WorldWideScience

Sample records for highly selective colorimetric

  1. Styrene and Azo-Styrene Based Colorimetric Sensors for Highly Selective Detection of Cyanide

    OpenAIRE

    Prestiani, Agustina Eka; Purwono, Bambang

    2017-01-01

    A novel styrene (1) and azo-styrene (2) based chemosensor from vanillin has been successfully synthesized. Sensor 1 was obtained by one step Knoevenagel condensation of Ultrasound method and sensor 2 by coupling diazo and Knoevenagel condensation reaction. Both of sensors showed high sensitivity and selectivity to detect CN- in aqueous media, even the presence of other anions, such as F-, Cl-, Br-, I-, CO32-, SO42-, H2PO4-, and AcO-. Colorimetric sensing of sensor 1 is inclined to be deproton...

  2. A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77.

    Science.gov (United States)

    Cheng, Ruojie; Liu, Siyao; Shi, Huijie; Zhao, Guohua

    2018-01-05

    A highly sensitive, specific and simple colorimetric sensor based on aptamer was established for the detection of polychlorinated biphenyls (PCB 77). The use of unmodified gold nanoparticles as a colorimetric probe for aptamer sensors enabled the highly sensitive and selective detection of polychlorinated biphenyls (PCB 77). A linear range of 0.5nM to 900nM was obtained for the colorimetric assay with a minimum detection limit of 0.05nM. In addition, by the methods of circular dichroism, UV and naked eyes, we found that the 35 base fragments retained after cutting 5 bases from the 5 'end of aptamer plays the most significant role in the PCB 77 specific recognition process. We found a novel way to truncated nucleotides to optimize the detection of PCB 77, and the selected nucleotides also could achieve high affinity with PCB 77. At the same time, the efficient detection of the PCB 77 by our colorimetric sensor in the complex environmental water samples was realized, which shows a good application prospect. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  4. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.

    Science.gov (United States)

    Li, Xiuyan; Cheng, Ruojie; Shi, Huijie; Tang, Bo; Xiao, Hanshuang; Zhao, Guohua

    2016-03-05

    A simple and highly sensitive aptamer-based colorimetric sensor was developed for selective detection of Microcystin-LR (MC-LR). The aptamer (ABA) was employed as recognition element which could bind MC-LR with high-affinity, while gold nanoparticles (AuNPs) worked as sensing materials whose plasma resonance absorption peaks red shifted upon binding of the targets at a high concentration of sodium chloride. With the addition of MC-LR, the random coil aptamer adsorbed on Au NPs altered into regulated structure to form MC-LR-aptamer complexes and broke away from the surface of Au NPs, leading to the aggregation of AuNPs, and the color converted from red to blue due to the interparticle plasmon coupling. Results showed that our aptamer-based colorimetric sensor exhibited rapid and sensitive detection performance for MC-LR with linear range from 0.5 nM to 7.5 μM and the detection limit reached 0.37 nM. Meanwhile, the pollutants usually coexisting with MC-LR in pollutant water samples had not demonstrated disturbance for detecting of MC-LR. The mechanism was also proposed suggesting that high affinity interaction between aptamer and MC-LR significantly enhanced the sensitivity and selectivity for MC-LR detection. Besides, the established method was utilized in analyzing real water samples and splendid sensitivity and selectivity were obtained as well. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Highly sensitive and selective colorimetric detection of cartap residue in agricultural products.

    Science.gov (United States)

    Liu, Wei; Zhang, Daohong; Tang, Yafan; Wang, Yashan; Yan, Fei; Li, Zhonghong; Wang, Jianlong; Zhou, H Susan

    2012-11-15

    The residue of pesticide has posed a serious threat to human health. Fast, broad-spectrum detection methods are necessary for on-site screening of various types of pesticides. With citrate-coated Au nanoparticles (Au NPs) as colorimetric probes, a visual and spectrophotometric method for rapid assay of cartap, which is one of the most important pesticides in agriculture, is reported for the first time. Based on the color change of Au colloid solution from wine-red to blue resulting from the aggregation of Au NPs, cartap could be detected in the concentration range of 0.05-0.6 mg/kg with a low detection limit of 0.04 mg/kg, which is much lower than the strictest cartap safety requirement of 0.1 mg/kg. Due to the limited research on the rapid detection of cartap based on Au NPs, the performance of the present method was evaluated through aggregation kinetics, interference influence, and sample pretreatment. To further demonstrate the selectivity and applicability of the method, cartap detection is realized in cabbage and tea with excellent analyte concentration recovery. These results demonstrate that the present method provides an easy and effective way to analyze pesticide residue in common products, which is of benefit for the rapid risk evaluation and on-site screening of pesticide residue. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Highly selective potentiometric and colorimetric determinations of cobalt (II) ion using thiazole based ligands.

    Science.gov (United States)

    Singhal, Divya; Singh, Ashok Kumar; Upadhyay, Anjali

    2014-12-01

    New PVC-membrane electrodes were prepared by using 2-((thiazol-2-ylimino)methyl)phenol (L1) and 2-((thiazol-2-ylamino)methyl)phenol (L2) and explored as Co(II) selective electrodes. The effect of various plasticizers and anion excluder was studied in detail and improved performance was observed. It was found that the electrode based on L1 shows better response characteristics in comparison to L2. Optimum performance was observed for the membrane electrode having a composition of L1:NaTPB:DBP:PVC≡2:8:78:62 (w/w, mg). The performance of PME based on L1 was compared with that of CGE. The electrodes exhibit Nernstian slope for Co(II) ions with a limit of detection of 6.91×10(-7) mol L(-1) for PME and 7.94×10(-8) mol L(-1) for CGE. The response time for PME and CGE was found to be 15s and 12 s respectively. The potentiometric responses are independent in the pH range 3.0-9.0 for CGE. The CGE could be used for a period of 90 days. The CGE was used as an indicator electrode in potentiometric titration of EDTA with Co(2+) ion. Further the selectivity of the L1 and L2 was also confirmed by the UV-vis and colorimetric studies and found that L1 is more selective for Co(II) ion. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  8. Highly selective and sensitive macrocycle-based dinuclear foldamer for fluorometric and colorimetric sensing of citrate in water.

    Science.gov (United States)

    Rhaman, Md Mhahabubur; Hasan, Mohammad H; Alamgir, Azmain; Xu, Lihua; Powell, Douglas R; Wong, Bryan M; Tandon, Ritesh; Hossain, Md Alamgir

    2018-01-10

    The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.

  9. A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@Au nanoparticles.

    Science.gov (United States)

    Li, Tianhua; Li, Yonglong; Zhang, Yujie; Dong, Chen; Shen, Zheyu; Wu, Aiguo

    2015-02-21

    Excessive uptake of NO2(-) is detrimental to human health, but the currently available methods used to sensitively detect this ion in the environment are cumbersome and expensive. In this study, we developed an improved NO2(-) detection system based on a redox etching strategy of CTAB-stabilized Ag-Au core-shell nanoparticles (Ag@AuNPs). The detection mechanism was verified by UV-Vis spectroscopy, TEM and XPS. The detection system produces a color change from purple to colorless in response to an increase of NO2(-) concentration. The selectivity of detection of NO2(-), both with the unaided eye and by measurement of UV-Vis spectra, is excellent in relation to other ions, including Cu(2+), Co(2+), Ni(2+), Cr(3+), Al(3+), Pb(2+), Cd(2+), Ca(2+), Ba(2+), Zn(2+), Mn(2+), Mg(2+), Fe(3+), Hg(2+), Ag(+), K(+), F(-), PO4(3-), C2O4(2-), SO3(2-), CO3(2-), SO4(2-), NO3(-) and CH3-COO(-) (Ac(-)). The limit of detection (LOD) for NO2(-) is 1.0 μM by eye and 0.1 μM by UV-Vis spectroscopy. The LOD by eye is lower than the lowest previously reported value (4.0 μM). There is a good linear relationship between A/A0 and the concentration of NO2(-) from 1.0 to 20.0 μM NO2(-), which permits a quantitative assay. The applicability of our detection system was also verified by analysis of NO2(-) in tap water and lake water. The results demonstrate that our Ag@AuNP-based detection system can be used for the rapid colorimetric detection of NO2(-) in complex environmental samples, with excellent selectivity and high sensitivity.

  10. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    Science.gov (United States)

    He, Yi; Peng, Rufang

    2014-11-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

  11. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    International Nuclear Information System (INIS)

    He, Yi; Peng, Rufang

    2014-01-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl 4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (∼25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng. (paper)

  12. Graphene Oxide-terpyridine Conjugate: A Highly Selective Colorimetric and Sensitive Fluorescence Nano-chemosensor for Fe2+ in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Bagher Eftekhari-Sis

    2016-07-01

    Full Text Available A graphene oxide-terpyridine conjugate (GOTC based colorimetric and fluorescent nano-chemosensor was synthesized. It showed high selectivity and sensitivity for Fe2+ and Fe3+ ions in neutral aqueous solution over other metal ions such as Li+, Na+, Ba2+, Ca2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Mn2+, Ni2+, Pb2+, Zn2+, Cr3+ and Ag+. In absorption spectra, upon addition of Fe2+ or Fe3+, the sensor displayed a peak at 568 nm, by changing the color of the solution from light pink for GOTC to light magenta and deep magenta for Fe3+ and Fe2+, respectively. Also, the fluorescence studies revealed that, Fe2+, Fe3+ and Co2+ quench the emission of GOTC at 473 nm, while other metal ions do not quench the fluorescence of GOTC in solution. Colorimetric and fluorescence techniques could be used for detection of Fe2+ ion concentration at least about 6-10 μM in water solution. The sensing on test paper was also investigated for the naked-eye detection of Fe2+.

  13. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions.

    Science.gov (United States)

    Chaiyo, Sudkate; Siangproh, Weena; Apilux, Amara; Chailapakul, Orawon

    2015-03-25

    A novel, highly selective and sensitive paper-based colorimetric sensor for trace determination of copper (Cu(2+)) ions was developed. The measurement is based on the catalytic etching of silver nanoplates (AgNPls) by thiosulfate (S2O3(2-)). Upon the addition of Cu(2+) to the ammonium buffer at pH 11, the absorption peak intensity of AuNPls/S2O3(2-) at 522 nm decreased and the pinkish violet AuNPls became clear in color as visible to the naked eye. This assay provides highly sensitive and selective detection of Cu(2+) over other metal ions (K(+), Cr(3+), Cd(2+), Zn(2+), As(3+), Mn(2+), Co(2+), Pb(2+), Al(3+), Ni(2+), Fe(3+), Mg(2+), Hg(2+) and Bi(3+)). A paper-based colorimetric sensor was then developed for the simple and rapid determination of Cu(2+) using the catalytic etching of AgNPls. Under optimized conditions, the modified AgNPls coated at the test zone of the devices immediately changes in color in the presence of Cu(2+). The limit of detection (LOD) was found to be 1.0 ng mL(-1) by visual detection. For semi-quantitative measurement with image processing, the method detected Cu(2+) in the range of 0.5-200 ng mL(-1)(R(2)=0.9974) with an LOD of 0.3 ng mL(-1). The proposed method was successfully applied to detect Cu(2+) in the wide range of real samples including water, food, and blood. The results were in good agreement according to a paired t-test with results from inductively coupled plasma-optical emission spectrometry (ICP-OES). Copyright © 2015. Published by Elsevier B.V.

  14. Colorimetric and fluorescent chemosensor for highly selective and sensitive relay detection of Cu2 + and H2PO4- in aqueous media

    Science.gov (United States)

    Su, Jun-Xia; Wang, Xiao-Ting; Chang, Jing; Wu, Gui-Yuan; Wang, Hai-Ming; Yao, Hong; Lin, Qi; Zhang, You-Ming; Wei, Tai-Bao

    2017-07-01

    In this manuscript, a new colorimetric and fluorescent chemosensor (T) was designed and synthesized, it could successively detect Cu2 + and H2PO4- in DMSO/H2O (v/v = 9:1, pH = 7.2) buffer solution with high selectivity and sensitivity. When added Cu2 + ions into the solution of T, it showed a color changes from yellow to colorless, meanwhile, the green fluorescence of sensor T quenched. This recognition behavior was not affected in the presence of other cations, including Hg2 +, Ag+, Ca2 +, Co2 +, Ni2 +, Cd2 +, Pb2 +, Zn2 +, Cr3 +, and Mg2 + ions. More interestingly, the Cu2 + ions contain sensor T solution could recover the color and fluorescence upon the addition of H2PO4- anions in the same medium. And other surveyed anions (including F-, Cl-, Br-, I-, AcO-, HSO4-, ClO4-, CN- and SCN-) had nearly no influence on the recognition behavior. The detection limits of T to Cu2 + and T-Cu2 + to H2PO4- were evaluated to be 1.609 × 10- 8 M and 0.994 × 10- 7 M, respectively. In addition, the sensor T also could be served as a recyclable component and the logic gate output was also defined in sensing materials. The test strips based on sensor T were fabricated, which acted as a convenient and efficient Cu2 + and H2PO4- test kits.

  15. Tuning interionic interaction by rationally controlling solution pH for highly selective colorimetric sensing of arginine.

    Science.gov (United States)

    Qian, Qin; Hao, Jie; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2016-04-01

    Direct selective sensing of arginine in central nervous systems remains very essential to understanding of the molecular basis of some physiological events. This study presents the first demonstration on a simple yet effective method for arginine sensing with gold nanoparticles (Au-NPs) as the signal readout. The rationale for the method is based on the pH-dependent feature of the interionic interaction between cysteine and arginine. At pH 6.0, cysteine can only interact with arginine through the ion-pair interaction and such interaction can lead to the changes in both the solution color and UV-vis spectrum of the cysteine-protected Au-NPs upon the addition of arginine. These changes are further developed into an analytical strategy for effective sensing of arginine by rationally controlling the pH values of Au-NP dispersions with the ratio of the absorbance at 650 nm (A 650) to that at 520 nm (A 520) (A 650/A 520) as a parameter for analysis. The method is responsive to arginine without the interference from other species in the cerebral system; under the optimized conditions, the A 650/A 520 values are linear with the concentration of arginine within a concentration range from 0.80 to 64 μM, yet remain unchanged with the addition of other kinds of amino acids or the species in the central nervous system into the Au-NPs dispersion containing cysteine. The method demonstrated here is reliable and robust and could thus be used for detection of the increase of arginine in central nervous systems.

  16. A highly selective chemosensor for colorimetric detection of Hg2+ and fluorescence detection of pH changes in aqueous solution

    International Nuclear Information System (INIS)

    Kavitha, Ramasamy; Stalin, Thambusamy

    2014-01-01

    A naturally existing and unmodified simple chemosensor, 2-hydroxy-1,4-naphthoquinone (2HNQ), was identified and used for both the colorimetric detection of Hg 2+ and the fluorescent (on-off) detection of pH. The distinct color change and quenching of fluorescence emission was visible to the naked eye. More importantly, the chemosensor was used in combination with β-cyclodextrin (β-CD), which enabled the sensor to be solubilized and stabilized in aqueous solutions. The sensor selectively detected Hg 2+ via the stable 1:1 complexation of the CåO and OH groups with Hg 2+ and reflected pH changes in the range from 6 to 12 via a fluorescence on–off response resulting from the deprotonation of the hydroxyl group in 2HNQ. - Highlights: • The 2-Hydroxy-1,4-Naphthoquinone (2HNQ) chemosensor is capable of both colorimetric detection of Hg 2+ and a fluorescence on-off response to pH. • The distinct color change and quenching of fluorescence emission are detectable with the naked eye. • The on– off fluorescence response in the pH range from 6– to 12 is due to the deprotonation of the hydroxyl group in 2HNQ

  17. A schiff-base receptor based naphthalimide derivative: Highly selective and colorimetric fluorescent turn-on sensor for Al{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Lei; Liu, Ya-Tong; Li, Na-Na; Dang, Qian-Xi [Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030 (China); Xing, Zhi-Yong, E-mail: zyxing@neau.edu.cn [Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030 (China); Li, Jin-Long; Zhang, Yu [College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006 (China)

    2017-06-15

    A new schiff-base receptor L based on naphthalimide had been investigated as a selective and sensitive chemosensor for Al{sup 3+} in CH{sub 3}OH. Upon addition of Al{sup 3+}, L showed a 39-fold enhancement at 508 nm with colorimetric and fluorometric dual-signaling response which might be induced by the integration of ICT and CHEF. A 1:1 stoichiometry for the L-Al{sup 3+} complex was formed with an association constant of 1.62×10{sup 4} M{sup −1}, and the limit of detection for Al{sup 3+} was determined as 7.4 nM. In addition, the potential utility of L in sensing Al{sup 3+} was also examined in real water samples.

  18. Salicylimine-Based Colorimetric and Fluorescent Chemosensor for Selective Detection of Cyanide in Aqueous Buffer

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jin Young; Hwang, In Hong; Kim, Hyun; Song, Eun Joo; Kim, Kyung Beom; Kim, Cheal [Seoul National Univ., Seoul (Korea, Republic of)

    2013-07-15

    A simple colorimetric and fluorescent anion sensor 1 based on salicylimine showed a high selectivity and sensitivity for detection of cyanide in aqueous solution. The receptor 1 showed high selectivity toward CN{sup -} ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to orange and a dramatic enhancement in fluorescence intensity selectively for cyanide anions over other anions. Such selectivity resulted from the nucleophilic addition of CN{sup -} to the carbon atom of an electron-deficient imine group. The sensitivity of the fluorescence-based assay (0.06 μM) is below the 1.9 μM suggested by the World Health Organization (WHO) as the maximum allowable cyanide concentration in drinking water, capable of being a practical system for the monitoring of CN. concentrations in aqueous samples.

  19. An ultrasensitive and highly selective fluorescent and colorimetric chemosensor for citrate ions based on rhodamine B and its application as the first molecular security keypad lock based on phosphomolybdic acid and citrate inputs

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, Hossein, E-mail: Tavallali@pnu.ac.ir; Baezzat, Mohammad-Reza; Deilamy-Rad, Gohar; Parhami, Abolfath; Hasanli, Nahid

    2015-04-15

    Rhodamine B (Rh{sub B}) has been developed as novel and efficient colorimetric and fluorometric chemosensor for citrate ions (Cit{sup 3−}) in an absolutely aqueous media. The UV–vis absorption and fluorescent emission titrations experiments have been employed to study the sensing process. Rh{sub B} could act as an efficient “ON–OFF” fluorescent chemosensor for phosphomolybdic acid (PMA) based on an electron transfer (ET) process. Also (Rh{sub B}{sup +}){sub 3}.PMA{sup 3−} could operate as an “OFF–ON” fluorescent chemosensor for citrate ions based on a ligand substitution process. The chemosensor Rh{sub B} shows excellent fluorescence sensitivity and selectivity toward citrate in aqueous media, and displays ON–OFF–ON type fluorescence change with alternately adding PMA and citrate to the media along with reversible association–dissociation of the complex. The (Rh{sub B}{sup +}){sub 3}.PMA{sup 3−} can be applied to the quantification of citrate with a linear ranges covering from 0.053 to 0.83 and 0.08 to 1.6 µM by detection limits of 6.0 and 9.1 nM for fluorescence and colorimetric methods respectively. The keypad lock operation is particularly important, as the output of the system depends not only on the proper combination but also on the order of input signals, creating the correct password that can be used to “open” this molecular keypad lock through strong fluorescence emission at 575 nm. As a whole, its various logic gate properties may improve its impact for the development of new-generation “intelligence” digital devices. The ionic PMA and Cit{sup 3−} inputs to (Rh{sub B}{sup +}){sub 3}.PMA{sup 3−} have been mimicked as a superimposed electronic molecular keypad lock. Also indicates that Rh{sub B} is suitable for the detection of Cit{sup 3−} ions in the biological environment. - Highlights: • Our probe is commercially available with good photostability and high quantum yield. • Both color and fluorescence change

  20. Folic acid functionalized silver nanoparticles with sensitivity and selectivity colorimetric and fluorescent detection for Hg2+ and efficient catalysis.

    Science.gov (United States)

    Su, Dongyue; Yang, Xin; Xia, Qingdong; Zhang, Qi; Chai, Fang; Wang, Chungang; Qu, Fengyu

    2014-09-05

    In this research, folic acid functionalized silver nanoparticles (FA-AgNPs) were selected as a colorimetric and a 'turn on' fluorescent sensor for detecting Hg(2+). After being added into Hg(2+), AgNPs can emit stable fluorescence at 440 nm when the excitation wavelength is selected at 275 nm. The absorbance and fluorescence of the FA-AgNPs could reflect the concentration of the Hg(2+) ions. Thus, we developed a simple, sensitive analytical method to detect Hg(2+) based on the colorimetric and fluorescence enhancement of FA-AgNPs. The sensor exhibits two linear response ranges between absorbance and fluorescence intensity with Hg(2+) concentration, respectively. Meanwhile, a detection limit of 1 nM is estimated based on the linear relationship between responses with a concentration of Hg(2+). The high specificity of Hg(2+) with FA-AgNPs interactions provided the excellent selectivity towards detecting Hg(2+) over other metal ions (Pb(2+), Mg(2+), Zn(2+), Ni(2+), Cu(2+), Co(2+), Ca(2+), Mn(2+), Fe(2+), Cd(2+), Ba(2+), Cr(6+) and Cr(3+)). This will provide a simple, effective and multifunctional colorimetric and fluorescent sensor for on-site and real-time Hg(2+) ion detection. The proposed method can be applied to the analysis of trace Hg(2+) in lake water. Additionally, the FA-AgNPs can be used as efficient catalyst for the reduction of 4-nitrophenol and potassium hexacyanoferrate (III).

  1. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    Science.gov (United States)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  2. An Amidochlorin-Based Colorimetric Fluorescent Probe for Selective Cu2+ Detection

    Directory of Open Access Journals (Sweden)

    Wenting Li

    2016-01-01

    Full Text Available The design and synthesis of selective and sensitive chemosensors for the quantification of environmentally and biologically important ionic species has attracted widespread attention. Amidochlorin p6 (ACP; an effective colorimetric and fluorescent probe for copper ions (Cu2+ in aqueous solution derived from methyl pheophorbide-a (MPa was designed and synthesized. A remarkable color change from pale yellow to blue was easily observed by the naked eye upon addition of Cu2+; and a fluorescence quenching was also determined. The research of fluorescent quenching of ACP-Cu2+ complexation showed the detection limit was 7.5 × 10−8 mol/L; which suggested that ACP can act as a high sensitive probe for Cu2+ and can be used to quantitatively detect low levels of Cu2+ in aqueous solution. In aqueous solution the probe exhibits excellent selectivity and sensitivity toward Cu2+ ions over other metal ions (M = Zn2+; Ni2+; Ba2+; Ag+; Co2+; Na+; K+; Mg2+; Cd2+; Pb2+; Mn2+; Fe3+; and Ca2+. The obvious change from pale yellow to blue upon the addition of Cu2+ could make it a suitable “naked eye” indicator for Cu2+.

  3. Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin

    Science.gov (United States)

    R. S., Aparna; J. S., Anjali Devi; John, Nebu; Abha, K.; S. S., Syamchand; George, Sony

    2018-06-01

    Hurdles to develop point of care diagnostic methods restrict the translation of progress in the health care sector from bench side to bedside. In this article a simple, cost effective fluorescent as well as colorimetric nanosensor was developed for the early and easy detection of hyperbilirubinemia. A stable, water soluble bovine serum albumin stabilised copper nanocluster (BSA CuNC) was used as the fluorescent probe which exhibited strong blue emission (404 nm) upon 330 nm excitation. The fluorescence of the BSA CuNC can be effectively quenched by the addition of bilirubin by the formation of copper-bilirubin complex. Meanwhile the copper-bilirubin complex resulted in an observable colour change from pale violet to green facilitating colorimetric detection. The prepared sensor displayed good selectivity and sensitivity over other co-existing molecules, and can be used for quantifying bilirubin with a detection limit down to 257 fM. Additionally, the as-prepared probe was coated on a paper strip to develop a portable paper strip sensor of bilirubin. Moreover, the method was successfully applied in real sample analysis and obtained promising result.

  4. A selectively rhodamine-based colorimetric probe for detecting copper(II) ion.

    Science.gov (United States)

    Zhang, Jiangang; Zhang, Li; Wei, Yanli; Chao, Jianbing; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan

    2014-11-11

    A novel rhodamine derivative 3-bromo-5-methylsalicylaldehyde rhodamine B hydrazone (BMSRH) has been synthesized by reacting rhodamine B hydrazide with 3-bromo-5-methylsalicylaldehyde and developed as a new colorimetric probe for the selective and sensitive detection of Cu2+. Addition of Cu2+ to the solution of BMSRH results in a rapid color change from colorless to red together with an obvious new band appeared at 552 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of BMSRH opened via coordination with Cu2+ in a 1:1 stoichiometry and their association constant is determined as 3.2×10(4) L mol(-1). Experimental results indicate that the BMSRH can provide a rapid, selective and sensitive response to Cu2+ with a linear dynamic range 0.667-240 μmol/L. Common interferent ions do not show any interference on the Cu2+ determination. It is anticipated that BMSRH can be a good candidate probe and has potential application for Cu2+ determination. The proposed probe exhibits the following advantages: a quick, simple and facile synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach.

    Science.gov (United States)

    Hurst, Sarah J; Han, Min Su; Lytton-Jean, Abigail K R; Mirkin, Chad A

    2007-09-15

    We have developed a novel competition assay that uses a gold nanoparticle (Au NP)-based, high-throughput colorimetric approach to screen the sequence selectivity of DNA-binding molecules. This assay hinges on the observation that the melting behavior of DNA-functionalized Au NP aggregates is sensitive to the concentration of the DNA-binding molecule in solution. When short, oligomeric hairpin DNA sequences were added to a reaction solution consisting of DNA-functionalized Au NP aggregates and DNA-binding molecules, these molecules may either bind to the Au NP aggregate interconnects or the hairpin stems based on their relative affinity for each. This relative affinity can be measured as a change in the melting temperature (Tm) of the DNA-modified Au NP aggregates in solution. As a proof of concept, we evaluated the selectivity of 4',6-diamidino-2-phenylindone (an AT-specific binder), ethidium bromide (a nonspecific binder), and chromomycin A (a GC-specific binder) for six sequences of hairpin DNA having different numbers of AT pairs in a five-base pair variable stem region. Our assay accurately and easily confirmed the known trends in selectivity for the DNA binders in question without the use of complicated instrumentation. This novel assay will be useful in assessing large libraries of potential drug candidates that work by binding DNA to form a drug/DNA complex.

  6. Indigo Carmine-Cu complex probe exhibiting dual colorimetric/fluorimetric sensing for selective determination of mono hydrogen phosphate ion and its logic behavior

    Science.gov (United States)

    Tavallali, Hossein; Deilamy-Rad, Gohar; Moaddeli, Ali; Asghari, Khadijeh

    2017-08-01

    A new selective probe based on copper complex of Indigo Carmine (IC-Cu2) for colorimetric, naked-eye, and fluorimetric recognition of mono hydrogen phosphate (MHP) ion in H2O/DMSO (4:1 v/v, 1.0 mmol L- 1 HEPES buffer solution pH 7.5) was developed. Detection limit of HPO42 - determination, achieved by fluorimetric and 3lorimetric method, are 0.071 and 1.46 μmol L- 1, respectively. Potential, therefore is clearly available in IC-Cu2 complex to detect HPO42 - in micromolar range via dual visible color change and fluorescence response. Present method shows high selectivity toward HPO42 - over other phosphate species and other anions and was successfully utilized for analysis of P2O5 content of a fertilizer sample. The results obtained by proposed chemosensor presented good agreement with those obtained the colorimetric reference method. INHIBIT and IMPLICATION logic gates operating at molecular level have been achieved using Cu2 + and HPO42 - as chemical inputs and UV-Vis absorbance signal as output.

  7. Indigo Carmine-Cu complex probe exhibiting dual colorimetric/fluorimetric sensing for selective determination of mono hydrogen phosphate ion and its logic behavior.

    Science.gov (United States)

    Tavallali, Hossein; Deilamy-Rad, Gohar; Moaddeli, Ali; Asghari, Khadijeh

    2017-08-05

    A new selective probe based on copper complex of Indigo Carmine (IC-Cu 2 ) for colorimetric, naked-eye, and fluorimetric recognition of mono hydrogen phosphate (MHP) ion in H 2 O/DMSO (4:1v/v, 1.0mmolL -1 HEPES buffer solution pH7.5) was developed. Detection limit of HPO 4 2- determination, achieved by fluorimetric and 3 lorimetric method, are 0.071 and 1.46μmolL -1 , respectively. Potential, therefore is clearly available in IC-Cu 2 complex to detect HPO 4 2- in micromolar range via dual visible color change and fluorescence response. Present method shows high selectivity toward HPO 4 2- over other phosphate species and other anions and was successfully utilized for analysis of P 2 O 5 content of a fertilizer sample. The results obtained by proposed chemosensor presented good agreement with those obtained the colorimetric reference method. INHIBIT and IMPLICATION logic gates operating at molecular level have been achieved using Cu 2+ and HPO 4 2- as chemical inputs and UV-Vis absorbance signal as output. Copyright © 2017. Published by Elsevier B.V.

  8. Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers

    Directory of Open Access Journals (Sweden)

    Huan Pang

    2012-11-01

    Full Text Available We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP using unmodified gold nanoparticles (AuNPs as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  9. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    Science.gov (United States)

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  10. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiu-Hua; Ling, Jian, E-mail: lingjian@ynu.edu.cn; Peng, Jun; Cao, Qiu-E., E-mail: qecao@ynu.edu.cn; Ding, Zhong-Tao; Bian, Long-Chun

    2013-10-10

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis.

  11. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    International Nuclear Information System (INIS)

    Yang, Xiu-Hua; Ling, Jian; Peng, Jun; Cao, Qiu-E.; Ding, Zhong-Tao; Bian, Long-Chun

    2013-01-01

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis

  12. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    Science.gov (United States)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  13. Colorimetric Detection of Some Highly Hydrophobic Flavonoids Using Polydiacetylene Liposomes Containing Pentacosa-10,12-diynoyl Succinoglycan Monomers

    Science.gov (United States)

    Yun, Deokgyu; Jeong, Daham; Cho, Eunae; Jung, Seunho

    2015-01-01

    Flavonoids are a group of plant secondary metabolites including polyphenolic molecules, and they are well known for antioxidant, anti-allergic, anti-inflammatory and anti-viral propertied. In general, flavonoids are detected with various non-colorimetric detection methods such as column liquid chromatography, thin-layer chromatography, and electrochemical analysis. For the first time, we developed a straightforward colorimetric detection system allowing recognition of some highly hydrophobic flavonoids such as alpha-naphthoflavone and beta-naphthoflavone, visually using 10,12-pentacosadiynoic acid (PCDA) derivatized with succinoglycan monomers isolated from Sinorhizobium meliloti. Besides changes in visible spectrum, we also demonstrate fluorescence changes using our detection system in the presence of those flavonoids. The succinoglycan monomers attached to PCDA molecules may function as an unstructured molecular capturer for some highly hydrophobic flavonoids by hydrophobic interactions, and transmit their molecular interactions as a color change throughout the PCDA liposome. PMID:26600071

  14. A High-Throughput, Precipitating Colorimetric Sandwich ELISA Microarray for Shiga Toxins

    Directory of Open Access Journals (Sweden)

    Andrew Gehring

    2014-06-01

    Full Text Available Shiga toxins 1 and 2 (Stx1 and Stx2 from Shiga toxin-producing E. coli (STEC bacteria were simultaneously detected with a newly developed, high-throughput antibody microarray platform. The proteinaceous toxins were immobilized and sandwiched between biorecognition elements (monoclonal antibodies and pooled horseradish peroxidase (HRP-conjugated monoclonal antibodies. Following the reaction of HRP with the precipitating chromogenic substrate (metal enhanced 3,3-diaminobenzidine tetrahydrochloride or DAB, the formation of a colored product was quantitatively measured with an inexpensive flatbed page scanner. The colorimetric ELISA microarray was demonstrated to detect Stx1 and Stx2 at levels as low as ~4.5 ng/mL within ~2 h of total assay time with a narrow linear dynamic range of ~1–2 orders of magnitude and saturation levels well above background. Stx1 and/or Stx2 produced by various strains of STEC were also detected following the treatment of cultured cells with mitomycin C (a toxin-inducing antibiotic and/or B-PER (a cell-disrupting, protein extraction reagent. Semi-quantitative detection of Shiga toxins was demonstrated to be sporadic among various STEC strains following incubation with mitomycin C; however, further reaction with B-PER generally resulted in the detection of or increased detection of Stx1, relative to Stx2, produced by STECs inoculated into either axenic broth culture or culture broth containing ground beef.

  15. Highly Sensitive Colorimetric Assay for Determining Fe3+ Based on Gold Nanoparticles Conjugated with Glycol Chitosan

    Directory of Open Access Journals (Sweden)

    Kyungmin Kim

    2017-01-01

    Full Text Available A highly sensitive and simple colorimetric assay for the detection of Fe3+ ions was developed using gold nanoparticles (AuNPs conjugated with glycol chitosan (GC. The Fe3+ ion coordinates with the oxygen atoms of GC in a hexadentate manner (O-Fe3+-O, decreasing the interparticle distance and inducing aggregation. Time-of-flight secondary ion mass spectrometry showed that the bound Fe3+ was coordinated to the oxygen atoms of the ethylene glycol in GC, which resulted in a significant color change from light red to dark midnight blue due to aggregation. Using this GC-AuNP probe, the quantitative determination of Fe3+ in biological, environmental, and pharmaceutical samples could be achieved by the naked eye and spectrophotometric methods. Sensitive response and pronounced color change of the GC-AuNPs in the presence of Fe3+ were optimized at pH 6, 70°C, and 300 mM NaCl concentration. The absorption intensity ratio (A700/A510 linearly correlated to the Fe3+ concentration in the linear range of 0–180 μM. The limits of detection were 11.3, 29.2, and 46.0 nM for tap water, pond water, and iron supplement tablets, respectively. Owing to its facile and sensitive nature, this assay method for Fe3+ ions can be applied to the analysis of drinking water and pharmaceutical samples.

  16. Distinction of Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi

    2011-01-01

    Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.

  17. Curcumin as a colorimetric and fluorescent chemosensor for selective recognition of fluoride ion

    Energy Technology Data Exchange (ETDEWEB)

    Wu Fangying, E-mail: fywu@ncu.edu.c [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China); Sun Meizhen [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China); Jiangxi Institute of Geological Survey, Nanchang, 330030 (China); Xiang Yanling [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China); Wu Yumei [Packaging Engineering Institute of Jinan University, Zhuhai 519070 (China); Tong, Du-Qiu [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China)

    2010-02-15

    The binding properties of curcumin with anions in acetonitrile were examined for the first time by UV-vis absorption and fluorescence spectroscopies. The results showed that curcumin highly and selectively responded to F{sup -} over other anions such as AcO{sup -}, H{sub 2}PO{sub 4}{sup -} and Cl{sup -} because of anionic complex formation via hydrogen bond. Curcumin gave rise to the red-shift of absorption spectra and its fluorescence was quenched with concomitant color change from yellow to purple upon addition of F{sup -}, which was detected by naked eyes. The addition of other anions such as AcO{sup -}, H{sub 2}PO{sub 4}{sup -}, HSO{sub 4}{sup -}, NO{sub 3}{sup -}, Cl{sup -} and Br{sup -} did not result in observable spectral change and solution color change. The binding constant between curcumin and F{sup -} was 2.0x10{sup 5} mol{sup -1} L and the recognizing mechanism was investigated as well.

  18. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid

    International Nuclear Information System (INIS)

    Tian, Kun; Siegel, Gene; Tiwari, Ashutosh

    2017-01-01

    The development of simple and cost-effective methods for the detection and treatment of Hg 2+ in the environment is an important area of research due to the serious health risk that Hg 2+ poses to humans. Colorimetric sensing based on the induced aggregation of nanoparticles is of great interest since it offers a low cost, simple, and relatively rapid procedure, making it perfect for on-site analysis. Herein we report the development of a simple colorimetric sensor for the selective detection and estimation of mercury ions in water, based on chitosan stabilized gold nanoparticles (AuNPs) and 2,6-pyridinedicarboxylic acid (PDA). In the presence of Hg 2+ , PDA induces the aggregation of AuNPs, causing the solution to change colors varying from red to blue, depending on the concentration of Hg 2+ . The formation of aggregated AuNPs in the presence of Hg 2+ was confirmed using transmission electron microscopy (TEM) and UV–Vis spectroscopy. The method exhibits linearity in the range of 300 nM to 5 μM and shows excellent selectivity towards Hg 2+ among seventeen different metal ions and was successfully applied for the detection of Hg 2+ in spiked river water samples. The developed technique is simple and superior to the existing techniques in that it allows detection of Hg 2+ using the naked eye and simple and rapid colorimetric analysis, which eliminates the need for sophisticated instruments and sample preparation methods. - Highlights: • A simple colorimetric method for detection of Hg 2+ in water was proposed. • Au nanoparticles and 2,6-pyridinedicarboxylic acid were used for sensing Hg 2+ . • Sensing mechanisms were demonstrated by TEM and UV–Visible measurements. • It showed the solution color changes from red to blue upon addition of Hg 2+ . • The method selectively detected Hg 2+ among seventeen different metal ions.

  19. Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer

    International Nuclear Information System (INIS)

    Soheili, Vahid; Taghdisi, Seyed Mohammad; Khayyat, Mohammad Hassanzadeh; Abnous, Khalil; Bazzaz, BiBi Sedigheh Fazly; Ramezani, Mohammad

    2016-01-01

    Aptamers specific for the antibiotic streptomycin were identified by a modified SELEX procedure that employs magnetic beads. After eight rounds of selection, twenty-six aptamers were identified and clustered into seven groups according to similarities in their sequences. The binding constant of three sequences from different groups were determined by colorimetric assays using unmodified gold nanoparticles (AuNPs). These most suitable aptamers were then truncated, and finally a 23-base sequence was identified that has the highest affinity (K_d = 132.3 nM) and selectivity. The assay was employed to analyze streptomycin residue in raw milk samples by ratiometric spectrophotometry at 520 and 660 nm, respectively. The analytical range extends from 180 to 1000 nM, and the LOD is 47.2 nM which is better than that of HPLC (4 μM). The interaction between aptamer and streptomycin was studied by molecular modeling. In our perception, this colorimetric assay provides a viable method for fast analysis of streptomycin in raw milk. (author)

  20. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.

    Science.gov (United States)

    Chi, Hong; Liu, Yan Jun; Wang, FuKe; He, Chaobin

    2015-09-16

    Uniform graphene oxide (GO) film for optical humidity sensing was fabricated by dip-coating technique. The resulting GO thin film shows linear optical shifts in the visible range with increase of humidity in the whole relative humidity range (from dry state to 98%). Moreover, GO films exhibit ultrafast sensing to moisture within 250 ms because of the unique atomic thinness and superpermeability of GO sheets. The humidity sensing mechanism was investigated using XRD and computer simulation. The ultrasensitive humidity colorimetric properties of GOs film may enable many potential applications such as disposable humidity sensors for packaging, health, and environmental monitoring.

  1. Mentha-Stabilized Silver Nanoparticles for High-Performance Colorimetric Detection of Al(III) in Aqueous Systems.

    Science.gov (United States)

    Sharma, Rekha; Dhillon, Ankita; Kumar, Dinesh

    2018-03-26

    The present paper reports a facile and selective colorimetric method for the detection of potential environmental and health hazardous metal ions using green synthesized silver nanoparticles (AgNPs). Here the organic functional groups present in the plant extract (Mentha arvensis) are used as reductants and stabilizers in the synthesis of AgNPs. They also provide a suitable binding site to the (Al(III)) analyte in the detection mechanism. The leaf extract of Mentha arvensis was used to synthesize AgNPs at room-temperature and at 80 °C. The AgNPs synthesized at 80 °C exhibit excellent selective colorimetric detection of Al(III). The as-synthesized AgNPs have been characterized, and the synthesis, stabilization of NPs and detection mechanism has also been illustrated by using UV-vis, XPS, FTIR, TEM, EDX, SEM, AAS, and TGA analytical tools and techniques. The selectivity of detection probe was supported by the reaction between probe and metal ions followed first-order kinetics having the highest value of the regression coefficient (R 2  = 0.99) for Al(III) and the analysis of thermodynamic parameters. The prepared sensor showed a lower limit of detection (LOD) of 1 nM (S/N = 3.2) in real water samples. The proposed method can be successfully utilized for the detection of Al(III) from both drinking and real water samples at the nanomolar level.

  2. Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin

    International Nuclear Information System (INIS)

    Chen, Zhanguang; Wang, Zhen; Chen, Xi; Xu, Haixiong; Liu, Jinbin

    2013-01-01

    In this contribution, novel chitosan-stabilized gold nanoparticles (AuNPs) were prepared by mixing chitosan with citrate-reductive AuNPs under appropriate conditions. The as-prepared chitosan-stabilized AuNPs were positively charged and highly stably dispersed in aqueous solution. They exhibited weak resonance light scattering (RLS) intensity and a wine red color. In addition, the chitosan-stabilized AuNPs were successfully utilized as novel sensitive probes for the detection of heparin for the first time. It was found that the addition of heparin induced a strong increase of RLS intensity for AuNPs and the color change from red to blue. The increase in RLS intensity and the color change of chitosan-stabilized AuNPs caused by heparin allowed the sensitive detection of heparin in the range of 0.2–60 μM (∼6.7 U/mL). The detection limit for heparin is 0.8 μM at a signal-to-noise ratio of 3. The present sensor for heparin detection possessed a low detection limit and wide linear range. Additionally, the proposed method was also applied to the detection of heparin in biological media with satisfactory results

  3. Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhanguang, E-mail: kqlu@stu.edu.cn; Wang, Zhen; Chen, Xi [Shantou University, Department of Chemistry (China); Xu, Haixiong [Shantou Central Hospital, Affiliated Shantou Hospital of SUN YAT-SEN University (China); Liu, Jinbin [University of Texasat Dallas, Department of Chemistry (United States)

    2013-09-15

    In this contribution, novel chitosan-stabilized gold nanoparticles (AuNPs) were prepared by mixing chitosan with citrate-reductive AuNPs under appropriate conditions. The as-prepared chitosan-stabilized AuNPs were positively charged and highly stably dispersed in aqueous solution. They exhibited weak resonance light scattering (RLS) intensity and a wine red color. In addition, the chitosan-stabilized AuNPs were successfully utilized as novel sensitive probes for the detection of heparin for the first time. It was found that the addition of heparin induced a strong increase of RLS intensity for AuNPs and the color change from red to blue. The increase in RLS intensity and the color change of chitosan-stabilized AuNPs caused by heparin allowed the sensitive detection of heparin in the range of 0.2-60 {mu}M ({approx}6.7 U/mL). The detection limit for heparin is 0.8 {mu}M at a signal-to-noise ratio of 3. The present sensor for heparin detection possessed a low detection limit and wide linear range. Additionally, the proposed method was also applied to the detection of heparin in biological media with satisfactory results.

  4. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kun; Siegel, Gene; Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu

    2017-02-01

    The development of simple and cost-effective methods for the detection and treatment of Hg{sup 2+} in the environment is an important area of research due to the serious health risk that Hg{sup 2+} poses to humans. Colorimetric sensing based on the induced aggregation of nanoparticles is of great interest since it offers a low cost, simple, and relatively rapid procedure, making it perfect for on-site analysis. Herein we report the development of a simple colorimetric sensor for the selective detection and estimation of mercury ions in water, based on chitosan stabilized gold nanoparticles (AuNPs) and 2,6-pyridinedicarboxylic acid (PDA). In the presence of Hg{sup 2+}, PDA induces the aggregation of AuNPs, causing the solution to change colors varying from red to blue, depending on the concentration of Hg{sup 2+}. The formation of aggregated AuNPs in the presence of Hg{sup 2+} was confirmed using transmission electron microscopy (TEM) and UV–Vis spectroscopy. The method exhibits linearity in the range of 300 nM to 5 μM and shows excellent selectivity towards Hg{sup 2+} among seventeen different metal ions and was successfully applied for the detection of Hg{sup 2+} in spiked river water samples. The developed technique is simple and superior to the existing techniques in that it allows detection of Hg{sup 2+} using the naked eye and simple and rapid colorimetric analysis, which eliminates the need for sophisticated instruments and sample preparation methods. - Highlights: • A simple colorimetric method for detection of Hg{sup 2+} in water was proposed. • Au nanoparticles and 2,6-pyridinedicarboxylic acid were used for sensing Hg{sup 2+}. • Sensing mechanisms were demonstrated by TEM and UV–Visible measurements. • It showed the solution color changes from red to blue upon addition of Hg{sup 2+}. • The method selectively detected Hg{sup 2+} among seventeen different metal ions.

  5. Development of a high-throughput colorimetric Zika virus infection assay.

    Science.gov (United States)

    Müller, Janis A; Harms, Mirja; Schubert, Axel; Mayer, Benjamin; Jansen, Stephanie; Herbeuval, Jean-Philippe; Michel, Detlef; Mertens, Thomas; Vapalahti, Olli; Schmidt-Chanasit, Jonas; Münch, Jan

    2017-04-01

    Zika virus (ZIKV) is an emerging pathogen that causes congenital infections which may result in birth defects, such as microcephaly. Currently, no approved treatment or vaccination is available. ZIKV can be readily detected in cell culture where virally infected cells are normally stained by specific antibodies. As ZIKV regularly causes a cytopathic effect, we were wondering whether this viral property can be used to quantitatively determine viral infectivity. We here describe the use of an 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide-(MTT)-based cell viability assay that allows to determine ZIKV-induced cell death. We show that this colorimetric assay quantifies ZIKV infection over a broad range of viral dilutions in both monkey and human cells. It allows to determine inhibitory activities of antivirals that block ZIKV or to define the neutralizing antibody titers of ZIKV antisera. This MTT-based ZIKV detection assay can be evaluated by naked eye or computational tools, has a broad linear range, does not require large equipment or costly reagents, and thus represents a promising alternative to antibody-based assays, in particular in resource-poor settings. We propose to use this simple, fast, and cheap method for quantification of ZIKV neutralizing antibodies and testing of antiviral compounds.

  6. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation.

    Science.gov (United States)

    Fan, Daoqing; Zhai, Qingfeng; Zhou, Weijun; Zhu, Xiaoqing; Wang, Erkang; Dong, Shaojun

    2016-11-15

    Herein, a gold nanoparticles (AuNPs) based label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) was constructed for the first time. Four bases (G-G mismatch) mismatched streptavidin aptamer (MSAA) was used to protect AuNPs from salt-induced aggregation and recognize Pt (II) specifically. Only in the presence of Pt (II), coordination occurs between G-G bases and Pt (II), leading to the activation of streptavidin aptamer. Streptavidin coated magnetic beads (MBs) were used as separation agent to separate Pt (II)-coordinated MSAA. The residual less amount of MSAA could not efficiently protect AuNPs anymore and aggregation of AuNPs will produce a colorimetric product. With the addition of Pt (II), a pale purple-to-blue color variation could be observed by the naked eye. A detection limit of 150nM and a linear range from 0.6μM to 12.5μM for Pt (II) could be achieved without any amplification. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Reaction-based Indicator displacement Assay (RIA) for the selective colorimetric and fluorometric detection of peroxynitrite† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03983a Click here for additional data file.

    Science.gov (United States)

    Sun, Xiaolong; Lacina, Karel; Ramsamy, Elena C.; Flower, Stephen E.; Fossey, John S.; Qian, Xuhong

    2015-01-01

    Using the self-assembly of aromatic boronic acids with Alizarin Red S (ARS), we developed a new chemosensor for the selective detection of peroxynitrite. Phenylboronic acid (PBA), benzoboroxole (BBA) and 2-(N,N-dimethylaminomethyl)phenylboronic acid (NBA) were employed to bind with ARS to form the complex probes. In particular, the ARS–NBA system with a high binding affinity can preferably react with peroxynitrite over hydrogen peroxide and other ROS/RNS due to the protection of the boron via the solvent-insertion B–N interaction. Our simple system produces a visible colorimetric change and on–off fluorescence response towards peroxynitrite. By coupling a chemical reaction that leads to an indicator displacement, we have developed a new sensing strategy, referred to herein as RIA (Reaction-based Indicator displacement Assay). PMID:28706677

  8. Sensitive and selective colorimetric detection of cadmium(II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole

    International Nuclear Information System (INIS)

    Wang, Ai-Jun; Feng, Jiu-Ju; Guo, Han; Zhang, Ming; Wang, Rui-Zhi; Zhou, Dan-Ling

    2013-01-01

    We have developed a simple, sensitive and selective colorimetric method for the detection of cadmium(II) (Cd 2+ ) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole. Organic solvents or additives are not required. It is found that Cd 2+ induces the aggregation of the modified Au-NPs via chelation, leading to a color change from red to blue. This change can be seen with bare eyes, and monitored by UV–vis spectroscopy, transmission electron microscopy and dynamic light scattering. The detection limit is 30 nM (at a signal-to-noise ratio of 3). The new approach was successfully applied to the detection of Cd 2+ in spiked samples of tap water and lake water, and the results agree well with those obtained by flame atomic absorption spectroscopy. (author)

  9. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  10. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kang, Fei; Xu, Kun; Hou, Xiangshu

    2015-01-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core–shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H 2 O 2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core–shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum. (paper)

  11. A colorimetric DET technique for the high-resolution measurement of two-dimensional alkalinity distributions in sediment porewaters

    DEFF Research Database (Denmark)

    Bennett, William W.; Welsh, David T.; Serriere, Antoine

    2015-01-01

    Measurements of porewater alkalinity are fundamental to the study of organic matter mineralization in sediments, which plays an essential role in the global cycles of carbon and nutrients. A new colorimetric diffusive equilibration in thin film (DET) technique is described for measuring two-dimen...

  12. A high throughput colorimetric assay of β-1,3-D-glucans by Congo red dye.

    Science.gov (United States)

    Semedo, Magda C; Karmali, Amin; Fonseca, Luís

    2015-02-01

    Mushroom strains contain complex nutritional biomolecules with a wide spectrum of therapeutic and prophylactic properties. Among these compounds, β-d-glucans play an important role in immuno-modulating and anti-tumor activities. The present work involves a novel colorimetric assay method for β-1,3-d-glucans with a triple helix tertiary structure by using Congo red. The specific interaction that occurs between Congo red and β-1,3-d-glucan was detected by bathochromic shift from 488 to 516 nm (>20 nm) in UV-Vis spectrophotometer. A micro- and high throughput method based on a 96-well microtiter plate was devised which presents several advantages over the published methods since it requires only 1.51 μg of polysaccharides in samples, greater sensitivity, speed, assay of many samples and very cheap. β-D-Glucans of several mushrooms (i.e., Coriolus versicolor, Ganoderma lucidum, Pleurotus ostreatus, Ganoderma carnosum, Hericium erinaceus, Lentinula edodes, Inonotus obliquus, Auricularia auricular, Polyporus umbellatus, Cordyseps sinensis, Agaricus blazei, Poria cocos) were isolated by using a sequence of several extractions with cold and boiling water, acidic and alkaline conditions and quantified by this microtiter plate method. FTIR spectroscopy was used to study the structural features of β-1,3-D-glucans in these mushroom samples as well as the specific interaction of these polysaccharides with Congo red. The effect of NaOH on triple helix conformation of β-1,3-D-glucans was investigated in several mushroom species. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Series of Fluorescent and Colorimetric Chemodosimeters for Selective Recognition of Cyanide Based on the FRET Mechanism.

    Science.gov (United States)

    Hua, Ying-Xi; Shao, Yongliang; Wang, Ya-Wen; Peng, Yu

    2017-06-16

    A series of fluorescence "turn-on" probes (PY, AN, NA, B1, and B2) have been developed and successfully applied to detect cyanide anions based on the Michael addition reaction and FRET mechanism. These probes demonstrated good selectivity, high sensitivity, and very fast recognition for CN - . In particular, the fluorescence response of probe NA finished within 3 s. Low limits of detection (down to 63 nM) are also obtained in these probes with remarkable fluorescence enhancement factors. In addition, fluorescence colors of these probes turned to blue, yellow, or orange upon sensing CN - . In UV-vis mode, all of them showed ratiometric response for CN - . 1 H NMR titration experiments and TDDFT calculations were taken to verify the mechanism of the specific reaction and fluorescence properties of the corresponding compounds. Moreover, silica gel plates with these probes were also fabricated and utilized to detect cyanide.

  14. A high-throughput colorimetric screening assay for terpene synthase activity based on substrate consumption.

    Directory of Open Access Journals (Sweden)

    Maiko Furubayashi

    Full Text Available Terpene synthases catalyze the formation of a variety of terpene chemical structures. Systematic mutagenesis studies have been effective in providing insights into the characteristic and complex mechanisms of C-C bond formations and in exploring the enzymatic potential for inventing new chemical structures. In addition, there is growing demand to increase terpene synthase activity in heterologous hosts, given the maturation of metabolic engineering and host breeding for terpenoid synthesis. We have developed a simple screening method for the cellular activities of terpene synthases by scoring their substrate consumption based on the color loss of the cell harboring carotenoid pathways. We demonstrate that this method can be used to detect activities of various terpene synthase or prenyltransferase genes in a high-throughput manner, irrespective of the product type, enabling the mutation analysis and directed evolution of terpene synthases. We also report the possibility for substrate-specific screening system of terpene synthases by taking advantage of the substrate-size specificity of C30 and C40 carotenoid pathways.

  15. Simple colorimetric methods for determination of sub-milligram amounts of ultra-high molecular weight polyethylene wear particles

    Czech Academy of Sciences Publication Activity Database

    Veselý, F.; Zolotarevova, E.; Špundová, M.; Kaftan, Filip; Šlouf, Miroslav; Entlicher, G.

    2012-01-01

    Roč. 8, č. 5 (2012), s. 1935-1938 ISSN 1742-7061 R&D Projects: GA MŠk 2B06096; GA MZd NT12229 Grant - others:GA ČR(CZ) GAP503/11/0163 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : joint replacement * polyethylene wear particles * wear particles determination * colorimetric methods Subject RIV: CC - Organic Chemistry Impact factor: 5.093, year: 2012

  16. MicroRNA-triggered, cascaded and catalytic self-assembly of functional ``DNAzyme ferris wheel'' nanostructures for highly sensitive colorimetric detection of cancer cells

    Science.gov (United States)

    Zhou, Wenjiao; Liang, Wenbin; Li, Xin; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2015-05-01

    The construction of DNA nanostructures with various sizes and shapes has significantly advanced during the past three decades, yet the application of these DNA nanostructures for solving real problems is still in the early stage. On the basis of microRNA-triggered, catalytic self-assembly formation of the functional ``DNAzyme ferris wheel'' nanostructures, we show here a new signal amplification platform for highly sensitive, label-free and non-enzyme colorimetric detection of a small number of human prostate cancer cells. The microRNA (miR-141), which is catalytically recycled and reused, triggers isothermal self-assembly of a pre-designed, G-quadruplex sequence containing hairpin DNAs into ``DNAzyme ferris wheel''-like nanostructures (in association with hemin) with horseradish peroxidase mimicking activity. These DNAzyme nanostructures catalyze an intensified color transition of the probe solution for highly sensitive detection of miR-141 down to 0.5 pM with the naked eye, and the monitoring of as low as 283 human prostate cancer cells can also, theoretically, be achieved in a colorimetric approach. The work demonstrated here thus offers new opportunities for the construction of functional DNA nanostructures and for the application of these DNA nanostructures as an effective signal amplification means in the sensitive detection of nucleic acid biomarkers.

  17. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury

    Science.gov (United States)

    Jarujamrus, Purim; Amatatongchai, Maliwan; Thima, Araya; Khongrangdee, Thatsanee; Mongkontong, Chakrit

    2015-05-01

    In this work, selective colorimetric sensors for simple and rapid detection of Hg(II) ions based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction were developed. The average diameter of synthesized AgNPs was 8.3 ± 1.4 nm which was characterized by transmission electron microscopy (TEM). The abrupt change in absorbance of the unmodified AgNPs was observed which progressively decreased and slightly shifted to the blue wavelength as the concentration of Hg(II) increased, indicating the oxidation of Ag(0) to Ag(I) occurred. It appears that the AgNPs were oxidized by Hg(II), resulting in disintegration of the AgNPs into smaller particles as well as mediating the reduction of Hg(II) to Hg(0) adsorbed onto the surface of AgNPs. The adsorption of Hg(0) resulted in the lack of sufficient charges on AgNPs surfaces due to the decrease in the surface coverage of negatively charged citrate molecules, which then leaded to enlargement of AgNPs. The calibration curve of this technique was demonstrated from 0.5 to 7 ppm (r2 = 0.995), the limit of detection (LOD) was 0.06 ppm (SDblank/slope of calibration curve) with the precision (RSD, n = 4) of 3.24-4.53. Interestingly, the results show a significant enhance in the Hg(II) analytical sensitivity when Cu(II) is doped onto the unmodified AgNPs, which improves the quantitative detection limit to 0.008 ppm. In addition, greater selectivity toward Hg(II) compared with the other metal ions tested was observed. Furthermore, the percentage recoveries of spiked drinking water, tap water and SRM1641d (mercury in water) were in acceptable range with a good precision (RSD) which were in agreement with the values obtained from graphite furnace atomic absorption spectrometer (GFAAS). The technique proposed in this study provides a rapid, simple, sensitive and selective detection method for Hg(II) in water samples.

  18. A novel cyanide-selective colorimetric and fluorescent chemosensor: First molecular security keypad lock based on phosphotungstic acid and CN{sup −} inputs

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, Hossein, E-mail: Tavallali@pnu.ac.ir; Deilamy-Rad, Gohar; Parhami, Abolfath; Hasanli, Nahid

    2014-02-15

    Highlights: • Our probe is commercially available with good photo stability and high quantum yield. • Both color and fluorescence change with long emission wavelength in aqueous media. • Characteristics of an ON–OFF–ON fluorescence switch. • The simple receptor for CN{sup -} detection with low detection limit (≪WHO). • Mimic the function of a security keypad lock on sequential addition of PTA and CN{sup −}. -- Abstract: Rhodamine B (Rh{sub B}) an available dye has been developed as novel and efficient colorimetric and fluorometric chemosensor for cyanide ions in an absolutely aqueous media. The UV–vis absorption and fluorescent emission titrations experiments have been employed to study the sensing process. Rh{sub B} could act as an efficient “ON–OFF” fluorescent response for phosphotungstic acid (H{sub 3}PW{sub 12}O{sub 40} or PTA) based on an ion associate process. Also (Rh{sub B}{sup +}){sub 3}·PTA{sup 3−} could operate as an “OFF–ON” fluorescent sensor for cyanide anions based on a ligand substitution process. It has been identified as highly sensitive probe for CN{sup −} which responds at 0.3 and 0.04 μmol L{sup −1} concentration levels by absorption and fluorescent method respectively. Depending upon the sequence of addition of PTA and CN{sup −} ions into the solution, Rh{sub B} could be as a molecular security keypad lock with PTA and CN{sup −} inputs. The ionic inputs to new fluorophore have been mimicked as a superimposed electronic molecular keypad lock. The results were compared successfully (>96%) with the data of a spectrophotometry approved method (EPA 9014-1) for cyanide ions.

  19. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  20. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Arthur J. Ragauskas

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  1. Multi-colorimetric sensor array for detection of illegal materials

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Boisen, Anja; Jakobsen, Mogens Havsteen

    2012-01-01

    The detection of low pressure illegal compounds is an important analytical problem which requires reliable, selective and sensitive detection methods which provide the highest level of confidence in the result. Therefore, to contribute in the successful development of the recognition technology...... and signal processing enhancements to sensing methods, recognition ability, data acquisition time and data processing algorithms are necessary. In this research we work towards the development of a rapid, easy in use, highly sensitive, specific (minimal false positives) sensor based on a colorimetric sensing...

  2. Combined Colorimetric and Gravimetric CMUT Sensor for Detection of Phenylacetone

    DEFF Research Database (Denmark)

    Mølgaard, Mathias Johannes Grøndahl; Laustsen, Milan; Thygesen, Ida Lysgaard

    2017-01-01

    The detection of phenylacetone is of interest as it is a common precursor for the synthesis of (meth)amphetamine. Resonant gravimetric sensors can be used to detect the mass and hereby the concentration of a gas while colorimetric arrays typically have an exceptional selectivity to the target...... analyte if the right colorimetric dyes are chosen. We present a sensor system consisting of a Capacitive Micromachined Ultrasonic Transducer (CMUT) and a colorimetric array for detection of phenylacetone. The CMUT is used as a resonant gravimetric gas sensor where the resonance frequency shift due to mass...

  3. Rapid colorimetric sensing of gadolinium by EGCG-derived AgNPs: the development of a nanohybrid bioimaging probe.

    Science.gov (United States)

    Singh, Rohit Kumar; Mishra, Sourav; Jena, Satyapriya; Panigrahi, Bijayananda; Das, Bhaskar; Jayabalan, Rasu; Parhi, Pankaj Kumar; Mandal, Dindyal

    2018-04-17

    Polyphenol functionalized silver nanoparticles (AgNPs) have been developed and demonstrated as colorimetric sensors for the selective detection of gadolinium. The newly obtained AgNP-Gd3+ conjugates exhibit high aqueous dispersibility and excitation dependent fluorescence emission. The conjugates offer multicolor bioimaging potential owing to their excellent luminescence properties.

  4. Highly sensitive colorimetric and fluorescent sensor for cyanazine based on the inner filter effect of gold nanoparticles

    International Nuclear Information System (INIS)

    Dong, Liang; Hou, Changjun; Yang, Mei; Fa, Huanbao; Wu, Huixiang; Shen, Caihong; Huo, Danqun

    2016-01-01

    Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP–CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.

  5. Highly sensitive colorimetric and fluorescent sensor for cyanazine based on the inner filter effect of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Hou, Changjun, E-mail: houcj@cqu.edu.cn; Yang, Mei [Chongqing University, Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering (China); Fa, Huanbao [Chongqing University, College of Chemistry and Chemical Engineering (China); Wu, Huixiang [Chongqing University, Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering (China); Shen, Caihong [Luzhou Laojiao Group Co.Ltd, National Engineering Research Center of Solid-State Brewing (China); Huo, Danqun, E-mail: huodq@cqu.edu.cn [Chongqing University, Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering (China)

    2016-06-15

    Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP–CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.

  6. Highly sensitive colorimetric and fluorescent sensor for cyanazine based on the inner filter effect of gold nanoparticles

    Science.gov (United States)

    Dong, Liang; Hou, Changjun; Yang, Mei; Fa, Huanbao; Wu, Huixiang; Shen, Caihong; Huo, Danqun

    2016-06-01

    Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP-CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.

  7. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.

    Science.gov (United States)

    Xie, Xiaoji; Xu, Wei; Liu, Xiaogang

    2012-09-18

    The discovery of the DNA-mediated assembly of gold nanoparticles was a great moment in the history of science; this understanding and chemical control enabled the rational design of functional nanomaterials as novel probes in biodetection. In contrast with conventional probes such as organic dyes, gold nanoparticles exhibit high photostability and unique size-dependent optical properties. Because of their high extinction coefficients and strong distance dependent optical properties, these nanoparticles have emerged over the past decade as a promising platform for rapid, highly sensitive colorimetric assays that allow for the visual detection of low concentrations of metal ions, small molecules, and biomacromolecules. These discoveries have deepened our knowledge of biological phenomena and facilitated the development of many new diagnostic and therapeutic tools. Despite these many advances and continued research efforts, current nanoparticle-based colorimetric detection systems still suffer from several drawbacks, such as limited sensitivity and selectivity. This Account describes the recent development of colorimetric assays based on protein enzyme-assisted gold nanoparticle amplification. The benefits of such detection systems include significantly improved detection sensitivity and selectivity. First, we discuss the general design of enzyme-modified nanoparticle systems in colorimetric assays. We show that a quantitative understanding of the unique properties of different enzymes is paramount for effective biological assays. We then examine the assays for nucleic acid detection based on different types of enzymes, including endonucleases, ligases, and polymerases. For each of these assays, we identify the underlying principles that contribute to the enhanced detection capability of nanoparticle systems and illustrate them with selected examples. Furthermore, we demonstrate that the combination of gold nanoparticles and specific enzymes can probe enzyme dynamics

  8. Passive Leak Detection Using Commercial Hydrogen Colorimetric Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rivkin, Carl [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Element One, Inc. (www.elem.com), a small business with in Boulder, CO, has been developing hydrogen detection technology based upon a highly selective colorimetric indicator. In its native state, the indicator pigment is a pale gray color, but becomes black upon exposure to hydrogen. The colorimetric change can be readily observed by the naked eye without the need for supplemental electronics or other hardware. Recently, the colorimetric indicator was integrated into a pliable, self-adhesive tape that can readily wrap around pneumatic fittings to serve as a hydrogen leak detector. A prototype version of the Element One indicator tape was tested within an NREL hydrogen system and successfully identified the unexpected presence of a small leak; a summary document for this case study is presented in Appendix 1. The tape was subsequently configured into 10-foot rolls as a product prototype that has just recently been commercialized and marketed under the tradename DetecTape(R). Figure 1 shows the commercial version of DetecTape along with an indicator sample in its native state and one that had been exposed to hydrogen. DetecTape is a self-adhesive silicone-based tape impregnated with a proprietary hydrogen-sensitive indicator based on transition metal oxides. A length of the tape can be cut from the roll and stretched by a factor of two or three times around a fitting. Due to the self-adhesive property of the tape, this provides a tight seal around the fitting. The seal is not hermetic, and is not intended to prevent the release of a leaking gas. However, a portion of the hydrogen leaking from a wrapped fitting will pass through the tape and react with the active indicator impregnated within the tape, thereby inducing blackening.

  9. Highly selective and reversible chemosensor for Pd(2+) detected by fluorescence, colorimetry, and test paper.

    Science.gov (United States)

    Wang, Mian; Liu, Xiaomei; Lu, Huizhe; Wang, Hongmei; Qin, Zhaohai

    2015-01-21

    A "turn-on" fluorescent and colorimetric chemosensor (RBS) for Pd(2+) has been designed and synthesized through introduction of sulfur as a ligand atom to Rhodamine B. RBS exhibits high selectivity (freedom from the interference of Hg(2+ )in particular) and sensitivity toward Pd(2+) with a detection limit as low as 2.4 nM. RBS is also a reversible sensor, and it can be made into test paper to detect Pd(2+) in pure water. Compared to the chemosensors that introduced phosphorus to Rhodamine to detect Pd(2+), RBS can be synthesized more simply and economically.

  10. A highly efficient dinuclear Cu(II) chemosensor for colorimetric and fluorescent detection of cyanide in water

    Science.gov (United States)

    Rhaman, Md. Mhahabubur; Alamgir, Azmain; Wong, Bryan M.; Powell, Douglas R.

    2017-01-01

    A novel dinuclear copper chemosensor selectively binds cyanide over a wide range of inorganic anions, enabling it to detect cyanide in water up to 0.02 ppm which is 10 times lower than the EPA standard for drinking water. PMID:28217299

  11. Colorimetric Sensor Array for White Wine Tasting

    Directory of Open Access Journals (Sweden)

    Soo Chung

    2015-07-01

    Full Text Available A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2 for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  12. Colorimetric Sensor Array for White Wine Tasting.

    Science.gov (United States)

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-07-24

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  13. Enamel Mineral Content Changes After Bleaching With High and Low Hydrogen Peroxide Concentrations: Colorimetric Spectrophotometry and Total Reflection X-ray Fluorescence Analyses.

    Science.gov (United States)

    Pinto, Avd; Bridi, E C; Amaral, Flb; França, Fmg; Turssi, C P; Pérez, C A; Martinez, E F; Flório, F M; Basting, R T

    The purpose of this study was to evaluate the calcium (Ca) and phosphorous (P) content in enamel bleached with high and low concentrations of hydrogen peroxide (HP) using Total Reflection X-Ray Fluorescence (TXRF) and colorimetric spectrophotometry (SPEC). Forty-eight sound human third molars were used. Their roots were embedded in polystyrene resin and immersed for seven days in an artificial saliva solution. Then they were distributed into six groups to receive the bleaching treatments. The agents of high HP concentration (for in-office use) evaluated were Whiteness HP Maxx/FGM (35% HP), Whiteness HP Blue/FGM (35% HP, 2% calcium gluconate), Pola Office+/SDI (37.5% HP, 5% potassium nitrate), and Opalescence Boost/Ultradent (38% HP, 1.1% ion fluoride, 3% potassium nitrate); these agents were applied to enamel in three sessions. The agents of low HP concentration (for home use) evaluated were Pola Day/SDI (9.5% HP) and White Class 10%/FGM (10% HP, potassium nitrate, calcium, fluoride), and these agents were applied for 14 days. Enamel microbiopsies were evaluated by TXRF and SPEC analysis before the bleaching treatment (baseline), during the treatment, and 14 days after the end of the treatment. For TXRF, the Kruskal-Wallis test showed that Ca and P were not influenced by agent (p>0.05). For SPEC, Pola Office+, Opalescence Boost, Pola Day, and White Class 10% caused a decrease of Ca over time; there was a significant decrease of P over time to Pola Office+ and White Class 10%. The Spearman test showed no correlation between the Ca (p=0.987; r 2 =-0.020) and P (p=0.728, r 2 =0.038) obtained by SPEC and TXRF. For TXRF and SPEC, changes in Ca and P during bleaching occurred independently of the HP concentration used.

  14. Charge Transfer Based Colorimetric Detection of Silver Ion

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Kim, Kwang Seob; Choi, Soon Kyu; Oh, Jinho; Lee, Jae Wook [Dong-A Univ., Busan (Korea, Republic of)

    2014-05-15

    We have demonstrated the colorimetric chemosensor for detection of Ag{sup +} via formation of nanoparticles which is based on the intramolecular CT interaction between the electron-rich (2,6-dialkoxynaphthalene; Np) moiety and the electron-deficient (methyl viologen; MV{sup 2+}) moiety of a single sensor molecule. Under irradiation of light, Ag{sup +} was reduced to very small silver nanoparticle by CT interaction in the presence of OEGs as flexible recognition moiety of Ag{sup +} and stabilizer for Ag nanoparticles, thus Ag nanoparticles resulted to reddish brown in the color change of sensor solution, gradually. Therefore, the charge-transfer interaction between an electron-deficient and an electron-rich units existing at a sensor molecule can be regarded as a new and efficient method to construct various colorimetric chemosensors. Donor.acceptor interactions or charge transfer (CT) interactions are an important class of non-covalent interactions and have been widely exploited in self-assembling systems. Beyond molecular chemistry, supramolecular chemistry aims at constituting highly complex, functional chemical systems from components held together by intermolecular forces. Chemosensors are the molecules of abiotic origin that bind selectively and reversibly with the analyte with concomitant change in one or more properties of the system. The recognition and signaling of ionic and neutral species of varying complexity is one of the most intensively studied areas of contemporary supramolecular chemistry.

  15. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics.

    Science.gov (United States)

    Tang, Longhua; Li, Jinghong

    2017-07-28

    Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.

  16. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    Science.gov (United States)

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  17. Novel colorimetric sensor for oral malodour

    Energy Technology Data Exchange (ETDEWEB)

    Alagirisamy, Nethaji; Hardas, Sarita S. [Hindustan Unilever Research Center, 64 Main Road, Whitefield, Bangalore 560066 (India); Jayaraman, Sujatha, E-mail: sujatha.jayaraman@unilever.com [Hindustan Unilever Research Center, 64 Main Road, Whitefield, Bangalore 560066 (India)

    2010-02-19

    Volatile sulphur compounds are the primary constituents of oral malodour. Quantitative tools for the detection of oral malodour are beneficial to evaluate the intensity of malodour, analyse its causes and monitor the effectiveness of customized treatments. We have developed an objective, cost effective, do-it-yourself colorimetric sensor for oral malodour quantification. The sensor consisted of a sensing solution, a gas sampling unit for collecting a known volume of mouth air and a photometric detector. The sensing solution was iodine and the depletion of iodine on reaction with hydrogen sulphide was detected colorimetrically using starch. The detection limit of the sensor is 0.05 {mu}g L{sup -1} of hydrogen sulphide, which is fit-for-purpose for oral malodour detection in healthy subjects as well as halitosis patients. Volatile sulphur compounds in mouth air were quantified in healthy human volunteers using this portable sensor and the detected levels were in the range of 0.2-0.4 {mu}g L{sup -1}. There was a good correlation between the VSC levels detected by the colorimetric sensor and halimeter (R{sup 2} = 0.934). The developed sensor can be easily fabricated in the laboratory, and it shows high potential to be used as a clinical evaluation tool for oral malodour assessments.

  18. Novel colorimetric sensor for oral malodour

    International Nuclear Information System (INIS)

    Alagirisamy, Nethaji; Hardas, Sarita S.; Jayaraman, Sujatha

    2010-01-01

    Volatile sulphur compounds are the primary constituents of oral malodour. Quantitative tools for the detection of oral malodour are beneficial to evaluate the intensity of malodour, analyse its causes and monitor the effectiveness of customized treatments. We have developed an objective, cost effective, do-it-yourself colorimetric sensor for oral malodour quantification. The sensor consisted of a sensing solution, a gas sampling unit for collecting a known volume of mouth air and a photometric detector. The sensing solution was iodine and the depletion of iodine on reaction with hydrogen sulphide was detected colorimetrically using starch. The detection limit of the sensor is 0.05 μg L -1 of hydrogen sulphide, which is fit-for-purpose for oral malodour detection in healthy subjects as well as halitosis patients. Volatile sulphur compounds in mouth air were quantified in healthy human volunteers using this portable sensor and the detected levels were in the range of 0.2-0.4 μg L -1 . There was a good correlation between the VSC levels detected by the colorimetric sensor and halimeter (R 2 = 0.934). The developed sensor can be easily fabricated in the laboratory, and it shows high potential to be used as a clinical evaluation tool for oral malodour assessments.

  19. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing

    Directory of Open Access Journals (Sweden)

    Idelma A. A. Terra

    2017-12-01

    Full Text Available The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can be obtained by the electrospinning technique, and further functionalized with optically active chromophores such as dyes, conjugated polymers, carbon-based nanomaterials and nanoparticles, in order to produce fluorescent and colorimetric nanofibers. In this review we survey recent investigations reporting the use of optically active electrospun nanofibers in sensors aiming at the specific detection of heavy metals using colorimetry and fluorescence methods. The examples given in this review article provide sufficient evidence of the potential of optically electrospun nanofibers as a valid approach to fabricate highly selective and sensitive optical sensors for fast and low-cost detection of heavy metals.

  20. Electrospun nanofiber based colorimetric probe for rapid detection of Fe{sup 2+} in water

    Energy Technology Data Exchange (ETDEWEB)

    Ondigo, D.A. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Tshentu, Z.R. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth, 6031 (South Africa); Torto, N., E-mail: N.Torto@ru.ac.za [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa)

    2013-12-04

    Graphical abstract: -- Highlights: •Colorimetric probe for the detection of Fe{sup 2+} was developed. •Polymeric electrospun nanofibers were used as host for the signaling reagent. •The functionalized electrospun nanofibers exhibited a selective color change in the presence of Fe{sup 2+}. •The mechanism was based on spin crossover (SCO) from high spin Fe{sup 2+} to low spin Fe{sup 2+} upon interaction with the embedded ligand. -- Abstract: An imidazole derivative, 2-(2′-pyridyl)imidazole (PIMH), was developed as a colorimetric probe for the qualitative analysis of Fe{sup 2+} in aqueous solution. PIMH was then used to post-functionalize poly(vinylbenzyl chloride) (PVBC) nanofibers after electrospinning so as to afford a solid state colorimetric probe. Upon treatment with Fe{sup 2+} the probe displayed a distinctive color change both in liquid and solid platforms. The linear dynamic range for the colorimetric determination of Fe{sup 2+} was 0.0988–3.5 μg mL{sup −1}. The ligand showed a high chromogenic selectivity for Fe{sup 2+} over other cations with a detection limit of 0.102 μg mL{sup −1} in solution (lower than the WHO drinking water guideline limit of 2 mg L{sup −1}), and 2 μg mL{sup −1} in the solid state. The concentration of Fe{sup 2+} in a certified reference material (Iron, Ferrous, 1072) was found to be 2.39 ± 0.01 mg L{sup −1}, which was comparable with the certified value of 2.44 ± 0.12 mg L{sup −1}. Application of the probe to real samples spiked with Fe{sup 2+} achieved recoveries of over 97% confirming accuracy of the method and its potential for on-site monitoring.

  1. Colorimetric Chemical Differentiation and Detection of Phosphorus in Eutrophic and High Particulate Waters: Advantages of a New Monitoring Approach

    Directory of Open Access Journals (Sweden)

    Lisa Felgentreu

    2018-06-01

    Full Text Available Phosphorus (P is a key factor forcing eutrophication in limnic and marine systems, and all monitoring programs for water quality accordingly include P determinations. However, traditional monitoring does not allow an analysis of the different components involved in the P cycle taking place in the water column. Nonetheless, the implementation of measures addressing eutrophication requires a full understanding of the processes involved in the transformation and transport of P, in all its chemical forms. In this study, the P categories present in a river and its estuary in northern Germany, which discharge into the Baltic Sea, were characterized. Using the molybdenum blue method we found that the classification of P into the traditional fractions (DIP, DOP, POP applied in the ocean cannot be applied to turbid waters such as rivers because interferences between the fractions seems to occur. Therefore a new nomenclature has been introduced. In addition to total phosphorus (TP and dissolved molybdate-reactive phosphorus (DRP; previously referred to as inorganic phosphorus, dissolved non-molybdate-reactive phosphorus (DNP, particulate molybdatereactive phosphorus (PRP, and particulate non-molybdate-reactive phosphorus (PNP were distinguished. The high spatial and temporal variations in the proportions of these forms with respect to the TP concentration well-demonstrate the complexity of the P cycle and the involved P fractions and emphasize the need for expanded monitoring approach. The potential of eutrophication could be underestimated if not all P categories were considered. With the new operational nomenclature the common and standardized molybdenum blue reaction could be used to implement the analysis of various P components into regular monitoring programs.

  2. A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayaz Ahmed, Khan Behlol; P, Suresh Kumar; Veerappan, Anbazhagan, E-mail: anbazhagan@scbt.sastra.edu

    2016-09-15

    Herein, we report a laboratory convenient method for the preparation of blue color emitting fluorescent carbon dots (C-dots) in 60 min by boiling the alkaline solution of pectin. The C-dots derived from pectin detects selectively silver ion by forming silver nanoparticles (AgNPs) without any irradiation or heating or additional reducing agents. As prepared AgNPs appears yellow in color and showed the characteristic surface plasmon resonance maximum at 410 nm. Transmission electron microscopy (TEM) revealed crystalline, spherical AgNPs with size range from 10–15 nm. Cyclic voltammetry study revealed that the lower reduction potential of C-dots than that of silver ion favors the reduction of Ag{sup +} to Ag°. Electrochemical impedance spectroscopy showed the charge transfer value for the redox reaction of C-dots as 200 Ωcm{sup 2}. In the presence of Ag{sup +}, C-dots fluorescence emission was turned from blue to cyan to green to colorless, accompanying the quenching and red shift in emission maximum at 450 nm. Interference study clearly showed that the C-dots have high preference for Ag{sup +} ion than the other interfering metal ions. The proposed sensor system selectively senses Ag{sup +} ion in water at micromolar concentration and also offers an easy procedure to prepare AgNPs in the presence of other interfering metal ions. - Highlights: • Blue color emitting C-dots was prepared by boiling alkaline pectin solution. • C-dots sense silver ion at micromolar concentration. • C-dots recognize silver ion in the presence of interfering metal ions. • Reduction potential of C-dots was estimated by cyclic voltammeter as – 0.2 V.

  3. Emergency First Responders' Experience with Colorimetric Detection Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sandra L. Fox; Keith A. Daum; Carla J. Miller; Marnie M. Cortez

    2007-10-01

    Nationwide, first responders from state and federal support teams respond to hazardous materials incidents, industrial chemical spills, and potential weapons of mass destruction (WMD) attacks. Although first responders have sophisticated chemical, biological, radiological, and explosive detectors available for assessment of the incident scene, simple colorimetric detectors have a role in response actions. The large number of colorimetric chemical detection methods available on the market can make the selection of the proper methods difficult. Although each detector has unique aspects to provide qualitative or quantitative data about the unknown chemicals present, not all detectors provide consistent, accurate, and reliable results. Included here, in a consumer-report-style format, we provide “boots on the ground” information directly from first responders about how well colorimetric chemical detection methods meet their needs in the field and how they procure these methods.

  4. Ultrasensitive colorimetric detection of Cu2+ ion based on catalytic oxidation of L-cysteine.

    Science.gov (United States)

    Yin, Kun; Li, Bowei; Wang, Xiaochun; Zhang, Weiwei; Chen, Lingxin

    2015-02-15

    As an essential element, copper ion (Cu(2+)) plays important roles in human beings for its participation in diverse metabolic processes as a cofactor and/or a structural component of enzymes. However, excessive uptake of Cu(2+) ion gives rise to the risk of certain diseases. So, it is important to develop simple ways to monitor and detect Cu(2+) ion. In this study, a simple, facile colorimetric sensor for the ultrasensitive determination of Cu(2+) ion was developed based on the following principle: L-cysteine and 1-chloro-2,4-dinitrobenzene (CDNB) could be conjugated to form the yellow product 2,4-dinitrophenylcysteine (DNPC), which was measurable at 355nm; however, upon addition of Cu(2+) ion, the absorbance of DNPC would be decreased owing to the Cu(2+) ion catalytic oxidation of L-cysteine to L-cystine in the presence of O2. Thus, the colorimetric detection of Cu(2+) ion could be achieved. The optimal pH, buffer, temperature and incubation time for the colorimetric sensor were obtained of pH 6.8 in 0.1M HEPES solution, 90 °C and 50 min, respectively. A good linearity within the range of 0.8-10 nM (r = 0.996) was attained, with a high detectability up to 0.5nM. Analyses of Cu(2+) ion in drinking water, lake water, seawater and biological samples were carried out and the method performances were found to agree well with that obtained by ICP-MS. The developed simple colorimetric sensor proved applicable for Cu(2+) ion determination in real samples with high sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Visual and colorimetric methods for rapid determination of total tannins in vegetable raw materials

    Directory of Open Access Journals (Sweden)

    S. P. Kalinkina

    2016-01-01

    Full Text Available The article is dedicated to the development of rapid colorimetric method for determining the amount of tannins in aqueous extracts of vegetable raw materials. The sorption-based colorimetric test is determining sorption tannins polyurethane foam, impregnated of FeCl3, receiving on its surface painted in black and green color of the reaction products and the determination of their in sorbent matrix. Selectivity is achieved by determining the tannins specific interaction of polyphenols with iron ions (III. The conditions of sorption-colorimetric method: the concentration of ferric chloride (III, impregnated in the polyurethane foam; sorbent mass in the analytical cartridge; degree of loading his agent; the contact time of the phases. color scales have been developed for the visual determination of the amount of tannins in terms of gallic acid. Spend a digitized image obtained scales using computer program “Sorbfil TLC”, excluding a subjective assessment of the intensity of the color scale of the test. The results obtained determine the amount of tannins in aqueous extracts of vegetable raw rapid method using tablets and analytical cartridges. The results of the test determination of tannins with visual and densitometric analytical signal registration are compared to known methods. Spend a metrological evaluation of the results of determining the amount of tannins sorption rapid colorimetric methods. Time visual and densitometric rapid determination of tannins, taking into account the sample preparation is 25–30 minutes, the relative error does not exceed 28 %. The developed test methods for quantifying the content of tannins allow to exclude the use of sophisticated analytical equipment, carry out the analysis in non-laboratory conditions do not require highly skilled personnel.

  6. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules.

    Science.gov (United States)

    Wang, Ying; Zhu, Yingjing; Binyam, Atsebeha; Liu, Misha; Wu, Yinan; Li, Fengting

    2016-12-15

    A label-free sensing strategy based on the enzyme-mimicking activity of MOF was demonstrated for colorimetric detection of biomolecules. Firstly obvious blue color was observed due to the high efficiency of peroxidase-like catalytic activity of Fe-MIL-88A (an ion-based MOF material) toward 3,3',5,5'-tetramethylbenzidine (TMB). Then in the presence of target biomolecule and corresponding aptamer, the mimetic activity of Fe-MIL-88A can be strongly inhibited and used directly to realize the colorimetric detection. On the basis of the interesting findings, we designed a straightforward, label-free and sensitive colorimetric method for biomolecule detection by using the enzyme mimetic property of MOF coupling with molecular recognition element. Compared with the existed publications, our work breaks the routine way by setting up an inorganic-organic MOF-aptamer hybrid platform for colorimetric determination of biomolecules, expanding the targets scope from H2O2 or glucose to biomolecules. As a proof of concept, thrombin and thrombin aptamer was used as a model analyte. The limit of detection of 10nM can be achieved with naked eyes and ultrahigh selectivity of thrombin toward numerous interfering substances with 10-fold concentration was demonstrated significantly. Of note, the method was further applied for the detection of thrombin in human serum samples, showing the results in agreement with those values obtained in an immobilization buffer by the colorimetric method. This inorganic-organic MOF-aptamer sensing strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interests. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Colorimetric characterization of LED luminaires

    International Nuclear Information System (INIS)

    Costa, C L M; Vieira, R R; Pereira, R C; Silva, P V M; Oliveira, I A A; Sardinha, A S; Viana, D D; Barbosa, A H; Souza, L P; Alvarenga, A D

    2015-01-01

    The Optical Metrology Division of Inmetro – National Institute of Metrology, Quality and Technology has recently started the colorimetric characterization of lamps by implementing Correlated Color Temperature (CCT) and Color Rendering Index (CRI) measurements of incandescent lamps, followed by the CFL, and LED lamps and luminaires. Here we present the results for the verification of the color characterization of samples of SSL luminaires for public as well as indoor illumination that are sold in Brazil

  8. Electrospun fibre colorimetric probe based on gold nanoparticles for ...

    African Journals Online (AJOL)

    2014-11-20

    Nov 20, 2014 ... pump operated at a flow rate of 0.300 mℓ/h and a high-voltage power supply with a ..... Y (2012) A simple colorimetric sensor based on anti-aggregation of ... inside polystyrene domains dispersed in an epoxy matrix. Eur.

  9. High Entropy Random Selection Protocols

    NARCIS (Netherlands)

    H. Buhrman (Harry); M. Christandl (Matthias); M. Koucky (Michal); Z. Lotker (Zvi); B. Patt-Shamir; M. Charikar; K. Jansen; O. Reingold; J. Rolim

    2007-01-01

    textabstractIn this paper, we construct protocols for two parties that do not trust each other, to generate random variables with high Shannon entropy. We improve known bounds for the trade off between the number of rounds, length of communication and the entropy of the outcome.

  10. High temperature solar selective coatings

    Science.gov (United States)

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  11. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinyan; Chen, Shu, E-mail: chenshumail@gmail.com; Tang, Jian; Xiong, Yuan; Long, Yunfei, E-mail: l_yunfei927@163.com

    2014-05-01

    Highlights: • A new colorimetric iodide detection strategy based on triangular Ag nanoplate. • Sodium thiosulfate performed as a sensitizer. • Formation of insoluble AgI on the surface of Ag nanoplate. • This method has the advantages of good selectivity and high sensitivity. Abstract: A colorimetric method for the recognition and sensing of iodide ions (I⁻) has been developed by utilizing the reactions between triangular silver nanoplates (TAg-NPs) and I⁻ in the presence of sodium thiosulfate (Na₂S₂O₃). Specifically, I⁻ together with Na₂S₂O₃ can induce protection of TAg-NPs owing to the formation of insoluble AgI, as confirmed by the high-resolution transmission electron microscopy (HRTEM). In the absence of Na₂S₂O₃, the etching reactions on TAg-NPs were observed not only by I⁻ but also other halides ions. The Na₂S₂O₃ plays as a sensitizer in this system, which improved the selectivity and sensitivity. The desired colorimetric detection can be achieved by measuring the change of the absorption peak wavelength corresponding to localized surface plasmon resonance (LSPR) with UV–vis spectrophotometer or recognized by naked eye observation. The results show that the shift of the maximum absorption wavelength (Δλ) of the TAg-NPs/Na₂S₂O₃/I⁻ mixture was proportional to the concentration of I⁻ in the range 1.0 × 10⁻⁹–1.0 × 10⁻⁶ mol L⁻¹. Moreover, no other ions besides I⁻ can induce an eye discernible color change as low as 1.0 × 10⁻⁷ mol L⁻¹. Finally, this method was successfully applied for I⁻ determination in kelp samples.

  12. Highly sensitive optical chemosensor for the detection of Cu using a ...

    Indian Academy of Sciences (India)

    Administrator

    Highly sensitive colorimetric chemosensor molecule RHN for selective detection of Cu. 2+ in ... colour development against the colourless blank during the sensing event, a feature that would facilitate ... ever reported, much attention has been.

  13. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.

    Science.gov (United States)

    Zhang, Zhiyang; Wang, Han; Chen, Zhaopeng; Wang, Xiaoyan; Choo, Jaebum; Chen, Lingxin

    2018-08-30

    Plasmonic colorimetric sensors have emerged as a powerful tool in chemical and biological sensing applications due to the localized surface plasmon resonance (LSPR) extinction in the visible range. Among the plasmonic sensors, the most famous sensing mode is the "aggregation" plasmonic colorimetric sensor which is based on plasmon coupling due to nanoparticle aggregation. Herein, this review focuses on the newly-developing plasmonic colorimetric sensing mode - the etching or the growth of metal nanoparticles induces plasmon changes, namely, "non-aggregation" plasmonic colorimetric sensor. This type of sensors has attracted increasing interest because of their exciting properties of high sensitivity, multi-color changes, and applicability to make a test strip. Of particular interest, the test strip by immobilization of nanoparticles on the substrate can avoid the influence of nanoparticle auto-aggregation and increase the simplicity in storage and use. Although there are many excellent reviews available that describe the advance of plasmonic sensors, limited attention has been paid to the plasmonic colorimetric sensors based on etching or growth of metal nanoparticles. This review highlights recent progress on strategies and application of "non-aggregation" plasmonic colorimetric sensors. We also provide some personal insights into current challenges associated with "non-aggregation" plasmonic colorimetric sensors and propose future research directions. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Colorimetric gold nanoparticles-based aptasensors

    Directory of Open Access Journals (Sweden)

    Rezavn Yazdian-Robati

    2018-01-01

    Full Text Available Recognition of different agents including chemical and biological plays important role in forensic, biomedical and environmentalfield.In recent decades, nanotechnology and nano materials had a high impact on development of sensors. Using  nanomaterials in construction of biosensors can effectively improve the Sensitivity and other features of biosensors. Different type of nanostructures including nanotubes, nanodiamonds, thin films ,nanorods, nanoparticles(NP, nanofibers andvarious clusters have been explored and applied in construction of biosensors. Among nanomaterials mentioned above, gold nanoparticle (GNPas a new class of unique fluorescence quenchers, is receiving significant attention in developing of optical biosensors because of their unique physical, chemical and biological properties. In this mini review, we discussed the use of GNPs in construction of colorimetric aptasensorsas a class of optical sensors for detection of antibiotics, toxins and infection diseases.

  15. How High School Students Select a College.

    Science.gov (United States)

    Gilmour, Joseph E., Jr.; And Others

    The college selection process used by high school students was studied and a paradigm that describes the process was developed, based on marketing theory concerning consumer behavior. Primarily college freshmen and high school seniors were interviewed, and a few high school juniors and upper-level college students were surveyed to determine…

  16. Silver nanoparticles-based colorimetric array for the detection of Thiophanate-methyl

    Science.gov (United States)

    Zheng, Mingda; Wang, Yingying; Wang, Chenge; Wei, Wei; Ma, Shuang; Sun, Xiaohan; He, Jiang

    2018-06-01

    A simple and selective colorimetric sensor based on citrate capped silver nanoparticles (Cit-AgNPs) is proposed for the detection of Thiophanate-methyl (TM) with high sensitivity and selectivity. The method based on the color change of Cit-AgNPs from yellow to cherry red with the addition of TM to Cit-AgNPs that caused a red-shift on the surface plasmon resonance (SPR) band from 394 nm to 525 nm due to the hydrogen-bonding and substitution. The density functional theory (DFT) method was also calculated the interactions between the TM and citrate ions. Under the optimized conditions, a linear relationship between the absorption ratio (A525nm/A394nm) and TM concentration was found in the range of 2-100 μM with correlation coefficient (R2) of 0.988. The detection limit of TM was 0.12 μM by UV-vis spectrometer. Moreover, the applicability of colorimetric sensor is successfully verified by the detection of TM in environmental samples with good recoveries.

  17. Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection.

    Science.gov (United States)

    Tseng, Shao-Chin; Yu, Chen-Chieh; Wan, Dehui; Chen, Hsuen-Li; Wang, Lon Alex; Wu, Ming-Chung; Su, Wei-Fang; Han, Hsieh-Cheng; Chen, Li-Chyong

    2012-06-05

    Convenient, rapid, and accurate detection of chemical and biomolecules would be a great benefit to medical, pharmaceutical, and environmental sciences. Many chemical and biosensors based on metal nanoparticles (NPs) have been developed. However, as a result of the inconvenience and complexity of most of the current preparation techniques, surface plasmon-based test papers are not as common as, for example, litmus paper, which finds daily use. In this paper, we propose a convenient and practical technique, based on the photothermal effect, to fabricate the plasmonic test paper. This technique is superior to other reported methods for its rapid fabrication time (a few seconds), large-area throughput, selectivity in the positioning of the NPs, and the capability of preparing NP arrays in high density on various paper substrates. In addition to their low cost, portability, flexibility, and biodegradability, plasmonic test paper can be burned after detecting contagious biomolecules, making them safe and eco-friendly.

  18. Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature.

    Science.gov (United States)

    Liu, Dingbin; Qu, Weisi; Chen, Wenwen; Zhang, Wei; Wang, Zhuo; Jiang, Xingyu

    2010-12-01

    We provide a highly sensitive and selective assay to detect Hg(2+) in aqueous solutions using gold nanoparticles modified with quaternary ammonium group-terminated thiols at room temperature. The mechanism is the abstraction of thiols by Hg(2+) that led to the aggregation of nanoparticles. With the assistance of solar light irradiation, the detection limit can be as low as 30 nM, which satisfies the guideline concentration of Hg(2+) in drinking water set by the WHO. In addition, the dynamic range of detection is wide (3 × 10(-8)-1 × 10(-2) M). This range, to our best knowledge, is the widest one that has been reported so far in gold nanoparticle (AuNP)-based assays for Hg(2+).

  19. Palindromic Molecule Beacon-Based Cascade Amplification for Colorimetric Detection of Cancer Genes.

    Science.gov (United States)

    Shen, Zhi-Fa; Li, Feng; Jiang, Yi-Fan; Chen, Chang; Xu, Huo; Li, Cong-Cong; Yang, Zhe; Wu, Zai-Sheng

    2018-03-06

    A highly sensitive and selective colorimetric assay based on a multifunctional molecular beacon with palindromic tail (PMB) was proposed for the detection of target p53 gene. The PMB probe can serve as recognition element, primer, and polymerization template and contains a nicking site and a C-rich region complementary to a DNAzyme. In the presence of target DNA, the hairpin of PMB is opened, and the released palindromic tails intermolecularly hybridize with each other, triggering the autonomous polymerization/nicking/displacement cycles. Although only one type of probe is involved, the system can execute triple and continuous polymerization strand displacement amplifications, generating large amounts of G-quadruplex fragments. These G-rich fragments can bind to hemin and form the DNAzymes that possess the catalytic activity similar to horseradish peroxidase, catalyzing the oxidation of ABTS by H 2 O 2 and producing the colorimetric signal. Utilizing the newly proposed sensing system, target DNA can be detected down to 10 pM with a linear response range from 10 pM to 200 nM, and mutant target DNAs are able to be distinguished even by the naked eye. The desirable detection sensitivity, high specificity, and operation convenience without any separation step and chemical modification demonstrate that the palindromic molecular beacon holds the potential for detecting and monitoring a variety of nucleic acid-related biomarkers.

  20. Colorimetric characterization of three wood species from the amazon forest

    Directory of Open Access Journals (Sweden)

    Sâmia Valéria dos Santos Barros

    2014-09-01

    Full Text Available The aim of this study was to analyze wood color variability in the (radial, tangential and transversal anatomic sections of Breu-vermelho, Tauari-vermelho and Pequiarana species through quantitative colorimetry using CIELAB color system. Such species come from a forest sustainable area of Thousand Precious Woods Company, located in Itacoatiara in the Amazon region of Brazil. Five wood samples from each species were selected so as to determine the following colorimetric parameters: L*, a*, b*, C e h*. In addition, 225 measurements were carried out with Konica Minolta CM-5 spectrophotometer connected to the computer. Results pointed out to statistical differences in the colorimetric parameters and also a low saturation in a* in the analyzed species. According to the cluster gathering, Breu-vermelho wood presents olive and/or grayish pink color, Tauari-vermelho is pinkish-gray and Pequiarana is grayish-pink and/or pinkish-gray. Such species presented differences in color among the three anatomic sections cited above and were also influenced by the yellow color defined in b* parameter. To summarize, colorimetric analysis to establish wood color is a simple procedure which may be used from the sawing of the logs until their final exploitation enabling value aggregation to the final product.

  1. Colorimetric detection of riboflavin by silver nanoparticles capped with β-cyclodextrin-grafted citrate.

    Science.gov (United States)

    Ma, Qi; Song, Jinping; Zhang, Sufang; Wang, Meifang; Guo, Yong; Dong, Chuan

    2016-12-01

    β-Cyclodextrin-grafted citrate was used for the first time as a stabilizer and reducer to prepare silver nanoparticles (AgNPs). The as-synthesized AgNPs were further characterized by UV-vis absorption spectroscopy, powder X-ray diffraction spectroscopy, and transmission electron microscopy. The results show that the presence of riboflavin caused severe aggregation of the nanoparticles, thereby inducing a colour change from yellow to red. 1 H NMR further verified the formation of non-inclusion complexes between riboflavin and β-cyclodextrin-grafted citrate. Hydrogen bond was considered the main driving force of the interaction between the riboflavin and external rim of β-cyclodextrin. Based on these observations, the as-synthesized AgNPs were utilized to develop a novel colorimetric sensor for riboflavin detection. This colorimetric probe showed excellent selectivity and high sensitivity for riboflavin with a detection limit of 167nM. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone.

    Science.gov (United States)

    Zhang, Xiu-Xiu; Song, Yi-Zhen; Fang, Fang; Wu, Zhi-Yong

    2018-04-01

    On-site rapid monitoring of nitrite as an assessment indicator of the environment, food, and physiological systems has drawn extensive attention. Here, electrokinetic stacking (ES) was combined with colorimetric reaction on a paper-based device (PAD) to achieve colorless nitrite detection with smartphone. In this paper, nitrite was stacked on the paper fluidic channel as a narrow band by electrokinetic stacking. Then, Griess reagent was introduced to visualize the stacking band. Under optimal conditions, the sensitivity of nitrite was 160-fold increased within 5 min. A linear response in the range of 0.075 to 1.0 μg mL -1 (R 2  = 0.99) and a limit of detection (LOD) of 73 ng mL -1 (0.86 μM) were obtained. The LOD was 10 times lower than the reported PAD, and close to that achieved by a desktop spectrophotometer. The applicability was demonstrated by nitrite detection from saliva and water with good selectivity, adding 100 times more concentrated co-ions. High recovery (91.0~108.7%) and reasonable intra-day and inter-day reproducibility (RSD work shows that the sensitivity of colorless analyte detection-based colorimetric reaction can be effectively enhanced by integration of ES on a PAD. Graphical abstract Schematic of the experimental setups (left) and the corresponding images (right) of the actual portable device.

  3. A New Coumarin-Based Colorimetric and Fluorometric Sensor for Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    An, Kyounglyong; Jun, Kun [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Koon Ha [Chungnam National Univ., Daejeon (Korea, Republic of)

    2014-07-15

    We have developed a new colorimetric and fluorescent 'turn-off' sensor for Cu{sup 2+} based on coumarin Shiff base of hydroxycinnamaldehyde. It displays a 50 nm red-shift of maximum absorption band with color change from colorless to greenish-yellow upon addition of Cu{sup 2+} in 10 mM tris-HCl buffer solution (acetonitrile/water = 9:1, pH = 7.01). And also remarkable fluorescence quenching was observed upon the addition of Cu{sup 2+}. The 1:2 stoichiometry of sensor complex (sensor A + Cu{sup 2+}) was confirmed by Job's plot based on absorption titration. Chemosensors, small chemical compounds that sense the presence of analytes or energy, typically consist of two components: a receptor moiety that interacts with the target analytes and a read-out system that signals binding. And one of the most utilized research tool for the study of chemosensors employs a colorimetric and fluorometric spectroscopic techniques. So far successful reports on metal ion sensors have been documented including our recent result. Many different kinds of optical or fluorescent sensors have several advantages (such as high sensitivity and selectivity, non-destructive analysis, low cost and real-time monitoring), which allow naked-eye detection of color and fluorescent emission change upon metal ion binding without the use of any expensive spectroscopic equipment.

  4. Fabrication of high efficacy selective solar absorbers

    CSIR Research Space (South Africa)

    Tile, N

    2012-03-01

    Full Text Available High efficiency tandem selective solar absorber materials of carbon in nickel oxide (C-NiO) composite were fabricated on an aluminium substrate using a simple and cost effective sol-gel process. The process involved preparation of carbon and nickel...

  5. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue.

    Science.gov (United States)

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-05

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite

    Directory of Open Access Journals (Sweden)

    Hoang V. Tran

    2018-05-01

    Full Text Available In this paper, we demonstrate a promising method to fabricate a non-enzymatic stable, highly sensitive and selective hydrogen peroxide sensor based on a chitosan/silver nanoparticles (CS/AgNPs hybrid. Using this composite, we elaborated both electrochemical and colorimetric sensors for hydrogen peroxide detection. The colorimetric sensor is based on a homogenous reaction which fades the color of CS/AgNPs solutions from red-orange to colorless depending on hydrogen peroxide concentration. For the electrochemical sensor, CS/AgNPs were immobilized on glassy carbon electrodes and hydrogen peroxide was measured using cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The response time is less than 10 s and the detection limit is 5 μM. Keywords: Spectrophotometric detection, Electrochemical impedance spectroscopy, Square wave voltammetry, Cyclic voltammetry, Chitosan/silver nanoparticles (CS/AgNPs hybrid, Hydrogen peroxide

  7. Multiplexed Colorimetric Solid-Phase Extraction

    Science.gov (United States)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  8. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Li, Baoxin; Qi, Yingying; Jin, Yan [Shaanxi Normal University, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Xi' an (China)

    2009-04-15

    We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg{sup 2+}) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg{sup 2+} aptamer is rich in thymine (T) and readily forms T-Hg{sup 2+}-T configuration in the presence of Hg{sup 2+}. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg{sup 2+}-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg{sup 2+} concentration through a five-decade range of 1 x 10{sup -4} mol L{sup -1} to 1 x 10{sup -9} mol L{sup -1}. Even with the naked eye, we could identify micromolar Hg{sup 2+} concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg{sup 2+} over other metal cations including K{sup +}, Ba{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Zn{sup 2+}, Al{sup 3+}, and Fe{sup 3+}. The major advantages of this Hg{sup 2+} assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg{sup 2+} detection. (orig.)

  9. Performance evaluation of a colorimetric hydrazine dosimeter

    Science.gov (United States)

    Brenner, Karen P.; Rose-Pehrsson, Susan L.

    1994-06-01

    A dosimeter for real-time, colorimetric detection of hydrazine in air has been developed. The passive badge consists of a dosimeter card containing a vanillin solution coated on a thin paper substrate. The active patch consists of a thick cellulose substrate coated with a vanillin solution. When placed in a plastic sample holder attached to a personnel pump, up to 5 L/min can be drawn through the active badge substrate. Through a condensation reaction, vanillin reacts with hydrazine to form a colored product that absorbs in the visible region. The hydrazone formed in the reaction is yellow; its intensity is proportional to the dose. When exposed passively to hydrazine, the experimental detection limit is less than 20 ppb-hrs. Extrapolated results indicate a detection limit of less than 5 ppb-hrs for long sampling periods. Actively sampling of hydrazine vapors gives an experimental detection limit of less than 100 ppb-L at a sample rate of 5 L/min. Relative humidity effects on badge response were minor. High humidity enhanced the color development on the vanillin badge; while low humidity had no effect on badge response. Interference testing of the dosimeters revealed a tobacco smoke interference. Preliminary shelf life tests indicated no decrease in sensitivity to hydrazine when stored at room temperature for 6 months.

  10. Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Wang, Lin; Liu, Zhanmin; Xia, Xueying; Yang, Cuiyun; Huang, Junyi; Wan, Sibao

    2017-05-01

    Cucumber green mottle mosaic virus (CGMMV)causes a severe mosaic symptom of watermelon and cucumber, and can be transmitted via infected cucumber seeds, leaves and soil. It remains a challenge to detect this virus to prevent its introduction and infection and spread in fields. For this purpose, a simple and sensitive label-free colorimetric detection method for CGMMV has been developed with unmodified gold nanoparticles (AuNPs) as colorimetric probes. The method is based on the finding that the presence of RT-PCR target products of CGMMV and species-specific probes results in color change of AuNPs from red to blue after NaCl induction. Normally, species-specific probes attach to the surface of AuNPs and thereby increasing their resistance to NaCl-induced aggregation. The concentration of sodium, probes in the reaction system and evaluation of specificity and sensitivity of a novel assay, visual detection of Cucumber green mottle mosaic virus using unmodified AuNPs has been carried out with simple preparation of samples in our study. Through this assay, as low as 30pg/μL of CGMMV RNA was thus detected visually, by the naked eye, without the need for any sophisticated, expensive instrumentation and biochemical reagents. The specificity was 100% and exhibited good reproducibility in our assays. The results note that this assay is highly species-specific, simple, low-cost, and visual for easy detection of CGMMV in plant tissues. Therefore, visual assay is a potentially useful tool for middle or small-scales corporations and entry-exit inspection and quarantine bureau to detect CGMMV in cucumber seeds or plant tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Recyclable colorimetric sensor of Cr3 + and Pb2 + ions simultaneously using a zwitterionic amino acid modified gold nanoparticles

    Science.gov (United States)

    Sang, Fuming; Li, Xin; Zhang, Zhizhou; Liu, Jia; Chen, Guofu

    2018-03-01

    In this work, a rapid, simple and sensitive colorimetric sensor for simultaneous (or respective) detection of Cr3 + and Pb2 + using tyrosine functionalized gold nanoparticles (AuNPsTyr) has been developed. Tyrosine, a natural and zwitterionic amino acid, could be as a reducing and capping agent to synthesise AuNPs and allow for the simultaneous and selective detection of Cr3 + and Pb2 +. Upon the addition of Cr3 + or Pb2 + (a combination of them), the color of AuNPsTyr solution changes from red to blue grey and the characteristic surface plasmon resonance (SPR) band is red-shifted to 580 nm due to the aggregation of AuNPs. Interestingly, the aggregated AuNPsTyr can be regnerated and recycled by removing Pb2 + and Cr3 +. Even after 3 rounds, AuNPsTyr show almost the same A580 nm / A520 nm value for the assays of Pb2 + and Cr3 +, indicating the good recyclability of the colorimetric sensor. The responding time (within 1 min) and sensitivity of the colorimetric sensor are largely improved after the addition of 0.1 M NaCl. Moreover, the AuNPsTyr aggregated by Cr3 + or Pb2 + (a combination of them) show excellent selectivity compared to other metal ions (Cr3 +, Pb2 +, Fe2 +,Cu2 +,Zn2 +,Cr6 +,Ni2 +,Co2 +,Hg2 +,Mn2 +,Mg2 +,Ca2 +,Cd2 +). More importantly, the developed sensor manifests good stability at room temperature for 3 months, which has been successfully used to determine Cr3 + and Pb2 + in the real water samples with a high sensitivity.

  12. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2002-01-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  13. A colorimetric and fluorogenic probe for bisulfite using benzopyrylium as the recognition unit.

    Science.gov (United States)

    Zhang, Yun; Zhang, Xiangwen; Yang, Xiao-Feng; Zhang, Juan

    2017-11-01

    A coumarin-benzopyrylium (CB) platform has been developed for the colorimetric and fluorogenic detection of bisulfite. The proposed probe utilizes coumarin as the fluorophore and positively charged benzopyrylium as the reaction site. The method employs the nucleophilic addition of bisulfite to the benzopyrylium moiety of CB to inactivate the electron-deficient oxonium ion. The driving force for photo-induced electron transfer is considerably diminished, thereby promoting the emission intensity of the coumarin fluorophore. The fluorescence intensity at 510 nm is linear with bisulfite concentration over a range of 0.2-7.5 μM with a detection limit of 42 nM (3δ). CB shows a rapid response (within 30 s) and high selectivity and sensitivity for bisulfite. Preliminary studies show that CB has great potential for bisulfite detection in real samples and in living cells. Copyright © 2017 John Wiley & Sons, Ltd.

  14. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2011-12-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  15. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes.

    Science.gov (United States)

    Gong, Xue; Li, Jinfu; Zhou, Wenjiao; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-05-30

    Based on target recycling amplification, the development of a new label-free, simple and sensitive colorimetric detection method for ATP by using un-modified aptamers and DNAzymes is described. The association of the model target molecules (ATP) with the corresponding aptamers of the dsDNA probes leads to the release of the G-quadruplex sequences. The ATP-bound aptamers can be further degraded by Exonuclease III to release ATP, which can again bind the aptamers of the dsDNA probes to initiate the target recycling amplification process. Due to this target recycling amplification, the amount of the released G-quadruplex sequences is significantly enhanced. Subsequently, these G-quadruplex sequences bind hemin to form numerous peroxidase mimicking DNAzymes, which cause substantially intensified color change of the probe solution for highly sensitive colorimetric detection of ATP down to the sub-nanomolar (0.33nM) level. Our method is highly selective toward ATP against other control molecules and can be performed in one single homogeneous solution, which makes our sensing approach hold great potential for sensitive colorimetric detection of other small molecules and proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Determination of trace amounts of hydroperoxides by column liquid chromatography and colorimetric detection

    NARCIS (Netherlands)

    Deelder, R.S.; Kroll, M.; van den Berg, J.H.M.

    1976-01-01

    The sensitive and selective determination of separated compounds in effluents from liquid chromatographic columns can be carried out by continuously adding a suitable colorimetric agent to the column effluent and continuously monitoring the absorbance of the reaction mixture. However, a considerable

  17. Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion

    Science.gov (United States)

    Manjunath, Rangasamy; Kannan, Palaninathan

    2018-05-01

    A new rhodamine-based colorimetric and fluorescent turn-on chemosensor (L) has been designed and synthesized for selective and sensitive detection of Al3+ ion. The sensing behavior toward metal ion was investigated by UV/Vis and fluorescence spectroscopy. Upon addition of Al3+ ion to solution of L provided a visual color change as well as significantly fluorescent enhancement, while other metal ions including Na+, Mg2+, K+, Mn2+, Fe3+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+ and Hg2+ ions fails to generate a distinct color and spectral changes, the distinct color change and rapid switch-on fluorescence also provide naked eye detection for Al3+ ion. The mechanism involved equilibrium between non-fluorescent spirocyclic form and highly fluorescent ring open form process was utilized and 1:2 stoichiometry for L-Al3+ complex formed with an association constant of 1.42 × 103 M-1. Moreover, chemosensor L was applied for living cell imaging and confirmed that can be used as a fluorescent probe for monitoring Al3+ ion in living cells.

  18. Visualizing Capsaicinoids: Colorimetric Analysis of Chili Peppers

    Science.gov (United States)

    Thompson, Robert Q.; Chu, Christopher; Gent, Robin; Gould, Alexandra P.; Rios, Laura; Vertigan, Theresa M.

    2012-01-01

    A colorimetric method for total capsaicinoids in chili pepper ("Capsicum") fruit is described. The placental material of the pepper, containing 90% of the capsaicinoids, was physically separated from the colored materials in the pericarp and extracted twice with methanol, capturing 85% of the remaining capsaicinoids. The extract, evaporated and…

  19. Towards A Colorimetric Digital Image Archive For The Visual Arts

    Science.gov (United States)

    Martinez, Kirk; Hamber, Anthony

    1989-04-01

    The aim of this project is to produce a high-resolution, colorimetric and permanent digital archive of images taken directly from works of art. The proposed system is designed for use in education, research, galleries and museums. Tentative user requirements are examined with particular reference to resolution, image access and colorimetry. Existing technology and projects are considered. Some 3000x3000 pel images of paintings are used to illustrate the interrelationship between dimensions of the original, its inherent detail, scan resolution and display.

  20. Colorimetric detection of endogenous hydrogen sulfide production in living cells

    Science.gov (United States)

    Ahn, Yong Jin; Lee, Young Ju; Lee, Jaemyeon; Lee, Doyeon; Park, Hun-Kuk; Lee, Gi-Ja

    2017-04-01

    Hydrogen sulfide (H2S) has received great attention as a third gaseous signal transmitter, following nitric oxide and carbon monoxide. In particular, H2S plays an important role in the regulation of cancer cell biology. Therefore, the detection of endogenous H2S concentrations within biological systems can be helpful to understand the role of gasotransmitters in pathophysiology. Although a simple and inexpensive method for the detection of H2S has been developed, its direct and precise measurement in living cells remains a challenge. In this study, we introduced a simple, facile, and inexpensive colorimetric system for selective H2S detection in living cells using a silver-embedded Nafion/polyvinylpyrrolidone (PVP) membrane. This membrane could be easily applied onto a polystyrene microplate cover. First, we optimized the composition of the coating membrane, such as the PVP/Nafion mixing ratio and AgNO3 concentration, as well as the pH of the Na2S (H2S donor) solution and the reaction time. Next, the in vitro performance of a colorimetric detection assay utilizing the silver/Nafion/PVP membrane was evaluated utilizing a known concentration of Na2S standard solution both at room temperature and at 37 °C in a 5% CO2 incubator. As a result, the sensitivity of the colorimetric assay for H2S at 37 °C in the incubator (0.0056 Abs./μM Na2S, R2 = 0.9948) was similar to that at room temperature (0.0055 Abs./μM Na2S, R2 = 0.9967). Moreover, these assays were less sensitive to interference from compounds such as glutathione, L-cysteine (Cys), and dithiothreitol than to the H2S from Na2S. This assay based on the silver/Nafion/PVP membrane also showed excellent reproducibility (2.8% RSD). Finally, we successfully measured the endogenous H2S concentrations in live C6 glioma cells by s-(5‧-adenosyl)-L-methionine stimulation with and without Cys and L-homocysteine, utilizing the silver/Nafion/PVP membrane. In summary, colorimetric assays using silver

  1. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  2. Needle Decompression of Tension Pneumothorax with Colorimetric Capnography.

    Science.gov (United States)

    Naik, Nimesh D; Hernandez, Matthew C; Anderson, Jeff R; Ross, Erika K; Zielinski, Martin D; Aho, Johnathon M

    2017-11-01

    The success of needle decompression for tension pneumothorax is variable, and there are no objective measures assessing effective decompression. Colorimetric capnography, which detects carbon dioxide present within the pleural space, may serve as a simple test to assess effective needle decompression. Three swine underwent traumatically induced tension pneumothorax (standard of care, n = 15; standard of care with needle capnography, n = 15). Needle thoracostomy was performed with an 8-cm angiocatheter. Similarly, decompression was performed with the addition of colorimetric capnography. Subjective operator assessment of decompression was recorded and compared with true decompression, using thoracoscopic visualization for both techniques. Areas under receiver operating curves were calculated and pairwise comparison was performed to assess statistical significance (P pneumothorax, that is, the absence of any pathologic/space-occupying lesion, in 100% of cases (10 of 10 attempts). Standard of care needle decompression was detected by operators in 9 of 15 attempts (60%) and was detected in 3 of 10 attempts when tension pneumothorax was not present (30%). True decompression, under direct visualization with thoracoscopy, occurred 15 of 15 times (100%) with capnography, and 12 of 15 times (80%) without capnography. Areas under receiver operating curves were 0.65 for standard of care and 1.0 for needle capnography (P = .002). Needle decompression with colorimetric capnography provides a rapid, effective, and highly accurate method for eliminating operator bias for tension pneumothorax decompression. This may be useful for the treatment of this life-threatening condition. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  3. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.

    Science.gov (United States)

    Soomro, Razium A; Nafady, Ayman; Sirajuddin; Memon, Najma; Sherazi, Tufail H; Kalwar, Nazar H

    2014-12-01

    This report demonstrates a novel, simple and efficient protocol for the synthesis of copper nanoparticles in aqueous solution using L-cysteine as capping or protecting agent. UV-visible (UV-vis) spectroscopy was employed to monitor the LSPR band of L-cysteine functionalized copper nanoparticles (Cyst-Cu NPs) based on optimizing various reaction parameters. Fourier Transform Infrared (FTIR) spectroscopy provided information about the surface interaction between L-cysteine and Cu NPs. Transmission Electron Microscopy (TEM) confirmed the formation of fine spherical, uniformly distributed Cyst-Cu NPs with average size of 34 ± 2.1 nm. X-ray diffractometry (XRD) illustrated the formation of pure metallic phase crystalline Cyst-Cu NPs. As prepared Cyst-Cu NPs were tested as colorimetric sensor for determining mercuric (Hg(2+)) ions in an aqueous system. Cyst-Cu NPs demonstrated very sensitive and selective colorimetric detection of Hg(2+) ions in the range of 0.5 × 10(-6)-3.5 × 10(-6) mol L(-1) based on decrease in LSPR intensity as monitored by a UV-vis spectrophotometer. The developed sensor is simple, economic compared to those based on precious metal nanoparticles and sensitive to detect Hg(2+) ions with detection limit down to 4.3 × 10(-8) mol L(-1). The sensor developed in this work has a high potential for rapid and on-site detection of Hg(2+) ions. The sensor was successfully applied for assessment of Hg(2+) ions in real water samples collected from various locations of the Sindh River. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles.

    Science.gov (United States)

    Liu, Shuwen; Xu, Naihan; Tan, Chunyan; Fang, Wei; Tan, Ying; Jiang, Yuyang

    2018-08-14

    In this study, a novel colorimetric aptasensor was prepared by coupling trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles for highly sensitive and selective detection of target proteins. A three G-quadruplex (G4) DNA-hemin complex was employed as the trivalent peroxidase-mimic DNAzyme, in which hemin assisted the G4-DNA to fold into a catalytic conformation and act as an enzyme. The design of the aptasensor includes magnetic nanoparticles (MNPs), complementary DNA (cDNA) modified with biotin, and a label-free single strand DNA (ssDNA) including the aptamer and trivalent peroxidase-mimic DNAzyme. The trivalent DNAzyme, which has the highest catalytic activity among multivalent DNAzymes, catalyzed the H 2 O 2 -mediated oxidation of ABTS. The colorless ABTS was oxidized to produce a blue-green product that can be clearly distinguished by the naked eye. The aptamer and trivalent peroxidase-mimic DNAzyme promote the specificity and sensitivity of this detection method, which can be generalized for other targets by simply replacing the corresponding aptamers. To demonstrate the feasible use of the aptasensor for target detection, a well-known tumor biomarker MUC1 was evaluated as the model target. The limits of detection were determined to be 5.08 and 5.60 nM in a linear range of 50-1000 nM in a buffer solution and 10% serum system, respectively. This colorimetric and label-free aptasensor with excellent sensitivity and strong anti-interference ability has potential application in disease diagnoses, prognosis tracking, and therapeutic evaluation. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Determination Total Phosphour of Maize Plant Samples by Continuous Flow Analyzer in Comparison with Vanadium Molybdate Yellow Colorimetric Method

    Directory of Open Access Journals (Sweden)

    LIU Yun-xia

    2015-12-01

    Full Text Available The vanadium molybdate yellow colorimetric method(VMYC method is regarded as one of conventional methods for determining total phosphorus(P in plants, but it is time consuming procedure. Continuous flow analyzer(CFA is a fluid stream segmentation technique with air segments. It is used to measure P concentration based on the molybdate-antimony-ascorbic acid method of Murphy and Riley. Sixty nine of maize plant samples were selected and digested with H2SO4-H2O2. P concentrations in the digests were determined by CFA and VMYC method, respectively. The t test found that there was no any significant difference of the plant P contents measured by the CFA and the VMYC method. A linear equation could best describe their relationship: Y(CFA-P=0.927X(VMYC-P-0.002. The Pearson's correlation coefficient was 0.985 with a significance level(n=69, P<0.01. The CFA method for plant P measurement had a high precision with relative standard deviation(RSD less than 1.5%. It is suggested that the CFA based on Murphy and Riley colorimetric detection can be used to determinate total plant P in the digests solutions with H2SO4-H2O2. The CFA method is labor saving and can handle large numbers of samples. The human error in mixing with other operations is reduced to a great extent.

  6. A Simple Assay for Ultrasensitive Colorimetric Detection of Ag⁺ at Picomolar Levels Using Platinum Nanoparticles.

    Science.gov (United States)

    Wang, Yi-Wei; Wang, Meili; Wang, Lixing; Xu, Hui; Tang, Shurong; Yang, Huang-Hao; Zhang, Lan; Song, Hongbo

    2017-11-02

    In this work, uniformly-dispersed platinum nanoparticles (PtNPs) were synthesized by a simple chemical reduction method, in which citric acid and sodium borohydride acted as a stabilizer and reducer, respectively. An ultrasensitive colorimetric sensor for the facile and rapid detection of Ag⁺ ions was constructed based on the peroxidase mimetic activities of the obtained PtNPs, which can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H₂O₂ to produce colored products. The introduced Ag⁺ would be reduced to Ag⁰ by the capped citric acid, and the deposition of Ag⁰ on the PtNPs surface, can effectively inhibit the peroxidase-mimetic activity of PtNPs. Through measuring the maximum absorption signal of oxidized TMB at 652 nm, ultra-low detection limits (7.8 pM) of Ag⁺ can be reached. In addition to such high sensitivity, the colorimetric assay also displays excellent selectivity for other ions of interest and shows great potential for the detection of Ag⁺ in real water samples.

  7. A novel colorimetric assay for rapid detection of cysteine and Hg²⁺ based on gold clusters.

    Science.gov (United States)

    Wang, Yi-Wei; Tang, Shurong; Yang, Huang-Hao; Song, Hongbo

    2016-01-01

    Inhibition and recovery of the catalytic activity of bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) is observed for the first time by introduction of cysteine and Hg(2+). The prepared BSA-AuNCs possess highly intrinsic peroxidase-like activity. It can catalyze the oxidation of 3, 3, 5, 5-tetramethylbenzidine by H2O2 to produce a blue colored product. Based on this phenomenon, a new colorimetric assay for rapid, selective and sensitive detection of cysteine and Hg(2+) in aqueous solution has been demonstrated. The interaction process between target molecule and BSA-AuNCs is very fast, so that the whole test can be completed within ten minutes. Moreover, the fabricated colorimetric sensor is simple and cost-effective, without the need of nucleic acid based recognition element and complicated washing, separation and labeling process, thus holds great promise for routine analysis of cysteine and Hg(2+) in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Colorimetric evaluation of irradiated red beet roots

    International Nuclear Information System (INIS)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Hirashima, Fabiana K.; Sabato, Susy F.

    2013-01-01

    The red beetroot contain antioxidant and anticancer activity and have been consumed all over the world. In order to increase the consumption of beetroot the food industry has created a practical alternative, a beetroot shaped like a small ball, minimally processed with the convenience in meal preparation. Food irradiation is in consonance with the proposal to increase the consumption of beetroot whilst maintaining quality and product safety. The aim of this study was to analyze changes in colorimetric properties in beetroot after the irradiation process. Samples of minimally processed beetroot were purchased at a local supermarket. The samples were exposed to gamma rays with doses of 1.0kG y , 2.0kG y , 3.0kG y and 4.0 kG y and were stored at 5 deg C. Colorimetric characteristics were analyzed such as L * , a * , b * , C * , h * , δE and WI. The results of the colorimetric evaluation showed no significant difference among the samples. The authors concluded that the treatment with low doses of gamma radiation keeps the quality of beetroot. (author)

  9. Colorimetric evaluation of irradiated red beet roots

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Hirashima, Fabiana K.; Sabato, Susy F., E-mail: thaisecfnunes@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The red beetroot contain antioxidant and anticancer activity and have been consumed all over the world. In order to increase the consumption of beetroot the food industry has created a practical alternative, a beetroot shaped like a small ball, minimally processed with the convenience in meal preparation. Food irradiation is in consonance with the proposal to increase the consumption of beetroot whilst maintaining quality and product safety. The aim of this study was to analyze changes in colorimetric properties in beetroot after the irradiation process. Samples of minimally processed beetroot were purchased at a local supermarket. The samples were exposed to gamma rays with doses of 1.0kG{sub y}, 2.0kG{sub y}, 3.0kG{sub y} and 4.0 kG{sub y} and were stored at 5 deg C. Colorimetric characteristics were analyzed such as L{sup *}, a{sup *}, b{sup *}, C{sup *}, h{sup *}, δE and WI. The results of the colorimetric evaluation showed no significant difference among the samples. The authors concluded that the treatment with low doses of gamma radiation keeps the quality of beetroot. (author)

  10. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili; Wickens, Zachary K.; Dong, Guangbin; Grubbs, Robert H.

    2012-01-01

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  11. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  12. A Novel Colorimetric Immunoassay Utilizing the Peroxidase Mimicking Activity of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hyun Gyu Park

    2013-05-01

    Full Text Available A simple colorimetric immunoassay system, based on the peroxidase mimicking activity of Fe3O4 magnetic nanoparticles (MNPs, has been developed to detect clinically important antigenic molecules. MNPs with ca. 10 nm in diameter were synthesized and conjugated with specific antibodies against target molecules, such as rotaviruses and breast cancer cells. Conjugation of the MNPs with antibodies (MNP-Abs enabled specific recognition of the corresponding target antigenic molecules through the generation of color signals arising from the colorimetric reaction between the selected peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB and H2O2. Based on the MNP-promoted colorimetric reaction, the target molecules were detected and quantified by measuring absorbance intensities corresponding to the oxidized form of TMB. Owing to the higher stabilities and economic feasibilities of MNPs as compared to horseradish peroxidase (HRP, the new colorimetric system employing MNP-Abs has the potential of serving as a potent immunoassay that should substitute for conventional HRP-based immunoassays. The strategy employed to develop the new methodology has the potential of being extended to the construction of simple diagnostic systems for a variety of biomolecules related to human cancers and infectious diseases, particularly in the realm of point-of-care applications.

  13. Virtual colorimetric sensor array: single ionic liquid for solvent discrimination.

    Science.gov (United States)

    Galpothdeniya, Waduge Indika S; Regmi, Bishnu P; McCarter, Kevin S; de Rooy, Sergio L; Siraj, Noureen; Warner, Isiah M

    2015-04-21

    There is a continuing need to develop high-performance sensors for monitoring organic solvents, primarily due to the environmental impact of such compounds. In this regard, colorimetric sensors have been a subject of intense research for such applications. Herein, we report a unique virtual colorimetric sensor array based on a single ionic liquid (IL) for accurate detection and identification of similar organic solvents and mixtures of such solvents. In this study, we employ eight alcohols and seven binary mixtures of ethanol and methanol as analytes to provide a stringent test for assessing the capabilities of this array. The UV-visible spectra of alcoholic solutions of the IL used in this study show two absorption bands. Interestingly, the ratio of absorbance for these two bands is found to be extremely sensitive to alcohol polarity. A virtual sensor array is created by using four different concentrations of IL sensor, which allowed identification of these analytes with 96.4-100% accuracy. Overall, this virtual sensor array is found to be very promising for discrimination of closely related organic solvents.

  14. Highly selective and sensitive coumarin-triazole-based fluorometric 'turn-off' sensor for detection of Pb2+ ions.

    Science.gov (United States)

    Shaily; Kumar, Ajay; Parveen, Iram; Ahmed, Naseem

    2018-06-01

    Exposure to even very low concentrations of Pb 2+ is known to cause cardiovascular, neurological, developmental, and reproductive disorders, and affects children in particular more severely. Consequently, much effort has been dedicated to the development of colorimetric and fluorescent sensors that can selectively detect Pb 2+ ions. Here, we describe the development of a triazole-based fluorescent sensor L5 for Pb 2+ ion detection. The fluorescence intensity of chemosensor L5 was selectively quenched by Pb 2+ ions and a clear color change from colorless to yellow could be observed by the naked eye. Chemosensor L5 exhibited high sensitivity and selectivity towards Pb 2+ ions in phosphate-buffered solution [20 mM, 1:9 DMSO/H 2 O (v/v), pH 8.0] with a 1:1 binding stoichiometry, a detection limit of 1.9 nM and a 6.76 × 10 6  M -1 binding constant. Additionally, low-cost and easy-to-prepare test strips impregnated with chemosensor L5 were also produced for efficient of Pb 2+ detection and proved the practical use of this test. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Standardization of Neisseria meningitidis Serogroup B Colorimetric Serum Bactericida Assay

    Science.gov (United States)

    Rodríguez, Tamara; Lastre, Miriam; Cedré, Barbara; Campo, Judith del; Bracho, Gustavo; Zayas, Caridad; Taboada, Carlos; Díaz, Miriam; Sierra, Gustavo; Pérez, Oliver

    2002-01-01

    The correlate of protection for serogroup B meningococci is not currently known, but for serogroup C it is believed to be the serum bactericidal assay (SBA). The current SBAs are labor intensive and the variations in protocols among different laboratories make interpretation of results difficult. A colorimetric SBA (cSBA), based on the ability of Neisseria meningitidis serogroup B to consume glucose, leading to acid production, was standardized by using group B strain Cu385-83 as the target. The cSBA results were compared to those obtained for a traditional colony-counting microassay (mSBA). Glucose and bromocresol purple pH indicator were added to the medium in order to estimate growth of cSBA target cell survivors through color change. Different variants of the assay parameters were optimized: growth of target cells (Mueller Hinton agar plates), target cell number (100 CFU/per well), and human complement source used at a final concentration of 25%. After the optimization, three other group B strains (H44/76, 490/91, and 511/91) were used as targets for the cSBA. The selection of the assay parameters and the standardization of cSBA were done with 13 sera from vaccinated volunteers. The titers were determined as the higher serum dilution that totally inhibited the bacterial growth marked by the color invariability of the pH indicator. This was detected visually as well as spectrophotometrically and was closely related to a significant difference in the growth of target cell survivors determined using Student’s t test. Intralaboratory reproducibility was ±1 dilution. The correlation between bactericidal median titers and specific immunoglobulin G serum concentration by enzyme immunoassay was high (r = 0.910, P < 0.01). The bactericidal titers generated by the cSBA and the mSBA were nearly identical, and there was a high correlation between the two assays (r = 0.974, P < 0.01). The standardized cSBA allows easy, fast, and efficient evaluation of samples. PMID

  16. Novel colorimetric sensors for cyanide based on azo-hydrazone tautomeric skeletons.

    Science.gov (United States)

    Adegoke, Olajire A; Adesuji, Temitope E; Thomas, Olusegun E

    2014-07-15

    The monoazo dyes, 4-carboxyl-2, 6-dinitrophenylazohydroxynaphthalenes dyes (AZ-01, AZ-03 and AZ-04), were evaluated as a highly selective colorimetric chemosensor for cyanide ion. The recognition of cyanide ion gave an obvious colour change from light yellow to brownish red and upon dilution with acetone produced a purple to lilac colour. Optimum conditions for the reaction between the azo dyes and cyanide ion were established at 30°C for 5 min, and different variables affecting the reaction were carefully studied and optimised. Under the optimum conditions, linear relationships between the CN(-) concentrations and light absorption were established. Using these azo-hydrazone molecular switch entities, excellent selectivity towards the detection of CN(-) in aqueous solution over miscellaneous competitive anions was observed. Such selectivity mainly results from the possibility of nucleophilic attack on the azo-hydrazone chemosensors by cyanide anions in aqueous system, which is not afforded by other competing anions. The cyanide chemosensor method described here should have potential application as a new family probes for detecting cyanide in aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Monitoring of Au(iii) species in plants using a selective fluorescent probe.

    Science.gov (United States)

    Li, Zhen; Xu, Yuqing; Fu, Jie; Zhu, Hailiang; Qian, Yong

    2018-01-23

    A colorimetric and ratiometric probe with a push-pull chromophore dicyanoisophorone system, AuP, has been developed for the detection of Au(iii) species with highly sensitive and selective response to real-water samples and living tissues of Arabidopsis thaliana.

  18. Improved colorimetric determination of serum zinc.

    Science.gov (United States)

    Johnson, D J; Djuh, Y Y; Bruton, J; Williams, H L

    1977-07-01

    We show how zinc may easily be quantified in serum by first using an optimum concentration of guanidine hydrochloride to cause release of zinc from proteins, followed by complexation of released metals with cyanide. The cyanide complex of zinc is preferentially demasked with chloral hydrate, followed by a colorimetric reaction between zinc and 4-(2-pyridylazo)resorcinol. This is a sensitive water-soluble ligand; its complex with zinc has an absorption maximum at 497 nm. Values found by this technique compare favorably with those obtained by atomic absorption spectroscopy.

  19. Analysis of DNA Hydroxymethylation Using Colorimetric Assay.

    Science.gov (United States)

    Golubov, Andrey; Kovalchuk, Igor

    2017-01-01

    Hydroxymethylcytosine (hmC or 5-hmC) is a nitrogen base occurring as a result of cytosine methylation followed by replacing a methyl group with a hydroxyl group through active oxidation. 5-hmC is considered to be one of the forms of epigenetic modification and is suggested as an intermediate step in a semi-active loss of DNA methylation mark. 5-hmC plays an important role in the epigenetic regulation of gene expression in animals, although its role in plants remains controversial. Here, we present a colorimetric method of quantification of 5-hmC using Brassica rapa DNA.

  20. Colorimetric on-line control of U

    International Nuclear Information System (INIS)

    Perez, J.J.; Boisde, G.; Dedaldechamp, P.; Dureault, B.

    The instrumentation developed for the automatic colorimetric control of U is presented. Two techniques are used: absorptiometry of U ions using optical probes enabling to measure in situ the solutions containing 0.5 g U(IV)/l or 1 g U(VI)/l; colorimetry of the U-DBM complexe after separation of U by TOPO (this technique is applied to the control of U at the ppm level). The automatic devices used are described. They are experimented in laboratory or in pilot-plant [fr

  1. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application ... sources include cashew, apple juice (Osho, 2005), palm ... choice for fermentation (Chandra and Panchal, 2003). Yeasts ...

  2. A novel colorimetric probe derived from isonicotic acid hydrazide for copper (II) determination based on internal charge transfer (ICT).

    Science.gov (United States)

    Liu, Qing; Fei, Qiang; Fei, Yanqun; Fan, Qian; Shan, Hongyan; Feng, Guodong; Huan, Yanfu

    2015-12-05

    A novel isonicotic acid hydrazide Schiff base derivative N'-(3,5-di-tert-butyl-2-hydroxy-benzylidene) isonicotinohydrazide (DHIH) has been synthesized and developed as a high selective and sensitive colorimetric probe for Cu(2+) determination. Addition of Cu(2+) to the solution of DHIH resulted in a rapid color change from colorless to yellow together with an obvious new absorption band appeared at the range of 400-440 nm by forming a 1:1 complex. Experimental results indicated that the DHIH could provide absorption response to Cu(2+) with a linear dynamic range from 1.0×10(-5) to 1.0×10(-4)mol/L. The detection limit of Cu(2+) was 5.24×10(-7)mol/L with good tolerance of other metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Simple and Sensitive Colorimetric Assay for Pb2+ Based on Glutathione Protected Ag Nanoparticles by Salt Amplification.

    Science.gov (United States)

    Chen, Zhang; Li, Huidong; Chu, Lin; Liu, Chenbin; Luo, Shenglian

    2015-02-01

    A simple and sensitive colorimetric assay for Pb2+ detection has been reported using glutathione protected silver nanoparticles (AgNPs) by salt amplification. The naked AgNPs aggregate under the influence of salt. Glutathione (GSH) can bind to AgNPs via Ag-S bond, helping AgNPs to against salt-induced aggregation. However, GSH binding to AgNPs can be compromised by the interaction between Pb2+ and GSH. As a result, Pb2+-mediated aggregation of AgNPs under the influence of salt is reflected by the UV-Visible spectrum, and the qualitative and quantitative detection for Pb2+ is accomplished, with the detection range 0.5-4 µM and a detection limit of 0.5 µM. At the same time, Pb2+ in real water sample is detected. Furthermore, the high selectivity and low cost of the assay means it is promising for enviromental applications.

  4. A Ferrocene-Quinoxaline Derivative as a Highly Selective Probe for Colorimetric and Redox Sensing of Toxic Mercury(II Cations

    Directory of Open Access Journals (Sweden)

    Antonio Caballero

    2010-12-01

    Full Text Available A new chemosensor molecule 3 based on a ferrocene-quinoxaline dyad recognizes mercury (II cations in acetonitrile solution. Upon recognition, an anodic shift of the ferrocene/ferrocenium oxidation peaks and a progressive red-shift (Δλ = 140 nm of the low-energy band, are observed in its absorption spectrum. This change in the absorption spectrum is accompanied by a colour change from orange to deep green, which can be used for a “naked-eye” detection of this metal cation.

  5. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    15% ethanol tolerance. High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application in ethanologenic fermentations. Data presented in this study revealed that Orc 6 yeast isolate tolerated osmotic stress above 12% (w/v) sorbitol and 15% (w/v) sucrose equivalent of osmotic pressure ...

  6. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid

    Science.gov (United States)

    Rostami, Simindokht; Mehdinia, Ali; Jabbari, Ali

    2017-06-01

    A simple and sensitive approach was demonstrated for detection of ascorbic acid (AA) based on seed-mediated growth of silver nanoparticles (Ag NPs). According to the seeding strategy, silver ions existing in the growth solution were reduced to silver atoms on the surface of silver seeds via redox reaction between silver ions and AA. This process -led to appear an absorption band in near 420 nm owing to the localized surface plasmon resonance peak of the generated Ag NPs. This change in absorption spectra of Ag NPs caused a change in color of the mixture from colorless to yellow. It was found that the changes in absorption intensity at 420 nm have a good relationship with the concentration of AA. Also, detection of AA was achieved through the established colorimetric sensor in the range of 0.25-25 μM with detection limit of 0.054 μM. Moreover, the selectivity of the method was evaluated with considering potential interferences. The method showed high selectivity toward AA rather than potential interferences and coexisted molecules with AA. It was successfully applied for detection and determination of AA in pharmaceutical tablets and commercial lemonade.

  7. A Colorimetric Sensor for Qualitative Discrimination and Quantitative Detection of Volatile Amines

    Directory of Open Access Journals (Sweden)

    Zhonglin Tang

    2010-06-01

    Full Text Available We have developed a novel colorimetric sensor based on a digital camera and white LED illumination. Colorimetric sensor arrays (CSAs were made from a set of six chemically responsive dyes impregnated on an inert substrate plate by solution casting. Six common amine aqueous solutions, including dimethylamine, triethylamine, diisopropyl-amine, aniline, cyclohexylamine, and pyridine vaporized at 25 °C and six health-related trimethylamine (TMA concentrations including 170 ppm, 51 ppm, 8 ppm, 2 ppm, 125 ppb and 50 ppb were analyzed by the sensor to test its ability for the qualitative discrimination and quantitative detection of volatile amines. We extracted the feature vectors of the CSA's response to the analytes from a fusional color space, which was obtained by conducting a joint search algorithm of sequential forward selection and sequential backward selection (SFS&SBS based on the linear discriminant criteria (LDC in a mixed color space composed of six common color spaces. The principle component analysis (PCA followed by the hierarchical cluser analysis (HCA were utilized to discriminate 12 analytes. Results showed that the colorimetric sensor grouped the six amine vapors and five TMA concentrations correctly, while TMA concentrations of 125 ppb and 50 ppb were indiscriminable from each other. The limitation of detection (LOD of the sensor for TMA was found to be lower than 50 ppb. The CSAs were reusable for TMA concentrations below 8 ppm.

  8. Achromatic-chromatic colorimetric sensors for on-off type detection of analytes.

    Science.gov (United States)

    Heo, Jun Hyuk; Cho, Hui Hun; Lee, Jin Woong; Lee, Jung Heon

    2014-12-21

    We report the development of achromatic colorimetric sensors; sensors changing their colors from achromatic black to other chromatic colors. An achromatic colorimetric sensor was prepared by mixing a general colorimetric indicator, whose color changes between chromatic colors, and a complementary colored dye with no reaction to the targeted analyte. As the color of an achromatic colorimetric sensor changes from black to a chromatic color, the color change could be much easily recognized than general colorimetric sensors with naked eyes. More importantly, the achromatic colorimetric sensors enable on-off type recognition of the presence of analytes, which have not been achieved from most colorimetric sensors. In addition, the color changes from some achromatic colorimetric sensors (achromatic Eriochrome Black T and achromatic Benedict's solution) could be recognized with naked eyes at much lower concentration ranges than normal chromatic colorimetric sensors. These results provide new opportunities in the use of colorimetric sensors for diverse applications, such as harsh industrial, environmental, and biological detection.

  9. Colorimetric Recognition of Aldehydes and Ketones.

    Science.gov (United States)

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei; Dong, Xiao [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Qiu, Lili, E-mail: qiulili@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yan, Zequn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Meng, Zihui, E-mail: m_zihui@yahoo.com [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Xue, Min [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); He, Xuan; Liu, Xueyong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China)

    2017-03-15

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  11. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    International Nuclear Information System (INIS)

    Lu, Wei; Dong, Xiao; Qiu, Lili; Yan, Zequn; Meng, Zihui; Xue, Min; He, Xuan; Liu, Xueyong

    2017-01-01

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  12. A gold nanoparticles-based colorimetric test to detect single nucleotide polymorphisms for improvement of personalized therapy of psoriasis

    Science.gov (United States)

    Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo

    2016-04-01

    We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.

  13. Gold nanoparticles-based colorimetric and visual creatinine assay

    International Nuclear Information System (INIS)

    He, Yi; Zhang, Xianhui; Yu, Haili

    2015-01-01

    We demonstrate a selective and sensitive method for determination of creatinine using citrate-stabilized gold nanoparticles (AuNPs) as a colorimetric probe. It is based on a direct cross-linking reaction that occurs between creatinine and AuNPs that causes aggregation of AuNPs and results in a color change from wine red to blue. The absorption peak is shifted from 520 to 670 nm. Under the optimized conditions, the shift in the absorption peak is related the logarithm of the creatinine concentration in the 0.1 to 20 mM range, and the instrumental detection limit (LOD) is 80 μM. This LOD is about one order of magnitude better than that that of the Jaffé method (720 μM). The assay displays good selectivity over interfering substances including various inorganic ions, organic small compounds, proteins, and biothiols. It was successfully employed to the determination of creatinine in spiked human urine. (author)

  14. Improved detection of chemical substances from colorimetric sensor data using probabilistic machine learning

    DEFF Research Database (Denmark)

    Mølgaard, Lasse Lohilahti; Buus, Ole Thomsen; Larsen, Jan

    2017-01-01

    We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling...... of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction...... in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions...

  15. Colorimetric detection of glucose based on ficin with peroxidase-like activity

    Science.gov (United States)

    Pang, Yanjiao; Huang, Zili; Yang, Yufang; Long, Yijuan; Zheng, Huzhi

    2018-01-01

    In this work, we developed a colorimetric biosensing system for glucose detection by coupling the peroxidase-like of ficin and the glucose oxidase (GOx). GOx can catalyze the oxidation of glucose to produce H2O2, then, ficin catalyzes the oxidation of peroxidase substrate 3,3‧,5,5‧-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. The present sensing system showed a linear response toward glucose detection over range of 2.0-100 μM with a detection limit of 0.5 μM. This system is simple, low cost, highly sensitive and selective for glucose detection, and was also applied to measuring glucose in human serum. Furthermore, in order to expand the application of ficin in biological sensing, we immobilized ficin onto the SiO2@Fe3O4 NPs, which exhibited the merits of recycling as well as allowing the repeated detection of glucose. Thus it may provide great potential applications in biomedicine, biotechnology and environmental chemistry.

  16. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor.

    Science.gov (United States)

    Guo, Jian-Feng; Huo, Dan-Qun; Yang, Mei; Hou, Chang-Jun; Li, Jun-Jie; Fa, Huan-Bao; Luo, Hui-Bo; Yang, Ping

    2016-12-01

    Herein, we have developed a simple, sensitive and paper-based colorimetric sensor for the selective detection of Chromium (Ⅵ) ions (Cr (VI)). Silanization-titanium dioxide modified filter paper (STCP) was used to trap bovine serum albumin capped gold nanoparticles (BSA-Au NPs), leading to the fabrication of BSA-Au NPs decorated membrane (BSA-Au NPs/STCP). The BSA-Au NPs/STCP operated on the principle that BSA-Au NPs anchored on the STCP were gradually etched by Cr (VI) as the leaching process of gold in the presence of hydrobromic acid (HBr) and hence induced a visible color change. Under optimum conditions, the paper-based colorimetric sensor showed clear color change after reaction with Cr (VI) as well as with favorable selectivity to a variety of possible interfering counterparts. The amount-dependent colorimetric response was linearly correlated with the Cr (VI) concentrations ranging from 0.5µM to 50.0µM with a detection limit down to 280nM. Moreover, the developed cost-effective colorimetric sensor has been successfully applied to real environmental samples which demonstrated the potential for field applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction

    Science.gov (United States)

    Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu

    2018-02-01

    In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.

  18. Colorimetric end-tidal CO2 detector for verification of endotracheal tube placement in out-of-hospital cardiac arrest.

    Science.gov (United States)

    Hayden, S R; Sciammarella, J; Viccellio, P; Thode, H; Delagi, R

    1995-06-01

    To evaluate the ability of a disposable, colorimetric end-tidal CO2 detector to verify proper endotracheal (ET) tube placement in out-of-hospital cardiac arrest, and to correlate semiquantitative CO2 measurements with the rate of return of spontaneous circulation (ROSC). Prospective, observational study using a convenience sample of intubated out-of-hospital cardiac arrest patients. A disposable, colorimetric end-tidal CO2 detector was attached to the ET tube after intubation. In the absence of a colorimetric change, the paramedics reassessed the tube placement and could reintubate the patient. Tube placement was verified at the hospital. Paramedics were instructed to contact the base station and report the colorimetric change upon hospital arrival. ROSC was defined as restoration of a self-sustaining pulse until hospital arrival. Between December 1990 and May 1993, ET tubes were placed in 566 victims of out-of-hospital cardiac arrest. 541 of the 566 intubations (95.6%) were associated with a color change. In one case with a color change and out-of-hospital clinical evidence of proper tube placement, the tube was determined to be in the esophagus at the hospital. Correct placement of the remaining 565 of 566 (99.8%) tubes was verified. Of the 566 patients who had a colorimetric change, 91 (16%) had ROSC vs one of 25 (4%) patients who did not have a color change. In one subgroup (n = 179), the degree of color change was highly associated with ROSC (p = 0.004). A disposable, colorimetric end-tidal CO2 detector appears reliable in verifying proper ET tube placement in victims of out-of-hospital cardiac arrest. The degree of color change correlates with the probability of ROSC.

  19. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    Science.gov (United States)

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  20. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (II) ions.

    Science.gov (United States)

    Tao, Yu; Lin, Youhui; Huang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang

    2012-01-15

    An easy prepared fluorescence turn-on and colorimetric dual channel probe was developed for rapid assay of Hg(2+) ions with high sensitivity and selectivity by using poly(acrylic acid)-templated silver nanoclusters (PAA-AgNCs). The PAA-AgNCs exhibited weak fluorescence, while upon the addition of Hg(2+) ions, AgNCs gives a dramatic increase in fluorescence as a result of the changes of the AgNCs states. The detection limit was estimated to be 2 nM, which is much lower than the Hg(2+) detection requirement for drinking water of U.S. Environmental Protection Agency, and the turn-on sensing mode offers additional advantage to efficiently reduce background noise. Also, a colorimetric assay of Hg(2+) ions can be realized due to the observed absorbance changes of the AgNCs. More importantly, the method was successfully applied to the determination of Hg(2+) ions in real water samples, which suggests our proposed method has a great potential of application in environmental monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Improved detection of chemical substances from colorimetric sensor data using probabilistic machine learning

    Science.gov (United States)

    Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.

    2017-05-01

    We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.

  2. Droplet-based microscale colorimetric biosensor for multiplexed DNA analysis via a graphene nanoprobe

    International Nuclear Information System (INIS)

    Xiang Xia; Luo Ming; Shi Liyang; Ji Xinghu; He Zhike

    2012-01-01

    Graphical abstract: With a microvalve manipulate technique combined with droplet platform, a microscale fluorescence-based colorimetric sensor for multiplexed DNA analysis is developed via a graphene nanoprobe. Highlights: ► A quantitative detection for multiplexed DNA is first realized on droplet platform. ► The DNA detection is relied on a simple fluorescence-based colorimetric method. ► GO is served as a quencher for two different DNA fluorescent probes. ► This present work provides a rapid, sensitive, visual and convenient detection tool for droplet biosensor. - Abstract: The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10 −8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.

  3. Selective excitation of atoms or molecules to high-lying states

    International Nuclear Information System (INIS)

    Ducas, T.W.

    1978-01-01

    This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)

  4. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts

    OpenAIRE

    Redmile-Gordon, M.A.; Armenise, E.; White, R.P.; Hirsch, P.R.; Goulding, K.W.T.

    2013-01-01

    Soil extracts usually contain large quantities of dissolved humified organic material, typically reflected by high polyphenolic content. Since polyphenols seriously confound quantification of extracted protein, minimising this interference is important to ensure measurements are representative. Although the Bradford colorimetric assay is used routinely in soil science for rapid quantification protein in soil-extracts, it has several limitations. We therefore investigated an alternative colori...

  5. Basic design principles of colorimetric vision systems

    Science.gov (United States)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  6. Development of a novel colorimetric sensor based on alginate beads for monitoring rainbow trout spoilage.

    Science.gov (United States)

    Majdinasab, Marjan; Hosseini, Seyed Mohammad Hashem; Sepidname, Marziyeh; Negahdarifar, Manizheh; Li, Peiwu

    2018-05-01

    Alginate is a non-toxic, renewable, and linear copolymer obtained from the brown algae Laminaria digitata that can be easily shaped into beads. Its good gel forming properties have made it useful for entrapping food and pharmaceutical ingredients. In this study, alginate beads were used in a novel application as a colorimetric sensor in food intelligent packaging. Colorimetric sensor was developed through entrapping red cabbage extract as a pH indicator in alginate beads. The pH indicator beads were used in rainbow trout packaging for monitoring fillets spoilage. Color change of beads during fish storage was measured using the CIELab method. The alginate bead colorimetric sensor is validated by measuring total volatile basic nitrogen (TVB-N) levels and microbial populations in fish samples. Moreover, peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were evaluated during storage. Results indicated that increasing the bacterial population during storage and production of proteolytic enzymes resulted in protein degradation, accumulation of volatile amine compounds, increase in the pH and finally color change of alginate beads. The values of TVB-N, pH, PV and TBARS increased with time of storage. The results of TVB-N and microbial growth were in accordance with color change of beads and CIELab data. Therefore, the proposed system enjoys a high sensitivity to pH variations and is capable of monitoring the spoilage of fish or other protein-rich products through its wide range of color changes. The alginate beads containing the red cabbage extract can, thus, be used as a low-cost colorimetric sensor for intelligent packaging applications.

  7. Colorimetric and sensory characteristics of fermented cured sausage with Brazilian ostrich meat addition

    Directory of Open Access Journals (Sweden)

    Carlos Pasqualin Cavalheiro

    2013-12-01

    Full Text Available The aim of this study was to determine the colorimetric and sensory characteristics of a fermented cured sausage containing ostrich meat (Struthio camelus and pork meat. Four treatments were performed: one with no ostrich meat (TC and the others containing 19.08 (T1, 38.34 (T2, and 57.60% (T3 of ostrich meat and pork meat. Colorimetric analyses were measuring L*, a*, b*, C*, and hº. Sensory analysis was conducted assessing color, aroma, flavor, and texture at the end of the sausages' processing. The sausages containing ostrich meat were statistically different from the control in the instrumental colorimetric analysis. In the sensory analysis, no significant differences were observed between the treatments for aroma, flavor, and texture. However, significant differences were found in the color of the sausages due to the high myoglobin content present in the ostrich meat, which resulted in a very dark color in the treatment with the highest percentage of this type of meat.

  8. Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity : contradicting the flux-selectivity paradigm

    NARCIS (Netherlands)

    Peters, T.A.; Poeth, C.H.S.; Benes, N.E.; Buijs, H.C.W.M.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Thin, high-flux and highly selective cross-linked poly(vinyl)alcohol waterselective layers have been prepared on top of hollow fibre ceramic supports. The supports consist of an alpha-Al2O3 hollow fibre substrate and an intermediate gamma-Al2O3 layer, which provides a sufficiently smooth surface for

  9. High-throughput selection for cellulase catalysts using chemical complementation.

    Science.gov (United States)

    Peralta-Yahya, Pamela; Carter, Brian T; Lin, Hening; Tao, Haiyan; Cornish, Virginia W

    2008-12-24

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases, however, is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Because of the large number of enzyme variants that selections can now test as compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity.

  10. Cyclic cholecystokinin analogues with high selectivity for central receptors

    International Nuclear Information System (INIS)

    Charpentier, B.; Pelaprat, D.; Durieux, C.; Dor, A.; Roques, B.P.; Reibaud, M.; Blanchard, J.C.

    1988-01-01

    Taking as a model the N-terminal folding of the cholecystokinin tyrosine-sulfated octapeptide deduced from conformational studies, two cyclic cholecystokinin (CCK) analogues were synthesized by conventional peptide synthesis. The binding characteristics of these peptides were investigated on brain cortex membranes and pancreatic acini of guinea pig. Compounds I and II were competitive inhibitors of [ 3 H]Boc[Ahx 28,31 ]CCK-(27-33) binding to central CCK receptors and showed a high degree of selectivity for these binding sites. This high selectivity was associated with a high affinity for central CCK receptors. Similar affinities and selectivities were found when 125 I Bolton-Hunter-labeled CCK-8 was used as a ligand. Moreover, these compounds were only weakly active in the stimulation of amylase release from guinea pig pancreatic acini and were unable to induce contractions in the guinea pig ileum. The two cyclic CCK analogues, therefore, appear to be synthetic ligands exhibiting both high affinity and high selectivity for central CCK binding sites. These compounds could help clarify the respective role of central and peripheral receptors for various CCK-8-induced pharmacological effects

  11. Rapid colorimetric assay for gentamicin injection.

    Science.gov (United States)

    Tarbutton, P

    1987-01-01

    A rapid colorimetric method for determining gentamicin concentration in commercial preparations of gentamicin sulfate injection was developed. Methods currently available for measuring gentamicin concentration via its colored complex with cupric ions in alkaline solution were modified to reduce the time required for a single analysis. The alkaline copper tartrate (ACT) reagent solution was prepared such that each milliliter contained 100 mumol cupric sulfate, 210 mumol potassium sodium tartrate, and 1.25 mmol sodium hydroxide. The assay involves mixing 0.3 mL gentamicin sulfate injection 40 mg/mL (of gentamicin), 1.0 mL ACT reagent, and 0.7 mL water; the absorbance of the resulting solution at 560 nm was used to calculate the gentamicin concentration in the sample. For injections containing 10 mg/mL of gentamicin, the amount of the injection was increased to 0.5 mL and water decreased to 0.5 mL. The concentration of gentamicin in samples representing 11 lots of gentamicin sulfate injection 40 mg/mL and 8 lots of gentamicin sulfate injection 10 mg/mL was determined. The specificity, reproducibility, and accuracy of the assay were assessed. The colored complex was stable for at least two hours. Gentamicin concentration ranged from 93.7 to 108% and from 95 to 109% of the stated label value of the 40 mg/mL and the 10 mg/mL injections, respectively. No components of the preservative system present in the injections interfered with the assay. Since other aminoglycosides produced a colored complex, the assay is not specific for gentamicin. The assay was accurate and reproducible over the range of 4-20 mg of gentamicin. This rapid and accurate assay can be easily applied in the hospital pharmacy setting.

  12. Selection of Highly Expressed Gene Variants in Escherichia coli Using Translationally Coupled Antibiotic Selection Markers

    DEFF Research Database (Denmark)

    Rennig, Maja; Daley, Daniel O.; Nørholm, Morten H. H.

    2018-01-01

    Strategies to select highly expressed variants of a protein coding sequence are usually based on trial-and-error approaches, which are time-consuming and expensive. We address this problem using translationally coupled antibiotic resistance markers. The system requires that the target gene can...

  13. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  14. High-level radioactive waste repositories site selection plan

    International Nuclear Information System (INIS)

    Castanon, A.; Recreo, F.

    1985-01-01

    A general vision of the high level nuclear waste (HLNW) and/or nuclear spent fuel facilities site selection processes is given, according to the main international nuclear safety regulatory organisms quidelines and the experience from those countries which have reached a larger development of their national nuclear programs. (author)

  15. Smartphone-Based VOC Sensor Using Colorimetric Polydiacetylenes.

    Science.gov (United States)

    Park, Dong-Hoon; Heo, Jung-Moo; Jeong, Woomin; Yoo, Young Hyuk; Park, Bum Jun; Kim, Jong-Man

    2018-02-07

    Owing to a unique colorimetric (typically blue-to-red) feature upon environmental stimulation, polydiacetylenes (PDAs) have been actively employed in chemosensor systems. We developed a highly accurate and simple volatile organic compound (VOC) sensor system that can be operated using a conventional smartphone. The procedure begins with forming an array of four different PDAs on conventional paper using inkjet printing of four corresponding diacetylenes followed by photopolymerization. A database of color changes (i.e., red and hue values) is then constructed on the basis of different solvatochromic responses of the 4 PDAs to 11 organic solvents. Exposure of the PDA array to an unknown solvent promotes color changes, which are imaged using a smartphone camera and analyzed using the app. A comparison of the color changes to the database promoted by the 11 solvents enables the smartphone app to identify the unknown solvent with 100% accuracy. Additionally, it was demonstrated that the PDA array sensor was sufficiently sensitive to accurately detect the 11 VOC gases.

  16. A colorimetric method to quantify endo-polygalacturonase activity.

    Science.gov (United States)

    Torres, Sebastián; Sayago, Jorge E; Ordoñez, Roxana M; Isla, María Inés

    2011-02-08

    We report a new colorimetric assay to quantify endo-polygalacturonase activity, which hydrolyzes polygalacturonic acid to produce smaller chains of galacturonate. Some of the reported polygalacturonase assays measure the activity by detecting the appearance of reducing ends such as the Somogyi-Nelson method. As a result of being general towards reducing groups, the Somogyi-Nelson method is not appropriate when studying polygalacturonase and polygalacturonase inhibitors in plant crude extracts, which often have a strong reducing power. Ruthenium Red is an inorganic dye that binds polygalacturonic acid and causes its precipitation. In the presence of polygalacturonase, polygalacturonic acid is hydrolyzed bringing about a corresponding gain in soluble Ruthenium Red. The described assay utilizes Ruthenium Red as the detection reagent which has been used previously in plate-based assays but not in liquid medium reactions. The new method measures the disappearance of the substrate polygalacturonic acid and is compared to the Somogyi-Nelson assay. The experimental results using lemon peel, a fern fronds and castor leaf crude extracts demonstrate that the new method provides a way to the quickly screening of polygalacturonase activity and polygalacturonase inhibitors in plant crude extracts containing high amounts of reducing power. On the other hand, the Ruthenium Red assay is not able to determine the activity of an exo-polygalacturonase as initial velocity and thus would allow the differentiation between endo- and exo-polygalacturonase activities. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. PRINCIPLE OF VALIDATION OF MULTILEVEL RGB COLORIMETRIC SYSTEMS OF REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Lala Rustam Bekirova

    2013-12-01

    Full Text Available The possibility of development of two-level RGB colorimetric systems of remote sensing is analyzed. The principle of validation in multi-level RGB colorimetric systems taking into account the effect of metamerizm is formulated

  18. Colorimetric detection of melamine based on p-chlorobenzenesulfonic acid-modified AuNPs

    Science.gov (United States)

    Li, Jianfang; Huang, Pengcheng; Wu, Fangying

    2016-06-01

    A highly selective and sensitive method is developed for colorimetric detection of melamine using gold nanoparticles (AuNPs) functionalized with p-chlorobenzenesulfonic acid. The addition of melamine induced the aggregation of AuNPs, as evidenced from the morphological characterizations and the color changed from red wine to blue, which could also be monitored by the UV-visible spectrometer and even naked eyes. This process caused a significant increase in the absorbance ratio (A650nm/A520nm) of p-chlorobenzenesulfonic acid-AuNPs. Under optimized conditions, the system exhibited a linear response to melamine in the range of 6.0 × 10-7-1.5 × 10-6 mol L-1 with a correlation coefficient of 0.997, and the limit of detection can even be 2.3 nM, which was much lower than some other methods and the safe limits (20 μM in both the USA and EU, 8.0 μM for infant formula in China, 1.2 μM in the CAC (Codex Alimentarius Commission) review for melamine in liquid infant formula). More importantly, the developed method presented excellent tolerance to coexisting common metal ions such as Ca2+, Zn2+, whose concentration is 1000 times of melamine, so that it had been applied to the analysis of melamine in liquid milk and milk powder with the recovery of 97.0-101 % and 100-103 %, respectively, indicating that the proposed method is quite a highly effective means to determine melamine in milk products.

  19. Colorimetric detection of melamine based on p-chlorobenzenesulfonic acid-modified AuNPs

    International Nuclear Information System (INIS)

    Li, Jianfang; Huang, Pengcheng; Wu, Fangying

    2016-01-01

    A highly selective and sensitive method is developed for colorimetric detection of melamine using gold nanoparticles (AuNPs) functionalized with p-chlorobenzenesulfonic acid. The addition of melamine induced the aggregation of AuNPs, as evidenced from the morphological characterizations and the color changed from red wine to blue, which could also be monitored by the UV–visible spectrometer and even naked eyes. This process caused a significant increase in the absorbance ratio (A_6_5_0_n_m/A_5_2_0_n_m) of p-chlorobenzenesulfonic acid–AuNPs. Under optimized conditions, the system exhibited a linear response to melamine in the range of 6.0 × 10"−"7–1.5 × 10"−"6 mol L"−"1 with a correlation coefficient of 0.997, and the limit of detection can even be 2.3 nM, which was much lower than some other methods and the safe limits (20 μM in both the USA and EU, 8.0 μM for infant formula in China, 1.2 μM in the CAC (Codex Alimentarius Commission) review for melamine in liquid infant formula). More importantly, the developed method presented excellent tolerance to coexisting common metal ions such as Ca"2"+, Zn"2"+, whose concentration is 1000 times of melamine, so that it had been applied to the analysis of melamine in liquid milk and milk powder with the recovery of 97.0–101 % and 100–103 %, respectively, indicating that the proposed method is quite a highly effective means to determine melamine in milk products.

  20. Colorimetric detection of melamine based on p-chlorobenzenesulfonic acid-modified AuNPs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianfang; Huang, Pengcheng; Wu, Fangying, E-mail: fywu@ncu.edu.cn [Nanchang University, College of Chemistry (China)

    2016-06-15

    A highly selective and sensitive method is developed for colorimetric detection of melamine using gold nanoparticles (AuNPs) functionalized with p-chlorobenzenesulfonic acid. The addition of melamine induced the aggregation of AuNPs, as evidenced from the morphological characterizations and the color changed from red wine to blue, which could also be monitored by the UV–visible spectrometer and even naked eyes. This process caused a significant increase in the absorbance ratio (A{sub 650nm}/A{sub 520nm}) of p-chlorobenzenesulfonic acid–AuNPs. Under optimized conditions, the system exhibited a linear response to melamine in the range of 6.0 × 10{sup −7}–1.5 × 10{sup −6} mol L{sup −1} with a correlation coefficient of 0.997, and the limit of detection can even be 2.3 nM, which was much lower than some other methods and the safe limits (20 μM in both the USA and EU, 8.0 μM for infant formula in China, 1.2 μM in the CAC (Codex Alimentarius Commission) review for melamine in liquid infant formula). More importantly, the developed method presented excellent tolerance to coexisting common metal ions such as Ca{sup 2+}, Zn{sup 2+}, whose concentration is 1000 times of melamine, so that it had been applied to the analysis of melamine in liquid milk and milk powder with the recovery of 97.0–101 % and 100–103 %, respectively, indicating that the proposed method is quite a highly effective means to determine melamine in milk products.

  1. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    Science.gov (United States)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  2. Colorimetric detection for paper-based biosensing applications

    Science.gov (United States)

    Brink, C.; Joubert, T.-H.

    2016-02-01

    Research on affordable point-of-care health diagnostics is rapidly advancing1. Colorimetric biosensor applications are typically qualitative, but recently the focus has been shifted to quantitative measurements2,3. Although numerous qualitative point-of-care (POC) health diagnostic devices are available, the challenge exists of developing a quantitative colorimetric array reader system that complies with the ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, Deliverable to end-users) principles of the World Health Organization4. This paper presents a battery powered 8-bit tonal resolution colorimetric sensor circuit for paper microfluidic assays using low cost photo-detection circuitry and a low-power LED light source. A colorimetric 3×3-pixel array reader was developed for rural environments where resources and personnel are limited. The device sports an ultralow-power E-ink paper display. The colorimetric device includes integrated GPS functionality and EEPROM memory to log measurements with geo-tags for possible analysis of regional trends. The device competes with colour intensity measurement techniques using smartphone cameras, but proves to be a cheaper solution, compensating for the typical performance variations between cameras of different brands of smartphones. Inexpensive methods for quantifying bacterial assays have been shown using desktop scanners, which are not portable, and cameras, which suffer severely from changes in ambient light in different environments. Promising colorimetric detection results have been demonstrated using devices such as video cameras5, digital colour analysers6, flatbed scanners7 or custom portable readers8. The major drawback of most of these methods is the need for specialized instrumentation and for image analysis on a computer.

  3. Highly selective enrichment of phosphorylated peptides using titanium dioxide

    DEFF Research Database (Denmark)

    Thingholm, Tine; Jørgensen, Thomas J D; Jensen, Ole N

    2006-01-01

    -column. Although phosphopeptide enrichment can be achieved by using TFA and acetonitrile alone, the selectivity is dramatically enhanced by adding DHB or phthalic acid since these compounds, in conjunction with the low pH caused by TFA, prevent binding of nonphosphorylated peptides to TiO2. Using an alkaline...... a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro...... solution (pH > or = 10.5) both monophosphorylated and multiphosphorylated peptides are eluted from the TiO2 beads. This highly efficient method for purification of phosphopeptides is well suited for the characterization of phosphoproteins from both in vitro and in vivo studies in combination with mass...

  4. A Primer on High-Throughput Computing for Genomic Selection

    Directory of Open Access Journals (Sweden)

    Xiao-Lin eWu

    2011-02-01

    Full Text Available High-throughput computing (HTC uses computer clusters to solve advanced computational problems, with the goal of accomplishing high throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general purpose computation on a graphics processing unit (GPU provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin – Madison, which can be leveraged for genomic selection, in terms of central processing unit (CPU capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of

  5. A simple colorimetric assay for detection of amplified Mycobacterium leprae DNA

    NARCIS (Netherlands)

    van der Vliet, G. M.; de Wit, M. Y.; Klatser, P. R.

    1993-01-01

    A colorimetric assay for the detection of PCR-products is described. The assay is based on amplification of DNA in the presence of digoxigenin-dUTP. After immobilization of the PCR products to a microtitre plate, amplified DNA could be detected colorimetrically. The sensitivity of this colorimetric

  6. Design of highly selective ethanol dehydration nanocatalysts for ethylene production.

    Science.gov (United States)

    Austin, Natalie; Kostetskyy, Pavlo; Mpourmpakis, Giannis

    2018-02-22

    Rational design of catalysts for selective conversion of alcohols to olefins is key since product selectivity remains an issue due to competing etherification reactions. Using first principles calculations and chemical rules, we designed novel metal-oxide-protected metal nanoclusters (M 13 X 4 O 12 , with M = Cu, Ag, and Au and X = Al, Ga, and In) exhibiting strong Lewis acid sites on their surface, active for the selective formation of olefins from alcohols. These symmetrical nanocatalysts, due to their curvature, show unfavorable etherification chemistries, while favoring the olefin production. Furthermore, we determined that water removal and regeneration of the nanocatalysts is more feasible compared to the equivalent strong acid sites on solid acids used for alcohol dehydration. Our results demonstrate an exceptional stability of these new nanostructures with the most energetically favorable being Cu-based. Thus, the high selectivity and stability of these in-silico-predicted novel nanoclusters (e.g. Cu 13 Al 4 O 12 ) make them attractive catalysts for the selective dehydration of alcohols to olefins.

  7. High selection pressure promotes increase in cumulative adaptive culture.

    Directory of Open Access Journals (Sweden)

    Carolin Vegvari

    Full Text Available The evolution of cumulative adaptive culture has received widespread interest in recent years, especially the factors promoting its occurrence. Current evolutionary models suggest that an increase in population size may lead to an increase in cultural complexity via a higher rate of cultural transmission and innovation. However, relatively little attention has been paid to the role of natural selection in the evolution of cultural complexity. Here we use an agent-based simulation model to demonstrate that high selection pressure in the form of resource pressure promotes the accumulation of adaptive culture in spite of small population sizes and high innovation costs. We argue that the interaction of demography and selection is important, and that neither can be considered in isolation. We predict that an increase in cultural complexity is most likely to occur under conditions of population pressure relative to resource availability. Our model may help to explain why culture change can occur without major environmental change. We suggest that understanding the interaction between shifting selective pressures and demography is essential for explaining the evolution of cultural complexity.

  8. Specifically colorimetric recognition of calcium, strontium, and barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable detection of calcium ion in water.

    Science.gov (United States)

    Zhang, Jia; Wang, Yong; Xu, Xiaowen; Yang, Xiurong

    2011-10-07

    A colorimetric probe based on 2-mercaptosuccinic acid-functionalized gold nanoparticles has been developed to exhibit selectivity towards Ca(2+), Sr(2+), and Ba(2+) ions over other metallic cations under specified conditions and finds its practical application in detecting Ca(2+) levels in water.

  9. Evaluation and selection of candidate high-level waste forms

    International Nuclear Information System (INIS)

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms

  10. Dual-Modal Colorimetric/Fluorescence Molecular Probe for Ratiometric Sensing of pH and Its Application.

    Science.gov (United States)

    Wu, Luling; Li, Xiaolin; Huang, Chusen; Jia, Nengqin

    2016-08-16

    As traditional pH meters cannot work well for minute regions (such as subcellular organelles) and in harsh media, molecular pH-sensitive devices for monitoring pH changes in diverse local heterogeneous environments are urgently needed. Here, we report a new dual-modal colorimetric/fluorescence merocyanine-based molecular probe (CPH) for ratiometric sensing of pH. Compared with previously reported pH probes, CPH bearing the benzyl group at the nitrogen position of the indolium group and the phenol, which is used as the acceptor for proton, could respond to pH changes immediately through both the ratiometric fluorescence signal readout and naked-eye colorimetric observation. The sensing process was highly stable and reversible. Most importantly, the suitable pKa value (6.44) allows CPH to presumably accumulate in lysosomes and become a lysosome-target fluorescent probe. By using CPH, the intralysosomal pH fluctuation stimulated by antimalaria drug chloroquine was successfully tracked in live cells through the ratiometric fluorescence images. Additionally, CPH could be immobilized on test papers, which exhibited a rapid and reversible colorimetric response to acid/base vapor through the naked-eye colorimetric analysis. This proof-of-concept study presents the potential application of CPH as a molecular tool for monitoring intralysosomal pH fluctuation in live cells, as well as paves the way for developing the economic, reusable, and fast-response optical pH meters for colorimetric sensing acid/base vapor with direct naked-eye observation.

  11. Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter.

    Science.gov (United States)

    Hu, Qiong; Zhou, Baojing; Dang, Pengyun; Li, Lianzhi; Kong, Jinming; Zhang, Xueji

    2017-01-15

    We report a versatile approach for the colorimetric assay of alkaline phosphatase (ALP) activity based on the distinctive metal-to-ligand charge-transfer (MLCT) absorption properties of Fe(II)-phenanthroline reporter. In the presence of ALP, the applied substrate ascorbic acid 2-phosphate is enzymatically hydrolyzed to produce ascorbic acid, which then reduces Fe 3+ to Fe 2+ . The complexation of Fe 2+ with the bathophenanthroline disulfonate (BPS) ligand generates a blood-red Fe(BPS) 3 4- reporter, which is characterized by an intense MLCT absorption band at 535 nm in the visible range. Under optimal conditions, the spectral output exhibits a good quantitative relationship with ALP activity over the range of 0-220 mU mL -1 with a detection limit of 0.94 mU mL -1 . Moreover, the activity of ALP can also be conveniently judged through naked-eye observations. Results indicate that it is highly selective and can be applied to the screening of ALP inhibitors. In addition, it has been successfully employed to detect the endogenous ALP level of undiluted human serum samples, with a detection limit of 1.05 mU mL -1 being achieved. This approach avoids any elaborately designed substrates and holds considerable simplicity and flexibility for reporter design. This study broadens the horizon of the applications of phenanthroline-based transition metal complexes. Furthermore, an efficient and practical method like this has the potential to be widely used in clinical applications and in the point-of-care testing. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Colorimetric assay for lead ions based on the leaching of gold nanoparticles.

    Science.gov (United States)

    Chen, Yi-You; Chang, Huan-Tsung; Shiang, Yen-Chun; Hung, Yu-Lun; Chiang, Cheng-Kang; Huang, Chih-Ching

    2009-11-15

    A colorimetric, label-free, and nonaggregation-based gold nanoparticles (Au NPs) probe has been developed for the detection of Pb(2+) in aqueous solution, based on the fact that Pb(2+) ions accelerate the leaching rate of Au NPs by thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). Au NPs reacted with S(2)O(3)(2-) ions in solution to form Au(S(2)O(3))(2)(3-) complexes on the Au NP surfaces, leading to slight decreases in their surface plasmon resonance (SPR) absorption. Surface-assisted laser desorption/ionization time-of-flight ionization mass spectrometry (SALDI-TOF MS) data reveals the formation of Pb-Au alloys on the surfaces of the Au NPs in the presence of Pb(2+) ions and 2-ME. The formation of Pb-Au alloys accelerated the Au NPs rapidly dissolved into solution, leading to dramatic decreases in the SPR absorption. The 2-ME/S(2)O(3)(2-)-Au NP probe is highly sensitive (LOD = 0.5 nM) and selective (by at least 1000-fold over other metal ions) toward Pb(2+) ions, with a linear detection range (2.5 nM-10 muM) over nearly 4 orders of magnitude. The cost-effective probe allows rapid and simple determination of the concentrations of Pb(2+) ions in environmental samples (Montana soil and river), with results showing its great practicality for the detection of lead in real samples.

  13. 5,10,15,20-Tetrakis(4-carboxyl phenyl)porphyrin–CdS nanocomposites with intrinsic peroxidase-like activity for glucose colorimetric detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingyun, E-mail: qyliu@sdust.edu.cn [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Jia, Qingyan; Zhu, Renren; Shao, Qian; Wang, Dongmei; Cui, Peng [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Ge, Jiechao, E-mail: jchge2010@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-09-01

    Here, we describe the design of a novel mimic peroxidase, nanocomposites composed by 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin (H{sub 2}TCPP) and cadmium sulfide (CdS). The H{sub 2}TCPP–CdS nanocomposites can catalyze oxidation of substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H{sub 2}O{sub 2} and form a blue product which can be seen by the naked eye in 5 min. The mechanism of the catalytic reaction originated from the generation of hydroxyl radical (·OH), which is a powerful oxidizing agent to oxidize TMB to produce a blue product. Then, we developed a colorimetric method that is highly sensitive and selective to detect glucose, combined with glucose oxidase (GOx). The proposed method allowed the detection of H{sub 2}O{sub 2} concentration in the range of 4 × 10{sup −6}–1.4 × 10{sup −5} M and glucose in the range of 1.875 × 10{sup −5}–1 × 10{sup −4} M with detectable H{sub 2}O{sub 2} concentration as low as 4.6 × 10{sup −7} M and glucose as low as 7.02 × 10{sup −6} M, respectively. The results provided the theoretical basis of practical application in glucose detecting and peroxidase mimetic enzymes. - Graphical abstract: 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin (H{sub 2}TCPP)–CdS nanohybrids were demonstrated to possess intrinsic peroxidase-like activity and used for a glucose colorimetric sensor. - Highlights: • H{sub 2}TCPP–CdS nanocomposites were synthesized by a facile one step under mild condition. • H{sub 2}TCPP–CdS nanocomposites possess excellent intrinsic peroxidase-like activity. • A sensitive and selective colorimetric sensor for glucose is provided based on H{sub 2}TCPP–CdS nanocomposites. • The generation of hydroxyl radical (·OH) decomposed from H{sub 2}O{sub 2} is contributed to efficient catalytic.

  14. High-dimensional model estimation and model selection

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will review concepts and algorithms from high-dimensional statistics for linear model estimation and model selection. I will particularly focus on the so-called p>>n setting where the number of variables p is much larger than the number of samples n. I will focus mostly on regularized statistical estimators that produce sparse models. Important examples include the LASSO and its matrix extension, the Graphical LASSO, and more recent non-convex methods such as the TREX. I will show the applicability of these estimators in a diverse range of scientific applications, such as sparse interaction graph recovery and high-dimensional classification and regression problems in genomics.

  15. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Urinary Colorimetric Sensor Array and Algorithm to Distinguish Kawasaki Disease from Other Febrile Illnesses.

    Directory of Open Access Journals (Sweden)

    Zhen Li

    Full Text Available Kawasaki disease (KD is an acute pediatric vasculitis of infants and young children with unknown etiology and no specific laboratory-based test to identify. A specific molecular diagnostic test is urgently needed to support the clinical decision of proper medical intervention, preventing subsequent complications of coronary artery aneurysms. We used a simple and low-cost colorimetric sensor array to address the lack of a specific diagnostic test to differentiate KD from febrile control (FC patients with similar rash/fever illnesses.Demographic and clinical data were prospectively collected for subjects with KD and FCs under standard protocol. After screening using a genetic algorithm, eleven compounds including metalloporphyrins, pH indicators, redox indicators and solvatochromic dye categories, were selected from our chromatic compound library (n = 190 to construct a colorimetric sensor array for diagnosing KD. Quantitative color difference analysis led to a decision-tree-based KD diagnostic algorithm.This KD sensing array allowed the identification of 94% of KD subjects (receiver operating characteristic [ROC] area under the curve [AUC] 0.981 in the training set (33 KD, 33 FC and 94% of KD subjects (ROC AUC: 0.873 in the testing set (16 KD, 17 FC. Color difference maps reconstructed from the digital images of the sensing compounds demonstrated distinctive patterns differentiating KD from FC patients.The colorimetric sensor array, composed of common used chemical compounds, is an easily accessible, low-cost method to realize the discrimination of subjects with KD from other febrile illness.

  17. A primer on high-throughput computing for genomic selection.

    Science.gov (United States)

    Wu, Xiao-Lin; Beissinger, Timothy M; Bauck, Stewart; Woodward, Brent; Rosa, Guilherme J M; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2011-01-01

    High-throughput computing (HTC) uses computer clusters to solve advanced computational problems, with the goal of accomplishing high-throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long, and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general-purpose computation on a graphics processing unit provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin-Madison, which can be leveraged for genomic selection, in terms of central processing unit capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general-purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of marker panels to realized

  18. Developing and Demonstrating an Augmented Reality Colorimetric Titration Tool

    Science.gov (United States)

    Tee, Nicholas Yee Kwang; Gan, Hong Seng; Li, Jonathan; Cheong, Brandon Huey-Ping; Tan, Han Yen; Liew, Oi Wah; Ng, Tuck Wah

    2018-01-01

    The handling of chemicals in the laboratory presents a challenge in instructing large class sizes and when students are relatively new to the laboratory environment. In this work, we describe and demonstrate an augmented reality colorimetric titration tool that operates out of the smartphone or tablet of students. It allows multiple students to…

  19. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Science.gov (United States)

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  20. A colorimetric tetrathiafulvalene-calix 4 pyrrole anion sensor

    DEFF Research Database (Denmark)

    Nielsen, K. A.

    2012-01-01

    The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and Ac......O-) to a solution of the sensor. (C) 2012 Elsevier Ltd. All rights reserved....

  1. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  2. Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Lee, I-Lin; Sung, Yi-Ming; Wu, Shu-Pao; Wu, Chien-Hou

    2014-01-01

    We have modified gold nanoparticles (AuNPs) with triazole acetamide to obtain a material for the sensitive and selective colorimetric determination of iodide. The functionalized AuNPs were prepared by a reductive single chemical step using a Cu(I)-catalyzed click reaction. The presence of iodide ions induces the aggregation of these AuNPs and results in a color change from wine-red to purple. The iodide-induced aggregation can be detected visually with bare eyes, but also by photometry. The detection limit is as low as 15 nM. The method displays excellent selectivity for iodide over other anions due to the selective interaction with the amido groups of the triazole. The method was applied to the determination of iodide in spiked lake waters. (author)

  3. Selection of high hectolitre weight mutants of winter wheat

    International Nuclear Information System (INIS)

    Crowley, C.; Jones, P.

    1989-01-01

    Grain quality in wheat includes hectolitre weight (HLW) besides protein content and thousand-grain weight (TGW). The British winter wheat variety ''Guardian'' has a very high yield potential. Although the long grain of ''Guardian'' results in a desirable high TGW the HLW is too low. To select mutants exhibiting increased HLW the character was first analyzed to identify traits that could more easily be screened for using M 2 seeds. In comparison of 6 wheat cultivars, correlation analyses with HLW resulted in coefficients of -0.86 (grain length, L:P 2 seeds for shorter, less prolate grains. Mutagenesis was carried out using EMS sulphonate (1.8 or 3.6%), sodium azide (2 or 20 mM) or X-rays (7.5 or 20 kR). 69 M 2 grains with altered shape were selected. Examination of the M 3 progeny confirmed 6 grain-shape mutants, most of them resulting from EMS treatment (Table). Two of the mutants showed TGW values significantly below the parental variety, but three mutants exhibited HLW and TGW values significantly greater than those of the parental variety. Microplot yield trails on selected M 3 lines are in progress. The influence of physical grain characteristics on HLW offers prospects for mechanical fractionation of large M 2 populations. The application of gravity separators (fractionation on the basis of grain density) and sieves (fractionation on the basis of grain length) in screening mutants possessing improved grain quality is being investigated

  4. Material Selection and Characterization for High Gradient RF Applications

    CERN Document Server

    Arnau-Izquierdo, G; Heikkinen, S; Ramsvik, T; Sgobba, Stefano; Taborelli, M; Wuensch, W

    2007-01-01

    The selection of candidate materials for the accelerating cavities of the Compact Linear Collider (CLIC) is carried out in parallel with high power RF testing. The maximum DC breakdown field of copper, copper alloys, refractory metals, aluminium and titanium have been measured with a dedicated setup. Higher maximum fields are obtained for refractory metals and for titanium, which exhibits, however, important damages after conditioning. Fatigue behaviour of copper alloys has been studied for surface and bulk by pulsed laser irradiation and ultrasonic excitation, respectively. The selected copper alloys show consistently higher fatigue resistance than copper in both experiments. In order to obtain the best local properties in the device a possible solution is a bi-metallic assembly. Junctions of molybdenum and copper-zirconium UNS C15000 alloy, achieved by HIP (Hot Isostatic Pressing) diffusion bonding or explosion bonding were evaluated for their mechanical strength. The reliability of the results obtained wit...

  5. Polycaprolactone-Polydiacetylene Electrospun Fibers for Colorimetric Detection of Fake Gasoline

    Directory of Open Access Journals (Sweden)

    Shamshad Ali

    2016-04-01

    Full Text Available PCDA (Pentacosadiynoic Acid monomers were successfully embedded in PCL (Poly ?-Caprolactone polymer matrix by electrospinning process for the first time. The resultant EFM (Electrospun Fibers Mat was photo-polymerized under 254 nm UV light that enables colorimetric detection of fake gasoline. Results revealed that the fake gasoline develops a red color mat within 5 sec. FE-SEM images showed that the fake gasoline treatment dissolved the PCL EFM that give access to interact with PDA polymer. The proposed litmus-type sensor based on PCL-PDA EFM is highly sensitive to fake gasoline and can be fabricated easily

  6. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    International Nuclear Information System (INIS)

    Ivanov, Krasimir; Zaprjanova, Penka; Petkova, Milena; Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana; Angelova, Violina

    2012-01-01

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO 4 digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner–Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner–Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower P

  7. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Krasimir, E-mail: kivanov1@abv.bg [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Zaprjanova, Penka [Tobacco and Tobacco Products Institute, Plovdiv (Bulgaria); Petkova, Milena [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana [Department of Analytical Chemistry, Plovdiv University ' Paisii Hilendarski,' Plovdiv (Bulgaria); Angelova, Violina [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria)

    2012-05-15

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO{sub 4} digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner-Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner-Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower

  8. A novel piperazine-bis(rhodamine-B)-based chemosensor for highly sensitive and selective naked-eye detection of Cu{sup 2+} and its application as an INHIBIT logic device

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zebin; Li, Haizhen; Guo, Dan; Liu, Yan; Tian, Zhang; Yan, Shiqiang, E-mail: yansq@lzu.edu.cn

    2015-11-15

    Abstact: We report the design and synthesis of a new piperazine-bis(rhodamine-B) (RB-P-RB)-based indicator for selective detection of Cu{sup 2+} ion. Optical sensing behavior toward various metal ions including alkali, alkaline earth and transition metal ions (Na{sup +}, K{sup +}, Ba{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Hg{sup 2+}, and Ag{sup +}) were investigated by UV–vis and fluorescence spectroscopy in ethassnol solution. The indicator showed highly selective and sensitive colorimetric and “turn-on” fluorescence enhancement responses toward Cu{sup 2+} ion owing to the ring-opening structure of the rhodamine spirolactam. The significant change from colorless to pink upon the addition of Cu{sup 2+} could make it a suitable “naked-eye” indicator for Cu{sup 2+}. Furthermore, a possible ring-opening mechanism (off-on) of the rhodamine spirolactam induced by Cu{sup 2+} binding is supported by Job plot, ESI-mass, FT-IR, and {sup 1}H NMR. More significantly, the probe displayed highly selective Cu{sup 2+}-amplified absorption in the presence of Cu{sup 2+} ions. Finally, using Cu{sup 2+} and EDTA as inputs and the fluorescence emission intensity as output, an INHIBIT logic gate can be constructed at the molecular level. - Highlights: • A novel piperazine-bis(rhodamine-B)-based sensor for selective detection of Cu{sup 2+} ion was synthesized via simple synthetic procedures. • The probe exhibited highly selective and sensitive colorimetric and “turn on” fluorescence enhancement responses to Cu{sup 2+}. • The probe can serve as a reversible and selective “naked eye” indicator for Cu{sup 2+} ions in ethanol solution. • The probe can be utilized to construct an INHIBIT logic gate at the molecular level. • The probe displays highly selective Cu{sup 2+}-amplified absorption in ethanol solution.

  9. Characterization of selective solar absorber under high vacuum.

    Science.gov (United States)

    Russo, Roberto; Monti, Matteo; di Giamberardino, Francesco; Palmieri, Vittorio G

    2018-05-14

    Total absorption and emission coefficients of selective solar absorbers are measured under high vacuum conditions from room temperature up to stagnation temperature. The sample under investigation is illuminated under vacuum @1000W/m 2 and the sample temperature is recorded during heat up, equilibrium and cool down. During stagnation, the absorber temperature exceeds 300°C without concentration. Data analysis allows evaluating the solar absorptance and thermal emittance at different temperatures. These in turn are useful to predict evacuated solar panel performances at operating conditions.

  10. An objective method for High Dynamic Range source content selection

    DEFF Research Database (Denmark)

    Narwaria, Manish; Mantel, Claire; Da Silva, Matthieu Perreira

    2014-01-01

    With the aim of improving the immersive experience of the end user, High Dynamic Range (HDR) imaging has been gaining popularity. Therefore, proper validation and performance benchmarking of HDR processing algorithms is a key step towards standardization and commercial deployment. A crucial...... component of such validation studies is the selection of a challenging and balanced set of source (reference) HDR content. In order to facilitate this, we present an objective method based on the premise that a more challenging HDR scene encapsulates higher contrast, and as a result will show up more...

  11. On dark matter selected high-scale supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Sibo [Department of Physics, Chongqing University,Chongqing 401331 (China)

    2015-03-11

    The prediction for the Higgs mass in the dark matter selected high-scale SUSY is explored. We show the bounds on SUSY-breaking scale in models of SM +w-tilde and SM +h-tilde/s-tilde due to the observed Higgs mass at the LHC. We propose that effective theory below scale m-tilde described by SM +w-tilde is possibly realized in gauge mediation with multiple spurion fields that exhibit significant mass hierarchy, and that by SM +h-tilde/s-tilde can be realized with direct singlet-messenger-messenger coupling for singlet Yukawa coupling λ∼(v/m-tilde){sup 1/2}g{sub SM}. Finally, the constraint on high-scale SUSY is investigated in the light of inflation physics if these two subjects are directly related.

  12. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  13. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

    Science.gov (United States)

    Li, Jie; Fan, Shumin; Li, Zhigang; Xie, Yuanzhe; Wang, Rui; Ge, Baoyu; Wu, Jing; Wang, Ruiyong

    2014-08-01

    The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06-0.66 and 0.59-8.85 μg mL-1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL-1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

  14. Beetroot-pigment-derived colorimetric sensor for detection of calcium dipicolinate in bacterial spores.

    Directory of Open Access Journals (Sweden)

    Letícia Christina Pires Gonçalves

    Full Text Available In this proof-of-concept study, we describe the use of the main red beet pigment betanin for the quantification of calcium dipicolinate in bacterial spores, including Bacillus anthracis. In the presence of europium(III ions, betanin is converted to a water-soluble, non-luminescent orange 1∶1 complex with a stability constant of 1.4 × 10(5 L mol(-1. The addition of calcium dipicolinate, largely found in bacterial spores, changes the color of the aqueous solution of [Eu(Bn(+] from orange to magenta. The limit of detection (LOD of calcium dipicolinate is around 2.0 × 10(-6 mol L(-1 and the LOD determined for both spores, B. cereus and B. anthracis, is (1.1 ± 0.3× 10(6 spores mL(-1. This simple, green, fast and low cost colorimetric assay was selective for calcium dipicolinate when compared to several analogous compounds. The importance of this work relies on the potential use of betalains, raw natural pigments, as colorimetric sensors for biological applications.

  15. Plans, Patterns, and Move Categories Guiding a Highly Selective Search

    Science.gov (United States)

    Trippen, Gerhard

    In this paper we present our ideas for an Arimaa-playing program (also called a bot) that uses plans and pattern matching to guide a highly selective search. We restrict move generation to moves in certain move categories to reduce the number of moves considered by the bot significantly. Arimaa is a modern board game that can be played with a standard Chess set. However, the rules of the game are not at all like those of Chess. Furthermore, Arimaa was designed to be as simple and intuitive as possible for humans, yet challenging for computers. While all established Arimaa bots use alpha-beta search with a variety of pruning techniques and other heuristics ending in an extensive positional leaf node evaluation, our new bot, Rat, starts with a positional evaluation of the current position. Based on features found in the current position - supported by pattern matching using a directed position graph - our bot Rat decides which of a given set of plans to follow. The plan then dictates what types of moves can be chosen. This is another major difference from bots that generate "all" possible moves for a particular position. Rat is only allowed to generate moves that belong to certain categories. Leaf nodes are evaluated only by a straightforward material evaluation to help avoid moves that lose material. This highly selective search looks, on average, at only 5 moves out of 5,000 to over 40,000 possible moves in a middle game position.

  16. Highly selective electrocoagulation therapy: an innovative treatment for lymphangioma circumscriptum.

    Science.gov (United States)

    Yang, Xi; Jin, Yunbo; Chen, Hui; Li, Suolan; Ma, Gang; Hu, Xiaojie; Qiu, Yajing; Yu, Wenxin; Chang, Lei; Wang, Tianyou; Lin, Xiaoxi

    2014-08-01

    Lymphangioma circumscriptum (LC) is a type of microcystic lymphatic malformation involving the skin and mucosa that presents as translucent vesicles of varying size with a pink, red, or black hue. Lymphangioma circumscriptum causes not only cosmetic problems but also refractory rupture, infection, lymphorrhea, and bleeding. Various invasive methods, such as surgical excision, lasers, and sclerotherapy, have been used in the past to treat LC with varying success. Herein, we report a new treatment for the management of LC. This study reports the outcomes of 12 patients (aged 4-31 years) with LC treated by electrocoagulation using a special isolated needle. Patient demographics, lesion characteristics, radiologic findings, treatment course, and clinical responses are recorded. All 12 patients who were treated with the highly selective electrocoagulation therapy achieved near-complete clearance. Minimal intra- and postoperative sequelae were observed. The local complications included mild pain (n = 9), proliferous scarring (n = 1), and ulceration (n = 1) with no systemic side effects. The mean follow-up period was 8.25 months (3-14 months). Highly selective electrocoagulation therapy is an innovative, minimally invasive technique that seems to be safe and effective for the treatment of LC; the results from our limited study population seem promising, and the observed complications are acceptable.

  17. Aggregation-based colorimetric sensor for determination of prothioconazole fungicide using colloidal silver nanoparticles (AgNPs)

    Science.gov (United States)

    Ivrigh, Zahra Jafar-Nezhad; Fahimi-Kashani, Nafiseh; Hormozi-Nezhad, M. Reza

    2017-12-01

    There is a growing interest in developing high-performance sensors monitoring fungicides, due to their broadly usage and their adverse effects on humans and wildlife. In the present study, a colorimetric probe has been proposed for detection of prothioconazole based on aggregation of unmodified silver nanoparticles (AgNPs). Under optimized condition, linear relationships between the concentration of prothioconazole and the absorbance ratio of A500/A395 were found over the range of 0.01 μg·mL- 1 to 0.4 μg·mL- 1 with quantification limit as low as 1.7 ng·mL- 1. Furthermore, AgNPs color change from yellow to pink-orange in presence of prothioconazole, indicates highly sensitive naked-eye colorimetric assay for quantifying prothioconazole in real applications. The proposed approach was successfully used for the determination of prothioconazole in wheat flour and paddy water sample.

  18. A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains.

    Science.gov (United States)

    Zamzuri, N A; Abd-Aziz, S; Rahim, R A; Phang, L Y; Alitheen, N B; Maeda, T

    2014-04-01

    To isolate a bacterial strain capable of biotransforming ferulic acid, a major component of lignin, into vanillin and vanillic acid by a rapid colorimetric screening method. For the production of vanillin, a natural aroma compound, we attempted to isolate a potential strain using a simple screening method based on pH change resulting from the degradation of ferulic acid. The strain Pseudomonas sp. AZ10 UPM exhibited a significant result because of colour changes observed on the assay plate on day 1 with a high intensity of yellow colour. The biotransformation of ferulic acid into vanillic acid by the AZ10 strain provided the yield (Yp/s ) and productivity (Pr ) of 1·08 mg mg(-1) and 53·1 mg L(-1) h(-1) , respectively. In fact, new investigations regarding lignin degradation revealed that the strain was not able to produce vanillin and vanillic acid directly from lignin; however, partially digested lignin by mixed enzymatic treatment allowed the strain to produce 30·7 mg l(-1) and 1·94 mg l(-1) of vanillic acid and biovanillin, respectively. (i) The rapid colorimetric screening method allowed the isolation of a biovanillin producer using ferulic acid as the sole carbon source. (ii) Enzymatic treatment partially digested lignin, which could then be utilized by the strain to produce biovanillin and vanillic acid. To the best of our knowledge, this is the first study reporting the use of a rapid colorimetric screening method for bacterial strains producing vanillin and vanillic acid from ferulic acid. © 2013 The Society for Applied Microbiology.

  19. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Diana; Gonzalez, Maria Cristina [Departamento de Quimica Analitica e Ingenieria Quimica, Facultad de Quimica, Edificio Polivalente, Universidad de Alcala, Ctra. Madrid-Barcelona km 33,600, 28871 Alcala de Henares, Madrid (Spain); Escarpa, Alberto, E-mail: alberto.escarpa@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Facultad de Quimica, Edificio Polivalente, Universidad de Alcala, Ctra. Madrid-Barcelona km 33,600, 28871 Alcala de Henares, Madrid (Spain)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Visual detection based gold and silver nanoparticles aggregation. Black-Right-Pointing-Pointer Functionalized and non-functionalized nanoparticles. Black-Right-Pointing-Pointer High selectivity and sensitivity. Black-Right-Pointing-Pointer No complex instrumentation is required/chemical creativity for analyte detection. - Abstract: Localized surface plasmon resonance (LSPR) is one of the most remarkable features of gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs). Due to these inherent optical properties, colloidal solutions of Au and Ag NPs have high extinction coefficients and different colour in the visible region of the spectrum when they are well-spaced in comparison with when they are aggregated. Therefore, a well-designed chemical interaction between the analyte and NPs surroundings leads to a change of colour (red to blue for Au NPs and yellow to brown for Ag NPs from well-spaced to aggregated ones, respectively) allowing the visual detection of the target analyte. These approaches have exhibited an excellent analytical performance with high sensitivities due to the strong LSPR and excellent selectivity strategically driven by the interaction analyte-NPs surroundings involving mainly electrostatic and hydrogen bond interactions as well as donor-acceptor chemical reactions, among others. In addition, this kind of colorimetric assays has received considerable attention in the analytical field because of their simplicity and low cost since they do not require any expensive or complex instrumentation. As a consequence of this, detection of molecules with a high significance in the bio-medical, clinical, food safety and environmental fields including DNA, proteins and a wide spectrum of organic molecules as well as inorganic ions have been impressively reported in the most relevant literature using these assays. This timely review offers a rational vision of the main achievements yielded in the relevant

  20. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review

    International Nuclear Information System (INIS)

    Vilela, Diana; González, María Cristina; Escarpa, Alberto

    2012-01-01

    Highlights: ► Visual detection based gold and silver nanoparticles aggregation. ► Functionalized and non-functionalized nanoparticles. ► High selectivity and sensitivity. ► No complex instrumentation is required/chemical creativity for analyte detection. - Abstract: Localized surface plasmon resonance (LSPR) is one of the most remarkable features of gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs). Due to these inherent optical properties, colloidal solutions of Au and Ag NPs have high extinction coefficients and different colour in the visible region of the spectrum when they are well-spaced in comparison with when they are aggregated. Therefore, a well-designed chemical interaction between the analyte and NPs surroundings leads to a change of colour (red to blue for Au NPs and yellow to brown for Ag NPs from well-spaced to aggregated ones, respectively) allowing the visual detection of the target analyte. These approaches have exhibited an excellent analytical performance with high sensitivities due to the strong LSPR and excellent selectivity strategically driven by the interaction analyte-NPs surroundings involving mainly electrostatic and hydrogen bond interactions as well as donor–acceptor chemical reactions, among others. In addition, this kind of colorimetric assays has received considerable attention in the analytical field because of their simplicity and low cost since they do not require any expensive or complex instrumentation. As a consequence of this, detection of molecules with a high significance in the bio-medical, clinical, food safety and environmental fields including DNA, proteins and a wide spectrum of organic molecules as well as inorganic ions have been impressively reported in the most relevant literature using these assays. This timely review offers a rational vision of the main achievements yielded in the relevant literature according to this exciting and creative analytical field.

  1. Combined enzymatic and colorimetric method for determining the uronic acid and methylester content of pectin: Application to tomato products.

    Science.gov (United States)

    Anthon, Gordon E; Barrett, Diane M

    2008-09-01

    A simple procedure for determining the galacturonic acid and methanol contents of soluble and insoluble pectins, relying on enzymatic pectin hydrolysis and colorimetric quantification, is described. Pectin samples are incubated with a commercial pectinase preparation, Viscozyme, then the galacturonic acid content of the hydrolyzed pectin is quantified colorimetrically using a modification of the Cu reduction procedure originally described by Avigad and Milner. This modification, substituting the commonly used Folin-Ciocalteau reagent for the arsenic containing Nelson reagent, gives a response that is linear, sensitive, and selective for uronic acids over neutral sugars. This method also avoids the use of concentrated acids needed for the commonly used m-phenylphenol method. Methanol, released by the action of the pectin methylesterase found in the Viscozyme, is quantified using alcohol oxidase and Purpald. This combined enzymatic and colorimetric procedure correctly determined the galacturonic acid and methanol content of purified, soluble citrus pectin. Application of the procedure to water insoluble pectins was evaluated with water insoluble material from apples and oranges. In both cases good agreement was obtained between this method and commonly used methods based on chemical pectin hydrolysis. Good agreement between these procedures was also found in the analysis of both soluble and insoluble pectins from several tomato products. Copyright © 2008 Elsevier Ltd. All rights reserved.

  2. Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements

    Directory of Open Access Journals (Sweden)

    Mao Wu

    2018-06-01

    Full Text Available The overuse of cartap in tea tree leads to hazardous residues threatening human health. A colorimetric determination was established to detect cartap residues in tea beverages by silver nanoparticles (AgNP sensor with magnetic molecularly imprinted polymeric microspheres (Fe3O4@mSiO2@MIPs as recognition elements. Using Fe3O4 as supporting core, mesoporous SiO2 as intermediate shell, methylacrylic acid as functional monomer, and cartap as template, Fe3O4@mSiO2@MIPs were prepared to selectively and magnetically separate cartap from tea solution before colorimetric determination by AgNP sensors. The core-shell Fe3O4@mSiO2@MIPs were also characterized by FT-IR, TEM, VSM, and experimental adsorption. The Fe3O4@mSiO2@MIPs could be rapidly separated by an external magnet in 10 s with good reusability (maintained 95.2% through 10 cycles. The adsorption process of cartap on Fe3O4@mSiO2@MIPs conformed to Langmuir adsorption isotherm with maximum adsorption capacity at 0.257 mmol/g and short equilibrium time of 30 min at 298 K. The AgNP colorimetric method semi-quantified cartap ≥5 mg/L by naked eye and quantified cartap 0.1–5 mg/L with LOD 0.01 mg/L by UV-vis spectroscopy. The AgNP colorimetric detection after pretreatment with Fe3O4@mSiO2@MIPs could be successfully utilized to recognize and detect cartap residues in tea beverages.

  3. Smart Drug Delivery System-Inspired Enzyme-Linked Immunosorbent Assay Based on Fluorescence Resonance Energy Transfer and Allochroic Effect Induced Dual-Modal Colorimetric and Fluorescent Detection.

    Science.gov (United States)

    Miao, Luyang; Zhu, Chengzhou; Jiao, Lei; Li, He; Du, Dan; Lin, Yuehe; Wei, Qin

    2018-02-06

    Numerous analytical techniques have been undertaken for the detection of protein biomarkers because of their extensive and significant applications in clinical diagnosis, whereas there are few strategies to develop dual-readout immunosensors to achieve more accurate results. To the best of our knowledge, inspired by smart drug delivery system (DDS), a novel pH-responsive modified enzyme-linked immunosorbent assay (ELISA) was innovatively developed for the first time, realizing dual-modal colorimetric and fluorescent detection of cardiac troponin I (cTnI). Curcumin (CUR) was elaborately selected as a reporter molecule, which played the same role of drugs in DDS based on the following considerations: (1) CUR can be used as a kind of pH indicator by the inherited allochroic effect induced by basic pH value; (2) the fluorescence of CUR can be quenched by certain nanocarriers as the acceptor because of the occurrence of fluorescence resonance energy transfer (FRET), while recovered by the stimuli of basic pH value, which can produce "signal-on" fluorescence detection. Three-dimensional MoS 2 nanoflowers (3D-MoS 2 NFs) were employed in immobilizing CUR to constitute a nanoprobe for the determination of cTnI by virtue of good biocompatibility, high absorption capacity, and fluorescence quench efficiency toward CUR. The proposed DDS-inspired ELISA offered dual-modal colorimetric and fluorescent detection of cTnI, thereby meeting the reliable and precise analysis requirements. We believe that the developed dual-readout ELISA will create a new avenue and bring innovative inspirations for biological detections.

  4. Colorimetric measurements as control elements in wood conservation status

    Directory of Open Access Journals (Sweden)

    Ovidia Soto-Martín

    2014-01-01

    Full Text Available This paper is a methodological proposal for the study of altarpieces on wooden supports. The process was implemented to study the altarpiece of San Antonio de Padua in Garachico, Tenerife. For this, we conducted a review of key aspects appropriate to the discipline of wood identification carried out by macroscopic examination and for the characterization of the status of deterioration by colorimetric analysis. For the evaluation of the wood conservation status, the samples were subjected for the first time to colorimetric measurement. As a result we have created an online database to provide information for conservation professionals permitting them to design a proposal for preventive conservation and intervention individually for each object.

  5. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2011-01-01

    This report documents work at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) to validate enzymatic reduction, colorimetric determinative methods for nitrate + nitrite in filtered water by automated discrete analysis. In these standard- and low-level methods (USGS I-2547-11 and I-2548-11), nitrate is reduced to nitrite with nontoxic, soluble nitrate reductase rather than toxic, granular, copperized cadmium used in the longstanding USGS automated continuous-flow analyzer methods I-2545-90 (NWQL laboratory code 1975) and I-2546-91 (NWQL laboratory code 1979). Colorimetric reagents used to determine resulting nitrite in aforementioned enzymatic- and cadmium-reduction methods are identical. The enzyme used in these discrete analyzer methods, designated AtNaR2 by its manufacturer, is produced by recombinant expression of the nitrate reductase gene from wall cress (Arabidopsis thaliana) in the yeast Pichia pastoris. Unlike other commercially available nitrate reductases we evaluated, AtNaR2 maintains high activity at 37°C and is not inhibited by high-phenolic-content humic acids at reaction temperatures in the range of 20°C to 37°C. These previously unrecognized AtNaR2 characteristics are essential for successful performance of discrete analyzer nitrate + nitrite assays (henceforth, DA-AtNaR2) described here.

  6. Antitumor evaluation of epigallocatechin gallate by colorimetric methods

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Soon Ok [Korean Ginseng and Tobacco Research institute, Daejon (Korea, Republic of); Kim, Il Kwang; Baek, Seung Hwa; Han, Du Seok [Wonkwang Unvi., Iksan (Korea, Republic of)

    1998-08-01

    In the present study, we were evaluated cytotoxic effects of epigallocatechin gallate in human skin melanoma cells such as HTB-69. The light microscopic study showed morphological changes of the treated cells. Disruptions in cell organelles were determined by colorimetric methods; 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, neutral red (NR) assay and sulforhodamine B protein (SRB) as-say. These results suggest that epigallocatechin gallate retains a potential antitumor activity.

  7. Fluorescent and Colorimetric Molecular Recognition Probe for Hydrogen Bond Acceptors

    OpenAIRE

    Pike, Sarah Jane; Hunter, Christopher Alexander

    2018-01-01

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish sel...

  8. Spectroscopic and TDDFT investigation on highly selective fluorogenic chemosensor and construction of molecular logic gates

    Energy Technology Data Exchange (ETDEWEB)

    Basheer, Sabeel M [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India); Kumar, Saravana Loganathan Ashok [Department of Chemistry, GRT Institute of Engineering Technology, Tiruttani (India); Kumar, Moorthy Saravana [Research and PG Department of Chemistry, Saraswathi Narayanan College, Madurai 625022 (India); Sreekanth, Anandaram, E-mail: sreekanth@nitt.edu [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2017-03-01

    1,5-Bis(2-fluorene)thiocarbohydrazone (FBTC) was designed and synthesized for selective sensing of fluoride and copper ions. The binding constants of FBTC towards fluoride and copper ions have been calculated using the Benesi-Hildebrand equation, and FBTC has more binding affinity towards copper ion than fluoride ion. The {sup 1}H NMR and {sup 13}C NMR titration studies strongly support the deprotonation was taken from the N–H protons followed by the formation of hydrogen bond via N–H{sup …}F. To understand the fluoride ion sensing mechanism, theoretical investigation had been carried out using the density functional theory and time-dependent density functional theory. The theoretical data well reproduced the experimental results. The deprotonation process has a moderate transition barrier (481.55 kcal/mol). The calculated ΔE and ΔG values (− 253.92 and − 192.41 kcal/mol respectively) suggest the feasibility of sensing process. The potential energy curves give the optimized structures of FBTC-F complex in the ground state and excited state, which states the proton transition occurs at the excited state. The excited state proton transition mechanism was further confirmed with natural bond orbital analysis. The reversibility of the sensor was monitored by the alternate addition of F{sup −} and Cu{sup 2+} ions, which was explained with “Read-Erase-Write-Read” behaviour. The multi-ion detection of sensor used to construct the molecular logic gate, such as AND, OR, NOR and INHIBITION logic gates. - Highlight: • Synthesis and characterised the thiosemicarbohydrazone derivative • Experimental evolution of selective fluoride and copper sensing via both colorimetric and spectroscopic studies • The proposed sensing mechanism of fluoride and copper ion were further confirmed with DFT and TD-DFT investigation • Receptor was turned as molecular switches and molecular logic gates.

  9. Selective gettering of hydrogen in high pressure metal iodide lamps

    International Nuclear Information System (INIS)

    Kuus, G.

    1976-01-01

    One of the main problems in the manufacture of high pressure gas discharge lamps is the elimination of gaseous impurities from their arc tubes. Long degassing processes of all the lamp components are necessary in order to produce lamps with a low ignition voltage and good maintenance of the radiation properties. The investigation described deals with a selective getter place in the arc tube which can replace the long degassing process. The getter consists of a piece of yttrium encapsulated in thin tantalum foil. By this way it is possible to use the gettering action of tantalum and yttrium without having reaction between the metal iodide of the arc tube and yttrium. Yttrium is used because this metal can adsorb a large quantity of hydrogen even at a temperature of 1000 0 C. Hydrogen forms the main gaseous impurity in the high pressure metal iodide lamp. For this reason the adsorption properties like adsorption rate and capacity of the tantalum--yttrium getter for hydrogen are examined, and the results obtained from lamp experiments are given

  10. Forensic Analysis of High Explosive Residues from Selected Cloth

    International Nuclear Information System (INIS)

    Mohamad Afiq Mohamed Huri; Umi Kalthom Ahmad

    2014-01-01

    Increased terrorist activities around the Asian region have resulted in the need for improved analytical techniques in forensic analysis. High explosive residues from post-blast clothing are often encountered as physical evidence submitted to a forensic laboratory. Therefore, this study was initiated to detect high explosives residues of cyclotrimethylenetrinitramine (RDX) and pentaerythritol tetranitrate (PETN) on selected cloth in this study. Cotton swabbing technique was employed as a simple and rapid method in recovering analytes from the sample matrix. Analytes were analyzed using Griess spot test, TLC and HPLC. TLC separation employed toluene-ethyl acetate (9:1) as a good solvent system. Reversed phase HPLC separation employed acetonitrile-water (65:35) as the mobile phase and analytes detected using a programmed wavelength. RDX was detected at 235 nm for the first 3.5 min and then switched to 215 nm for PETN. Limits of detection (LODs) of analytes were in the low ppm range (0.05 ppm for RDX and 0.25 ppm for PETN). Analyte recovery studies revealed that the type of cloth has a profound effect on the extraction efficiency. Analytes were recovered better for nylon as compared to cotton cloth. However, no analytes could be recovered from denim cloth. For post-blast samples, only RDX was detected in low concentration for both nylon and cotton cloth. (author)

  11. Highly selective determination of methylmercury with methylmercury-imprinted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yongwen [Department of Chemistry, Shanxi Datong University, Datong 037009 (China)]. E-mail: dtlyw@263.net; Zai Yunhui [School of Chemistry and Chemical Engineering of Lanzhou University, Lanzhou 730000 (China); Chang Xijun [School of Chemistry and Chemical Engineering of Lanzhou University, Lanzhou 730000 (China); Guo Yong [Department of Chemistry, Shanxi Datong University, Datong 037009 (China); Meng Shuangming [Department of Chemistry, Shanxi Datong University, Datong 037009 (China); Feng Feng [Department of Chemistry, Shanxi Datong University, Datong 037009 (China)

    2006-08-11

    Methylmercury-imprinted and non-imprinted polymers were prepared by formation monomer complex of methylmercury with (4-ethenylphenyl)-4-formate-6-phenyl-2,2'-bipyridine and thermally polymerizing with divinylbenzene (crosslinker) in the presence of 2,2'-azobisisobutyronitrile as initiator and subsequently leached with the acidic thiourea solution (1.0 mol L{sup -1} of thiourea and 4.0 mol L{sup -1} of HCl). In the same way, non-imprinted copolymers were prepared without methylmercury chloride added. The separation and preconcentration characteristics of the polymers for methylmercury were investigated by batch and column procedures. The results demonstrated that the methylmercury-imprinted polymers had higher adsorption capacity (170 {mu}mol g{sup -1} of dry microbeads) and good selectivity for methylmercury compared to non-imprinted polymers. The distribution ratio (D) values of the methylmercury-imprinted polymers increased for methylmercury with respect to both D values of Hg(II), Cu(II), Zn(II), Cd(II) and non-imprinted polymers. The relatively selective factor ({alpha} {sub r}) values of CH{sub 3}Hg{sup +}/Hg(II), CH{sub 3}Hg{sup +}/Cu(II), CH{sub 3}Hg{sup +}/Zn(II), and CH{sub 3}Hg{sup +}/Cd(II) are 24.0, 46.7, 50.7, and 40.2, which are greater than 1. The methylmercury-imprinted polymers can be used at least twenty times with recoveries no less than 95%. Based on the packed columns with methylmercury-imprinted polymers, a highly selective solid-phase extraction (SPE) and preconcentration method for methylmercury was developed. The metal ion imprinted polymer solid-phase extraction (MIIP-SPE) preconcentration procedure showed a linear calibration curve within concentration range from 0.093 to 22 {mu}g L{sup -1}. The detection limit and quantification limit were 0.041 and 0.093 {mu}g L{sup -1} (3{sigma}) for cold vapor atomic absorption spectrometry (CVAAS). The relative standard deviation of the 10 replicate determinations was 3.5% for the

  12. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  13. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.

    Science.gov (United States)

    Yan, Chao; Zhang, Jing; Yao, Li; Xue, Feng; Lu, Jianfeng; Li, Baoguang; Chen, Wei

    2018-09-15

    We report an aptamer-mediated colorimetric method for sensitive detection of chloramphenicol (CAP). The aptamer of CAP is immobilized by the hybridization with pre-immobilized capture probe in the microtiter plate. The horseradish peroxidase (HRP) is covalently attached to the aptamer by the biotin-streptavidin system for signal production. CAP will preferably bind with aptamer due to the high binding affinity, which attributes to the release of aptamer and HRP and thus, affects the optical signal intensity. Quantitative determination of CAP is successfully achieved in the wide range from 0.001 to 1000 ng/mL with detection limit of 0.0031 ng/mL, which is more sensitive than traditional immunoassays. This method is further validated by measuring the recovery of CAP spiked in two different food matrices (honey and fish). The aptamer-mediated colorimetric method can be a useful protocol for rapid and sensitive screening of CAP, and may be used as an alternative means for traditional immunoassays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Colorimetric determination of sildenafil citrate (Viagra) through ion-associate complex formation.

    Science.gov (United States)

    Amin, Alaa S; Moustafa, Moustafa E; El-Dosoky, Reham

    2009-01-01

    A simple, quick, accurate, and sensitive colorimetric method is described for the determination of sildenafil citrate (SLD). The method is based on the reaction of SLD with Congo Red, Sudan II, and Gentian Violet in buffered aqueous solutions at pH 2.5, 6.5, and 11.0, respectively, to give highly colored soluble ion-associate complex species; the colored products are quantitated colorimetrically at 523, 554, and 569 nm, respectively. The various experimental conditions were optimized. The stoichiometric ratio was found to be 1:1 for all ion associates; the calculated logarithmic stability constants were 8.51, 7.79, and 5.58, respectively. Beer's law was obeyed over the concentration range of 0.2-7.0 microg/mL, whereas the Ringbom optimum concentration range was 0.4-6.5 microg/mL. Values for molar absorptivity, Sandell sensitivity, and detection and quantification limits were also calculated. The proposed method was successfully applied to the determination of SLD in Viagra tablets and in serum samples by using the technique of standard additions with mean accuracy values of 100.06 +/- 1.14, 99.87 +/- 0.70, and 99.86 +/- 0.97% for Viagra tablets and 99.88 +/- 0.60, 99.90 +/- 0.90, and 100.24 +/- 0.80% for serum samples, respectively.

  15. Colorimetric microwell plate reverse-hybridization assay for Mycobacterium tuberculosis detection

    Directory of Open Access Journals (Sweden)

    Candice Tosi Michelon

    2011-03-01

    Full Text Available Direct smear examination using Ziehl-Neelsen staining for pulmonary tuberculosis (PTB diagnosis is inexpensive and easy to use, but has the major limitation of low sensitivity. Rapid molecular methods are becoming more widely available in centralized laboratories, but they depend on timely reporting of results and strict quality assurance obtainable only from costly commercial kits available in high burden nations. This study describes a pre-commercial colorimetric method, Detect-TB, for detecting Mycobacterium tuberculosis DNA in which an oligonucleotide probe is fixed onto wells of microwell plates and hybridized with biotinylated polymerase chain reaction amplification products derived from clinical samples. The probe is capable of hybridising with the IS6110 insertion element and was used to specifically recognise the M. tuberculosis complex. When combined with an improved silica-based DNA extraction method, the sensitivity of the test was 50 colony-forming units of the M. tuberculosis reference strain H37Rv. The results that were in agreement with reference detection methods were observed in 95.2% (453/476 of samples included in the analysis. Sensitivity and specificity for 301 induced sputum samples and 175 spontaneous sputum samples were 85% and 98%, and 94% and 100%, respectively. This colorimetric method showed similar specificity to that described for commercially available kits and may provide an important contribution for PTB diagnosis.

  16. Microfluidic sensor for ultra high redox cycling amplification for highly selective electrochemical measurements

    NARCIS (Netherlands)

    Odijk, Mathieu; Straver, Martin; Olthuis, Wouter; van den Berg, Albert

    2011-01-01

    In this contribution a SU8/glass-based microfluidic sensor is described with two closely spaced parallel electrodes for highly selective measurements using the redox cycling (RC) effect. Using this sensor, a RC amplification of ~2000x is measured using the ferrocyanide redox couple, which is much

  17. Method for estimating effects of unknown correlations in spectral irradiance data on uncertainties of spectrally integrated colorimetric quantities

    Science.gov (United States)

    Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki

    2017-08-01

    Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.

  18. Quality evaluation of Hypericum ascyron extract by two-dimensional high-performance liquid chromatography coupled with the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.

    Science.gov (United States)

    Li, Xiu-Mei; Luo, Xue-Gang; Zhang, Chao-Zheng; Wang, Nan; Zhang, Tong-Cun

    2015-02-01

    In this paper, a heart-cutting two-dimensional high-performance liquid chromatography coupled with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one-dimensional fingerprint, the second-dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were >0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second-dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enzyme-based Colorimetric and Potentiometric Biosensor for Detecting Pb (II Ions in Milk

    Directory of Open Access Journals (Sweden)

    Hardeep Kaur

    2014-08-01

    Full Text Available The aim of the present work was to study a simple colorimetric and potentiometric biosensor based on urease inhibition by Pb (II ions for its estimation in milk samples. Urease immobilized on nylon membrane by hydrosol gel method was used as the biocomponent to demonstrate the metal effect on the enzyme activity using phenol red as the pH indicator. A lower limit detection of 38.6µm was achieved in the milk and the enzyme membranes were stable for more than two months at 4ºC. In potentiometric approach, response of an ion selective electrode (ISE to changing ammonium ion concentration as a consequence of urease inhibition by Pb (II ions was explored to achieve a detection limit of 9.66 µm. Lead specificity was attained by means of masking agents 1,10 - phenanthroline and sodium potassium tartarate. Validation of the developed biosensors was carried out with spiked milk samples.

  20. A label-free colorimetric sensor for Pb2+ detection based on the acceleration of gold leaching by graphene oxide.

    Science.gov (United States)

    Shi, Xinhao; Gu, Wei; Zhang, Cuiling; Zhao, Longyun; Peng, Weidong; Xian, Yuezhong

    2015-03-14

    In this work, we developed a novel, label-free, colorimetric sensor for Pb(2+) detection based on the acceleration of gold leaching by graphene oxide (GO) at room temperature. Gold nanoparticles (AuNPs) can be dissolved in a thiosulfate (S2O3(2-)) aqueous environment in the presence of oxygen; however, the leaching rate is very slow due to the high activation energy (27.99 kJ mol(-1)). In order to enhance the reaction rate, some accelerators should be added. In comparison with the traditional accelerators (metal ions or middle ligands), we found that GO could efficiently accelerate the gold leaching reaction. Kinetic data demonstrate that the dissolution rate of gold in the Pb(2+)-S2O3(2-)-GO system is 5 times faster than that without GO at room temperature. In addition, the effects of surface modification and the nanoparticle size on the etching of AuNPs were investigated. Based on the GO-accelerated concentration-dependent colour changes of AuNPs, a colorimetric sensor for Pb(2+) detection was developed with a linear range from 0.1 to 20 μM and the limit of detection (LOD) was evaluated to be 0.05 μM. This colorimetric assay is simple, low-cost, label-free, and has numerous potential applications in the field of environmental chemistry.

  1. Novel pyridylmethylamines as highly selective 5-HT(1A) superagonists.

    Science.gov (United States)

    Bollinger, Stefan; Hübner, Harald; Heinemann, Frank W; Meyer, Karsten; Gmeiner, Peter

    2010-10-14

    To further improve the maximal serotonergic efficacy and better understand the configurational requirements for 5-HT(1A) binding and activation, we generated and biologically investigated structural variants of the lead structure befiradol. For a bioisosteric replacement of the 3-chloro-4-fluoro moiety, a focused library of 63 compounds by solution phase parallel synthesis was developed. Target binding of our compound collection was investigated, and their affinities for 5-HT(2), α(1), and α(2)-adrenergic as well as D(1)-D(4) dopamine receptors were compared. For particularly interesting test compounds, intrinsic activities at 5-HT(1A) were examined in vitro employing a GTPγS assay. The investigation guided us to highly selective 5HT(1A) superagonists. The benzothiophene-3-carboxamide 8bt revealed almost exclusive 5HT(1A) recognition with a K(i) value of 2.7 nM and a maximal efficacy of 124%. To get insights into the bioactive conformation of our compound collection, we synthesized conformationally constrained bicyclic scaffolds when SAR data indicated a chair-type geometry and an equatorially dispositioned aminomethyl substituent for the 4,4-disubstituted piperidine moiety.

  2. High throughput in vivo protease inhibitor selection platform

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a recombinant microbial cell comprising a selection platform for screening for a protease inhibitor, wherein the platform comprises transgenes encoding a protease having selective peptide bond cleavage activity at a recognition site amino acid sequence; and transgenes...... platform for screening for a protease inhibitor....

  3. Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of α-cyanostilbenes

    Science.gov (United States)

    Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin

    2018-06-01

    Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.

  4. Determination Total Phosphour of Maize Plant Samples by Continuous Flow Analyzer in Comparison with Vanadium Molybdate Yellow Colorimetric Method

    OpenAIRE

    LIU Yun-xia; WEN Yun-jie; HUANG Jin-li; LI Gui-hua; CHAI Xiao; WANG Hong

    2015-01-01

    The vanadium molybdate yellow colorimetric method(VMYC method) is regarded as one of conventional methods for determining total phosphorus(P) in plants, but it is time consuming procedure. Continuous flow analyzer(CFA) is a fluid stream segmentation technique with air segments. It is used to measure P concentration based on the molybdate-antimony-ascorbic acid method of Murphy and Riley. Sixty nine of maize plant samples were selected and digested with H2SO4-H2O2. P concentrations in the dige...

  5. Relationships between ytterbium precipitation assay, colorimetric ...

    African Journals Online (AJOL)

    digestion and metabolism of protein (Komolong et al., 2001). ... room temperature (25 °C) pending chemical analyses and in vitro ... assayed without sodium sulphite but with a heat-stable α-amylase due to the high ... of starch in the tree fruits.

  6. Colorimetric Characterization of Mobile Devices for Vision Applications.

    Science.gov (United States)

    de Fez, Dolores; Luque, Maria José; García-Domene, Maria Carmen; Camps, Vicente; Piñero, David

    2016-01-01

    Available applications for vision testing in mobile devices usually do not include detailed setup instructions, sacrificing rigor to obtain portability and ease of use. In particular, colorimetric characterization processes are generally obviated. We show that different mobile devices differ also in colorimetric profile and that those differences limit the range of applications for which they are most adequate. The color reproduction characteristics of four mobile devices, two smartphones (Samsung Galaxy S4, iPhone 4s) and two tablets (Samsung Galaxy Tab 3, iPad 4), have been evaluated using two procedures: 3D LUT (Look Up Table) and a linear model assuming primary constancy and independence of the channels. The color reproduction errors have been computed with the CIEDE2000 color difference formula. There is good constancy of primaries but large deviations of additivity. The 3D LUT characterization yields smaller reproduction errors and dispersions for the Tab 3 and iPhone 4 devices, but for the iPad 4 and S4, both models are equally good. The smallest reproduction errors occur with both Apple devices, although the iPad 4 has the highest number of outliers of all devices with both colorimetric characterizations. Even though there is good constancy of primaries, the large deviations of additivity exhibited by the devices and the larger reproduction errors make any characterization based on channel independence not recommendable. The smartphone screens show, in average, the best color reproduction performance, particularly the iPhone 4, and therefore, they are more adequate for applications requiring precise color reproduction.

  7. A naked-eye colorimetric "PCR developer"

    Science.gov (United States)

    Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Despite several advances in molecular biology and diagnostics, Polymerase Chain Reaction (PCR) is currently the gold standard for nucleic acids amplification and detection, due to its versatility, low-cost and universality, with estimated genetically modified organisms, and pathogens). The PCR developer proved to be highly specific and ultra-sensitive, discriminating down to few copies of HIV viral DNA, diluted in an excess of interfering human genomic DNA, which is a clinically relevant viral load. Hence, it could be a valuable tool for both academic research and clinical applications.

  8. Synthesis of indolo[3,2-b]carbazole-based new colorimetric receptor for anions: A unique color change for fluoride ions

    Directory of Open Access Journals (Sweden)

    Ajit Kumar Mahapatra

    2010-02-01

    Full Text Available A novel indolocarbazole-based chemosensor 1 containing hydrogen bond donor moieties has been established as a selective colorimetric and fluorometric sensor for F− in CH3CN/H2O (4:1 v/v. Upon the addition of a series of tetrabutylammonium salts to receptor 1 in aqueous CH3CN, only when the counter ion was F− was a significant color change (from light violet to dark orange observed.

  9. Cost Effective Paper-Based Colorimetric Microfluidic Devices and Mobile Phone Camera Readers for the Classroom

    Science.gov (United States)

    Koesdjojo, Myra T.; Pengpumkiat, Sumate; Wu, Yuanyuan; Boonloed, Anukul; Huynh, Daniel; Remcho, Thomas P.; Remcho, Vincent T.

    2015-01-01

    We have developed a simple and direct method to fabricate paper-based microfluidic devices that can be used for a wide range of colorimetric assay applications. With these devices, assays can be performed within minutes to allow for quantitative colorimetric analysis by use of a widely accessible iPhone camera and an RGB color reader application…

  10. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.

    Science.gov (United States)

    Fu, Xiuli; Chen, Lingxin; Li, Jinhua

    2012-08-21

    A novel colorimetric method was developed for ultrasensitive detection of heparin based on self-assembly of gold nanoparticles (AuNPs) onto the surface of graphene oxide (GO). Polycationic protamine was used as a medium for inducing the self-assembly of citrate-capped AuNPs on GO through electrostatic interaction, resulting in a shift in the surface plasmon resonance (SPR) absorption of AuNPs and exhibiting a blue color. Addition of polyanionic heparin disturbed the self-assemble of AuNPs due to its strong affinity to protamine. With the increase of heparin concentration, the amounts of self-assembly AuNPs decreased and the color changed from blue to red in solution. Therefore, a "blue-to-red" colorimetric sensing strategy based on self-assembly of AuNPs could be established for heparin detection. Compared with the commonly reported aggregation-based methods ("red-to-blue"), the color change from blue to red was more eye-sensitive, especially in low concentration of target. Moreover, stronger interaction between protamine and heparin led to distinguish heparin from its analogues as well as various potentially coexistent physiological species. The strategy was simply achieved by the self-assembly nature of AuNPs and the application of two types of polyionic media, showing it to be label-free, simple, rapid and visual. This method could selectively detect heparin with a detection limit of 3.0 ng mL(-1) in standard aqueous solution and good linearity was obtained over the range 0.06-0.36 μg mL(-1) (R = 0.9936). It was successfully applied to determination of heparin in fetal bovine serum samples as low as 1.7 ng mL(-1) with a linear range of 0-0.8 μg mL(-1).

  11. Reagent-Free Quantification of Aqueous Free Chlorine via Electrical Readout of Colorimetrically Functionalized Pencil Lines.

    Science.gov (United States)

    Mohtasebi, Amirmasoud; Broomfield, Andrew D; Chowdhury, Tanzina; Selvaganapathy, P Ravi; Kruse, Peter

    2017-06-21

    Colorimetric methods are commonly used to quantify free chlorine in drinking water. However, these methods are not suitable for reagent-free, continuous, and autonomous applications. Here, we demonstrate how functionalization of a pencil-drawn film with phenyl-capped aniline tetramer (PCAT) can be used for quantitative electric readout of free chlorine concentrations. The functionalized film can be implemented in a simple fluidic device for continuous sensing of aqueous free chlorine concentrations. The sensor is selective to free chlorine and can undergo a reagent-free reset for further measurements. Our sensor is superior to electrochemical methods in that it does not require a reference electrode. It is capable of quantification of free chlorine in the range of 0.1-12 ppm with higher precision than colorimetric (absorptivity) methods. The interactions of PCAT with the pencil-drawn film upon exposure to hypochlorite were characterized spectroscopically. A previously reported detection mechanism relied on the measurement of a baseline shift to quantify free chlorine concentrations. The new method demonstrated here measures initial spike size upon exposure to free chlorine. It relies on a fast charge built up on the sensor film due to intermittent PCAT salt formation. It has the advantage of being significantly faster than the measurement of baseline shift, but it cannot be used to detect gradual changes in free chlorine concentration without the use of frequent reset pulses. The stability of PCAT was examined in the presence of free chlorine as a function of pH. While most ions commonly present in drinking water do not interfere with the free chlorine detection, other oxidants may contribute to the signal. Our sensor is easy to fabricate and robust, operates reagent-free, and has very low power requirements and is thus suitable for remote deployment.

  12. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide.

    Science.gov (United States)

    Paek, Kwanyeol; Yang, Hyunseung; Lee, Junhyuk; Park, Junwoo; Kim, Bumjoon J

    2014-03-25

    In this paper, we report the development of a versatile platform for a highly efficient and stable graphene oxide (GO)-based optical sensor that exhibits distinctive ratiometric color responses. To demonstrate the applicability of the platform, we fabricated a colorimetric, GO-based pH sensor that responds to a wide range of pH changes. Our sensing system is based on responsive polymer and quantum dot (QD) hybrids integrated on a single GO sheet (MQD-GO), with the GO providing an excellent signal-to-noise ratio and high dispersion stability in water. The photoluminescence emissions of the blue and orange color-emitting QDs (BQDs and OQDs) in MQD-GO can be controlled independently by different pH-responsive linkers of poly(acrylic acid) (PAA) (pKa=4.5) and poly(2-vinylpyridine) (P2VP) (pKa=3.0) that can tune the efficiencies of Förster resonance energy transfer from the BQDs to the GO and from the OQDs to the GO, respectively. As a result, the color of MQD-GO changes from orange to near-white to blue over a wide range of pH values. The detailed mechanism of the pH-dependent response of the MQD-GO sensor was elucidated by measurements of time-resolved fluorescence and dynamic light scattering. Furthermore, the MQD-GO sensor showed excellent reversibility and high dispersion stability in pure water, indicating that our system is an ideal platform for biological and environmental applications. Our colorimetric GO-based optical sensor can be expanded easily to various other multifunctional, GO-based sensors by using alternate stimuli-responsive polymers.

  13. Detection of proteins using a colorimetric bio-barcode assay.

    Science.gov (United States)

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  14. New generation in process-control colorimetric instrumentation

    Science.gov (United States)

    Ladson, Jack A.

    1992-08-01

    Colorimetric performance parameters (repeatability and reproducibility) of a new spectrophotometer/colorimeter manufactured by BYK-Gardner, Inc. are reported. The color- viewTM spectrophotometer (CVS) uses forty-five degree illumination and zero degree viewing geometry relative to the plane of the test specimen. The CVS is designed for the measurement of diffuse reflectance factor. It is designed to conform to national and international recommendations for Spectrophotometry and Colorimetry. Colorimetric performance was evaluated by measuring colored tiles manufactured by the British Ceramic Research Association (BCRA). Instrument repeatability was recorded after an hour, eight hours, and thirty days. Routine performance of the CVS shows that color difference repeatability over short and medium time periods is within 0.15 CIELAB color difference unit. The long term repeatability is within 0.4 unit. Reproducibility was evaluated by making color measurements on BCRA tiles with 54 instruments. Measurements made on CVS instruments indicate that its reproducibility is better than the reproducibility of product standards. Reproducibility is well within the requirement for industrial applications. Actually, the repeatability and reproducibility is comparable to that of reference instruments in national standardizing laboratories.

  15. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose

    International Nuclear Information System (INIS)

    Lin, Liping; Song, Xinhong; Chen, Yiying; Rong, Mingcong; Zhao, Tingting; Wang, Yiru; Jiang, Yaqi; Chen, Xi

    2015-01-01

    Highlights: • The highly intrinsic peroxidase-like catalytic activity of N-GQDs is revealed. • The activity of N-GQDs depended on pH, temperature and H 2 O 2 concentration. • The activity of N-GQDs has been used to the detection of H 2 O 2 and glucose. • This assay was suitable for the detection of glucose concentrations in real samples. - Abstract: In this paper, the highly intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots (N-GQDs) is revealed. This activity was greatly dependent on pH, temperature and H 2 O 2 concentration. The experimental results showed that the stable N-GQDs could be used for the detection of H 2 O 2 and glucose over a wide range of pH and temperature, offering a simple, highly selective and sensitive approach for their colorimetric sensing. The linearity between the analyte concentration and absorption ranged from 20 to 1170 μM for H 2 O 2 and 25 to 375 μM for glucose with a detection limit of 5.3 μM for H 2 O 2 and 16 μM for glucose. This assay was also successfully applied to the detection of glucose concentrations in diluted serum and fruit juice samples

  16. Dual Colorimetric and Fluorescent Authentication Based on Semiconducting Polymer Dots for Anticounterfeiting Applications.

    Science.gov (United States)

    Tsai, Wei-Kai; Lai, Yung-Sheng; Tseng, Po-Jung; Liao, Chia-Hsien; Chan, Yang-Hsiang

    2017-09-13

    Semiconducting polymer dots (Pdots) have recently emerged as a novel type of ultrabright fluorescent probes that can be widely used in analytical sensing and material science. Here, we developed a dual visual reagent based on Pdots for anticounterfeiting applications. We first designed and synthesized two types of photoswitchable Pdots by incorporating photochromic dyes with multicolor semiconducting polymers to modulate their emission intensities and wavelengths. The resulting full-color Pdot assays showed that the colorimetric and fluorescent dual-readout abilities enabled the Pdots to serve as an anticounterfeiting reagent with low background interference. We also doped these Pdots into flexible substrates and prepared these Pdots as inks for pen handwriting as well as inkjet printing. We further applied this reagent in printing paper and checks for high-security anticounterfeiting purposes. We believe that this dual-readout method based on Pdots will create a new avenue for developing new generations of anticounterfeiting technologies.

  17. Effect of Steaming on the Colorimetric Properties of Eucalyptus saligna Wood

    Directory of Open Access Journals (Sweden)

    Reinaldo Calçada Guina Luís

    2018-03-01

    Full Text Available ABSTRACT This study aimed to homogenize the color of Eucalyptus saligna wood by means of steaming and compare the resulting color with that of Cariniana legalis wood, a species of high commercial value. To this end, two steaming curves were tested: 100% relative humidity for 12 (T1 and 24 (T2 hours at 90 °C followed by drying in a pilot-scale conventional kiln. The colorimetric parameters L*, a*, b*, C*, and h were determined according to the CIE L*a*b* color measurement system after drying. Results showed that steaming can be used for color homogenization between heartwood and sapwood. The treatment conducted for 24 hours (T2 presented the best results.

  18. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  19. High carotenoids content can enhance resistance of selected Pinctada fucata families to high temperature stress.

    Science.gov (United States)

    Meng, Zihao; Zhang, Bo; Liu, Baosuo; Li, Haimei; Fan, Sigang; Yu, Dahui

    2017-02-01

    Carotenoids are a class of natural antioxidants widely found in aquatic, and they have significant effects on the growth, survival, and immunity of these organisms. To investigate the mechanisms of carotenoids in high temperature resistance, we observed the immune response of selected pearl oyster Pinctada fucata (Akoya pearl oyster) families with different carotenoids contents to high temperature stress. The results indicated that the survival rate (SR) of P. fucata decreased significantly with increase in temperature from 26 °C to 34 °C and with the decrease of total carotenoids content (TCC); when the TCC was higher, the SR tended to be higher. TCC and total antioxidant capacity (TAC) decreased significantly at 30 °C with increasing stress time. Correlation analysis indicated that TAC was positively and linearly correlated with TCC, and SR was S-type correlated with TCC and TAC. Immune analysis indicated that levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in selected families (with higher TCC) under temperature stress (at 30 °C) were generally significantly lower than in the control group (with lowest TCC) and from 0 to 96 h, the levels of each of these substances varied significantly. Levels of SOD, CAT, and MDA within each family first rose from 0 to 3 h, then decreased to their lowest point after 24 h, and then rose again to their highest levels at 96 h. When TCC was higher, the levels of SOD, CAT, and MDA tended to be lower. These findings indicated that carotenoids play an important role in improving survival rates of P. fucata under high temperature stress by enhancing animals' antioxidant system, and could serve as an index for breeding stress-resistant lines in selective breeding practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Feature selection for high-dimensional integrated data

    KAUST Repository

    Zheng, Charles; Schwartz, Scott; Chapkin, Robert S.; Carroll, Raymond J.; Ivanov, Ivan

    2012-01-01

    Motivated by the problem of identifying correlations between genes or features of two related biological systems, we propose a model of feature selection in which only a subset of the predictors Xt are dependent on the multidimensional variate Y, and the remainder of the predictors constitute a “noise set” Xu independent of Y. Using Monte Carlo simulations, we investigated the relative performance of two methods: thresholding and singular-value decomposition, in combination with stochastic optimization to determine “empirical bounds” on the small-sample accuracy of an asymptotic approximation. We demonstrate utility of the thresholding and SVD feature selection methods to with respect to a recent infant intestinal gene expression and metagenomics dataset.

  1. Feature selection for high-dimensional integrated data

    KAUST Repository

    Zheng, Charles

    2012-04-26

    Motivated by the problem of identifying correlations between genes or features of two related biological systems, we propose a model of feature selection in which only a subset of the predictors Xt are dependent on the multidimensional variate Y, and the remainder of the predictors constitute a “noise set” Xu independent of Y. Using Monte Carlo simulations, we investigated the relative performance of two methods: thresholding and singular-value decomposition, in combination with stochastic optimization to determine “empirical bounds” on the small-sample accuracy of an asymptotic approximation. We demonstrate utility of the thresholding and SVD feature selection methods to with respect to a recent infant intestinal gene expression and metagenomics dataset.

  2. Green chemistry: highly selective biocatalytic hydrolysis of nitrile compounds

    CSIR Research Space (South Africa)

    Brady, D

    2006-09-01

    Full Text Available ambient temperatures and moderate pH, thereby reducing environmental impact, minimising the cost of equipment and improving reaction safety2. A further benefit is that biocatalysts can synthesise complex chemicals selectively3. This avoids... nitrile group in a dinitrile molecule permits the incorporation of the unreacted nitrile into the final product or further functionalisation, such as reduction to an amino group. Hence, these enzymes can be used to provide access to specific complex...

  3. Selection of a tool to decision making for site selection for high level waste

    International Nuclear Information System (INIS)

    Madeira, J.G.; Alvin, A.C.M.; Martins, V.B.; Monteiro, N.A.

    2016-01-01

    The aim of this paper is to create a panel comparing some of the key decision-making support tools used in situations with the characteristics of the problem of selecting suitable areas for constructing a final deep geologic repository. The tools addressed in this work are also well known and with easy implementation. The decision-making process in matters of this kind is, in general, complex due to its multi-criteria nature and the conflicting opinions of various stakeholders. Thus, a comprehensive study was performed with the literature in this subject, specifically in documents of the International Atomic Energy Agency (IAEA), regarding the importance of the criteria involved in the decision-making process. Therefore, we highlighted six judgment attributes for selecting a decision support tool, suitable for the problem. For this study, we have selected the following multi-criteria tools: AHP, Delphi, Brainstorm, Nominal Group Technique and AHP-Delphi. Finally, the AHP-Delphi method has demonstrated to be more appropriate for managing the inherent multiple attributes to the problem proposed. (authors)

  4. Selection of a tool to support decision making for site selection for high level waste - 15010

    International Nuclear Information System (INIS)

    Madeira, J.G.; Alvim, A.C.M.; Martins, V.B.; Monteiro, N.A.

    2015-01-01

    The aim of this paper is to create a panel comparing some of the key decision-making support tools used in situations with the characteristics of the problem of selecting suitable areas for constructing a final deep geologic repository. The tools presented in this work are also well-known and with easy implementation. The decision making process in issues of this kind is, in general, complex due to its multi-criteria nature and the conflicting opinions of various of stakeholders. Thus a comprehensive study was performed with the literature on this subject, specifically documents of the International Atomic Energy Agency - IAEA, regarding the importance of the criteria involved in the decision making process. Therefore, we highlighted 6 judgments attributes for selecting an adequate support tool: -) transparency and reliability, -) subjectivity, -) updating and adapting, -) multi-criteria analysis, -) ease of deployment, and -) application time. We have selected the following key decision-making support tools: AHP, Delphi, Brainstorm, Nominal Group Technique, and AHP-Delphi. Finally, the AHP-Delphi method has demonstrated to be more appropriate for managing the inherent multiple attributes to the problem proposed

  5. Novel colorimetric method overcoming phosphorus interference during trace arsenic analysis in soil solution.

    Science.gov (United States)

    Makris, Konstantinos C; Punamiya, Pravin; Sarkar, Dibyendu; Datta, Rupali

    2008-02-01

    A sensitive (method detection limit, 2.0 microg As L(-1)) colorimetric determination of trace As(v) and As(iii) concentrations in the presence of soluble phosphorus (P) concentrations in soil/water extracts is presented. The proposed method modifies the malachite green method (MG) originally developed for P in soil and water. Our method relies upon the finding that As(iii) and As(v) do not develop the green color during P analysis using the MG method. When an optimum concentration of ascorbic acid (AA) is added to a sample containing up to 15 times P > As (microM) concentrations, the final sample absorbance due to P will be equal to that of As(v) molecules. The soluble As concentration can then be quantified by the concentration difference between the mixed oxyanion (As + P) absorbance (proposed method) and the MG method absorbance that measures only P. Our method is miniaturized using a 96-well microplate UV-VIS reader that utilizes minute reagent and sample volumes (120 and 200 microL sample(-1), respectively), thus, minimizing waste and offering flexibility in the field. Our method was tested in a suite of As-contaminated soils that successfully measured both As and P in soil water extracts and total digests. Mean% As recoveries ranged between 84 and 117%, corroborating data obtained with high-resolution inductively-coupled plasma mass-spectrometry. The performance of the proposed colorimetric As method was unaffected by the presence of Cu, Zn, Pb, Ni, Fe, Al, Si, and Cr in both neutral and highly-acidic (ca. pH 2) soil extracts. Data from this study provide the proof of concept towards creating a field-deployable, portable As kit.

  6. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    Science.gov (United States)

    Sadowska, Julita; Gębczyński, Andrzej K; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  7. Low Cost High Performance Nanostructured Spectrally Selective Coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sungho [Univ. of California, San Diego, CA (United States)

    2017-04-05

    Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guided by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.

  8. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    Energy Technology Data Exchange (ETDEWEB)

    N. Lybeck; B. Pham; M. Tawfik; J. B. Coble; R. M. Meyer; P. Ramuhalli; L. J. Bond

    2011-08-01

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and

  9. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    International Nuclear Information System (INIS)

    Lybeck, N.; Pham, B.; Tawfik, M.; Coble, J.B.; Meyer, R.M.; Ramuhalli, P.; Bond, L.J.

    2011-01-01

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and

  10. Yakima tribal perspectives on high level selection process

    International Nuclear Information System (INIS)

    Jim, R.; Wittman, J.; Tousley, D.R.; Hovis, J.B.

    1987-01-01

    When Congress went through the arduous process of fashioning a comprehensive plan for resolution of the nation's long-standing nuclear waste problem, it explicitly recognized that past federal efforts in this area had been inadequate. Congress also recognized that the primary reasons for the failure of earlier federal efforts was failure on the part of the federal government to seriously deal with very real technical questions about the geologic adequacy of prospective repository sites, and failure to address the concerns of state, tribal, and local governments in the repository selection and development process

  11. Selection of local extremophile lactic acid bacteria with high capacity ...

    African Journals Online (AJOL)

    This study is related to the isolation and identification of strains of local thermophilic lactic acid bacteria belonging to the species, Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria can exist under extreme conditions of the digestive tract (acidity and high concentration of bile salts) and have a high ...

  12. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    International Nuclear Information System (INIS)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Yusof, Noor Azah; Tee, Tan Wee; Abdullah, Abd Halim; Rounaghi, Gholamhossein; Mohajeri, Masoomeh; Heng, Lee Yook

    2011-01-01

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl + cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 x 10 -8 to 1.0 x 10 -1 M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu 2+ Ni 2+ and Pb 2+ cations, but the electrode has a wider dynamic range and a lower detection limit to Tl + cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl + cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 x 10 -8 to 1.0 x 10 -1 M is linear with a Nernstian slope of 57.27 mV.

  13. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    Science.gov (United States)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Rounaghi, Gholamhossein; Mohajeri, Masoomeh; Azah Yusof, Noor; Tee, Tan Wee; Yook Heng, Lee; Halim Abdullah, Abd

    2011-02-01

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl+ cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 × 10-8 to 1.0 × 10-1M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu2+ Ni2+ and Pb2+ cations, but the electrode has a wider dynamic range and a lower detection limit to Tl+ cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl+ cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 × 10-8 to 1.0 × 10-1M is linear with a Nernstian slope of 57.27 mV.

  14. Design of mitochondria-targeted colorimetric and ratiometric fluorescent probes for rapid detection of SO2 derivatives in living cells

    Science.gov (United States)

    Yang, Yutao; Zhou, Tingting; Bai, Bozan; Yin, Caixia; Xu, Wenzhi; Li, Wei

    2018-05-01

    Two mitochondria-targeted colorimetric and ratiometric fluorescent probes for SO2 derivatives were constructed based on the SO2 derivatives-triggered Michael addition reaction. The probes exhibit high specificity toward HSO3-/SO32- by interrupting their conjugation system resulting in a large ratiometric blue shift of 46-121 nm in their emission spectrum. The two well-resolved emission bands can ensure accurate detection of HSO3-. The detection limits were calculated to be 1.09 and 1.35 μM. Importantly, probe 1 and probe 2 were successfully used to fluorescence ratiometric imaging of endogenous HSO3- in BT-474 cells.

  15. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    Science.gov (United States)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  16. Smart phone-based Chemistry Instrumentation: Digitization of Colorimetric Measurements

    International Nuclear Information System (INIS)

    Chang, Byoung Yong

    2012-01-01

    This report presents a mobile instrumentation platform based on a smart phone using its built-in functions for colorimetric diagnosis. The color change as a result of detection is taken as a picture through a CCD camera built in the smart phone, and is evaluated in the form of the hue value to give the well-defined relationship between the color and the concentration. To prove the concept in the present work, proton concentration measurements were conducted on pH paper coupled with a smart phone for demonstration. This report is believed to show the possibility of adapting a smart phone to a mobile analytical transducer, and more applications for bioanalysis are expected to be developed using other built-in functions of the smart phone

  17. A new automated colorimetric method for measuring total oxidant status.

    Science.gov (United States)

    Erel, Ozcan

    2005-12-01

    To develop a new, colorimetric and automated method for measuring total oxidation status (TOS). The assay is based on the oxidation of ferrous ion to ferric ion in the presence of various oxidant species in acidic medium and the measurement of the ferric ion by xylenol orange. The oxidation reaction of the assay was enhanced and precipitation of proteins was prevented. In addition, autoxidation of ferrous ion present in the reagent was prevented during storage. The method was applied to an automated analyzer, which was calibrated with hydrogen peroxide and the analytical performance characteristics of the assay were determined. There were important correlations with hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide solutions (r=0.99, Ptotal antioxidant capacity (TAC) (r=-0.66 Ptotal oxidant status.

  18. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles

    International Nuclear Information System (INIS)

    Tsai, Tsung-Ting; Shen, Shu-Wei; Chen, Chien-Fu; Cheng, Chao-Min

    2013-01-01

    A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h. (paper)

  19. Haussdorff and hellinger for colorimetric sensor array classification

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Jensen, Bjørn Sand; Schmidt, Mikkel Nørgaard

    2012-01-01

    Development of sensors and systems for detection of chemical compounds is an important challenge with applications in areas such as anti-terrorism, demining, and environmental monitoring. A newly developed colorimetric sensor array is able to detect explosives and volatile organic compounds......; however, each sensor reading consists of hundreds of pixel values, and methods for combining these readings from multiple sensors must be developed to make a classification system. In this work we examine two distance based classification methods, K-Nearest Neighbor (KNN) and Gaussian process (GP......) classification, which both rely on a suitable distance metric. We evaluate a range of different distance measures and propose a method for sensor fusion in the GP classifier. Our results indicate that the best choice of distance measure depends on the sensor and the chemical of interest....

  20. Color digital halftoning taking colorimetric color reproduction into account

    Science.gov (United States)

    Haneishi, Hideaki; Suzuki, Toshiaki; Shimoyama, Nobukatsu; Miyake, Yoichi

    1996-01-01

    Taking colorimetric color reproduction into account, the conventional error diffusion method is modified for color digital half-toning. Assuming that the input to a bilevel color printer is given in CIE-XYZ tristimulus values or CIE-LAB values instead of the more conventional RGB or YMC values, two modified versions based on vector operation in (1) the XYZ color space and (2) the LAB color space were tested. Experimental results show that the modified methods, especially the method using the LAB color space, resulted in better color reproduction performance than the conventional methods. Spatial artifacts that appear in the modified methods are presented and analyzed. It is also shown that the modified method (2) with a thresholding technique achieves a good spatial image quality.

  1. Feature extraction using distribution representation for colorimetric sensor arrays used as explosives detectors

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Raich, Raviv; Kostesha, Natalie

    2012-01-01

    is required. We present a new approach of extracting features from a colorimetric sensor array based on a color distribution representation. For each sensor in the array, we construct a K-nearest neighbor classifier based on the Hellinger distances between color distribution of a test compound and the color......We present a colorimetric sensor array which is able to detect explosives such as DNT, TNT, HMX, RDX and TATP and identifying volatile organic compounds in the presence of water vapor in air. To analyze colorimetric sensors with statistical methods, a suitable representation of sensory readings...

  2. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Yusof, Noor Azah; Tee, Tan Wee; Abdullah, Abd Halim [Department of Chemistry Faculty of Science, Universiti Putra Malaysia 43400 Serdang, Selangor (Malaysia); Rounaghi, Gholamhossein; Mohajeri, Masoomeh [Department of Chemistry, Factuality of Sciences, Islamic Azad University of Mashhad, Mashhad (Iran, Islamic Republic of); Heng, Lee Yook, E-mail: anuar@science.upm.edu.my [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. (Malaysia)

    2011-02-15

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl{sup +} cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 x 10{sup -8} to 1.0 x 10{sup -1}M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu{sup 2+} Ni{sup 2+} and Pb{sup 2+} cations, but the electrode has a wider dynamic range and a lower detection limit to Tl{sup +} cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl{sup +} cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 x 10{sup -8} to 1.0 x 10{sup -1}M is linear with a Nernstian slope of 57.27 mV.

  3. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  4. High-density nanopore array for selective biomolecule transport.

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  5. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles.

    Science.gov (United States)

    Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan

    2015-03-17

    A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.

  6. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  7. Focus point in dark matter selected high-scale supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Sibo [Department of Physics, Chongqing University,Chongqing, 401331 P.R. (China)

    2015-03-19

    In this paper, we explore conditions for focus point in the high-scale supersymmetry with the weak-scale gaugino masses. In this context the tension between the naturalness and LHC 2013 data about supersymmetry as well as the cold dark matter candidate are addressed simultaneously. It is shown that the observed Higgs mass can be satisfied in a wide classes of new models, which are realized by employing the non-minimal gauge mediation.

  8. Supported polytertiary amines: highly efficient and selective SO2 adsorbents.

    Science.gov (United States)

    Tailor, Ritesh; Abboud, Mohamed; Sayari, Abdelhamid

    2014-01-01

    Tertiary amine containing poly(propyleneimine) second (G2) and third (G3) generation dendrimers as well as polyethyleneimine (PEI) were developed for the selective removal of SO2. N-Alkylation of primary and secondary amines into tertiary amines was confirmed by FTIR and NMR analysis. Such modified polyamines were impregnated on two nanoporous supports, namely, SBA-15PL silica with platelet morphology and ethanol-extracted pore-expanded MCM-41 (PME) composite. In the presence of 0.1% SO2/N2 at 23 °C, the uptake of modified PEI, G2, and G3 supported on SBA-15PL was 2.07, 2.35, and 1.71 mmol/g, respectively; corresponding to SO2/N ratios of 0.22, 0.4, and 0.3. Under the same conditions, the SO2 adsorption capacity of PME-supported modified PEI and G3 was significantly higher, reaching 4.68 and 4.34 mmol/g, corresponding to SO2/N ratios of 0.41 and 0.82, respectively. The working SO2 adsorption capacity decreased with increasing temperature, reflecting the exothermic nature of the process. The adsorption capacity of these materials was enhanced dramatically in the presence of humidity in the gas mixture. FTIR data before SO2 adsorption and after adsorption and regeneration did not indicate any change in the materials. Nonetheless, the SO2 working capacity decreased in consecutive adsorption/regeneration cycles due to evaporation of impregnated polyamines, rather than actual deactivation. FTIR and (13)C and (15)N CP-MAS NMR of fresh and SO2 adsorbed modified G3 on PME confirmed the formation of a complexation adduct.

  9. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles.

    Science.gov (United States)

    Idros, Noorhayati; Ho, Man Yi; Pivnenko, Mike; Qasim, Malik M; Xu, Hua; Gu, Zhongze; Chu, Daping

    2015-06-03

    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine-TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10-12 to 10-4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range.

  10. Chitosan Capped Silver Nanoparticles as Colorimetric Sensor for the Determination of Iron(III

    Directory of Open Access Journals (Sweden)

    Javad Tashkhourian

    2017-12-01

    Full Text Available A selective, simple and low-cost method for the colorimetric determination of Fe3+ ions based on chitosan capped silver nanoparticles (Chit-AgNPs was presented. Chitosan is a cationic polyelectrolyte and possesses amino and hydroxy groups which make it widely used as a capping agent for Ag NPs. The synthesized chitosan capped silver nanoparticles with excellent colloidal stability were characterized by UV–Visible spectrometry, transmission electron microscopy, Fourier transform infrared, X-ray diffraction. Chit-AgNPs exhibit a strong surface plasmon resonance band which disappears in the presence of increasing concentrations of Fe3+ ions. This system showed a visually detectable color change from brownish-yellow to colorless for the selective determination of Fe3+. The method can be applied for the determination of Fe3+ ions in the concentration range of 1.0×10-6 to 5.0×10-4 M. The detection limit was determined from three times the standard deviation of the blank signal (3σ/slope as 5.3 × 10−7 M. The developed method was successfully applied for the determination of Fe3+in real samples

  11. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles

    International Nuclear Information System (INIS)

    Xu, Jingyue; Li, Ying; Bie, Jiaxin; Guo, Jiajia; Luo, Yeli; Shen, Fei; Sun, Chunyan; Jiang, Wei

    2015-01-01

    A sensitive, specific and rapid colorimetric aptasensor for the determination of the plasticizer bisphenol A (BPA) was developed. It is based on the use of gold nanoparticles (AuNPs) that are positively charged due to the modification with cysteamine which is cationic at near-neutral pH values. If aptamers are added to such AuNPs, aggregation occurs due to electrostatic interactions between the negatively-charged aptamers and the positively-charged AuNPs. This results in a color change of the AuNPs from red to blue. If a sample containing BPA is added to the anti-BPA aptamers, the anti-BPA aptamers undergo folding via an induced-fit binding mechanism. This is accompanied by a conformational change, which prevents the aptamer-induced aggregation and color change of AuNPs. The effect was exploited to design a colorimetric assay for BPA. Under optimum conditions, the absorbance ratio of A 527 /A 680 is linearly proportional to the BPA concentration in the range from 35 to 140 ng∙mL −1 , with a detection limit of 0.11 ng∙mL −1 . The method has been successfully applied to the determination of BPA in spiked tap water and gave recoveries between 91 and 106 %. Data were in full accordance with results obtained from HPLC. This assay is selective, easily performed, and in our perception represents a promising alternative to existing methods for rapid quantification of BPA. (author)

  12. A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2 + in 100% aqueous media and application to real samples

    Science.gov (United States)

    Sun, Tao; Niu, Qingfen; Li, Tianduo; Guo, Zongrang; Liu, Haixia

    2018-01-01

    A simple, reversible, colorimetric and water-soluble fluorescent chemosensor ADA for the naked-eye detection of Cu2 + was developed. Sensor ADA showed high selectivity and sensitivity toward Cu2 + in 100% aqueous media over wide pH range. Sensor ADA exhibited a red-shift in the absorption spectra from 466 to 480 nm that is accompanied by significant color change from light yellow to yellowish brown instantaneously. The Cu2 + recognition is based on the chelation-enhanced fluorescence quenching (CHEQ) effect of the paramagnetic nature. The lowest detection limit is determined to be 15.8 nM, which is much lower than the allowable level of Cu2 + in drinking water set by U.S. Environmental Protection Agency ( 20 μM) and the World Health Organization ( 30 μM). The 1:1 binding process was confirmed by fluorescence measurements, IR analysis and DFT studies. Moreover, sensor ADA was successfully applied for determination of trace level of Cu2 + with 4 reuse cycles in various water samples, which affords promising potential in ion-detection field.

  13. A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2+ in ~100% aqueous media and application to real samples.

    Science.gov (United States)

    Sun, Tao; Niu, Qingfen; Li, Tianduo; Guo, Zongrang; Liu, Haixia

    2018-01-05

    A simple, reversible, colorimetric and water-soluble fluorescent chemosensor ADA for the naked-eye detection of Cu 2+ was developed. Sensor ADA showed high selectivity and sensitivity toward Cu 2+ in ~100% aqueous media over wide pH range. Sensor ADA exhibited a red-shift in the absorption spectra from 466 to 480nm that is accompanied by significant color change from light yellow to yellowish brown instantaneously. The Cu 2+ recognition is based on the chelation-enhanced fluorescence quenching (CHEQ) effect of the paramagnetic nature. The lowest detection limit is determined to be 15.8nM, which is much lower than the allowable level of Cu 2+ in drinking water set by U.S. Environmental Protection Agency (~20μM) and the World Health Organization (~30μM). The 1:1 binding process was confirmed by fluorescence measurements, IR analysis and DFT studies. Moreover, sensor ADA was successfully applied for determination of trace level of Cu 2+ with 4 reuse cycles in various water samples, which affords promising potential in ion-detection field. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High Dietary Fat Selectively Increases Catalase Expression within Cardiac Mitochondria*

    Science.gov (United States)

    Rindler, Paul M.; Plafker, Scott M.; Szweda, Luke I.; Kinter, Michael

    2013-01-01

    Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H2O2 production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H2O2 produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H2O2-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization. PMID:23204527

  15. Selected topics in high temperature chemistry defect chemistry of solids

    CERN Document Server

    Johannesen, Ø

    2013-01-01

    The properties of materials at high temperature play a vital role in their processing and practical use. The real properties of materials at elevated temperatures are very often governed by defects in their structure. Lattice defects may consist of point defects like vacancies, interstitial atoms or substituted atoms. These classes are discussed in general and specifically for oxides, nitrides, carbides and sulfides. Defect aggregates, shear structures and adaptive structures are also described. Special attention is paid to hydrogen defects which seem to play an important role in several mater

  16. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores

    International Nuclear Information System (INIS)

    Mohwinkel, Dennis; Kleint, Charlotte; Koschinsky, Andrea

    2014-01-01

    Highlights: • Phase associations of metals in marine Fe–Mn nodules and crusts were determined. • Selective leaching experiments with siderophore desferrioxamine B were conducted. • Siderophores selectively mobilize high-tech metals associated with Fe carrier phases. • Base metal liberation including Fe and Mn is limited. • Siderophores have promising potential for application in ore processing industries. - Abstract: Deep-sea ferromanganese deposits contain a wide range of economically important metals. Ferromanganese crusts and nodules represent an important future resource, since they not only contain base metals such as Mn, Ni, Co, Cu and Zn, but are also enriched in critical or rare high-technology elements such as Li, Mo, Nb, W, the rare earth elements and yttrium (REY). These metals could be extracted from nodules and crusts as a by-product to the base metal production. However, there are no proper separation techniques available that selectively extract certain metals out of the carrier phases. By sequential leaching, we demonstrated that, except for Li, which is present in an easily soluble form, all other high-tech metals enriched in ferromanganese nodules and crusts are largely associated with the Fe-oxyhydroxide phases and only to subordinate extents with Mn-oxide phases. Based on this fact, we conducted selective leaching experiments with the Fe-specific organic ligand desferrioxamine-B, a naturally occurring and ubiquitous siderophore. We showed by leaching of ferromanganese nodules and crusts with desferrioxamine-B that a significant and selective extraction of high-tech metals such as Li, Mo, Zr, Hf and Ta is possible, while other elements like Fe and the base metals Mn, Ni, Cu, Co and Zn are not extracted to large extents. The set of selectively extracted elements can be extended to Nb and W if Mn and carbonate phases are stripped from the bulk nodule or crust prior to the siderophore leach by e.g. a sequential leaching technique. This

  17. Multi-year high-frequency hydrothermal monitoring of selected high-threat Cascade Range volcanoes

    Science.gov (United States)

    Crankshaw, I. M.; Archfield, S. A.; Newman, A. C.; Bergfeld, D.; Clor, L. E.; Spicer, K. R.; Kelly, P. J.; Evans, W. C.; Ingebritsen, S. E.

    2018-05-01

    From 2009 to 2015 the U.S. Geological Survey (USGS) systematically monitored hydrothermal behavior at selected Cascade Range volcanoes in order to define baseline hydrothermal and geochemical conditions. Gas and water data were collected regularly at 25 sites on 10 of the highest-risk volcanoes in the Cascade Range. These sites include near-summit fumarole groups and springs/streams that show clear evidence of magmatic influence (high 3He/4He ratios and/or large fluxes of magmatic CO2 or heat). Site records consist mainly of hourly temperature and hydrothermal-flux data. Having established baseline conditions during a multiyear quiescent period, the USGS reduced monitoring frequency from 2015 to present. The archived monitoring data are housed at (doi:10.5066/F72N5088). These data (1) are suitable for retrospective comparison with other continuous geophysical monitoring data and (2) will provide context during future episodes of volcanic unrest, such that unrest-related variations at these thoroughly characterized sites will be more clearly recognizable. Relatively high-frequency year-round data are essential to achieve these objectives, because many of the time series reveal significant diurnal, seasonal, and inter-annual variability that would tend to mask unrest signals in the absence of baseline data. Here we characterize normal variability for each site, suggest strategies to detect future volcanic unrest, and explore deviations from background associated with recent unrest.

  18. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  19. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sukato, Rangsarit [Program of Petrochemistry and Polymer Science, Chulalongkorn University, Bangkok 10330 (Thailand); Sangpetch, Nuanphan; Palaga, Tanapat [Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Sukwattanasinitt, Mongkol [Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Wacharasindhu, Sumrit, E-mail: sumrit.w@chula.ac.th [Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2016-08-15

    Highlights: • A novel salicylaldehyde-BODIPY fluorescent sensor is prepared. • The sensor shows dual colorimetric & turn-on fluorescence response to cyanide ion. • Detection limit is 0.88 μM (below WHO standard for drinking water). • It is effective for cyanide detection an in vitro cellular system. - Abstract: Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504 nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88 μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.

  20. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging

    International Nuclear Information System (INIS)

    Sukato, Rangsarit; Sangpetch, Nuanphan; Palaga, Tanapat; Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida; Sukwattanasinitt, Mongkol; Wacharasindhu, Sumrit

    2016-01-01

    Highlights: • A novel salicylaldehyde-BODIPY fluorescent sensor is prepared. • The sensor shows dual colorimetric & turn-on fluorescence response to cyanide ion. • Detection limit is 0.88 μM (below WHO standard for drinking water). • It is effective for cyanide detection an in vitro cellular system. - Abstract: Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504 nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88 μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.

  1. Direct quantification of carotenoids in low fat babyfoods via laser photoacoustics and colorimetric index a

    NARCIS (Netherlands)

    Doka, O.; Ajtony, Z.; Bicanic, D.D.; Valinger, D.; Vegvari, G.

    2014-01-01

    Carotenoids are important antioxidants found in various foods including those for nutrition of infants. In this investigation, the total carotenoid content (TCC) of nine different commercially available baby foods was quantified using colorimetric index a * obtained via reflectance colorimetry (RC)

  2. When selection ratios are high: predicting the expatriation willingness of prospective domestic entry-level job applicants

    NARCIS (Netherlands)

    Mol, S.T.; Born, M.P.; Willemsen, M.E.; van der Molen, H.T.; Derous, E.

    2009-01-01

    High expatriate selection ratios thwart the ability of multinational organizations to select expatriates. Reducing the selection ratio may be accomplished by selecting those applicants for entry level domestic positions who have expatriate aspirations. Regression analyses conducted on data from a

  3. High-capacity, selective solid sequestrants for innovative chemical separation: Inorganic ion exchange approach

    International Nuclear Information System (INIS)

    Bray, L.

    1995-01-01

    The approach of this task is to develop high-capacity, selective solid inorganic ion exchangers for the recovery of cesium and strontium from nuclear alkaline and acid wastes. To achieve this goal, Pacific Northwest Laboratories (PNL) is collaborating with industry and university participants to develop high capacity, selective, solid ion exchangers for the removal of specific contaminants from nuclear waste streams

  4. [Employees in high-reliability organizations: systematic selection of personnel as a final criterion].

    Science.gov (United States)

    Oubaid, V; Anheuser, P

    2014-05-01

    Employees represent an important safety factor in high-reliability organizations. The combination of clear organizational structures, a nonpunitive safety culture, and psychological personnel selection guarantee a high level of safety. The cockpit personnel selection process of a major German airline is presented in order to demonstrate a possible transferability into medicine and urology.

  5. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasinghe, K S; Kirda, C; Bowen, G D [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section; Zapata, F; Awonaike, K O; Holmgren, E; Arslan, A; De Bisbal, E C; Mohamed, A R.A.G.; Montenegro, A [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit

    1996-07-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of {Delta} with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of {Delta} with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that {Delta} values measured at flowering stage positively correlated with total dry matter production and percent N{sub 2} derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use {Delta} values for screening of leguminous crops for high N{sub 2} fixation potential. {sup 13}C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of {Delta} with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of {Delta} with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. (Abstract Truncated)

  6. High-consequence analysis, evaluation, and application of select criteria

    International Nuclear Information System (INIS)

    Gutmanis, I.; Jaksch, J.A.

    1984-01-01

    A number of characteristics distinguish environmental risk from pollution problems. The characteristics make environmental risk problems harder to manage through existing regulatory, legal, and economic institutions. Hence, technologies involving environmental risk impose on society extremely difficult collective decisions. This paper is concerned with the process of reaching social decisions that involve low-probability, high-consequence outcomes. It is divided into five major parts. Part I contains the introduction. Part II reviews the two main classes of criteria that have been proposed for social decisions: approaches based on market mechanisms and their extension, and approaches associated with Rawls and Buchanan, which not only focus on outcomes, but also impose a set of minimal constraints on the process for reaching decisions and social consensus. Part III proposes a set of eight criteria for evaluating social decision processes. In Parts IV and V we investigate applying the criteria to two case studies -- one on nuclear waste disposal and the other on transportation of liquefied natural gas

  7. Novel furosemide cocrystals and selection of high solubility drug forms.

    Science.gov (United States)

    Goud, N Rajesh; Gangavaram, Swarupa; Suresh, Kuthuru; Pal, Sharmistha; Manjunatha, Sulur G; Nambiar, Sudhir; Nangia, Ashwini

    2012-02-01

    Furosemide was screened in cocrystallization experiments with pharmaceutically acceptable coformer molecules to discover cocrystals of improved physicochemical properties, that is high solubility and good stability. Eight novel equimolar cocrystals of furosemide were obtained by liquid-assisted grinding with (i) caffeine, (ii) urea, (iii) p-aminobenzoic acid, (iv) acetamide, (v) nicotinamide, (vi) isonicotinamide, (vii) adenine, and (viii) cytosine. The product crystalline phases were characterized by powder x-ray diffraction, differential scanning calorimetry, infrared, Raman, near IR, and (13) C solid-state NMR spectroscopy. Furosemide-caffeine was characterized as a neutral cocrystal and furosemide-cytosine an ionic salt by single crystal x-ray diffraction. The stability of furosemide-caffeine, furosemide-adenine, and furosemide-cytosine was comparable to the reference drug in 10% ethanol-water slurry; there was no evidence of dissociation of the cocrystal to furosemide for up to 48 h. The other five cocrystals transformed to furosemide within 24 h. The solubility order for the stable forms is furosemide-cytosine > furosemide-adenine > furosemide-caffeine, and their solubilities are approximately 11-, 7-, and 6-fold higher than furosemide. The dissolution rates of furosemide cocrystals were about two times faster than the pure drug. Three novel furosemide compounds of higher solubility and good phase stability were identified in a solid form screen. Copyright © 2011 Wiley Periodicals, Inc.

  8. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.; Kirda, C.; Bowen, G.D.; Zapata, F.; Awonaike, K.O.; Holmgren, E.; Arslan, A.; De Bisbal, E.C.; Mohamed, A.R.A.G.; Montenegro, A.

    1996-01-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of Δ with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of Δ with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that Δ values measured at flowering stage positively correlated with total dry matter production and percent N 2 derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use Δ values for screening of leguminous crops for high N 2 fixation potential. 13 C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of Δ with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of Δ with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. While 13 C isotope discrimination may be a valuable tool for identifying annual crops with high water use efficiency and high yield potential, it may be more attractive for tree species considering the long growth periods taken for trees

  9. Pyrrolidine constrained bipyridyl-dansyl click fluoroionophore as selective Al(3+)sensor.

    Science.gov (United States)

    Maity, Debabrata; Govindaraju, T

    2010-07-07

    A pyrrolidine constrained bipyridyl-dansyl (ionophore-fluorophore) conjugate with triazole linker was synthesised through click chemistry. The fluoroionophore serves as a selective ratiometric and colorimetric chemosensor for Al(3+) based on internal charge transfer (ICT).

  10. A dual-responsive colorimetric and fluorescent chemosensor based on diketopyrrolopyrrole derivative for naked-eye detection of Fe3 + and its practical application

    Science.gov (United States)

    Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-01-01

    A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe3 + detection was designed and synthesized. In presence of Fe3 +, sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe3 + complex was found as 2.4 × 104 with the lower detection limit of 14.3 nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1H NMR spectra. Sensor L for Fe3 + detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe3 + ions in practical water samples with good recovery.

  11. Selection and Physical Properties of High-redshift Galaxies

    Science.gov (United States)

    Fang, G. W.

    2014-09-01

    galaxies; and the clustering amplitude of OGs is a factor of ˜2 larger than DGs. In Chapter 3, we pick out 1609 star-forming galaxies (sgzKs: gzK=(z-K)_{AB}-1.4(g-z)_{AB}≥ 0.2) and 422 passively evolving galaxies (pgzKs: gzK2.7) at z˜2 in the AEGIS field (K_{AB} rate (SFR) and specific SFR (sSFR) of sgzKs increase with redshift at all masses, implying that star-forming galaxies were much more active on average in the past. Moreover, the sSFR of massive galaxies is lower at all redshifts, suggesting that the mass growth of low-mass galaxies is more attributed to the star formation while comparing with high-mass galaxies. From the HST WFC3/F160W imaging data, we find that gzKs not only have diffuse structures, but also have single-object morphologies, implying that there are morphological variety and different formation processes for these galaxies at z˜2. In addition, we also find ˜ 10% of 828 gzKs can be classified as AGNs. In Chapter 4, we present Spitzer/IRS spectra of a sample of 14 ULIRGs with 0.2 {mJy} 10^{11} M_{⊙} and 410 M_⊙\\cdot yr^{-1}< SFR <1022 M_⊙\\cdot yr^{-1}, respectively. Their rest-frame optical morphologies are very diversified including string-like, extended/diffused, and even early type spiral morphologies, implying that there are different formation processes for these galaxies. We also search for active galactic nucleus (AGN) signature in our sample using X-ray, radio, and mid-infrared (MIR) observations. EGS22, EGS25, EGS27, and EGS34 are detected in the X-ray imaging. The X-ray luminosities for EGS22 and EGS34 can be accounted for by their intensive star formation. EGS25 and EGS27 have higher L_{2-10 keV}, indicating that they harbor AGNs. About 14% to 29% of the sample show signatures of AGNs in X-ray, MIR or radio. Finally, the summary of the whole thesis and outlook are presented in Chapter 5.

  12. Study on the partner selecting method of strategic alliance in high and new technology enterprises

    Institute of Scientific and Technical Information of China (English)

    王宏起; 唐宇; 迟运领

    2004-01-01

    A successful and effective strategic alliance involves many factors, of which selecting a proper partner is the most important factor to achieve the success of the alliance. In view of the characteristics of strategic alliance in high and new technology enterprises and according to the analysis on the standards of partner selecting and the factors of the success of alliance, this paper does some deeper research on the partner selecting and the alliance evaluation process from the perspective of different strategic levels by using a fuzzy comprehensive evaluating method, thus providing a method to select the alliance partner for high and new technology enterprises in China.

  13. Visual versus Colorimetric Data Analysis for Color Determination in Resin Veneers

    Directory of Open Access Journals (Sweden)

    Raluca DIMA

    2012-03-01

    Full Text Available The color of natural teeth depends on their capacity to modify the incident light (to change the wave length of incident light. Mainly two types of observation modes are used: diffuse illumination 0% and 45%; the angles represent incidence of illumination and observation on the surface of the object whose color is determined. The patients have been properly selected to receive direct resin veneers on their frontal maxillary incisors. Visually we observed and determined color directly using natural incident light between 10 am and 16 pm, the observer was positioned away from patient so the tooth to examine was at the level of observer’s eye (incidence angles were mainly similar. Vita Easy Shade colorimeter was used to establish the color of the restoration before and after it was performed. The Expanded Visual Rating Scale for Appearance Match (EVRSAM supplied statistically comparable data as the literature; the comparison between visual and colorimetric data makes us suppose that visual color determination is a necessary but not sufficient tool for the esthetic success of any veneer restoration.

  14. Colorimetric and Fluorescent Bimodal Ratiometric Probes for pH Sensing of Living Cells.

    Science.gov (United States)

    Liu, Yuan-Yuan; Wu, Ming; Zhu, Li-Na; Feng, Xi-Zeng; Kong, De-Ming

    2015-06-01

    pH measurement is widely used in many fields. Ratiometric pH sensing is an important way to improve the detection accuracy. Herein, five water-soluble cationic porphyrin derivatives were synthesized and their optical property changes with pH value were investigated. Their pH-dependent assembly/disassembly behaviors caused significant changes in both absorption and fluorescence spectra, thus making them promising bimodal ratiometric probes for both colorimetric and fluorescent pH sensing. Different substituent identity and position confer these probes with different sensitive pH-sensing ranges, and the substituent position gives a larger effect. By selecting different porphyrins, different signal intensity ratios and different fluorescence excitation wavelengths, sensitive pH sensing can be achieved in the range of 2.1-8.0. Having demonstrated the excellent reversibility, good accuracy and low cytotoxicity of the probes, they were successfully applied in pH sensing inside living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Improved adaptation of test with lanthanum nitrate for the colorimetric estimation of acetate

    Energy Technology Data Exchange (ETDEWEB)

    Szumilo, T [Akademia Medyczna, Lublin (Poland)

    1976-01-01

    A colorimetric method for the determination of acetate based on the production of the blue complex between iodine and lanthanum alkaline acetate has been developed. Optimum concentrations of reagents (acetate, lanthanum nitrate, iodine and ammonia) as well as the volume of acetate were selected to achieve best colour intensity. Coloured complex was stabilized by dilution of reagent mixture with water to the final volume convenient for determinaton. Absorbance of the complex can be measured immediately after dilution and any changes can be observed during at least 15 minutes. Elevation of temperature over 60/sup 0/decreases absorbance. The method fulfills the Beer's law in the range 1,5-3,5 ..mu..moles of acetate, precision of the method 2/sup +/ = 3,7%. Apart from acetate - propionate and fluoroacetate complex is 620 nm, propionate complex - at 590 nm. Propionate complex displayed any relationship between concentration and absorbance. Potassium, sodium, lithium and barium acetates give the identical results as acetic acid, whereas zinc and cupric acetates failed to react. Other derivatives tested, e.g. chloroacetate, trichloroacetate, iodoacetate, chloroporpionate and butyrate are unable to form the coloured complexes. Many compounds interfere with the formation of acetate complex, therefore, in material containing impurities acetate can be determined after purificaton by means of described in literature methods.

  16. Stock selection of high-dose-irradiation-resistant materials for filter press under high-dose irradiation operation

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Minami, Mamoru; Hara, Kouji; Yamashita, Manabu

    2015-01-01

    In a volume reduction process for the decontamination of contained soil, the performance degradation of a filter press is expected owing to material deterioration under high-dose irradiation. Eleven-stock selection of candidate materials including polymers, fibers and rubbers for the filter press was conducted to achieve a high performance of volume reduction of contaminated soil and the following results were derived. Crude rubber and nylon were selected as prime candidates for packing, diaphragm and filter plate materials. Polyethylene was also selected as a prime candidate for the filter cloth material. (author)

  17. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    OpenAIRE

    Hyeonhu Bae; Minwoo Park; Byungryul Jang; Yura Kang; Jinwoo Park; Hosik Lee; Haegeun Chung; ChiHye Chung; Suklyun Hong; Yongkyung Kwon; Boris I. Yakobson; Hoonkyung Lee

    2016-01-01

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures...

  18. Adaptations of the Saker-Solomons test: simple, reliable colorimetric field assays for chloroquine and its metabolites in urine.

    Science.gov (United States)

    Mount, D L; Nahlen, B L; Patchen, L C; Churchill, F C

    1989-01-01

    Two field-adapted colorimetric methods for measuring the antimalarial drug chloroquine in urine are described. Both are modifications of the method of Saker and Solomons for screening urine for phencyclidine and other drugs of abuse, using the colour reagent tetrabromophenolphthalein ethyl ester. One method is semiquantitative, detecting the presence of chloroquine (Cq) and its metabolites in urine with a 1 microgram/ml detection limit; it is more sensitive and reliable than the commonly used Dill-Glazko method and is as easy to apply in the field. The second method uses a hand-held, battery-operated filter photometer to quantify Cq and its metabolites with a 2 microgram/ml detection limit and a linear range up to 8 micrograms/ml. The first method was validated in the field using a published quantitative colorimetric method and samples from a malaria study in Nigeria. The second method was validated in the laboratory against high-performance liquid chromatographic results on paired samples from the Nigerian study. Both methods may be used in remote locations where malaria is endemic and no electricity is available.

  19. Quercetin as colorimetric reagent for determination of zirconium

    Science.gov (United States)

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  20. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles

    Science.gov (United States)

    Nirala, Narsingh R.; Saxena, Preeti S.; Srivastava, Anchal

    2018-02-01

    We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2 mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19 mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100 mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel.

  1. Colorimetric properties of TiN coating implanted by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.G. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhouqg99@mails.tsinghua.edu.cn; Bai, X.D. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xue, X.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Y.H. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen, X.W. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, J. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China); Wang, D.R. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China)

    2005-04-05

    TiN coating was prepared by cathodic arc deposition and implanted aluminum using a metal vacuum vapor arc ion source with doses ranging from 5 x 10{sup 16} to 2 x 10{sup 17} ions/cm{sup 2}. The purpose of this work was to determine the dependence of the colorimetric properties of TiN films on the implanting conditions, especially by the aluminum ion implantation. The colorimetry of coatings was evaluated quantitatively in terms of CIE L * a * b *. The color coordinate values L *, a *, and b * provide a numerical representation of the color of the surface. With the dose increasing, the surface color has no obvious change but the surface turns brighter, and a * as well as b * values all decline. The X-ray diffraction patterns showed that the aluminum implantation induced a slight shift of diffraction peaks. X-ray photoemission spectroscopy was employed to analyze the surface valence states. The oxygen in surface top layer does not decrease a * and b * values, it partially combined with nitrogen.

  2. Colorimetric determination of reducing normality in the Purex process

    International Nuclear Information System (INIS)

    Baumann, E.W.

    1983-07-01

    Adjustment of the valence state of plutonium from extractable Pu(IV) to nonextractable Pu(III) in the Purex process is accomplished by addition of reductants such as Fe(II), hydroxylamine nitrate (HAN), or U(IV). To implement on-line monitoring of this reduction step for improved process control at the Savannah River Plant, a simple colorimetric method for determining excess reductant (reducing normality) was developed. The method is based on formation of a colored complex of Fe(II) with FerroZine (Hach Chemical Company). The concentration of Fe(II) is determined directly. The concentration of HAN or U(IV), in addition to Fe(II), is determined indirectly as Fe(II), produced through reduction of Fe(III). Experimental conditions for a HAN-Fe(III) reaction of known stoichiometry were established. The effect of hydrazine, which stabilizes U(IV), was also determined. Real-time measurements of color development were made that simulated on-line performance. A laboratory analytical procedure is included. 5 references, 8 figures

  3. Colorimetric determination of neomycin using melamine modified gold nanoparticles

    International Nuclear Information System (INIS)

    Xiao, Can; Liu, Junfeng; Yang, Ankang; Zhao, Hong; He, Yujian; Li, Xiangjun; Yuan, Zhuobin

    2015-01-01

    The colorimetric assay for neomycin presented here is based on melamine-modified gold nanoparticles (mel-AuNPs) and the finding that hydrogen bonding between melamine and neomycin results in the aggregation of mel-AuNPs. This results in a change in the color of the solution from wine red to blue and in a red-shift of the absorption maximum of the mel-AuNPs. The concentration of neomycin can be determined by spectrophotometry. The ratio of absorptions at 680 nm and 520 nm is linearly related to the logarithm of the concentration of neomycin in the 0.1 to 5.0 nM range and in the 5 to 100 nM range, with regression coefficients of 0.997 and 0.999, respectively. The detection limit (at an S/N ratio of 3) is 30 pM. This is far below the usual safety limit. The method was applied to the detection of trace levels of neomycin in milk samples and gave recoveries between 98 and 105 %. (author)

  4. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.

    Science.gov (United States)

    Pike, Sarah J; Hunter, Christopher A

    2017-11-22

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.

  5. Colorimetric Humidity Sensor Using Inverse Opal Photonic Gel in Hydrophilic Ionic Liquid.

    Science.gov (United States)

    Kim, Seulki; Han, Sung Gu; Koh, Young Gook; Lee, Hyunjung; Lee, Wonmok

    2018-04-27

    We demonstrate a fast response colorimetric humidity sensor using a crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA) in the form of inverse opal photonic gel (IOPG) soaked in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM⁺][BF₄ − ]), a non-volatile hydrophilic room temperature ionic liquid (IL). An evaporative colloidal assembly enabled the fabrication of highly crystalline opal template, and a subsequent photopolymerization of PHEMA followed by solvent-etching and final soaking in IL produced a humidity-responsive IOPG showing highly reflective structural color by Bragg diffraction. Three IOPG sensors with different crosslinking density were fabricated on a single chip, where a lightly crosslinked IOPG exhibited the color change response over entire visible spectrum with respect to the humidity changes from 0 to 80% RH. As the water content increased in IL, thermodynamic interactions between PHEMA and [BMIM⁺][BF₄ − ] became more favorable, to show a red-shifted structural color owing to a longitudinal swelling of IOPG. Highly porous IO structure enabled fast humidity-sensing kinetics with the response times of ~1 min for both swelling and deswelling. Temperature-dependent swelling of PHEMA in [BMIM⁺][BF₄ − ] revealed that the current system follows an upper critical solution temperature (UCST) behavior with the diffraction wavelength change as small as 1% at the temperature changes from 10 °C to 30 °C.

  6. Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation

    International Nuclear Information System (INIS)

    Chen, Zhengbo; Zhang, Chenmeng; Tan, Yuan; Zhou, Tianhui; Ma, He; Wan, Chongqing; Lin, Yuqing; Li, Kai

    2015-01-01

    We are presenting a colorimetric assay for mercury (II) ions. It is based on citosan-functionalized gold nanoparticles (AuNPs) that act as a signaling probe. Hg (II) induces the aggregation of the chitosan-AuNPs through a chelation reaction that occurs between chitosan and Hg (II). This results in a strong decrease of the absorbance of the modified AuNPs and a color change from red to blue. This sensing system displays excellent selectivity over other metal ions and a detection limit as low as 1.35 μM which is lower than the allowed level of Hg (II) in drinking water (30 μM) as defined by World Health Organization. The method is inexpensive, facile, sensitive, and does not require the addition of other reagents in order to improving sensitivity. (author)

  7. Copper-Based Metal-Organic Framework Nanoparticles with Peroxidase-Like Activity for Sensitive Colorimetric Detection of Staphylococcus aureus.

    Science.gov (United States)

    Wang, Shuqin; Deng, Wenfang; Yang, Lu; Tan, Yueming; Xie, Qingji; Yao, Shouzhuo

    2017-07-26

    Cu-MOF nanoparticles with an average diameter of 550 nm were synthesized from 2-aminoterephthalic acid and Cu(NO 3 ) 2 by a mixed solvothermal method. The Cu-MOF nanoparticles can show peroxidase-like activity that can catalyze 3,3',5,5'-tetramethylbenzidine to produce a yellow chromogenic reaction in the presence of H 2 O 2 . The presence of abundant amine groups on the surfaces of Cu-MOF nanoparticles enables facile modification of Staphylococcus aureus (S. aureus) aptamer on Cu-MOF nanoparticles. By combining Cu-MOF-catalyzed chromogenic reaction with aptamer recognition and magnetic separation, a simple, sensitive, and selective colorimetric method for the detection of S. aureus was developed.

  8. Colorimetric Models Used for Establishing the Optimal Dose for Sterilizing the Sea Buck thorn (Hippophae rhamnoides) Leaves Powder with Ionizing Radiation

    International Nuclear Information System (INIS)

    Minea, R.; Popescu, M.I.; Dumitrascu, M.; Sima, E.; Mitru, E.; Manea, St.; Mazilu, S.

    2009-01-01

    The current work intends to promote the development of the methods for establishing the degree of sterilization with ionizing radiations of the herbs in order to use them for obtaining food supplements, but also to obtaining medicines and cosmetic products. Obtaining the raw material, Sea Buckthorn (Hippophae rhamnoides) leaves, at a high level of sterilization without influencing the quality of active principles, is a desideratum of the economic agents in the area. The employed colorimetric methods have practically no impact on the studied herbs and, in the same time, they provide complex information on the effect of the ionizing radiations. The colorimetric methods allow to develop some models to be used both in the indirect evaluation of the microbial charge, before and after the treatment with ionizing radiations and for establishing the optimal necessary dose. The trials were made on Sea Buckthorn (Hippophae rhamnoides) leaves powder supplied by S.C. HOFIGAL EXPORT-IMPORT S.A. from Bucharest. The validation of the obtained colorimetric model was made through some spectrometric setups from the UV-Vis area, on the contents in: polyphenol carboxylic acids, flavones derivates, redox enzymes of superoxide dismutase type, and in the antioxidant activity

  9. Reference satellite selection method for GNSS high-precision relative positioning

    Directory of Open Access Journals (Sweden)

    Xiao Gao

    2017-03-01

    Full Text Available Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.

  10. Analysis of severe feather pecking behavior in a high feather pecking selection line

    DEFF Research Database (Denmark)

    Labouriau, R; Kjaer, J B; Abreu, G C G

    2009-01-01

    Even though feather pecking (FP) in laying hens has been extensively studied, a good solution to prevent chickens from this behavior under commercial circumstances has not been found. Selection against FP behavior is possible, but for a more effective selection across different populations......, it is necessary to characterize the genetic mechanism associated with this behavior. In this study, we use a high FP selection line, which has been selected for 8 generations. We present evidence of the presence of a major dominant allele affecting the FP behavior by using an argument based on the presence...

  11. Selective high-affinity polydentate ligands and methods of making such

    Energy Technology Data Exchange (ETDEWEB)

    Denardo, Sally J.; Denardo, Gerald L.; Balhorn, Rodney L.

    2018-02-06

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  12. Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays

    Science.gov (United States)

    Bernacka-Wojcik, Iwona

    Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio ( 13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 mul on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration

  13. Selection of design basis event for modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Nakagawa, Shigeaki; Ohashi, Hirofumi

    2016-06-01

    Japan Atomic Energy Agency (JAEA) has been investigating safety requirements and basic approach of safety guidelines for modular High Temperature Gas-cooled Reactor (HTGR) aiming to increase internarial contribution for nuclear safety by developing an international HTGR safety standard under International Atomic Energy Agency. In this study, we investigate a deterministic approach to select design basis events utilizing information obtained from probabilistic approach. In addition, selections of design basis events are conducted for commercial HTGR designed by JAEA. As a result, an approach for selecting design basis event considering multiple failures of safety systems is established which has not been considered as design basis in the safety guideline for existing nuclear facility. Furthermore, selection of design basis events for commercial HTGR has completed. This report provides an approach and procedure for selecting design basis events of modular HTGR as well as selected events for the commercial HTGR, GTHTR300. (author)

  14. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-01-01

    Highlights: • Tetracyclines directly reduce aurate into gold nanoparticles. • Gold nanoparticles showed characteristic plamson absorbance at 526 nm. • Quantitative detection of tetracyclines with the colorimetric assay. • Tetracyclines spiked urine samples can be detected with the assay. - Abstract: A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV–vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL −1 can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples

  15. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Li [Logistics School, Beijing Wuzi University, Beijing 101149 (China); Chen, Jing; Li, Na [Logistics School, Beijing Wuzi University, Beijing 101149 (China); He, Pingli [State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100094 (China); Li, Zhen [State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193 (China)

    2014-08-11

    Highlights: • Tetracyclines directly reduce aurate into gold nanoparticles. • Gold nanoparticles showed characteristic plamson absorbance at 526 nm. • Quantitative detection of tetracyclines with the colorimetric assay. • Tetracyclines spiked urine samples can be detected with the assay. - Abstract: A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV–vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL{sup −1} can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples.

  16. A Diarylethene Derived Chemosensor for Colorimetric Sensing of Cu2+

    Science.gov (United States)

    Pu, Shouzhi; Sun, Qi; Zheng, Chunhong

    2017-07-01

    A diarylethene bearing a 8-hydroxyquinoline-linked salicylhydrazide Schift base unit has been synthesized. In CH3CN, the conpound displayed a highly selective and sensitive response to Cu2+ via perceptible color and UV-vis absorbance changes among the other tested metal ions. In the presence of Cu2+, the peak at 341 nm disappeared and concomitantly a new charge transfer absorption band emerged at 381 and 450 nm. Moreover, the compound formed host-guest complexe in 1:1 stoichiometry.

  17. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    Science.gov (United States)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission ;turn-on; bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  18. DNA-Catalytically Active Gold Nanoparticle Conjugates-Based Colorimetric Multidimensional Sensor Array for Protein Discrimination.

    Science.gov (United States)

    Wei, Xiangcong; Chen, Zhengbo; Tan, Lulu; Lou, Tianhong; Zhao, Yan

    2017-01-03

    A series of single-strand oligonucleotides functionalized catalytically active gold nanoparticle (AuNPs) as nonspecific receptors have been designed to build a protein sensing array. We take advantage of the correlation between the catalytic activity and the exposed surface area of AuNPs, i.e., DNA-proteins interactions mask the surface area of AuNPs, leading to poor catalytic performance of AuNPs. As the number of DNA-bound proteins increases, the surfaces of AuNPs become more masked; thus, the time of 4- nitrophenol/NaBH 4 reaction for color change (yellow → colorless) of the solution increases. Taking advantage of three nonspecific SH-labeled DNA sequences (A15, C15, and T15) as array sensing elements and the color-change time (CCT) of the solution as signal readout, colorimetric response patterns can be obtained on the array and identified via linear discriminant analysis (LDA). Eleven proteins have been completely distinguished with 100% accuracy with the naked eye at the 30 nM level. Remarkably, two similar proteins (bovine serum albumin and human serum albumin), two different proteins (bovine serum albumin and concanavalin) at the same concentration, and the mixtures of the two proteins with different molar ratios have been discriminated with 100%. The practicability of this sensor array is further validated by high accuracy (100%) identification of 11 proteins in human serum samples.

  19. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices.

    Science.gov (United States)

    Chen, Guan-Hua; Chen, Wei-Yu; Yen, Yu-Chun; Wang, Chia-Wei; Chang, Huan-Tsung; Chen, Chien-Fu

    2014-07-15

    An on-field colorimetric sensing strategy employing gold nanoparticles (AuNPs) and a paper-based analytical platform was investigated for mercury ion (Hg(2+)) detection at water sources. By utilizing thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry, label-free detection oligonucleotide sequences were attached to unmodified gold nanoparticles to provide rapid mercury ion sensing without complicated and time-consuming thiolated or other costly labeled probe preparation processes. Not only is this strategy's sensing mechanism specific toward Hg(2+), rather than other metal ions, but also the conformational change in the detection oligonucleotide sequences introduces different degrees of AuNP aggregation that causes the color of AuNPs to exhibit a mixture variance. To eliminate the use of sophisticated equipment and minimize the power requirement for data analysis and transmission, the color variance of multiple detection results were transferred and concentrated on cellulose-based paper analytical devices, and the data were subsequently transmitted for the readout and storage of results using cloud computing via a smartphone. As a result, a detection limit of 50 nM for Hg(2+) spiked pond and river water could be achieved. Furthermore, multiple tests could be performed simultaneously with a 40 min turnaround time. These results suggest that the proposed platform possesses the capability for sensitive and high-throughput on-site mercury pollution monitoring in resource-constrained settings.

  20. Colorimetric determination of Fe2+/Fe3+ ratio in radioactive glasses

    International Nuclear Information System (INIS)

    Coleman, C.J.; Baumann, E.W.; Bibler, N.E.

    1992-01-01

    In the vitrification of nuclear wastes, the Fe 2+ /Fe 3+ ratio in the glass is a measure of the redox properties of the glass melt. It is necessary to measure this ratio to ensure that the melt redox properties are suitable for the glass melter. A colorimetric method for measuring the Fe 2+ /Fe 3+ ratio in highly radioactive glasses was developed and tested remotely in a shielded cell. The tests were performed on glasses similar in composition and radioactivity to those that will be produced in the Savannah River Site Defense Waste Processing Facility. The first step of the method is dissolution of finely crushed glass with a hydrofluoric/sulfuric acid mixture with ammonium vanadate added to preserve the Fe 2+ content of the glass during the dissolution. Boric acid is then added to complex fluoride and to destroy iron-fluoride complexes. After adjusting the solution to pH 5, FerroZine TM (trademark of the Hach Company, Loveland, CO) reagent is added to form a magenta-colored complex with Fe 2+ . The absorbance at 562 nm is measured by using a fiber optic-coupled photodiode array spectrophotometer. Ascorbic acid is then used to reduce all the iron in solution to Fe 2+ and the absorbance is again measured. The difference in absorbance measurements corresponds to the Fe 3+ in the sample and the Fe 2+ /Fe 3+ ratio can be calculated

  1. Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye.

    Science.gov (United States)

    Roy, Sharmili; Mohd-Naim, Noor Faizah; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2017-11-22

    Nucleic acid detection is of paramount importance in monitoring of microbial pathogens in food safety and infectious disease diagnostic applications. To address these challenges, a rapid, cost-effective label-free technique for nucleic acid detection with minimal instrumentations is highly desired. Here, we present paper microchip to detect and quantify nucleic acid using colorimetric sensing modality. The extracted DNA from food samples of meat as well as microbial pathogens was amplified utilizing loop-mediated isothermal amplification (LAMP). LAMP amplicon was then detected and quantified on a paper microchip fabricated in a cellulose paper and a small wax chamber utilizing crystal violet dye. The affinity of crystal violet dye toward dsDNA and positive signal were identified by changing the color from colorless to purple. Using this method, detection of Sus scrofa (porcine) and Bacillus subtilis (bacteria) DNA was possible at concentrations as low as 1 pg/μL (3.43 × 10 -1 copies/μL) and 10 pg/μL (2.2 × 10 3 copies/μL), respectively. This strategy can be adapted for detection of other DNA samples, with potential for development of a new breed of simple and inexpensive paper microchip at the point-of-need.

  2. Bayesian Multiresolution Variable Selection for Ultra-High Dimensional Neuroimaging Data.

    Science.gov (United States)

    Zhao, Yize; Kang, Jian; Long, Qi

    2018-01-01

    Ultra-high dimensional variable selection has become increasingly important in analysis of neuroimaging data. For example, in the Autism Brain Imaging Data Exchange (ABIDE) study, neuroscientists are interested in identifying important biomarkers for early detection of the autism spectrum disorder (ASD) using high resolution brain images that include hundreds of thousands voxels. However, most existing methods are not feasible for solving this problem due to their extensive computational costs. In this work, we propose a novel multiresolution variable selection procedure under a Bayesian probit regression framework. It recursively uses posterior samples for coarser-scale variable selection to guide the posterior inference on finer-scale variable selection, leading to very efficient Markov chain Monte Carlo (MCMC) algorithms. The proposed algorithms are computationally feasible for ultra-high dimensional data. Also, our model incorporates two levels of structural information into variable selection using Ising priors: the spatial dependence between voxels and the functional connectivity between anatomical brain regions. Applied to the resting state functional magnetic resonance imaging (R-fMRI) data in the ABIDE study, our methods identify voxel-level imaging biomarkers highly predictive of the ASD, which are biologically meaningful and interpretable. Extensive simulations also show that our methods achieve better performance in variable selection compared to existing methods.

  3. Nutrition Information at the Point of Selection in High Schools Does Not Affect Purchases

    Science.gov (United States)

    Rainville, Alice Jo; Choi, Kyunghee; Ragg, Mark; King, Amber; Carr, Deborah H.

    2010-01-01

    Purpose/Objectives: Nutrition information can be an important component of local wellness policies. There are very few studies regarding nutrition information at the point of selection (POS) in high schools. The purpose of this study was to investigate the effects of posting entree nutrition information at the POS in high schools nationwide.…

  4. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor.

    Science.gov (United States)

    Hou, Chen; Wang, Yang; Ding, Qinghua; Jiang, Long; Li, Ming; Zhu, Weiwei; Pan, Duo; Zhu, Hao; Liu, Mingzhu

    2015-11-28

    This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade reaction for the visual detection of glucose was combined into one step through the mZIF-8@GOx based mimic multi-enzyme system. After characterization by electron microscopy, X-ray diffraction, nitrogen sorption, fourier transform infrared spectroscopy and vibrating sample magnetometry, the as-prepared mZIF-8@GOx was confirmed with the robust core-shell structure, the monodisperse nanoparticle had an average diameter of about 200 nm and displayed superparamagnetism with a saturation magnetization value of 40.5 emu g(-1), it also exhibited a large surface area of 396.10 m(2) g(-1). As a peroxidase mimic, mZIF-8 was verified to be highly stable and of low cost, and showed a strong affinity towards H2O2. Meanwhile, the mZIF-8 embedded GOx also exhibited improved activity, stability and greatly enhanced selectivity in glucose detection. Moreover, the mZIF-8@GOx had excellent recyclability with high activity (88.7% residual activity after 12 times reuse).

  5. Minimization of storage and disposal volumes by treatment of liquids by highly selective ion exchangers

    International Nuclear Information System (INIS)

    Tusa, E.; Harjula, R.; Lehto, J.

    2000-01-01

    Novel highly selective inorganic ion exchangers provide new efficient methods for the treatment of nuclear waste liquids. These methods have several advantages compared to conventional technologies such as evaporation, direct solidification or treatment by organic ion exchange resins. Due to high selectivity, the radionuclides can be concentrated to a very small volume even from high-salt effluents. This means that the volume waste will be very small compared to other methods, which brings considerable savings in the cost of intermediate storage and final disposal. Process equipment are highly compact and require little supervision, which brings down the capital and operation costs. The new selective inorganic ion exchangers CsTreat, SrTreat and CoTreat (manufactured by Fortum Engineering Ltd., Finland) have the highest selectivities and processing capacities, exceeding those of zeolites by several orders of magnitude. The materials are now in use in a number of nuclear sites worldwide, including those in the USA, Europe and Japan. Installations include mobile and stationary systems. Considerable experience has been gained in the use of these new materials. Lessons learned, as well as advantages and economic benefits of these highly selective exchangers will be discussed in this paper. (authors)

  6. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.

    Science.gov (United States)

    Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus

    2017-11-02

    The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.

  7. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.

    Science.gov (United States)

    Wang, Xu; Li, Fang; Cai, Ziqi; Liu, Kaifan; Li, Jing; Zhang, Boyang; He, Jianbo

    2018-04-01

    In this work, a multilayer-modified paper-based colorimetric sensing platform with improved color uniformity and intensity was developed for the sensitive and selective determination of uric acid and glucose with smartphone as signal readout. In detail, chitosan, different kinds of chromogenic reagents, and horseradish peroxidase (HRP) combined with a specific oxidase, e.g., uricase or glucose oxidase (GOD), were immoblized onto the paper substrate to form a multilayer-modified test paper. Hydrogen peroxide produced by the oxidases (uricase or GOD) reacts with the substrates (uric acid or glucose), and could oxidize the co-immoblized chromogenic reagents to form colored products with HRP as catalyst. A simple strategy by placing the test paper on top of a light-emitting diode lamp was adopted to efficiently prevent influence from the external light. The color images were recorded by the smartphone camera, and then the gray values of the color images were calculated for quantitative analysis. The developed method provided a wide linear response from 0.01 to 1.0 mM for uric acid detection and from 0.02 to 4.0 mM for glucose detection, with a limit of detection (LOD) as low as 0.003 and 0.014 mM, respectively, which was much lower than for previously reported paper-based colorimetric assays. The proposed assays were successfully applied to uric acid and glucose detection in real serum samples. Furthermore, the enhanced analytical performance of the proposed method allowed the non-invasive detection of glucose levels in tear samples, which holds great potential for point-of-care analysis. Graphical abstract ᅟ.

  8. FOOD SECURITY SITUATION OF SELECTED HIGHLY DEVELOPED COUNTRIES AGAINST DEVELOPING COUNTRIES

    OpenAIRE

    Karolina Pawlak

    2016-01-01

    The aim of the paper is to present the food security situation in selected highly developed countries and to identify consumption disparities between them and developing countries. The research is based on the data from the United Nations Food and Agriculture Organization (FAO), the Statistical Office of the European Union (Eurostat), the United Nations Statistics Division, the Organisation for Economic Co-operation and Development (OECD), World Food Programme (WFP) and selected measures used...

  9. Quantitative Analysis of High-Quality Officer Selection by Commandants Career-Level Education Board

    Science.gov (United States)

    2017-03-01

    impact on the organization and allocate resources to improve the human capital of this select group. From 2011 onward, CCLEB revamped the application...ANALYSIS OF HIGH-QUALITY OFFICER SELECTION BY COMMANDANT’S CAREER - LEVEL EDUCATION BOARD by Clifton N. Rateike March 2017 Thesis Advisor...of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE March

  10. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    International Nuclear Information System (INIS)

    Costin, L.S.

    1997-10-01

    In this paper, the major elements of the site selection and characterization processes used in the US high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the US program, these processes, which are well defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the US program

  11. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    International Nuclear Information System (INIS)

    Costin, L.S.

    1997-01-01

    In this paper, the major elements of the site selection and characterization processes used in the U. S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U. S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U. S. program. (author). 3 refs., 2 tabs., 5 figs

  12. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Costin, L.S. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    In this paper, the major elements of the site selection and characterization processes used in the U. S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U. S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U. S. program. (author). 3 refs., 2 tabs., 5 figs.

  13. Application of high Tc superconductors as frequency selective surfaces: Experiment and theory

    International Nuclear Information System (INIS)

    Dawei Zhang; Yahya Rahmat-Samii; Fetterman, H.R.

    1993-01-01

    YBa 2 Cu 3 O 7-x and Tl 2 CaBa 2 Cu 2 O 8 high temperature superconducting thin films were utilized to fabricate frequency selective surfaces (FSS) at millimeter-wave frequencies (75--110 GHz). An analytical/numerical model was applied, using a Floquet expansion and the Method of Moments, to analyze bandstop superconducting frequency selective surfaces. Experimental results were compared with the model, and showed a good agreement with resonant frequency prediction with an accuracy of better than 1%. The use of the superconducting frequency selective surfaces as quasi-optical millimeter-wave bandpass filters was also demonstrated

  14. Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.

    Science.gov (United States)

    Kim, Soyeon; Baladandayuthapani, Veerabhadran; Lee, J Jack

    2017-06-01

    In personalized medicine, biomarkers are used to select therapies with the highest likelihood of success based on an individual patient's biomarker/genomic profile. Two goals are to choose important biomarkers that accurately predict treatment outcomes and to cull unimportant biomarkers to reduce the cost of biological and clinical verifications. These goals are challenging due to the high dimensionality of genomic data. Variable selection methods based on penalized regression (e.g., the lasso and elastic net) have yielded promising results. However, selecting the right amount of penalization is critical to simultaneously achieving these two goals. Standard approaches based on cross-validation (CV) typically provide high prediction accuracy with high true positive rates but at the cost of too many false positives. Alternatively, stability selection (SS) controls the number of false positives, but at the cost of yielding too few true positives. To circumvent these issues, we propose prediction-oriented marker selection (PROMISE), which combines SS with CV to conflate the advantages of both methods. Our application of PROMISE with the lasso and elastic net in data analysis shows that, compared to CV, PROMISE produces sparse solutions, few false positives, and small type I + type II error, and maintains good prediction accuracy, with a marginal decrease in the true positive rates. Compared to SS, PROMISE offers better prediction accuracy and true positive rates. In summary, PROMISE can be applied in many fields to select regularization parameters when the goals are to minimize false positives and maximize prediction accuracy.

  15. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  16. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  17. Microtiter plate based colorimetric assay for characterization of dehalogenation activity of GAC/Fe0 composite

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Salatas, Apostolos; Mines, Paul D.

    2015-01-01

    of nZVI and its composite with granular activated carbon (GAC). The assay focused on analysis of reaction products rather than its mother compounds, which gives more accurate quantification of reductive activity. The colorimetric assays were developed to quantify three reaction products, ammonia......Even though nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, a quantification of nZVI reactivity has not been standardized. Here, we developed series of colorimetric assays for determining reductive activity...

  18. Development and validation of a colorimetric sensor array for fish spoilage monitoring

    DEFF Research Database (Denmark)

    Morsy, Mohamed K.; Zor, Kinga; Kostesha, Natalie

    2016-01-01

    their color changes in response to compounds present in fresh products (hexanal, 1-octane-3-ol) used as negative controls. The colorimetric sensor array was used to follow fish spoilage over time at room temperature for up to 24 h as well as at 4 °C for 9 days. Additionally, fish decay was monitored using......Given the need for non-destructive methods and sensors for food spoilage monitoring, we have evaluated sixteen chemo-sensitive compounds incorporated in an array for colorimetric detection of typical spoilage compounds (trimethylamine, dimethylamine, cadaverine, putrescine) and characterized...

  19. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts.

    Science.gov (United States)

    Redmile-Gordon, M A; Armenise, E; White, R P; Hirsch, P R; Goulding, K W T

    2013-12-01

    Soil extracts usually contain large quantities of dissolved humified organic material, typically reflected by high polyphenolic content. Since polyphenols seriously confound quantification of extracted protein, minimising this interference is important to ensure measurements are representative. Although the Bradford colorimetric assay is used routinely in soil science for rapid quantification protein in soil-extracts, it has several limitations. We therefore investigated an alternative colorimetric technique based on the Lowry assay (frequently used to measure protein and humic substances as distinct pools in microbial biofilms). The accuracies of both the Bradford assay and a modified Lowry microplate method were compared in factorial combination. Protein was quantified in soil-extracts (extracted with citrate), including standard additions of model protein (BSA) and polyphenol (Sigma H1675-2). Using the Lowry microplate assay described, no interfering effects of citrate were detected even with concentrations up to 5 times greater than are typically used to extract soil protein. Moreover, the Bradford assay was found to be highly susceptible to two simultaneous and confounding artefacts: 1) the colour development due to added protein was greatly inhibited by polyphenol concentration, and 2) substantial colour development was caused directly by the polyphenol addition. In contrast, the Lowry method enabled distinction between colour development from protein and non-protein origin, providing a more accurate quantitative analysis. These results suggest that the modified-Lowry method is a more suitable measure of extract protein (defined by standard equivalents) because it is less confounded by the high polyphenolic content which is so typical of soil extracts.

  20. Tracking and flavour tagging selection in the ATLAS High Level Trigger

    CERN Document Server

    Calvetti, Milene; The ATLAS collaboration

    2017-01-01

    In high-energy physics experiments, track based selection in the online environment is crucial for the efficient real time selection of the rare physics process of interest. This is of particular importance at the Large Hadron Collider (LHC), where the increasingly harsh collision environment is challenging the experiments to improve the performance of their online selection. Principal among these challenges is the increasing number of interactions per bunch crossing, known as pileup. In the ATLAS experiment the challenge has been addressed with multiple strategies. Firstly, specific trigger objects have been improved by building algorithms using detailed tracking and vertexing in specific detector regions to improve background rejection without loosing signal efficiency. Secondly, since 2015 all trigger areas have benefited from a new high performance Inner Detector (ID) software tracking system implemented in the High Level Trigger. Finally, performance will be further enhanced in future by the installation...

  1. vuv fluorescence from selective high-order multiphoton excitation of N2

    International Nuclear Information System (INIS)

    Coffee, Ryan N.; Gibson, George N.

    2004-01-01

    Recent fluorescence studies suggest that ultrashort pulse laser excitation may be highly selective. Selective high-intensity laser excitation holds important consequences for the physics of multiphoton processes. To establish the extent of this selectivity, we performed a detailed comparative study of the vacuum ultraviolet fluorescence resulting from the interaction of N 2 and Ar with high-intensity infrared ultrashort laser pulses. Both N 2 and Ar reveal two classes of transitions, inner-valence ns ' l ' . From their pressure dependence, we associate each transition with either plasma or direct laser excitation. Furthermore, we qualitatively confirm such associations with the time dependence of the fluorescence signal. Remarkably, only N 2 presents evidence of direct laser excitation. This direct excitation produces ionic nitrogen fragments with inner-valence (2s) holes, two unidentified transitions, and one molecular transition, the N 2 + :X 2 Σ g + 2 Σ u + . We discuss these results in the light of a recently proposed model for multiphoton excitation

  2. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  3. Strategic project selection based on evidential reasoning approach for high-end equipment manufacturing industry

    Directory of Open Access Journals (Sweden)

    Lu Guangyan

    2017-01-01

    Full Text Available With the rapid development of science and technology, emerging information technologies have significantly changed the daily life of people. In such context, strategic project selection for high-end equipment manufacturing industries faces more and more complexities and uncertainties with the consideration of several complex criteria. For example, a group of experts rather than a single expert should be invited to select strategic project for high-end equipment manufacturing industries and the experts may feel difficulty to express their preferences towards different strategic projects due to their limited cognitive capabilities. In order to handle these complexities and uncertainties, the criteria framework of strategic project selection is firstly constructed based on the characteristics of high-end equipment manufacturing industries and then evidential reasoning (ER approach is introduced in this paper to help experts express their uncertain preferences and aggregate these preferences to generate an appropriate strategic project. A real case of strategic project selection in a high-speed train manufacturing enterprise is investigated to demonstrate the validity of the ER approach in solving strategic project selection problem.

  4. On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction.

    Science.gov (United States)

    Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae; Jung, Yousung

    2016-04-14

    While achieving high product selectivity is one of the major challenges of the CO2 electroreduction technology in general, Pb is one of the few examples with high selectivity that produces formic acid almost exclusively (versus H2, CO, or other byproducts). In this work, we study the mechanism of CO2 electroreduction reactions using Pb to understand the origin of high formic acid selectivity. In particular, we first assess the proton-assisted mechanism proposed in the literature using density functional calculations and find that it cannot fully explain the previous selectivity experiments for the Pb electrode. We then suggest an alternative proton-coupled-electron-transfer mechanism consistent with existing observations, and further validate a new mechanism by experimentally measuring and comparing the onset potentials for CO2 reduction vs. H2 production. We find that the origin of a high selectivity of the Pb catalyst for HCOOH production over CO and H2 lies in the strong O-affinitive and weak C-, H-affinitive characteristics of Pb, leading to the involvement of the *OCHO species as a key intermediate to produce HCOOH exclusively and preventing unwanted H2 production at the same time.

  5. G-Quadruplex DNAzyme Molecular Beacon for Amplified Colorimetric Biosensing of Pseudostellaria heterophylla

    Directory of Open Access Journals (Sweden)

    Juan Hu

    2013-01-01

    Full Text Available With an internal transcribed spacer of 18 S, 5.8 S and 26 S nuclear ribosomal DNA (nrDNA ITS as DNA marker, we report a colorimetric approach for authentication of Pseudostellaria heterophylla (PH and its counterfeit species based on the differentiation of the nrDNA ITS sequence. The assay possesses an unlabelled G-quadruplex DNAzyme molecular beacon (MB probe, employing complementary sequence as biorecognition element and 1:1:1:1 split G-quadruplex halves as reporter. In the absence of target DNA (T-DNA, the probe can shape intermolecular G-quadruplex structures capable of binding hemin to form G-quadruplex-hemin DNAzyme and catalyze the oxidation of ABTS2− to blue-green ABTS•− by H2O2. In the presence of T-DNA, T-DNA can hybridize with the complementary sequence to form a duplex structure, hindering the formation of the G-quadruplex structure and resulting in the loss of the catalytic activity. Consequently, a UV-Vis absorption signal decrease is observed in the ABTS2−-H2O2 system. The “turn-off” assay allows the detection of T-DNA from 1.0 × 10−9 to 3.0 × 10−7 mol·L−1 (R2 = 0.9906, with a low detection limit of 3.1 × 10−10 mol·L−1. The present study provides a sensitive and selective method and may serve as a foundation of utilizing the DNAzyme MB sensor for identifying traditional Chinese medicines.

  6. Principles and applications of colorimetric solid-phase extraction with negligible depletion

    International Nuclear Information System (INIS)

    Dias, Neil C.; Porter, Marc D.; Fritz, James S.

    2006-01-01

    Colorimetric solid-phase extraction (C-SPE) is an integrated technique in which an analyte is selectively concentrated onto a disk and then quantitated by diffuse reflectance spectroscopy. This paper describes the results of an investigation that applies the concept of negligible depletion (ND) to C-SPE, representing the first application of ND concepts to solid-phase extractions. The approach relies on passing the minimal volume of sample through the disk required to reach an equilibrium in which the concentration of analyte in the sample entering and exiting the disk are equal. At this point, the amount of analyte extracted by the disk is proportional to the sample concentration but is independent of the sample volume passed through the disk. With this new method, called C-SPE/ND, the precise measurement of sample volume is no longer necessary. The work herein details the general principles of this new methodology, and validates its basic tenets in an investigation of the extraction of the organic dye methyl violet. The analytical capabilities of C-SPE/ND are then demonstrated by its application to measurements of iodine. Iodine is a biocide increasingly used as a simple and effective disinfectant for water in locations where municipal water treatment systems are potentially compromised. Thus, the ability to operate C-SPE in an ND mode notably enhances the broad-based utility of this methodology as a reliable and an easy-to-use analysis tool for water quality assessments. Since iodine is also the biocide used on NASAs Space Shuttle, C-SPE/ND has the potential to overcome problems associated with the removal of air bubbles entrapped in a water sample in the microgravity environment encountered in space exploration. Extensions of C-SPE/ND to facile determinations of other water quality parameters with respect to both earth- and space-based needs are briefly discussed

  7. Colorimetric calibration of wound photography with off-the-shelf devices

    Science.gov (United States)

    Bala, Subhankar; Sirazitdinova, Ekaterina; Deserno, Thomas M.

    2017-03-01

    Digital cameras are often used in recent days for photographic documentation in medical sciences. However, color reproducibility of same objects suffers from different illuminations and lighting conditions. This variation in color representation is problematic when the images are used for segmentation and measurements based on color thresholds. In this paper, motivated by photographic follow-up of chronic wounds, we assess the impact of (i) gamma correction, (ii) white balancing, (iii) background unification, and (iv) reference card-based color correction. Automatic gamma correction and white balancing are applied to support the calibration procedure, where gamma correction is a nonlinear color transform. For unevenly illuminated images, non- uniform illumination correction is applied. In the last step, we apply colorimetric calibration using a reference color card of 24 patches with known colors. A lattice detection algorithm is used for locating the card. The least squares algorithm is applied for affine color calibration in the RGB model. We have tested the algorithm on images with seven different types of illumination: with and without flash using three different off-the-shelf cameras including smartphones. We analyzed the spread of resulting color value of selected color patch before and after applying the calibration. Additionally, we checked the individual contribution of different steps of the whole calibration process. Using all steps, we were able to achieve a maximum of 81% reduction in standard deviation of color patch values in resulting images comparing to the original images. That supports manual as well as automatic quantitative wound assessments with off-the-shelf devices.

  8. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    International Nuclear Information System (INIS)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-01-01

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K d 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K d 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy

  9. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  10. Phenylmercuric hydroxide. A highly selective reagent for the hydration of nonconjugated terminal alkynes

    International Nuclear Information System (INIS)

    Janout, V.; Regen, S.L.

    1982-01-01

    This article describes an unusual and highly selective method for hydrating nonconjugated terminal alkynes based on the use of phenylmercuric hydroxide as a reagent. Unlike classical mercury catalyzed procedures, sigma-bonded mercury acetylides are formed initially as stable intermediates and subsequently reacted with water under neutral pH to form the corresponding methyl ketone. Isolated yields which have been obtained by using this approach lie in the range of 49-65%. The high selectivity toward nonconjugated terminal alkynes which characterizes the procedure described herein should make it a useful supplement to existing hydration methods

  11. Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor.

    Science.gov (United States)

    Chen, Long; He, Linwei; Ma, Fuyin; Liu, Wei; Wang, Yaxing; Silver, Mark A; Chen, Lanhua; Zhu, Lin; Gui, Daxiang; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2018-05-09

    Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.

  12. A High-throughput Selection for Cellulase Catalysts Using Chemical Complementation

    Science.gov (United States)

    Peralta-Yahya, Pamela; Carter, Brian T.; Lin, Hening; Tao, Haiyan; Cornish, Virginia W.

    2010-01-01

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases however is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Due to the large number of enzyme variants selections can test compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity. PMID:19053460

  13. Inference for feature selection using the Lasso with high-dimensional data

    DEFF Research Database (Denmark)

    Brink-Jensen, Kasper; Ekstrøm, Claus Thorn

    2014-01-01

    Penalized regression models such as the Lasso have proved useful for variable selection in many fields - especially for situations with high-dimensional data where the numbers of predictors far exceeds the number of observations. These methods identify and rank variables of importance but do...... not generally provide any inference of the selected variables. Thus, the variables selected might be the "most important" but need not be significant. We propose a significance test for the selection found by the Lasso. We introduce a procedure that computes inference and p-values for features chosen...... by the Lasso. This method rephrases the null hypothesis and uses a randomization approach which ensures that the error rate is controlled even for small samples. We demonstrate the ability of the algorithm to compute $p$-values of the expected magnitude with simulated data using a multitude of scenarios...

  14. The catalytic activity of Ag{sub 2}S-montmorillonites as peroxidase mimetic toward colorimetric detection of H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingyun, E-mail: qyliu@sdust.edu.cn [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Jiang, Yanling; Zhang, Leyou; Zhou, Xinpei [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Lv, Xintian [School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000 (China); Ding, Yanyuan; Sun, Lifang; Chen, Pengpeng [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Yin, Hailiang [Academy of Science & Technology, China University of Petroleum, Dongying 257061 (China)

    2016-08-01

    Nanocomposites based on silver sulfide (Ag{sub 2}S) and Ca-montmorillonite (Ca{sup 2+}-MMT) were synthesized by a simple hydrothermal method. The nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectra (FTIR). The as-prepared Ag{sub 2}S-MMT nanocomposites were firstly demonstrated to possess intrinsic peroxidase-like activity and could rapidly catalytically oxidize the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H{sub 2}O{sub 2} to produce a blue product which can be seen by the naked eye in only one minute. The experimental results revealed that the Ag{sub 2}S-MMT nanocomposites exhibit higher thermal durance. Based on the TMB–H{sub 2}O{sub 2} catalyzed color reaction, the Ag{sub 2}S-MMT nanocomposites were exploited as a new type of biosensor for detection and estimation of H{sub 2}O{sub 2} through a simple, cheap and selective colorimetric method. - Highlights: • Ag{sub 2}S – montmorillonites (MMT) was synthesized by a facile one step method. • The as-prepared Ag{sub 2}S-MMT nanocomposites firstly demonstrate to possess intrinsic peroxidase-like activity. • Ag{sub 2}S-MMT nanocomposites showed highly catalytic activity. • Ag{sub 2}S-MMT could rapidly catalytically oxidize substrates TMB in the presence of H{sub 2}O{sub 2} in 1 min. • The catalytic mechanism is from the generation of hydroxyl radical (·OH) decomposed from H{sub 2}O{sub 2}.

  15. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    Science.gov (United States)

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Woo

    2016-09-01

    Full Text Available Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and thus have been applied in the field of gas sensors over the years. In particular, n-type NWs such as SnO2, ZnO, and In2O3 are widely studied because of their simple synthetic preparation and high gas response. However, due to their usually high responses to C2H5OH and NO2, the selective detection of other harmful and toxic gases using oxide NWs remains a challenging issue. Various strategies—such as doping/loading of noble metals, decorating/doping of catalytic metal oxides, and the formation of core–shell structures—have been explored to enhance gas selectivity and sensitivity, and are discussed herein. Additional methods such as the transformation of n-type into p-type NWs and the formation of catalyst-doped hierarchical structures by branch growth have also proven to be promising for the enhancement of gas selectivity. Accordingly, the physicochemical modification of oxide NWs via various methods provides new strategies to achieve the selective detection of a specific gas, and after further investigations, this approach could pave a new way in the field of NW-based semiconductor-type gas sensors.

  17. ERP markers of target selection discriminate children with high vs. low working memory capacity

    Directory of Open Access Journals (Sweden)

    Andria eShimi

    2015-11-01

    Full Text Available Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults’ selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children’s selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults’ selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc. However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the adult time-window related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children’s neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM

  18. ERP markers of target selection discriminate children with high vs. low working memory capacity.

    Science.gov (United States)

    Shimi, Andria; Nobre, Anna Christina; Scerif, Gaia

    2015-01-01

    Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM) system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults' selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children's selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults' selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc). However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the "adult time-window" related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children's neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM performance in children.

  19. Test methods for selection of materials of construction for high-level radioactive waste vitrification. Revision

    International Nuclear Information System (INIS)

    Bickford, D.F.; Corbett, R.A.; Morrison, W.S.

    1986-01-01

    Candidate materials of construction were evaluated for a facility at the Department of Energy's Savannah River Plant to vitrify high-level radioactive waste. Limited operating experience was available under the corrosive conditions of the complex vitrification process. The objective of the testing program was to provide a high degree of assurance that equipment will meet or exceed design lifetimes. To meet this objective in reasonable time and minimum cost, a program was designed consisting of a combination of coupon immersion and electrochemical laboratory tests and pilot-scale tests. Stainless steels and nickel-based alloys were tested. Alloys that were most resistant to general and local attack contained nickel, molybdenum (>9%), and chromium (where Cr + Mo > 30%). Alloy C-276 was selected as the reference material for process equipment. Stellite 6 was selected for abrasive service in the presence of formic acid. Alloy 690 and ALLCORR were selected for specific applications

  20. Selection of the Mutants with High Hydroquinone Degradation Ability of Serratia Marcesscen by Plasma Mutation

    International Nuclear Information System (INIS)

    Yao Risheng; You Qidong; He Weijing; Zhu Huixia

    2009-01-01

    In this study, an efficient way by plasma induced mutation was applied to improve the hydroquinone degradation capacity of Serratia marcescens AB 90027 (SM27). The results showed that combined with the selection of hydroquinone tolerance, the mutant with high hydroquinone degradation ability induced by plasma could be achieved. The best dose for plasma mutation was 15 s, which showed a 47.0% higher positive mutation ratio. Besides, the aimed mutant was markedly different from the parent strain (SM27) in colonial traits while cultivated on Kings media. Finally, the hydroquinone degradation ratio reached 70.5% using the induced mutant strain with 1500 mg/L hydroquinone (HQ) after 15 days of cultivation as the selective conditions; however, it was only 46.7% for SM27. The improvement of the degradation capacity by the induced mutant with a high concentration of HQ selection was attributed to its faster growth and higher hydroquinone tolerance compared with that of the parent strain.

  1. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide

    Science.gov (United States)

    Nagarkar, Sanjog S.; Saha, Tanmoy; Desai, Aamod V.; Talukdar, Pinaki; Ghosh, Sujit K.

    2014-11-01

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions.

  2. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  3. Rhodium Nanoparticle-mesoporous Silicon Nanowire Nanohybrids for Hydrogen Peroxide Detection with High Selectivity

    Science.gov (United States)

    Song, Zhiqian; Chang, Hucheng; Zhu, Weiqin; Xu, Chenlong; Feng, Xinjian

    2015-01-01

    Developing nanostructured electrocatalysts, with low overpotential, high selectivity and activity has fundamental and technical importance in many fields. We report here rhodium nanoparticle and mesoporous silicon nanowire (RhNP@mSiNW) hybrids for hydrogen peroxide (H2O2) detection with high electrocatalytic activity and selectivity. By employing electrodes that loaded with RhNP@mSiNW nanohybrids, interference caused from both many electroactive substances and dissolved oxygen were eliminated by electrochemical assaying at an optimal potential of +75 mV. Furthermore, the electrodes exhibited a high detection sensitivity of 0.53 μA/mM and fast response (< 5 s). This high-performance nanohybrid electrocatalyst has great potential for future practical application in various oxidase-base biosensors. PMID:25588953

  4. Highly selective coulometric method and equipment for the automated determination of plutonium

    International Nuclear Information System (INIS)

    Jackson, D.D.; Hollen, R.M.; Roensch, F.R.; Rein, J.E.

    1977-01-01

    A highly selective, controlled-potential coulometric method has been developed for the determination of plutonium. An automated instrument, consisting of commercial electronic components under control of a programmable calculator, is being constructed. Half-cell potentials and interfering anions are listed

  5. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  6. The Impact of Legalized Abortion on High School Graduation through Selection and Composition

    Science.gov (United States)

    Whitaker, Stephan

    2011-01-01

    This analysis examines whether the legalization of abortion changed high school graduation rates among the children selected into birth. Unless women in all socio-economic circumstances sought abortions to the same extent, increased use of abortion must have changed the distribution of child development inputs. I find that higher abortion ratios…

  7. A highly selective and sensitive "turn-on" fluorescence chemodosimeter for the detection of mustard gas.

    Science.gov (United States)

    Raghavender Goud, D; Purohit, Ajay Kumar; Tak, Vijay; Dubey, Devendra Kumar; Kumar, Pravin; Pardasani, Deepak

    2014-10-21

    A new chemodosimetric protocol based on a tandem S-alkylation followed by desulfurisation reaction of rhodamine-thioamide with mustard gas is reported. The chemodosimeter is highly selective for potential DNA alkylating agents like sulfur mustard, over other simple alkyl halides with the limit of detection of 4.75 μM.

  8. Highly Selective Continuous Gas-Phase Methoxycarbonylation of Ethylene with Supported Ionic Liquid Phase (SILP) Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia Suárez, Eduardo José; Fehrmann, Rasmus

    2017-01-01

    Supported ionic liquid phase (SILP) technology was applied for the first time to the Pd-catalyzed continuous, gas-phase methoxycarbonylation of ethylene to selectively produce methyl propanoate (MP) in high yields. The influence of catalyst and reaction parameters such as, for example, ionic liquid...

  9. A terbium(III)-organic framework for highly selective sensing of cytidine triphosphate.

    Science.gov (United States)

    Zhao, Xi Juan; He, Rong Xing; Li, Yuan Fang

    2012-11-21

    Highly selective sensing of cytidine triphosphate (CTP) against other triphosphate nucleosides including ATP, GTP and UTP is successfully achieved with a luminescent terbium(III)-organic framework (TbOF) of [Tb(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)](n) (2,3-pzdc(2-) = 2,3-pyrazinedicarboxylate, ox(2-) = oxalate).

  10. Colorimetric method for the detection of melamine using in-situ formed silver nanoparticles via tannic acid

    Science.gov (United States)

    Alam, Md. Fazle; Laskar, Amaj Ahmed; Ahmed, Shahbaz; Shaida, Mohd. Azfar; Younus, Hina

    2017-08-01

    Melamine toxicity has recently attracted worldwide attention as it causes renal failure and the death of humans and animals. Therefore, developing a simple, fast and sensitive method for the routine detection of melamine is the need of the hour. Herein, we have developed a selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid. The AgNPs thus formed were characterized by UV-Visible spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). The AgNPs were used to detect melamine under in vitro condition and in raw milk spiked with melamine. Under optimal conditions, melamine could be selectively detected in vitro within the concentration range of 0.05-1.4 μM with a limit of detection (LOD) of 0.01 μM, which is lower than the strictest melamine safety requirement of 1 ppm. In spiked raw milk, the recovery percentage range was 99.5-106.5% for liquid milk and 98.5-105.5% for powdered milk. The present method shows extreme selectivity with no significant interference with other substances like urea, glucose, glycine, ascorbic acid etc. This assay method does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of the other conventional methods.

  11. A colorimetric sensor array for identification of toxic gases below permissible exposure limits†

    OpenAIRE

    Feng, Liang; Musto, Christopher J.; Kemling, Jonathan W.; Lim, Sung H.; Suslick, Kenneth S.

    2010-01-01

    A colorimetric sensor array has been developed for the rapid and sensitive detection of 20 toxic industrial chemicals (TICs) at their PELs (permissible exposure limits). The color changes in an array of chemically responsive nanoporous pigments provide facile identification of the TICs with an error rate below 0.7%.

  12. A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection.

    NARCIS (Netherlands)

    Ferrari, Alessandro; Gaber, Yasser; Fraaije, Marco

    2014-01-01

    BACKGROUND: Most of the current colorimetric methods for detection of chitinase or cellulase activities on the insoluble natural polymers chitin and cellulose depend on a chemical redox reaction. The reaction involves the reducing ends of the hydrolytic products. The Schales' procedure and the

  13. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles.

    Science.gov (United States)

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-08-11

    A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV-vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL(-1) can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  15. 2 development of a simple amino-modified silica-based colorimetric

    African Journals Online (AJOL)

    Temechegn

    with the increase in detection times as the concentration of the ions decreased. ..... New York: Clear Thinking Communications. 2010. ... W.S. Harwood and M.M. McMahon, Effects of integrated video media on student achievement ... Q. Lin, P. Chen, J. Liu, Y. Fu, Y. Zhang and T. Wei, Colorimetric chemosensor and test kit for.

  16. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles.

    Science.gov (United States)

    Amirjani, Amirmostafa; Fatmehsari, Davoud Haghshenas

    2018-01-01

    In this work, a rapid and straightforward method was developed for colorimetric determination of ammonia using smartphones. The mechanisms is based on the manipulation of the surface plasmon band of silver nanoparticles (AgNPs) via the formation of Ag (NH 3 ) 2 + complex. This complex decreases the amount of AgNPs in the solution and consequently, the color intensity of the colloidal system decreases. Not only the variation in color intensity of the solution can be tracked by a UV-vis spectrophotometer, but also a smartphone can be employed to monitor the color intensity variation by RGB analysis. Ammonia, in the concentration range of 10-1000mgL -1 , was successfully measured spectrophotometrically (UV-vis spectrophotometer) and colorimetrically (RGB measurement) with the detection limit of 180 and 200mgL -1 , respectively. Linear relationships were also developed for both methods. Also, the response time of the developed colorimetric sensor was around 20s. Both of the colorimetric and spectrophotometric methods showed a reliable performance for determination of ammonia in the real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optical sensing of sulfate by polymethinium salt receptors: colorimetric sensor for heparin

    Czech Academy of Sciences Publication Activity Database

    Bříza, T.; Kejík, Z.; Císařová, I.; Králová, Jarmila; Martásek, P.; Král, V.

    2008-01-01

    Roč. 16, - (2008), s. 1901-1903 ISSN 1359-7345 R&D Projects: GA AV ČR KAN200200651; GA ČR(CZ) GA203/06/1038 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorimetric sensor * heparin * polymethinium salt Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.340, year: 2008

  18. Simple colorimetric assay for dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2015-01-01

    Despite the wide application of nanoscale zero valent iron (nZVI) for the treatment of a plethora of pollutants through reductive reactions, reactivity evaluation of nZVI towards dehalogenation has not been standardized. In this light, it was desired to develop a simple colorimetric assay...

  19. An Augmented Common Weight Data Envelopment Analysis for Material Selection in High-tech Industries

    Directory of Open Access Journals (Sweden)

    Iman Shokr

    2016-08-01

    Full Text Available Material selection is a challenging issue in manufacturing processes while the inappropriate selected material may lead to fail the manufacturing process or end user experience especially in high-tech industries such as aircraft and shipping. Every material has different quantitative and qualitative criteria which should be considered simultaneously when assessing and selecting the right material. A weighted linear optimization method (WLOM in the class of data envelopment analysis which exists in literature is adopted to address material selection problem while accounting for both qualitative and quantitative criteria. However, it is demonstrated the adopted WLOM method is not able to produce a full ranking vector for the material selection problems borrowed from the literature. Thus, an augmented common weight data envelopment analysis model (ACWDEA is developed in this paper with the aim of eliminating deficiencies of WLOM model. The proposed ACWDEA is able to produce full ranking vector in decision making problems with less computational complexities in superior to the WLOM. Two material selection problems are solved and results are compared with WLOM and previous methods. Finally, the robustness and effectiveness of the proposed ACWDEA method are evaluated through Spearman’s correlation tests.

  20. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2010-05-01

    Full Text Available Abstract Background Genes involved in immune functions, including pathogen recognition and the activation of innate defense pathways, are among the most genetically variable known, and the proteins that they encode are often characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef. Here, we examine variation in and selection on a putative innate immunity gene from Oculina, a coral genus previously used as a model for studies of coral disease and bleaching. Results In a survey of 244 Oculina alleles, we find high nonsynonymous variation and a signature of positive selection, consistent with a putative role in immunity. Using computational protein structure prediction, we generate a structural model of the Oculina protein that closely matches the known structure of tachylectin-2 from the Japanese horseshoe crab (Tachypleus tridentatus, a protein with demonstrated function in microbial recognition and agglutination. We also demonstrate that at least three other genera of anthozoan cnidarians (Acropora, Montastrea and Nematostella possess proteins structurally similar to tachylectin-2. Conclusions Taken together, the evidence of high amino acid diversity, positive selection and structural correspondence to the horseshoe crab tachylectin-2 suggests that this protein is 1 part of Oculina's innate immunity repertoire, and 2 evolving adaptively, possibly under selective pressure from coral-associated microorganisms. Tachylectin-2 may serve as a candidate locus to screen coral populations for their capacity to respond adaptively to future environmental change.

  1. [Colorimetric card use for early detection visual biliary atresia].

    Science.gov (United States)

    Reyes-Cerecedo, Alicia; Flores-Calderón, Judith; Villasis-Keever, Miguel Á; Chávez-Barrera, José A; Delgado-González, Elba E

    2018-01-01

    Bile duct atresia (BVA) is a condition that causes obstruction to biliary flow, not corrected surgically, causes cirrhosis and death before 2 years of age. In Mexico from 2013 the visual colorimetric card (VVC) was incorporated for the timely detection of BVA to the National Health Card (NHC). The aim of this study was to evaluate the impact of VCT for the detection of BVA before and after the use of NHC incorporation. Ambispective, analytical observational study. We included patients with AVB treated in two pediatric hospitals of third level care. We compared the age of reference, diagnosis and surgery before and after incorporation of the TCV. In addition, a questionnaire was made to the parents to know their perception about the TCV. In 59 children, there were no differences in age at diagnosis (75 vs 70 days) and age at surgery (84 vs 90 days) between the pre and post-implementation period of the VVC. The questionnaire showed that 10 (30%) of the parents received information about the use of the VVC and 13 (38%) identified the abnormal evacuations. This study did not show changes in time for the timely detection of BVA by using VVC. Therefore, it is necessary to reinforce the program in the three levels of care in our country. La atresia de vías biliares (AVB) es una condición que provoca obstrucción al flujo biliar, y de no corregirse quirúrgicamente, provoca cirrosis y la muerte antes de los 2 años de edad. En México, a partir del año 2013 se incorporó la tarjeta colorimétrica visual (TCV) para la detección oportuna de la AVB a la Cartilla Nacional de Salud (CNS). El objetivo de este estudio fue evaluar el impacto de la TCV para la detección de AVB antes y después de su incorporación a la CNS. Estudio ambispectivo, observacional y analítico. Se incluyeron pacientes con AVB atendidos en dos hospitales pediátricos de tercer nivel de atención. Se compararon la edad de referencia, el diagnóstico y la cirugía antes y después de la incorporaci

  2. Selection of variables for neural network analysis. Comparisons of several methods with high energy physics data

    International Nuclear Information System (INIS)

    Proriol, J.

    1994-01-01

    Five different methods are compared for selecting the most important variables with a view to classifying high energy physics events with neural networks. The different methods are: the F-test, Principal Component Analysis (PCA), a decision tree method: CART, weight evaluation, and Optimal Cell Damage (OCD). The neural networks use the variables selected with the different methods. We compare the percentages of events properly classified by each neural network. The learning set and the test set are the same for all the neural networks. (author)

  3. THE ANALYSIS OF HIGH SCHOOL STUDENTS`BEHAVIOUR IN THE SELECTION OF HIGHER EDUCATION INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Irina SUSANU

    2014-06-01

    Full Text Available The paper is to examine the Romanian education system and it focuses on the most important aspects of the education marketing and marketing research. A survey instrument was designed to include the research upon high school student’s behavior in selecting a higher education institution. The results shown that the Romanian education system has some drawbacks, the most important being the weak implementation of marketing in the education institutions. Therefore, the purpose of the marketing researches is to establish a connection between the public which education services are dedicated to and the necessary information used to select a higher education institution.

  4. Partial hydrogenation of alkynes on highly selective nano-structured mesoporous silica MCM-41 composite catalyst

    International Nuclear Information System (INIS)

    Kojoori, R.K.

    2016-01-01

    In this research, we have developed a silica MCM-41/Metformin/Pd (II) nano composite catalyst for the selective hydrogenation of alkynes to the corresponding (Z)-alkenes under a mild condition of atmospheric pressure and room temperature. Firstly, functionalized Si-MCM-41 metformin catalyst with the optimum performance was prepared. Then, the synthesized catalyst was elucidated by X-ray powder diffraction, BET surface area, FT-IR spectrophotometer, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) and applied in partial hydrogenation of different alkynes, with high selectivity and high yield. The products were characterized by 1H-NMR, 13C-NMR, FT-IR, and Mass Spectrometry (MS) that strongly approved the (Z)-double bond configuration of produced alkenes. This prepared catalyst is competitive with the best palladium catalysts known for the selective liquid phase hydrogenation of alkynes and can be easily recovered and regenerated with keeping high activity and selectivity over at least three cycles with a simple regeneration procedure. (author)

  5. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.

    Science.gov (United States)

    Cabrera-Bosquet, Llorenç; Crossa, José; von Zitzewitz, Jarislav; Serret, María Dolors; Araus, José Luis

    2012-05-01

    Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding community from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and comparable to genomic selection. Despite the fact that the two methodological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissecting them as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield. © 2012 Institute of Botany, Chinese Academy of Sciences.

  6. Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection*

    Science.gov (United States)

    Fan, Jianqing; Li, Yingying; Yu, Ke

    2012-01-01

    Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of portfolios selection among a vast pool of assets, as demonstrated in Fan et al. (2011). The required high-dimensional volatility matrix can be estimated by using high frequency financial data. This enables us to better adapt to the local volatilities and local correlations among vast number of assets and to increase significantly the sample size for estimating the volatility matrix. This paper studies the volatility matrix estimation using high-dimensional high-frequency data from the perspective of portfolio selection. Specifically, we propose the use of “pairwise-refresh time” and “all-refresh time” methods based on the concept of “refresh time” proposed by Barndorff-Nielsen et al. (2008) for estimation of vast covariance matrix and compare their merits in the portfolio selection. We establish the concentration inequalities of the estimates, which guarantee desirable properties of the estimated volatility matrix in vast asset allocation with gross exposure constraints. Extensive numerical studies are made via carefully designed simulations. Comparing with the methods based on low frequency daily data, our methods can capture the most recent trend of the time varying volatility and correlation, hence provide more accurate guidance for the portfolio allocation in the next time period. The advantage of using high-frequency data is significant in our simulation and empirical studies, which consist of 50 simulated assets and 30 constituent stocks of Dow Jones Industrial Average index. PMID:23264708

  7. Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection.

    Science.gov (United States)

    Fan, Jianqing; Li, Yingying; Yu, Ke

    2012-01-01

    Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of portfolios selection among a vast pool of assets, as demonstrated in Fan et al. (2011). The required high-dimensional volatility matrix can be estimated by using high frequency financial data. This enables us to better adapt to the local volatilities and local correlations among vast number of assets and to increase significantly the sample size for estimating the volatility matrix. This paper studies the volatility matrix estimation using high-dimensional high-frequency data from the perspective of portfolio selection. Specifically, we propose the use of "pairwise-refresh time" and "all-refresh time" methods based on the concept of "refresh time" proposed by Barndorff-Nielsen et al. (2008) for estimation of vast covariance matrix and compare their merits in the portfolio selection. We establish the concentration inequalities of the estimates, which guarantee desirable properties of the estimated volatility matrix in vast asset allocation with gross exposure constraints. Extensive numerical studies are made via carefully designed simulations. Comparing with the methods based on low frequency daily data, our methods can capture the most recent trend of the time varying volatility and correlation, hence provide more accurate guidance for the portfolio allocation in the next time period. The advantage of using high-frequency data is significant in our simulation and empirical studies, which consist of 50 simulated assets and 30 constituent stocks of Dow Jones Industrial Average index.

  8. Rapid and simple preparation of rhodamine 6G loaded HY zeolite for highly selective nitrite detection

    Science.gov (United States)

    Viboonratanasri, Duangkamon; Pabchanda, Suwat; Prompinit, Panida

    2018-05-01

    In this study, a simple, rapid and relatively less toxic method for rhodamine 6G dye adsorption on hydrogen-form Y-type zeolite for highly selective nitrite detection was demonstrated. The adsorption behavior was described by Langmuir isotherm and the adsorption process reached the equilibrium promptly within a minute. The developed test papers characterized by fluorescence technique display high sensing performance with wide working range (0.04-20.0 mg L-1) and high selectivity. The test papers show good reproducibility with relative standard deviation (RSD) of 7% for five replicated determinations of 3 mg L-1 of nitrite. The nitrite concentration determined by using the test paper was in the same range as using ion chromatography within a 95% confidence level. The test papers offer advantages in terms of low cost and practical usage enabling them to be a promising candidate for nitrite sensor in environmental samples, food, and fertilizers.

  9. Tracking and flavour tagging selection in the ATLAS High Level Trigger

    CERN Document Server

    Calvetti, Milene; The ATLAS collaboration

    2017-01-01

    In high-energy physics experiments, track based selection in the online environment is crucial for the detection of physics processes of interest for further study. This is of particular importance at the Large Hadron Collider (LHC), where the increasingly harsh collision environment is challenging participating experiments to improve the performance of their online selection. Principle among these challenges is the increasing number of interactions per bunch crossing, known as pileup. In the ATLAS experiment the challenge has been addressed with multiple strategies. Firstly, individual trigger groups focusing on specific physics objects have implemented novel algorithms which make use of the detailed tracking and vertexing performed within the trigger to improve rejection without losing efficiency. Secondly, since 2015 all trigger areas have also benefited from a new high performance inner detector software tracking system implemented in the High Level Trigger. Finally, performance will be further enhanced i...

  10. A synbio approach for selection of highly expressed gene variants in Gram-positive bacteria

    DEFF Research Database (Denmark)

    Ferro, Roberto; Rennig, Maja; Hernández Rollán, Cristina

    2018-01-01

    with a long history in food fermentation. We have developed a synbio approach for increasing gene expression in two Gram-positive bacteria. First of all, the gene of interest was coupled to an antibiotic resistance gene to create a growth-based selection system. We then randomised the translation initiation...... region (TIR) preceding the gene of interest and selected clones that produced high protein titres, as judged by their ability to survive on high concentrations of antibiotic. Using this approach, we were able to significantly increase production of two industrially relevant proteins; sialidase in B....... subtilis and tyrosine ammonia lyase in L. lactis. Gram-positive bacteria are widely used to produce industrial enzymes. High titres are necessary to make the production economically feasible. The synbio approach presented here is a simple and inexpensive way to increase protein titres, which can be carried...

  11. High throughput route selection in multi-rate wireless mesh networks

    Institute of Scientific and Technical Information of China (English)

    WEI Yi-fei; GUO Xiang-li; SONG Mei; SONG Jun-de

    2008-01-01

    Most existing Ad-hoc routing protocols use the shortest path algorithm with a hop count metric to select paths. It is appropriate in single-rate wireless networks, but has a tendency to select paths containing long-distance links that have low data rates and reduced reliability in multi-rate networks. This article introduces a high throughput routing algorithm utilizing the multi-rate capability and some mesh characteristics in wireless fidelity (WiFi) mesh networks. It uses the medium access control (MAC) transmission time as the routing metric, which is estimated by the information passed up from the physical layer. When the proposed algorithm is adopted, the Ad-hoc on-demand distance vector (AODV) routing can be improved as high throughput AODV (HT-AODV). Simulation results show that HT-AODV is capable of establishing a route that has high data-rate, short end-to-end delay and great network throughput.

  12. Selective population of high-j states via heavy-ion-induced transfer reactions

    International Nuclear Information System (INIS)

    Bond, P.D.

    1982-01-01

    One of the early hopes of heavy-ion-induced transfer reactions was to populate states not seen easily or at all by other means. To date, however, I believe it is fair to say that spectroscopic studies of previously unknown states have had, at best, limited success. Despite the early demonstration of selectivity with cluster transfer to high-lying states in light nuclei, the study of heavy-ion-induced transfer reactions has emphasized the reaction mechanism. The value of using two of these reactions for spectroscopy of high spin states is demonstrated: 143 Nd( 16 O, 15 O) 144 Nd and 170 Er( 16 O, 15 Oγ) 171 Er

  13. A Colorimetric Method for the Determination of the Exhaustion Level of Granular Activated Carbons Used in Rum Production

    Directory of Open Access Journals (Sweden)

    Harold Crespo Sariol

    2016-09-01

    Full Text Available Spectrophotometric measurement applied on saturated granular activated carbon (GAC is not yet explored. A colorimetric method in the visible range has been developed in order to determine the exhaustion level of GAC used in rum production. Aqueous ammonia solution has been used as an indicative agent to determine the extraction rate of taste compounds within the rum production process and the exhaustion degree of the GAC. The colorimetric results showed excellent correlation with the iodine number and the contact pH. The proposed colorimetric method opens possibilities for rum producers to improve the management and economical use of the activated carbon at the industrial scale.

  14. Site selection procedure for high level radioactive waste disposal in Bulgaria

    International Nuclear Information System (INIS)

    Evstatiev, D.; Vachev, B.

    1993-01-01

    A combined site selection approach is implemented. Bulgaria's territory has been classified in three categories, presented on a 1:500000 scale map. The number of suitable sites has been reduced to 20 using the method of successive screening. The formulated site selection problem is a typical discrete multi-criteria decision making problem under uncertainty. A 5-level procedure using Expert Choice Rating and relative models is created. It is a part of a common procedure for evaluation and choice of variants for high level radwaste disposal construction. On this basis 7-8 more preferable sites are demonstrated. A new knowledge and information about the relative importance of the criteria and their subsets, about the level of criteria uncertainty and the reliability are gained. It is very useful for planning and managing of the next final stages of the site selection procedure. 7 figs., 8 refs., 4 suppls. (author)

  15. Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2013-09-01

    Full Text Available A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC. The fluorescence of lysozyme-imprinted polymer (Lys-MIP was quenched more strongly by Lys than that of nonimprinted polymer (NIP, which indicated that the Lys-MIP could recognize Lys. The resulted imprinted material has the ability to selectively sense a target protein, and an imprinting factor of 3.34 was achieved. The Lys-MIP also showed selective detection for Lys among other proteins such as cytochrome C (Cyt C, hemoglobin (HB and bovine serum albumin (BSA due to the imprinted sites in the Lys-MIP. This approach combines the high selectivity of surface molecular imprinting technology and fluorescence, and converts binding events into detectable signals by monitoring fluorescence spectra. Therefore, it will have further applications for Lys sensing.

  16. A New Colorimetrically-Calibrated Automated Video-Imaging Protocol for Day-Night Fish Counting at the OBSEA Coastal Cabled Observatory

    Directory of Open Access Journals (Sweden)

    Joaquín del Río

    2013-10-01

    Full Text Available Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information (i.e., animals’ visual counts per unit of time is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI, represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented “3D Thin-Plate Spline” warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6% out of 908 as a total corresponding to 18 days (at 30 min frequency. The Roberts operator (used in image processing and computer vision for edge detection was used to highlights regions of high spatial colour gradient corresponding to fishes’ bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were

  17. A new colorimetrically-calibrated automated video-imaging protocol for day-night fish counting at the OBSEA coastal cabled observatory.

    Science.gov (United States)

    del Río, Joaquín; Aguzzi, Jacopo; Costa, Corrado; Menesatti, Paolo; Sbragaglia, Valerio; Nogueras, Marc; Sarda, Francesc; Manuèl, Antoni

    2013-10-30

    Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information (i.e., animals' visual counts per unit of time) is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented "3D Thin-Plate Spline" warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in image processing and computer vision for edge detection) was used to highlights regions of high spatial colour gradient corresponding to fishes' bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were different. Results

  18. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  19. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

    Science.gov (United States)

    Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan

    2017-10-01

    Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C-C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

  20. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-04-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  1. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-07-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  2. A Study on Site Selecting for National Project including High Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many national projects are stopped since sites for the projects are not determined. The sites selections are hold by NIMBY for unpleasant facilities or by PYMFY for preferable facilities among local governments. The followings are the typical ones; NIMBY projects: high level radioactive waste disposal, THAAD, Nuclear power plant(NPP), etc. PIMFY projects: South-east new airport, KTX station, Research center for NPP decommission, etc. The site selection for high level radioactive waste disposal is more difficult problem, and thus government did not decide and postpone to a dead end street. Since it seems that there is no solution for site selection for high level radioactive waste disposal due to NIMBY among local governments, a solution method is proposed in this paper. To decide a high level radioactive waste disposal, the first step is to invite a bid by suggesting a package deal including PIMFY projects such as Research Center for NPP decommission. Maybe potential host local governments are asked to submit sealed bids indicating the minimum compensation sum that they would accept the high level radioactive waste disposal site. If there are more than one local government put in a bid, then decide an adequate site by considering both the accumulated PESS point and technical evaluation results. By considering how fairly preferable national projects and unpleasant national projects are distributed among local government, sites selection for NIMBY or PIMFY facilities is suggested. For NIMBY national projects, risk, cost benefit analysis is useful and required since it generates cost value to be used in the PESS. For many cases, the suggested method may be not adequate. However, similar one should be prepared, and be basis to decide sites for NIMBY or PIMFY national projects.

  3. Open-field behavior of house mice selectively bred for high voluntary wheel-running.

    Science.gov (United States)

    Bronikowski, A M; Carter, P A; Swallow, J G; Girard, I A; Rhodes, J S; Garland, T

    2001-05-01

    Open-field behavioral assays are commonly used to test both locomotor activity and emotionality in rodents. We performed open-field tests on house mice (Mus domesticus) from four replicate lines genetically selected for high voluntary wheel-running for 22 generations and from four replicate random-bred control lines. Individual mice were recorded by video camera for 3 min in a 1-m2 open-field arena on 2 consecutive days. Mice from selected lines showed no statistical differences from control mice with respect to distance traveled, defecation, time spent in the interior, or average distance from the center of the arena during the trial. Thus, we found little evidence that open-field behavior, as traditionally defined, is genetically correlated with wheel-running behavior. This result is a useful converse test of classical studies that report no increased wheel-running in mice selected for increased open-field activity. However, mice from selected lines turned less in their travel paths than did control-line mice, and females from selected lines had slower travel times (longer latencies) to reach the wall. We discuss these results in the context of the historical open-field test and newly defined measures of open-field activity.

  4. Detecting selection signatures between Duroc and Duroc synthetic pig populations using high-density SNP chip.

    Science.gov (United States)

    Edea, Z; Hong, J-K; Jung, J-H; Kim, D-W; Kim, Y-M; Kim, E-S; Shin, S S; Jung, Y C; Kim, K-S

    2017-08-01

    The development of high throughput genotyping techniques has facilitated the identification of selection signatures of pigs. The detection of genomic selection signals in a population subjected to differential selection pressures may provide insights into the genes associated with economically and biologically important traits. To identify genomic regions under selection, we genotyped 488 Duroc (D) pigs and 155 D × Korean native pigs (DKNPs) using the Porcine SNP70K BeadChip. By applying the F ST and extended haplotype homozygosity (EHH-Rsb) methods, we detected genes under directional selection associated with growth/stature (DOCK7, PLCB4, HS2ST1, FBP2 and TG), carcass and meat quality (TG, COL14A1, FBXO5, NR3C1, SNX7, ARHGAP26 and DPYD), number of teats (LOC100153159 and LRRC1), pigmentation (MME) and ear morphology (SOX5), which are all mostly near or at fixation. These results could be a basis for investigating the underlying mutations associated with observed phenotypic variation. Validation using genome-wide association analysis would also facilitate the inclusion of some of these markers in genetic evaluation programs. © 2017 Stichting International Foundation for Animal Genetics.

  5. Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis.

    Science.gov (United States)

    Al-Rajab, Murad; Lu, Joan; Xu, Qiang

    2017-07-01

    This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  7. A Feature Subset Selection Method Based On High-Dimensional Mutual Information

    Directory of Open Access Journals (Sweden)

    Chee Keong Kwoh

    2011-04-01

    Full Text Available Feature selection is an important step in building accurate classifiers and provides better understanding of the data sets. In this paper, we propose a feature subset selection method based on high-dimensional mutual information. We also propose to use the entropy of the class attribute as a criterion to determine the appropriate subset of features when building classifiers. We prove that if the mutual information between a feature set X and the class attribute Y equals to the entropy of Y , then X is a Markov Blanket of Y . We show that in some cases, it is infeasible to approximate the high-dimensional mutual information with algebraic combinations of pairwise mutual information in any forms. In addition, the exhaustive searches of all combinations of features are prerequisite for finding the optimal feature subsets for classifying these kinds of data sets. We show that our approach outperforms existing filter feature subset selection methods for most of the 24 selected benchmark data sets.

  8. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide.

    Science.gov (United States)

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I; Lee, Hoonkyung

    2016-02-23

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10(-3) bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.

  9. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    Science.gov (United States)

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, Chihye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung

    2016-02-01

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10-3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.

  10. High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Ville-Petri Friman

    2011-03-01

    Full Text Available The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae at 25°C and 37°C for four weeks (N = 5. At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial motility and pathogenicity but only in the absence of phages. Exposure to phages increased the phage-resistance of bacteria, and this was costly in terms of decreased maximum population size in the absence of phages. However, this small-magnitude growth cost was not greater with bacteria that had evolved in high temperature regime, and no trade-off was found between phage-resistance and growth rate. As a result, phages constrained the evolution of a temperature-mediated increase in bacterial pathogenicity presumably by preferably infecting the highly motile and virulent bacteria. In more general perspective, our results suggest that the traits connected to bacterial pathogenicity could be indirectly selected as a correlated response by abiotic and biotic factors in environmental reservoirs.

  11. New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints.

    Directory of Open Access Journals (Sweden)

    Takeshi Kawanishi

    Full Text Available Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.

  12. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution.

    Science.gov (United States)

    Montoya, Leticia A; Pearce, Taylor F; Hansen, Ryan J; Zakharov, Lev N; Pluth, Michael D

    2013-07-05

    Hydrogen sulfide is an important biological signaling molecule and an important environmental target for detection. A major challenge in developing H2S detection methods is separating the often similar reactivity of thiols and other nucleophiles from H2S. To address this need, the nucleophilic aromatic substitution (SNAr) reaction of H2S with electron-poor aromatic electrophiles was developed as a strategy to separate H2S and thiol reactivity. Treatment of aqueous solutions of nitrobenzofurazan (7-nitro-1,2,3-benzoxadiazole, NBD) thioethers with H2S resulted in thiol extrusion and formation of nitrobenzofurazan thiol (λmax = 534 nm). This reactivity allows for unwanted thioether products to be converted to the desired nitrobenzofurazan thiol upon reaction with H2S. The scope of the reaction was investigated using a Hammett linear free energy relationship study, and the determined ρ = +0.34 is consistent with the proposed SN2Ar reaction mechanism. The efficacy of the developed probes was demonstrated in buffer and in serum with associated submicromolar detection limits as low as 190 nM (buffer) and 380 nM (serum). Furthermore, the sigmoidal response of nitrobenzofurazan electrophiles with H2S can be fit to accurately quantify H2S. The developed detection strategy offers a manifold for H2S detection that we foresee being applied in various future applications.

  13. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    Science.gov (United States)

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-11-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage.

  14. A colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA based on silver nanoclusters and unmodified gold nanoparticles

    Science.gov (United States)

    Qu, Fei; Chen, Zeqiu; You, Jinmao; Song, Cuihua

    2018-05-01

    Human telomere DNA plays a vital role in genome integrity control and carcinogenesis as an indication for extensive cell proliferation. Herein, silver nanoclusters (Ag NCs) templated by polymer and unmodified gold nanoparticles (Au NPs) are designed as a new colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA. Ag NCs can produce the aggregation of Au NPs, so the color of Au NPs changes to blue and the absorption peak moves to 700 nm. While the telomere DNA can protect Au NPs from aggregation, the color turns to red again and the absorption band blue shift. Benefiting from the obvious color change, we can differentiate the length of telomere DNA by naked eyes. As the length of telomere DNA is longer, the variation of color becomes more noticeable. The detection limits of telomere DNA containing 10, 22, 40, 64 bases are estimated to be 1.41, 1.21, 0.23 and 0.22 nM, respectively. On the other hand, when telomere DNA forms G-quadruplex in the presence of K+, or dsDNA with complementary sequence, both G-quadruplex and dsDNA can protect Au NPs better than the unfolded telomere DNA. Hence, a new colorimetric platform for monitoring structure conversion of DNA is established by Ag NCs-Au NPs system, and to prove this type of application, a selective K+ sensor is developed.

  15. The role of weak selection and high mutation rates in nearly neutral evolution.

    Science.gov (United States)

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2009-04-21

    Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.

  16. Gastric emptying for solids in patients with duodenal ulcer before and after highly selective vagotomy

    Energy Technology Data Exchange (ETDEWEB)

    Mistiaen, W.; Van Hee, R.; Blockx, P.; Hubens, A. (Univ. of Antwerp (Belgium))

    1990-03-01

    In a series of 31 duodenal ulcer patients (23 males and 8 females), who underwent a highly selective vagotomy, gastric emptying characteristics of a solid meal, labeled with (99mTc)stannous colloid, were assessed before, two weeks and six months after operation. The clinical diagnosis was confirmed by endoscopy and x-ray; failure of treatment with H2 antagonists or antacids during 1-18 (mean 5) years was the direct indication for operative treatment. A temporary delay in gastric emptying is noted two weeks after operation (T1/2: 124 vs 57 min). After six months, gastric emptying time has practically normalized. It appears that this is the result of the preservation of the antropyloric vagal nerve supply. In these patients, a 10% recurrence rate is noted, comparable to the results in the literature. Highly selective vagotomy proves to be a safe and effective procedure with few side effects. It does not impair gastric motility.

  17. Initial characterisation of low and high seed dormancy populations of Lolium rigidum produced by repeated selection.

    Science.gov (United States)

    Goggin, Danica E; Emery, R J Neil; Powles, Stephen B; Steadman, Kathryn J

    2010-10-15

    The physiological and biochemical bases of seed dormancy in Lolium rigidum (annual ryegrass) are largely unknown, and study of this process is complicated by the outcrossing nature of the species and the strong influence of environment on seed dormancy. In order to identify heritable biochemical factors contributing to seed dormancy in L. rigidum, seeds from a field-collected population were used to select sub-populations with consistently low or high seed dormancy over four generations. Low-dormancy seeds showed constitutive alpha-amylase activity prior to imbibition, higher concentrations of polyphenols and cis-zeatin, and lower abscisic acid and cis-zeatin riboside concentrations than high-dormancy seeds. Selection for high dormancy was associated with a reduction in response to dark-stratification for 21d at 20 degrees C (an effective means of releasing dormancy in the original, unselected population) over successive generations, but fluridone remained effective in breaking dormancy. Crossing of low- and high-dormancy populations indicated that dormancy level was not dependent upon the maternal genotype of the seed, and that the constitutive alpha-amylase activity and high seed anthocyanin concentrations characteristic of the low-dormancy populations were not correlated to high basal germination ability. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  18. Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-04-01

    Full Text Available Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer (g-C3N4, was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C3N4 matrix and the characteristic structure of polymeric g-C3N4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet–visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C3N4 matrix as the form of Co(IIN bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C3N4 catalyst due to the synergistic effect of Co species and g-C3N4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C3N4 catalysts, among which the catalyst with 9.0 wt% Co content exhibited the highest yield (9.0% of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C3N4 catalysts was elaborated. Keywords: Selective oxidation of cyclohexane, Oxygen oxidant, Carbon nitride, Co-doping

  19. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  20. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  1. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells.

    Science.gov (United States)

    Slegerova, Jitka; Hajek, Miroslav; Rehor, Ivan; Sedlak, Frantisek; Stursa, Jan; Hruby, Martin; Cigler, Petr

    2015-01-14

    Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin αvβ3 receptors on glioblastoma cells with high internalization efficacy.

  2. Ultrasensitive colorimetric immunoassay for hCG detection based on dual catalysis of Au@Pt core-shell nanoparticle functionalized by horseradish peroxidase

    Science.gov (United States)

    Wang, Weiguo; Zou, Yake; Yan, Jinwu; Liu, Jing; Chen, Huixiong; Li, Shan; Zhang, Lei

    2018-03-01

    In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8 nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8 IU L- 1 with a low limit of detection (LOD) of 0.1 IU L- 1 compared with the LODs of 0.8 IU L- 1 for BA-ELISA and of 2.0 IU L- 1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.

  3. Carbon Nanodots as Dual-Mode Nanosensors for Selective Detection of Hydrogen Peroxide

    Science.gov (United States)

    Shen, Cheng-Long; Su, Li-Xia; Zang, Jin-Hao; Li, Xin-Jian; Lou, Qing; Shan, Chong-Xin

    2017-07-01

    Hydrogen peroxide (H2O2) is an important product of oxidase-based enzymatic reactions, such as glucose/glucose oxidase (GOD) reaction. Therefore, the probing of generated H2O2 for achieving the detection of various carbohydrates and their oxidases is very significative. Herein, we report one kind of dual-emission carbon nanodots (CDs) that can serve as novel dual-mode nanosensors with both fluorometric and colorimetric output for the selective detection of H2O2. The dual-model nanosensors are established only by the undecorated dual-emission CDs, where significant fluorometric and colorimetric changes are observed with the addition of different concentrations of H2O2 in the CD solution, which benefit to the achievement of the naked-eye detection for H2O2. The mechanism of the nanosensors can be attributed to the fact that the external chemical stimuli like hydroxyl radicals from H2O2 bring about the change of surface properties and the aggregation of CDs, which dominate the emission and absorption of CDs. The constructed dual-mode nanosensors exhibit good biocompatibility and high selectivity toward H2O2 with a linear detection range spanning from 0.05 to 0.5 M and allow the detection of H2O2 as low as 14 mM.

  4. Selective Distance-Based K+ Quantification on Paper-Based Microfluidics.

    Science.gov (United States)

    Gerold, Chase T; Bakker, Eric; Henry, Charles S

    2018-04-03

    In this study, paper-based microfluidic devices (μPADs) capable of K + quantification in aqueous samples, as well as in human serum, using both colorimetric and distance-based methods are described. A lipophilic phase containing potassium ionophore I (valinomycin) was utilized to achieve highly selective quantification of K + in the presence of Na + , Li + , and Mg 2+ ions. Successful addition of a suspended lipophilic phase to a wax printed paper-based device is described and offers a solution to current approaches that rely on organic solvents, which damage wax barriers. The approach provides an avenue for future alkali/alkaline quantification utilizing μPADs. Colorimetric spot tests allowed for K + quantification from 0.1-5.0 mM using only 3.00 μL of sample solution. Selective distance-based quantification required small sample volumes (6.00 μL) and gave responses sensitive enough to distinguish between 1.0 and 2.5 mM of sample K + . μPADs using distance-based methods were also capable of differentiating between 4.3 and 6.9 mM K + in human serum samples. Distance-based methods required no digital analysis, electronic hardware, or pumps; any steps required for quantification could be carried out using the naked eye.

  5. Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available With the extensive increase in the utilization of energy resources in the modern era, the need of energy extraction from various resources has pronounced in recent years. Thus comprehensive efforts have been made around the globe in the technological development of turbo machines where means of energy extraction is energized fluids. This development led the aviation industry to power boost due to better performing engines. Meanwhile, the structural conformability requirements relative to the functional requirements have also increased with the advent of newer, better performing materials. Thus there is a need to study the material behavior and its usage with the idea of selecting the best possible material for its application. In this work a gas turbine blade of a small turbofan engine, where geometry and aerodynamic data was available, was analyzed for its structural behavior in the proposed mission envelope, where the engine turbine is subjected to high thermal, inertial and aerodynamic loads. Multiphysics Finite Element (FE linear stress analysis was carried out on the turbine blade. The results revealed the upper limit of Ultimate Tensile Strength (UTS for the blade. Based on the limiting factor, high performance alloys were selected from the literature. The two most recommended alloy categories for gas turbine blades are NIMONIC and INCONEL from where total of 21 types of INCONEL alloys and 12 of NIMONIC alloys, available on commercial bases, were analyzed individually to meet the structural requirements. After applying selection criteria, four alloys were finalized from NIMONIC and INCONEL alloys for further analysis. On the basis of stress-strain behavior of finalized alloys, the Multiphysics FE nonlinear stress analysis was then carried out for the selection of the individual alloy by imposing a restriction of Ultimate Factor of Safety (UFOS of 1.33 and yield strength. Final selection is made keeping in view other factors

  6. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids.

    Science.gov (United States)

    You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin

    2014-08-08

    Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cocaine-induced locomotor activity in rats selectively bred for low and high voluntary running behavior.

    Science.gov (United States)

    Brown, Jacob D; Green, Caroline L; Arthur, Ian M; Booth, Frank W; Miller, Dennis K

    2015-02-01

    The rewarding effects of physical activity and abused drugs are caused by stimulation of similar brain pathways. Low (LVR) and high (HVR) voluntary running lines were developed by selectively breeding Wistar rats on running distance performance on postnatal days 28-34. We hypothesized that LVR rats would be more sensitive to the locomotor-activating effects of cocaine than HVR rats due to their lower motivation for wheel running. We investigated how selection for LVR or HVR behavior affects inherited activity responses: (a) open field activity levels, (b) habituation to an open field environment, and (c) the locomotor response to cocaine. Open field activity was measured for 80 min on three successive days (days 1-3). Data from the first 20 min were analyzed to determine novelty-induced locomotor activity (day 1) and the habituation to the environment (days 1-3). On day 3, rats were acclimated to the chamber for 20 min and then received saline or cocaine (10, 20, or 30 mg/kg) injection. Dopamine transporter (DAT) protein in the nucleus accumbens was measured via Western blot. Selecting for low and high voluntary running behavior co-selects for differences in inherent (HVR > LVR) and cocaine-induced (LVR > HVR) locomotor activity levels. The differences in the selected behavioral measures do not appear to correlate with DAT protein levels. LVR and HVR rats are an intriguing physical activity model for studying the interactions between genes related to the motivation to run, to use drugs of abuse, and to exhibit locomotor activity.

  8. Silver nanoparticles supported on alumina-​a highly efficient and selective nanocatalyst for imine reduction

    DEFF Research Database (Denmark)

    Poreddy, Raju; Garcia-Suarez, Eduardo J.; Riisager, Anders

    2014-01-01

    in the synthesis of secondary amines from primary amines in a tandem reaction protocol (oxidation–imination–reduction) using air and molecular hydrogen as oxidizing and reducing agents, respectively. The reported synthesis is performed under mild reaction conditions, which complies with the demands of modern...... organic synthesis. Due to the mild reaction conditions and high conversion as well as high selectivity, we consider that the utilization of silver nanoparticles supported on alumina represents an attractive and environmentally friendly alternative to the current synthesis of N-alkyl amines....

  9. Prompting one low-fat, high-fiber selection in a fast-food restaurant.

    Science.gov (United States)

    Wagner, J L; Winett, R A

    1988-01-01

    Evidence increasingly links a high-fat, low-fiber diet to coronary heart disease and certain site cancers, indicating a need for large-scale dietary change. Studies showing the effectiveness of particular procedures in specific settings are important at this point. The present study, using an A-B-A-B design and sales data from computerized cash registers, replicated and extended previous work by showing that inexpensive prompts (i.e., signs and fliers) in a national fast-food restaurant could increase the sales of salads, a low-fat, high-fiber menu selection. Suggestions also are made pertinent to more widespread use of the procedures.

  10. Selection of the host rock for high level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Jin Yuanxin; Wang Wenguang; Chen Zhangru

    2001-01-01

    The authors has briefly introduced the experiences of the host rock selection and the host rock types in other countries for high level radioactive waste repository. The potential host rocks in China are investigated. They include granite, tuff, clay, basalt, salt, and loess. The report has expounded the distributions, scale, thickness, mineral and chemical composition, construction, petrogenesis and the ages of the rock. The possibility of these rocks as the host rock has been studied. The six pieces of distribution map of potential rocks have been made up. Through the synthetical study, it is considered that granite as the host rock of high level radioactive waste repository is possible

  11. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    Science.gov (United States)

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  12. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  13. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  14. Design of a dual-function peptide probe as a binder of angiotensin II and an inducer of silver nanoparticle aggregation for use in label-free colorimetric assays.

    Science.gov (United States)

    Okochi, Mina; Kuboyama, Masashi; Tanaka, Masayoshi; Honda, Hiroyuki

    2015-09-01

    Label-free colorimetric assays using metallic nanoparticles have received much recent attention, for their application in simple and sensitive methods for detection of biomolecules. Short peptide probes that can bind to analyte biomolecules are attractive ligands in molecular nanotechnology; however, identification of biological recognition motifs is usually based on trial-and-error experiments. Herein, a peptide probe was screened for colorimetric detection of angiotensin II (Ang II) using a mechanism for non-crosslinking aggregation of silver nanoparticles (AgNPs). The dual-function peptides, which bind to the analyte and induce AgNP aggregation, were identified using a two-step strategy: (1) screening of an Ang II-binding peptide from an Ang II receptor sequence library, using SPOT technology, which enable peptides synthesis on cellulose membranes via an Fmoc method and (2) selection of peptide probes that effectively induce aggregation of AgNPs using a photolinker modified peptide array. Using the identified peptide probe, KGKNKRRR, aggregation of AgNPs was detected by observation of a pink color in the absence of Ang II, whereas AgNPs remained dispersed in the presence of Ang II (yellow). The color changes were not observed in the presence of other hormone molecules. Ang II could be detected within 15 min, with a detection limit of 10 µM, by measuring the ratio of absorbance at 400 nm and 568 nm; the signal could also be observed with the naked eye. These data suggest that the peptide identified here could be used as a probe for simple and rapid colorimetric detection of Ang II. This strategy for the identification of functional peptides shows promise for the development of colorimetric detection of various diagnostically important biomolecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. AVN-492, A Novel Highly Selective 5-HT6R Antagonist: Preclinical Evaluation.

    Science.gov (United States)

    Ivachtchenko, Alexandre V; Okun, Ilya; Aladinskiy, Vladimir; Ivanenkov, Yan; Koryakova, Angela; Karapetyan, Ruben; Mitkin, Oleg; Salimov, Ramiz; Ivashchenko, Andrey

    2017-01-01

    Discovery of 5-HT6 receptor subtype and its exclusive localization within the central nervous system led to extensive investigations of its role in Alzheimer's disease, schizophrenia, and obesity. In the present study, we present preclinical evaluation of a novel highly-potent and highly-selective 5-HT6R antagonist, AVN-492. The affinity of AVN-492 to bind to 5-HT6R (Ki = 91 pM) was more than three orders of magnitude higher than that to bind to the only other target, 5-HT2BR, (Ki = 170 nM). Thus, the compound displayed great 5-HT6R selectivity against all other serotonin receptor subtypes, and is extremely specific against any other receptors such as adrenergic, GABAergic, dopaminergic, histaminergic, etc. AVN-492 demonstrates good in vitro and in vivo ADME profile with high oral bioavailability and good brain permeability in rodents. In behavioral tests, AVN-492 shows anxiolytic effect in elevated plus-maze model, prevents an apomorphine-induced disruption of startle pre-pulse inhibition (the PPI model) and reverses a scopolamine- and MK-801-induced memory deficit in passive avoidance model. No anti-obesity effect of AVN-492 was found in a murine model. The data presented here strongly indicate that due to its high oral bioavailability, extremely high selectivity, and potency to block the 5-HT6 receptor, AVN-492 is a very promising tool for evaluating the role the 5-HT6 receptor might play in cognitive and neurodegenerative impairments. AVN-492 is an excellent drug candidate to be tested for treatment of such diseases, and is currently being tested in Phase I trials.

  16. Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets.

    Science.gov (United States)

    Töllner, Thomas; Conci, Markus; Müller, Hermann J

    2015-03-01

    It is well established that we can focally attend to a specific region in visual space without shifting our eyes, so as to extract action-relevant sensory information from covertly attended locations. The underlying mechanisms that determine how fast we engage our attentional spotlight in visual-search scenarios, however, remain controversial. One dominant view advocated by perceptual decision-making models holds that the times taken for focal-attentional selection are mediated by an internal template that biases perceptual coding and selection decisions exclusively through target-defining feature coding. This notion directly predicts that search times remain unaffected whether or not participants can anticipate the upcoming distractor context. Here we tested this hypothesis by employing an illusory-figure localization task that required participants to search for an invariant target amongst a variable distractor context, which gradually changed--either randomly or predictably--as a function of distractor-target similarity. We observed a graded decrease in internal focal-attentional selection times--correlated with external behavioral latencies--for distractor contexts of higher relative to lower similarity to the target. Critically, for low but not intermediate and high distractor-target similarity, these context-driven effects were cortically and behaviorally amplified when participants could reliably predict the type of distractors. This interactive pattern demonstrates that search guidance signals can integrate information about distractor, in addition to target, identities to optimize distractor-target competition for focal-attentional selection. © 2014 Wiley Periodicals, Inc.

  17. Sparse Bayesian classification and feature selection for biological expression data with high correlations.

    Directory of Open Access Journals (Sweden)

    Xian Yang

    Full Text Available Classification models built on biological expression data are increasingly used to predict distinct disease subtypes. Selected features that separate sample groups can be the candidates of biomarkers, helping us to discover biological functions/pathways. However, three challenges are associated with building a robust classification and feature selection model: 1 the number of significant biomarkers is much smaller than that of measured features for which the search will be exhaustive; 2 current biological expression data are big in both sample size and feature size which will worsen the scalability of any search algorithms; and 3 expression profiles of certain features are typically highly correlated which may prevent to distinguish the predominant features. Unfortunately, most of the existing algorithms are partially addressing part of these challenges but not as a whole. In this paper, we propose a unified framework to address the above challenges. The classification and feature selection problem is first formulated as a nonconvex optimisation problem. Then the problem is relaxed and solved iteratively by a sequence of convex optimisation procedures which can be distributed computed and therefore allows the efficient implementation on advanced infrastructures. To illustrate the competence of our method over others, we first analyse a randomly generated simulation dataset under various conditions. We then analyse a real gene expression dataset on embryonal tumour. Further downstream analysis, such as functional annotation and pathway analysis, are performed on the selected features which elucidate several biological findings.

  18. Comparison of a rational vs. high throughput approach for rapid salt screening and selection.

    Science.gov (United States)

    Collman, Benjamin M; Miller, Jonathan M; Seadeek, Christopher; Stambek, Julie A; Blackburn, Anthony C

    2013-01-01

    In recent years, high throughput (HT) screening has become the most widely used approach for early phase salt screening and selection in a drug discovery/development setting. The purpose of this study was to compare a rational approach for salt screening and selection to those results previously generated using a HT approach. The rational approach involved a much smaller number of initial trials (one salt synthesis attempt per counterion) that were selected based on a few strategic solubility determinations of the free form combined with a theoretical analysis of the ideal solvent solubility conditions for salt formation. Salt screening results for sertraline, tamoxifen, and trazodone using the rational approach were compared to those previously generated by HT screening. The rational approach produced similar results to HT screening, including identification of the commercially chosen salt forms, but with a fraction of the crystallization attempts. Moreover, the rational approach provided enough solid from the very initial crystallization of a salt for more thorough and reliable solid-state characterization and thus rapid decision-making. The crystallization techniques used in the rational approach mimic larger-scale process crystallization, allowing smoother technical transfer of the selected salt to the process chemist.

  19. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression.

    Directory of Open Access Journals (Sweden)

    Robert M Paris

    Full Text Available The role of PD-1 expression on CD4 T cells during HIV infection is not well understood. Here, we describe the differential expression of PD-1 in CD127high CD4 T cells within the early/intermediate differentiated (EI (CD27highCD45RAlow T cell population among uninfected and HIV-infected subjects, with higher expression associated with decreased viral replication (HIV-1 viral load. A significant loss of circulating PD-1highCTLA-4low CD4 T cells was found specifically in the CD127highCD27highCD45RAlow compartment, while initiation of antiretroviral treatment, particularly in subjects with advanced disease, reversed these dynamics. Increased HIV-1 Gag DNA was also found in PD-1high compared to PD-1low ED CD4 T cells. In line with an increased susceptibility to HIV infection, PD-1 expression in this CD4 T cell subset was associated with increased activation and expression of the HIV co-receptor, CCR5. Rather than exhaustion, this population produced more IFN-g, MIP1-a, IL-4, IL-10, and IL-17a compared to PD-1low EI CD4 T cells. In line with our previous findings, PD-1high EI CD4 T cells were also characterized by a high expression of CCR7, CXCR5 and CCR6, a phenotype associated with increased in vitro B cell help. Our data show that expression of PD-1 on early-differentiated CD4 T cells may represent a population that is highly functional, more susceptible to HIV infection and selectively lost in chronic HIV infection.

  20. A novel route to synthesis of glycerol dimethyl ether from epichlorohydrin with high selectivity

    International Nuclear Information System (INIS)

    Ding, Xiaoshu; Liu, Hao; Yang, Qiusheng; Li, Naihua; Dong, Xiangmo; Wang, Shufang; Zhao, Xinqiang; Wang, Yanji

    2014-01-01

    The effective utilization of glycerol, a by-product in the production of biodiesel, into useful chemicals is desirable from the viewpoint of green chemistry. With this in mind, a novel and highly selective route to synthesizing glycerol dimethyl ether (2,3-dimethoxy-1-propanol), a potential fuel additive, from glycerol was proposed. This route uses both glycerol and methanol as starting materials, takes epichlorohydrin as an intermediate product, and utilizes HCl as a recycling agent. Hereinto, the key step of this route is the reaction between epichlorohydrin and methanol to produce 2,3-dimethoxy-1-propanol which is identified by GC–MS, ESI-MS, IR and NMR. The thermodynamics of this reaction was analyzed and the result showed that the thermodynamics of a reaction was favorable and a high product yield was expected. The effect of various parameters such as kind of acid catalyst, molar ratio of epichlorohydrin to methanol, reaction temperature and reaction time was studied. Among various acid catalysts investigated, the acidic ionic liquid [HSO 3 -b-N(CH 3 ) 3 ]HSO 4 exhibited the highest activity and selectivity: conversion of epichlorohydrin of 100% and selectivity of 2,3-dimethoxy-1-propanol of 99% at 393 K, 10 h, an initial pressure of 0.1 MPa and a molar ratio of catalyst:ECH:CH 3 OH of 0.01:1:5. After the reaction, [HSO 3 -b-N(CH 3 ) 3 ]HSO 4 was separated by vacuum distillation and then reused for the next cycle directly. The results showed that the product selectivity remained at about 94% but the conversion of epichlorohydrin dropped to 75% after being used five times. Subsequently, a reaction mechanism for the synthesis of 2,3-dimethoxy-1-propanol from epichlorohydrin and methanol was proposed. - Highlights: • Epichlorohydrin was converted effectively into glycerol dimethyl ether used as potential fuel additive. • The selectivity of 99% and the conversion of 100% under the mild reaction condition. • The reaction was high product selectivity and

  1. Development of a colorimetric microfluidic pH sensor for autonomous seawater measurements.

    Science.gov (United States)

    Rérolle, Victoire M C; Floquet, Cedric F A; Harris, Andy J K; Mowlem, Matt C; Bellerby, Richard R G J; Achterberg, Eric P

    2013-07-05

    High quality carbonate chemistry measurements are required in order to fully understand the dynamics of the oceanic carbonate system. Seawater pH data with good spatial and temporal coverage are particularly critical to apprehend ocean acidification phenomena and their consequences. There is a growing need for autonomous in situ instruments that measure pH on remote platforms. Our aim is to develop an accurate and precise autonomous in situ pH sensor for long term deployment on remote platforms. The widely used spectrophotometric pH technique is capable of the required high-quality measurements. We report a key step towards the miniaturization of a colorimetric pH sensor with the successful implementation of a simple microfluidic design with low reagent consumption. The system is particularly adapted to shipboard deployment: high quality data was obtained over a period of more than a month during a shipboard deployment in northwest European shelf waters, and less than 30 mL of indicator was consumed. The system featured a short term precision of 0.001 pH (n=20) and an accuracy within the range of a certified Tris buffer (0.004 pH). The quality of the pH system measurements have been checked using various approaches: measurements of certified Tris buffer, measurement of certified seawater for DIC and TA, comparison of measured pH against calculated pH from pCO2, DIC and TA during the cruise in northwest European shelf waters. All showed that our measurements were of high quality. The measurements were made close to in situ temperature (+0.2°C) in a sampling chamber which had a continuous flow of the ship's underway seawater supply. The optical set up was robust and relatively small due to the use of an USB mini-spectrometer, a custom made polymeric flow cell and an LED light source. The use of a three wavelength LED with detection that integrated power across the whole of each LED output spectrum indicated that low wavelength resolution detectors can be used

  2. Data re-arranging techniques leading to proper variable selections in high energy physics

    Science.gov (United States)

    Kůs, Václav; Bouř, Petr

    2017-12-01

    We introduce a new data based approach to homogeneity testing and variable selection carried out in high energy physics experiments, where one of the basic tasks is to test the homogeneity of weighted samples, mainly the Monte Carlo simulations (weighted) and real data measurements (unweighted). This technique is called ’data re-arranging’ and it enables variable selection performed by means of the classical statistical homogeneity tests such as Kolmogorov-Smirnov, Anderson-Darling, or Pearson’s chi-square divergence test. P-values of our variants of homogeneity tests are investigated and the empirical verification through 46 dimensional high energy particle physics data sets is accomplished under newly proposed (equiprobable) quantile binning. Particularly, the procedure of homogeneity testing is applied to re-arranged Monte Carlo samples and real DATA sets measured at the particle accelerator Tevatron in Fermilab at DØ experiment originating from top-antitop quark pair production in two decay channels (electron, muon) with 2, 3, or 4+ jets detected. Finally, the variable selections in the electron and muon channels induced by the re-arranging procedure for homogeneity testing are provided for Tevatron top-antitop quark data sets.

  3. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.

    Science.gov (United States)

    Zhang, Zhen; Sui, Xin; Li, Pei; Xie, Ganhua; Kong, Xiang-Yu; Xiao, Kai; Gao, Longcheng; Wen, Liping; Jiang, Lei

    2017-07-05

    The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m 2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.

  4. Different Levels of DNA Methylation Detected in Human Sperms after Morphological Selection Using High Magnification Microscopy

    Directory of Open Access Journals (Sweden)

    Nino Guy Cassuto

    2016-01-01

    Full Text Available Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p<10-6, OR = 2.4; and p<0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI.

  5. Selecting Optimal Feature Set in High-Dimensional Data by Swarm Search

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2013-01-01

    Full Text Available Selecting the right set of features from data of high dimensionality for inducing an accurate classification model is a tough computational challenge. It is almost a NP-hard problem as the combinations of features escalate exponentially as the number of features increases. Unfortunately in data mining, as well as other engineering applications and bioinformatics, some data are described by a long array of features. Many feature subset selection algorithms have been proposed in the past, but not all of them are effective. Since it takes seemingly forever to use brute force in exhaustively trying every possible combination of features, stochastic optimization may be a solution. In this paper, we propose a new feature selection scheme called Swarm Search to find an optimal feature set by using metaheuristics. The advantage of Swarm Search is its flexibility in integrating any classifier into its fitness function and plugging in any metaheuristic algorithm to facilitate heuristic search. Simulation experiments are carried out by testing the Swarm Search over some high-dimensional datasets, with different classification algorithms and various metaheuristic algorithms. The comparative experiment results show that Swarm Search is able to attain relatively low error rates in classification without shrinking the size of the feature subset to its minimum.

  6. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.

    Science.gov (United States)

    Slaughter, Gymama; Kulkarni, Tanmay

    2017-05-03

    Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.

  7. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    Science.gov (United States)

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  8. Development, evaluation, and selection of candidate high-level waste forms

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.; Allender, J.S.; Gordon, D.E.; Gould, T.H. Jr.

    1982-01-01

    The seven candidate waste forms, evaluated as potential media for the immobilization and gelogic disposal of high-level nuclear wastes were borosilicate glass, SYNROC, tailored ceramic, high-silica glass, FUETAP concrete, coated sol-gel particles, and glass marbles in a lead matrix. The evaluation, completed on August 1, 1981, combined preliminary waste form evaluations conducted at Department of Energy (DOE) defense waste-sites and at independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate-based ceramic, SYNROC, were selected as the reference and alternative forms, respectively, for continued development and evaluation in the National HLW Program. The borosilicate glass and ceramic forms were further compared during FY-1982 on the basis of risk assessments, cost comparisons, properties comparisons, and conformance with proposed regulatory and repository criteria. Both the glass and ceramic forms are viable candidates for use at DOE defense HLW sites; they are also candidates for immobilization of commercial reprocessing wastes. This paper describes the waste form screening process, discusses each of the four major inputs considered in the selection of the two forms in 1981, and presents a brief summary of the comparisons of the two forms during 1982 and the selection process to determine the final form for SRP defense HLW

  9. Review of Mid- to High-Temperature Solar Selective Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C. E.

    2002-07-01

    This report describes the concentrating solar power (CSP) systems using solar absorbers to convert concentrated sunlight to thermal electric power. It is possible to achieve solar absorber surfaces for efficient photothermal conversion having high solar absorptance (a) for solar radiation and a low thermal emittance (e) at the operational temperature. A low reflectance (?'' 0) at wavelengths (?) 3 mm and a high reflectance (?'' 1) at l 3 mm characterize spectrally selective surfaces. The operational temperature ranges of these materials for solar applications can be categorized as low temperature (T< 100 C), mid-temperature (100 C< T< 400 C), and high-temperature (T> 400 C). High- and mid-temperature applications are needed for CSP applications. For CSP applications, the ideal spectrally selective surface would be low-cost and easy to manufacture, chemically and thermally stable in air at elevated operating temperatures (T= 500 C), and have a solar absorptance= 0.98 and a thermal emittance= 0.05 at 500 C.

  10. Microalgal process-monitoring based on high-selectivity spectroscopy tools: status and future perspectives.

    Science.gov (United States)

    Podevin, Michael; Fotidis, Ioannis A; Angelidaki, Irini

    2018-08-01

    Microalgae are well known for their ability to accumulate lipids intracellularly, which can be used for biofuels and mitigate CO 2 emissions. However, due to economic challenges, microalgae bioprocesses have maneuvered towards the simultaneous production of food, feed, fuel, and various high-value chemicals in a biorefinery concept. On-line and in-line monitoring of macromolecules such as lipids, proteins, carbohydrates, and high-value pigments will be more critical to maintain product quality and consistency for downstream processing in a biorefinery to maintain and valorize these markets. The main contribution of this review is to present current and prospective advances of on-line and in-line process analytical technology (PAT), with high-selectivity - the capability of monitoring several analytes simultaneously - in the interest of improving product quality, productivity, and process automation of a microalgal biorefinery. The high-selectivity PAT under consideration are mid-infrared (MIR), near-infrared (NIR), and Raman vibrational spectroscopies. The current review contains a critical assessment of these technologies in the context of recent advances in software and hardware in order to move microalgae production towards process automation through multivariate process control (MVPC) and software sensors trained on "big data". The paper will also include a comprehensive overview of off-line implementations of vibrational spectroscopy in microalgal research as it pertains to spectral interpretation and process automation to aid and motivate development.

  11. A Rapid Colorimetric Method Reveals Fraudulent Substitutions in Sea Urchin Roe Marketed in Sardinia (Italy).

    Science.gov (United States)

    Meloni, Domenico; Spina, Antonio; Satta, Gianluca; Chessa, Vittorio

    2016-06-25

    In recent years, besides the consumption of fresh sea urchin specimens, the demand of minimally-processed roe has grown considerably. This product has made frequent consumption in restaurants possible and frauds are becoming widespread with the partial replacement of sea urchin roe with surrogates that are similar in colour. One of the main factors that determines the quality of the roe is its colour and small differences in colour scale cannot be easily discerned by the consumers. In this study we have applied a rapid colorimetric method for reveal the fraudulent partial substitution of semi-solid sea urchin roe with liquid egg yolk. Objective assessment of whiteness (L*), redness (a*), yellowness (b*), hue (h*), and chroma (C*) was carried out with a digital spectrophotometer using the CIE L*a*b* colour measurement system. The colorimetric method highlighted statistically significant differences among sea urchin roe and liquid egg yolk that could be easily discerned quantitatively.

  12. Relationship between colorimetric (instrumental) evaluation and consumer-defined beef colour acceptability.

    Science.gov (United States)

    Holman, Benjamin W B; Mao, Yanwei; Coombs, Cassius E O; van de Ven, Remy J; Hopkins, David L

    2016-11-01

    The relationship between instrumental colorimetric values (L*, a*, b*, the ratio of reflectance at 630nm and 580nm) and consumer perception of acceptable beef colour was evaluated using a web-based survey and standardised photographs of beef m. longissimus lumborum with known colorimetrics. Only L* and b* were found to relate to average consumer opinions of beef colour acceptability. Respondent nationality was also identified as a source of variation in beef colour acceptability score. Although this is a preliminary study with the findings necessitating additional investigation, these results suggest L* and b* as candidates for developing instrumental thresholds for consumer beef colour expectations. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Investigation of the Effects of Rosemary Extract on Barrier and Colorimetric Properties of Mungbean Starch Films

    Directory of Open Access Journals (Sweden)

    H. Safari Maznabi

    2013-08-01

    Full Text Available Barrier properties are one of the most important factors in the edible film. In this study, edible mungbean films were prepared containing (0%, 15%, 30%, 45% concentrations of rosemary aqueous extract. Then the effect of rosemary was investigated on colorimetric and barrier properties (water vapor permeability, oxygen permeability. Rosemary extract increased the absorption of color in the visible region, which in turn led to increase of the parameters a (index color tends toward green and b (index color tends towards yellow. The results showed that increasing concentrations of rosemary extract have a significant effect( p <0.05 to reduce the amount of oxygen and water vapor permeability.  Also turbidity of mungbean starch was increased with increasing concentrations of rosemary in the film. Improving barrier properties and the colorimetric properties were showed by rosemary extract compounds that these materials can use as the safety of food and pharmaceutical packaging industry.

  14. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    DEFF Research Database (Denmark)

    Zhang, Zhao; Birkedal, Victoria; Gothelf, Kurt Vesterager

    2016-01-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, w...... G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection......., which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split...

  15. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    Science.gov (United States)

    Zhang, Z.; Birkedal, V.; Gothelf, K. V.

    2016-05-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection.

  16. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques.

    Science.gov (United States)

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam

    2016-09-01

    Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Multi-colorimetric sensor array for detection of explosives in gas and liquid phase

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C.

    2011-01-01

    In the framework of the research project "Xsense" at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT, TATP, HMX, RDX and identification of reagents needed for making homemade explosives. The tec......In the framework of the research project "Xsense" at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT, TATP, HMX, RDX and identification of reagents needed for making homemade explosives...... to the analytes creates a color difference map which gives a unique fingerprint for each explosive and VOCs. Such sensing technology can be used for screening relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas and liquid phases....... This sensor array is inexpensive, and can potentially be produced as single use disposable....

  18. Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was flown and deployed as a Station Development Test Objective (SDTO) experiment on the ISS. The goal of the SDTO experiment is to evaluate the acceptability of CSPE technology for routine water quality monitoring on the ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on the ISS. The initial results obtained from the SDTO experiment are also reported and discussed in detail

  19. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N

    2005-01-01

    based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased...... the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS...... was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented....

  20. Selection criteria for container materials at the proposed Yucca Mountain high level nuclear waste repository

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1989-11-01

    A geological repository has been proposed for the permanent disposal of the nation's high level nuclear waste at Yucca Mountain in the Nevada desert. The containers for this waste must remain intact for the unprecedented service lifetime of 1000 years. A combination of engineering, regulatory, and licensing requirements complicate the container material selection. In parallel to gathering information regarding the Yucca Mountain service environment and material performance data, a set of selection criteria have been established which compare candidate materials to the performance requirements, and allow a quantitative comparison of candidates. These criteria assign relative weighting to varied topic areas such as mechanical properties, corrosion resistance, fabricability, and cost. Considering the long service life of the waste containers, it is not surprising that the corrosion behavior of the material is a dominant factor. 7 refs

  1. Computer simulation of the optical properties of high-temperature cermet solar selective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Nejati, M. Reza [K.N. Toosi Univ. of Technology, Dept. of Mechanical Engineering, Tehran (Iran); Fathollahi, V.; Asadi, M. Khalaji [AEOI, Center for Renewable Energy Research and Applications (CRERA), Tehran (Iran)

    2005-02-01

    A computer simulation is developed to calculate the solar absorptance and thermal emittance of various configurations of cermet solar selective coatings. Special attention has been paid to those material combinations, which are commonly used in high-temperature solar thermal applications. Moreover, other material combinations such as two-, three- and four-cermet-layer structures as solar selective coatings have been theoretically analyzed by computer simulation using three distinct physical models of Ping Sheng, Maxwell-Garnett and Bruggeman. The novel case of two-cermet-layer structure with different cermet components has also been investigated. The results were optimized by allowing the program to manipulate the metal volume fraction and thickness of each layer and the results compared to choose the best possible configuration. The calculated results are within the range of 0.91-0.97 for solar absorptance and 0.02-0.07 for thermal emittance at room temperature. (Author)

  2. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  3. Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity

    Science.gov (United States)

    Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun

    2018-06-01

    We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.

  4. Reversible Assembly of Graphitic Carbon Nitride 3D Network for Highly Selective Dyes Absorption and Regeneration.

    Science.gov (United States)

    Zhang, Yuye; Zhou, Zhixin; Shen, Yanfei; Zhou, Qing; Wang, Jianhai; Liu, Anran; Liu, Songqin; Zhang, Yuanjian

    2016-09-27

    Responsive assembly of 2D materials is of great interest for a range of applications. In this work, interfacial functionalized carbon nitride (CN) nanofibers were synthesized by hydrolyzing bulk CN in sodium hydroxide solution. The reversible assemble and disassemble behavior of the as-prepared CN nanofibers was investigated by using CO2 as a trigger to form a hydrogel network at first. Compared to the most widespread absorbent materials such as active carbon, graphene and previously reported supramolecular gel, the proposed CN hydrogel not only exhibited a competitive absorbing capacity (maximum absorbing capacity of methylene blue up to 402 mg/g) but also overcame the typical deficiencies such as poor selectivity and high energy-consuming regeneration. This work would provide a strategy to construct a 3D CN network and open an avenue for developing smart assembly for potential applications ranging from environment to selective extraction.

  5. Bis-pyridinium quadrupolar derivatives. High Stokes shift selective probes for bio-imaging

    Science.gov (United States)

    Salice, Patrizio; Versari, Silvia; Bradamante, Silvia; Meinardi, Francesco; Macchi, Giorgio; Pagani, Giorgio A.; Beverina, Luca

    2013-11-01

    We describe the design, synthesis and characterization of five high Stokes shift quadrupolar heteroaryl compounds suitable as fluorescent probes in bio-imaging. In particular, we characterize the photophysical properties and the intracellular localization in Human Umbilical Vein Endothelial Cells (HUVEC) and Human Mesenchymal Stem Cells (HMSCs) for each dye. We show that, amongst all of the investigated derivatives, the 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]- N-methylpyrrole salt is the best candidates as selective mitochondrial tracker. Finally, we recorded the full emission spectrum of the most performing - exclusively mitochondrial selective - fluorescent probe directly from HUVEC stained cells. The emission spectrum collected from the stained mitochondria shows a remarkably more pronounced vibronic structure with respect to the emission of the free fluorophore in solution.

  6. Novel extractants with high selectivity for valuable metals in seawater. Calixarene derivatives

    International Nuclear Information System (INIS)

    Kakoi, Takahiko; Goto, Masahiro

    1997-01-01

    Seawater contains various valuable metals such as uranium and lithium. Therefore, attempts are being made to develop highly selective extractants which recognize target metal ions in reclaimed seawater. In this review, we have focused our study on the application of novel cyclic compound calixarene based extractants. A novel host compound calixarene, which is a cyclic compound connecting some phenol rings, is capable of forming several different extractant ring sizes and introducing various kinds of functional groups towards targeting of metal ions in seawater. Therefore, calixarene derivatives are capable of extracting valuable metals such as uranium, alkaline metals, heavy metals, rare earth metals and noble metals selectively by varying structural ring size and functional groups. The novel host compound calixarene has given promising results which line it up as a potential extractant for the separation of valuable metal ions in seawater. (author)

  7. Some selection criteria for computers in real-time systems for high energy physics

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1980-01-01

    The right choice of program source is for the organization of real-time systems of great importance as cost and reliability are decisive factors. Some selection criteria for program sources for high energy physics multiwire chamber spectrometers (MWCS) are considered in this report. MWCS's accept bits of information from event pattens. Large and small computers, microcomputers and intelligent controllers in CAMAC crates are compared with respect to the following characteristics: data exchange speed, number of addresses for peripheral devices, cost of interfacing a peripheral device, sizes of buffer and mass memory, configuration costs, and the mean time between failures (MTBF). The results of comparisons are shown by plots and histograms which allow the selection of program sources according to the above criteria. (Auth.)

  8. Fractional Stark state selective electric field ionization of very high-n Rydberg states of molecules

    International Nuclear Information System (INIS)

    Dietrich, H.; Mueller-Dethlefs, K.; Baranov, L.Y.

    1996-01-01

    For the first time fractional Stark state selective electric field ionization of very high-n (n approx-gt 250) molecular Rydberg states is observed. An open-quote open-quote offset close-quote close-quote electric pulse selectively ionizes the more fragile open-quote open-quote red close-quote close-quote (down shifted in energy) Stark states. The more resilient open-quote open-quote bluer close-quote close-quote, or up-shifted, ones survive and are shifted down in energy upon application of a second (open-quote open-quote probe close-quote close-quote) pulse of opposite direction (diabatic Stark states close-quote inversion). Hence, even for smaller probe than offset fields ionization is observed. The offset/probe ratio allows one to control spectral peak shapes in zero-kinetic-energy photoelectron spectroscopy. copyright 1995 The American Physical Society

  9. Crossfostering in mice selectively bred for high and low levels of open-field thigmotaxis.

    Science.gov (United States)

    Leppänen, Pia K; Ewalds-Kvist, S Béatrice M

    2005-02-01

    The main purpose of this research was to investigate whether the difference in open-field (OF) thigmotaxis between mice selectively bred for high and low levels of wall-seeking behavior originated from genetic or acquired sources. Unfostered, infostered, and crossfostered mice were compared in two experiments in which the effects of strain, sex, and fostering on ambulation, defecation, exploration, grooming, latency to move, radial latency, rearing, thigmotaxis, and urination were studied. These experiments revealed that OF thigmotaxis was unaffected by the foster condition and thus genetically determined. The selected strains of mice also diverged repeatedly with regard to exploration and rearing. The findings are in line with the previously described existence of an inverse relationship between emotionality and exploration.

  10. Highly selective oxidative dehydrogenation of ethane with supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.A.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany). Catalysis Research Center

    2011-07-01

    Ethene production is one of the most important transformations in chemical industry, given that C{sub 2}H{sub 4} serves as building block for many mass-market products. Besides conventional thermal processes like steam cracking of ethane, ethane can be produced selectively by catalytic processes. One of the classes of catalysts that have been reported in literature as active and highly selective for the oxidative dehydrogenation of ethane is that of supported molten chloride catalysts, containing an alkali chloride overlayer on a solid support. This work deals with fundamental aspects of the catalytic action in latter class of catalysts. Results from kinetic reaction studies are related to observations in detailed characterization and lead to a comprehensive mechanistic understanding. Of fundamental importance towards mechanistic insights is the oxygen storage capacity of the catalysts that has been determined by transient step experiments. (orig.)

  11. Fearfulness and feather damage in laying hens divergently selected for high and low feather pecking

    DEFF Research Database (Denmark)

    Rodenburg, T Bas; de Haas, Elske N; Nielsen, Birte Lindstrøm

    2010-01-01

    Feather pecking (FP) remains a major welfare and economic problem in laying hens. FP has been found to be related to other behavioural characteristics, such as fearfulness. There are indications that fearful birds are more likely to develop FP. Furthermore, FP can lead to increased fearfulness...... in the victims. To investigate further the relationship between FP and fearfulness, feather damage and behavioural fear responses were recorded in three White Leghorn lines of laying hens: a line selected for high FP (HFP line), a line selected for low FP (LFP line) and an unselected control line (10th...... in fear responses between the HFP and LFP lines were not found, neither in the TI-test, nor in the HA or NO test. As expected, birds from the HFP line had considerably more feather damage than birds from the LFP line and birds from the unselected control line were intermediate. Cages that withdrew from...

  12. Sympathoadrenal, cardiovascular and blood gas responses to highly selective mu and delta opioid peptides.

    Science.gov (United States)

    Kiritsy-Roy, J A; Marson, L; Van Loon, G R

    1989-12-01

    The relative importance of mu and delta opioid receptors in brain regulation of sympathoadrenal, cardiovascular and respiratory function was investigated using highly selective mu and delta opioid peptide analogs. Groups of conscious rats received i.c.v. injections of either the mu-selective agonist, [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO) or the delta-selective agonist, [D-Pen2, D-Pen5]enkephalin (DPDPE). Blood pressure and heart rate were recorded continuously via a chronic catheter in the carotid artery, and arterial blood samples were taken at intervals through the same catheter for determination of blood pH, pCO2, pO2 and plasma catecholamine concentrations. Both DAMGO and DPDPE increased plasma catecholamine levels and blood pressure in a dose-related manner. The slopes of the dose-response lines were parallel, but the delta compound was about 250 times less potent than DAMGO. Only the highest dose of 5 nmol of DAMGO caused a significant bradycardia, mediated by parasympathetic (vagal) activation. DAMGO and DPDPE also induced dose-dependent acidosis, with DAMGO again being much more potent than DPDPE. The effects of both DAMGO and DPDPE on plasma catecholamines, blood pressure and blood gases were antagonized by a mu-selective dose of naloxone (0.4 mg/kg i.a.). Intracerebroventricular administration of the delta-selective antagonist, ICI 174,864, only partially attenuated sympathoadrenal and blood gas responses to DAMGO or DPDPE. The pressor responses to DAMGO or DPDPE were resistant to antagonism by ICI 174,864. These results indicate that brain opioid receptors regulating autonomic outflow, cardiovascular and respiratory function are mainly of the mu type, although a delta opioid system may contribute to sympathoadrenal and respiratory effects of opioids.

  13. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Directory of Open Access Journals (Sweden)

    Chihiro Takahata

    Full Text Available When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF. Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  14. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Science.gov (United States)

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  15. Selective CO Methanation on Highly Active Ru/TiO2 Catalysts: Identifying the Physical Origin of the Observed Activation/Deactivation and Loss in Selectivity

    DEFF Research Database (Denmark)

    Abdel-Mageed, Ali M.; Widmann, Daniel; Olesen, Sine Ellemann

    2018-01-01

    Ru /TiO2 catalysts are highly active and selective in the selective methanation of CO in the presence of large amounts of CO2, but suffer from a considerable deactivation and loss of selectivity during time on stream. Aiming at a fundamental understanding of these processes, we have systematically...... different effects such as structural effects, adlayer effects such as site blocking effects and changes in the chemical (surface) composition of the catalysts. Operando XANES / EXAFS measurements revealed that an initial activation phase is largely due to the reduction of oxidized Ru species, together...

  16. Concentrations of arsenic in brackish lake water : Application of tristimulus colorimetric determination

    OpenAIRE

    Rahman, Md. Mustafizur; Seike, Yasushi; Okumura, Minoru

    2006-01-01

    The evaluation of a simple and rapid tristimulus colorimetric method for the determination of arsenic in brackish waters and its application to brackish water samples taken from brackish Lake Nakaumi are described. The determinations of arsenic in brackish water samples were made satisfactorily independent of sample salinity. By applying this method to lake water samples, the distributions and behaviors of arsenic in the lake and their controlling factors were clarified, such as seasonal vari...

  17. Evaluation of Colorimetric Assays for Analyzing Reductively Methylated Proteins: Biases and Mechanistic Insights

    OpenAIRE

    Brady, Pamlea N.; Macnaughtan, Megan A.

    2015-01-01

    Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated...

  18. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  19. A colorimetric determination of boron in biological sample for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Camilo, M.A.P.; Tomac Junior, U.

    1989-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of gliomas and glioblastomas grade III and IV than other therapies. During the treatment of levels of Na 2 10 B 12 H 11 S H must be known in several compartments of the organism and with this purpose the method of colorimetric determination of boron using curcumin was established. This method is simples, reproducible and has adequate sensitivity for this control. (author). 7 refs, 3 figs, 1 tab

  20. Electrochemical and colorimetric assessment on the influence of target metals on wine color

    OpenAIRE

    Esparza, I. (Irene); Santamaria, C. (Carolina); Garcia-Mina, J.M. (José María); Fernandez, J.M. (José María)

    2006-01-01

    Presentado en Book of abstracts of the11th International Conference on Electroanalysis ESEAC, 2006; P2-081. Three year old samples of Vitis vinifera origin-controlled red wine samples were spiked with adequate amounts of metals and subsequent colorimetric parameters evolution and complexing capacity behaviour were checked. The used approach consisted in the study of the complexing capacity of natural occurring ligands on wine with respect to Zn and Cu by means of stripping voltammetry in ...