treatments for comparison with CFD calculation results. As an example, the unstable wave growth leading to slug flow is shown from the test-section inlet. Moreover, the hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was investigated in this closed channel. The structure of the hydraulic jump over time is revealed by the calculation of the probability density of the water level. A series of experiments show that the hydraulic jump profile and its position from the inlet vary substantially with the inlet boundary conditions due to the momentum exchange between the phases. The second channel is built in the pressure chamber of the TOPFLOW test facility, which is used to perform air/water and steam/water experiments at pressures of up to 5.0 MPa and temperatures of up to 264 o C, but under pressure equilibrium with the vessel inside. In the present experiment, the test-section represents a flat model of the hot leg of the German Konvoi pressurised water reactor scaled at 1

  10. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  11. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  12. Transition of Gas-Liquid Stratified Flow in Oil Transport Pipes

    Directory of Open Access Journals (Sweden)

    D. Lakehal

    2011-12-01

    Full Text Available Large-Scale Simulation results of the transition of a gas-liquid stratified flow to slug flow regime in circular 3D oil transport pipes under turbulent flow conditions expressed. Free surface flow in the pipe is treated using the Level Set method. Turbulence is approached via the LES and VLES methodologies extended to interfacial two-phase flows. It is shown that only with the Level Set method the flow transition can be accurately predicted, better than with the two-fluid phase-average model. The transition from stratified to slug flow is found to be subsequent to the merging of the secondary wave modes created by the action of gas shear (short waves with the first wave mode (high amplitude long wave. The model is capable of predicting global flow features like the onset of slugging and slug speed. In the second test case, the model predicts different kinds of slugs, the so-called operating slugs formed upstream that fill entirely the pipe with water slugs of length scales of the order of 2-4 D, and lower size (1-1.5 D disturbance slugs, featuring lower hold-up (0.8-0.9. The model predicts well the frequency of slugs. The simulations revealed important parameter effects on the results, such as two-dimensionality, pipe length, and water holdup.

  13. Behaviour of a pressure vessel nozzle with thermo-sleeve under thermal loading induced by stratified flow

    International Nuclear Information System (INIS)

    Kussmaul, K.; Mayinger, W.; Diem, H.; Katzenmeier, G.

    1993-01-01

    Startup at low reactor power may give rise to stratified flow conditions in pipes of boiling water and pressurized water reactors. Stratified flow regimes cause a steep temperature gradient between the cold and the hot fluid layer. This temperature gradient produces high axial stresses which, in the case of intermittent feeding of cold water and an appropriate number of repetitions, in principle may initiate cracking in the feedwater pipe and close to the feeding nozzle. Thermosleeves have been installed in a number of reactors to mitigate thermally induced stresses; they reduce the intensity of thermal transients by means of an insulating fluid annulus developing between the sleeve and the nozzle, in order to measure the temperature and stress gradients occurring in the region of the nozzle edge, the so-called TEMS experiments were carried out under realistic operating conditions, and with different cold water levels within the framework of German research activities in the field of reactor safety at the HDR test facility. The experiments served to simulate the physics phenomena by means of a FE-program and to verify the computational approach by comparisons of measurements and calculations

  14. Stratified flows with variable density: mathematical modelling and numerical challenges.

    Science.gov (United States)

    Murillo, Javier; Navas-Montilla, Adrian

    2017-04-01

    Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux

  15. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  16. Stratified charge rotary aircraft engine technology enablement program

    Science.gov (United States)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  17. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias

    2008-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow

  18. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hohne, Thomas; Prasser, Horst-Michael; Suhnel, Tobias

    2007-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Rossendorf. The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronized with the high-speed camera system. CFD post test simulations of stratified flows were performed using the code ANSYS CFX. The Euler- Euler two fluid model with the free surface option was applied on grids of minimum 4.10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. (authors)

  19. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)], E-mail: c.vallee@fzd.de; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2008-03-15

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10{sup 5} control volumes. The turbulence was modelled separately for each phase using the k-{omega}-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow.

  20. Simulation model of stratified thermal energy storage tank using finite difference method

    Science.gov (United States)

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  1. An experimental study on quenching of a radially stratified heated porous bed

    International Nuclear Information System (INIS)

    Nayak, Arun K.; Sehgal, Bal Raj; Stepanyan, Armen V.

    2006-01-01

    The quenching characteristics of a volumetrically-heated particulate bed composed of radially stratified sand layers were investigated experimentally in the POMECO facility. The sand bed simulates the corium particulate debris bed which is formed when the molten corium released from the vessel fragments in water and deposits on the cavity floor during a postulated severe accident in a light water reactor (LWR). The electrically-heated bed was quenched by water from a water column established over top of it, and later also with water coming from its bottom, which was circulating from the water overlayer through downcomers. A series of experiments were conducted to reveal the effects of the size of downcomers, and their locations in the bed, on the quenching characteristics of the radially stratified debris beds. The downcomers were found to significantly increase the bed quenching rate. To simulate the non-condensable gases generated during the MCCI, air and argon were injected from the bottom of the bed at different flow rates. The effects of gas flow rate and its properties on the quenching behaviour were observed. The results indicate that the non-condensable gas flows reduce the quenching rate significantly. The gas properties also affect the quenching characteristics

  2. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  3. A study of stratified gas-liquid pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, George W.

    2005-07-01

    This work includes both theoretical modelling and experimental observations which are relevant to the design of gas condensate transport lines. Multicomponent hydrocarbon gas mixtures are transported in pipes over long distances and at various inclinations. Under certain circumstances, the heavier hydrocarbon components and/or water vapour condense to form one or more liquid phases. Near the desired capacity, the liquid condensate and water is efficiently transported in the form of a stratified flow with a droplet field. During operating conditions however, the flow rate may be reduced allowing liquid accumulation which can create serious operational problems due to large amounts of excess liquid being expelled into the receiving facilities during production ramp-up or even in steady production in severe cases. In particular, liquid tends to accumulate in upward inclined sections due to insufficient drag on the liquid from the gas. To optimize the transport of gas condensates, a pipe diameters should be carefully chosen to account for varying flow rates and pressure levels which are determined through the knowledge of the multiphase flow present. It is desirable to have a reliable numerical simulation tool to predict liquid accumulation for various flow rates, pipe diameters and pressure levels which is not presently accounted for by industrial flow codes. A critical feature of the simulation code would include the ability to predict the transition from small liquid accumulation at high flow rates to large liquid accumulation at low flow rates. A semi-intermittent flow regime of roll waves alternating with a partly backward flowing liquid film has been observed experimentally to occur for a range of gas flow rates. Most of the liquid is transported in the roll waves. The roll wave regime is not well understood and requires fundamental modelling and experimental research. The lack of reliable models for this regime leads to inaccurate prediction of the onset of

  4. Interfacial transport characteristics in a gas-liquid or an immiscible liquid-liquid stratified flow

    International Nuclear Information System (INIS)

    Inoue, A.; Aoki, S.; Aritomi, M.; Kozawa, Y.

    1982-01-01

    This paper is a review for an interfacial transport characteristics of mass, momentum and energy in a gas-liquid or a immiscible liquid-liquid stratified flow with wavy interface which have been studied in our division. In the experiment, a characteristic of wave motion and its effect to the turbulence near the interface as well as overall flow characteristics like pressure drop, position of the interface were investigated in an air-water, an air-mercury and a water-liquid metal stratified flow. On the other hand, several models based on the mixing length model and a two-equation model of turbulence, with special interfacial boundary conditions in which the wavy surface was regarded as a rough surface correspond to the wavy height, a source of turbulent energy equal to the wave energy and a damped-turbulence due to the surface tension, were proposed to predict the flow characteristics and the interfacial heat transfer in a fully developed and an undeveloped stratified flow and examined by the experimental data. (author)

  5. Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System, Inc. (INSS), Fukui (Japan)

    2012-12-15

    Stratified 2-phase flows were investigated in 2 different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimal observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and saturated water at boundary conditions of up to 50 bar and 264 C. The measured CCFL characteristics were compared with similar experimental data and correlations available in the literature. This shows that the channel height is the characteristic length to be used in the Wallis parameter for channels with rectangular cross-sections. Furthermore, the experimental results confirm that the Wallis similarity is appropriate to scale CCFL in the hot leg of a PWR over a wide range of pressure and temperature conditions. Finally, an image processing algorithm was developed to recognise the stratified interface in the camera frames. Subsequently, the interfacial structure along the hot leg was visualised by the representation of the probability distribution of the water level. (orig.)

  6. Experimental study of unsteady thermally stratified flow

    International Nuclear Information System (INIS)

    Lee, Sang Jun; Chung, Myung Kyoon

    1985-01-01

    Unsteady thermally stratified flow caused by two-dimensional surface discharge of warm water into a oblong channel was investigated. Experimental study was focused on the rapidly developing thermal diffusion at small Richardson number. The basic objectives were to study the interfacial mixing between a flowing layer of warm water and an underlying body of cold water and to accumulate experimental data to test computational turbulence models. Mean velocity field measurements were carried out by using NMR-CT(Nuclear Magnetic Resonance-Computerized Tomography). It detects quantitative flow image of any desired section in any direction of flow in short time. Results show that at small Richardson number warm layer rapidly penetrates into the cold layer because of strong turbulent mixing and instability between the two layers. It is found that the transfer of heat across the interface is more vigorous than that of momentum. It is also proved that the NMR-CT technique is a very valuable tool to measure unsteady three dimensional flow field. (Author)

  7. Stratified flows and internal waves in the Vema Fracture Zone of the Mid Atlantic Ridge

    Science.gov (United States)

    Makarenko, Nikolay; Morozov, Eugene; Tarakanov, Roman; Demidova, Tatiana; Frey, Dmitri; Grigorenko, Klim

    2017-04-01

    In this paper, we study stratified flows and internal waves in the Vema fracture zone of the Mid Atlantic Ridge. This fracture provides intense transportation of cold abyssal waters from the West Atlantic to the equatorial region of the East Atlantic [1]. The results of measurements [2,3] carried out in the cruises of RV Akademik Sergey Vavilov in 2014-2016 are presented. The structure of the near-bottom flow is studied experimentally on the basis of CTD- and LADCP profiling. Theoretical analysis involves mathematical formulation of stratified fluid flow which uses CTD-data obtained from field observation. Spectral properties and kinematic characteristics of internal waves are calculated and discussed. This work was supported by RFBR (grants No 15-01-03942, 16-35-50158). References [1] Morozov E., Demidov A., Tarakanov R. and Zenk W. Abyssal Channels in the Atlantic Ocean: Water Structure and Flows, Springer, Dordrecht, 2010. [2] Morozov E.G., Tarakanov R.Yu., and Makarenko N.I. Flows of Antarctic Bottom Water through fractures in the southern part of the North Mid Atlantic Ridge, Oceanology, 2015, 55, 796-800. [3] Grigorenko K.S., Makarenko N.I., Morozov E.G., Tarakanov R.Yu., and Frey D.I. Stratified flows and internal waves in the Central West Atlantic, J. Physics: Conf. Series, 2016, 722, 012011.

  8. Dominance of a clonal green sulfur bacterial population in a stratified lake

    DEFF Research Database (Denmark)

    Gregersen, Lea H; Habicht, Kirsten S; Peduzzi, Sandro

    2009-01-01

    surveys using FISH cell counting and population multilocus sequence typing [clone library sequence analysis of the small subunit (SSU) rRNA locus and two loci involved in photosynthesis in GSB: fmoA and csmCA]. All bacterial populations clearly stratified according to water column chemistry. The GSB...

  9. Stratifying Parkinson's Patients With STN-DBS Into High-Frequency or 60 Hz-Frequency Modulation Using a Computational Model.

    Science.gov (United States)

    Khojandi, Anahita; Shylo, Oleg; Mannini, Lucia; Kopell, Brian H; Ramdhani, Ritesh A

    2017-07-01

    High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.e., high frequency or 60 Hz). We retrospectively analyzed preoperative MDS-Unified Parkinson's Disease Rating Scale III scores (32 indicators) collected from 20 PD patients implanted with STN-DBS at Mount Sinai Medical Center on either 60 Hz stimulation (ten patients) or HFS (130-185 Hz) (ten patients) for an average of 12 months. Predictive models using the Random Forest classification algorithm were built to associate patient/disease characteristics at surgery to the stimulation frequency. These models were evaluated objectively using leave-one-out cross-validation approach. The computational models produced, stratified patients into 60 Hz or HFS (130-185 Hz) with 95% accuracy. The best models relied on two or three predictors out of the 32 analyzed for classification. Across all predictors, gait and rest tremor of the right hand were consistently the most important. Computational models were developed using preoperative clinical indicators in PD patients treated with STN-DBS. These models were able to accurately stratify PD patients into 60 Hz stimulation or HFS (130-185 Hz) groups a priori, offering a unique potential to enhance the utilization of this therapy based on clinical subtypes. © 2017 International Neuromodulation Society.

  10. Phylogenetic and functional diversity of Bacteria and Archaea in a unique stratified lagoon, the Clipperton atoll (N Pacific).

    Science.gov (United States)

    Galand, Pierre E; Bourrain, Muriel; De Maistre, Emmanuel; Catala, Philippe; Desdevises, Yves; Elifantz, Hila; Kirchman, David L; Lebaron, Philippe

    2012-01-01

    The Clipperton lagoon in the North Pacific Ocean has been isolated from the surrounding sea for c. 160 years. It has a stratified water column that comprises an oxic and brackish upper water layer (mixolimnion) and a deep sulfuric anoxic saline layer (monimolimnion), separated by a steep pycnocline. Here, we test whether the Clipperton lagoon with its distinctive physico-chemical features, geographic isolation, recent water column stratification, and large nutrient input harbors original microbial communities. The combination of capillary electrophoresis single-strand polymorphism (CE-SSCP) fingerprinting and sequencing of cloned bacterial and archaeal 16S rRNA genes, and functional genes for methanogenesis (mcrA), methanotrophy (pmoA), and sulfate reduction (dsrAB), revealed that microbial communities and pathways were highly stratified down the water column. The mixolimnion contained ubiquitous freshwater clades of Alpha- and Betaproteobacteria, while the pycnocline contained mostly green sulfur bacteria (phylum Chlorobi). Sequences of the upper layers were closely related to sequences found in other aquatic ecosystems, suggesting that they have a strong potential for dispersal and colonization. In contrast, the monimolimnion contained new deeply branching bacterial divisions within the OP11 cluster and the Bacteroidetes, and was the most diverse of the layers. The unique environmental conditions characterizing the deep layers of the lagoon may explain the novelty of the microbial communities found at the Clipperton atoll.

  11. Design of dry sand soil stratified sampler

    Science.gov (United States)

    Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong

    2018-04-01

    This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.

  12. Crystallization of a compositionally stratified basal magma ocean

    Science.gov (United States)

    Laneuville, Matthieu; Hernlund, John; Labrosse, Stéphane; Guttenberg, Nicholas

    2018-03-01

    Earth's ∼3.45 billion year old magnetic field is regenerated by dynamo action in its convecting liquid metal outer core. However, convection induces an isentropic thermal gradient which, coupled with a high core thermal conductivity, results in rapid conducted heat loss. In the absence of implausibly high radioactivity or alternate sources of motion to drive the geodynamo, the Earth's early core had to be significantly hotter than the melting point of the lower mantle. While the existence of a dense convecting basal magma ocean (BMO) has been proposed to account for high early core temperatures, the requisite physical and chemical properties for a BMO remain controversial. Here we relax the assumption of a well-mixed convecting BMO and instead consider a BMO that is initially gravitationally stratified owing to processes such as mixing between metals and silicates at high temperatures in the core-mantle boundary region during Earth's accretion. Using coupled models of crystallization and heat transfer through a stratified BMO, we show that very high temperatures could have been trapped inside the early core, sequestering enough heat energy to run an ancient geodynamo on cooling power alone.

  13. Visualization of mole fraction distribution of slow jet forming stably stratified field

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Hishida, Makoto

    1990-01-01

    An experimental study has been performed to investigate the behavior of flow and mass transfer in gaseous slow jet in which buoyancy force opposed the flow forming stably stratified field. The study has been performed to understand the basic features of air ingress phenomena at pipe rupture accident of the high temperature gas-cooled reactor. A displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the mole fraction distribution. As the result, the followings were obtained: (1) The stably stratified fields were formed in the vicinity of the outlet of the slow jet. The penetration distance of the stably stratified fields increased with Froude number. (2) Mass fraction distributions in the stably stratified fields were well correlated with the present model using the ramp mole velocity profile. (author)

  14. Large eddy simulation of turbulent and stably-stratified flows

    International Nuclear Information System (INIS)

    Fallon, Benoit

    1994-01-01

    The unsteady turbulent flow over a backward-facing step is studied by mean of Large Eddy Simulations with structure function sub grid model, both in isothermal and stably-stratified configurations. Without stratification, the flow develops highly-distorted Kelvin-Helmholtz billows, undergoing to helical pairing, with A-shaped vortices shed downstream. We show that forcing injected by recirculation fluctuations governs this oblique mode instabilities development. The statistical results show good agreements with the experimental measurements. For stably-stratified configurations, the flow remains more bi-dimensional. We show with increasing stratification, how the shear layer growth is frozen by inhibition of pairing process then of Kelvin-Helmholtz instabilities, and the development of gravity waves or stable density interfaces. Eddy structures of the flow present striking analogies with the stratified mixing layer. Additional computations show the development of secondary Kelvin-Helmholtz instabilities on the vorticity layers between two primary structures. This important mechanism based on baroclinic effects (horizontal density gradients) constitutes an additional part of the turbulent mixing process. Finally, the feasibility of Large Eddy Simulation is demonstrated for industrial flows, by studying a complex stratified cavity. Temperature fluctuations are compared to experimental measurements. We also develop three-dimensional un-stationary animations, in order to understand and visualize turbulent interactions. (author) [fr

  15. Heat and mass transfer in the stratified flow with ECCS injection

    International Nuclear Information System (INIS)

    Strubelj, L.; Tiselj, I.

    2007-01-01

    One of the most important problems in the light-water nuclear thermal-hydraulics is behaviour of the cold emergency core cooling water injected from the top or from the bottom into the horizontal section of the cold leg near the reactor vessel during the loss of coolant accident. The stratified flows appear where cold water is injected in partially or fully uncovered horizontal cold leg. The hot steam condenses on cold water surface what is also called direct contact condensation. Direct contact condensation and condensation induced water-hammer in a horizontal pipe were experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The cold water is injected through small pipe into lower horizontal part of the section, and then water fills the vertical pipeline and floods the horizontal test section of the pipeline of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the pipeline, the steam-liquid interface area increases and therefore the steam condensation rate and the steam velocity also increase and can lead to bubble entrapment. Water level at one cross-section and four local void fraction and temperature at the top of horizontal test pipeline was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Numerical simulation of the experiment with thermal phase change is presented. Surface renewal concept with small eddies is used for calculation of condensation heat transfer coefficient. Two simulations were performed: simulation of whole experimental domain (lower horizontal, vertical and test horizontal pipeline) and simplified simulation of only upper horizontal test section

  16. The research of new type stratified water injection process intelligent measurement technology

    Science.gov (United States)

    Zhao, Xin

    2017-10-01

    To meet the needs of injection and development of Daqing Oilfield, the injection of oil from the early stage of general water injection to the subdivision of water is the purpose of improving the utilization degree and the qualified rate of water injection, improving the performance of water injection column and the matching process. Sets of suitable for high water content of the effective water injection technology supporting technology. New layered water injection technology intelligent measurement technology will be more information testing and flow control combined into a unified whole, long-term automatic monitoring of the work of the various sections, in the custom The process has the characteristics of "multi-layer synchronous measurement, continuous monitoring of process parameters, centralized admission data", which can meet the requirement of subdivision water injection, but also realize the automatic synchronization measurement of each interval, greatly improve the efficiency of tiered injection wells to provide a new means for the remaining oil potential.

  17. LES of stratified-wavy flows using novel near-interface treatment

    Science.gov (United States)

    Karnik, Aditya; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Matar, Omar K.

    2017-11-01

    The pressure drop in horizontal stratified wavy flows is influenced by interfacial shear stress. The near-interface behavior of the lighter phase is akin to that near a moving wall. We employ a front-tracking code, Blue, to simulate and capture the near-interface behaviour of both phases. Blue uses a modified Smagorinsky LES model incorporating a novel near-interface treatment for the sub-grid viscosity, which is influenced by damping due to the wall-like interface, and enhancement of the turbulent kinetic energy (TKE) due to the interfacial waves. Simulations are carried out for both air-water and oil-water stratified configurations to demonstrate the applicability of the present method. The mean velocities and tangential Reynolds stresses are compared with experiments for both configurations. At the higher Re, the waves penetrate well into the buffer region of the boundary layer above the interface thus altering its dynamics. Previous attempts to capture the secondary structures associated with such flows using RANS or standard LES methodologies have been unsuccessful. The ability of the present method to reproduce these structures is due to the correct estimation of the near-interface TKE governing energy transfer from the normal to tangential directions. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  18. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women stratified by hormone replacement therapy use

    DEFF Research Database (Denmark)

    Harrington, M.; Bennett, T.; Jakobsen, Jette

    2004-01-01

    The objective of this study was to investigate the influence of a high-sodium, high-protein diet on bone metabolism in postmenopausal women ( aged 49 - 60 y) stratified by hormone replacement therapy (HRT) use. In a crossover trial, 18 women (n = 8 HRT users (+HRT) and n = 10 nonusers (-HRT)) were...... randomly assigned to a diet high in protein ( 90 g/day) and sodium (180 mmol/day) ( calciuric diet) or a diet moderate in protein ( 70 g/day) and low in sodium ( 65 mmol/day) for 4 weeks followed by crossover to alternative dietary regimen for a further 4 weeks. The calciuric diet significantly (P...

  19. Longevity of Compositionally Stratified Layers in Ice Giants

    Science.gov (United States)

    Friedson, A. J.

    2017-12-01

    In the hydrogen-rich atmospheres of gas giants, a decrease with radius in the mixing ratio of a heavy species (e.g. He, CH4, H2O) has the potential to produce a density stratification that is convectively stable if the heavy species is sufficiently abundant. Formation of stable layers in the interiors of these planets has important implications for their internal structure, chemical mixing, dynamics, and thermal evolution, since vertical transport of heat and constituents in such layers is greatly reduced in comparison to that in convecting layers. Various processes have been suggested for creating compositionally stratified layers. In the interiors of Jupiter and Saturn, these include phase separation of He from metallic hydrogen and dissolution of dense core material into the surrounding metallic-H envelope. Condensation of methane and water has been proposed as a mechanism for producing stable zones in the atmospheres of Saturn and the ice giants. However, if a stably stratified layer is formed adjacent to an active region of convection, it may be susceptible to progressive erosion as the convection intrudes and entrains fluid into the unstable envelope. We discuss the principal factors that control the rate of entrainment and associated erosion and present a specific example concerning the longevity of stable layers formed by condensation of methane and water in Uranus and Neptune. We also consider whether the temporal variability of such layers may engender episodic behavior in the release of the internal heat of these planets. This research is supported by a grant from the NASA Solar System Workings Program.

  20. Crenothrix are major methane consumers in stratified lakes.

    Science.gov (United States)

    Oswald, Kirsten; Graf, Jon S; Littmann, Sten; Tienken, Daniela; Brand, Andreas; Wehrli, Bernhard; Albertsen, Mads; Daims, Holger; Wagner, Michael; Kuypers, Marcel Mm; Schubert, Carsten J; Milucka, Jana

    2017-09-01

    Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N 2 O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.

  1. The effects of hydrological dynamics on benthic diatom community structure in a highly stratified estuary: The case of the Ebro Estuary (Catalonia, Spain)

    Science.gov (United States)

    Rovira, L.; Trobajo, R.; Leira, M.; Ibáñez, C.

    2012-04-01

    This study of the distribution of benthic diatom assemblages and their relationship with environmental factors in a highly stratified Mediterranean estuary, i.e. the Ebro Estuary, shows the importance of hydrological dynamics to explain the features of the diatom community in such an estuary, where river flow magnitude and fluctuations imply strong physicochemical variability especially in sites close to the sea. Eight sites along the estuary were sampled during 2007-2008 both at superficial and deep water layers, in order to gather both horizontal and vertical estuarine physicochemical and hydrological gradients. Canonical Variates Analysis and Hierarchical Cluster Analysis segregated diatom community in two assemblages depending on the dynamics of the salt-wedge. The diatom assemblages of riverine conditions (i.e. without salt-wedge influence) where characterised by high abundances of Cocconeis placentula var. euglypta and Amphora pediculus, meanwhile high abundances of Nizschia frustulum and Nitzschia inconspicua were characteristic of estuarine conditions (i.e. under salt-wedge influence). Redundancy Analysis showed that both diatom assemblages responded seasonally to Ebro River flows, especially in estuarine conditions, where fluctuating conditions affected diatom assemblages both at spatial and temporal scale.

  2. The effect of surfactant on stratified and stratifying gas-liquid flows

    Science.gov (United States)

    Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar

    2013-11-01

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.

  3. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  4. Seasonal cyclogenesis and the role of near-surface stratified layer in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Sarma, M.S.S.; Tilvi, V.

    The role of the near-surface stratified layer developed due to the spread of low salinity waters under the influence of freshwater influx on the cyclogenesis over the Bay of Bengal is addressed. The seasonal variation of the Effective Oceanic Layer...

  5. Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ. (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System Inc. (INSS), Fukui (Japan)

    2012-07-01

    Stratified two-phase flows were investigated in two different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimum observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. (orig.)

  6. Does deep ocean mixing drive upwelling or downwelling of abyssal waters?

    Science.gov (United States)

    Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.

    2016-02-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.

  7. Advantages using inlet stratification devices in solar domestic hot water storage tanks

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Bava, Federico

    2017-01-01

    performances of two solar domestic hot water systems are presented. One system is a traditional high flow system with a heat exchanger spiral in the tank. The other system is a low flow system with an external heat exchanger and a newly developed inlet stratifier from EyeCular Technologies ApS installed......The thermal performance of a domestic hot water system is strongly affected by whether the storage tank is stratified or not. Thermal stratification can be built up in a solar storage tank if the heated water from the solar collectors enters the tank through an inlet stratifier.Measured thermal...... with the stratification device has a higher thermal performance compared to the system with the heat exchanger spiral inside the tank.The relative performance (defined as the ratio between the net utilized solar energy of the low flow system and the net utilized solar energy of the high flow system), is a function...

  8. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  9. Fluvial modulation of hydrodynamics and salt transport in a highly stratified estuary

    Directory of Open Access Journals (Sweden)

    Carla de Abreu D'Aquino

    2010-06-01

    Full Text Available An oceanographic campaign was conducted in the Araranguá river estuary during the period from May 11th to 13th of 2006 in order to produce a first hydrographic characterization of this system. The campaign was carried out during the spring tide period, and coincidentally after an intense rain event in the region which produced a peak in river discharge. Water level, currents and salinity time series were recorded hourly during a 50-hour period, at a site nearly 7 km upstream from the estuarine mouth. Two longitudinal distributions of salinity along the estuary were also recorded. The hydrographic data time-series were used to compute the advective salt flux in order to investigate the changes in the transport terms as a function of the change in discharge. The results showed that the estuarine structure was strongly modulated by the river discharge. The drop in water level of about 0.5 m during the first 24 hours was directly related to the ebb phase of the river flood. The water column was highly stratified throughout the period, therefore the stratification increased during the last 24 hours. The currents were stronger, ebbing and uni-directional at the beginning and became weaker and bidirectional as the water level went down, assuming a tidal pattern. The total salt transport in the first 25 hours was of -13.6 kg.m-1.s-1 (seawards, decreasing to 3 Kg.m-1.s-1 during the last 25 hours (landwards. It was also noticeable that the pH in the estuary, recorded together with the salinity, was around 5, showing that the water quality in the estuary is affected by the coal mining activity in the hydrographic basin.Uma campanha oceanográfica foi realizada no estuário do rio Araranguá durante o período de 11 e 13 de maio de 2006, objetivando fazer uma primeira caracterização hidrográfica do sistema. A campanha foi realizada em condição de maré de sizígia, e coincidentemente após um evento de chuvas intensas na região que produziu um pico

  10. Community structure of benthic macroinvertebrates inhabiting a highly stratified Mediterranean estuary

    Directory of Open Access Journals (Sweden)

    Alfonso Nebra

    2011-04-01

    Full Text Available The community composition and spatial distribution of benthic macroinvertebrates were studied along the Ebro estuary, a highly stratified estuary located in the NE Iberian Peninsula. During the last decade the oligotrophication process occurring in the lower Ebro River and its estuary has allowed a complex benthic macroinvertebrate community to become established; these results contrast with the poor community found there in the early nineties. A total of 214 taxa were identified, and polychaetes dominated the community both in abundance and species richness. The results showed spatial differences in the structure and composition of macroinvertebrates, which suggests that there are two distinct communities along the estuary. Each community was found in a specific stretch (upper and lower estuary in function of the presence of the salt wedge. The macrobenthos of the upper estuary was dominated by freshwater taxa, but some euryhaline species were also found. The lower estuary showed a marine community typical of shallow Mediterranean environments. The transition between these two communities fits an ecotone model. The highest abundances, richness and diversities were recorded at the lower estuarine stations, especially those closer to the river mouth, whereas the lowest values corresponded to the stations adjacent to the tip of the salt wedge.

  11. Grain distinct stratified nanolayers in aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Donatus, U., E-mail: uyimedonatus@yahoo.com [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Thompson, G.E.; Zhou, X.; Alias, J. [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Tsai, I.-L. [Oxford Instruments NanoAnalysis, HP12 2SE, High Wycombe (United Kingdom)

    2017-02-15

    The grains of aluminium alloys have stratified nanolayers which determine their mechanical and chemical responses. In this study, the nanolayers were revealed in the grains of AA6082 (T6 and T7 conditions), AA5083-O and AA2024-T3 alloys by etching the alloys in a solution comprising 20 g Cr{sub 2}O{sub 3} + 30 ml HPO{sub 3} in 1 L H{sub 2}O. Microstructural examination was conducted on selected grains of interest using scanning electron microscopy and electron backscatter diffraction technique. It was observed that the nanolayers are orientation dependent and are parallel to the {100} planes. They have ordered and repeated tunnel squares that are flawed at the sides which are aligned in the <100> directions. These flawed tunnel squares dictate the tunnelling corrosion morphology as well as appearing to have an affect on the arrangement and sizes of the precipitation hardening particles. The inclination of the stratified nanolayers, their interpacing, and the groove sizes have significant influence on the corrosion behaviour and seeming influence on the strengthening mechanism of the investigated aluminium alloys. - Highlights: • Stratified nanolayers in aluminium alloy grains. • Relationship of the stratified nanolayers with grain orientation. • Influence of the inclinations of the stratified nanolayers on corrosion. • Influence of the nanolayers interspacing and groove sizes on hardness and corrosion.

  12. Performance of stratified thermal-storage system for Oliver Springs Elementary School. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Bedinger, A.F.G.

    1981-01-01

    A progress report is given on the performance of a stratified thermal storage system coupled with a heat recovery refrigeration machine designed to provide space heating, cooling and service water heating. Water storage tanks utilizing a flexible membrane to resist temperature blending will be used as the thermal storage element. The two design goals of the heat recovery and thermal energy storage system are (1) to minimize the need to purchase energy for space heating and cooling and water heating and (2) to minimize electrical demand. An automatic data acquisition system will be used for system performance and data gathering. Data collection is expected to begin in September, 1981.

  13. New theoretical model for two-phase flow discharged from stratified two-phase region through small break

    International Nuclear Information System (INIS)

    Yonomoto, Taisuke; Tasaka, Kanji

    1988-01-01

    A theoretical and experimental study was conducted to understand two-phase flow discharged from a stratified two-phase region through a small break. This problem is important for an analysis of a small break loss-of-coolant accident (LOCA) in a light water reactor (LWR). The present theoretical results show that a break quality is a function of h/h b , where h is the elevation difference between a bulk water level in the upstream region and break and b the suffix for entrainment initiation. This result is consistent with existing eperimental results in literature. An air-water experiment was also conducted changing a break orientation as an experimental parameter to develop and assess the model. Comparisons between the model and the experimental results show that the present model can satisfactorily predict the flow rate and the quality at the break without using any adjusting constant when liquid entrainment occurs in a stratified two-phase region. When gas entrainment occurs, the experimental data are correlated well by using a single empirical constant. (author)

  14. Stratified premedication strategy for the prevention of contrast media hypersensitivity in high-risk patients.

    Science.gov (United States)

    Lee, Suh-Young; Yang, Min Suk; Choi, Young-Hoon; Park, Chang Min; Park, Heung-Woo; Cho, Sang Heon; Kang, Hye-Ryun

    2017-03-01

    Although the severity of hypersensitivity reactions to iodinated contrast media varies, it is well correlated with the severity of recurrent reactions; however, prophylaxis protocols are not severity-stratified. To assess the outcomes of tailored prophylaxis according to the severity of hypersensitivity reactions to iodinated contrast media. Our premedication protocols were stratified based on the severity of previous reactions: (1) 4 mg of chlorpheniramine for mild reactions, (2) adding 40 mg of methylprednisolone for moderate reactions, and (3) adding multiple doses of 40 mg of methylprednisolone for severe index reactions. Cases of reexposure in patients with a history of hypersensitivity reactions were routinely monitored and mandatorily recorded. Among a total of 850 patients who underwent enhanced computed tomography after severity-tailored prophylaxis, breakthrough reactions occurred in 17.1%, but most breakthrough reactions (89.0%) were mild and did not require medical treatment. Additional corticosteroid use did not reduce the breakthrough reaction rate in cases with a mild index reaction (16.8% vs 17.2%, P = .70). However, underpremedication with a single dose of corticosteroid revealed significantly higher rates of breakthrough reaction than did double doses of corticosteroid in cases with a severe index reaction (55.6% vs 17.4%, P = .02). Changing the iodinated contrast media resulted in an additional reduction of the breakthrough reaction rate overall (14.9% vs 32.1%, P = .001). In a total severity-based stratified prophylaxis regimens and changing iodinated contrast media can be considered in patients with a history of previous hypersensitivity reaction to iodinated contrast media to reduce the risk of breakthrough reactions. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. The stratified H-index makes scientific impact transparent

    DEFF Research Database (Denmark)

    Würtz, Morten; Schmidt, Morten

    2017-01-01

    The H-index is widely used to quantify and standardize researchers' scientific impact. However, the H-index does not account for the fact that co-authors rarely contribute equally to a paper. Accordingly, we propose the use of a stratified H-index to measure scientific impact. The stratified H......-index supplements the conventional H-index with three separate H-indices: one for first authorships, one for second authorships and one for last authorships. The stratified H-index takes scientific output, quality and individual author contribution into account....

  16. Artificial neural network and neutron application in a volume fraction calculation in annular and stratified multiphase system

    International Nuclear Information System (INIS)

    Ramos, Robson; Brandao, Luis E.B.; Pereira, Claudio M.N.A.; Schirru, Roberto; Silva, Ademir Xavier da

    2009-01-01

    Multiphase flows, type oil-water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241 Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X -computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air = 3.85; water = 4.31; oil=1.08); stratified (air = 3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique. (author)

  17. Stratified charge rotary engine combustion studies

    Science.gov (United States)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  18. Two-phase flow through small branches in a horizontal pipe with stratified flow

    International Nuclear Information System (INIS)

    Smoglie, C.

    1984-12-01

    This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HP) [de

  19. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon

    2016-01-01

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567

  20. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Directory of Open Access Journals (Sweden)

    Lam Ghai Lim

    2016-07-01

    Full Text Available A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function, with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  1. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach.

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K S; Hamid, Nor Hisham; Tang, Tong Boon

    2016-07-04

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a 'sine-like' function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  2. Development of a natural gas stratified charge rotary engine

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Verdonck, W.

    1985-01-01

    A water model has been used to determine the positions of separate inlet ports for a natural gas, stratified charge rotary engine. The flow inside the combustion chamber (mainly during the induction period) has been registered by a film camera. From these tests the best locations of the inlet ports have been obtained, a prototype of this engine has been built by Audi NSU and tested in the laboratories of the university of Gent. The results of these tests, for different stratification configurations, are given. These results are comparable with the best results obtained by Audi NSU for a homogeneous natural gas rotary engine.

  3. Artificial neural network and neutron application in a volume fraction calculation in annular and stratified multiphase system

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Robson; Brandao, Luis E.B.; Pereira, Claudio M.N.A., E-mail: robson@ien.gov.b, E-mail: brandao@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos; Schirru, Roberto; Silva, Ademir Xavier da, E-mail: schirru@lmp.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Dept.

    2009-07-01

    Multiphase flows, type oil-water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a {sup 241}Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X -computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air = 3.85; water = 4.31; oil=1.08); stratified (air = 3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique. (author)

  4. High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

    Science.gov (United States)

    Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew

    2015-09-01

    We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.

  5. Aligning the Economic Value of Companion Diagnostics and Stratified Medicines

    Directory of Open Access Journals (Sweden)

    Edward D. Blair

    2012-11-01

    Full Text Available The twin forces of payors seeking fair pricing and the rising costs of developing new medicines has driven a closer relationship between pharmaceutical companies and diagnostics companies, because stratified medicines, guided by companion diagnostics, offer better commercial, as well as clinical, outcomes. Stratified medicines have created clinical success and provided rapid product approvals, particularly in oncology, and indeed have changed the dynamic between drug and diagnostic developers. The commercial payback for such partnerships offered by stratified medicines has been less well articulated, but this has shifted as the benefits in risk management, pricing and value creation for all stakeholders become clearer. In this larger healthcare setting, stratified medicine provides both physicians and patients with greater insight on the disease and provides rationale for providers to understand cost-effectiveness of treatment. This article considers how the economic value of stratified medicine relationships can be recognized and translated into better outcomes for all healthcare stakeholders.

  6. Large eddy simulation of stably stratified turbulence

    International Nuclear Information System (INIS)

    Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao

    2011-01-01

    Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.

  7. Stratified medicine and reimbursement issues

    NARCIS (Netherlands)

    Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten

    2012-01-01

    Stratified Medicine (SM) has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to

  8. Two-phase flow through small branches in a horizontal pipe with stratified flow

    International Nuclear Information System (INIS)

    Smoglie, C.

    1985-02-01

    In the field of reactor safety the occurrence of a small break in a horizontal primary coolant pipe is of great importance. This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HS) [de

  9. The Stratified Legitimacy of Abortions.

    Science.gov (United States)

    Kimport, Katrina; Weitz, Tracy A; Freedman, Lori

    2016-12-01

    Roe v. Wade was heralded as an end to unequal access to abortion care in the United States. However, today, despite being common and safe, abortion is performed only selectively in hospitals and private practices. Drawing on 61 interviews with obstetrician-gynecologists in these settings, we examine how they determine which abortions to perform. We find that they distinguish between more and less legitimate abortions, producing a narrative of stratified legitimacy that privileges abortions for intended pregnancies, when the fetus is unhealthy, and when women perform normative gendered sexuality, including distress about the abortion, guilt about failure to contracept, and desire for motherhood. This stratified legitimacy can perpetuate socially-inflected inequality of access and normative gendered sexuality. Additionally, we argue that the practice by physicians of distinguishing among abortions can legitimate legislative practices that regulate and restrict some kinds of abortion, further constraining abortion access. © American Sociological Association 2016.

  10. Stratified charge rotary engine for general aviation

    Science.gov (United States)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  11. Diagnostic accuracy of the STRATIFY clinical prediction rule for falls: A systematic review and meta-analysis

    LENUS (Irish Health Repository)

    Billington, Jennifer

    2012-08-07

    AbstractBackgroundThe STRATIFY score is a clinical prediction rule (CPR) derived to assist clinicians to identify patients at risk of falling. The purpose of this systematic review and meta-analysis is to determine the overall diagnostic accuracy of the STRATIFY rule across a variety of clinical settings.MethodsA literature search was performed to identify all studies that validated the STRATIFY rule. The methodological quality of the studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. A STRATIFY score of ≥2 points was used to identify individuals at higher risk of falling. All included studies were combined using a bivariate random effects model to generate pooled sensitivity and specificity of STRATIFY at ≥2 points. Heterogeneity was assessed using the variance of logit transformed sensitivity and specificity.ResultsSeventeen studies were included in our meta-analysis, incorporating 11,378 patients. At a score ≥2 points, the STRATIFY rule is more useful at ruling out falls in those classified as low risk, with a greater pooled sensitivity estimate (0.67, 95% CI 0.52–0.80) than specificity (0.57, 95% CI 0.45 – 0.69). The sensitivity analysis which examined the performance of the rule in different settings and subgroups also showed broadly comparable results, indicating that the STRATIFY rule performs in a similar manner across a variety of different ‘at risk’ patient groups in different clinical settings.ConclusionThis systematic review shows that the diagnostic accuracy of the STRATIFY rule is limited and should not be used in isolation for identifying individuals at high risk of falls in clinical practice.

  12. Analysing stratified medicine business models and value systems: innovation-regulation interactions.

    Science.gov (United States)

    Mittra, James; Tait, Joyce

    2012-09-15

    Stratified medicine offers both opportunities and challenges to the conventional business models that drive pharmaceutical R&D. Given the increasingly unsustainable blockbuster model of drug development, due in part to maturing product pipelines, alongside increasing demands from regulators, healthcare providers and patients for higher standards of safety, efficacy and cost-effectiveness of new therapies, stratified medicine promises a range of benefits to pharmaceutical and diagnostic firms as well as healthcare providers and patients. However, the transition from 'blockbusters' to what might now be termed 'niche-busters' will require the adoption of new, innovative business models, the identification of different and perhaps novel types of value along the R&D pathway, and a smarter approach to regulation to facilitate innovation in this area. In this paper we apply the Innogen Centre's interdisciplinary ALSIS methodology, which we have developed for the analysis of life science innovation systems in contexts where the value creation process is lengthy, expensive and highly uncertain, to this emerging field of stratified medicine. In doing so, we consider the complex collaboration, timing, coordination and regulatory interactions that shape business models, value chains and value systems relevant to stratified medicine. More specifically, we explore in some depth two convergence models for co-development of a therapy and diagnostic before market authorisation, highlighting the regulatory requirements and policy initiatives within the broader value system environment that have a key role in determining the probable success and sustainability of these models. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Random forcing of geostrophic motion in rotating stratified turbulence

    Science.gov (United States)

    Waite, Michael L.

    2017-12-01

    Random forcing of geostrophic motion is a common approach in idealized simulations of rotating stratified turbulence. Such forcing represents the injection of energy into large-scale balanced motion, and the resulting breakdown of quasi-geostrophic turbulence into inertia-gravity waves and stratified turbulence can shed light on the turbulent cascade processes of the atmospheric mesoscale. White noise forcing is commonly employed, which excites all frequencies equally, including frequencies much higher than the natural frequencies of large-scale vortices. In this paper, the effects of these high frequencies in the forcing are investigated. Geostrophic motion is randomly forced with red noise over a range of decorrelation time scales τ, from a few time steps to twice the large-scale vortex time scale. It is found that short τ (i.e., nearly white noise) results in about 46% more gravity wave energy than longer τ, despite the fact that waves are not directly forced. We argue that this effect is due to wave-vortex interactions, through which the high frequencies in the forcing are able to excite waves at their natural frequencies. It is concluded that white noise forcing should be avoided, even if it is only applied to the geostrophic motion, when a careful investigation of spontaneous wave generation is needed.

  14. Mixed Convection Flow along a Stretching Cylinder in a Thermally Stratified Medium

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2012-01-01

    Full Text Available An analysis for the axisymmetric laminar boundary layer mixed convection flow of a viscous and incompressible fluid towards a stretching cylinder immersed in a thermally stratified medium is presented in this paper. Similarity transformation is employed to convert the governing partial differential equations into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by a shooting method. It is found that the heat transfer rate at the surface is lower for flow in a thermally stratified medium compared to that of an unstratified medium. Moreover, both the skin friction coefficient and the heat transfer rate at the surface are larger for a cylinder compared to that for a flat plate.

  15. Nitrogen transformations in stratified aquatic microbial ecosystems

    DEFF Research Database (Denmark)

    Revsbech, Niels Peter; Risgaard-Petersen, N.; Schramm, Andreas

    2006-01-01

    Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...... performing dissimilatory reduction of nitrate to ammonium have given new dimensions to the understanding of nitrogen cycling in nature, and the occurrence of these organisms and processes in stratified microbial communities will be described in detail.......Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about...... nitrogen fixation, nitrification, denitrification, and dissimilatory reduction of nitrate to ammonium, and about the microorganisms performing the processes, has been produced by use of these techniques. During the last decade the discovery of anammmox bacteria and migrating, nitrate accumulating bacteria...

  16. Improvements to TRAC models of condensing stratified flow. Pt. 1

    International Nuclear Information System (INIS)

    Zhang, Q.; Leslie, D.C.

    1991-12-01

    Direct contact condensation in stratified flow is an important phenomenon in LOCA analyses. In this report, the TRAC interfacial heat transfer model for stratified condensing flow has been assessed against the Bankoff experiments. A rectangular channel option has been added to the code to represent the experimental geometry. In almost all cases the TRAC heat transfer coefficient (HTC) over-predicts the condensation rates and in some cases it is so high that the predicted steam is sucked in from the normal outlet in order to conserve mass. Based on their cocurrent and countercurrent condensing flow experiments, Bankoff and his students (Lim 1981, Kim 1985) developed HTC models from the two cases. The replacement of the TRAC HTC with either of Bankoff's models greatly improves the predictions of condensation rates in the experiment with cocurrent condensing flow. However, the Bankoff HTC for countercurrent flow is preferable because it is based only on the local quantities rather than on the quantities averaged from the inlet. (author)

  17. PHOTOSPHERIC EMISSION FROM STRATIFIED JETS

    International Nuclear Information System (INIS)

    Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji

    2013-01-01

    We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E p -L p relation can be explained by differences in the outflow properties of individual sources

  18. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    Science.gov (United States)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  19. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme

    International Nuclear Information System (INIS)

    Chang, Chih-Hao; Liou, Meng-Sing

    2007-01-01

    In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM + -up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion

  20. AN INVESTIGATION OF TIME LAG MAPS USING THREE-DIMENSIONAL SIMULATIONS OF HIGHLY STRATIFIED HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Lionello, Roberto; Downs, Cooper; Mikić, Zoran; Linker, Jon [Predictive Science, Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-2910 (United States); Mok, Yung, E-mail: amy.r.winebarger@nasa.gov, E-mail: lionel@predsci.com, E-mail: cdowns@predsci.com, E-mail: mikicz@predsci.com, E-mail: linkerj@predsci.com, E-mail: ymok@uci.edu [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2016-11-10

    The location and frequency of coronal energy release provide a significant constraint on the coronal heating mechanism. The evolution of the intensity observed in coronal structures found from time lag analysis of Atmospheric Imaging Assembly (AIA) data has been used to argue that heating must occur sporadically. Recently, we have demonstrated that quasi-steady, highly stratified (footpoint) heating can produce results qualitatively consistent with the evolution of observed coronal structures. The goals of this paper are to demonstrate that time lag analysis of 3D simulations of footpoint heating are qualitatively consistent with time lag analysis of observations and to use the 3D simulations to further understand whether time lag analysis is a useful tool in defining the evolution of coronal structures. We find the time lag maps generated from simulated data are consistent with the observed time lag maps. We next investigate several example points. In some cases, the calculated time lag reflects the evolution of a unique loop along the line of sight, though there may be additional evolving structures along the line of sight. We confirm that using the multi-peak AIA channels can produce time lags that are difficult to interpret. We suggest using a different high temperature channel, such as an X-ray channel. Finally, we find that multiple evolving structures along the line of sight can produce time lags that do not represent the physical properties of any structure along the line of sight, although the cross-correlation coefficient of the lightcurves is high. Considering the projected geometry of the loops may reduce some of the line-of-sight confusion.

  1. Water and suspended sediment division at a stratified tidal junction

    NARCIS (Netherlands)

    Buschman, F.A.; Vegt, M. van der; Hoitink, A.J.F.; Hoekstra, P.

    2013-01-01

    Tidal junctions play a crucial role in the transport of water, salt, and sediment through a delta distributary network. Water, salt and sediment are exchanged at tidal junctions, thereby influencing the transports in the connecting branches and the overall dynamics of the system. This paper

  2. Undersized description on motile gyrotactic micro-organisms individualities in MHD stratified water-based Newtonian nanofluid

    Science.gov (United States)

    Rehman, Khalil Ur; Malik, Aneeqa Ashfaq; Tahir, M.; Malik, M. Y.

    2018-03-01

    The current pagination summarized the influence of bio-convection Schmidt number, bio-convection Peclet number and micro-organisms concentration difference parameter on the density of motile gyrotactic micro-organisms when they have interaction with the thermally stratified magneto-nanofluid flow past a vertical stretching surface. It is observed that the density of motile microorganisms is the decreasing function of the bio-convection Schmidt and Peclet numbers. It is trusted that the outcomes of present analysis will serve as a helping source for the upcoming developments regarding individualities of motile gyrotactic micro-organisms subject to boundary layer flows induced by stretching surfaces.

  3. Water and suspended sediment division at a stratified tidal junction

    NARCIS (Netherlands)

    Buschman, F.A.; Vegt, van der M.; Hoitink, A.J.F.; Hoekstra, P.

    2013-01-01

    [1] Tidal junctions play a crucial role in the transport of water, salt, and sediment through a delta distributary network. Water, salt and sediment are exchanged at tidal junctions, thereby influencing the transports in the connecting branches and the overall dynamics of the system. This paper

  4. An experimental investigation of stratified two-phase pipe flow at small inclinations

    Energy Technology Data Exchange (ETDEWEB)

    Espedal, Mikal

    1998-12-31

    The prediction of stratified flow is important for several industrial applications. Stratified flow experiments were carefully performed in order to investigate the performance of a typical model which uses wall friction factors based on single phase pipe flow as described above. The test facility has a 18.5 m long and 60 mm i.d. (L/D=300) acrylic test section which can be inclined between -10 {sup o} and +10 {sup o}. The liquid holdup was measured by using fast closing valves and the pressure gradients by using three differential pressure transducers. Interfacial waves were measured by thin wire conductance probes mounted in a plane perpendicular to the main flow. The experiments were performed using water and air at atmospheric pressure. The selected test section inclinations were between -3 {sup o} and +0.5 {sup o} to the horizontal plane. A large number of experiments were performed for different combinations of air and water flow rates and the rates were limited to avoid slug flow and stratified flow with liquid droplets. The pressure gradient and the liquid holdup were measured. In addition the wave probes were used to find the wave heights and the wave power spectra. The results show that the predicted pressure gradient using the standard models is approximately 30% lower than the measured value when large amplitude waves are present. When the flow is driven by the interfacial force the test section inclination has minor influence on the deviation between predicted and measured pressure gradients. Similar trends are apparent in data from the literature, although they seem to have gone unnoticed. For several data sets large spread in the predictions are observed when the model described above was used. Gas wall shear stress experiments indicate that the main cause of the deviation between measured and predicted pressure gradient and holdup resides in the modelling of the liquid wall friction term. Measurements of the liquid wall shear stress distribution

  5. Generation of stratified squamous epithelial progenitor cells from mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Satoru Yoshida

    Full Text Available BACKGROUND: Application of induced pluripotent stem (iPS cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. METHODOLOGY/PRINCIPAL FINDINGS: We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. CONCLUSIONS/SIGNIFICANCE: These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets.

  6. Risk of falling among hospitalized patients with high modified Morse scores could be further Stratified.

    Science.gov (United States)

    Gringauz, Irina; Shemesh, Yael; Dagan, Amir; Israelov, Irina; Feldman, Dana; Pelz-Sinvani, Naama; Justo, Dan; Segal, Gad

    2017-11-13

    Falls during hospitalization harbor both clinical and financial outcomes. The modified Morse fall scale [MMFS] is widely used for an in-hospital risk-of-fall assessment. Nevertheless, the majority of patients at risk of falling, i.e. with high MMFS, do not fall. The aim of this study was to ascertain our study hypothesis that certain patients' characteristics (e.g. serum electrolytes, usage of a walking device etc.) could further stratify the risk of falls among hospitalized patients with MMFS. This was a retrospective cohort analysis of adult patients hospitalized in Internal Medicine departments. The final cohort included 428 patients aged 76.8±14.0 years. All patients had high (9 or more) MMFS upon admission, and their mean MMFS was 16.2±6.1. A group of 139 (32.5%) patients who fell during their hospitalization was compared with a control group of 289 (67.5%) patients who did not fall. The fallers had higher MMFS, a higher prevalence of mild dependence, and a greater use of a cane or no walking device. Regression analysis showed the following patients' characteristics to be independently associated with an increased risk of falling: mild dependence (OR=3.99, 95% CI 1.97-8.08; pfalling (OR=0.3, 95% CI 0.13-0.69; p=0.005 and OR=0.25, 95% CI 0.11-0.59; p= 0.002). Further risk stratification of hospitalized patients, already known to have a high MMFS, which would take into account the characteristics pointed out in this study, should be attained.

  7. Stratified Medicine and Reimbursement Issues

    Directory of Open Access Journals (Sweden)

    Hans-Joerg eFugel

    2012-10-01

    Full Text Available Stratified Medicine (SM has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to strengthen the value proposition to pricing and reimbursement (P&R authorities. However, the introduction of SM challenges current reimbursement schemes in many EU countries and the US as different P&R policies have been adopted for drugs and diagnostics. Also, there is a lack of a consistent process for value assessment of more complex diagnostics in these markets. New, innovative approaches and more flexible P&R systems are needed to reflect the added value of diagnostic tests and to stimulate investments in new technologies. Yet, the framework for access of diagnostic–based therapies still requires further development while setting the right incentives and appropriate align stakeholders interests when realizing long- term patient benefits. This article addresses the reimbursement challenges of SM approaches in several EU countries and the US outlining some options to overcome existing reimbursement barriers for stratified medicine.

  8. Multi-Instrument Observations of Prolonged Stratified Wind Layers at Iqaluit, Nunavut

    Science.gov (United States)

    Mariani, Zen; Dehghan, Armin; Gascon, Gabrielle; Joe, Paul; Hudak, David; Strawbridge, Kevin; Corriveau, Julien

    2018-02-01

    Data collected between October 2015 and May 2016 at Environment and Climate Change Canada's Iqaluit research site (64°N, 69°W) have revealed a high frequency (40% of all days for which observations were available) of stratified wind layer events that occur from near the surface up to about 7.2 km above sea level. These stratified wind layers are clearly visible as wind shifts (90 to 180°) with height in range-height indicator scans from the Doppler lidar and Ka-band radar and in wind direction profiles from the Doppler lidar and radiosonde. During these events, the vertical structure of the flow appears to be a stack of 4 to 10 layers ranging in vertical width from 0.1 to 4.4 km. The stratification events that were observed occurred predominantly (81%) during light precipitation and lasted up to 27.5 h. The integrated measurement platforms at Iqaluit permitted continuous observations of the evolution of stratification events in different meteorological conditions.

  9. Experimental determination and modelling of interface area concentration in horizontal stratified flow

    International Nuclear Information System (INIS)

    Junqua-Moullet, Alexandra

    2003-01-01

    This research thesis concerns the modelling and experimentation of biphasic liquid/gas flows (water/air) while using the two-fluid model, a six-equation model. The author first addresses the modelling of interfacial magnitudes for a known topology (problem of two-fluid model closure, closure relationships for some variables, equation for a given configuration). She reports the development of an equation system for interfacial magnitudes. The next parts deal with experiments and report the study of stratified flows in the THALC experiment, and more particularly the study of the interfacial area concentration and of the liquid velocities in such flows. Results are discussed, as well as their consistency

  10. Domestic hot water storage: Balancing thermal and sanitary performance

    International Nuclear Information System (INIS)

    Armstrong, P.; Ager, D.; Thompson, I.; McCulloch, M.

    2014-01-01

    Thermal stratification within hot water tanks maximises the availability of stored energy and facilitates optimal use of both conventional and renewable energy sources. However, stratified tanks are also associated with the proliferation of pathogenic bacteria, such as Legionella, due to the hospitable temperatures that arise during operation. Sanitary measures, aimed at homogenising the temperature distribution throughout the tank, have been proposed; such measures reduce the effective energy storage capability that is otherwise available. Here we quantify the conflict that arises between thermodynamic performance and bacterial sterilisation within 10 real world systems. Whilst perfect stratification enhances the recovery of hot water and reduces heat losses, water samples revealed significant bacterial growth attributable to stratification (P<0.01). Temperature measurements indicated that users were exposed to potentially unsanitary water as a result. De-stratifying a system to sterilise bacteria led to a 19% reduction in effective hot water storage capability. Increasing the tank size to compensate for this loss would lead to an 11% increase in energy consumed through standing heat losses. Policymakers, seeking to utilise hot water tanks as demand response assets, should consider monitoring and control systems that prevent exposures to unsanitary hot water. - Highlights: • Domestic hot water tanks are a potential demand side asset for power networks. • A preference for bacterial growth in stratified hot water tanks has been observed. • Temperatures in base of electric hot water tanks hospitable to Legionella. • Potential exposures to unsanitary water observed. • De-stratifying a tank to sterilise leads to reduced energy storage capability

  11. E25 stratified torch ignition engine emissions and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Baêta, José Guilherme Coelho; Teixeira, Alysson Fernandes; Valle, Ramón Molina; Fonseca de Souza, José Leôncio

    2016-01-01

    Highlights: • A stratified torch ignition (STI) engine was built and tested. • The STI engines was tested in a wide range of load and speed. • Significant reduction on emissions was achieved by means of the STI system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine. • HC emission is the main drawback of the stratified torch ignition engine. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and greenhouse gases (GHG). This fact associated with fast global vehicle fleet growth calls for prompt scientific community technological solutions in order to promote a significant reduction in vehicle fuel consumption and emissions, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition (STI) engine was built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for a very low fuel flow rate. In this work the engine out-emissions of CO, NOx, HC and CO_2 of the STI engine are presented and a detailed analysis supported by the combustion parameters is conducted. The results obtained in this work show a significant decrease in the specific emissions of CO, NOx and CO_2 of the STI engine in comparison with the baseline engine. On the other hand, HC specific emission increased due to wall wetting from the fuel hitting in the pre-combustion chamber wall.

  12. Lack of P-limitation of phytoplankton and heterotrophic prokaryotes in surface waters of three anticyclonic eddies in the stratified Mediterranean Sea

    Science.gov (United States)

    Tanaka, T.; Thingstad, T. F.; Christaki, U.; Colombet, J.; Cornet-Barthaux, V.; Courties, C.; Grattepanche, J.-D.; Lagaria, A.; Nedoma, J.; Oriol, L.; Psarra, S.; Pujo-Pay, M.; van Wambeke, F.

    2011-02-01

    We investigated the identity of the limiting nutrient of the pelagic microbial food web in the Mediterranean Sea using nutrient manipulated microcosms during summer 2008. Experiments were carried out with surface waters at the center of anticyclonic eddies in the Western Basin, the Ionian Basin, and the Levantine Basin. In situ, the ratio of N to P was always higher in both dissolved and particulate organic fractions compared to the Redfield ratio, suggesting a relative P-starvation. In each experiment, four different treatments in triplicates (addition of ammonium, phosphate, a combination of both, and the unamended control) were employed and chemical and biological parameters monitored throughout a 3-4 day incubation. Temporal changes of turnover time of phosphate and ATP, and alkaline phosphatase activity during the incubation suggested that the phytoplankton and heterotrophic prokaryotes (Hprok) communities were not P-limited at the sites. Furthermore, statistical comparison among treatments at the end of the incubation did not support a hypothesis of P-limitation at the three study sites. In contrast, primary production was consistently limited by N, and Hprok growth was not limited by N nor P in the Western Basin, but N-limited in the Ionian Basin, and N and P co-limited in the Levantine Basin. Our results demonstrated the gap between biogeochemical features (an apparent P-starved status) and biological responses (no apparent P-limitation). We question the general notion that Mediterranean surface waters are limited by P alone during the stratified period.

  13. Numerical simulation of stratified flows with different k-ε turbulence models

    International Nuclear Information System (INIS)

    Dagestad, S.

    1991-01-01

    The thesis comprises the numerical simulation of stratified flows with different k-ε models. When using the k-ε model, two equations are solved to describe the turbulence. The k-equation represents the turbulent kinetic energy of the turbulence and the ε-equation is the turbulent dissipation. Different k-ε models predict stratified flows differently. The standard k-ε model leads to higher turbulent mixing than the low-Reynolds model does. For lower Froude numbers, F 0 , this effect becomes enhanced. Buoyancy extension of the k-ε model also leads to less vertical mixing in cases with strong stratification. When the stratification increases, buoyancy-extension becomes larger influence. The turbulent Prandtl number effects have large impact on the transport of heat and the development of the flow. Two different formulae which express the turbulent Prandtl effects have been tested. For unstably stratified flows, the rapid mixing and three-dimensionality of the flow can in fact be computed using a k-ε model when buoyancy-extended is employed. The turbulent heat transfer and thus turbulent production in unstable stratified flows depends strongly upon the turbulent Prandtl number effect. The main conclusions are: Stable stratified flows should be computed with a buoyancy-extended low-Reynolds k-ε model; Unstable stratified flows should be computed with a buoyancy-extended standard k-ε model; The turbulent Prandtl number effects should be included in the computations; Buoyancy-extension has lead to more correct description of the physics for all of the investigated flows. 78 refs., 128 figs., 17 tabs

  14. The effect of existing turbulence on stratified shear instability

    Science.gov (United States)

    Kaminski, Alexis; Smyth, William

    2017-11-01

    Ocean turbulence is an essential process governing, for example, heat uptake by the ocean. In the stably-stratified ocean interior, this turbulence occurs in discrete events driven by vertical variations of the horizontal velocity. Typically, these events have been modelled by assuming an initially laminar stratified shear flow which develops wavelike instabilities, becomes fully turbulent, and then relaminarizes into a stable state. However, in the real ocean there is always some level of turbulence left over from previous events, and it is not yet understood how this turbulence impacts the evolution of future mixing events. Here, we perform a series of direct numerical simulations of turbulent events developing in stratified shear flows that are already at least weakly turbulent. We do so by varying the amplitude of the initial perturbations, and examine the subsequent development of the instability and the impact on the resulting turbulent fluxes. This work is supported by NSF Grant OCE1537173.

  15. Stratified source-sampling techniques for Monte Carlo eigenvalue analysis

    International Nuclear Information System (INIS)

    Mohamed, A.

    1998-01-01

    In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo ''Eigenvalue of the World'' problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. In this paper, stratified source-sampling techniques are generalized and applied to three different Eigenvalue of the World configurations which take into account real-world statistical noise sources not included in the model problem, but which differ in the amount of neutronic coupling among the constituents of each configuration. It is concluded that, in Monte Carlo eigenvalue analysis of loosely-coupled arrays, the use of stratified source-sampling reduces the probability of encountering an anomalous result over that if conventional source-sampling methods are used. However, this gain in reliability is substantially less than that observed in the model-problem results

  16. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates

    Directory of Open Access Journals (Sweden)

    A. Monier

    2013-06-01

    Full Text Available The ubiquity of heterotrophic flagellates (HFL in marine waters has been recognized for several decades, but the phylogenetic diversity of these small (ca. 0.8–20 μm cell diameter, mostly phagotrophic protists in the upper pelagic zone of the ocean is underappreciated. Community composition of microbes, including HFL, is the result of past and current environmental selection, and different taxa may be indicative of food webs that cycle carbon and energy very differently. While all oceanic water columns can be density stratified due to the temperature and salinity characteristics of different water masses, the Arctic Ocean is particularly well stratified, with nutrients often limiting in surface waters and most photosynthetic biomass confined to a subsurface chlorophyll maximum layer, where light and nutrients are both available. This physically well-characterized system provided an opportunity to explore the community diversity of HFL from different water masses within the water column. We used high-throughput DNA sequencing techniques as a rapid means of surveying the diversity of HFL communities in the southern Beaufort Sea (Canada, targeting the surface, the subsurface chlorophyll maximum layer (SCM and just below the SCM. In addition to identifying major clades and their distribution, we explored the micro-diversity within the globally significant but uncultivated clade of marine stramenopiles (MAST-1 to examine the possibility of niche differentiation within the stratified water column. Our results strongly suggested that HFL community composition was determined by water mass rather than geographical location across the Beaufort Sea. Future work should focus on the biogeochemical and ecological repercussions of different HFL communities in the face of climate-driven changes to the physical structure of the Arctic Ocean.

  17. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, Olivier [Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8 (Canada)], E-mail: olivier.clarisse@umoncton.ca; Foucher, Delphine; Hintelmann, Holger [Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8 (Canada)

    2009-03-15

    The diffusive gradient in thin film (DGT) technique was successfully used to monitor methylmercury (MeHg) speciation in the dissolved phase of a stratified boreal lake, Lake 658 of the Experimental Lakes Area (ELA) in Ontario, Canada. Water samples were conventionally analysed for MeHg, sulfides, and dissolved organic matter (DOM). MeHg accumulated by DGT devices was compared to MeHg concentration measured conventionally in water samples to establish MeHg speciation. In the epilimnion, MeHg was almost entirely bound to DOM. In the top of the hypolimnion an additional labile fraction was identified, and at the bottom of the lake a significant fraction of MeHg was potentially associated to colloidal material. As part of the METAALICUS project, isotope enriched inorganic mercury was applied to Lake 658 and its watershed for several years to establish the relationship between atmospheric Hg deposition and Hg in fish. Little or no difference in MeHg speciation in the dissolved phase was detected between ambient and spike MeHg. - Methylmercury speciation was determined in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique.

  18. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique

    International Nuclear Information System (INIS)

    Clarisse, Olivier; Foucher, Delphine; Hintelmann, Holger

    2009-01-01

    The diffusive gradient in thin film (DGT) technique was successfully used to monitor methylmercury (MeHg) speciation in the dissolved phase of a stratified boreal lake, Lake 658 of the Experimental Lakes Area (ELA) in Ontario, Canada. Water samples were conventionally analysed for MeHg, sulfides, and dissolved organic matter (DOM). MeHg accumulated by DGT devices was compared to MeHg concentration measured conventionally in water samples to establish MeHg speciation. In the epilimnion, MeHg was almost entirely bound to DOM. In the top of the hypolimnion an additional labile fraction was identified, and at the bottom of the lake a significant fraction of MeHg was potentially associated to colloidal material. As part of the METAALICUS project, isotope enriched inorganic mercury was applied to Lake 658 and its watershed for several years to establish the relationship between atmospheric Hg deposition and Hg in fish. Little or no difference in MeHg speciation in the dissolved phase was detected between ambient and spike MeHg. - Methylmercury speciation was determined in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique

  19. Experimental and numerical investigation of stratified gas-liquid flow in inclined circular pipes

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Sampaio, P.A.B. de; Botelho, M.H.D.S.; Cunha, M.V.; Cunha Filho, J.S.; Su, J.

    2012-01-01

    In this paper, a stratified gas-liquid flow is experimentally and numerically investigated. Two measurement techniques, namely an ultrasonic technique and a visualization technique, are applied on an inclined circular test section using a fast single transducer pulse-echo technique and a high-speed camera. A numerical model is employed to simulate the stratified gas-liquid flow, formed by a system of non-linear differential equations consisting of the Reynolds averaged Navier-Stokes equations with the κ-ω turbulence model. The test section used in this work is comprised mainly of a transparent circular pipe with inner diameter 1 inch, and inclination angles varying from -2.5 to -10.0 degrees. Numerical solutions are obtained for the liquid height as a function of inclination angles, and compared with our own experimental data. (author)

  20. Tests of the TRAC code against known analytical solutions for stratified flow

    International Nuclear Information System (INIS)

    Black, P.S.; Leslie, D.C.; Hewitt, G.F.

    1987-01-01

    The area averaged equations for gas-liquid flow are briefly summarized and related, for the specific case of stratified flow, to the shallow water equations commonly used in hydraulics. These equations are then compared to the equations used in TRAC-PF/MOD1 and are shown to differ in their treatment of the gravity head terms. A modification of the TRAC code is therefore necessary to bring it into line with established shallow water theory. The corrected form of the code was compared with a number of specific cases, each of which throws further light on the code behavior. The following areas are discussed in the paper: (1) the dam break problem; (2) Kelvin-Helmholtz instability; (3) counter-current flow; and (4) slug flow. It is concluded that detailed comparisons of the code with known analytic solutions and with a number of the more complex phenomenological experiments can give useful insights into its behavior

  1. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    Science.gov (United States)

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  2. Hydrogeologic appraisal of a stratified-drift aquifer near Smyrna, Chenango County, New York

    Science.gov (United States)

    Reynolds, R.J.; Brown, G.A.

    1984-01-01

    A broad, Y-shaped valley near Smyrna, New York, contains extensive water-table and confined aquifers that are largely hydraulically separated from the nearby Chenango River to the east. Accordingly, ground-water withdrawals from this valley would not appreciably decrease streamflow in the Chenango River by induced infiltration and could be used for specialized needs. The aquifers in the valley are capable of sustaining a long-term total withdrawal of about 12.7 million gallons per day during prolonged drought conditions. Larger withdrawals could be made on a short-term basis or during periods of normal or above-normal precipitation. Saturated thickness of undifferentiated stratified-drift deposits in the valley ranges from 20 feet in the northwestern part of the valley to more than 300 feet at its southern end. Direct areal recharge accounts for about 56 percent of the total recharge to the valley aquifer infiltration from streams accounts for 24 percent, and runoff from the adjacent till-mantled hillsides accounts for 20 percent. The water-table and confined aquifers within the valley hold at least 19.6 billion gallons of usable ground water in storage. (USGS)

  3. Layer contributions to the nonlinear acoustic radiation from stratified media.

    Science.gov (United States)

    Vander Meulen, François; Haumesser, Lionel

    2016-12-01

    This study presents the thorough investigation of the second harmonic generation scenario in a three fluid layer system. An emphasis is on the evaluation of the nonlinear parameter B/A in each layer from remote measurements. A theoretical approach of the propagation of a finite amplitude acoustic wave in a multilayered medium is developed. In the frame of the KZK equation, the weak nonlinearity of the media, attenuation and diffraction effects are computed for the fundamental and second harmonic waves propagating back and forth in each of the layers of the system. The model uses a gaussian expansion to describe the beam propagation in order to quantitatively evaluate the contribution of each part of the system (layers and interfaces) to its nonlinearity. The model is validated through measurements on a water/aluminum/water system. Transmission as well as reflection configurations are studied. Good agreement is found between the theoretical results and the experimental data. The analysis of the second harmonic field sources measured by the transducers from outside the stratified medium highlights the factors that favor the cumulative effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. RADIAL STABILITY IN STRATIFIED STARS

    International Nuclear Information System (INIS)

    Pereira, Jonas P.; Rueda, Jorge A.

    2015-01-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case

  5. Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications

    Directory of Open Access Journals (Sweden)

    Azharul Karim

    2018-04-01

    Full Text Available A large amount of energy is consumed by heating and cooling systems to provide comfort conditions for commercial building occupants, which generally contribute to peak electricity demands. Thermal storage tanks in HVAC systems, which store heating/cooling energy in the off-peak period for use in the peak period, can be used to offset peak time energy demand. In this study, a theoretical investigation on stratified thermal storage systems is performed to determine the factors that significantly influence the thermal performance of these systems for both heating and cooling applications. Five fully-insulated storage tank geometries, using water as the storage medium, were simulated to determine the effects of water inlet velocity, tank aspect ratio and temperature difference between charging (inlet and the tank water on mixing and thermocline formation. Results indicate that thermal stratification enhances with increased temperature difference, lower inlet velocities and higher aspect ratios. It was also found that mixing increased by 303% when the temperature difference between the tank and inlet water was reduced from 80 °C to 10 °C, while decreasing the aspect ratio from 3.8 to 1.0 increased mixing by 143%. On the other hand, increasing the inlet water velocity significantly increased the storage mixing. A new theoretical relationship between the inlet water velocity and thermocline formation has been developed. It was also found that inlet flow rates can be increased, without increasing the mixing, after the formation of the thermocline.

  6. Soil mixing of stratified contaminated sands.

    Science.gov (United States)

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  7. An experimental simulation study of debris quenching in a radially stratified porous bed

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Nayak, A.K.; Stepanyan, A.

    2004-01-01

    During a severe accident condition in a nuclear power plant, the core melt can fail the reactor vessel and relocate into the containment basement. In some accident management schemes, the vessel cavity is flooded with water. For these a particulate debris bed is likely to form on the cavity floor due to melt break-up in water. . In this situation, the coolability of debris bed on the containment floor is a crucial issue. This is because the debris bed still generates the decay heat and if it is uncoolable, it can eventually remelt and react with concrete basement generating a lot of noncondensable gases and pressurising the containment. Hence, it is important to cool the debris bed as an accident management programme. The main parameters affecting the coolability of the debris bed are its porosity which is a function of the size and shape of the particles which constitute the debris bed, the operating condition such as water flooding from the top or bottom of debris bed, water temperature and non-condensable gas generated during bed-concrete interactions. It is found from previous studies that the debris bed has a non-uniform particle distribution or a porosity stratification. This can happen both in radial and axial plane. For example, the bed can have a lower porosity at the centre and higher porosity at the periphery. It is of interest to investigate the quenching phenomena in such configurations so as to find an effective means of quenching the heat generating bed. While most of the previous investigations mainly concentrate on quenching of a homogenous or axially stratified particulate bed with volumetric heat generation, there are almost no studies on the above phenomena in a radially stratified porous bed. So the objective of this paper is to investigate the quenching phenomena in a radially stratified bed. To simulate the phenomena, we conducted experiments in an experimental facility named as POMECO (POrous MEdia COolability). The facility has a square

  8. A review of recent developments on turbulent entrainment in stratified flows

    International Nuclear Information System (INIS)

    Cotel, Aline J

    2010-01-01

    Stratified interfaces are present in many geophysical flow situations, and transport across such an interface is an essential factor for correctly evaluating the physical processes taking place at many spatial and temporal scales in such flows. In order to accurately evaluate vertical and lateral transport occurring when a turbulent flow impinges on a stratified interface, the turbulent entrainment and vorticity generation mechanisms near the interface must be understood and quantified. Laboratory experiments were performed for three flow configurations: a vertical thermal, a sloping gravity current and a vertical turbulent jet with various tilt angles and precession speeds. All three flows impinged on an interface separating a two-layer stably stratified environment. The entrainment rate is quantified for each flow using laser-induced fluorescence and compared to predictions of Cotel and Breidenthal (1997 Appl. Sci. Res. 57 349-66). The possible applications of transport across stratified interfaces include the contribution of hydrothermal plumes to the global ocean energy budget, turbidity currents on the ocean floor, the design of lake de-stratification systems, modeling gas leaks from storage reservoirs, weather forecasting and global climate change.

  9. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake

    Science.gov (United States)

    Herndon, Elizabeth M.; Havig, Jeff R.; Singer, David M.; McCormick, Michael L.; Kump, Lee R.

    2018-06-01

    Manganese and iron are redox-sensitive elements that yield clues about biogeochemistry and redox conditions both in modern environments and in the geologic past. Here, we investigated Mn and Fe-bearing minerals preserved in basin sediments underlying Fayetteville Green Lake, a redox-stratified lake that serves as a geochemical analogue for Paleoproterozoic oceans. Synchrotron-source microprobe techniques (μXRF, μXANES, and μXRD) and bulk geochemical analyses were used to examine the microscale distribution and speciation of Mn, Fe, and S as a function of depth in the top 48 cm of anoxic lake sediments. Manganese was primarily associated with calcite grains as a manganese-rich carbonate that precipitated in the chemocline of the water column and settled through the euxinic basin to collect in lake sediments. Iron was preserved in framboidal iron sulfides that precipitated in euxinic bottom waters and underwent transformation to pyrite and marcasite in the sediments. Previous studies attribute the formation of manganese-rich carbonates to the diagenetic alteration of manganese oxides deposited in basins underlying oxygenated water. Our study challenges this paradigm by providing evidence that Mn-bearing carbonates form in the water column and accumulate in sediments below anoxic waters. Consequently, manganoan carbonates preserved in the rock record do not necessarily denote the presence of oxygenated bottom waters in ocean basins.

  10. Horizontal stratified flow model for the 1-D module of WCOBRA/TRAC-TF2: modeling and validation

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Frepoli, C.; Ohkawa, K., E-mail: liaoj@westinghouse.com [Westinghouse Electric Company LLC, LOCA Integrated Services I, Cranberry Twp, Pennsylvania (United States)

    2011-07-01

    For a two-phase flow in a horizontal pipe, the individual phases may separate by gravity. This horizontal stratification significantly impacts the interfacial drag, interfacial heat transfer and wall drag of the two phase flow. For a PWR small break LOCA, the horizontal stratification in cold legs is a highly important phenomenon during loop seal clearance, boiloff and recovery periods. The low interfacial drag in the stratified flow directly controls the time period for the loop clearance and the level of residual water in the loop seal. Horizontal stratification in hot legs also impacts the natural circulation stage of a small break LOCA. In addition, the offtake phenomenon and cold leg condensation phenomenon are also affected by the occurrence of horizontal stratification in the cold legs. In the 1-D module of the WCOBRA/TRAC-TF2 computer code, a horizontal stratification criterion was developed by combining the Taitel-Dukler model and the Wallis-Dobson model, which approximates the viscous Kelvin-Helmholtz neutral stability boundary. The objective of this paper is to present the horizontal stratification model implemented in the code and its assessment against relevant data. The adequacy of the horizontal stratification transition criterion is confirmed by examining the code-predicted flow regime in a horizontal pipe with the measured data in the flow regime map. The void fractions (or liquid level) for the horizontal stratified flow in cold leg or hot leg are predicted with a reasonable accuracy. (author)

  11. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  12. Numerical simulations of the stratified oceanic bottom boundary layer

    Science.gov (United States)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory

  13. Numerical Simulations of Upstream Propagating Solitary Waves and Wave Breaking In A Stratified Fjord

    Science.gov (United States)

    Stastna, M.; Peltier, W. R.

    In this talk we will discuss ongoing numerical modeling of the flow of a stratified fluid over large scale topography motivated by observations in Knight Inlet, a fjord in British Columbia, Canada. After briefly surveying the work done on the topic in the past we will discuss our latest set of simulations in which we have observed the gener- ation and breaking of three different types of nonlinear internal waves in the lee of the sill topography. The first type of wave observed is a large lee wave in the weakly strat- ified main portion of the water column, The second is an upward propagating internal wave forced by topography that breaks in the strong, near-surface pycnocline. The third is a train of upstream propagating solitary waves that, in certain circumstances, form as breaking waves consisting of a nearly solitary wave envelope and a highly unsteady core near the surface. Time premitting, we will comment on the implications of these results for our long term goal of quantifying tidally driven mixing in Knight Inlet.

  14. Spinning phenomena and energetics of spherically pulsating patterns in stratified fluids

    International Nuclear Information System (INIS)

    Ibragimov, Ranis N; Dameron, Michael

    2011-01-01

    The nonlinear solutions of the two-dimensional Boussinesq equations describing internal waves in rotating stratified fluids were obtained as group invariant solutions. The latter nonlinear solutions correspond to the rotation transformation preserving the form of the original nonlinear equations of motion. It is shown that the obtained class of exact solutions can be associated with the spherically pulsating patterns observed in uniformly stratified fluids. It is also shown that the obtained rotationally symmetric solutions are bounded functions that can be visualized as spinning patterns in stratified fluids. It is also shown that the rotational transformation provides the energy conservation law together with other conservation laws for which the spinning phenomena is observed. The effects of nonlinearity and the Earth's rotation on such a phenomenon are also discussed.

  15. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    Science.gov (United States)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  16. Tumour vasculature immaturity, oxidative damage and systemic inflammation stratify survival of colorectal cancer patients on bevacizumab treatment

    Science.gov (United States)

    Martin, Petra; Biniecka, Monika; Ó'Meachair, Shane; Maguire, Aoife; Tosetto, Miriam; Nolan, Blathnaid; Hyland, John; Sheahan, Kieran; O'Donoghue, Diarmuid; Mulcahy, Hugh; Fennelly, David; O'Sullivan, Jacintha

    2018-01-01

    Despite treatment of patients with metastatic colorectal cancer (mCRC) with bevacizumab plus chemotherapy, response rates are modest and there are no biomarkers available that will predict response. The aim of this study was to assess if markers associated with three interconnected cancer-associated biological processes, specifically angiogenesis, inflammation and oxidative damage, could stratify the survival outcome of this cohort. Levels of angiogenesis, inflammation and oxidative damage markers were assessed in pre-bevacizumab resected tumour and serum samples of mCRC patients by dual immunofluorescence, immunohistochemistry and ELISA. This study identified that specific markers of angiogenesis, inflammation and oxidative damage stratify survival of patients on this anti-angiogenic treatment. Biomarkers of immature tumour vasculature (% IMM, p=0.026, n=80), high levels of oxidative damage in the tumour epithelium (intensity of 8-oxo-dG in nuclear and cytoplasmic compartments, p=0.042 and 0.038 respectively, n=75) and lower systemic pro-inflammatory cytokines (IL6 and IL8, p=0.053 and 0.049 respectively, n=61) significantly stratify with median overall survival (OS). In summary, screening for a panel of biomarkers for high levels of immature tumour vasculature, high levels of oxidative DNA damage and low levels of systemic pro-inflammatory cytokines may be beneficial in predicting enhanced survival outcome following bevacizumab treatment for mCRC. PMID:29535825

  17. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    Science.gov (United States)

    Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.

    2017-10-01

    The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  18. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2017-10-01

    Full Text Available The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads, which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria. Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  19. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    Science.gov (United States)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  20. Background stratified Poisson regression analysis of cohort data.

    Science.gov (United States)

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  1. Potential uses of high gradient magnetic filtration for high-temperature water purification in boiling water reactors

    International Nuclear Information System (INIS)

    Elliott, H.H.; Holloway, J.H.; Abbott, D.G.

    1979-01-01

    Studies of various high-temperature filter devices indicate a potentially positive impact for high gradient magnetic filtration on boiling water reactor radiation level reduction. Test results on in-plant water composition and impurity crystallography are presented for several typical boiling water reactors (BWRs) on plant streams where high-temperature filtration may be particularly beneficial. An experimental model on the removal of red iron oxide (hematite) from simulated reactor water with a high gradient magnetic filter is presented, as well as the scale-up parameters used to predict the filtration efficiency on various high temperature, in-plant streams. Numerical examples are given to illustrate the crud removal potential of high gradient magnetic filters installed at alternative stream locations under typical, steady-state, plant operating conditions

  2. Cross-stratified Wood: Enigmatic Woody Debris Deposits in Warm-Polar Fluvial Sediments (Pliocene Beaufort Formation, Nunavut)

    Science.gov (United States)

    Davies, N. S.; Gosse, J. C.; Rybczynski, N.

    2012-04-01

    Woody debris has been an important sediment component and a significant geomorphic agent in pristine fluvial systems since the Devonian. In recent years a large volume of research has focussed on various aspects of the importance of woody debris within the fluvial realm; from the evolutionary significance of fossil wood accumulations in the rock record to studies of the biogeomorphological and ecological importance of woody debris in modern rivers. In this presentation we describe cross-stratified woody debris deposits comprising organic detritus from a boreal-type treeline forest that included species of pine, birch, poplar, alder, spruce, eastern cedar, and larch, in both shrub and tree form. The cross-stratified wood is an enigmatic subset of fine woody debris which, to our knowledge, has never before been described from either the global stratigraphic record or modern fluvial environments. The deposits we describe are located within the Pliocene Beaufort Formation on Meighen Island, Nunavut, Canada, at a latitude of 80°N, and are compared with other cross-stratified woody debris deposits that have been noted elsewhere in the Pliocene of the Canadian Arctic. We make the robust observation that these deposits appear to be geographically and stratigraphically restricted to polar latitudes from a period of warm climatic conditions during the Pliocene (15-20 °C warmer mean annual temperature than the present day). In this regard it is possible to speculate that the transport of large amounts of woody debris as bedload is potentially a unique feature of forested high latitude rivers. Such bedload deposition requires a large amount of woody debris with a greater density than the fluid transporting it. The softwood composition of the debris suggests that this was most likely attained by saturation and subsequent entrainment of extensive accumulations of deadwood, promoted by unusually high rates of tree mortality and low rates of bacterial decomposition arising from

  3. Health/functioning characteristics, gambling behaviors and gambling-related motivations in adolescents stratified by gambling problem severity: Findings from a high-school survey

    Science.gov (United States)

    Yip, Sarah W.; Desai, Rani A.; Steinberg, Marvin A.; Rugle, Loreen; Cavallo, Dana A.; Krishnan-Sarin, Suchitra; Potenza, Marc N.

    2013-01-01

    In adults, different levels of gambling problem severity are differentially associated with measures of health and general functioning, gambling behaviors and gambling-related motivations. Here we present data from a survey of 2,484 Connecticut high school students, and investigate the data stratifying by gambling problem severity based on DSM-IV criteria for pathological gambling. Problem/pathological gambling was associated with a range of negative functions; e.g., poor academic performance, substance use, dysphoria/depression, and aggression. These findings suggest a need for improved interventions related to adolescent gambling and a need for additional research into the relationship (e.g., mediating factors) between gambling and risk and protective behaviors. PMID:21999494

  4. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica

    Science.gov (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.

    2016-01-01

    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  5. Nitrogen transformations in stratified aquatic microbial ecosystems

    DEFF Research Database (Denmark)

    Revsbech, N. P.; Risgaard-Petersen, N.; Schramm, A.

    2006-01-01

    Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...

  6. [Causes of emergency dizziness stratified by etiology].

    Science.gov (United States)

    Qiao, Wenying; Liu, Jianguo; Zeng, Hong; Liu, Yugeng; Jia, Weihua; Wang, Honghong; Liu, Bo; Tan, Jing; Li, Changqing

    2014-06-03

    To explore the causes of emergency dizziness stratified to improve the diagnostic efficiency. A total of 1 857 cases of dizziness at our emergency department were collected and their etiologies stratified by age and gender. The top three diagnoses were benign paroxysmal positional vertigo (BPPV, 31.7%), hypertension (24.0%) and posterior circulation ischemia (PCI, 20.5%). Stratified by age, the main causes of dizziness included BPPV (n = 6), migraine-associated vertigo (n = 2), unknown cause (n = 1) for the group of vertigo (14.5%) and neurosis (7.3%) for 18-44 years; BPPV (36.8%), hypertension (22.4%) and migraine-associated vertigo (11.2%) for 45-59 years; hypertension (30.8%), PCI (29.8%) and BPPV (22.9%) for 60-74 years; PCI (30.7%), hypertension (28.6%) and BPPV (25.5%) for 75-92 years. BPPV, migraine and neurosis were more common in females while hypertension and PCI predominated in males (all P hypertension, neurosis and migraine showed the following significant demographic features: BPPV, PCI, hypertension, neurosis and migraine may be the main causes of dizziness. BPPV should be considered initially when vertigo was triggered repeatedly by positional change, especially for young and middle-aged women. And the other common causes of dizziness were migraine-associated vertigo, neurosis and Meniere's disease.Hypertension should be screened firstly in middle-aged and elderly patients presenting mainly with head heaviness and stretching. In elders with dizziness, BPPV is second in constituent ratio to PCI and hypertension.In middle-aged and elderly patients with dizziness, psychological factors should be considered and diagnosis and treatment should be offered timely.

  7. Assessing the risk posed by high-turbidity water to water supplies.

    Science.gov (United States)

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  8. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  9. Implementing the Keele stratified care model for patients with low back pain: an observational impact study.

    Science.gov (United States)

    Bamford, Adrian; Nation, Andy; Durrell, Susie; Andronis, Lazaros; Rule, Ellen; McLeod, Hugh

    2017-02-03

    The Keele stratified care model for management of low back pain comprises use of the prognostic STarT Back Screening Tool to allocate patients into one of three risk-defined categories leading to associated risk-specific treatment pathways, such that high-risk patients receive enhanced treatment and more sessions than medium- and low-risk patients. The Keele model is associated with economic benefits and is being widely implemented. The objective was to assess the use of the stratified model following its introduction in an acute hospital physiotherapy department setting in Gloucestershire, England. Physiotherapists recorded data on 201 patients treated using the Keele model in two audits in 2013 and 2014. To assess whether implementation of the stratified model was associated with the anticipated range of treatment sessions, regression analysis of the audit data was used to determine whether high- or medium-risk patients received significantly more treatment sessions than low-risk patients. The analysis controlled for patient characteristics, year, physiotherapists' seniority and physiotherapist. To assess the physiotherapists' views on the usefulness of the stratified model, audit data on this were analysed using framework methods. To assess the potential economic consequences of introducing the stratified care model in Gloucestershire, published economic evaluation findings on back-related National Health Service (NHS) costs, quality-adjusted life years (QALYs) and societal productivity losses were applied to audit data on the proportion of patients by risk classification and estimates of local incidence. When the Keele model was implemented, patients received significantly more treatment sessions as the risk-rating increased, in line with the anticipated impact of targeted treatment pathways. Physiotherapists were largely positive about using the model. The potential annual impact of rolling out the model across Gloucestershire is a gain in approximately 30

  10. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    Science.gov (United States)

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  11. Risk Factors for Emergency Department Short Time Readmission in Stratified Population

    Directory of Open Access Journals (Sweden)

    Ariadna Besga

    2015-01-01

    Full Text Available Background. Emergency department (ED readmissions are considered an indicator of healthcare quality that is particularly relevant in older adults. The primary objective of this study was to identify key factors for predicting patients returning to the ED within 30 days of being discharged. Methods. We analysed patients who attended our ED in June 2014, stratified into four groups based on the Kaiser pyramid. We collected data on more than 100 variables per case including demographic and clinical characteristics and drug treatments. We identified the variables with the highest discriminating power to predict ED readmission and constructed classifiers using machine learning methods to provide predictions. Results. Classifier performance distinguishing between patients who were and were not readmitted (within 30 days, in terms of average accuracy (AC. The variables with the greatest discriminating power were age, comorbidity, reasons for consultation, social factors, and drug treatments. Conclusions. It is possible to predict readmissions in stratified groups with high accuracy and to identify the most important factors influencing the event. Therefore, it will be possible to develop interventions to improve the quality of care provided to ED patients.

  12. Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake

    Science.gov (United States)

    Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James

    2013-11-01

    We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 μmol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 μmol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.

  13. Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability

    International Nuclear Information System (INIS)

    Vincze, Miklos; Borcia, Ion; Harlander, Uwe; Gal, Patrice Le

    2016-01-01

    A water-filled differentially heated rotating annulus with initially prepared stable vertical salinity profiles is studied in the laboratory. Based on two-dimensional horizontal particle image velocimetry data and infrared camera visualizations, we describe the appearance and the characteristics of the baroclinic instability in this original configuration. First, we show that when the salinity profile is linear and confined between two non-stratified layers at top and bottom, only two separate shallow fluid layers can be destabilized. These unstable layers appear nearby the top and the bottom of the tank with a stratified motionless zone between them. This laboratory arrangement is thus particularly interesting to model geophysical or astrophysical situations where stratified regions are often juxtaposed to convective ones. Then, for more general but stable initial density profiles, statistical measures are introduced to quantify the extent of the baroclinic instability at given depths and to analyze the connections between this depth-dependence and the vertical salinity profiles. We find that, although the presence of stable stratification generally hinders full-depth overturning, double-diffusive convection can lead to development of multicellular sideways convection in shallow layers and subsequently to a multilayered baroclinic instability. Therefore we conclude that by decreasing the characteristic vertical scale of the flow, stratification may even enhance the formation of cyclonic and anticyclonic eddies (and thus, mixing) in a local sense. (paper)

  14. Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability

    Energy Technology Data Exchange (ETDEWEB)

    Vincze, Miklos; Borcia, Ion; Harlander, Uwe [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Siemens-Halske-Ring 14, D-03046 Cottbus (Germany); Gal, Patrice Le, E-mail: vincze.m@lecso.elte.hu [Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS—Aix-Marseille University—Ecole Centrale Marseille, 49 rue F. Joliot-Curie, F-13384 Marseille (France)

    2016-12-15

    A water-filled differentially heated rotating annulus with initially prepared stable vertical salinity profiles is studied in the laboratory. Based on two-dimensional horizontal particle image velocimetry data and infrared camera visualizations, we describe the appearance and the characteristics of the baroclinic instability in this original configuration. First, we show that when the salinity profile is linear and confined between two non-stratified layers at top and bottom, only two separate shallow fluid layers can be destabilized. These unstable layers appear nearby the top and the bottom of the tank with a stratified motionless zone between them. This laboratory arrangement is thus particularly interesting to model geophysical or astrophysical situations where stratified regions are often juxtaposed to convective ones. Then, for more general but stable initial density profiles, statistical measures are introduced to quantify the extent of the baroclinic instability at given depths and to analyze the connections between this depth-dependence and the vertical salinity profiles. We find that, although the presence of stable stratification generally hinders full-depth overturning, double-diffusive convection can lead to development of multicellular sideways convection in shallow layers and subsequently to a multilayered baroclinic instability. Therefore we conclude that by decreasing the characteristic vertical scale of the flow, stratification may even enhance the formation of cyclonic and anticyclonic eddies (and thus, mixing) in a local sense. (paper)

  15. Visualization periodic flows in a continuously stratified fluid.

    Science.gov (United States)

    Bardakov, R.; Vasiliev, A.

    2012-04-01

    To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken

  16. Background stratified Poisson regression analysis of cohort data

    International Nuclear Information System (INIS)

    Richardson, David B.; Langholz, Bryan

    2012-01-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)

  17. High Pressure Industrial Water Facility

    Science.gov (United States)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  18. Theoretical study of evaporation heat transfer in horizontal microfin tubes: stratified flow model

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H; Wang, Y S [Kyushu Univ., Inst. for Materials Chemistry and Engineering, Kasuga, Fukuoka (Japan)

    2004-08-01

    The stratified flow model of evaporation heat transfer in helically grooved, horizontal microfin tubes has been developed. The profile of stratified liquid was determined by a theoretical model previously developed for condensation in horizontal microfin tubes. For the region above the stratified liquid, the meniscus profile in the groove between adjacent fins was determined by a force balance between the gravity and surface tension forces. The thin film evaporation model was applied to predict heat transfer in the thin film region of the meniscus. Heat transfer through the stratified liquid was estimated by using an empirical correlation proposed by Mori et al. The theoretical predictions of the circumferential average heat transfer coefficient were compared with available experimental data for four tubes and three refrigerants. A good agreement was obtained for the region of Fr{sub 0}<2.5 as long as partial dry out of tube surface did not occur. (Author)

  19. Dual Spark Plugs For Stratified-Charge Rotary Engine

    Science.gov (United States)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  20. Implementing content constraints in alpha-stratified adaptive testing using a shadow test approach

    NARCIS (Netherlands)

    van der Linden, Willem J.; Chang, Hua-Hua

    2001-01-01

    The methods of alpha-stratified adaptive testing and constrained adaptive testing with shadow tests are combined in this study. The advantages are twofold. First, application of the shadow test allows the researcher to implement any type of constraint on item selection in alpha-stratified adaptive

  1. Stratified coastal ocean interactions with tropical cyclones

    Science.gov (United States)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  2. Properties of the endogenous post-stratified estimator using a random forests model

    Science.gov (United States)

    John Tipton; Jean Opsomer; Gretchen G. Moisen

    2012-01-01

    Post-stratification is used in survey statistics as a method to improve variance estimates. In traditional post-stratification methods, the variable on which the data is being stratified must be known at the population level. In many cases this is not possible, but it is possible to use a model to predict values using covariates, and then stratify on these predicted...

  3. Risk of falling among hospitalized patients with high modified Morse scores could be further Stratified

    Directory of Open Access Journals (Sweden)

    Irina Gringauz

    2017-11-01

    Full Text Available Abstract Background Falls during hospitalization harbor both clinical and financial outcomes. The modified Morse fall scale [MMFS] is widely used for an in-hospital risk-of-fall assessment. Nevertheless, the majority of patients at risk of falling, i.e. with high MMFS, do not fall. The aim of this study was to ascertain our study hypothesis that certain patients' characteristics (e.g. serum electrolytes, usage of a walking device etc. could further stratify the risk of falls among hospitalized patients with MMFS. Methods This was a retrospective cohort analysis of adult patients hospitalized in Internal Medicine departments. Results The final cohort included 428 patients aged 76.8±14.0 years. All patients had high (9 or more MMFS upon admission, and their mean MMFS was 16.2±6.1. A group of 139 (32.5% patients who fell during their hospitalization was compared with a control group of 289 (67.5% patients who did not fall. The fallers had higher MMFS, a higher prevalence of mild dependence, and a greater use of a cane or no walking device. Regression analysis showed the following patients' characteristics to be independently associated with an increased risk of falling: mild dependence (OR=3.99, 95% CI 1.97-8.08; p<0.0001, treatment by anti-epileptics (OR=3.9, 95% CI 1.36-11.18; p=0.011, treatment by hypoglycemic agents (OR=2.64, 95% CI 1.08-6.45; p= 0.033, and hypothyroidism (OR=3.66, 05%CI 1.62-8.30; p=0.002. In contrast to their role in the MMFS, the use of a walker or a wheelchair was found to decrease the risk of falling (OR=0.3, 95% CI 0.13-0.69; p=0.005 and OR=0.25, 95% CI 0.11-0.59; p= 0.002. Conclusions Further risk stratification of hospitalized patients, already known to have a high MMFS, which would take into account the characteristics pointed out in this study, should be attained.

  4. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  5. The optimism trap: Migrants' educational choices in stratified education systems.

    Science.gov (United States)

    Tjaden, Jasper Dag; Hunkler, Christian

    2017-09-01

    Immigrant children's ambitious educational choices have often been linked to their families' high level of optimism and motivation for upward mobility. However, previous research has mostly neglected alternative explanations such as information asymmetries or anticipated discrimination. Moreover, immigrant children's higher dropout rates at the higher secondary and university level suggest that low performing migrant students could have benefitted more from pursuing less ambitious tracks, especially in countries that offer viable vocational alternatives. We examine ethnic minority's educational choices using a sample of academically low performing, lower secondary school students in Germany's highly stratified education system. We find that their families' optimism diverts migrant students from viable vocational alternatives. Information asymmetries and anticipated discrimination do not explain their high educational ambitions. While our findings further support the immigrant optimism hypothesis, we discuss how its effect may have different implications depending on the education system. Copyright © 2017. Published by Elsevier Inc.

  6. Dynamic measurement of liquid film thickness in stratified flow by using ultrasonic echo technique

    International Nuclear Information System (INIS)

    Serizawa, A.; Nagane, K.; Kamei, T.; Kawara, Z.; Ebisu, T.; Torikoshi, K.

    2004-01-01

    We developed a technique to measure time-dependent local film thickness in stratified air-water flow over a horizontal plate by using a time of flight of ultrasonic transmission. The ultrasonic echoes reflected at the liquid/air interfaces are detected by a conventional ultrasonic instrumentation, and the signals are analyzed by a personal computer after being digitalized by an A/D converter to give the time of flight for the ultrasonic waves to run over a distance of twice of the film thickness. A 3.8 mm diameter probe type ultrasonic transducer was used in the present work which transmits and receives 10 MHz frequency ultrasonic waves. The estimated spatial resolution with this arrangement is 0.075 mm in film thickness for water. The time resolution, which depends on both the A/D converter and the memory capacity was up to several tens Hz. We also discussed the sensitivity of the method to the inclination angle of the interfaces. (author)

  7. UPTF-TRAM test A2. Formation of stratified flow in the hot leg

    International Nuclear Information System (INIS)

    Tenckhoff; Brand, B.; Weiss, P.

    1992-10-01

    The separate effect UPTF TRAM Test A2 consisting of six runs was designed to investigate flow regimes in the hot leg of a pressurized water reactor under two-phase natural circulation conditions. In particular, the following phenomena were investigated: - Formation of different flow regimes, e.g. stratified and slug flow in the hot leg under different boundary conditions; -Correlation between flow regime and boundary conditions of the system (mass flows, water level etc.); - Mechanism of the transport of water into the steam generator. The test runs are divided into two groups: a) Test Runs 01a, 01b and 02b with steam injection through the core simulator: In these test runs the steam injection through the core simulator was increased stepwise. In each step the steam injection was kept constant for about 100 s in order to observe steady water distribution in the hot leg and SG-simulator of broken loop. b) Test Runs 03c, 04c and 04d with steam and water injection through the core simulator: These test runs were performed at a constant steam injection rate and the water injection rate was increased stepwise. In order to verify the consistency of scaling with the pressure, the test runs were carried out at different pressures as: a) Runs 01a and 01b at 15 bar, and Run 02b at 3 bar b) Runs 03c, 04c and 04d at 15, 3 and 5 bar respectively. A preliminary evaluation of the test is presented in the Quick Look Report. (orig.) [de

  8. Study of MRI in stratified viscous plasma configuration

    Science.gov (United States)

    Carlevaro, Nakia; Montani, Giovanni; Renzi, Fabrizio

    2017-02-01

    We analyze the morphology of the magneto-rotational instability (MRI) for a stratified viscous plasma disk configuration in differential rotation, taking into account the so-called corotation theorem for the background profile. In order to select the intrinsic Alfvénic nature of MRI, we deal with an incompressible plasma and we adopt a formulation of the local perturbation analysis based on the use of the magnetic flux function as a dynamical variable. Our study outlines, as consequence of the corotation condition, a marked asymmetry of the MRI with respect to the equatorial plane, particularly evident in a complete damping of the instability over a positive critical height on the equatorial plane. We also emphasize how such a feature is already present (although less pronounced) even in the ideal case, restoring a dependence of the MRI on the stratified morphology of the gravitational field.

  9. Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs.

    Science.gov (United States)

    Chung, S W; Lee, H S

    2009-01-01

    In monsoon climate area, turbidity flows typically induced by flood runoffs cause numerous environmental impacts such as impairment of fish habitat and river attraction, and degradation of water supply efficiency. This study was aimed to characterize the physical dynamics of turbidity plume induced into a stratified reservoir using field monitoring and numerical simulations, and to assess the effect of different withdrawal scenarios on the control of downstream water quality. Three different turbidity models (RUN1, RUN2, RUN3) were developed based on a two-dimensional laterally averaged hydrodynamic and transport model, and validated against field data. RUN1 assumed constant settling velocity of suspended sediment, while RUN2 estimated the settling velocity as a function of particle size, density, and water temperature to consider vertical stratification. RUN3 included a lumped first-order turbidity attenuation rate taking into account the effects of particles aggregation and degradable organic particles. RUN3 showed best performance in replicating the observed variations of in-reservoir and release turbidity. Numerical experiments implemented to assess the effectiveness of different withdrawal depths showed that the alterations of withdrawal depth can modify the pathway and flow regimes of the turbidity plume, but its effect on the control of release water quality could be trivial.

  10. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  11. Deep silicon maxima in the stratified oligotrophic Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Y. Crombet

    2011-02-01

    Full Text Available The silicon biogeochemical cycle has been studied in the Mediterranean Sea during late summer/early autumn 1999 and summer 2008. The distribution of nutrients, particulate carbon and silicon, fucoxanthin (Fuco, and total chlorophyll-a (TChl-a were investigated along an eastward gradient of oligotrophy during two cruises (PROSOPE and BOUM encompassing the entire Mediterranean Sea during the stratified period. At both seasons, surface waters were depleted in nutrients and the nutriclines gradually deepened towards the East, the phosphacline being the deepest in the easternmost Levantine basin. Following the nutriclines, parallel deep maxima of biogenic silica (DSM, fucoxanthin (DFM and TChl-a (DCM were evidenced during both seasons with maximal concentrations of 0.45 μmol L−1 for BSi, 0.26 μg L−1 for Fuco, and 1.70 μg L−1 for TChl-a, all measured during summer. Contrary to the DCM which was a persistent feature in the Mediterranean Sea, the DSM and DFMs were observed in discrete areas of the Alboran Sea, the Algero-Provencal basin, the Ionian sea and the Levantine basin, indicating that diatoms were able to grow at depth and dominate the DCM under specific conditions. Diatom assemblages were dominated by Chaetoceros spp., Leptocylindrus spp., Pseudonitzschia spp. and the association between large centric diatoms (Hemiaulus hauckii and Rhizosolenia styliformis and the cyanobacterium Richelia intracellularis was observed at nearly all sites. The diatom's ability to grow at depth is commonly observed in other oligotrophic regions and could play a major role in ecosystem productivity and carbon export to depth. Contrary to the common view that Si and siliceous phytoplankton are not major components of the Mediterranean biogeochemistry, we suggest here that diatoms, by persisting at depth during the stratified period, could contribute to a

  12. Dynamics of the free surface of stratified two-phase flows in channels with rectangular cross-sections

    International Nuclear Information System (INIS)

    Vallee, Christophe

    2012-01-01

    Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at

  13. Dynamics of the free surface of stratified two-phase flows in channels with rectangular cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe

    2012-08-22

    Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at

  14. A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force.

    Science.gov (United States)

    Chen, Mei; Hu, Wei; Liang, Xiao; Zou, Cheng; Li, Fasheng; Zhang, Lanying; Chen, Feiwu; Yang, Huai

    2017-07-12

    A series of sticky superhydrophobicity surfaces with high water contact angle and high water adhesive force is facilely prepared via an all-solution-processed method based on polymerization-induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy microspheres (EMSs) with nanofolds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMS coated-surface exhibits high apparent contact angle of 152.0° and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated and, thus, control the wetting properties and water adhesive behaviors. Also, the sticky superhydrophobic surface exhibits excellent chemical stability, as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky superhydrophobic surface and obtain a wide range of use.

  15. Water resources inventory of Connecticut Part 10: Lower Connecticut River basin

    Science.gov (United States)

    Weiss, Lawrence A.; Bingham, James W.; Thomas, Mendall P.

    1982-01-01

    requirement and all the systems supplying water met the drinking water standards of the Connecticut General Assembly (1975). Till is widespread and generally provides only small amounts of water. Wells in till normally yield only a few hundred gallons of water daily and may be inadequate during dry periods. The thickness of of till ranges from 0 to 15 feet; a median thickness of 26 feet is estimated from information provided in drillers' logs of 467 wells penetrating underlying bedrock. The till is generally used only as an emergency or secondary source of water. Bedrock aquifers underlie the entire area and include sedimentary and crystalline (igneous and metamorphic) rock types. These aquifers supply small and usually reliable quantities of water to wells and are the chief source of water for many rural homes and farms., About 90 percent of the wells tapping bedrock yield at least 2 gal/min. The median yields from wells tapping aquifers in sedimentary, igneous, and metamorphic rocks are 11, 8, and 6.5 gal/min, respectively. The quantity of water potentially available from stratified drift was estimated on the basis of hydraulic characteristics of the aquifers, mathematical modeling of the aquifer system, and evaluation of natural and induced recharge. Long-term yields estimated or ten areas underlain by significant thickness of stratified drift range from 0.4 to 4.4 million gallons per day (Mgal/d). A change in well spacing or numbering could increase the long-term yields, but detailed modeling verification studies are needed to confirm optimal well locations. The chemical and physical (turbidity, color, taste, and sediment load) quality of water is good. The water if generally low in dissolved solids and is classified as soft to hard. Surface water is less mineralized than ground water, especially during high flow, when it is primarily derived from surface runoff rather than groundwater runoff. A median dissolved-solids concentration of 42 milligrams per liter (mg/L) and

  16. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  17. Stratified prevention: opportunities and limitations. Report on the 1st interdisciplinary cardiovascular workshop in Augsburg.

    Science.gov (United States)

    Kirchhof, Gregor; Lindner, Josef Franz; Achenbach, Stephan; Berger, Klaus; Blankenberg, Stefan; Fangerau, Heiner; Gimpel, Henner; Gassner, Ulrich M; Kersten, Jens; Magnus, Dorothea; Rebscher, Herbert; Schunkert, Heribert; Rixen, Stephan; Kirchhof, Paulus

    2018-03-01

    Sufficient exercise and sleep, a balanced diet, moderate alcohol consumption and a good approach to handle stress have been known as lifestyles that protect health and longevity since the Middle Age. This traditional prevention quintet, turned into a sextet by smoking cessation, has been the basis of the "preventive personality" that formed in the twentieth century. Recent analyses of big data sets including genomic and physiological measurements have unleashed novel opportunities to estimate individual health risks with unprecedented accuracy, allowing to target preventive interventions to persons at high risk and at the same time to spare those in whom preventive measures may not be needed or even be harmful. To fully grasp these opportunities for modern preventive medicine, the established healthy life styles require supplementation by stratified prevention. The opportunities of these developments for life and health contrast with justified concerns: A "surveillance society", able to predict individual behaviour based on big data, threatens individual freedom and jeopardises equality. Social insurance law and the new German Disease Prevention Act (Präventionsgesetz) rightly stress the need for research to underpin stratified prevention which is accessible to all, ethical, effective, and evidence based. An ethical and acceptable development of stratified prevention needs to start with autonomous individuals who control and understand all information pertaining to their health. This creates a mandate for lifelong health education, enabled in an individualised form by digital technology. Stratified prevention furthermore requires the evidence-based development of a new taxonomy of cardiovascular diseases that reflects disease mechanisms. Such interdisciplinary research needs broad support from society and a better use of biosamples and data sets within an updated research governance framework.

  18. On Internal Waves in a Density-Stratified Estuary

    NARCIS (Netherlands)

    Kranenburg, C.

    1991-01-01

    In this article some field observations, made in recent years, of internal wave motions in a density-stratified estuary are presented, In order to facilitate the appreciation of the results, and to make some quantitative comparisons, the relevant theory is also summarized. Furthermore, the origins

  19. Prognosis research strategy (PROGRESS) 4: Stratified medicine research

    NARCIS (Netherlands)

    A. Hingorani (Aroon); D.A.W.M. van der Windt (Daniëlle); R.D. Riley (Richard); D. Abrams; K.G.M. Moons (Karel); E.W. Steyerberg (Ewout); S. Schroter (Sara); W. Sauerbrei (Willi); D.G. Altman (Douglas); H. Hemingway; A. Briggs (Andrew); N. Brunner; P. Croft (Peter); J. Hayden (Jill); P.A. Kyzas (Panayiotis); N. Malats (Núria); G. Peat; P. Perel (Pablo); I. Roberts (Ian); A. Timmis (Adam)

    2013-01-01

    textabstractIn patients with a particular disease or health condition, stratified medicine seeks to identify thosewho will have the most clinical benefit or least harm from a specific treatment. In this article, thefourth in the PROGRESS series, the authors discuss why prognosis research should form

  20. High-pressure water facility

    Science.gov (United States)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  1. An Experimental Study of Oil / Water Flow in Horizontal Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Elseth, Geir

    2001-07-01

    The purpose of this thesis is to study the behaviour of the simultaneous flow of oil and water in horizontal pipes. In this connection, two test facilities are used. Both facilities have horizontal test sections with inner pipe diameters equal to 2 inches. The largest facility, called the model oil facility, has reservoirs of 1 m{sub 3} of each medium enabling flow rates as high as 30 m{sub 3}/h, which corresponds to mixture velocities as high as 3.35 m/s. The flow rates of oil and water can be varied individually producing different flow patterns according to variations in mixture velocity and input water cut. Two main classes of flows are seen, stratified and dispersed. In this facility, the main focus has been on stratified flows. Pressure drops and local phase fractions are measured for a large number of flow conditions. Among the instruments used are differential pressure transmitters and a traversing gamma densitometer, respectively. The flow patterns that appear are classified in flow pattern maps as functions of either mixture velocity and water cut or superficial velocities. From these experiments a smaller number of stratified flows are selected for studies of velocity and turbulence. A laser Doppler anemometer (LDA) is applied for these measurements in a transparent part of the test section. To be able to produce accurate measurements a partial refractive index matching procedure is used. The other facility, called the matched refractive index facility, has a 0.2 m{sub 3} reservoir enabling mainly dispersed flows. Mixture velocities range from 0.75 m/s to 3 m/s. The fluids in this facility are carefully selected to match the refractive index of the transparent part of the test section. A full refractive index matching procedure is carried out producing excellent optical conditions for velocity and turbulence studies by LDA. In addition, pressure drops and local phase fractions are measured. (author)

  2. Stratified Simulations of Collisionless Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 (Japan)

    2017-06-10

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.

  3. Dispersion of (light) inertial particles in stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.; Armenio, Vincenzo; Geurts, Bernardus J.; Fröhlich, Jochen

    2010-01-01

    We present a brief overview of a numerical study of the dispersion of particles in stably stratified turbulence. Three types of particles arc examined: fluid particles, light inertial particles ($\\rho_p/\\rho_f = \\mathcal{O}(1)$) and heavy inertial particles ($\\rho_p/\\rho_f \\gg 1$). Stratification

  4. Assessment of horizontal in-tube condensation models using MARS code. Part I: Stratified flow condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon, E-mail: sjhong90@fnctech.com [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Ju-Yeop; Seul, Kwang-Won [Korea Institute of Nuclear Safety, 19 Kuseong-dong, Yuseong-gu, Daejon (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer This study collected 11 horizontal in-tube condensation models for stratified flow. Black-Right-Pointing-Pointer This study assessed the predictive capability of the models for steam condensation. Black-Right-Pointing-Pointer Purdue-PCCS experiments were simulated using MARS code incorporated with models. Black-Right-Pointing-Pointer Cavallini et al. (2006) model predicts well the data for stratified flow condition. Black-Right-Pointing-Pointer Results of this study can be used to improve condensation model in RELAP5 or MARS. - Abstract: The accurate prediction of the horizontal in-tube condensation heat transfer is a primary concern in the optimum design and safety analysis of horizontal heat exchangers of passive safety systems such as the passive containment cooling system (PCCS), the emergency condenser system (ECS) and the passive auxiliary feed-water system (PAFS). It is essential to analyze and assess the predictive capability of the previous horizontal in-tube condensation models for each flow regime using various experimental data. This study assessed totally 11 condensation models for the stratified flow, one of the main flow regime encountered in the horizontal condenser, with the heat transfer data from the Purdue-PCCS experiment using the multi-dimensional analysis of reactor safety (MARS) code. From the assessments, it was found that the models by Akers and Rosson, Chato, Tandon et al., Sweeney and Chato, and Cavallini et al. (2002) under-predicted the data in the main condensation heat transfer region, on the contrary to this, the models by Rosson and Meyers, Jaster and Kosky, Fujii, Dobson and Chato, and Thome et al. similarly- or over-predicted the data, and especially, Cavallini et al. (2006) model shows good predictive capability for all test conditions. The results of this study can be used importantly to improve the condensation models in thermal hydraulic code, such as RELAP5 or MARS code.

  5. Internal circle uplifts, transversality and stratified G-structures

    Energy Technology Data Exchange (ETDEWEB)

    Babalic, Elena Mirela [Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering,Str. Reactorului no.30, P.O.BOX MG-6, Postcode 077125, Bucharest-Magurele (Romania); Department of Physics, University of Craiova,13 Al. I. Cuza Str., Craiova 200585 (Romania); Lazaroiu, Calin Iuliu [Center for Geometry and Physics, Institute for Basic Science,Pohang 790-784 (Korea, Republic of)

    2015-11-24

    We study stratified G-structures in N=2 compactifications of M-theory on eight-manifolds M using the uplift to the auxiliary nine-manifold M̂=M×S{sup 1}. We show that the cosmooth generalized distribution D̂ on M̂ which arises in this formalism may have pointwise transverse or non-transverse intersection with the pull-back of the tangent bundle of M, a fact which is responsible for the subtle relation between the spinor stabilizers arising on M and M̂ and for the complicated stratified G-structure on M which we uncovered in previous work. We give a direct explanation of the latter in terms of the former and relate explicitly the defining forms of the SU(2) structure which exists on the generic locus U of M to the defining forms of the SU(3) structure which exists on an open subset Û of M̂, thus providing a dictionary between the eight- and nine-dimensional formalisms.

  6. Dyadic Green's function of an eccentrically stratified sphere.

    Science.gov (United States)

    Moneda, Angela P; Chrissoulidis, Dimitrios P

    2014-03-01

    The electric dyadic Green's function (dGf) of an eccentrically stratified sphere is built by use of the superposition principle, dyadic algebra, and the addition theorem of vector spherical harmonics. The end result of the analytical formulation is a set of linear equations for the unknown vector wave amplitudes of the dGf. The unknowns are calculated by truncation of the infinite sums and matrix inversion. The theory is exact, as no simplifying assumptions are required in any one of the analytical steps leading to the dGf, and it is general in the sense that any number, position, size, and electrical properties can be considered for the layers of the sphere. The point source can be placed outside of or in any lossless part of the sphere. Energy conservation, reciprocity, and other checks verify that the dGf is correct. A numerical application is made to a stratified sphere made of gold and glass, which operates as a lens.

  7. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  8. Stratified B-trees and versioning dictionaries

    OpenAIRE

    Twigg, Andy; Byde, Andrew; Milos, Grzegorz; Moreton, Tim; Wilkes, John; Wilkie, Tom

    2011-01-01

    A classic versioned data structure in storage and computer science is the copy-on-write (CoW) B-tree -- it underlies many of today's file systems and databases, including WAFL, ZFS, Btrfs and more. Unfortunately, it doesn't inherit the B-tree's optimality properties; it has poor space utilization, cannot offer fast updates, and relies on random IO to scale. Yet, nothing better has been developed since. We describe the `stratified B-tree', which beats all known semi-external memory versioned B...

  9. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong

    2005-01-01

    in electromagnetic and microwave applications once the Maxwell's equations are appropriately modeled. Originality/value - The method validates its values and properties through extensive studies on regular and defective 1D PBG structures in stratified medium, and it can be further extended to solving more......Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...... in solving the Maxwell's equations numerically. It expands the temporal derivatives using the finite differences, while it adopts the Fourier transform (FT) properties to expand the spatial derivatives in Maxwell's equations. In addition, the method makes use of the chain-rule property in calculus together...

  10. The Values of Combined and Sub-Stratified Imaging Scores with Ultrasonography and Mammography in Breast Cancer Subtypes.

    Directory of Open Access Journals (Sweden)

    Tsun-Hou Chang

    Full Text Available The Breast Imaging Reporting and Data System (BI-RADS of Mammography (MG and Ultrasonography (US were equivalent to the "5-point score" and applied for combined and sub-stratified imaging assessments. This study evaluated the value of combined and sub-stratified imaging assessments with MG and US over breast cancer subtypes (BCS.Medical records of 5,037 cases having imaging-guided core biopsy, performed from 2009 to 2012, were retrospectively reviewed. This study selected 1,995 cases (1,457 benign and 538 invasive cancer having both MG and US before biopsy. These cases were categorized with the "5-point score" for their MG and US, and applied for combined and sub-stratified imaging assessments. Invasive cancers were classified on the basis of BCS, and correlated with combined and sub-stratified imaging assessments.These selected cases were evaluated by the "5-point score." MG, US, and combined and sub-stratified imaging assessments all revealed statistically significant (P < 0.001 incidence of malignancy. The sensitivity was increased in the combined imaging score (99.8%, and the specificity was increased in the sub-stratified combined score (75.4%. In the sub-stratified combined imaging assessment, all BCS can be classified with higher scores (abnormality hierarchy, and luminal B subtype showed the most salient result (hierarchy: higher, 95%; lower, 5%.Combined and sub-stratified imaging assessments can increase sensitivity and specificity of breast cancer diagnosis, respectively, and Luminal B subtype shows the best identification by sub-stratified combined imaging scoring.

  11. Coupling Analysis of Low-Speed Multiphase Flow and High-Frequency Electromagnetic Field in a Complex Pipeline Structure

    Directory of Open Access Journals (Sweden)

    Xiaokai Huo

    2014-01-01

    Full Text Available Accurate estimation of water content in an oil-water mixture is a key technology in oil exploration and production. Based on the principles of the microwave transmission line (MTL, the logging probe is an important water content measuring apparatus. However, the effects of mixed fluid flow on the measurement of electromagnetic field parameters are rarely considered. This study presents the coupling model for low-speed multiphase flow and high-frequency electromagnetic field in a complex pipeline structure. We derived the S-parameter equations for the stratified oil/water flow model. The corresponding relationship between the S-parameters and water holdup is established. Evident coupling effects of the fluid flow and the electromagnetic field are confirmed by comparing the calculated S-parameters for both stratified and homogeneous flow patterns. In addition, a multiple-solution problem is analyzed for the inversion of dielectric constant from the S-parameters. The most sensitive phase angle range is determined to improve the detection of variation in the dielectric constant. Suggestions are proposed based on the influence of the oil/water layer on measurement sensitivity to optimize the geometric parameters of a device structure. The method proposed elucidates how accuracy and sensitivity can be improved in water holdup measurements under high water content conditions.

  12. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  13. Analysis of stratified flow mixing

    International Nuclear Information System (INIS)

    Soo, S.L.; Lyczkowski, R.W.

    1985-01-01

    The Creare 1/5-scale Phase II experiments which model fluid and thermal mixing of relatively cold high pressure injection (HPI) water into a cold leg of a full-scale pressurized water reactor (PWR) having loop flow are analyzed and found that they cannot achieve complete similarity with respect to characteristic Reynolds and Froude numbers and developing hydrodynamic entry length. Several analyses show that these experiments fall into two distinct regimes of mixing: momentum controlled and gravity controlled (stratification). 18 refs., 9 figs

  14. Bioenergetic evaluation of diel vertical migration by bull trout (Salvelinus confluentus) in a thermally stratified reservoir

    Science.gov (United States)

    Eckmann, Madeleine; Dunham, Jason B.; Connor, Edward J.; Welch, Carmen A.

    2018-01-01

    Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade-off with the need for colder water for gametogenesis.

  15. General Practitioners' and patients' perceptions towards stratified care: a theory informed investigation.

    Science.gov (United States)

    Saunders, Benjamin; Bartlam, Bernadette; Foster, Nadine E; Hill, Jonathan C; Cooper, Vince; Protheroe, Joanne

    2016-08-31

    Stratified primary care involves changing General Practitioners' (GPs) clinical behaviour in treating patients, away from the current stepped care approach to instead identifying early treatment options that are matched to patients' risk of persistent disabling pain. This article explores the perspectives of UK-based GPs and patients about a prognostic stratified care model being developed for patients with the five most common primary care musculoskeletal pain presentations. The focus was on views about acceptability, and anticipated barriers and facilitators to the use of stratified care in routine practice. Four focus groups and six semi-structured telephone interviews were conducted with GPs (n = 23), and three focus groups with patients (n = 20). Data were analysed thematically; and identified themes examined in relation to the Theoretical Domains Framework (TDF), which facilitates comprehensive identification of behaviour change determinants. A critical approach was taken in using the TDF, examining the nuanced interrelationships between theoretical domains. Four key themes were identified: Acceptability of clinical decision-making guided by stratified care; impact on the therapeutic relationship; embedding a prognostic approach within a biomedical model; and practical issues in using stratified care. Whilst within each theme specific findings are reported, common across themes was the identified relationships between the theoretical domains of knowledge, skills, professional role and identity, environmental context and resources, and goals. Through analysis of these identified relationships it was found that, for GPs and patients to perceive stratified care as being acceptable, it must be seen to enhance GPs' knowledge and skills, not undermine GPs' and patients' respective identities and be integrated within the environmental context of the consultation with minimal disruption. Findings highlight the importance of taking into account the context of

  16. A modified stratified model for the 3C 273 jet

    International Nuclear Information System (INIS)

    Liu Wenpo; Shen Zhiqiang

    2009-01-01

    We present a modified stratified jet model to interpret the observed spectral energy distributions of knots in the 3C 273 jet. Based on the hypothesis of the single index of the particle energy spectrum at injection and identical emission processes among all the knots, the observed difference of spectral shape among different 3C 273 knots can be understood as a manifestation of the deviation of the equivalent Doppler factor of stratified emission regions in an individual knot from a characteristic one. The summed spectral energy distributions of all ten knots in the 3C 273 jet can be well fitted by two components: a low-energy component (radio to optical) dominated by synchrotron radiation and a high-energy component (UV, X-ray and γ-ray) dominated by inverse Compton scattering of the cosmic microwave background. This gives a consistent spectral index of α = 0.88 (S v ∝ v -α ) and a characteristic Doppler factor of 7.4. Assuming the average of the summed spectrum as the characteristic spectrum of each knot in the 3C 273 jet, we further get a distribution of Doppler factors. We discuss the possible implications of these results for the physical properties in the 3C 273 jet. Future GeV observations with GLAST could separate the γ-ray emission of 3C 273 from the large scale jet and the small scale jet (i.e. the core) through measuring the GeV spectrum.

  17. Impressions of the turbulence variability in a weakly stratified, flat-bottom deep-sea ‘boundary layer’

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    The character of turbulent overturns in a weakly stratified deep-sea is investigated in some detail using 144 high-resolution temperature sensors at 0.7 m intervals, starting 5 m above the bottom. A 9-day, 1 Hz sampled record from the 912 m depth flat-bottom (<0.5% bottom-slope) mooring site in the

  18. 46 CFR 28.250 - High water alarms.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false High water alarms. 28.250 Section 28.250 Shipping COAST... Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.250 High water alarms. On... operating station to indicate high water level in each of the following normally unmanned spaces: (a) A...

  19. Experimental investigation and physical description of stratified flow in horizontal channels

    International Nuclear Information System (INIS)

    Staebler, T.

    2007-05-01

    The interaction between a liquid film and turbulent gas flows plays an important role in many technical applications (e.g. in hydraulic engineering, process engineering and nuclear engineering). The local kinematic and turbulent time-averaged flow quantities for counter-current stratified flows (supercritical and subcritical flows with and without flow reversal) have been measured for the first time. Therefore, the method of Particle Image Velocimetry was applied. By using fluorescent particles in combination with an optical filter it was possible to determine the flow quantities of the liquid phase up to the free surface. Additionally, the gaseous phase was investigated by using the scattering of light of conventional particles. With a further measurement technique the void fraction distribution along the channel height has been determined. For this purpose, a single-tip conductivity probe was developed. Furthermore, water delivery rates and pressure losses along the test section were measured over a wide range of parameters. The measurements also revealed new details on the hysteresis effect after the occurrence of flow reversal. The experimental findings were used to develop and validate a statistical model in which the liquid phase is considered to be an agglomeration of interacting particles. The statistical consideration of the particle interactions delivers a differential equation which can be used to predict the local void fraction distribution with the local turbulent kinematic energies of the liquid phase. Beyond that, an additional statistical description is presented in which the probability density functions of the local void fraction are described by beta-functions. Both theoretical approaches can be used for numerical modelling whereas the statistical model can be used to describe the phase interactions and the statistical description to describe the turbulent fluctuations of the local void fraction. Thus, this work has made available all necessary

  20. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.

    Science.gov (United States)

    Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D

    2011-08-22

    The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inviscid incompressible limits of strongly stratified fluids

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Jin, B.J.; Novotný, A.

    2014-01-01

    Roč. 89, 3-4 (2014), s. 307-329 ISSN 0921-7134 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * anelastic approximation * stratified fluid Subject RIV: BA - General Mathematics Impact factor: 0.528, year: 2014 http://iospress.metapress.com/content/d71255745tl50125/?p=969b60ae82634854ab8bd25505ce1f71&pi=3

  2. Economic viability of Stratified Medicine concepts: An investor perspective on drivers and conditions that favour using Stratified Medicine approaches in a cost-contained healthcare environment.

    Science.gov (United States)

    Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten

    2016-12-25

    Stratified Medicine (SM) is becoming a natural result of advances in biomedical science and a promising path for the innovation-based biopharmaceutical industry to create new investment opportunities. While the use of biomarkers to improve R&D efficiency and productivity is very much acknowledged by industry, much work remains to be done to understand the drivers and conditions that favour using a stratified approach to create economically viable products and to justify the investment in SM interventions as a stratification option. In this paper we apply a decision analytical methodology to address the economic attractiveness of different SM development options in a cost-contained healthcare environment. For this purpose, a hypothetical business case in the oncology market has been developed considering four feasible development scenarios. The article outlines the effects of development time and time to peak sales as key economic value drivers influencing profitability of SM interventions under specific conditions. If regulatory and reimbursement challenges can be solved, decreasing development time and enhancing early market penetration would most directly improve the economic attractiveness of SM interventions. Appropriate tailoring of highly differentiated patient subgroups is the prerequisite to leverage potential efficiency gains in the R&D process. Also, offering a better targeted and hence ultimately more cost-effective therapy at reimbursable prices will facilitate time to market access and allow increasing market share gains within the targeted populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Analytical Simulation of Flow and Heat Transfer of Two-Phase Nanofluid (Stratified Flow Regime

    Directory of Open Access Journals (Sweden)

    Mohammad Abbasi

    2014-01-01

    Full Text Available Nanofluids have evoked immense interest from researchers all around the globe due to their numerous potential benefits and applications in important fields such as cooling electronic parts, cooling car engines and nuclear reactors. An analytical study of fluid flow of in-tube stratified regime of two-phase nanofluid has been carried out for CuO, Al2O2, TiO3, and Au as applied nanoparticles in water as the base liquid. Liquid film thickness, convective heat transfer coefficient, and dryout length have been calculated. Among the considered nano particles, Al2O3 and TiO2 because of providing more amounts of heat transfer along with longer lengths of dryout found as the most appropriate nanoparticles to achieve cooling objectives.

  4. Computing the transport time scales of a stratified lake on the basis of Tonolli’s model

    Directory of Open Access Journals (Sweden)

    Marco Pilotti

    2014-05-01

    Full Text Available This paper deals with a simple model to evaluate the transport time scales in thermally stratified lakes that do not necessarily completely mix on a regular annual basis. The model is based on the formalization of an idea originally proposed in Italian by Tonolli in 1964, who presented a mass balance of the water initially stored within a lake, taking into account the known seasonal evolution of its thermal structure. The numerical solution of this mass balance provides an approximation to the water age distribution for the conceptualised lake, from which an upper bound to the typical time scales widely used in limnology can be obtained. After discussing the original test case considered by Tonolli, we apply the model to Lake Iseo, a deep lake located in the North of Italy, presenting the results obtained on the basis of a 30 year series of data.

  5. Data splitting for artificial neural networks using SOM-based stratified sampling.

    Science.gov (United States)

    May, R J; Maier, H R; Dandy, G C

    2010-03-01

    Data splitting is an important consideration during artificial neural network (ANN) development where hold-out cross-validation is commonly employed to ensure generalization. Even for a moderate sample size, the sampling methodology used for data splitting can have a significant effect on the quality of the subsets used for training, testing and validating an ANN. Poor data splitting can result in inaccurate and highly variable model performance; however, the choice of sampling methodology is rarely given due consideration by ANN modellers. Increased confidence in the sampling is of paramount importance, since the hold-out sampling is generally performed only once during ANN development. This paper considers the variability in the quality of subsets that are obtained using different data splitting approaches. A novel approach to stratified sampling, based on Neyman sampling of the self-organizing map (SOM), is developed, with several guidelines identified for setting the SOM size and sample allocation in order to minimize the bias and variance in the datasets. Using an example ANN function approximation task, the SOM-based approach is evaluated in comparison to random sampling, DUPLEX, systematic stratified sampling, and trial-and-error sampling to minimize the statistical differences between data sets. Of these approaches, DUPLEX is found to provide benchmark performance with good model performance, with no variability. The results show that the SOM-based approach also reliably generates high-quality samples and can therefore be used with greater confidence than other approaches, especially in the case of non-uniform datasets, with the benefit of scalability to perform data splitting on large datasets. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Small break critical discharge: The roles of vapor and liquid entrainment in a stratified two-phase region upstream of the break

    International Nuclear Information System (INIS)

    Schrock, V.E.; Revankar, S.T.; Mannheimer, R.; Wang, C.H.

    1986-12-01

    The main objective of this research program was to perform an experimental investigation on the phenomena of two-phase critical flow through small break from a horizontal pipe which contained a stratified two phase flow. Stagnation conditions investigated were saturated steam-water, and air-cold water at pressures ranging from 0.37 MPa to 1.07 MPa. The small breaks employed were cylindrical tubes of diameters 3.96 mm, 6.32 mm, and 10.1 mm with sharp-edged entrance. For breaks resulting from a small hole in a primary coolant pipe or in a small pipe, a sharp-edged orifice or a sharp-edged tube can be the approximation

  7. RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®

    Directory of Open Access Journals (Sweden)

    Wilson Jordan M.

    2015-01-01

    Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.

  8. Utililization of water

    African Journals Online (AJOL)

    User

    Abstract. This study was conducted to investigate the level of water resources utilization for small scale irrigation agriculture and to examine the food security of households of Seka woreda. A sample of two hundred-ten households were taken using stratified random sampling method. Questionnaire and observation were ...

  9. Stability of Miscible Displacements Across Stratified Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, Maryam; Yortsos, Yanis C.

    2000-09-11

    This report studied macro-scale heterogeneity effects. Reflecting on their importance, current simulation practices of flow and displacement in porous media were invariably based on heterogeneous permeability fields. Here, it was focused on a specific aspect of such problems, namely the stability of miscible displacements in stratified porous media, where the displacement is perpendicular to the direction of stratification.

  10. Mechanisms and Variability of Salt Transport in Partially-Stratified Estuaries

    National Research Council Canada - National Science Library

    Bowen, Melissa

    2000-01-01

    .... Analysis of salt transport from observations in the Hudson Estuary show that stratified periods with elevated estuarine salt transport occur in five-day intervals once a month during apogean neap tides...

  11. Characterisation of the suspended particulate matter in a stratified estuarine environment employing complementary techniques

    Science.gov (United States)

    Thomas, Luis P.; Marino, Beatriz M.; Szupiany, Ricardo N.; Gallo, Marcos N.

    2017-09-01

    The ability to predict the sediment and nutrient circulation within estuarine waters is of significant economic and ecological importance. In these complex systems, flocculation is a dynamically active process that is directly affected by the prevalent environmental conditions. Consequently, the floc properties continuously change, which greatly complicates the characterisation of the suspended particle matter (SPM). In the present study, three different techniques are combined in a stratified estuary under quiet weather conditions and with a low river discharge to search for a solution to this problem. The challenge is to obtain the concentration, size and flux of suspended elements through selected cross-sections using the method based on the simultaneous backscatter records of 1200 and 600 kHz ADCPs, isokinetic sampling data and LISST-25X measurements. The two-ADCP method is highly effective for determining the SPM size distributions in a non-intrusive way. The isokinetic sampling and the LISST-25X diffractometer offer point measurements at specific depths, which are especially useful for calibrating the ADCP backscatter intensity as a function of the SPM concentration and size, and providing complementary information on the sites where acoustic records are not available. Limitations and potentials of the techniques applied are discussed.

  12. Unit Stratified Sampling as a Tool for Approximation of Stochastic Optimization Problems

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Martin

    2012-01-01

    Roč. 19, č. 30 (2012), s. 153-169 ISSN 1212-074X R&D Projects: GA ČR GAP402/11/0150; GA ČR GAP402/10/0956; GA ČR GA402/09/0965 Institutional research plan: CEZ:AV0Z10750506 Institutional support: RVO:67985556 Keywords : Stochastic programming * approximation * stratified sampling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/smid-unit stratified sampling as a tool for approximation of stochastic optimization problems.pdf

  13. Advanced stratified charge rotary aircraft engine design study

    Science.gov (United States)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  14. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    Science.gov (United States)

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  15. Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells

    Directory of Open Access Journals (Sweden)

    Taro Mikami

    2015-01-01

    Full Text Available BACKGROUND: The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen. RESULTS: Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion. CONCLUSIONS: The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium.

  16. Stereo imaging and random array stratified imaging for cargo radiation inspecting

    International Nuclear Information System (INIS)

    Wang Jingjin; Zeng Yu

    2003-01-01

    This paper presents a Stereo Imaging and Random Array Stratified Imaging for cargo container radiation Inspecting. By using dual-line vertical detector array scan, a stereo image of inspected cargo can be obtained and watched with virtual reality view. The random detector array has only one-row of detectors but distributed in a certain horizontal dimension randomly. To scan a cargo container with this random array detector, a 'defocused' image is obtained. By using 'anti-random focusing', one layer of the image can be focused on the background of all defocused images from other layers. A stratified X-ray image of overlapped bike wheels is presented

  17. Equipment for extracting and conveying stratified minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, G.; Kunzer, H.; Plaga, K.

    1991-08-14

    This invention relates to equipment for extracting stratified minerals and conveying the said minerals along the working face, comprising a trough shaped conveyor run assembled from lengths, a troughed extraction run in lengths matching the lengths of conveyor troughing, which is linked to the top edge of the working face side of the conveyor troughing with freedom to swivel vertically, and a positively guided chain carrying extraction tools and scrapers along the conveyor and extraction runs.

  18. Can the water content of highly compacted bentonite be increased by applying a high water pressure?

    International Nuclear Information System (INIS)

    Pusch, R.; Kasbohm, J.

    2001-10-01

    A great many laboratory investigations have shown that the water uptake in highly compacted MX-80 clay takes place by diffusion at low external pressure. It means that wetting of the clay buffer in the deposition holes of a KBS-3 repository is very slow if the water pressure is low and that complete water saturation can take several tens of years if the initial degree of water saturation of the buffer clay and the ability of the rock to give off water are low. It has therefore been asked whether injection of water can raise the degree of water saturation and if a high water pressure in the nearfield can have the same effect. The present report describes attempts to moisten highly compacted blocks of MX-80 clay with a dry density of 1510 kg/m 3 by injecting water under a pressure of 650 kPa through a perforated injection pipe for 3 and 20 minutes, respectively. The interpretation was made by determining the water content of a number of samples located at different distances from the pipe. An attempt to interpret the pattern of distribution of injected uranium acetate solution showed that the channels into which the solution went became closed in a few minutes and that dispersion in the homogenized clay gave low U-concentrations. The result was that the water content increased from about 9 to about 11-12 % within a distance of about 1 centimeter from the injection pipe and to slightly more than 9 % at a distance of about 4-5 cm almost independently of the injection time. Complete water saturation corresponds to a water content of about 30 % and the wetting effect was hence small from a practical point of view. By use of microstructural models it can be shown that injected water enters only the widest channels that remain after the compaction and that these channels are quickly closed by expansion of the hydrating surrounding clay. Part of the particles that are thereby released become transported by the flowing water and cause clogging of the channels, which is

  19. Evaluation of a Stratified National Breast Screening Program in the United Kingdom : An Early Model-Based Cost-Effectiveness Analysis

    NARCIS (Netherlands)

    Gray, Ewan; Donten, Anna; Karssemeijer, Nico; van Gils, Carla; Evans, D. Gareth R.; Astley, Sue; Payne, Katherine

    Objectives: To identify the incremental costs and consequences of stratified national breast screening programs (stratified NBSPs) and drivers of relative cost-effectiveness. Methods: A decision-analytic model (discrete event simulation) was conceptualized to represent four stratified NBSPs (risk 1,

  20. Evaluation of a Stratified National Breast Screening Program in the United Kingdom: An Early Model-Based Cost-Effectiveness Analysis

    NARCIS (Netherlands)

    Gray, E.; Donten, A.; Karssemeijer, N.; Gils, C. van; Evans, D.G.; Astley, S.; Payne, K.

    2017-01-01

    OBJECTIVES: To identify the incremental costs and consequences of stratified national breast screening programs (stratified NBSPs) and drivers of relative cost-effectiveness. METHODS: A decision-analytic model (discrete event simulation) was conceptualized to represent four stratified NBSPs (risk 1,

  1. High conversion heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Wakabayashi, Toshio.

    1989-01-01

    In the present invention, fuel rods using uranium-plutonium oxide mixture fuels are arranged in a square lattice at the same pitch as that in light water cooled reactor and heavy water moderators are used. Accordingly, the volume ratio (Vm/Vf) between the moderator and the fuel can be, for example, of about 2. When heavy water is used for the moderator (coolant), since the moderating effect of heavy water is lower than that of light water, a high conversion ratio of not less than 0.8 can be obtained even if the fuel rod arrangement is equal to that of PWR (Vm/Vf about 2). Accordingly, it is possible to avoid problems caused by dense arrangement of fuel rods as in high conversion rate light water cooled reactors. That is, there are no more troubles in view of thermal hydrodynamic characteristics, re-flooding upon loss of coolant accident, etc., as well as the fuel production cost is not increased. (K.M.)

  2. Origin of radium in high-mineralised waters

    International Nuclear Information System (INIS)

    Wiegand, J.W.; Sebastian, F.

    2002-01-01

    High-mineralised waters are showing frequently high concentrations of 226 Ra and 228 Ra, which are positively correlated with salinity. The investigated pit water is a high mineralised, reducing NaCl-brine (up to 230 g/l), which contains in coexcidence with Ba (up to 2500 ppm) and Sr, high 226 Ra concentrations (up to 63 Bq/l) and 228 Ra concentrations (up to 28 Bq/l). Feeding river systems with this water, the contact of the pit water with sulphate bearing surface water results in a precipitation of Ba and Ra as radiobaryte, with 226 Ra concentrations up to several tens of kBq/kg. The pit waters originate from a mixture of formation and meteoric waters, older than 20 Ma. High concentrations of mainly Na + and C1 - , but K + , Ca 2+ and HCO 3 - as well, are explained by dissolution of Permian salt deposits. Ba 2+ is enriched by sulphate-reducing bacteria, which destroy detrital baryte. Radium enters the water by leaching and alpha-recoil effect, but a large fraction of it is adsorbed at the surfaces of mineral grains. Mainly Ba 2+ and Sr 2+ , but univalent ions like Na + and K + as well, are desorbing Ra 2+ from the surface of minerals and take their place. Elution experiments show that beside the ion exchange of the cations, the type and amount of anions control the radium mobilisation. It seems that large anions like NO 3 - are disturbing the hydrate coat around minerals and therefore, enhance the ion exchange process. (author)

  3. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-01-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods

  4. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  5. Physical-biological coupling induced aggregation mechanism for the formation of high biomass red tides in low nutrient waters.

    Science.gov (United States)

    Lai, Zhigang; Yin, Kedong

    2014-01-01

    Port Shelter is a semi-enclosed bay in northeast Hong Kong where high biomass red tides are observed to occur frequently in narrow bands along the local bathymetric isobars. Previous study showed that nutrients in the Bay are not high enough to support high biomass red tides. The hypothesis is that physical aggregation and vertical migration of dinoflagellates appear to be the driving mechanism to promote the formation of red tides in this area. To test this hypothesis, we used a high-resolution estuarine circulation model to simulate the near-shore water dynamics based on in situ measured temperature/salinity profiles, winds and tidal constitutes taken from a well-validated regional tidal model. The model results demonstrated that water convergence occurs in a narrow band along the west shore of Port Shelter under a combined effect of stratified tidal current and easterly or northeasterly wind. Using particles as dinoflagellate cells and giving diel vertical migration, the model results showed that the particles aggregate along the convergent zone. By tracking particles in the model predicted current field, we estimated that the physical-biological coupled processes induced aggregation of the particles could cause 20-45 times enhanced cell density in the convergent zone. This indicated that a high cell density red tide under these processes could be initialized without very high nutrients concentrations. This may explain why Port Shelter, a nutrient-poor Bay, is the hot spot for high biomass red tides in Hong Kong in the past 25 years. Our study explains why red tide occurrences are episodic events and shows the importance of taking the physical-biological aggregation mechanism into consideration in the projection of red tides for coastal management. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    International Nuclear Information System (INIS)

    Aslanova, Afag; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Yamamoto, Masakazu

    2015-01-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  7. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    Energy Technology Data Exchange (ETDEWEB)

    Aslanova, Afag [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Takagi, Ryo; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Yamamoto, Masakazu, E-mail: yamamoto.ige@twmu.ac.jp [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2015-05-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  8. Turbulent circulation above the surface heat source in stably stratified atmosphere

    Science.gov (United States)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-10-01

    The 3-level RANS approach for simulating a turbulent circulation over the heat island in a stably stratified environment under nearly calm conditions is formulated. The turbulent kinetic energy its spectral consumption (dissipation) and the dispersion of turbulent fluctuations of temperature are found from differential equations, thus the correct modeling of transport processes in the interface layer with the counter-gradient heat flux is assured. The three-parameter turbulence RANS approach minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the 3-level RANS approach. Numerical simulation of the turbulent structure of the penetrative convection over the heat island under conditions of stably stratified atmosphere demonstrates that the three-equation model is able to predict the thermal circulation induced by the heat island. The temperature distribution, root-mean-square fluctuations of the turbulent velocity and temperature fields and spectral turbulent kinetic energy flux are in good agreement with the experimental data. The model describes such thin physical effects, as a crossing of vertical profiles of temperature of a thermal plume with the formation of the negative buoyancy area testifying to development of the dome-shaped form at the top part of a plume in the form of "hat".

  9. Mortality in perforated peptic ulcer patients after selective management of stratified poor risk cases.

    Science.gov (United States)

    Rahman, M Mizanur; Islam, M Saiful; Flora, Sabrina; Akhter, S Fariduddin; Hossain, Shahid; Karim, Fazlul

    2007-12-01

    Perforated peptic ulcer disease continues to inflict high morbidity and mortality. Although patients can be stratified according to their surgical risk, optimal management has yet to be described. In this study we demonstrate a treatment option that improves the mortality among critically ill, poor risk patients with perforated peptic ulcer disease. In our study, two series were retrospectively reviewed: group A patients (n = 522) were treated in a single surgical unit at the Dhaka Medical College Hospital, Dhaka, Bangladesh during the 1980s. Among them, 124 patients were stratified as poor risk based on age, delayed presentation, peritoneal contamination, and coexisting medical problems. These criteria were the basis for selecting a group of poor risk patients (n = 84) for minimal surgical intervention (percutaneous peritoneal drainage) out of a larger group of patients, group B (n = 785) treated at Khulna Medical College Hospital during the 1990s. In group A, 479 patients underwent conventional operative management with an operative mortality of 8.97%. Among the 43 deaths, 24 patients were >60 years of age (55.8%), 12 patients had delayed presentation (27.9%), and 7 patients were in shock or had multiple coexisting medical problems (16.2%). In group B, 626 underwent conventional operative management, with 26 deaths at a mortality rate of 4.15%. Altogether, 84 patients were stratified as poor risk and were managed with minimal surgical intervention (percutaneous peritoneal drainage) followed by conservative treatment. Three of these patients died with an operative mortality of 3.5%. Minimal surgical intervention (percutaneous peritoneal drainage) can significantly lower the mortality rate among a selected group of critically ill, poor risk patients with perforated peptic ulcer disease.

  10. Mixing of stratified flow around bridge piers in steady current

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Carstensen, Stefan; Christensen, Erik Damgaard

    2018-01-01

    This paper presents the results of an experimental and numerical investigation of the mixing of stratified flow around bridge pier structures. In this study, which was carried out in connection with the Fehmarnbelt Fixed Link environmental impact assessment, the mixing processes of two-layer stra......This paper presents the results of an experimental and numerical investigation of the mixing of stratified flow around bridge pier structures. In this study, which was carried out in connection with the Fehmarnbelt Fixed Link environmental impact assessment, the mixing processes of two......-layer stratification was studied in which the lower level had a higher salinity than the upper layer. The physical experiments investigated two different pier designs. A general study was made regarding forces on the piers in which the effect of the current angle relative to the structure was also included...

  11. Quantum image pseudocolor coding based on the density-stratified method

    Science.gov (United States)

    Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na

    2015-05-01

    Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.

  12. Risk-stratifying capacity of PET/CT metabolic tumor volume in stage IIIA non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Finkle, Joshua H.; Jo, Stephanie Y.; Yuan, Cindy; Pu, Yonglin [University of Chicago, Department of Radiology, Chicago, IL (United States); Ferguson, Mark K. [University of Chicago, Department of Surgery, Chicago, IL (United States); Liu, Hai-Yan [First Hospital of Shanxi Medical University, Department of Nuclear Medicine, Taiyuan, Shanxi (China); Zhang, Chenpeng [Shanghai Jiao Tong University, Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai (China); Zhu, Xuee [Nanjing Medical University, Department of Radiology, BenQ Medical Center, Nanjing, Jiangsu Province (China)

    2017-08-15

    Stage IIIA non-small cell lung cancer (NSCLC) is heterogeneous in tumor burden, and its treatment is variable. Whole-body metabolic tumor volume (MTV{sub WB}) has been shown to be an independent prognostic index for overall survival (OS). However, the potential of MTV{sub WB} to risk-stratify stage IIIA NSCLC has previously been unknown. If we can identify subgroups within the stage exhibiting significant OS differences using MTV{sub WB}, MTV{sub WB} may lead to adjustments in patients' risk profile evaluations and may, therefore, influence clinical decision making regarding treatment. We estimated the risk-stratifying capacity of MTV{sub WB} in stage IIIA by comparing OS of stratified stage IIIA with stage IIB and IIIB NSCLC. We performed a retrospective review of 330 patients with clinical stage IIB, IIIA, and IIIB NSCLC diagnosed between 2004 and 2014. The patients' clinical TNM stage, initial MTV{sub WB}, and long-term survival data were collected. Patients with TNM stage IIIA disease were stratified by MTV{sub WB}. The optimal MTV{sub WB} cutoff value for stage IIIA patients was calculated using sequential log-rank tests. Univariate and multivariate cox regression analyses and Kaplan-Meier OS analysis with log-rank tests were performed. The optimal MTV{sub WB} cut-point was 29.2 mL for the risk-stratification of stage IIIA. We identified statistically significant differences in OS between stage IIB and IIIA patients (p < 0.01), between IIIA and IIIB patients (p < 0.01), and between the stage IIIA patients with low MTV{sub WB} (below 29.2 mL) and the stage IIIA patients with high MTV{sub WB} (above 29.2 mL) (p < 0.01). There was no OS difference between the low MTV{sub WB} stage IIIA and the cohort of stage IIB patients (p = 0.485), or between the high MTV{sub WB} stage IIIA patients and the cohort of stage IIIB patients (p = 0.459). Similar risk-stratification capacity of MTV{sub WB} was observed in a large range of cutoff values from 15 to 55 mL in

  13. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    liquid. If operated properly, MABRs yield compact and homogeneous redox-stratified biofilms capable of hosting side-by-side aerobic and anaerobic microbial communities. We have recently demonstrated that completely autotrophic nitrogen removal is feasible in MABRs at nitrogen removal rates as high as 5......After 10 years of pilot and full-scale studies, completely autotrophic nitrogen via coupled aerobic and anaerobic ammonium oxidation is now firmly established in the wastewater treatment community. The reasons for the popularization of the technology are numerous, but the most attractive....... The continuous and sustained inoculation of metabolically active anaerobic oxidizing bacteria from a biofilm reactor placed in the recirculation line of our MABRs showed to shorten considerably the onset of autotrophic nitrogen removal. However, the main hurdle keeping MABRs from attaining high removal...

  14. Spatial and seasonal changes in optical properties of autochthonous and allochthonous chromophoric dissolved organic matter in a stratified mountain lake.

    Science.gov (United States)

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Nannicini, Luciano; Picchi, Maria Pia; Ricci, Maso; Santinelli, Chiara; Seritti, Alfredo; Tognazzi, Antonio; Rossi, Claudio

    2010-03-01

    In this study, we present results on seasonal and spatial changes in CDOM absorption and fluorescence (fCDOM) in a deep mountain lake (Salto Lake, Italy). A novel approach was used to describe the shape of CDOM absorption between 250-700 nm (distribution of the spectral slope, S(lambda)) and a new fluorescence ratio is used to distinguish between humic and amino acid-like components. Solar ultraviolet irradiance, dissolved organic carbon (DOC), DOM fluorescence and absorption measurements were analysed and compared to other physicochemical parameters. We show that in the UV-exposed mixed layer: (i) fluorescence by autochthonous amino acid-like CDOM, (ii) values of S(lambda) across UV-C and UV-B wavebands increased during the summer months, whereas (i) average molar absorption coefficient and (ii) fluorescence by allochthonous humic CDOM decreased. In the unexposed deep layer of the water column (and in the entire water column in winter), humic-like CDOM presented high values of molar absorption coefficients and low values of S(lambda). UV attenuation coefficients correlated with both chlorophyll a concentrations and CDOM absorption. In agreement with changes in CDOM, minimal values in UV attenuation were found in summer. The S(lambda) curve was used as a signature of the mixture between photobleached and algal-derived CDOM with respect to the unexposed chromophoric dissolved compounds in this thermal stratified lake. Furthermore, S(lambda) curves were useful to distinguish between low and high molecular weight CDOM.

  15. Monte Carlo stratified source-sampling

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Gelbard, E.M.

    1997-01-01

    In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo open-quotes eigenvalue of the worldclose quotes problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. The original test-problem was treated by a special code designed specifically for that purpose. Recently ANL started work on a method for dealing with more realistic eigenvalue of the world configurations, and has been incorporating this method into VIM. The original method has been modified to take into account real-world statistical noise sources not included in the model problem. This paper constitutes a status report on work still in progress

  16. Temporally stratified sampling programs for estimation of fish impingement

    International Nuclear Information System (INIS)

    Kumar, K.D.; Griffith, J.S.

    1977-01-01

    Impingement monitoring programs often expend valuable and limited resources and fail to provide a dependable estimate of either total annual impingement or those biological and physicochemical factors affecting impingement. In situations where initial monitoring has identified ''problem'' fish species and the periodicity of their impingement, intensive sampling during periods of high impingement will maximize information obtained. We use data gathered at two nuclear generating facilities in the southeastern United States to discuss techniques of designing such temporally stratified monitoring programs and their benefits and drawbacks. Of the possible temporal patterns in environmental factors within a calendar year, differences among seasons are most influential in the impingement of freshwater fishes in the Southeast. Data on the threadfin shad (Dorosoma petenense) and the role of seasonal temperature changes are utilized as an example to demonstrate ways of most efficiently and accurately estimating impingement of the species

  17. Upscaling of Two-Phase Immiscible Flows in Communicating Stratified Reservoirs

    DEFF Research Database (Denmark)

    Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan

    2011-01-01

    A semi-analytical method for upscaling two-phase immiscible flows in heterogeneous porous media is described. This method is developed for stratified reservoirs with perfect communication between layers (the case of vertical equilibrium), in a viscous dominant regime, where the effects of capillary...... forces and gravity may be neglected. The method is discussed on the example of its basic application: waterflooding in petroleum reservoirs. We apply asymptotic analysis to a system of two-dimensional (2D) mass conservation equations for incompressible fluids. For high anisotropy ratios, the pressure...... and piston-like displacement, and it presumes non-zero exchange between layers. The method generalizes also the study of Yortsos (Transp Porous Media 18:107–129, 1995), taking into account in a more consistent way the interactions between the layers....

  18. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    Energy Technology Data Exchange (ETDEWEB)

    Fansler, Todd D. [Univ. of Wisconsin, Madison, WI (United States); Reuss, D. L. [Univ. of Michigan, Ann Arbor, MI (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sick, V. [Univ. of Michigan, Ann Arbor, MI (United States); Dahms, R. N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of the spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NOx and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.

  19. Hydrology and heterogeneneous distribution of water quality ...

    African Journals Online (AJOL)

    A study was carried out on the hydrology and heterogeneous distribution of water quality characteristics in the Lagoon of Porto-Novo between July 2014 and June 2015. The water body was stratified into 12 strata for sampling. Data and samples were collected based on season and stations. The results were analyzed in the ...

  20. The clinical and cost-effectiveness of stratified care for patients with sciatica: the SCOPiC randomised controlled trial protocol (ISRCTN75449581).

    Science.gov (United States)

    Foster, Nadine E; Konstantinou, Kika; Lewis, Martyn; Ogollah, Reuben; Dunn, Kate M; van der Windt, Danielle; Beardmore, Ruth; Artus, Majid; Bartlam, Bernadette; Hill, Jonathan C; Jowett, Sue; Kigozi, Jesse; Mallen, Christian; Saunders, Benjamin; Hay, Elaine M

    2017-04-26

    Sciatica has a substantial impact on patients, and is associated with high healthcare and societal costs. Although there is variation in the clinical management of sciatica, the current model of care usually involves an initial period of 'wait and see' for most patients, with simple measures of advice and analgesia, followed by conservative and/or more invasive interventions if symptoms fail to resolve. A model of care is needed that does not over-treat those with a good prognosis yet identifies patients who do need more intensive treatment to help with symptoms, and return to everyday function including work. The aim of the SCOPiC trial (SCiatica Outcomes in Primary Care) is to establish whether stratified care based on subgrouping using a combination of prognostic and clinical information, with matched care pathways, is more effective than non-stratified care, for improving time to symptom resolution in patients consulting with sciatica in primary care. We will also assess the impact of stratified care on service delivery and evaluate its cost-effectiveness compared to non-stratified care. Multicentre, pragmatic, parallel arm randomised trial, with internal pilot, cost-effectiveness analysis and embedded qualitative study. We will recruit 470 adult patients with sciatica from general practices in England and Wales, over 24 months. Patients will be randomised to stratified care or non-stratified care, and treated in physiotherapy and spinal specialist services, in participating NHS services. The primary outcome is time to first resolution of sciatica symptoms, measured on a 6-point ordered categorical scale, collected using text messaging. Secondary outcomes include physical function, pain intensity, quality of life, work loss, healthcare use and satisfaction with treatment, and will be collected using postal questionnaires at 4 and 12-month follow-up. Semi-structured qualitative interviews with a subsample of participants and clinicians will explore the

  1. New test for oil soluble/water dispersible gas pipeline inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, D.W.; Asperger, R.G.

    1987-01-01

    The wheel test provides good mixing of the condensate and water phases, the coupons are exposed to both phases. Therefore, the wheel test cannot distinguish between inhibitors that need continuous mixing of the these phases to maintain a water dispersion of the inhibitor and inhibitors that will self disperse into the water. This concept becomes important for pipelines in stratified flow where the water can settle out. In these cases with low turbulence, the inhibitor must self disperse into the water to be effective. The paper describes a test method to measure the effectiveness of an inhibitor and its ability to self disperse. The effectiveness of several inhibitors as predicted by the new test method is discussed relative to data from the wheel test and breaker tests. Field performance of these inhibitors in a gas gathering line, with liquids in stratified flow, are cities and compared with the results of the various laboratory tests.

  2. Bacterial production, protozoan grazing, and mineralization in stratified Lake Vechten

    NARCIS (Netherlands)

    Bloem, J.

    1989-01-01

    The role of heterotrophic nanoflagellates (HNAN, size 2-20 μm) in grazing on bacteria and mineralization of organic matter in stratified Lake Vechten was studied.

    Quantitative effects of manipulation and fixation on HNAN were checked. Considerable losses were caused by

  3. Internal wave patterns in enclosed density-stratified and rotating fluids

    NARCIS (Netherlands)

    Manders, A.M.A.

    2003-01-01

    Stratified fluids support internal waves, which propagate obliquely through the fluid. The angle with respectto the stratification direction is contrained: it is purely determined by the wave frequency and the strength of the density stratification (internal gravity waves) or the rotation rate

  4. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...

  5. Thermography for stratified storage. High performance imaging cameras give an insight into the behaviour of combi-solar systems; Thermographie fuer Schichtspeicher. Hochaufloesende Waermebildkameras geben einen Einblick in das Anlagenverhalten von Kombi--Solarsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Sandler, Martin [EFG Energie fuer Gebaeude e.K., Kaufbeuren (Germany)

    2011-05-15

    The interaction of all components of solar systems must be right. A decisive factor is that unnecessary heat is stored precisely in order to provide the heat immediately and completely to the user. This can be accomplished with a well-functioning stratified reservoir. From this perspective, the author of the contribution under consideration reports on an investigation of the performance of solar combi-systems using high-resolution thermal imaging cameras.

  6. Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

    Science.gov (United States)

    Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.

    2017-11-01

    We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.

  7. Information content of household-stratified epidemics

    Directory of Open Access Journals (Sweden)

    T.M. Kinyanjui

    2016-09-01

    Full Text Available Household structure is a key driver of many infectious diseases, as well as a natural target for interventions such as vaccination programs. Many theoretical and conceptual advances on household-stratified epidemic models are relatively recent, but have successfully managed to increase the applicability of such models to practical problems. To be of maximum realism and hence benefit, they require parameterisation from epidemiological data, and while household-stratified final size data has been the traditional source, increasingly time-series infection data from households are becoming available. This paper is concerned with the design of studies aimed at collecting time-series epidemic data in order to maximize the amount of information available to calibrate household models. A design decision involves a trade-off between the number of households to enrol and the sampling frequency. Two commonly used epidemiological study designs are considered: cross-sectional, where different households are sampled at every time point, and cohort, where the same households are followed over the course of the study period. The search for an optimal design uses Bayesian computationally intensive methods to explore the joint parameter-design space combined with the Shannon entropy of the posteriors to estimate the amount of information in each design. For the cross-sectional design, the amount of information increases with the sampling intensity, i.e., the designs with the highest number of time points have the most information. On the other hand, the cohort design often exhibits a trade-off between the number of households sampled and the intensity of follow-up. Our results broadly support the choices made in existing epidemiological data collection studies. Prospective problem-specific use of our computational methods can bring significant benefits in guiding future study designs.

  8. Information content of household-stratified epidemics.

    Science.gov (United States)

    Kinyanjui, T M; Pellis, L; House, T

    2016-09-01

    Household structure is a key driver of many infectious diseases, as well as a natural target for interventions such as vaccination programs. Many theoretical and conceptual advances on household-stratified epidemic models are relatively recent, but have successfully managed to increase the applicability of such models to practical problems. To be of maximum realism and hence benefit, they require parameterisation from epidemiological data, and while household-stratified final size data has been the traditional source, increasingly time-series infection data from households are becoming available. This paper is concerned with the design of studies aimed at collecting time-series epidemic data in order to maximize the amount of information available to calibrate household models. A design decision involves a trade-off between the number of households to enrol and the sampling frequency. Two commonly used epidemiological study designs are considered: cross-sectional, where different households are sampled at every time point, and cohort, where the same households are followed over the course of the study period. The search for an optimal design uses Bayesian computationally intensive methods to explore the joint parameter-design space combined with the Shannon entropy of the posteriors to estimate the amount of information in each design. For the cross-sectional design, the amount of information increases with the sampling intensity, i.e., the designs with the highest number of time points have the most information. On the other hand, the cohort design often exhibits a trade-off between the number of households sampled and the intensity of follow-up. Our results broadly support the choices made in existing epidemiological data collection studies. Prospective problem-specific use of our computational methods can bring significant benefits in guiding future study designs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Large Eddy Simulation of stratified flows over structures

    OpenAIRE

    Brechler J.; Fuka V.

    2013-01-01

    We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.

  10. Large Eddy Simulation of stratified flows over structures

    Science.gov (United States)

    Fuka, V.; Brechler, J.

    2013-04-01

    We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.

  11. A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface

    Directory of Open Access Journals (Sweden)

    Nina Svensson

    2017-01-01

    Full Text Available Streaky structures of narrow (8-9 km high wind belts have been observed from SAR images above the Baltic Sea during stably stratified conditions with offshore winds from the southern parts of Sweden. Case studies using the WRF model and in situ aircraft observations indicate that the streaks originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered during spring in coastal regions at high latitudes.

  12. Microstructure of Turbulence in the Stably Stratified Boundary Layer

    Science.gov (United States)

    Sorbjan, Zbigniew; Balsley, Ben B.

    2008-11-01

    The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.

  13. Using impedance cardiography with postural change to stratify patients with hypertension.

    Science.gov (United States)

    DeMarzo, Arthur P

    2011-06-01

    Early detection of cardiovascular disease in patients with hypertension could initiate appropriate treatment to control blood pressure and prevent the progression of cardiovascular disease. The goal of this study was to show how impedance cardiography waveform analysis with postural change can be used to detect subclinical cardiovascular disease in patients with high blood pressure. Patients with high blood pressure had impedance cardiography data obtained in two positions, standing upright and supine. In 50 adults, impedance cardiography indicated that all patients had abnormal data, with 44 (88%) having multiple abnormalities. Impedance cardiography showed 32 (64%) had ventricular dysfunction, 48 (96%) had vascular load abnormalities, 34 (68%) had hemodynamic abnormalities, 2 (4%) had hypovolemia, and 3 (6%) had hypervolemia. Hypertensive patients have diverse cardiovascular abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment could be customized based on the abnormal underlying mechanisms with the potential to rapidly control blood pressure, prevent progression of cardiovascular disease, and possibly reverse remodeling.

  14. Economic viability of Stratified Medicine concepts : An investor perspective on drivers and conditions that favour using Stratified Medicine approaches in a cost-contained healthcare environment

    NARCIS (Netherlands)

    Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten

    2016-01-01

    RATIONALE: Stratified Medicine (SM) is becoming a natural result of advances in biomedical science and a promising path for the innovation-based biopharmaceutical industry to create new investment opportunities. While the use of biomarkers to improve R&D efficiency and productivity is very much

  15. Experimental analysis of an oblique turbulent flame front propagating in a stratified flow

    Energy Technology Data Exchange (ETDEWEB)

    Galizzi, C.; Escudie, D. [Universite de Lyon, CNRS, CETHIL, INSA-Lyon, UMR5008, F-69621 Cedex (France)

    2010-12-15

    This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometry and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)

  16. Large Eddy Simulation of stratified flows over structures

    Directory of Open Access Journals (Sweden)

    Brechler J.

    2013-04-01

    Full Text Available We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.

  17. Plane Stratified Flow in a Room Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.

    2004-01-01

    The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...

  18. Effects of steam-heating processes on a stratified volcanic aquifer: Stable isotopes and dissolved gases in thermal waters of Vulcano Island (Aeolian archipelago)

    Science.gov (United States)

    Federico, C.; Capasso, G.; Paonita, A.; Favara, R.

    2010-05-01

    We report on a comprehensive study of major-ion chemistry, dissolved gases, and stable isotopes measured in water wells at Vulcano Island since 1988. The work focuses on a quantitative model describing steam condensation and boiling phenomena in shallow water bodies. The model is based on the differences in partition coefficients between liquid water and vapor characterizing oxygen and hydrogen isotopes, as well as volcanic gases (CO 2, S species, and HCl). Based on both physical conditions of aquifers identified during drilling campaigns and the composition of the volcanic vapor, mass and enthalpy balances are applied in a multistep process of steam separation and condensation in shallower aquifers. By comparing the model results with measured data, we infer that (i) strong isotope enrichment observed in some shallow thermal waters can result from an increasing mass rate of condensing deep vapor, even in water meteoric in origin; (ii) the high CO 2 content measured in the fumarolic vapor during 1988-1993 affected the δ18O value of the steam-heated water due to CO 2-H 2O isotope exchange; (iii) the high pCO 2 measured in the coldest and peripheral waters are explained by the progressive enrichment of this gas in the vapor phase during multistep boiling; and (iv) the high Cl - and SO 42-contents in the hottest waters can be attributed to the direct condensation (single-step) of volcanic vapor. The model also takes into account both the mass fluxes and the compositions of the involved endmembers (steam and shallow groundwater), which provides important inferences on the modifications observed or expected during periods of increasing mass and heat input from depth.

  19. The effects of high-Ca hardness water treatment for secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Kang, T. J.; Park, Y. C.; Hwang, S. R.; Lim, I. C.; Choi, H. Y.

    2003-01-01

    Water-quality control of the second cooling system in HANARO has been altered from low Ca-hardness treatment to high Ca-hardness treatment since March, 2001. High Ca-hardness water treatment in HANARO is to maintain the calcium hardness around 12 by minimizing the blowdown of secondary cooling water. This paper describes the effect of cost reduction after change of water-quility treatment method. The result shows that the cost of the water could be reduced by 25% using the pond water in KAERI. The amount and cost for the chemical agent could be reduced by 40% and 10% respectively

  20. White dwarf stars with chemically stratified atmospheres

    Science.gov (United States)

    Muchmore, D.

    1982-01-01

    Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.

  1. Measuring mixing efficiency in experiments of strongly stratified turbulence

    Science.gov (United States)

    Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.

    2017-12-01

    Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.

  2. Prokaryotic degradation of high molecular weight dissolved organic matter in the deep-sea waters of NW Mediterranean Sea under in situ temperature and pressure conditions during contrasted hydrological conditions

    Science.gov (United States)

    Tamburini, C.; Boutrif, M.; Garel, M.; Sempéré, R.; Repeta, D.; Charriere, B.; Nerini, D.; Panagiotopoulos, C.

    2016-02-01

    The contribution of the semi-labile dissolved organic carbon (DOC) to the global prokaryotic production has been assessed in very few previous studies. Some experiments show rapid utilization of semi-reactive DOC by prokaryotes, while other experiments show almost no utilization at all. However, all these studies did not take into account the role of hydrostatic pressure for the degradation of organic matter. In this study, we investigate (1) the degradation of "natural" high molecular weight DOM HMW-DOM (obtained after ultrafiltration) and (2) the uptake of labeled extracellular polymeric substances (3H-EPS) incubated with deep-sea water samples (2000 m-depth, NW Mediterranean Sea) under in situ pressure conditions (HP) and under atmospheric compression after decompression of the deep samples (ATM) during stratified and mixed water conditions (deep sea convection). Our results indicated that during HP incubations DOC exhibited the highest degradation rates (kHP DOC = 0.82 d-1) compared to the ATM conditions were no or few degradation was observed (kATM DOC= 0.007 d-1). An opposite trend was observed for the HP incubations from mixed deep water masses. HP incubation measurements displayed the lowest DOC degradation (kHP DOC=0.031 d-1) compared to the ATM conditions (kATM DOC=0.62 d-1). These results imply the presence of allochthonous prokaryotic cells in deep-sea samples after a winter water mass convection. Same trends were found using 3H-EPS uptake rates which were higher at HP than at ATM conditions during stratified period conditions whereas the opposite patterns were observed during deep-sea convection event. Moreover, we found than Euryarchaea were the main contributors to 3H-EPS assimilation at 2000m-depth, representing 58% of the total cells actively assimilating 3H-EPS. This study demonstrates that remineralization rates of semi-labile DOC in deep NW Med. Sea are controlled by the prokaryotic communities, which are influenced by the hydrological

  3. The dynamics of small inertial particles in weakly stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  4. Dipole formation by two interacting shielded monopoles in a stratified fluid

    NARCIS (Netherlands)

    Beckers, M.; Clercx, H.J.H.; Heijst, van G.J.F.; Verzicco, R.

    2002-01-01

    The interaction between two shielded monopolar vortices has been investigated experimentally in a nonrotating linearly stratified fluid and by full three-dimensional (3D) numerical simulations. The characteristic Reynolds and Froude numbers in the experiments are approximately Re [[approximate

  5. A comparison of dental caries levels in two communities with different oral health prevention strategies stratified in different social classes.

    Science.gov (United States)

    Sagheri, Darius; McLoughlin, Jacinta; Clarkson, John J

    2007-01-01

    To compare dental caries levels of schoolchildren stratified in different social classes whose domestic water supply had been fluoridated since birth (Dublin) with those living in an area where fluoridated salt was available (Freiburg). A representative, random sample of twelve-year-old children was examined and dental caries was recorded using World Health Organization criteria. A total of 699 twelve-year-old children were examined, 377 were children in Dublin and 322 in Freiburg. In Dublin the mean decayed, missing, and filled permanent teeth (DMFT) was 0.80 and in Freiburg it was 0.69. An examination of the distribution of the DMFT score revealed that its distribution is highly positively skewed. For this reason this study provides summary analyses based on medians and inter-quartile range and nonparametric rank sum tests. In both cities caries levels of children in social class 1 (highest) were considerably lower when compared with the other social classes regardless of the fluoride intervention model used. The caries levels showed a reduced disparity between children in social class 2 (medium) and 3 (lowest) in Dublin compared with those in social class 2 and 3 in Freiburg. The evidence from this study confirmed that water fluoridation has reduced the gap in dental caries experience between medium and lower social classes in Dublin compared with the greater difference in caries experience between the equivalent social classes in Freiburg. The results from this study established the important role of salt fluoridation where water fluoridation is not feasible.

  6. Field manual for identifying and preserving high-water mark data

    Science.gov (United States)

    Feaster, Toby D.; Koenig, Todd A.

    2017-09-26

    This field manual provides general guidance for identifying and collecting high-water marks and is meant to be used by field personnel as a quick reference. The field manual describes purposes for collecting and documenting high-water marks along with the most common types of high-water marks. The manual provides a list of suggested field equipment, describes rules of thumb and best practices for finding high-water marks, and describes the importance of evaluating each high-water mark and assigning a numeric uncertainty value as part of the flagging process. The manual also includes an appendix of photographs of a variety of high-water marks obtained from various U.S. Geological Survey field investigations along with general comments about the logic for the assigned uncertainty values.

  7. Public Perception of Potable Water Supply in Abeokuta South west ...

    African Journals Online (AJOL)

    Well-structured interviewer administered questionnaire were distributed across the city through the stratified random sampling method using the network distribution map obtained from the Ogun State Water Corporation as guide. Sixty – eight per cent of the respondents attested that the quality of the water supplied was ...

  8. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  9. Effects of bubbling operations on a thermally stratified reservoir: implications for water quality amelioration.

    Science.gov (United States)

    Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J

    2012-01-01

    Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.

  10. Study of volume fractions for stratified and annular regime in multiphase flows using gamma-rays and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson; Schirru, Roberto; Silva, Ademir X.

    2007-01-01

    This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)

  11. Study of volume fractions for stratified and annular regime in multiphase flows using gamma-rays and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: otero@ien.gov.br; brandao@ien.gov.br; cmnap@ien.gov.br; robson@ien.gov.br; Schirru, Roberto; Silva, Ademir X. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Energia Nuclear (PEN)]. E-mails: ademir@con.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)

  12. Stratified sampling design based on data mining.

    Science.gov (United States)

    Kim, Yeonkook J; Oh, Yoonhwan; Park, Sunghoon; Cho, Sungzoon; Park, Hayoung

    2013-09-01

    To explore classification rules based on data mining methodologies which are to be used in defining strata in stratified sampling of healthcare providers with improved sampling efficiency. We performed k-means clustering to group providers with similar characteristics, then, constructed decision trees on cluster labels to generate stratification rules. We assessed the variance explained by the stratification proposed in this study and by conventional stratification to evaluate the performance of the sampling design. We constructed a study database from health insurance claims data and providers' profile data made available to this study by the Health Insurance Review and Assessment Service of South Korea, and population data from Statistics Korea. From our database, we used the data for single specialty clinics or hospitals in two specialties, general surgery and ophthalmology, for the year 2011 in this study. Data mining resulted in five strata in general surgery with two stratification variables, the number of inpatients per specialist and population density of provider location, and five strata in ophthalmology with two stratification variables, the number of inpatients per specialist and number of beds. The percentages of variance in annual changes in the productivity of specialists explained by the stratification in general surgery and ophthalmology were 22% and 8%, respectively, whereas conventional stratification by the type of provider location and number of beds explained 2% and 0.2% of variance, respectively. This study demonstrated that data mining methods can be used in designing efficient stratified sampling with variables readily available to the insurer and government; it offers an alternative to the existing stratification method that is widely used in healthcare provider surveys in South Korea.

  13. Proposed catalog of the neuroanatomy and the stratified anatomy for the 361 acupuncture points of 14 channels.

    Science.gov (United States)

    Chapple, Will

    2013-10-01

    In spite of the extensive research on acupuncture mechanisms, no comprehensive and systematic peer-reviewed reference list of the stratified anatomical and the neuroanatomical features of all 361 acupuncture points exists. This study creates a reference list of the neuroanatomy and the stratified anatomy for each of the 361 acupuncture points on the 14 classical channels and for 34 extra points. Each acupuncture point was individually assessed to relate the point's location to anatomical and neuroanatomical features. The design of the catalogue is intended to be useful for any style of acupuncture or Oriental medicine treatment modality. The stratified anatomy was divided into shallow, intermediate and deep insertion. A separate stratified anatomy was presented for different needle angles and directions. The following are identified for each point: additional specifications for point location, the stratified anatomy, motor innervation, cutaneous nerve and sensory innervation, dermatomes, Langer's lines, and somatotopic organization in the primary sensory and motor cortices. Acupuncture points for each muscle, dermatome and myotome are also reported. This reference list can aid clinicians, practitioners and researchers in furthering the understanding and accurate practice of acupuncture. Additional research on the anatomical variability around acupuncture points, the frequency of needle contact with an anatomical structure in a clinical setting, and conformational imaging should be done to verify this catalogue. Copyright © 2013. Published by Elsevier B.V.

  14. Bayesian stratified sampling to assess corpus utility

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, J.; Scovel, C.; Thomas, T.; Hall, S.

    1998-12-01

    This paper describes a method for asking statistical questions about a large text corpus. The authors exemplify the method by addressing the question, ``What percentage of Federal Register documents are real documents, of possible interest to a text researcher or analyst?`` They estimate an answer to this question by evaluating 200 documents selected from a corpus of 45,820 Federal Register documents. Bayesian analysis and stratified sampling are used to reduce the sampling uncertainty of the estimate from over 3,100 documents to fewer than 1,000. A possible application of the method is to establish baseline statistics used to estimate recall rates for information retrieval systems.

  15. Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization

    Science.gov (United States)

    Aksoy, T.; Špiclin, Ž.; Pernuš, F.; Unal, G.

    2017-12-01

    Registration of 3D pre-interventional to 2D intra-interventional medical images has an increasingly important role in surgical planning, navigation and treatment, because it enables the physician to co-locate depth information given by pre-interventional 3D images with the live information in intra-interventional 2D images such as x-ray. Most tasks during image-guided interventions are carried out under a monoplane x-ray, which is a highly ill-posed problem for state-of-the-art 3D to 2D registration methods. To address the problem of rigid 3D-2D monoplane registration we propose a novel multi-objective stratified parameter optimization, wherein a small set of high-magnitude intensity gradients are matched between the 3D and 2D images. The stratified parameter optimization matches rotation templates to depth templates, first sampled from projected 3D gradients and second from the 2D image gradients, so as to recover 3D rigid-body rotations and out-of-plane translation. The objective for matching was the gradient magnitude correlation coefficient, which is invariant to in-plane translation. The in-plane translations are then found by locating the maximum of the gradient phase correlation between the best matching pair of rotation and depth templates. On twenty pairs of 3D and 2D images of ten patients undergoing cerebral endovascular image-guided intervention the 3D to monoplane 2D registration experiments were setup with a rather high range of initial mean target registration error from 0 to 100 mm. The proposed method effectively reduced the registration error to below 2 mm, which was further refined by a fast iterative method and resulted in a high final registration accuracy (0.40 mm) and high success rate (> 96%). Taking into account a fast execution time below 10 s, the observed performance of the proposed method shows a high potential for application into clinical image-guidance systems.

  16. Is high-pressure water the cradle of life?

    International Nuclear Information System (INIS)

    Bassez, Marie-Paule

    2003-01-01

    Several theories have been proposed for the synthesis of prebiotic molecules. This letter shows that the structure of supercritical water, or high-pressure water, could trigger prebiotic synthesis and the origin of life deep in the oceans, in hydrothermal vent systems. Dimer geometries of high-pressure water may have a point of symmetry and a zero dipole moment. Consequently, simple apolar molecules found in submarine hydrothermal vent systems will dissolve in the apolar environment provided by the apolar form of the water dimer. Apolar water could be the medium which helps precursor molecules to concentrate and react more efficiently. The formation of prebiotic molecules could thus be linked to the structure of the water inside chimney nanochannels and cavities where hydrothermal piezochemistry and shock wave chemistry could occur. (letter to the editor)

  17. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  18. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  19. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kuntoro, Hadiyan Yusuf, E-mail: hadiyan.y.kuntoro@mail.ugm.ac.id; Majid, Akmal Irfan; Deendarlianto, E-mail: deendarlianto@ugm.ac.id [Center for Energy Studies, Gadjah Mada University, Sekip K-1A Kampus UGM, Yogyakarta 55281 (Indonesia); Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia); Hudaya, Akhmad Zidni; Dinaryanto, Okto [Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia)

    2016-06-03

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (h{sub L}) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.

  20. LONGITUDINAL OSCILLATIONS IN DENSITY STRATIFIED AND EXPANDING SOLAR WAVEGUIDES

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Cardozo, M. [Instituto de Astronomia y Fisica del Espacio, CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires (Argentina); Verth, G. [School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Erdelyi, R., E-mail: mluna@iafe.uba.ar, E-mail: robertus@sheffield.ac.uk, E-mail: gary.verth@northumbria.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2012-04-01

    Waves and oscillations can provide vital information about the internal structure of waveguides in which they propagate. Here, we analytically investigate the effects of density and magnetic stratification on linear longitudinal magnetohydrodynamic (MHD) waves. The focus of this paper is to study the eigenmodes of these oscillations. It is our specific aim to understand what happens to these MHD waves generated in flux tubes with non-constant (e.g., expanding or magnetic bottle) cross-sectional area and density variations. The governing equation of the longitudinal mode is derived and solved analytically and numerically. In particular, the limit of the thin flux tube approximation is examined. The general solution describing the slow longitudinal MHD waves in an expanding magnetic flux tube with constant density is found. Longitudinal MHD waves in density stratified loops with constant magnetic field are also analyzed. From analytical solutions, the frequency ratio of the first overtone and fundamental mode is investigated in stratified waveguides. For small expansion, a linear dependence between the frequency ratio and the expansion factor is found. From numerical calculations it was found that the frequency ratio strongly depends on the density profile chosen and, in general, the numerical results are in agreement with the analytical results. The relevance of these results for solar magneto-seismology is discussed.

  1. Optimal energy growth in a stably stratified shear flow

    Science.gov (United States)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  2. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-01

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  3. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-28

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  4. Advances in high temperature water chemistry and future issues

    International Nuclear Information System (INIS)

    Millett, P.J.

    2005-01-01

    This paper traces the development of advances in high temperature water chemistry with emphasis in the field of nuclear power. Many of the water chemistry technologies used in plants throughout the world today would not have been possible without the underlying scientific advances made in this field. In recent years, optimization of water chemistry has been accomplished by the availability of high temperature water chemistry codes such as MULTEQ. These tools have made the science of high temperature chemistry readily accessible for engineering purposes. The paper closes with a discussion of what additional scientific data and insights must be pursued in order to support the further development of water chemistry technologies for the nuclear industry. (orig.)

  5. High converter pressurized water reactor with heavy water as a coolant

    International Nuclear Information System (INIS)

    Ronen, Y.; Reyev, D.

    1983-01-01

    There is an increasing interest in water breeder and high converter reactors. The increase in the conversion ratio of these reactors is obtained by hardening the neutron spectrum achieved by tightening the reactor's lattice. Another way of hardening the neutron spectrum is to replace the light water with heavy water. Two pressurized water reactor fuel cycles that use heavy water as a coolant are considered. The first fuel cycle is based on plutonium and depleted uranium, and the second cycle is based on plutonium and enriched uranium. The uranium ore and separative work unit (SWU) requirements are calculated as well as the fuel cycle cost. The savings in uranium ore are about40 and 60% and about40% in SWU for both fuel cycles considered

  6. Flashing of high-pressure saturated water into the pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Aya, Izuo.

    1997-01-01

    This paper presents an experimental study on a saturated high-pressure water discharging into a water pool. The purpose of the experiment is to clarify the phenomena that occur by a blow-down of the water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in a passive safety reactor. The results show that a flashing oscillation (FO) occurs when the water discharges into the pool, under specified experimental conditions. The range of the flashing location oscillates between a point very close to and some distance away from the vent hole. The pressures in the vent tube and water pool constantly fluctuate due to the flashing oscillation. The pressure oscillation and alternating flashing location might be caused by the balancing action between the supply of saturated water, flashing at the control volume and steam condensation on the steam-water interface. The frequencies of FO, or frequencies of pressure oscillation and alternating flashing location, increased as water subcooling increased, and as discharging pressure and vent hole diameter decreased. A linear analysis was conducted using a spherical flashing bubble model in which the motion of bubble is controlled by steam condensation. The effects of these parameters on the period of FO in the experiments can be predicted well by the analysis. (author)

  7. Sensitivity of the Geomagnetic Octupole to a Stably Stratified Layer in the Earth's Core

    Science.gov (United States)

    Yan, C.; Stanley, S.

    2017-12-01

    The presence of a stably stratified layer at the top of the core has long been proposed for Earth, based on evidence from seismology and geomagnetic secular variation. Geodynamo modeling offers a unique window to inspect the properties and dynamics in Earth's core. For example, numerical simulations have shown that magnetic field morphology is sensitive to the presence of stably stratified layers in a planet's core. Here we use the mMoSST numerical dynamo model to investigate the effects of a thin stably stratified layer at the top of the fluid outer core in Earth on the resulting large-scale geomagnetic field morphology. We find that the existence of a stable layer has significant influence on the octupolar component of the magnetic field in our models, whereas the quadrupole doesn't show an obvious trend. This suggests that observations of the geomagnetic field can be applied to provide information of the properties of this plausible stable layer, such as how thick and how stable this layer could be. Furthermore, we have examined whether the dominant thermal signature from mantle tomography at the core-mantle boundary (CMB) (a degree & order 2 spherical harmonic) can influence our results. We found that this heat flux pattern at the CMB has no outstanding effects on the quadrupole and octupole magnetic field components. Our studies suggest that if there is a stably stratified layer at the top of the Earth's core, it must be limited in terms of stability and thickness, in order to be compatible with the observed paleomagnetic record.

  8. Highly purified water production technology. The influence of water purity on steam quality

    International Nuclear Information System (INIS)

    Ganter, J.

    1975-01-01

    The fundamental question related to high-pressure steam generation, intended for powering steam turbines, concerns steam production conditions based on constant quality standards. The characteristics of water (salinity, silica concentration) are indicated for a given steam quality as a function of the pressure. Two processes for the purification of feedwater for high pressure boilers are described: a treatment using precoated cellulose or resin filters and a treatment using mixed-bed ion exchangers. When ultrapure water is required, the demineralized water is filtred using microfiltration and ultrafiltration processes [fr

  9. Propagation of acoustic waves in a stratified atmosphere, 1

    Science.gov (United States)

    Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.

    1994-01-01

    This work is motivated by the chromospheric 3 minute oscillations observed in the K(sub 2v) bright points. We study acoustic gravity waves in a one-dimensional, gravitationally stratified, isothermal atmosphere. The oscillations are excited either by a velocity pulse imparted to a layer in an atmosphere of infinite vertical extent, or by a piston forming the lower boundary of a semi-infinite medium. We consider both linear and non-linear waves.

  10. The Fokker-Planck equation for ray dispersion in gyrotropic stratified media

    NARCIS (Netherlands)

    Golynski, S.M.

    1984-01-01

    The Hamilton equations of geometrical optics determine the rays of the relevant wave field in the short wavelength. We give a systematic derivation of the Fokker-Planck equation for the joint probability density of the position and unit direction vector of rays propagating in a gyrotropic stratified

  11. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces.

    Science.gov (United States)

    Wei, Qiangbing; Yu, Bo; Wang, Xiaolong; Zhou, Feng

    2014-06-01

    Stratified polymer brushes are fabricated using microcontact printing (μCP) of initiator integrated polydopamine (PDOPBr) on polymer brush surfaces and the following surface initiated atom transfer radical polymerization (SI-ATRP). It is found that the surface energy, chemically active groups, and the antifouling ability of the polymer brushes affect transfer efficiency and adhesive stability of the polydopamine film. The stickiness of the PDOPBr pattern on polymer brush surfaces is stable enough to perform continuous μCP and SI-ATRP to prepare stratified polymer brushes with a 3D topography, which have broad applications in cell and protein patterning, biosensors, and hybrid surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Emerging Techniques in Stratified Designs and Continuous Gradients for Tissue Engineering of Interfaces

    Science.gov (United States)

    Dormer, Nathan H.; Berkland, Cory J.; Detamore, Michael S.

    2013-01-01

    Interfacial tissue engineering is an emerging branch of regenerative medicine, where engineers are faced with developing methods for the repair of one or many functional tissue systems simultaneously. Early and recent solutions for complex tissue formation have utilized stratified designs, where scaffold formulations are segregated into two or more layers, with discrete changes in physical or chemical properties, mimicking a corresponding number of interfacing tissue types. This method has brought forth promising results, along with a myriad of regenerative techniques. The latest designs, however, are employing “continuous gradients” in properties, where there is no discrete segregation between scaffold layers. This review compares the methods and applications of recent stratified approaches to emerging continuously graded methods. PMID:20411333

  13. The stratified Boycott effect

    Science.gov (United States)

    Peacock, Tom; Blanchette, Francois; Bush, John W. M.

    2005-04-01

    We present the results of an experimental investigation of the flows generated by monodisperse particles settling at low Reynolds number in a stably stratified ambient with an inclined sidewall. In this configuration, upwelling beneath the inclined wall associated with the Boycott effect is opposed by the ambient density stratification. The evolution of the system is determined by the relative magnitudes of the container depth, h, and the neutral buoyancy height, hn = c0(ρp-ρf)/|dρ/dz|, where c0 is the particle concentration, ρp the particle density, ρf the mean fluid density and dρ/dz Boycott layer transports dense fluid from the bottom to the top of the system; subsequently, the upper clear layer of dense saline fluid is mixed by convection. For sufficiently strong stratification, h > hn, layering occurs. The lowermost layer is created by clear fluid transported from the base to its neutral buoyancy height, and has a vertical extent hn; subsequently, smaller overlying layers develop. Within each layer, convection erodes the initially linear density gradient, generating a step-like density profile throughout the system that persists after all the particles have settled. Particles are transported across the discrete density jumps between layers by plumes of particle-laden fluid.

  14. Treatability of a Highly-Impaired, Saline Surface Water for Potential Urban Water Use

    Directory of Open Access Journals (Sweden)

    Frederick Pontius

    2018-03-01

    Full Text Available As freshwater sources of drinking water become limited, cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt, total dissolved solids (70,000 mg/L, and color (1440 CU. Future wetlands and habitat restoration will have significant ecological benefits, but salinity levels will remain elevated. High salinity eutrophic waters, such as the Salton Sea, are difficult to treat, yet more desirable sources of drinking water are limited. The treatability of Salton Sea water for potential urban water use was evaluated here. Coagulation-sedimentation using aluminum chlorohydrate, ferric chloride, and alum proved to be relatively ineffective for lowering turbidity, with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 μm and 0.1 μm microfiltration. Bench tests of Salton Sea water using sea water reverse osmosis (SWRO achieved initial contaminant rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.

  15. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite

  16. FDTD scattered field formulation for scatterers in stratified dispersive media.

    Science.gov (United States)

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  17. Implementing risk-stratified screening for common cancers: a review of potential ethical, legal and social issues.

    Science.gov (United States)

    Hall, A E; Chowdhury, S; Hallowell, N; Pashayan, N; Dent, T; Pharoah, P; Burton, H

    2014-06-01

    The identification of common genetic variants associated with common cancers including breast, prostate and ovarian cancers would allow population stratification by genotype to effectively target screening and treatment. As scientific, clinical and economic evidence mounts there will be increasing pressure for risk-stratified screening programmes to be implemented. This paper reviews some of the main ethical, legal and social issues (ELSI) raised by the introduction of genotyping into risk-stratified screening programmes, in terms of Beauchamp and Childress's four principles of biomedical ethics--respect for autonomy, non-maleficence, beneficence and justice. Two alternative approaches to data collection, storage, communication and consent are used to exemplify the ELSI issues that are likely to be raised. Ultimately, the provision of risk-stratified screening using genotyping raises fundamental questions about respective roles of individuals, healthcare providers and the state in organizing or mandating such programmes, and the principles, which underpin their provision, particularly the requirement for distributive justice. The scope and breadth of these issues suggest that ELSI relating to risk-stratified screening will become increasingly important for policy-makers, healthcare professionals and a wide diversity of stakeholders. © The Author 2013. Published by Oxford University Press on behalf of Faculty of Public Health.

  18. Evaluation of a Stratified National Breast Screening Program in the United Kingdom: An Early Model-Based Cost-Effectiveness Analysis.

    Science.gov (United States)

    Gray, Ewan; Donten, Anna; Karssemeijer, Nico; van Gils, Carla; Evans, D Gareth; Astley, Sue; Payne, Katherine

    2017-09-01

    To identify the incremental costs and consequences of stratified national breast screening programs (stratified NBSPs) and drivers of relative cost-effectiveness. A decision-analytic model (discrete event simulation) was conceptualized to represent four stratified NBSPs (risk 1, risk 2, masking [supplemental screening for women with higher breast density], and masking and risk 1) compared with the current UK NBSP and no screening. The model assumed a lifetime horizon, the health service perspective to identify costs (£, 2015), and measured consequences in quality-adjusted life-years (QALYs). Multiple data sources were used: systematic reviews of effectiveness and utility, published studies reporting costs, and cohort studies embedded in existing NBSPs. Model parameter uncertainty was assessed using probabilistic sensitivity analysis and one-way sensitivity analysis. The base-case analysis, supported by probabilistic sensitivity analysis, suggested that the risk stratified NBSPs (risk 1 and risk-2) were relatively cost-effective when compared with the current UK NBSP, with incremental cost-effectiveness ratios of £16,689 per QALY and £23,924 per QALY, respectively. Stratified NBSP including masking approaches (supplemental screening for women with higher breast density) was not a cost-effective alternative, with incremental cost-effectiveness ratios of £212,947 per QALY (masking) and £75,254 per QALY (risk 1 and masking). When compared with no screening, all stratified NBSPs could be considered cost-effective. Key drivers of cost-effectiveness were discount rate, natural history model parameters, mammographic sensitivity, and biopsy rates for recalled cases. A key assumption was that the risk model used in the stratification process was perfectly calibrated to the population. This early model-based cost-effectiveness analysis provides indicative evidence for decision makers to understand the key drivers of costs and QALYs for exemplar stratified NBSP. Copyright

  19. Stratified growth in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Werner, E.; Roe, F.; Bugnicourt, A.

    2004-01-01

    In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct...... synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 Am wide in colony biofilms and 30 Am wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped...... by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result...

  20. Thermal instability in a stratified plasma

    International Nuclear Information System (INIS)

    Hermanns, D.F.M.; Priest, E.R.

    1989-01-01

    The thermal instability mechansism has been studied in connection to observed coronal features, like, e.g. prominences or cool cores in loops. Although these features show a lot of structure, most studies concern the thermal instability in an uniform medium. In this paper, we investigate the thermal instability and the interaction between thermal modes and the slow magneto-acoustic subspectrum for a stratified plasma slab. We fomulate the relevant system of equations and give some straightforward properties of the linear spectrum of a non-uniform plasma slab, i.e. the existence of continuous parts in the spectrum. We present a numerical scheme with which we can investigate the linear spectrum for equilibrium states with stratification. The slow and thermal subspectra of a crude coronal model are given as a preliminary result. (author). 6 refs.; 1 fig

  1. The effect of sediments on turbulent plume dynamics in a stratified fluid

    Science.gov (United States)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  2. A statistical mechanics approach to mixing in stratified fluids

    OpenAIRE

    Venaille , Antoine; Gostiaux , Louis; Sommeria , Joël

    2016-01-01

    Accepted for the Journal of Fluid Mechanics; Predicting how much mixing occurs when a given amount of energy is injected into a Boussinesq fluid is a longstanding problem in stratified turbulence. The huge number of degrees of freedom involved in these processes renders extremely difficult a deterministic approach to the problem. Here we present a statistical mechanics approach yielding a prediction for a cumulative, global mixing efficiency as a function of a global Richard-son number and th...

  3. Sutudy on exchange flow under the unstably stratified field

    OpenAIRE

    文沢, 元雄

    2005-01-01

    This paper deals with the exchange flow under the unstably stratified field. The author developed the effective measurement system as well as the numerical analysis program. The system and the program are applied to the helium-air exchange flow in a rectangular channel with inclination. Following main features of the exchange flow were discussed based on the calculated results.(1) Time required for establishing a quasi-steady state exchange flow.(2) The relationship between the inclination an...

  4. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  5. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  6. Gender Stratified Monopoly: Why Do I Earn Less and Pay More?

    Science.gov (United States)

    Smith, Stacy L.

    2017-01-01

    A modified version of Monopoly has long been used as a simulation exercise to teach inequality. Versions of Modified Monopoly (MM) have touched on minority status relative to inequality but without an exploration of the complex interaction between minority status and class. This article introduces Gender Stratified Monopoly (GSM), an adaptation…

  7. High purity heavy water production: need for total organic carbon determination in process water streams

    International Nuclear Information System (INIS)

    Ayushi; Kumar, Sangita D.; Reddy, A.V.R.; Vithal, G.K.

    2009-01-01

    In recent times, demand for high purity heavy water (99.98% pure) in industries and laboratories has grown by manifold. Its application started in nuclear industry with the design of CANDU reactor, which uses natural uranium as fuel. In this reactor the purest grade of heavy water is used as the moderator and the primary coolant. Diverse industrial applications like fibre optics, medicine, semiconductors etc. use high purity heavy water extensively to achieve better performance of the specific material. In all these applications there is a stringent requirement that the total organic carbon content (TOC) of high purity heavy water should be very low. This is because the presence of TOC can lead to adverse interactions in different applications. To minimize the TOC content in the final product there is a need to monitor and control the TOC content at each and every stage of heavy water production. Hence a simple, rapid and accurate method was developed for the determination of TOC content in process water samples. The paper summarizes the results obtained for the TOC content in the water samples collected from process streams of heavy water production plant. (author)

  8. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  9. Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs.

    Science.gov (United States)

    West, J. B.; Maloney, J. E.; Castle, B. L.

    1972-01-01

    This investigation set out to answer two questions: (1) are the distal alveoli in the terminal lung units less well perfused than the proximal alveoli, i.e., is there stratification of blood flow; and (2) if so, does this enhance gas exchange in the presence of stratified inequality of ventilation. Excised dog lungs were ventilated with saline and perfused with blood. Following single inspirations of xenon 133 in saline and various periods of breath holding, the expired xenon concentration against volume was measured and it confirmed marked stratified inequality of ventilation under these conditions. By measuring the rate of depletion of xenon from alveoli during a period of blood flow, we showed that the alveoli which emptied at the end of expiration had 16% less blood flow than those exhaling earlier. However, by measuring the xenon concentration in pulmonary venous blood, we found that about 10% less tracer was transferred from the alveoli into the blood when the inspired xenon was stratified within the respiratory zone. Thus while stratification of blood flow was confirmed, it was shown to impair rather than enhance the efficiency of gas transfer.

  10. Experimental characterization of a silicone oil-in-water droplet generator based on a micro T-junction

    Science.gov (United States)

    Rostami, B.; Pulvirenti, B.; Puccetti, G.; Morini, G. L.

    2017-01-01

    This paper deals with the emulsion of two immiscible fluids in a micro T-junction. An opposed-flow micro T-junction obtained by means of square microchannels (with a side of 300 µm) fabricated in a pure fused glass chip has been used for the formation of silicone oil-in-water (O/W) droplets. The experimental results have been obtained by considering both pure deionized water and a mixture of deionized water and surfactant (Tween 20) as the continuous flow. The results shown in this paper highlight that the presence of surfactant, also in very small concentrations, is able to change drastically the flow patterns of the two-phase flow generated by the T-junction. Concentration in weight of Tween 20 between 1 and 2% in the continuous flow is able to promote highly monodispersed emulsions with low polydispersity, especially for low flow rate ratios between the dispersed and continuous phase flows. On the contrary, by avoiding the use of surfactant, a stratified flow is obtained. The experimental results obtained in this work have been used in order to link the depth ratio of the stratified flow and the non-dimensional length of the plugs in droplet-based flow to the flow rate ratio between the dispersed and continuous flows.

  11. Urban Water Services in Fragile States: An Analysis of Drinking Water Sources and Quality in Port Harcourt, Nigeria, and Monrovia, Liberia

    Science.gov (United States)

    Kumpel, Emily; Albert, Jeff; Peletz, Rachel; de Waal, Dominick; Hirn, Maximilian; Danilenko, Alexander; Uhl, Vincent; Daw, Ashish; Khush, Ranjiv

    2016-01-01

    Establishing and maintaining public water services in fragile states is a significant development challenge. In anticipation of water infrastructure investments, this study compares drinking water sources and quality between Port Harcourt, Nigeria, and Monrovia, Liberia, two cities recovering from political and economic instability. In both cities, access to piped water is low, and residents rely on a range of other private and public water sources. In Port Harcourt, geographic points for sampling were randomly selected and stratified by population density, whereas in Monrovia, locations for sampling were selected from a current inventory of public water sources. In Port Harcourt, the sampling frame demonstrated extensive reliance on private boreholes and a preference, in both planned and unplanned settlements, for drinking bottled and sachet water. In Monrovia, sample collection focused on public sources (predominantly shallow dug wells). In Port Harcourt, fecal indicator bacteria (FIB) were detected in 25% of sources (N = 566), though concentrations were low. In Monrovia, 57% of sources contained FIB and 22% of sources had nitrate levels that exceeded standards (N = 204). In Monrovia, the convenience of piped water may promote acceptance of the associated water tariffs. However, in Port Harcourt, the high prevalence of self-supply and bottled and sachet drinking water suggests that the consumer's willingness to pay for ongoing municipal water supply improvements may be determined by service reliability and perceptions of water quality. PMID:27114291

  12. STRESS DISTRIBUTION IN THE STRATIFIED MASS CONTAINING VERTICAL ALVEOLE

    Directory of Open Access Journals (Sweden)

    Bobileva Tatiana Nikolaevna

    2017-08-01

    Full Text Available Almost all subsurface rocks used as foundations for various types of structures are stratified. Such heterogeneity may cause specific behaviour of the materials under strain. Differential equations describing the behaviour of such materials contain rapidly fluctuating coefficients, in view of this, solution of such equations is more time-consuming when using today’s computers. The method of asymptotic averaging leads to getting homogeneous medium under study to averaged equations with fixed factors. The present article is concerned with stratified soil mass consisting of pair-wise alternative isotropic elastic layers. In the results of elastic modules averaging, the present soil mass with horizontal rock stratification is simulated by homogeneous transversal-isotropic half-space with isotropy plane perpendicular to the standing axis. Half-space is loosened by a vertical alveole of circular cross-section, and virgin ground is under its own weight. For horizontal parting planes of layers, the following two types of surface conditions are set: ideal contact and backlash without cleavage. For homogeneous transversal-isotropic half-space received with a vertical alveole, the analytical solution of S.G. Lekhnitsky, well known in scientific papers, is used. The author gives expressions for stress components and displacements in soil mass for different marginal conditions on the alveole surface. Such research problems arise when constructing and maintaining buildings and when composite materials are used.

  13. Variations in Microbial Community Structure through the Stratified Water Column in the Tyrrhenian Sea (Central Mediterranean

    Directory of Open Access Journals (Sweden)

    Francesco Smedile

    2015-08-01

    Full Text Available The central Mediterranean Sea is among the most oligotrophic habitats in the marine environment. In this study, we investigated the abundance, diversity and activity of prokaryoplankton in the water column (25–3000-m depth at Station Vector (Tyrrhenian Sea, 39°32.050′ N; 13°22.280′ E. This specific water column consists of three different water masses (Modified Atlantic Water (MAW, Levantine Intermediate Water (LIW and Tyrrhenian Deep Water (TDW, possessing a typical stratification of the Central Mediterranean basin. CARD-FISH showed that the metabolically-active fraction of bacterial populations exceeded the archaeal fraction along the whole water column, except at the deepest water masses. 16S rDNA and 16S rRNA clone libraries obtained from each type of water mass were used to analyse the prokaryoplankton community structure and to distinguish between active and “less active” microbial fractions. Our results showed that the rRNA-derived bacterial libraries seemed to be more depth specific compared to 16S rDNA-derived counterparts. Major differences were detected between the active fractions of bacterioplankton thriving in photic (25 m, MAW and aphotic layers (500–3000 m, LIW and TDW respectively, whereas no statistically-significant differences were detected within the deep, aphotic layers (500–3000 m, LIW and TDW. Archaeal communities possessed more depth-specific distribution patterns with both total and active fractions showing depth stratification. Cyanobacteria and Marine Group II MAGII of Euryarchaea dominated the MAW prokaryoplankton. A notable fraction of Geitlerinema-related cyanobacteria was detected among the metabolically-active bacterial population recovered from the mesopelagic (500 m, LIW aphotic layer, which is indicative of their mixotrophic behaviour. Heterotrophic Gammaproteobacteria and members of Marine Group 1.1a and the PSL12-related ALOHA group of Thaumarchaeota were both abundant in the aphotic layers

  14. Water quality monitoring for high-priority water bodies in the Sonoran Desert network

    Science.gov (United States)

    Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer

    2005-01-01

    This paper describes a network monitoring program for “high priority” water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...

  15. Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ahmad, B. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-04-15

    Magnetohydrodynamic (MHD) doubly stratified flow of Maxwell nanofluid in presence of mixed convection is analyzed in this article. Effects of thermophoresis, Brownian motion and heat generation/absorption are present. The flow is induced due to linear stretching of sheet. Mathematical formulation is made under boundary layer approach. Expressions of velocity, temperature and nanoparticles concentration are developed. The obtained results are plotted and discussed to examine the variations in temperature and nanoparticles concentration due to different physical parameters. Numerical computations are made to obtain the values of local Nusselt and Sherwood numbers. Impact of sundry parameters on the flow quantities is analyzed graphically. - Highlights: • Double stratified flow of Maxwell nanofluid with mixed convection is modeled. • Thermophoresis and Brownian motion effects are encountered. • Computations are made to obtain the solution expressions. • Numerical values of local Nusselt and Sherwood numbers are computed and examined.

  16. Ultra-high pressure water jet: Baseline report

    International Nuclear Information System (INIS)

    1997-01-01

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky trademark pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems

  17. Characterization and treatment options for high TOC heavy water

    International Nuclear Information System (INIS)

    Evans, D.; Leilabadi, A.; Rudolph, A.; Williams, D.

    2007-01-01

    High total organic carbon (TOC) and high conductivity contamination in heavy water feed present serious problems for the operation of heavy water upgrader facilities. The authors describe the chemical analysis of a particular batch of contaminated heavy water which had resisted standard clean-up procedures. After chemical characterization, a special clean-up plan was developed and successfully tested in the laboratory, followed by its implementation at site. (author)

  18. Biogas from organically high polluted industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Sixt, H

    1985-06-01

    Organically high polluted waste water sets special claims for an economical purification and the process treatment. Up to now these waste waters are being purified by anaerobic processes with simultaneous biogas generation. The fourstep anaerobic degradation is influenced by a lot of important parameters. Extensive researchers in the field of anaerobic microbiology has improved the knowledge of the fundamental principles. Parallel the reactor technology is developed worldwide. In general it seems that the fixed-film-reactor with immobilized bacteria has the best future to purify organically high polluted industrial waste water with short retention times under stable operation conditions.

  19. A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.

    2015-03-01

    Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.

  20. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  1. Community genomics among stratified microbial assemblages in the ocean's interior

    DEFF Research Database (Denmark)

    DeLong, Edward F; Preston, Christina M; Mincer, Tracy

    2006-01-01

    Microbial life predominates in the ocean, yet little is known about its genomic variability, especially along the depth continuum. We report here genomic analyses of planktonic microbial communities in the North Pacific Subtropical Gyre, from the ocean's surface to near-sea floor depths. Sequence......, and host-viral interactions. Comparative genomic analyses of stratified microbial communities have the potential to provide significant insight into higher-order community organization and dynamics....

  2. Mathematical modeling of turbulent stratified flows. Application of liquid metal fast breeders

    Energy Technology Data Exchange (ETDEWEB)

    Villand, M; Grand, D [CEA-Service des Transferts Thermiques, Grenoble (France)

    1983-07-01

    Mathematical model of turbulent stratified flow was proposed under the following assumptions: Newtonian fluid; incompressible fluid; coupling between temperature and momentum fields according to Boussinesq approximation; two-dimensional invariance for translation or rotation; coordinates cartesian or curvilinear. Solutions obtained by the proposed method are presented.

  3. Direct numerical simulations of exhaust gas recirculation effect on multistage autoignition in the negative temperature combustion regime for stratified HCCI flow conditions by using H2O2 addition

    Science.gov (United States)

    El-Asrag, Hossam A.; Ju, Yiguang

    2013-04-01

    Direct numerical simulations (DNSs) of a stratified flow in a homogeneous compression charge ignition (HCCI) engine are performed to investigate the exhaust gas recirculation (EGR) and temperature/mixture stratification effects on the autoignition of synthetic dimethyl ether (DME) in the negative temperature combustion region. Detailed chemistry for a DME/air mixture is employed and solved by a hybrid multi-time scale (HMTS) algorithm to reduce the computational cost. The effect of ? to mimic the EGR effect on autoignition are studied. The results show that adding ? enhances autoignition by rapid OH radical pool formation (34-46% reduction in ignition delay time) and changes the ignition heat release rates at different ignition stages. Sensitivity analysis is performed and the important reactions pathways affecting the autoignition are specified. The DNS results show that the scales introduced by thermal and mixture stratifications have a strong effect after the low temperature chemistry (LTC) ignition especially at the locations of high scalar dissipation rates. Compared to homogenous ignition, stratified ignitions show similar first autoignition delay times, but 18% reduction in the second and third ignition delay times. The results also show that molecular transport plays an important role in stratified low temperature ignition, and that the scalar mixing time scale is strongly affected by local ignition in the stratified flow. Two ignition-kernel propagation modes are observed: a wave-like, low-speed, deflagrative mode and a spontaneous, high-speed, ignition mode. Three criteria are introduced to distinguish these modes by different characteristic time scales and Damkhöler numbers using a progress variable conditioned by an ignition kernel indicator. The low scalar dissipation rate flame front is characterized by high displacement speeds and high mixing Damkhöler number. The proposed criteria are applied successfully at the different ignition stages and

  4. Predictors of depressive symptoms in older Japanese primiparas at 1 month post-partum: A risk-stratified analysis.

    Science.gov (United States)

    Iwata, Hiroko; Mori, Emi; Tsuchiya, Miyako; Sakajo, Akiko; Maehara, Kunie; Ozawa, Harumi; Morita, Akiko; Maekawa, Tomoko; Aoki, Kyoko; Tamakoshi, Koji

    2016-01-01

    Older maternal age has become more common in Japan. Studies suggest that older maternal age and primiparity are associated with post-partum depression. The present study aimed to identify predictors of post-partum depression in older Japanese primiparas at 1 month post-partum. Participants were 479 primiparas aged 35 years and over, drawn from a prospective cohort study. Data were collected using self-report questionnaires. Depression was measured with the Japanese version of the Edinburgh Postnatal Depression Scale. Stepwise logistic regression analysis was conducted on binary outcome variables of depression at 1 month post-partum, along with a stratified analysis based on the risk status of depression. Five predictors were identified: (i) the depression score during hospital stay; (ii) financial burden; (iii) dissatisfaction with appraisal support; (iv) physical burden in daily life; and (v) concerns about infant caretaking. Stratified analysis identified dissatisfaction with instrumental support in the low-risk group, and the Child-care Value Scale score as unique predictors in the high-risk group. These results highlight the importance of early assessment of depressive symptoms and the provision of continuous care. © 2015 Japan Academy of Nursing Science.

  5. Analysis of flame propagation phenomenon in simplified stratified charge conditions; Tanjunkasareta sojo kyukiba ni okeru kaen denpa gensho no kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Moriyoshi, Y; Morikawa, H [Chiba University, Chiba (Japan); Kamimoto, T [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-01

    Since the local inhomogeneity of mixture concentration inside the cylinder affects the combustion characteristics, a basic research on combustion phenomenon in stratified charge conditions is required. The authors have made experiments with a constant-volume chamber, which can simulate an idealized stratified charge field by using a removable partition, to obtain the combustion characteristics. Also, numerical calculations are made using some combustion models. As a result, the important feature that the combustion speed is faster in stratified condition than in homogeneous condition can be predicted by the two-step reaction model. 4 refs., 8 figs.

  6. A study of a direct-injection stratified-charge rotary engine for motor vehicle application

    Science.gov (United States)

    Kagawa, Ryoji; Okazaki, Syunki; Somyo, Nobuhiro; Akagi, Yuji

    1993-03-01

    A study of a direct-injection stratified-charge system (DISC), as applied to a rotary engine (RE) for motor vehicle usage, was undertaken. The goals of this study were improved fuel consumption and reduced exhaust emissions. These goals were thought feasible due to the high thermal efficiency associated with the DISC-RE. This was the first application of this technology to a motor vehicle engine. Stable ignition and ideal stratification systems were developed by means of numerical calculations, air-fuel mixture measurements, and actual engine tests. The use of DISC resulted in significantly improved fuel consumption and reduced exhaust emissions. The use of an exhaust gas recirculating system was studied and found to be beneficial in NOx reduction.

  7. Geohydrology, water quality, and simulation of groundwater flow in the stratified-drift aquifer system in Virgil Creek and Dryden Lake Valleys, Town of Dryden, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.

    2013-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the

  8. Onset condition of the off take from the stratified region to the branch with arbitrary direction

    International Nuclear Information System (INIS)

    Lee, Jae Young; Choo, Kyo Seong; Kim, Man Woong

    2004-01-01

    Two phase discharge from a stratified region through single or multiple branches has been studied considerably in the past two decades. The flow distribution in the header-feeder system of CANDU(Canada Deuterium and Uranium) reactors during accident scenario is one of good examples of these applications. Recently, the passive safety feature for PWR(Pressurized Water Reactor) introduce the concept of DVI(Direct Vessel Injection) for the emergency core make up. The expected water sweep out phenomena needs careful models including the curvature effect of down comer shell and the multi branches. It has been generally accepted that the onset condition of the off take follows the 2.5 power law, but recently, Lee et al. discussed that the experimental data produced large scattering to the 2.5 power law. Also, the effect of branch angle on the onset point of off take remains still as an unsolved problem. Hwang et al produced the CANDU specific branch angles of 0, +-90, +-36, +-72. The experimental results showed severe deviation from the 2.5 power law and needs mechanistic understanding on these phenomena. In the present paper, we try to develop a general model of onset point including the branch orientation

  9. Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation.

    Science.gov (United States)

    Shen, Hongmei; Liu, Shoujun; Sun, Dianjun; Zhang, Shubin; Su, Xiaohui; Shen, Yanfeng; Han, Hepeng

    2011-07-01

    Excessive iodine intake can cause thyroid function disorders as can be caused by iodine deficiency. There are many people residing in areas with high iodine levels in drinking-water in China. The main aim of the present study was to map the geographical distribution of drinking-water with high iodine level in China and to determine the relationship between high iodine level in drinking-water and goitre prevalence. Iodine in drinking-water was measured in 1978 towns of eleven provinces in China, with a total of 28,857 water samples. We randomly selected children of 8-10 years old, examined the presence of goitre and measured their urinary iodine in 299 towns of nine provinces. Of the 1978 towns studied, 488 had iodine levels between 150 and 300 μg/l in drinking-water, and in 246 towns, the iodine level was >300 μg/l. These towns are mainly distributed along the original Yellow River flood areas, the second largest river in China. Of the 56 751 children examined, goitre prevalence was 6.3 % in the areas with drinking-water iodine levels of 150-300 μg/l and 11.0 % in the areas with drinking-water iodine >300 μg/l. Goitre prevalence increased with water and urinary iodine levels. For children with urinary iodine >1500 μg/l, goitre prevalence was 3.69 times higher than that for those with urinary iodine levels of 100-199 μg/l. The present study suggests that drinking-water with high iodine levels is distributed in eleven provinces of China. Goitre becomes more prevalent with the increase in iodine level in drinking-water. Therefore, it becomes important to prevent goitre through stopping the provision of iodised salt and providing normal drinking-water iodine through pipelines in these areas in China.

  10. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  11. Water-bearing, high-pressure Ca-silicates

    Science.gov (United States)

    Németh, Péter; Leinenweber, Kurt; Ohfuji, Hiroaki; Groy, Thomas; Domanik, Kenneth J.; Kovács, István J.; Kovács, Judit S.; Buseck, Peter R.

    2017-07-01

    Water-bearing minerals provide fundamental knowledge regarding the water budget of the mantle and are geophysically significant through their influence on the rheological and seismic properties of Earth's interior. Here we investigate the CaO-SiO2-H2O system at 17 GPa and 1773 K, corresponding to mantle transition-zone condition, report new high-pressure (HP) water-bearing Ca-silicates and reveal the structural complexity of these phases. We document the HP polymorph of hartrurite (Ca3SiO5), post-hartrurite, which is tetragonal with space group P4/ncc, a = 6.820 (5), c = 10.243 (8) Å, V = 476.4 (8) Å3, and Z = 4, and is isostructural with Sr3SiO5. Post-hartrurite occurs in hydrous and anhydrous forms and coexists with larnite (Ca2SiO4), which we find also has a hydrous counterpart. Si is 4-coordinated in both post-hartrurite and larnite. In their hydrous forms, H substitutes for Si (4H for each Si; hydrogrossular substitution). Fourier transform infrared (FTIR) spectroscopy shows broad hydroxyl absorption bands at ∼3550 cm-1 and at 3500-3550 cm-1 for hydrous post-hartrurite and hydrous larnite, respectively. Hydrous post-hartrurite has a defect composition of Ca2.663Si0.826O5H1.370 (5.84 weight % H2O) according to electron-probe microanalysis (EPMA), and the Si deficiency relative to Ca is also observed in the single-crystal data. Hydrous larnite has average composition of Ca1.924Si0.851O4H0.748 (4.06 weight % H2O) according to EPMA, and it is in agreement with the Si occupancy obtained using X-ray data collected on a single crystal. Superlattice reflections occur in electron-diffraction patterns of the hydrous larnite and could indicate crystallographic ordering of the hydroxyl groups and their associated cation defects. Although textural and EPMA-based compositional evidence suggests that hydrous perovskite may occur in high-Ca-containing (or low silica-activity) systems, the FTIR measurement does not show a well-defined hydroxyl absorption band for this

  12. Transport of particles, drops, and small organisms in density stratified fluids

    Science.gov (United States)

    Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil

    2017-10-01

    Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.

  13. Postoperative Complications of Total Joint Arthroplasty in Obese Patients Stratified by BMI.

    Science.gov (United States)

    Zusmanovich, Mikhail; Kester, Benjamin S; Schwarzkopf, Ran

    2018-03-01

    High body mass index (BMI) is associated with significant complications in patients undergoing total joint arthroplasty. Many studies have evaluated this trend, but few have looked at the rates of complications based on BMI as a continuous variable. The purpose of this study was to stratify obese patients into 3 BMI categories and evaluate their rates of complications and gauge whether transitioning from higher to lower BMI category lowers complication. Patients undergoing primary total joint arthroplasty were selected from the National Surgical Quality Improvement Program database from 2008-2015 and arranged into 3 groups based on BMI: O1 (BMI 30-34.9 kg/m 2 ), O2 (BMI 35-39.9 kg/m 2 ), and O3 (BMI >40 kg/m 2 ). Thirty-day complications were recorded and evaluated utilizing univariate and multivariate analyses stratified by BMI. A total of 268,663 patients were identified. Patients with a BMI >30 kg/m 2 had more infectious and medical complications compared with nonobese patients. Furthermore, there were increased complications as the BMI categories increased. Patients with a BMI >40 kg/m 2 (O3) had longer operating times, length of stay, higher rates of readmissions, reoperations, deep venous thrombosis, renal insufficiency, superficial infections, deep infections, and wound dehiscence. These trends were present when comparing the O2 with O1 category as well. We have demonstrated increased rates of medical and surgical complications in obese patients. Furthermore, we demonstrated a stepwise increase in complication rates when transitioning to higher BMI groups. Based on our data, we believe that preoperative counseling and interventions to decrease BMI should be explored before offering elective surgery to obese patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Modification of Measures of Acute Kidney Injury to Risk Stratify Combat Casualties

    Science.gov (United States)

    2017-08-26

    REPORT TYPE 08/26/2017 Poster 4. TJTLE AND SUBTITLE t\\.1odification of l’vfeasures,of Acute Kidney Injury to Risk Stratify Cotnbat Casualties 6...profiles and potential future conflicts , identifying acute kidney injury (AKI) early can help us determine the need for rapidity of evacuation

  15. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  16. Steam condensation behavior of high pressure water's blow down directly into water in containment under LOCA

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Ishida, Toshihisa; Yoritsune, Tsutomu; Kasahara, Y.

    1995-01-01

    JAERI has been conducting a design study of an advanced type Marine Reactor X (MRX) for merchant ships. By employing 'Integral type PWR', In-vessel type control rod drive systems', 'Water filled containment system' and 'Decay heat removal system by natural convection', MRX achieved a compact, light weight and highly safe plant. Experiments on steam condensation behavior of high pressure water's blow down into water have been conducted in order to investigate a major safety issue related to the design decision of 'Water filled containment system'. (author)

  17. New numerical approaches for modeling thermochemical convection in a compositionally stratified fluid

    Science.gov (United States)

    Puckett, Elbridge Gerry; Turcotte, Donald L.; He, Ying; Lokavarapu, Harsha; Robey, Jonathan M.; Kellogg, Louise H.

    2018-03-01

    Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions. Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB. These regions have been associated with lower mantle structures known as large low shear velocity provinces (LLSVPS) below Africa and the South Pacific. The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves. Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle. Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods. Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or 'artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm. We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method that carries a scalar quantity representing the location of each compositional field. All four algorithms are implemented in the open source finite

  18. Decision tree analysis to stratify risk of de novo non-melanoma skin cancer following liver transplantation.

    Science.gov (United States)

    Tanaka, Tomohiro; Voigt, Michael D

    2018-03-01

    Non-melanoma skin cancer (NMSC) is the most common de novo malignancy in liver transplant (LT) recipients; it behaves more aggressively and it increases mortality. We used decision tree analysis to develop a tool to stratify and quantify risk of NMSC in LT recipients. We performed Cox regression analysis to identify which predictive variables to enter into the decision tree analysis. Data were from the Organ Procurement Transplant Network (OPTN) STAR files of September 2016 (n = 102984). NMSC developed in 4556 of the 105984 recipients, a mean of 5.6 years after transplant. The 5/10/20-year rates of NMSC were 2.9/6.3/13.5%, respectively. Cox regression identified male gender, Caucasian race, age, body mass index (BMI) at LT, and sirolimus use as key predictive or protective factors for NMSC. These factors were entered into a decision tree analysis. The final tree stratified non-Caucasians as low risk (0.8%), and Caucasian males > 47 years, BMI decision tree model accurately stratifies the risk of developing NMSC in the long-term after LT.

  19. Sedimentation of particulate material in stratified and nonstratified water columns in the Bombay high area of the Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Sawant, S.S.; Sankaran, P.D.; Wagh, A.B.

    Sedimentation of particulate material at 22, 42 and 62 m was recorded at a station in the Bombay High area of the Arabian Sea from September 1985 to March 1986. Diatom numbers and physical structure, especially thermal stratification, played...

  20. Direct numerical simulation of homogeneous stratified rotating turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Iida, O.; Tsujimura, S.; Nagano, Y. [Nagoya Institute of Technology, Department of Mech. Eng., Nagoya (Japan)

    2005-12-01

    The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. (orig.)

  1. Performance test of ex-core high temperature and high pressure water loop test equipment (Contract research)

    International Nuclear Information System (INIS)

    Nakano, Hiroko; Uehara, Toshiaki; Takeuchi, Tomoaki; Shibata, Hiroshi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

    2016-03-01

    In Japan Atomic Energy Agency, we started research and development so as to monitor the situations in the Nuclear Plant Facilities during a severe accident, such as a radiation-resistant monitoring camera, a radiation-resistant transmission system for conveying the in-core information, and a heat-resistant signal cable. As a part of developments of the heat-resistant signal cable, we prepared ex-core high-temperature and high-pressure water loop test equipment, which can simulate the conditions of BWRs and PWRs, for evaluating reliability and properties of sheath materials of the cable. This equipment consists of autoclave, water conditioning tank, high-pressure metering pump, preheater, heat exchanger and water purification equipment, etc. This report describes the basic design and the performance test results of ex-core high-temperature and high-pressure water loop test equipment. (author)

  2. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  3. Production of highly tritiated water for tritium exposure studies

    International Nuclear Information System (INIS)

    Muirhead, C.; Pilatzke, K.; Tripple, A.; Philippi, N.; McCrimmon, K.; Castillo, I.; Boniface, H.; Suppiah, S.

    2015-01-01

    Tritium Facility staff at Chalk River Laboratories (CRL) have successfully prepared highly tritiated water for use in radiation resistance of PEM (Proton Exchange Membrane-based)electrolyser membrane. The goal of System A was to convert a known amount of elemental tritium (HT) into tritiated water vapour using a copper(II) oxide bed, and to condense the tritiated water vapour into a known amount of chilled heavy water (D 2 O). The conversion and capture of tritium using this system is close to 100%. The goal of System B was to transfer tritiated water from the containment vessel to an exposure vessel (experiment) in a controlled and safe manner. System B is based on the pushing of D 2 0 with low-pressure argon carrier gas to a calibrated volume and then to the exposure vessel. A method for delivering a known and controlled amount of tritiated water has been successfully demonstrated at CRL. Using both systems Tritium Facility staff have made and distributed highly tritiated water in a safe and controlled manner. This paper focuses on how the tritiated water was produced and dispensed to the experiment

  4. Designing Wood Supply Scenarios from Forest Inventories with Stratified Predictions

    Directory of Open Access Journals (Sweden)

    Philipp Kilham

    2018-02-01

    Full Text Available Forest growth and wood supply projections are increasingly used to estimate the future availability of woody biomass and the correlated effects on forests and climate. This research parameterizes an inventory-based business-as-usual wood supply scenario, with a focus on southwest Germany and the period 2002–2012 with a stratified prediction. First, the Classification and Regression Trees algorithm groups the inventory plots into strata with corresponding harvest probabilities. Second, Random Forest algorithms generate individual harvest probabilities for the plots of each stratum. Third, the plots with the highest individual probabilities are selected as harvested until the harvest probability of the stratum is fulfilled. Fourth, the harvested volume of these plots is predicted with a linear regression model trained on harvested plots only. To illustrate the pros and cons of this method, it is compared to a direct harvested volume prediction with linear regression, and a combination of logistic regression and linear regression. Direct harvested volume regression predicts comparable volume figures, but generates these volumes in a way that differs from business-as-usual. The logistic model achieves higher overall classification accuracies, but results in underestimations or overestimations of harvest shares for several subsets of the data. The stratified prediction method balances this shortcoming, and can be of general use for forest growth and timber supply projections from large-scale forest inventories.

  5. Reuse of waste water from high pressure water jet decontamination for reactor decommissioning scrap metal

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Hou Huijuan

    2011-01-01

    For recycle and reuse of reactor decommissioning scrap metal by high pressure water jet decontamination, large quantity of radioactive waste water will be generated. To save the cost of radioactive waste water treatment and to reduce the cost of the scrap decontamination, this part of radioactive waste water should be reused. Most of the radioactivities in the decontamination waste water come from the solid particle in the water. Thus to reuse the waste water, the solid particle in the waster should be removed. Different possible treatment technologies have been investigated. By cost benefit analysis the centrifugal separation technology is selected. (authors)

  6. Water uptake and motion in highly densified bentonite

    International Nuclear Information System (INIS)

    Kahr, G.; Mueller-Vonmoos, F.; Kraehenbuehl, F.; Stoeckli, H.F.

    1986-07-01

    Water uptake by the bentonites MX-80 and Montigel was investigated according to the classical method of determination of the heat immersion and the adsorption-desorption isotherms. In addition, the layer expansion of the montmorillonite was measured as a function of the water content. The evaluation of the adsorption isotherms according to Dubinin-Radushkevich and the stratification distances determined by x-ray confirmed gradual water uptake. Up to 10% water content, the water is adsorbed as a monolayer, up to 20%, as a bimolecular layer around the interlayer cations. The partial specific entropy could be determined from the approximative calculation of the partial specific enthalpy from the heats of immersion and the free enthalpy from the adsorption isotherms. From this it is evident that the interlayer water shows a high degree of order. In this condition, the mobility of the water molecules is considerably lower than in free water. From the adsorption isotherm and the layer expansion observed, it can be assumed that water can appear in the pore space only from approximately 25% water content. The spaces outwith the interlayer space and the surfaces of the montmorillonite particles are considered as pore space. If free swelling is prevented and with dry densities greater than 1.8 Mg/m/sup 3/ for the highly compacted bentonites, water uptake causes a drastic reduction of the original pore space so that practically all the water is in the interlayer space. Calculation of the swelling pressure from the adsorption isotherms gives a good approximation of the measured swelling pressures. A montmorillonite surface of ca. 750 m/sup 2//g for both bentonites can be derived from a Dubinin-Radushkevich analysis of the adsorption isotherm. Water uptake into the compacted unsaturated bentonites can be described as diffusion with a diffusion coefficient of the order of magnitude of 3.10/sup -10/ m/sup 2//s. (author)

  7. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes.

    Science.gov (United States)

    He, W-H; Shi, G R; Twitchett, R J; Zhang, Y; Zhang, K-X; Song, H-J; Yue, M-L; Wu, S-B; Wu, H-T; Yang, T-L; Xiao, Y-F

    2015-03-01

    Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming. © 2014 John Wiley & Sons Ltd.

  8. Experimental observation of the stratified electrothermal instability on aluminum with thickness greater than a skin depth

    Science.gov (United States)

    Hutchinson, T. M.; Awe, T. J.; Bauer, B. S.; Yates, K. C.; Yu, E. P.; Yelton, W. G.; Fuelling, S.

    2018-05-01

    A direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μ m Parylene-N were driven to 1 MA in 100 ns , with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally correlated stratified thermal perturbations perpendicular to the current whose wave numbers, k , grew exponentially with rate γ (k ) =0.06 n s-1-(0.4 n s-1μ m2ra d-2 ) k2 in ˜1 g /c m3 , ˜7000 K aluminum.

  9. Experimental Observation of the Stratified Electrothermal Instability on Aluminum with Thickness Greater than a Skin Depth

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, Trevor M. [Univ. of Nevada, Reno, NV (United States); Hutchinson, Trevor M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Awe, Thomas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Bruno S. [Univ. of Nevada, Reno, NV (United States); Yates, Kevin [Univ. of New Mexico, Albuquerque, NM (United States); Yu, Edmund p. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yelton, William G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fuelling, Stephan [Univ. of Nevada, Reno, NV (United States)

    2017-07-01

    The first direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μm Parylene-N were driven to 1 MA in approximately 100 ns, with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally-correlated stratified structures perpendicular to the current. Strata amplitudes grow rapidly, while their Fourier spectrum shifts toward longer wavelength. Assuming blackbody emission, radiometric calculations indicate strata are temperature perturbations that grow exponentially with rate γ = 0.04 ns -1 in 3000- 10,000 K aluminum.

  10. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.

    2011-12-26

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  11. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.; El-Amin, Mohamed

    2011-01-01

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  12. Direct numerical simulation of thermally-stratified turbulent boundary layer subjected to adverse pressure gradient

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Kono, Amane; Houra, Tomoya

    2016-01-01

    Highlights: • We study various thermally-stratified turbulent boundary layers having adverse pressure gradient (APG) by means of DNS. • The detailed turbulent statistics and structures in various thermally-stratified turbulent boundary layers having APG are discussed. • It is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification. • In the case of strong stable stratification with or without APG, the flow separation is observed in the downstream region. - Abstract: The objective of this study is to investigate and observe turbulent heat transfer structures and statistics in thermally-stratified turbulent boundary layers subjected to a non-equilibrium adverse pressure gradient (APG) by means of direct numerical simulation (DNS). DNSs are carried out under conditions of neutral, stable and unstable thermal stratifications with a non-equilibrium APG, in which DNS results reveal heat transfer characteristics of thermally-stratified non-equilibrium APG turbulent boundary layers. In cases of thermally-stratified turbulent boundary layers affected by APG, heat transfer performances increase in comparison with a turbulent boundary layer with neutral thermal stratification and zero pressure gradient (ZPG). Especially, it is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification (WSBL). Thus, the analysis for both the friction coefficient and Stanton number in the case of WSBL with/without APG is conducted using the FIK identity in order to investigate contributions from the transport equations, in which it is found that both Reynolds-shear-stress and the mean convection terms

  13. Experimental investigation on isothermal stratified flow mixing in a horizontal T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, Alexander; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)

    2016-10-15

    Turbulent and stratified flows can lead to thermal fatigue in piping systems of nuclear power plants (NPP). Such flows can be investigated in the University of Stuttgart Fluid-Structure-Interaction (FSI) facility with a T-Junction at thermal conditions with temperature differences of up to 255 K and at pressures of maximum 75 bars.

  14. Numerical simulation of stratified shear flow using a higher order Taylor series expansion method

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)

    1995-09-01

    A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.

  15. Scattering by multiple parallel radially stratified infinite cylinders buried in a lossy half space.

    Science.gov (United States)

    Lee, Siu-Chun

    2013-07-01

    The theoretical solution for scattering by an arbitrary configuration of closely spaced parallel infinite cylinders buried in a lossy half space is presented in this paper. The refractive index and permeability of the half space and cylinders are complex in general. Each cylinder is radially stratified with a distinct complex refractive index and permeability. The incident radiation is an arbitrarily polarized plane wave propagating in the plane normal to the axes of the cylinders. Analytic solutions are derived for the electric and magnetic fields and the Poynting vector of backscattered radiation emerging from the half space. Numerical examples are presented to illustrate the application of the scattering solution to calculate backscattering from a lossy half space containing multiple homogeneous and radially stratified cylinders at various depths and different angles of incidence.

  16. Stability of unstably stratified shear flow between parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Kaoru; Kelly, R E

    1987-09-01

    The linear stability of unstably stratified shear flows between two horizontal parallel plates was investigated. Eigenvalue problems were solved numerically by making use of the expansion method in Chebyshev polynomials, and the critical Rayleigh numbers were obtained accurately in the Reynolds number range of (0.01, 100). It was found that the critical Rayleigh number increases with an increase of the Reynolds number. The result strongly supports previous stability analyses except for the analysis by Makino and Ishikawa (J. Jpn. Soc. Fluid Mech. 4 (1985) 148 - 158) in which a decrease of the critical Rayleigh number was obtained.

  17. Stability of unstably stratified shear flow between parallel plates

    International Nuclear Information System (INIS)

    Fujimura, Kaoru; Kelly, R.E.

    1987-01-01

    The linear stability of unstably stratified shear flows between two horizontal parallel plates was investigated. Eigenvalue problems were solved numerically by making use of the expansion method in Chebyshev polynomials, and the critical Rayleigh numbers were obtained accurately in the Reynolds number range of [0.01, 100]. It was found that the critical Rayleigh number increases with an increase of the Reynolds number. The result strongly supports previous stability analyses except for the analysis by Makino and Ishikawa [J. Jpn. Soc. Fluid Mech. 4 (1985) 148 - 158] in which a decrease of the critical Rayleigh number was obtained. (author)

  18. Measures to assess the prognostic ability of the stratified Cox proportional hazards model

    DEFF Research Database (Denmark)

    (Tybjaerg-Hansen, A.) The Fibrinogen Studies Collaboration.The Copenhagen City Heart Study; Tybjærg-Hansen, Anne

    2009-01-01

    Many measures have been proposed to summarize the prognostic ability of the Cox proportional hazards (CPH) survival model, although none is universally accepted for general use. By contrast, little work has been done to summarize the prognostic ability of the stratified CPH model; such measures...

  19. Zircaloy behaviour in high temperature irradiated water

    International Nuclear Information System (INIS)

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  20. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90 0 sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions

  1. A three-dimensional fixed grid model for shallow-water flow

    NARCIS (Netherlands)

    Bijvelds, M.D.J.P.

    1998-01-01

    In this report the implementation and testing of a numerical model that is based on a Cartesian fixed grid in vertical direction is described. The model uses the shallow-water equations and accounts for effects of stratification. In stratified environments, the terrain-following 0-transformation,

  2. Oxy-combustion of high water content fuels

    Science.gov (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  3. General Practitioners Views of Implementing a Stratified Treatment Approach for Low Back Pain in Germany: A Qualitative Study.

    Directory of Open Access Journals (Sweden)

    Sven Karstens

    Full Text Available The STarT Back stratified primary care approach has demonstrated clinical and cost effectiveness in the UK, and is commonly used by General Practitioners (GPs. However, it remains unknown how this approach could be implemented into the German healthcare system. The aim of this study was therefore to explore the views and perceptions of German GPs in respect to using a stratified primary care for low back pain (LBP.A 90-minute think-tank workshop was conducted with 14 male and five female GPs, during which the STarT-Back-Screening-Tool (SBST and related research evidence was presented. This was followed by two focus groups, based on a semi-structured interview guideline to identify potential implementation barriers and opportunities. Discussions were audiotaped, transcribed and coded using a content analysis approach.For the three deductively developed main themes, 15 subthemes emerged: (1 application of the SBST, with the following subthemes: which health profession should administer it, patients known to the GP practice, the reason for the GP consultation, scoring the tool, the tool format, and the anticipated impact on GP practice; (2 psychologically informed physiotherapy, with subthemes including: provision by a physiotherapist, anticipated impact, the skills of physiotherapists, management of patients with severe psychosocial problems, referral and remuneration; (3 the management of low-risk patients, with subthemes including: concern about the appropriate advising health professional, information and media, length of consultation, and local exercise venues.The attitudes of GPs towards stratified primary care for LBP indicated positive support for pilot-testing in Germany. However, there were mixed reactions to the ability of German physiotherapists to manage high-risk patients and handle their complex clinical needs. GPs also mentioned practical difficulties in providing extended advice to low-risk patients, which nevertheless could be

  4. 33 CFR 2.34 - Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water. 2.34 Section 2.34 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2...

  5. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...

  6. Type GQS-1 high pressure steam manifold water level monitoring system

    International Nuclear Information System (INIS)

    Li Nianzu; Li Beicheng; Jia Shengming

    1993-10-01

    The GQS-1 high pressure steam manifold water level monitoring system is an advanced nuclear gauge that is suitable for on-line detecting and monitor in high pressure steam manifold water level. The physical variable of water level is transformed into electrical pulses by the nuclear sensor. A computer is equipped for data acquisition, analysis and processing and the results are displayed on a 14 inch color monitor. In addition, a 4 ∼ 20 mA output current is used for the recording and regulation of water level. The main application of this gauge is for on-line measurement of high pressure steam manifold water level in fossil-fired power plant and other industries

  7. Stratifying patients with peripheral neuropathic pain based on sensory profiles

    DEFF Research Database (Denmark)

    Vollert, Jan; Maier, Christoph; Attal, Nadine

    2017-01-01

    In a recent cluster analysis, it has been shown that patients with peripheral neuropathic pain can be grouped into 3 sensory phenotypes based on quantitative sensory testing profiles, which are mainly characterized by either sensory loss, intact sensory function and mild thermal hyperalgesia and...... populations that need to be screened to reach a subpopulation large enough to conduct a phenotype-stratified study. The most common phenotype in diabetic polyneuropathy was sensory loss (83%), followed by mechanical hyperalgesia (75%) and thermal hyperalgesia (34%, note that percentages are overlapping...

  8. Water-column mass losses during the emptying of a large-scale pipeline by pressurized air

    NARCIS (Netherlands)

    Laanearu, J.; Hou, Q.; Annus, I.; Tijsseling, A.S.

    2015-01-01

    In many industrial applications the liquid trapped inside long pipelines can cause a number of problems. Intrusion of the pressurized air on top of the water column inside the horizontal pipeline can result in a less or more mixed stratified flow. The dynamics of a moving air–water front during the

  9. Turbulent transport across an interface between dry and humid air in a stratified environment

    Science.gov (United States)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  10. Onset of entrainment and degree of dispersion in dual continuous horizontal oil-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Al-Wahaibi, Talal [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, P.C. 123 (Oman); Angeli, Panagiota [Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2009-04-15

    The transition from stratified to dual continuous oil-water flow (where each phase retains its continuity but there is dispersion of one phase into the other) as well as the dispersed phase fractions in the layers of the dual continuous pattern, were studied experimentally. Transition to this pattern from stratified flow occurs when drops of one phase appear into the other (onset of entrainment). The studies were carried out in a 38 mm ID horizontal stainless steel test section using two different inlet geometries, a T- and a Y-junction. The patterns were visualized through a transparent acrylic section located at 7 m from the inlet using a high speed video camera. Phase distribution measurements in a pipe cross section were obtained just before the acrylic section with a local impedance probe and the results were used to calculate the volume fraction of each phase entrained into the other. The onset of entrainment was found to occur at lower superficial water velocities as the oil superficial velocities increased. However, the inlet geometry did not affect significantly the transition line. During dual continuous flow, the dispersion of one phase into the opposite was found to extend further away from the interface with increasing water superficial velocity for a certain oil superficial velocity. An increase in the superficial water velocity increased the entrained fraction of water in oil (E{sub w/o}) but there was no trend with the oil velocity. Similarly, an increase in the superficial oil velocity increased the fraction of oil drops in water (E{sub o/w}) but the water velocity had no clear effect. The entrainment fractions were affected by the inlet geometry, with the T-inlet resulting in higher entrainment than the Y-inlet, perhaps because of the increased mixing induced by the T-inlet. The difference between the two inlets increased as the oil and water velocities increased. (author)

  11. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  12. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  13. Study on elastic-plastic fracture toughness test in high temperature water

    International Nuclear Information System (INIS)

    Miura, Yasufumi

    2016-01-01

    Structural integrity of internal components in light water reactors is important for the safety of operation and service lifetime. Fracture toughness is important parameter for structural integrity assessment of nuclear power plant. In general, fracture toughness of materials which compose the components in light water reactor is obtained with fracture toughness tests in air although some components are subjected to high temperature water because of the difficulty of fracture toughness test in high temperature water. However, the effects of high temperature water and hydrogen on fracture behavior of the structural materials in nuclear power plant such as low alloy steel, cast austenitic stainless steel, and Ni base alloy are concerned recently. In this study, elastic-plastic fracture toughness test of low alloy steel in simulated BWR water environment was studied. Fracture toughness test in high temperature water with original clip gage and normalization data reduction technique was established. The difference of fracture toughness J_Q tested in air between using elastic unload compliance method and normalization data reduction technique was also discussed. As a result, obtained value with normalization data reduction technique tended to be higher than the value with elastic unload compliance. (author)

  14. Dual discharge from a stratified two-phase region through side orifices oriented horizontally

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, I G; Soliman, H M; Sims, G E [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Mechanical Engineering; Kowalski, J E [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    Experimental data are presented for the mass flow rate and quality of two-phase (air-water) discharge from a stratified region through two side orifices (6.35 mm i.d.) with their parallel centre lines located in a horizontal plane. These data correspond to different values of the interface level between the onsets of gas and liquid entrainments for test-section pressures of 316 and 517 kPa, test-section-to-separators pressure difference ranging from 40 to 235 kPa, orifice separating distance to diameter ratio ranging from 1.5 to 8 and different hydraulic resistances of the lines connecting the test section to the separators. Influences of these independent variables on the deviation between the present results (of mass flow rate and quality) and those corresponding to a single discharge are presented and discussed. Normalized plots are presented showing that the present data of dual discharge and those of a single discharge can be collapsed for the whole test range when specific definition for the dimensionless height of the interface and mass flow rate are used. Excellent agreement is demonstrated between single-discharge correlations and the present data using these dimensionless quantities. (author). 12 refs., 1 tab., 16 figs.

  15. Dual discharge from a stratified two-phase region through side orifices oriented horizontally

    International Nuclear Information System (INIS)

    Hassan, I.G.; Soliman, H.M.; Sims, G.E.; Kowalski, J.E.

    1995-01-01

    Experimental data are presented for the mass flow rate and quality of two-phase (air-water) discharge from a stratified region through two side orifices (6.35 mm i.d.) with their parallel centre lines located in a horizontal plane. These data correspond to different values of the interface level between the onsets of gas and liquid entrainments for test-section pressures of 316 and 517 kPa, test-section-to-separators pressure difference ranging from 40 to 235 kPa, orifice separating distance to diameter ratio ranging from 1.5 to 8 and different hydraulic resistances of the lines connecting the test section to the separators. Influences of these independent variables on the deviation between the present results (of mass flow rate and quality) and those corresponding to a single discharge are presented and discussed. Normalized plots are presented showing that the present data of dual discharge and those of a single discharge can be collapsed for the whole test range when specific definition for the dimensionless height of the interface and mass flow rate are used. Excellent agreement is demonstrated between single-discharge correlations and the present data using these dimensionless quantities. (author). 12 refs., 1 tab., 16 figs

  16. Production of a high-velocity water slug using an impacting technique

    Science.gov (United States)

    Dehkhoda, S.; Bourne, N. K.

    2014-02-01

    A pulsed water jet consists of a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress pulses reaching an amplitude known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at a lower stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the quality of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence and integrity of the jet core was of concern in this study. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to determine the unity and endurance of the water slug stream once travelled through air.

  17. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.

    1996-01-01

    in clarifying environmental flow phenomena. This report summarizes research on two turbulence structure and diffusion topics; turbulence structure and the gas transfer mechanism across the air-sea (air-water) interface and the heat and momentum transfer mechanism in thermally stratified flows. The first study shows the relationship between the carbon dioxide (CO 2 ) transfer mechanism across a sheared air-water interface and the turbulence structure near the interface. The results revealed that the conventional proportional relationship between CO 2 transfer velocity across the air-sea interface and mean wind speed over the sea surface is incorrect. The second study numerically clarified the significant effects of molecular diffusivity (the Prandtl number) of active heat on heat transfer in stable thermally-stratified Hows. The results obtained from the two studies are described in the next two chapters. Since the results are mainly quoted from a series of previously published and in press works by Komori et al.'s research group (see references), this report might be considered as a summary of those works

  18. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    Science.gov (United States)

    Misenheimer, Corey Thomas

    The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic

  19. Data on plasma levels of apolipoprotein E, correlations with lipids and lipoproteins stratified by APOE genotype, and risk of ischemic heart disease

    DEFF Research Database (Denmark)

    Rasmussen, Katrine L.; Tybjærg-Hansen, Anne; Nordestgaard, Børge G

    2016-01-01

    Data on correlations of plasma apoE with levels of lipids and lipoproteins stratified by APOE genotypes as well as data exploring the association between plasma levels of apoE and risk of ischemic heart disease (IHD) are wanted. The present data on 91,695 individuals from the general population...... provides correlations between plasma levels of apoE and lipids and lipoproteins for the three APOE genotypes ε33, ε44 and ε22, representing each of the three apoE isoforms. Further, data on extreme groups of plasma apoE (highest 5%) versus lower levels of apoE at enrollment explores risk of IHD...... and myocardial infarction (MI) and is given as hazard ratios. In addition, IHD and MI as a function of apoE/high-density lipoprotein (HDL) cholesterol ratio, as well as data on lipids, lipoproteins and apolipoproteins are given as hazard ratios. Data is stratified by gender and presented for the Copenhagen...

  20. Integrity of high-velocity water slug generated by an impacting technique

    Science.gov (United States)

    Dehkhoda, Sevda; Bourne, Neil

    2013-06-01

    A pulsed water jet is a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at the stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the integrity of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence of the generated water pulse was of concern in this study. If repeated shock reflections within the chamber were transmitted or were carried into the internal geometry of nozzle, the emerging jet could pulsate. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to study the quality and endurance of the water pulse stream as it travelled through air.

  1. Homogeneous and Stratified Liquid-Liquid Flow Effect of a Viscosity Reducer: I. Comparison in parallel plates for heavy crude

    Directory of Open Access Journals (Sweden)

    E. J. Suarez-Dominguez

    2016-12-01

    Full Text Available Production of heavy crude oil in Mexico, and worldwide, is increasing which has led to the application of different methods to reduce viscosity or to enhance transport through stratified flow to continue using the existing infrastructures. In this context, injecting a viscosity improver that does not mix completely with the crude, establishes a liquid-liquid stratified flow. On the basis of a parallel plates model, comparing the increase of flow that occurs in the one-phase case which assumes a complete mixture between the crude and the viscosity improver against another stratified liquid-liquid (no mixing between the oil and compared improver; it was found that in both cases there is a flow increase for the same pressure drop with a maximum for the case in which the flow improver is between the plates and the crude.

  2. Energy Cascade from Internal Modes in Non-uniformly Stratified Fluid through Excitation of Superharmonic Disturbances

    Science.gov (United States)

    Sutherland, B. R.

    2016-02-01

    It is well established that two-dimensional internal plane waves and modes in uniformly stratified fluid efficiently transfer energy to smaller scale waves and ultimately turbulent mixing through parametric subharmonic instability (PSI). The numerical simulations of MacKinnon & Winters (GRL 2005) predicted PSI should act efficiently to disrupt the internal tide. However, while in situ observations showed the presence of PSI, it was not found to be appreciable. One reason for the discrepancy between simulations and observations is that the former examined an internal mode in uniformly stratified fluid whereas, in reality, the internal tide exists in non-uniform stratification and is manifest as sinusoidal oscillations of the thermocline. Through theory supported by numerical simulations, it is shown that internal modes in non-uniform stratification immediately excite superharmonics, not subharmonic disturbances. These have double the horizontal wavenumber and double the frequency of the parent mode and hence move with the same horizontal phase speed of the parent mode. As the disturbances grow in amplitude, however, they interact with the parent mode generating small-scale vertically propagating internal waves within the strongly stratified layer. The occurrence of PSI over very long times can occur, as in the simulations of Hazewinkel and Winters (JPO 2011). However, a comprehensive understanding of the energy cascade from the internal tide to small scales must consider the evolution of excited superharmonic disturbances.

  3. Auto Detection For High Level Water Content For Oil Well

    Science.gov (United States)

    Janier, Josefina Barnachea; Jumaludin, Zainul Arifin B.

    2010-06-01

    Auto detection of high level water content for oil well is a system that measures the percentage of water in crude oil. This paper aims to discuss an auto detection system for measuring the content of water level in crude oil which is applicable for offshore and onshore oil operations. Data regarding water level content from wells can be determined by using automation thus, well with high water level can be determined immediately whether to be closed or not from operations. Theoretically the system measures the percentage of two- fluid mixture where the fluids have different electrical conductivities which are water and crude oil. The system made use of grid sensor which is a grid pattern like of horizontal and vertical wires. When water occupies the space at the intersection of vertical and horizontal wires, an electrical signal is detected which proved that water completed the circuit path in the system. The electrical signals are counted whereas the percentage of water is determined from the total electrical signals detected over electrical signals provided. Simulation of the system using the MultiSIM showed that the system provided the desired result.

  4. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [Electronic Materials Research Laboratory, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Baohong; Zhou, Jinxiong [State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Suo, Zhigang, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [School of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  5. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    International Nuclear Information System (INIS)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  6. Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters

    KAUST Repository

    Cabello, Ana M.

    2016-03-14

    Photosynthetic picoeukaryotes (PPEs) are fundamental contributors to oceanic primary production and form diverse communities dominated by prymnesiophytes, chlorophytes, pelagophytes and chrysophytes. Here, we studied the vertical distribution of these major groups in two offshore regions of the northern Iberian Peninsula during summer stratification. We performed a fine-scale vertical sampling (every ∼2 m) across the DCM and used fluorescence in situ hybridization (FISH) to determine the PPE composition and to explore the possible segregation of target groups in the light, nutrient and temperature gradients. Chlorophytes, pelagophytes and prymnesiophytes, in this order of abundance, accounted for the total PPEs recorded by flow cytometry in the Avilés canyon, and for more than half in the Galicia Bank, whereas chrysophytes were undetected. Among the three detected groups, often the prymnesiophytes were dominant in biomass. In general, all groups were present throughout the water column with abundance peaks around the DCM, but their distributions differed: pelagophytes were located deeper than the other two groups, chlorophytes presented two peaks and prymnesiophytes exhibited surface abundances comparable to those at the DCM. This study offers first indications that the vertical distribution of different PPE groups is heterogeneous within the DCM. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Improved patient selection by stratified surgical intervention

    DEFF Research Database (Denmark)

    Wang, Miao; Bünger, Cody E; Li, Haisheng

    2015-01-01

    BACKGROUND CONTEXT: Choosing the best surgical treatment for patients with spinal metastases remains a significant challenge for spine surgeons. There is currently no gold standard for surgical treatments. The Aarhus Spinal Metastases Algorithm (ASMA) was established to help surgeons choose...... the most appropriate surgical intervention for patients with spinal metastases. PURPOSE: The purpose of this study was to evaluate the clinical outcome of stratified surgical interventions based on the ASMA, which combines life expectancy and the anatomical classification of patients with spinal metastases...... survival times in the five surgical groups determined by the ASMA were 2.1 (TS 0-4, TC 1-7), 5.1 (TS 5-8, TC 1-7), 12.1 (TS 9-11, TC 1-7 or TS 12-15, TC 7), 26.0 (TS 12-15, TC 4-6), and 36.0 (TS 12-15, TC 1-3) months. The 30-day mortality rate was 7.5%. Postoperative neurological function was maintained...

  8. Hydrogen production from high-moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T. [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  9. Spatial Analysis of Geothermal Resource Potential in New York and Pennsylvania: A Stratified Kriging Approach

    Science.gov (United States)

    Smith, J. D.; Whealton, C. A.; Stedinger, J. R.

    2014-12-01

    Resource assessments for low-grade geothermal applications employ available well temperature measurements to determine if the resource potential is sufficient for supporting district heating opportunities. This study used a compilation of bottomhole temperature (BHT) data from recent unconventional shale oil and gas wells, along with legacy oil, gas, and storage wells, in Pennsylvania (PA) and New York (NY). Our study's goal was to predict the geothermal resource potential and associated uncertainty for the NY-PA region using kriging interpolation. The dataset was scanned for outliers, and some observations were removed. Because these wells were drilled for reasons other than geothermal resource assessment, their spatial density varied widely. An exploratory spatial statistical analysis revealed differences in the spatial structure of the geothermal gradient data (the kriging semi-variogram and its nugget variance, shape, sill, and the degree of anisotropy). As a result, a stratified kriging procedure was adopted to better capture the statistical structure of the data, to generate an interpolated surface, and to quantify the uncertainty of the computed surface. The area was stratified reflecting different physiographic provinces in NY and PA that have geologic properties likely related to variations in the value of the geothermal gradient. The kriging prediction and the variance-of-prediction were determined for each province by the generation of a semi-variogram using only the wells that were located within that province. A leave-one-out cross validation (LOOCV) was conducted as a diagnostic tool. The results of stratified kriging were compared to kriging using the whole region to determine the impact of stratification. The two approaches provided similar predictions of the geothermal gradient. However, the variance-of-prediction was different. The stratified approach is recommended because it gave a more appropriate site-specific characterization of uncertainty

  10. Hydromagnetic stability of rotating stratified compressible fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, V; Kandaswamy, P [Dept. of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India; Debnath, L [Dept. of Mathematics, University of Central Florida, Orlando, USA

    1984-09-01

    The hydromagnetic stability of a radially stratified compressible fluid rotating between two coaxial cylinders is investigated. The stability with respect to axisymmetric disturbances is examined. The fluid system is found to be thoroughly stable to axisymmetric disturbances provided the fluid rotates very rapidly. The system is shown to be unstable to non-axisymmetric disturbances, and the slow amplifying hydromagnetic wave modes propagate against the basic rotation. The lower and upper bounds of the azimuthal phase speeds of the amplifying waves are determined. A quadrant theorem on the slow waves characteristic of a rapidly rotating fluid is derived. Special attention is given to the effects of compressibility of the fluid. Some results concerning the stability of an incompressible fluid system are obtained as special cases of the present analysis.

  11. Analysis of natural convection heat transfer and flows in internally heated stratified liquid pools

    International Nuclear Information System (INIS)

    Gubaidullin, A.A. Jr.; Dinh, T.N.; Sehgal, B.R.

    1999-01-01

    In this paper, natural convection flows and heat transfer in a liquid pool, with two superposed immiscible fluid layers, are analyzed. The objective of the study is to examine the effect of interfacial hydrodynamics and to develop a method which enables energy splitting to be evaluated in a stratified liquid pool. The thermal convection, with and without an internal heat source, in a rectangular cavity with different pairs of fluids was numerically simulated by a CFD code FLOW-3D. It was found that the code performs very well for prediction of heat transfer coefficients for different conditions. The hydrodynamic coupling between immiscible layers was found to have minor, if any, impact on the natural convection heat transfer for the conditions examined. Calculated results were used to develop, and validate, a new correlation for energy splitting and for heat transfer in stratified liquid pools

  12. A turbulence model for large interfaces in high Reynolds two-phase CFD

    International Nuclear Information System (INIS)

    Coste, P.; Laviéville, J.

    2015-01-01

    Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer

  13. Water resources inventory of Connecticut Part 6: Upper Housatonic River basin

    Science.gov (United States)

    Cervione, Michael A.; Mazzaferro, David L.; Melvin, Robert T.

    1972-01-01

    variations in chemical and physical quality of water. Differences in precipitation cause differences in the amount of streamflow whereas differences in the proportion of stratified drift affect its timing. Water can be obtained from wells almost anywhere in the area, but the amount obtainable at any particular point depends on the type and water-bearing properties of the aquifers tapped. Stratified-drift aquifers are the only ones generally capable of yielding more than 100 gpm (gallons per minute) to individual wells. Drilled, screened wells tapping this unit yield from 17 to 1,400 gpm, with a median yield of 200 gpm. Till and bedrock are widespread but generally provide only small supplies of water. Till is tapped in a few places by dug wells, which can yield small supplies of only a few hundred gallons per day throughout all or most of the year. Bedrock is the chief aquifer for privately owned domestic and rural supplies; it is tapped by drilled wells, about 90 percent of which will supply at least 2 gpm. Only 1 of 10 bedrock wells, however, will supply more than 30 gpm. The amount of ground water potentially available in the report area depends upon the thickness and hydraulic properties of aquifers, the amount of salvageable natural discharge of ground water, and the quantity of water available by induced infiltration from streams and lakes. From data on transmissivity, thickness, recharge, well performance, and streamflow, preliminary estimates of ground-water availability can be made for most stratified-drift aquifers in the report area. Long-term yields estimated for eight areas of stratified drift especially favorable for development of large ground-water supplies ranged from 0.6 to 5 mgd (million gallons per day). Detailed site studies are needed to verity these estimates and to determine optimum yields, drawdowns, and spacing of individual wells before major ground-water development is undertaken in these or other areas. The chemical quality of water in the report

  14. Informing Extension Program Development through Audience Segmentation: Targeting High Water Users

    Science.gov (United States)

    Huang, Pei-wen; Lamm, Alexa J.; Dukes, Michael D.

    2016-01-01

    Human reliance on water has led to water issues globally. Although extension professionals have made efforts successfully to educate the general public about water conservation to enhance water resource sustainability, difficulty has been found in reaching high water users, defined as residents irrigating excessively to their landscape irrigation…

  15. Tests of ball bearing used in high-temperature and high-purity water

    International Nuclear Information System (INIS)

    Leng Chengmu; Hao Shouxin.

    1987-01-01

    According to the particular conditions and the operation environments in high-temperature and high-purity water, the test content and the measurement instrumentation for the ball bearing were defined. Through various tests, operational performances of the bearing have preliminarily been understood. It provided some useful information for the engineering application of the bearing

  16. Recent developments in high pressure water technology

    International Nuclear Information System (INIS)

    Johnson, N.A.; Johnson, T.

    1992-01-01

    High Pressure Water Jetting has advanced rapidly in the last decade to a point where the field is splitting into specialised areas. This has left the end user or client in the dark as to whether water jetting will work and if so what equipment is best suited to their particular application. The aim of this paper is to give an overview of:-1. The way water is delivered to the surface and the parameters which control the concentration of energy available on impact. 2. The factors governing application driven selection of equipment. 3. The effects to technical advances in pumps and delivery systems on equipment selection with reference to their to their application to concrete removal and nuclear decontamination. (Author)

  17. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    Science.gov (United States)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  18. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  19. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

  20. Turbulence Statistics of a Buoyant Jet in a Stratified Environment

    Science.gov (United States)

    McCleney, Amy Brooke

    Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one

  1. Explore the advantage of High-frequency Water Quality Data in Urban Surface Water: A Case Study in Bristol, UK

    Science.gov (United States)

    Chen, Y.; Han, D.

    2017-12-01

    Water system is an essential component in a smart city for its sustainability and resilience. The freshness and beauty of the water body would please people as well as benefit the local aquatic ecosystems. Water quality monitoring approach has evolved from the manual lab-based monitoring approach to the manual in-situ monitoring approach, and finally to the latest wireless-sensor-network (WSN) based solutions in recent decades. The development of the in-situ water quality sensors enable humans to collect high-frequency and real-time water quality data. This poster aims to explore the advantages of the high-frequency water quality data over the low-frequency data collected manually. The data is collected by a remote real-time high-frequency water quality monitor system based on the cutting edge smart city infrastructure in Bristol - `Bristol Is Open'. The water quality of Bristol Floating Harbour is monitored which is the focal area of Bristol with new buildings and features redeveloped in the past decades. This poster will first briefly introduce the water quality monitoring system, followed by the analysis of the advantages of the sub-hourly water quality data. Thus, the suggestion on the monitoring frequency will be given.

  2. Mixing process of a binary gas in a density stratified layer

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tetsuaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1997-09-01

    This study is to investigate the effect of natural convection on the mixing process by molecular diffusion in a vertical stratified layer of a binary fluid. There are many experimental and analytical studies on natural convection in the vertical fluid layer. However, there are few studies on natural convection with molecular diffusion in the vertical stratified layer of a binary gas. Experimental study has been performed on the combined phenomena of molecular diffusion and natural convection in a binary gas system to investigate the mixing process of the binary gas in a vertical slot consisting of one side heated and the other side cooled. The range of Rayleigh number based on the slot width was about 0 < Ra{sub d} < 7.5 x 10{sup 4}. The density change of the gas mixture and the temperature distribution in the slot was obtained and the mixing process when the heavier gas ingress into the vertical slot filled with the lighter gas from the bottom side of the slot was discussed. The experimental results showed that the mixing process due to molecular diffusion was affected significantly by the natural convection induced by the slightly temperature difference between both vertical walls even if a density difference by the binary gas is larger than that by the temperature difference. (author). 81 refs.

  3. Water resources inventory of Connecticut Part 3: lower Thames and southeastern coastal river basins

    Science.gov (United States)

    Thomas, Chester E.; Cervione, Michael A.; Grossman, I.G.

    1968-01-01

    throughout all or most of the year. The coefficient of permeability of till ranges from about 0.2 gpd per sq ft to 120 gpd per sq ft. The amount of ground water potentially available in the report area depends upon the amount of ground-water outflow, the amount of ground water in storage, and the quantity of water available by induced infiltration from streams and lakes. From data on permeability, saturated thickness, recharge, yield from aquifer storage, well performance, and streamflow, preliminary estimates of ground-water availability can be made for any point in the report area. Long-term yields estimated for 18 areas of stratified drift especially favorable for development of large ground-water supplies ranged from 1.3 to 66 mgd. Detailed site studies to determine optimum yields, drawdowns, and spacing of individual wells are needed before major ground-water development is undertaken in these or other areas. The chemical quality of water in the report area is generally good to excellent. Samples of naturally occurring surface water collected at 24 sites contained less than 151 ppm (parts per million) of dissolved solids and less than 63 ppm of hardness. Water from wells is more highly mineralized than naturally occurring water from streams. Even so only 12 percent of the wells sampled yielded water with more than 200 ppm of dissolved solids and only 8 percent yielded water with more than 120 ppm of hardness. Even in major streams, which are used to transport industrial waste, hardness rarely exceeds 60 ppm and the dissolved mineral content is generally less than 200 ppm. At a few places in the town of Montville however, waters may contain dissolved mineral concentrations of 2,000 to 4,000 ppm. Iron and manganese in both ground water and surface water are the only constituents whose concentrations commonly exceed recommended limits for domestic and industrial use. Most wells in the report area yield clear water with little or no iron or manganese, but distributed among

  4. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    OpenAIRE

    Bai, Yuanyuan; Chen, Baohong; Xiang, Feng; Zhou, Jinxiong; Wang, Hong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chlorid...

  5. New potentional of high-speed water jet technology for renovating concrete structures

    Science.gov (United States)

    Bodnárová, L.; Sitek, L.; Hela, R.; Foldyna, J.

    2011-06-01

    The paper discusses the background and results of research focused on the action of a high-speed water jet on concrete with different qualities. The sufficient and careful removal of degraded concrete layers is very important for the renovation of concrete structures. High-speed water jet technology is one of the most common methods used for removing degraded concrete layers. Different types of high-speed water jets were tested in the experimental part. The classical technology of a single continuous water jet generated with one nozzle was tested as well as the technology of revolving water jets generated by multiple nozzles (used mainly for the renovation of larger areas). A continuous flat water jet and pulsating flat water jet were tested the first time, because the connection of a water jet with the acoustic generator of a pulsating jet offers new possibilities for the use of a water jet (see [1] and [2]). A water jet with such a modification is capable of efficient action and can even be used for cutting solid concrete with a relatively low consumption of energy. A flat pulsating water jet which can be newly used for renovation seems to be a promising technology.

  6. High resolution production water footprints of the United States

    Science.gov (United States)

    Marston, L.; Yufei, A.; Konar, M.; Mekonnen, M.; Hoekstra, A. Y.

    2017-12-01

    The United States is the largest producer and consumer of goods and services in the world. Rainfall, surface water supplies, and groundwater aquifers represent a fundamental input to this economic production. Despite the importance of water resources to economic activity, we do not have consistent information on water use for specific locations and economic sectors. A national, high-resolution database of water use by sector would provide insight into US utilization and dependence on water resources for economic production. To this end, we calculate the water footprint of over 500 food, energy, mining, services, and manufacturing industries and goods produced in the US. To do this, we employ a data intensive approach that integrates water footprint and input-output techniques into a novel methodological framework. This approach enables us to present the most detailed and comprehensive water footprint analysis of any country to date. This study broadly contributes to our understanding of water in the US economy, enables supply chain managers to assess direct and indirect water dependencies, and provides opportunities to reduce water use through benchmarking.

  7. Operations and Maintenance Cost for Stratified Buildings: A Critical Review

    Directory of Open Access Journals (Sweden)

    Che-Ghani Nor Zaimah

    2016-01-01

    Full Text Available Building maintenance is essential in preserving buildings’ appearance and performance. It needs to upkeep the building performance to prolong its value and building life cycle. Malaysia is still lacking in managing cost for building operation and maintenance. It has been found that the cost for housing maintenance is high due to poor maintenance practices. In order to get better understanding on how to manage the cost, this study reviews the contributing factors that affecting operation and maintenance cost of stratified buildings in Malaysia. The research first identified the factors through extensive literature review and scrutinize on factors that affecting and can minimize operation and maintenance cost. This literature review offers insight into building maintenance scenario in Malaysia focusing on the issues and challenges. The study also finds that operation and maintenance cost for housing in Malaysia is still in poor state. Interestingly, this paper revealed that operation and maintenance cost is also influenced by three significant factors like expectation of tenants, building characteristics and building defects. Measures to reduce the housing operation and maintenance cost are also highlighted so that this study can be a stepping stone towards proposing efficient and effective facilities management strategies for affordable housing in future.

  8. Sampling designs and methods for estimating fish-impingement losses at cooling-water intakes

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.

    1977-01-01

    Several systems for estimating fish impingement at power plant cooling-water intakes are compared to determine the most statistically efficient sampling designs and methods. Compared to a simple random sampling scheme the stratified systematic random sampling scheme, the systematic random sampling scheme, and the stratified random sampling scheme yield higher efficiencies and better estimators for the parameters in two models of fish impingement as a time-series process. Mathematical results and illustrative examples of the applications of the sampling schemes to simulated and real data are given. Some sampling designs applicable to fish-impingement studies are presented in appendixes

  9. Streamer model for high voltage water switches

    International Nuclear Information System (INIS)

    Sazama, F.J.; Kenyon, V.L. III

    1979-01-01

    An electrical switch model for high voltage water switches has been developed which predicts streamer-switching effects that correlate well with water-switch data from Casino over the past four years and with switch data from recent Aurora/AMP experiments. Preclosure rounding and postclosure resistive damping of pulseforming line voltage waveforms are explained in terms of spatially-extensive, capacitive-coupling of the conducting streamers as they propagate across the gap and in terms of time-dependent streamer resistance and inductance. The arc resistance of the Casino water switch and of a gas switch under test on Casino was determined by computer fit to be 0.5 +- 0.1 ohms and 0.3 +- 0.06 ohms respectively, during the time of peak current in the power pulse. Energy lost in the water switch during the first pulse is 18% of that stored in the pulseforming line while similar energy lost in the gas switch is 11%. The model is described, computer transient analyses are compared with observed water and gas switch data and the results - switch resistance, inductance and energy loss during the primary power pulse - are presented

  10. The New Rich and Their Unplanned Births: Stratified Reproduction under China's Birth-planning Policy.

    Science.gov (United States)

    Shi, Lihong

    2017-12-01

    This article explores the creation and ramifications of a stratified reproductive system under China's state control of reproduction. Within this system, an emerging group of "new rich" are able to circumvent birth regulations and have unplanned births because of their financial capabilities and social networks. While China's birth-planning policy is meant to be enforced equally for all couples, the unequal access to wealth and bureaucratic power as a result of China's widening social polarization has created disparate reproductive rights and experiences. This article identifies three ways in which reproductive privileges are created. It further explores how a stratified reproductive system under state population control reinforces social polarization. While many socially marginalized couples are unable to register their unplanned children for citizenship status and social benefits, the new rich are able to legitimate their births and transfer their privilege and status to their children, thus reproducing a new generation of elites. © 2016 by the American Anthropological Association.

  11. Nutrient Limitation in Surface Waters of the Oligotrophic Eastern Mediterranean Sea: an Enrichment Microcosm Experiment

    KAUST Repository

    Tsiola, A.; Pitta, P.; Fodelianakis, Stylianos; Pete, R.; Magiopoulos, I.; Mara, P.; Psarra, S.; Tanaka, T.; Mostajir, B.

    2015-01-01

    groups of the prokaryotic and eukaryotic (pico-, nano-, and micro-) plankton using a microcosm experiment during stratified water column conditions in the Cretan Sea (Eastern Mediterranean). Microcosms were enriched with N and P (either solely

  12. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    Science.gov (United States)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake

  13. Water-level and recoverable water in storage changes, High Plains aquifer, predevelopment to 2015 and 2013–15

    Science.gov (United States)

    McGuire, Virginia L.

    2017-06-01

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). This report presents water-level changes and change in recoverable water in storage in the High Plains aquifer from predevelopment (about 1950) to 2015 and from 2013 to 2015.The methods to calculate area-weighted, average water-level changes; change in recoverable water in storage; and total recoverable water in storage used geospatial data layers organized as rasters with a cell size of 500 meters by 500 meters, which is an area of about 62 acres. Raster datasets of water-level changes are provided for other uses.Water-level changes from predevelopment to 2015, by well, ranged from a rise of 84 feet to a decline of 234 feet. Water-level changes from 2013 to 2015, by well, ranged from a rise of 24 feet to a decline of 33 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 15.8 feet from predevelopment to 2015 and a decline of 0.6 feet from 2013 to 2015. Total recoverable water in storage in the aquifer in 2015 was about 2.91 billion acre-feet, which was a decline of about 273.2 million acre-feet since predevelopment and a decline of 10.7 million acre-feet from 2013 to 2015.

  14. The Risk-Stratified Osteoporosis Strategy Evaluation study (ROSE)

    DEFF Research Database (Denmark)

    Rubin, Katrine Hass; Holmberg, Teresa; Rothmann, Mette Juel

    2015-01-01

    The risk-stratified osteoporosis strategy evaluation study (ROSE) is a randomized prospective population-based study investigating the effectiveness of a two-step screening program for osteoporosis in women. This paper reports the study design and baseline characteristics of the study population....... 35,000 women aged 65-80 years were selected at random from the population in the Region of Southern Denmark and-before inclusion-randomized to either a screening group or a control group. As first step, a self-administered questionnaire regarding risk factors for osteoporosis based on FRAX......(®) was issued to both groups. As second step, subjects in the screening group with a 10-year probability of major osteoporotic fractures ≥15 % were offered a DXA scan. Patients diagnosed with osteoporosis from the DXA scan were advised to see their GP and discuss pharmaceutical treatment according to Danish...

  15. A `big-mac` high converting water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ronen, Y; Dali, Y [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Nuclear Engineering

    1996-12-01

    Currently an effort is being made to get rid of plutonium. Therefore, at this time, a scientific study of a high converting reactor seems to be out of place. However , it is our opinion that the future of nuclear energy lies, among other things in the clever utilization of plutonium. It is also our opinion that one of the best ways to utilize plutonium is in high converting water reactors (authors).

  16. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    Science.gov (United States)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  17. Estimation of Finite Population Mean in Multivariate Stratified Sampling under Cost Function Using Goal Programming

    Directory of Open Access Journals (Sweden)

    Atta Ullah

    2014-01-01

    Full Text Available In practical utilization of stratified random sampling scheme, the investigator meets a problem to select a sample that maximizes the precision of a finite population mean under cost constraint. An allocation of sample size becomes complicated when more than one characteristic is observed from each selected unit in a sample. In many real life situations, a linear cost function of a sample size nh is not a good approximation to actual cost of sample survey when traveling cost between selected units in a stratum is significant. In this paper, sample allocation problem in multivariate stratified random sampling with proposed cost function is formulated in integer nonlinear multiobjective mathematical programming. A solution procedure is proposed using extended lexicographic goal programming approach. A numerical example is presented to illustrate the computational details and to compare the efficiency of proposed compromise allocation.

  18. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  19. An experimental validation of the influence of flow profiles and stratified two-phase flow to Lorentz force velocimetry for weakly conducting fluids

    Science.gov (United States)

    Wiederhold, Andreas; Ebert, Reschad; Resagk, Christian; Research Training Group: "Lorentz Force Velocimetry; Lorentz Force Eddy Current Testing" Team

    2016-11-01

    We report about the feasibility of Lorentz force velocimetry (LFV) for various flow profiles. LFV is a contactless non-invasive technique to measure flow velocity and has been developed in the last years in our institute. This method is advantageous if the fluid is hot, aggressive or opaque like glass melts or liquid metal flows. The conducted experiments shall prove an increased versatility for industrial applications of this method. For the force measurement we use an electromagnetic force compensation balance. As electrolyte salty water is used with an electrical conductivity in the range of 0.035 which corresponds to tap water up to 20 Sm-1. Because the conductivity is six orders less than that of liquid metals, here the challenging bottleneck is the resolution of the measurement system. The results show only a slight influence in the force signal at symmetric and strongly asymmetric flow profiles. Furthermore we report about the application of LFV to stratified two-phase flows. We show that it is possible to detect interface instabilities, which is important for the dimensioning of liquid metal batteries. Deutsche Forschungsgemeinschaft DFG.

  20. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Zhang, Ruiqi; Yang, Chao; Yang, Jinlong

    2017-11-01

    Two-dimensional phosphorene with desirable optoelectronic properties (ideal band gap, high carrier mobility, and strong visible light absorption) is a promising metal-free photocatalyst for water splitting. However, the band edge positions of the valence band maximum (VBM) and conduction band maximum (CBM) of phosphorene are higher than the redox potentials in photocatalytic water splitting reactions. Thus, phosphorene can only be used as the photocathode for hydrogen evolution reaction as a low-efficiency visible-light-driven photocatalyst for hydrogen production in solar water splitting cells. Here, we propose a new mechanism to improve the photocatalytic efficiency of phosphorene nanoribbons (PNRs) by modifying their edges for full reactions in photocatalytic water splitting. By employing first-principles density functional theory calculations, we find that pseudohalogen (CN and OCN) passivated PNRs not only show desired VBM and CBM band edge positions induced by edge electric dipole layer, but also possess intrinsic optoelectronic properties of phosphorene, for both water oxidation and hydrogen reduction in photocatalytic water splitting without using extra energy. Furthermore, our calculations also predict that the maximum energy conversion efficiency of heterojunction solar cells consisting of different edge-modified PNRs can be as high as 20% for photocatalytic water splitting.

  1. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  2. Snow cover dynamics and water balance in complex high alpine terrain

    Science.gov (United States)

    Warscher, Michael; Kraller, Gabriele; Kunstmann, Harald; Strasser, Ulrich; Franz, Helmut

    2010-05-01

    The water balance in high alpine regions in its full complexity is so far insufficiently understood. High altitudinal gradients, a strong variability of meteorological variables in time and space, complex hydrogeological situations, unquantified lateral snow transport processes and heterogenous snow cover dynamics result in high uncertainties in the quantification of the water balance. To achieve interpretable modeling results we have complemented the deterministic hydrological model WaSiM-ETH with the high-alpine specific snow model AMUNDSEN. The integration of the new snow module was done to improve the modeling of water fluxes influenced by the dynamics of the snow cover, which greatly affect the water cycle in high alpine regions. To enhance the reproduction of snow deposition and ablation processes, the new approach calculates the energy balance of the snow cover considering the terrain-dependent radiation fluxes, the interaction between tree canopy and snow cover as well as lateral snow transport processes. The test site for our study is the Berchtesgaden National Park which is characterized by an extreme topography with mountain ranges covering an altitude from 607 to 2713 m.a.s.l. About one quarter of the investigated catchment area, which comprises 433 km² in total, is terrain steeper than 35°. Due to water soluble limestone being predominant in the region, a high number of subsurface water pathways (karst) exist. The results of several tracer experiments and extensive data of spring observations provide additional information to meet the challenge of modeling the unknown subsurface pathways and the complex groundwater system of the region. The validation of the new snow module is based on a dense network of meteorological stations which have been adapted to measure physical properties of the snow cover like snow water equivalent and liquid water content. We will present first results which show that the integration of the new snow module generates a

  3. Water Intake by Soil, Experiments for High School Students.

    Science.gov (United States)

    1969

    Presented are a variety of surface run-off experiments for high school students. The experiments are analogies to basic concepts about water intake, as related to water delivery, soil properties and management, floods, and conservation measures. The materials needed to perform the experiments are easily obtainable. The experiments are followed by…

  4. REMOTE SENSING APPLICATIONS WITH HIGH RELIABILITY IN CHANGJIANG WATER RESOURCE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    L. Ma

    2018-04-01

    Full Text Available Remote sensing technology has been widely used in many fields. But most of the applications cannot get the information with high reliability and high accuracy in large scale, especially for the applications using automatic interpretation methods. We have designed an application-oriented technology system (PIR composed of a series of accurate interpretation techniques,which can get over 85 % correctness in Water Resource Management from the view of photogrammetry and expert knowledge. The techniques compose of the spatial positioning techniques from the view of photogrammetry, the feature interpretation techniques from the view of expert knowledge, and the rationality analysis techniques from the view of data mining. Each interpreted polygon is accurate enough to be applied to the accuracy sensitive projects, such as the Three Gorge Project and the South - to - North Water Diversion Project. In this paper, we present several remote sensing applications with high reliability in Changjiang Water Resource Management,including water pollution investigation, illegal construction inspection, and water conservation monitoring, etc.

  5. Remote Sensing Applications with High Reliability in Changjiang Water Resource Management

    Science.gov (United States)

    Ma, L.; Gao, S.; Yang, A.

    2018-04-01

    Remote sensing technology has been widely used in many fields. But most of the applications cannot get the information with high reliability and high accuracy in large scale, especially for the applications using automatic interpretation methods. We have designed an application-oriented technology system (PIR) composed of a series of accurate interpretation techniques,which can get over 85 % correctness in Water Resource Management from the view of photogrammetry and expert knowledge. The techniques compose of the spatial positioning techniques from the view of photogrammetry, the feature interpretation techniques from the view of expert knowledge, and the rationality analysis techniques from the view of data mining. Each interpreted polygon is accurate enough to be applied to the accuracy sensitive projects, such as the Three Gorge Project and the South - to - North Water Diversion Project. In this paper, we present several remote sensing applications with high reliability in Changjiang Water Resource Management,including water pollution investigation, illegal construction inspection, and water conservation monitoring, etc.

  6. Stratifying a Risk for an Increased Variation of Airway Caliber among the Clinically Stable Asthma

    Directory of Open Access Journals (Sweden)

    Atsushi Hayata

    2013-01-01

    Conclusions: These results indicate that ACQ, %FEV1 and FENO can stratify the risk for increased variation in airway caliber among patients with stable asthma. This may help identify subjects in whom further monitoring of lung function fluctuations is indicated.

  7. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    Science.gov (United States)

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2014-01-21

    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  8. Development test procedure High Pressure Water Jet System

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1995-01-01

    Development testing will be performed on the water jet cleaning fixture to determine the most effective arrangement of water jet nozzles to remove contamination from the surfaces of canisters and other debris. The following debris may be stained with dye to simulate surface contaminates: Mark O, Mark I, and Mark II Fuel Storage Canisters (both stainless steel and aluminum), pipe of various size, (steel, stainless, carbon steel and aluminum). Carbon steel and stainless steel plate, channel, angle, I-beam and other surfaces, specifically based on the Scientific Ecology Group (SEG) inventory and observations of debris within the basin. Test procedure for developmental testing of High Pressure Water Jet System

  9. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    International Nuclear Information System (INIS)

    Bazza, M.

    1996-01-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using 13 C discrimination Δ as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as Δ were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in Δ. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with Δ although the correlation coefficient of grain yield versus Δ was not high ( ** ). The data suggest that while a high Δ value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in Δ and the yield of a cultivar. However, Δ of a genotype can also provide valuable information with respect to plant parameters responsible for the control of Δ and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs, 2 figs, 2 tabs

  10. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bazza, M [Rabat-Institus, Rabat (Morocco). Inst. Agronomique et Veterinaire Hassan II

    1996-07-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using {sup 13}C discrimination {Delta} as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as {Delta} were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in {Delta}. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with {Delta} although the correlation coefficient of grain yield versus {Delta} was not high (< 0.45{sup **}). The data suggest that while a high {Delta} value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in {Delta} and the yield of a cultivar. But, {Delta} of a genotype can also provide valuable information with respect to plant parameters responsible for the control of {Delta} and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs,2figs,2tabs.

  11. Multi-sensor in situ observations to resolve the sub-mesoscale features in the stratified Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Lips, Urmas; Kikas, Villu; Liblik, Taavi; Lips, Inga

    2016-05-01

    High-resolution numerical modeling, remote sensing, and in situ data have revealed significant role of sub-mesoscale features in shaping the distribution pattern of tracers in the ocean's upper layer. However, in situ measurements are difficult to conduct with the required resolution and coverage in time and space to resolve the sub-mesoscale, especially in such relatively shallow basins as the Gulf of Finland, where the typical baroclinic Rossby radius is 2-5 km. To map the multi-scale spatiotemporal variability in the gulf, we initiated continuous measurements with autonomous devices, including a moored profiler and Ferrybox system, which were complemented by dedicated research-vessel-based surveys. The analysis of collected high-resolution data in the summers of 2009-2012 revealed pronounced variability at the sub-mesoscale in the presence of mesoscale upwelling/downwelling, fronts, and eddies. The horizontal wavenumber spectra of temperature variance in the surface layer had slopes close to -2 between the lateral scales from 10 to 0.5 km. Similar tendency towards the -2 slopes of horizontal wavenumber spectra of temperature variance was found in the seasonal thermocline between the lateral scales from 10 to 1 km. It suggests that the ageostrophic sub-mesoscale processes could contribute considerably to the energy cascade in such a stratified sea basin. We showed that the intrusions of water with different salinity, which indicate the occurrence of a layered flow structure, could appear in the process of upwelling/downwelling development and relaxation in response to variable wind forcing. We suggest that the sub-mesoscale processes play a major role in feeding surface blooms in the conditions of coupled coastal upwelling and downwelling events in the Gulf of Finland.

  12. Energy efficiency of elevated water supply tanks for high-rise buildings

    International Nuclear Information System (INIS)

    Cheung, C.T.; Mui, K.W.; Wong, L.T.

    2013-01-01

    Highlights: ► We evaluate energy efficiency for water supply tank location in buildings. ► Water supply tank arrangement in a building affects pumping energy use. ► We propose a mathematical model for optimal design solutions. ► We test the model with measurements in 22 Hong Kong buildings. ► A potential annual energy saving for Hong Kong is up to 410 TJ. -- Abstract: High-rise housing, a trend in densely populated cities around the world, increases the energy use for water supply and corresponding greenhouse gas emissions. This paper presents an energy efficiency evaluation measure for water supply system designs and a mathematical model for optimizing pumping energy through the arrangement of water tanks in a building. To demonstrate that the model is useful for establishing optimal design solutions that integrate energy consumption into urban water planning processes which cater to various building demands and usage patterns, measurement data of 22 high-rise residential buildings in Hong Kong are employed. The results show the energy efficiency of many existing high-rise water supply systems is about 0.25 and can be improved to 0.26–0.37 via water storage tank relocations. The corresponding annual electricity that can be saved is 160–410 TJ, a 0.1–0.3% of the total annual electricity consumption in Hong Kong.

  13. Application of radial basis function in densitometry of stratified regime of liquid-gas two phase flows

    International Nuclear Information System (INIS)

    Roshani, G.H.; Nazemi, E.; Roshani, M.M.

    2017-01-01

    In this paper, a novel method is proposed for predicting the density of liquid phase in stratified regime of liquid-gas two phase flows by utilizing dual modality densitometry technique and artificial neural network (ANN) model of radial basis function (RBF). The detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors for registering transmitted and scattered photons. At the first step, a Monte Carlo simulation model was utilized to obtain the optimum position for the scattering detector in dual modality densitometry configuration. At the next step, an experimental setup was designed based on obtained optimum position for detectors from simulation in order to generate the required data for training and testing the ANN. The results show that the proposed approach could be successfully applied for predicting the density of liquid phase in stratified regime of gas-liquid two phase flows with mean relative error (MRE) of less than 0.701. - Highlights: • Density of liquid phase in stratified regime of two phase flows was predicted. • Combination of dual modality densitometry technique and ANN was utilized. • Detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors. • MCNP simulation was done to obtain the optimum position for the scattering detector. • An experimental setup was designed to generate the required data for training the ANN.

  14. Analytical monitoring of systems for the production of high-purity, desalinated water

    International Nuclear Information System (INIS)

    Kunert, I.

    1988-01-01

    The purity requirements to be met by high-purity water currently push the most sensitive analytical methods to their utmost limits of sensitivity. The required degree of purity of the water at present can only be achieved by application of membrane processes, and pre-purification of the feedwater to a quality corresponding to that of the raw water source. The contribution in hand discusses the analytical monitoring of the raw water treatment plant, the water treatment prior to the treatment by reverse osmosis, monitoring and control of the modules for reverse osmosis, and the monitoring of high-purity water production for the microelectronics industry. (orig./RB) [de

  15. Monitoring oil persistence on beaches : SCAT versus stratified random sampling designs

    International Nuclear Information System (INIS)

    Short, J.W.; Lindeberg, M.R.; Harris, P.M.; Maselko, J.M.; Pella, J.J.; Rice, S.D.

    2003-01-01

    In the event of a coastal oil spill, shoreline clean-up assessment teams (SCAT) commonly rely on visual inspection of the entire affected area to monitor the persistence of the oil on beaches. Occasionally, pits are excavated to evaluate the persistence of subsurface oil. This approach is practical for directing clean-up efforts directly following a spill. However, sampling of the 1989 Exxon Valdez oil spill in Prince William Sound 12 years later has shown that visual inspection combined with pit excavation does not offer estimates of contaminated beach area of stranded oil volumes. This information is needed to statistically evaluate the significance of change with time. Assumptions regarding the correlation of visually-evident surface oil and cryptic subsurface oil are usually not evaluated as part of the SCAT mandate. Stratified random sampling can avoid such problems and could produce precise estimates of oiled area and volume that allow for statistical assessment of major temporal trends and the extent of the impact. The 2001 sampling of the shoreline of Prince William Sound showed that 15 per cent of surface oil occurrences were associated with subsurface oil. This study demonstrates the usefulness of the stratified random sampling method and shows how sampling design parameters impact statistical outcome. Power analysis based on the study results, indicate that optimum power is derived when unnecessary stratification is avoided. It was emphasized that sampling effort should be balanced between choosing sufficient beaches for sampling and the intensity of sampling

  16. Stratified flow model for convective condensation in an inclined tube

    International Nuclear Information System (INIS)

    Lips, Stéphane; Meyer, Josua P.

    2012-01-01

    Highlights: ► Convective condensation in an inclined tube is modelled. ► The heat transfer coefficient is the highest for about 20° below the horizontal. ► Capillary forces have a strong effect on the liquid–vapour interface shape. ► A good agreement between the model and the experimental results was observed. - Abstract: Experimental data are reported for condensation of R134a in an 8.38 mm inner diameter smooth tube in inclined orientations with a mass flux of 200 kg/m 2 s. Under these conditions, the flow is stratified and there is an optimum inclination angle, which leads to the highest heat transfer coefficient. There is a need for a model to better understand and predict the flow behaviour. In this paper, the state of the art of existing models of stratified two-phase flows in inclined tubes is presented, whereafter a new mechanistic model is proposed. The liquid–vapour distribution in the tube is determined by taking into account the gravitational and the capillary forces. The comparison between the experimental data and the model prediction showed a good agreement in terms of heat transfer coefficients and pressure drops. The effect of the interface curvature on the heat transfer coefficient has been quantified and has been found to be significant. The optimum inclination angle is due to a balance between an increase of the void fraction and an increase in the falling liquid film thickness when the tube is inclined downwards. The effect of the mass flux and the vapour quality on the optimum inclination angle has also been studied.

  17. High-resolution gulf water skin temperature estimation using TIR/ASTER

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; ManiMurali, R.; Mahender, K.

    to separate geomorphic features. It is demonstrated that high resolution water skin temperature of small water bodies can be determined correctly, economically and less laboriously using space-based TIR/ASTER and that estimated temperature can be effectively...

  18. Production of high quality water for oil sands application

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette-Hodsman, C.; Macleod, B. [Pall Corp., Mississauga, ON (Canada); Venkatadri, R. [Pall Corp., East Hills, NY (United States)

    2008-10-15

    This paper described a pressurized microfiltration membrane system installed at an oil sands extraction site in Alberta. The system was designed to complement a reverse osmosis (RO) system installed at the site to produce the high quality feed water required by the system's boilers. Groundwater in the region exhibited moderate total suspended solids and high alkalinity and hardness levels, and the RO system required feed water with a silt density index of 3 or less. The conventional pretreatment system used at the site was slowing down production due to the severe fouling of the RO membranes. The new microfiltration system contained an automated PVDF hollow fiber microfiltration membrane system contained in a trailer. Suspended particles and bacteria were captured within the filter, and permeate was sent to the RO unit. Within 6 hours of being installed, the unit was producing water with SDI values in the range of 1.0 to 2.5. It was concluded that the microfiltration system performed reliably regardless of wide variations in feed water quality and flow rates. 3 refs., 1 tab., 8 figs.

  19. Method for strontium isolation from high-mineralized water

    International Nuclear Information System (INIS)

    Evzhanov, Kh.; Andriyasova, G.M.

    1983-01-01

    A method to isolate strontium from high-mineralized waters containing sodium, magnesium, calcium and strontium chlorides, which differ from the prototype method in a considerable decrease in energy consumption with the preservation of a high degree of Sr, Mg and Ca isolation selectivity, has been suggested. According to the method suggested mineralized waters are treated with alkali (NaOH) in the amount of 95-97% of stoichiometry by magnesium, then after separation of magnesium hydroxide precipitate mother liquor is treated with sodium carbonate in the amount of 50-60% of stoichiometry by calcium. After separation of calcium carbonate precipitate mother liquor is treated with NaOH in the amount of 130-135% of stoichiometry by calcium. After separation of calcium hydroxide precipitate from mother liquor by means of sodium carbonate introduction strontium carbonate is isolated. The degree of strontium extraction in the form of SrCO 3 constitutes 90.5% of its content in the initial solution. The method presented can be used for strontium separation from natural and waste waters

  20. Transport of hydrate slurry at high water cut

    OpenAIRE

    Melchuna , Aline; Cameirão , Ana; Herri , Jean-Michel; Ouabbas , Yamina; Glenat , Philippe

    2014-01-01

    Poster; International audience; Oil transportation in pipelines at the end of field production life implies to flow high quantities of water which represents the dominant phase. The process of crystallization of gas hydrates in this system needs to be studied and compared to the opposite one widely studied in the literature where water is the dispersed phase. The laboratory is equipped with the Archimede flow loop where the hydrate crystallization and transport are monitored. The flow loop is...

  1. The geostrophic velocity field in shallow water over topography

    Science.gov (United States)

    Charnock, Henry; Killworth, Peter D.

    1998-01-01

    A recent note (Hopkins, T.S., 1996. A note on the geostrophic velocity field referenced to a point. Continental Shelf Research 16, 1621-1630) suggests a method for evaluating absolute pressure gradients in stratified water over topography. We demonstrate that this method requires no along-slope bottom velocity, in contradiction to what is usually observed, and that mass is not conserved.

  2. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    Science.gov (United States)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  3. Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Kim, Eunae; Yeom, Min Sun

    2014-01-01

    Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge

  4. Ship motion effects in CTD-data from weakly stratified waters of the Puerto Rico trench

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    Shipborne SBE 911plus Conductivity Temperature Depth (CTD)-casts have been made to maximum 7220 m in the Puerto Rico Trench (PRT). In PRT-waters from 5500 m and deeper and specifically below the 6500 m transition to the hadal-zone, the vertical density stratification is found very weak, with

  5. Crossflow and water banks in viscous dominant regimes of waterflooding

    DEFF Research Database (Denmark)

    Yuan, Hao; Zhang, Xuan; Shapiro, Alexander

    2014-01-01

    Understanding the crossflow in multilayered reservoirs is of great importance for designing mobility control methods for enhanced oil recovery. The authors reveal saturation profiles in stratified reservoirs to study the interlayer communication in the viscous dominant regime. The displacement...... profiles are more even and smoother in a communicating layer-cake reservoir than in a noncommunicating one. Water banks and transition zones may be observed. Analysis indicates that the phenomena are attributed to the enhanced crossflow due to large mobility ratios (water-oil). The mobility control...

  6. Heavy water physical verification in power plants

    International Nuclear Information System (INIS)

    Morsy, S.; Schuricht, V.; Beetle, T.; Szabo, E.

    1986-01-01

    This paper is a report on the Agency experience in verifying heavy water inventories in power plants. The safeguards objectives and goals for such activities are defined in the paper. The heavy water is stratified according to the flow within the power plant, including upgraders. A safeguards scheme based on a combination of records auditing, comparing records and reports, and physical verification has been developed. This scheme has elevated the status of heavy water safeguards to a level comparable to nuclear material safeguards in bulk facilities. It leads to attribute and variable verification of the heavy water inventory in the different system components and in the store. The verification methods include volume and weight determination, sampling and analysis, non-destructive assay (NDA), and criticality check. The analysis of the different measurement methods and their limits of accuracy are discussed in the paper

  7. Photoionization of water molecules by high energy photons

    Directory of Open Access Journals (Sweden)

    Lara Martini

    2017-07-01

    Full Text Available We theoretically study the photoionization of water molecules by high energy photon impact. We develop a model in which the final state wavefunction is given by a Coulomb continuum wavefunction with effective charges and the water molecule bound states are represented using the Moccia's monocentric wavefunctions. We obtain analytical expressions for the transition matrix element that enable the computation of cross sections by numerical quadratures. We compare our predictions for photon energies between 20 and 300 eV with more elaborated theoretical results and experiments. We obtain a very good agreement with experiments, in particular, at enough high energies where there is a lack of elaborated results due to their high computational cost. Received: 15 March 2017, Accepted: 25 June 2017; Edited by: S. Kais; DOI: http://dx.doi.org/10.4279/PIP.090006 Cite as: L Martini, D I R Boll, O A Fojón, Papers in Physics 9, 090006 (2017

  8. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.

    Science.gov (United States)

    Zhou, Wenting; Li, Song; Liu, Yan; Xu, Zhengzheng; Wei, Sufeng; Wang, Guoyong; Lian, Jianshe; Jiang, Qing

    2018-03-21

    Traditional oil-water separation materials have to own ultrahigh or ultralow surface energy. Thus, they can only be wetted by one of the two, oil or water. Our experiment here demonstrates that the wettability in oil-water mixtures can be tuned by oil and water initially. Hierarchical voids are built on commercial copper foams with the help of hydrothermally synthesized titanium dioxide nanorods. The foams can be easily wetted by both oil and water. The water prewetted foams are superhydrophilic and superoleophobic under oil-water mixtures, meanwhile the oil prewetted foams are superoleophilic and superhydrophobic. In this paper, many kinds of water-oil mixtures were separated by two foams, prewetted by corresponding oil or water, respectively, combining a straight tee in a high flux, high efficiency, and continuous mode. This research indicates that oil-water mixtures can be separated more eco-friendly and at lower cost.

  9. A Powerful Approach to Estimating Annotation-Stratified Genetic Covariance via GWAS Summary Statistics.

    Science.gov (United States)

    Lu, Qiongshi; Li, Boyang; Ou, Derek; Erlendsdottir, Margret; Powles, Ryan L; Jiang, Tony; Hu, Yiming; Chang, David; Jin, Chentian; Dai, Wei; He, Qidu; Liu, Zefeng; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu

    2017-12-07

    Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits' genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability. Here we introduce a principled framework to estimate annotation-stratified genetic covariance between traits using GWAS summary statistics. Through theoretical and numerical analyses, we demonstrate that our method provides accurate covariance estimates, thereby enabling researchers to dissect both the shared and distinct genetic architecture across traits to better understand their etiologies. Among 50 complex traits with publicly accessible GWAS summary statistics (N total ≈ 4.5 million), we identified more than 170 pairs with statistically significant genetic covariance. In particular, we found strong genetic covariance between late-onset Alzheimer disease (LOAD) and amyotrophic lateral sclerosis (ALS), two major neurodegenerative diseases, in single-nucleotide polymorphisms (SNPs) with high minor allele frequencies and in SNPs located in the predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights LOAD's correlation with cognitive traits and hints at an autoimmune component for ALS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Expression of GLUT1 in stratified squamous epithelia and oral carcinoma from humans and rats

    DEFF Research Database (Denmark)

    Voldstedlund, M; Dabelsteen, Erik

    1997-01-01

    mucosa from rat and man, and a human oral carcinoma by indirect immunofluorescence microscopy. The results showed that GLUT1 was expressed in the basal and parabasal layers of the different stratified squamous epithelia, with some variations between keratinized and non-keratinized subtypes. GLUT1...... was also expressed in ductal- and myoepithelial cells of minor salivary glands and perineural sheath located in the lamina propra, and furthermore in the cells of an oral carcinoma. GLUT4 was not expressed in any of the tissues examined. This distribution of GLUT1 does not fit with the idea of GLUT1......Most cells express facilitative glucose transporters. Four isoforms (GLUT1-4) transporting D-glucose across the plasma membrane show a specific tissue distribution, which is the basis for tissue-specific patterns in glucose metabolism. GLUT1 is expressed at high levels in tissue barriers...

  11. Dynamical explanation for the high water abundance detected in Orion

    International Nuclear Information System (INIS)

    Elitzur, M.

    1979-01-01

    Shock wave chemistry is suggested as the likely explanation for the high water abundance which has been recently detected in Orion by Phyllips et al. The existence of such a shock and its inferred properties are in agreement with other observations of Orion such as the broad velocity feature and H 2 vibration emission. Shock waves are proposed as the likely explanation for high water abundances observed in other sources such as the strong H 2 O masers

  12. Effects of changes in water intake on mood of high and low drinkers.

    Directory of Open Access Journals (Sweden)

    Nathalie Pross

    Full Text Available OBJECTIVE: To evaluate the effects of a change in water intake on mood and sensation in 22 habitual high-volume (HIGH; 2-4 L/d and 30 low-volume (LOW; <1.2 L/d drinkers who were asked to respectively decrease and increase their daily water intake. METHOD: During baseline HIGH consumed 2.5 L and LOW 1 L of water/day. During 3 controlled intervention days HIGH's water intake was restricted to 1 L/day whereas LOW's was increased to 2.5 L water/day. Several mood scales (Bond & Lader Visual Analog Scale (VAS, Profile of Mood States, Karolinska Sleepiness Scale, Thirst & Emotional VAS were administered at different time points during the study. ANOVA including intervention, time point and intervention by time point as fixed effects on mean values (i.e.; baseline data vs. mean of 3 intervention days for each mood scale was performed. RESULTS: At baseline HIGH and LOW were comparable in mood state, except for thirst scores (estimate = 17.16, p<0.001 and POMS depression-dejection scores (estimate = 0.55, p<0.05 which were both higher in the HIGH vs. LOW. In HIGH the restricted water intake resulted in a significant increase in thirst (p<0.001 and a decrease in contentedness (p<0.05, calmness (p<0.01, positive emotions (p<0.05 and vigor/activity (p<0.001. In LOW, increased water consumption resulted in a significant decrease in fatigue/inertia (p<0.001, confusion/bewilderment (p = 0.05 and thirst (p<0.001 and a trend to lower sleepiness (p = 0.07 compared to baseline. CONCLUSION: Increasing water intake has beneficial effects in LOW, especially sleep/wake feelings, whereas decreasing water intake has detrimental effects on HIGH's mood. These deleterious effects in HIGH were observed in some sleep/wake moods as well as calmness, satisfaction and positive emotions.

  13. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2018-05-01

    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  14. Influence of pycnocline topography and water-column structure on marine distributions of alcids (Aves: Alcidae) in Anadyr Strait, Northern Bering Sea, Alaska

    Science.gov (United States)

    Haney, J. Christopher

    1991-01-01

    Systematic ship-board surveys were used to simultaneously record seabird abundances and resolve coarse-scale (3 to 10 km) horizontal and fine-scale (1 to 10 m) vertical variability in water-column structure and bathymetry for portions of the coastal zone in Anadyr Strait near western St. Lawrence Island, northern Bering Sea, Alaska, during August and September 1987. Three plankton-feeding alcids, parakeet (Cyclorrhynchus psittacula), crested (Aethia cristatella) and least (A. pusilla) auklets, each exhibited distinct associations for different pycnocline characteristics. Least auklets were more abundant in mixed water, but they also occurred within stratified water where the pycnocline and upper-mixed layer were shallow (≤8 m) and thin (≤10 m), respectively. Low body mass (85 g), high buoyancy, and relatively poor diving ability may have restricted this auklet to areas where water-column strata nearly intersected the surface, or to areas from which strata were absent altogether due to strong vertical mixing. Parakeet and crested auklets, which are larger-bodied (ca. 260 g) planktivores with presumably greater diving ability, were more abundant in stratified water, and both species exhibited less specific affinities for water-column characteristic at intermediate and shallow levels. All three auklets avoided locations with strong pycnocline gradients (≤0.22σtm−1), a crude index of the strong, subsurface shear in water velocities characteristic of this region. Auklet distributions in Anadyr Strait were consistent with: (1) strata accessibility, as estimated from relationships between body mass and relative diving ability, (2) possible avoidance of strong subsurface water motions, and (3) habits and distributions of plankton prey. In contrast, largebodied (>450 g) alcids [i.e., common (Uria aalge) and thick-billed (U. lomvia) murres, pigeon guillemots (Cephus columba), tufted (Fratercula cirrhata), and horned (F. corniculata) puffins feeding on fish or

  15. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  16. Effects of unstratified and centre-stratified randomization in multi-centre clinical trials.

    Science.gov (United States)

    Anisimov, Vladimir V

    2011-01-01

    This paper deals with the analysis of randomization effects in multi-centre clinical trials. The two randomization schemes most often used in clinical trials are considered: unstratified and centre-stratified block-permuted randomization. The prediction of the number of patients randomized to different treatment arms in different regions during the recruitment period accounting for the stochastic nature of the recruitment and effects of multiple centres is investigated. A new analytic approach using a Poisson-gamma patient recruitment model (patients arrive at different centres according to Poisson processes with rates sampled from a gamma distributed population) and its further extensions is proposed. Closed-form expressions for corresponding distributions of the predicted number of the patients randomized in different regions are derived. In the case of two treatments, the properties of the total imbalance in the number of patients on treatment arms caused by using centre-stratified randomization are investigated and for a large number of centres a normal approximation of imbalance is proved. The impact of imbalance on the power of the study is considered. It is shown that the loss of statistical power is practically negligible and can be compensated by a minor increase in sample size. The influence of patient dropout is also investigated. The impact of randomization on predicted drug supply overage is discussed. Copyright © 2010 John Wiley & Sons, Ltd.

  17. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw.

    Science.gov (United States)

    Baas, P; van de Wiel, B J H; van der Linden, S J A; Bosveld, F C

    2018-01-01

    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a [Formula: see text] bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than [Formula: see text]. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.

  18. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw

    Science.gov (United States)

    Baas, P.; van de Wiel, B. J. H.; van der Linden, S. J. A.; Bosveld, F. C.

    2018-02-01

    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a 1 m s^{-1} bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than - 30 W m^{-2}. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.

  19. Turbulent transport of passive scalar behind line sources in an unstably stratified open channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chun-Ho [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Building and Real Estate; Leung, Dennis Y.C. [The University of Hong Kong (Hong Kong). Department of Mechanical Engineering

    2006-11-15

    This study employs a direct numerical simulation (DNS) technique to study the flow, turbulence structure, and passive scalar plume transport behind line sources in an unstably stratified open channel flow. The scalar transport behaviors for five emission heights (z{sub s}=0, 0.25H, 0.5H, 0.75H, and H, where H is the channel height) at a Reynolds number of 3000, a Prandtl number and a Schmidt number of 0.72, and a Richardson number of -0.2 are investigated. The vertically meandering mean plume heights and dispersion coefficients calculated by the current DNS model agree well with laboratory results and field measurements in literature. It is found that the plume meandering is due to the movement of the positive and negative vertical turbulent scalar fluxes above and below the mean plume heights, respectively. These findings help explaining the plume meandering mechanism in the unstably stratified atmospheric boundary layer. (author)

  20. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  1. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  2. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  3. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m"3. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m"3. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  4. Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.

    Science.gov (United States)

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  5. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  6. Clinical research in small genomically stratified patient populations.

    Science.gov (United States)

    Martin-Liberal, J; Rodon, J

    2017-07-01

    The paradigm of early drug development in cancer is shifting from 'histology-oriented' to 'molecularly oriented' clinical trials. This change can be attributed to the vast amount of tumour biology knowledge generated by large international research initiatives such as The Cancer Genome Atlas (TCGA) and the use of next generation sequencing (NGS) techniques developed in recent years. However, targeting infrequent molecular alterations entails a series of special challenges. The optimal molecular profiling method, the lack of standardised biological thresholds, inter- and intra-tumor heterogeneity, availability of enough tumour material, correct clinical trials design, attrition rate, logistics or costs are only some of the issues that need to be taken into consideration in clinical research in small genomically stratified patient populations. This article examines the most relevant challenges inherent to clinical research in these populations. Moreover, perspectives from the Academia point of view are reviewed as well as initiatives to be taken in forthcoming years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  8. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  9. A 3D spectral anelastic hydrodynamic code for shearing, stratified flows

    Science.gov (United States)

    Barranco, Joseph A.; Marcus, Philip S.

    2006-11-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.

  10. Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers

    Science.gov (United States)

    Watanabe, T.; Riley, J. J.; Nagata, K.

    2017-10-01

    The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.

  11. Natural Resources Management on Corps of Engineers Water Resources Development Projects: Practices, Challenges, and Perspectives on the Future

    National Research Council Canada - National Science Library

    Kasual, Richard

    1998-01-01

    Natural resources management on U.S. Army Corps of Engineers water resources development projects was documented from the responses of management personnel to a detailed questionnaire mailed to a stratified random sample of projects...

  12. Performance of a day/night water heat storage system for heating and cooling of semi-closed greenhouses in mild winter climate

    NARCIS (Netherlands)

    Baeza, E.J.; Pérez Parra, J.J.; López, J.C.; Gázquez, J.C.; Meca, D.E.; Stanghellini, C.; Kempkes, F.L.K.; Montero, J.I.

    2012-01-01

    A novel system for heating/cooling greenhouses based on air/water heat exchangers connected to a thermally stratified water storage tank was tested in a small greenhouse compartment at the Experimental Station of the Cajamar Foundation in Almería, Spain. The system maintained a closed greenhouse (no

  13. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  14. Inundation Mapping Tidal Surface - Mean Higher High Water

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a derived product of the NOAA VDatum tool and they extend the tool's Mean Higher High Water (MHHW) tidal datum conversion inland beyond its original...

  15. Reflection and transmission of electromagnetic waves in planarly stratified media

    International Nuclear Information System (INIS)

    Caviglia, G.

    1999-01-01

    Propagation of time-harmonic electromagnetic waves in planarly stratified multilayers is investigated. Each layer is allowed to be inhomogeneous and the layers are separated by interfaces. The procedure is based on the representation of the electromagnetic field in the basis of the eigenvectors of the matrix characterizing the first-order system. Hence the local reflection and transmission matrices are defined and the corresponding differential equations, in the pertinent space variable are determined. The jump conditions at interfaces are also established. The present model incorporates dissipative materials and the procedure holds without any restrictions to material symmetries. Differential equations appeared in the literature are shown to hold in particular (one-dimensional) cases or to represent homogeneous layers only

  16. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  17. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2000-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigrade. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs

  18. Towards a comprehensive assessment and framework for low and high flow water risks

    Science.gov (United States)

    Motschmann, Alina; Huggel, Christian; Drenkhan, Fabian; León, Christian

    2017-04-01

    Driven by international organizations such as the Intergovernmental Panel on Climate Change (IPCC) the past years have seen a move from a vulnerability concept of climate change impacts towards a risk framework. Risk is now conceived at the intersection of climate-driven hazard and socioeconomic-driven vulnerability and exposure. The concept of risk so far has been mainly adopted for sudden-onset events. However, for slow-onset and cumulative climate change impacts such as changing water resources there is missing clarity and experience how to apply a risk framework. Research has hardly dealt with the challenge of how to integrate both low and high flow risks in a common framework. Comprehensive analyses of risks related to water resources considering climate change within multi-dimensional drivers across different scales are complex and often missing in climate-sensitive mountain regions where data scarcity and inconsistencies represent important limitations. Here we review existing vulnerability and risk assessments of low and high flow water conditions and identify critical conceptual and practical gaps. Based on this, we develop an integrated framework for low and high flow water risks which is applicable to both past and future conditions. The framework explicitly considers a water balance model simulating both water supply and demand on a daily basis. We test and apply this new framework in the highly glacierized Santa River catchment (SRC, Cordillera Blanca, Peru), representative for many developing mountain regions with both low and high flow water risks and poor data availability. In fact, in the SRC, both low and high flow hazards, such as droughts and floods, play a central role especially for agricultural, hydropower, domestic and mining use. During the dry season (austral winter) people are increasingly affected by water scarcity due to shrinking glaciers supplying melt water. On the other hand during the wet season (austral summer) high flow water

  19. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  20. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.; Schoen, Alia P.; Hu, Liangbing; Kim, Han Sun; Heilshorn, Sarah C.; Cui, Yi

    2010-01-01

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.