WorldWideScience

Sample records for highly redox active

  1. Redox active polymers and colloidal particles for flow batteries

    Science.gov (United States)

    Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin; Cheng, Kevin; Shen, Mei; Lichtenstein, Timothy

    2018-05-29

    The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.

  2. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    Science.gov (United States)

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.

  3. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    Science.gov (United States)

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  4. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors

    Science.gov (United States)

    Javed, Muhammad Sufyan; Dai, Shuge; Wang, Mingjun; Xi, Yi; Lang, Qiang; Guo, Donglin; Hu, Chenguo

    2015-08-01

    The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors.The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in

  5. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Y.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  6. Redox-active Hybrid Materials for Pseudocapacitive Energy Storage

    Science.gov (United States)

    Boota, Muhammad

    Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.

  7. Polyoxometalate active charge-transfer material for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  8. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries

    Science.gov (United States)

    Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao

    2017-02-01

    A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.

  9. Redox sensor proteins for highly sensitive direct imaging of intracellular redox state.

    Science.gov (United States)

    Sugiura, Kazunori; Nagai, Takeharu; Nakano, Masahiro; Ichinose, Hiroshi; Nakabayashi, Takakazu; Ohta, Nobuhiro; Hisabori, Toru

    2015-02-13

    Intracellular redox state is a critical factor for fundamental cellular functions, including regulation of the activities of various metabolic enzymes as well as ROS production and elimination. Genetically-encoded fluorescent redox sensors, such as roGFP (Hanson, G. T., et al. (2004)) and Redoxfluor (Yano, T., et al. (2010)), have been developed to investigate the redox state of living cells. However, these sensors are not useful in cells that contain, for example, other colored pigments. We therefore intended to obtain simpler redox sensor proteins, and have developed oxidation-sensitive fluorescent proteins called Oba-Q (oxidation balance sensed quenching) proteins. Our sensor proteins derived from CFP and Sirius can be used to monitor the intracellular redox state as their fluorescence is drastically quenched upon oxidation. These blue-shifted spectra of the Oba-Q proteins enable us to monitor various redox states in conjunction with other sensor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework.

    Science.gov (United States)

    Xu, Yang; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui

    2015-06-15

    The marriage of metal-organic frameworks (MOFs) and electrochemiluminescence (ECL) can combine their merits together. Designing ECL-active MOF with a high electron transfer capacity and high stability is critical for ECL emission. Here we reported the ECL from a redox-active MOF prepared from {Ru[4,4'-(HO2C)2-bpy]2bpy}(2+) and Zn(2+); a property of MOFs has not been reported previously. The MOF structure is independent of its charge and is therefore stable electrochemically. The redox-activity and well-ordered porous structure of the MOF were confirmed by its electrochemical properties and ECL emission. The high ECL emission indicated the ease of electron transfer between the MOF and co-reactants. Furthermore, the MOF exhibited permselectivity, charge selectivity, and catalytic selectivity along with a stable and concentration-dependent ECL emission toward co-reactants. ECL mechanism was proposed based on the results. The detection and recovery of cocaine in the serum sample was used to validate the feasibility of MOF- based ECL system. The information obtained in this study provides a better understanding of the redox properties of MOFs and their potential electrochemical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles.

    Science.gov (United States)

    Hao, Feng; Dong, Pei; Zhang, Jing; Zhang, Yongchang; Loya, Phillip E; Hauge, Robert H; Li, Jianbao; Lou, Jun; Lin, Hong

    2012-01-01

    Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide -mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs.

  12. Synthesis and characterization of redox-active ferric nontronite

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.; Artyushkova, K.; Cerrato, J. M.; Kruichak, J. N.; Janish, M. T.; Sun, C. J.; Argo, J. M.; Washington, R. E.

    2017-10-01

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; however, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and its natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. We demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.

  13. Redox Behavior of Fe2+/Fe3+ Redox Couple by Absorption Spectroscopy and Measurement

    International Nuclear Information System (INIS)

    Oh, J. Y.; Park, S.; Yun, J. I.

    2010-01-01

    Redox behavior has influences on speciation and other geochemical reactions of radionuclides such as sorption, solubility, and colloid formation, etc. It is one of the factors for evaluation of long-term safety assessment under high-level radioactive waste (HLW) disposal conditions. Accordingly, redox potential (Eh) measurement in aquatic system is important to investigate the redox conditions. Eh is usually measured with redox active electrodes (Pt, Au, glassy carbon, etc.). Nevertheless, Eh measurements by general methods using electrodes provide low accuracy and high uncertainty problem. Therefore, Eh calculated from the concentration of redox active elements with a proper complexing reagent by using UV-Vis absorption spectroscopy is progressed. Iron exists mostly as spent nuclear waste container material and in hydro-geologic minerals. In this system, iron controls the redox condition in near-field area and influences chemical behavior and speciation of radionuclides including redox sensitive actinides such as U, Np, and Pu. In the present work, we present the investigation on redox phenomena of iron in aquatic system by a combination of absorption spectroscopy and redox potential measurements

  14. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  15. "JCE" Classroom Activity #111: Redox Reactions in Three Representations

    Science.gov (United States)

    Nieves, Edgardo L. Ortiz; Barreto, Reizelie; Medina, Zuleika

    2012-01-01

    This activity introduces students to the concept of reduction-oxidation (redox) reactions. To help students obtain a thorough understanding of redox reactions, the concept is explored at three levels: macroscopic, submicroscopic, and symbolic. In this activity, students perform hands-on investigations of the three levels as they work at different…

  16. Redox-active and Redox-silent Compounds: Synergistic Therapeutics in Cancer

    Czech Academy of Sciences Publication Activity Database

    Tomasetti, M.; Santarelli, L.; Alleva, R.; Dong, L.F.; Neužil, Jiří

    2015-01-01

    Roč. 22, č. 5 (2015), s. 552-568 ISSN 0929-8673 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Apoptosis * autophagy * redox-active agents Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.455, year: 2015

  17. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials.

    Science.gov (United States)

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2017-01-16

    Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of "green", safe, and cost-efficient energy storage, research has shifted from metal-based materials to organic active materials in recent years. This Review presents an overview of various flow-battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox-active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. High-energy-density, aqueous, metal-polyiodide redox flow batteries

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-08-29

    Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M.sup.2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I.sup.-, anions of I.sub.x (for x.gtoreq.3), or both in an aqueous solution, wherein the I.sup.- and the anions of I.sub.x (for x.gtoreq.3) compose an active redox couple in a second half-cell.

  19. High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application

    Science.gov (United States)

    Chang, Yu-Chung; Chen, Jian-Yu; Kabtamu, Daniel Manaye; Lin, Guan-Yi; Hsu, Ning-Yih; Chou, Yi-Sin; Wei, Hwa-Jou; Wang, Chen-Hao

    2017-10-01

    A simple method for preparing CO2-activated graphite felt as an electrode in a vanadium redox flow battery (VRFB) was employed by the direct treatment in a CO2 atmosphere at a high temperature for a short period. The CO2-activated graphite felt demonstrates excellent electrochemical activity and reversibility. The VRFB using the CO2-activated graphite felts in the electrodes has coulombic, voltage, and energy efficiencies of 94.52%, 88.97%, and 84.15%, respectively, which is much higher than VRFBs using the electrodes of untreated graphite felt and N2-activated graphite felt. The efficiency enhancement was attributed to the higher number of oxygen-containing functional groups on the graphite felt that are formed during the CO2-activation, leading to improving the electrochemical behaviour of the resultant VRFB.

  20. High-resolution imaging of redox signaling in live cells through an oxidation-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Maulucci, Giuseppe; Labate, Valentina; Mele, Marina

    2008-01-01

    We present the application of a redox-sensitive mutant of the yellow fluorescent protein (rxYFP) to image, with elevated sensitivity and high temporal and spatial resolution, oxidative responses of eukaryotic cells to pathophysiological stimuli. The method presented, based on the ratiometric...... quantitation of the distribution of fluorescence by confocal microscopy, allows us to draw real-time "redox maps" of adherent cells and to score subtle changes in the intracellular redox state, such as those induced by overexpression of redox-active proteins. This strategy for in vivo imaging of redox...

  1. On the activation of Pt/Al2O3 catalysts in HC-SCR by sintering. Determination of redox-active sites using Multitrack

    International Nuclear Information System (INIS)

    Vaccaro, A.R.; Mul, G.; Moulijn, J.A.; Perez-Ramirez, J.

    2003-01-01

    A highly dispersed Pt/Al 2 O 3 catalyst was used for the selective catalytic reduction of NO x using propene (HC-SCR). Contact with the reaction gas mixture led to a significant activation of the catalyst at temperatures above 523K. According to CO chemisorption data and HRTEM analysis, Pt particles on the activated catalyst had sintered. The redox behavior of the fresh and sintered catalysts was investigated using Multitrack, a TAP-like pulse reactor. If Pt particles on the catalyst are highly dispersed (average size below =2nm), only a small part (=10%) of the total number of Pt surface sites as determined by CO chemisorption (Pt surf ) participates in H 2 /O 2 redox cycles (Pt surf,redox ) in Multitrack conditions. For a sintered catalyst, with an average particle size of 2.7nm, the number of Pt surf and Pt surf,redox sites are in good agreement. Similar results were obtained for both catalysts using NO as the oxidant. The low number of Pt surf,redox sites on highly dispersed Pt/Al 2 O 3 is explained by the presence of a kinetically more stable-probably ionic-form of Pt-O bonds on all surface sites of the smaller Pt particles, including corner, edge and terrace sites. When the average particle size shifts to =2.7nm, the kinetic stability of all Pt-O bonds is collectively decreased, enabling the participation of all Pt surface sites in the redox cycles. A linear correlation between the NO x conversion in HC-SCR, and the amount of Pt surf,redox was found. This suggests that redox-active Pt sites are necessary for catalytic activity. In addition, the correlation could be significantly improved by assuming that Pt surf,terrace sites of the particles larger than 2.7nm are mainly responsible for HC-SCR activity in steady state conditions. Implications of these results for the pathway of HC-SCR over Pt catalysts are discussed

  2. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    Science.gov (United States)

    Chen, Wei; Rakhi, R. B.; Alshareef, H. N.

    2013-05-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles).We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). Electronic supplementary information (ESI) available: Experimental section, supporting figures including SEM, TEM, XPS, BET, CV and CD curves and a summary table of capacitance. See DOI: 10.1039/c3nr00773a

  3. Redox-​Active Ligand-​Induced Homolytic Bond Activation

    NARCIS (Netherlands)

    Broere, D.L.J.; Metz, L.L.; de Bruin, B.; Reek, J.N.H.; Siegler, M.A.; van der Vlugt, J.I.

    2015-01-01

    Coordination of the novel redox-​active phosphine-​appended aminophenol pincer ligand (PNOH2) to PdII generates a paramagnetic complex with a persistent ligand-​centered radical. The complex undergoes fully reversible single-​electron oxidn. and redn. Homolytic bond activation of diphenyldisulfide

  4. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1).

    Science.gov (United States)

    Laev, Sergey S; Salakhutdinov, Nariman F; Lavrik, Olga I

    2017-05-01

    Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

    Science.gov (United States)

    Zhan, Chun; Yao, Zhenpeng; Lu, Jun; Ma, Lu; Maroni, Victor A.; Li, Liang; Lee, Eungje; Alp, Esen E.; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Johnson, Christopher; Thackeray, Michael M.; Chan, Maria K. Y.; Wolverton, Chris; Amine, Khalil

    2017-12-01

    Anionic redox reactions in cathodes of lithium-ion batteries are allowing opportunities to double or even triple the energy density. However, it is still challenging to develop a cathode, especially with Earth-abundant elements, that enables anionic redox activity for real-world applications, primarily due to limited strategies to intercept the oxygenates from further irreversible oxidation to O2 gas. Here we report simultaneous iron and oxygen redox activity in a Li-rich anti-fluorite Li5FeO4 electrode. During the removal of the first two Li ions, the oxidation potential of O2- is lowered to approximately 3.5 V versus Li+/Li0, at which potential the cationic oxidation occurs concurrently. These anionic and cationic redox reactions show high reversibility without any obvious O2 gas release. Moreover, this study provides an insightful guide to designing high-capacity cathodes with reversible oxygen redox activity by simply introducing oxygen ions that are exclusively coordinated by Li+.

  6. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Chenglong; Lu, Yaxiang; Hu, Yong-Sheng; Chen, Liquan; Wang, Qidi; Li, Baohua

    2017-01-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A 2 MO 3 -family layered compounds (A  =  Li, Na; M  =  Mn 4+ , Ru 4+ , etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible. (topical review)

  7. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  8. Redox Species of Redox Flow Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2015-11-01

    Full Text Available Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  9. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    Sivavec, T.M.; Mackenzie, P.D.; Horney, D.P.; Baghel, S.S.

    1997-01-01

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe 3 O 4 ), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  10. Improving the electrocatalytic performance of carbon nanotubes for VO"2"+/VO_2"+ redox reaction by KOH activation

    International Nuclear Information System (INIS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-01-01

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO"2"+/VO_2"+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO"2"+/VO_2"+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO"2"+/VO_2"+ redox reaction for VRFB system.

  11. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.

    Science.gov (United States)

    Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A

    2017-02-01

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2  day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    International Nuclear Information System (INIS)

    Li, Jason Z.; Ke, Yuebin; Misra, Hara P.; Trush, Michael A.; Li, Y. Robert; Zhu, Hong; Jia, Zhenquan

    2014-01-01

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  13. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jason Z. [Virginia Tech CRC, Blacksburg, VA (United States); Ke, Yuebin [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Misra, Hara P. [Virginia Tech CRC, Blacksburg, VA (United States); Trush, Michael A. [Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Li, Y. Robert [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Virginia Tech-Wake Forest University SBES, Blacksburg, VA (United States); Department of Biology, University of North Carolina at Greensboro, NC (United States); Zhu, Hong, E-mail: zhu@campbell.edu [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Jia, Zhenquan, E-mail: z_jia@uncg.edu [Department of Biology, University of North Carolina at Greensboro, NC (United States)

    2014-12-15

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  14. Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor.

    Science.gov (United States)

    Kaur, Balwinder; Erdmann, Cristiane Andreia; Daniëls, Mathias; Dehaen, Wim; Rafiński, Zbigniew; Radecka, Hanna; Radecki, Jerzy

    2017-12-05

    In the present work, gold electrodes were modified using a redox-active layer based on dipyrromethene complexes with Cu(II) or Co(II) and a dipodal anion receptor functionalized with dipyrromethene. These modified gold electrodes were then applied for the electrochemical detection of anions (Cl - , SO 4 2- , and Br - ) in a highly diluted water solution (in the picomolar range). The results showed that both systems, incorporating Cu(II) as well as Co(II) redox centers, exhibited highest sensitivity toward Cl - . The selectivity sequence found for both systems was Cl - > SO 4 2- > Br - . The high selectivity of Cl - anions can be attributed to the higher binding constant of Cl - with the anion receptor and the stronger electronic effect between the central metal and anion in the complex. The detection limit for the determination of Cl - was found at the 1.0 pM level for both sensing systems. The electrodes based on Co(II) redox centers displayed better selectivity toward Cl - anion detection than those based on Cu(II) centers which can be attributed to the stronger electronic interaction between the receptor-target anion complex and the Co(II)/Co(III) redox centers in comparison to the Cu(II)/Cu(I) system. Applicability of gold electrodes modified with DPM-Co(II)-DPM-AR for the electrochemical determination of Cl - anions was demonstrated using the artificial matrix mimicking human serum.

  15. Adsorption behavior of redox-active suppressor additives: Combined electrochemical and STM studies

    International Nuclear Information System (INIS)

    Hai, N.T.M.; Huynh, T.M.T.; Fluegel, A.; Mayer, D.; Broekmann, P.

    2011-01-01

    Highlights: → Janus Green B and safranine are prototypical redox-active leveler additives for copper electroplating. → Their redox-transitions lie within the copper potential window. → Reduced additives are identified as active species for the leveling effect. → Electro-reduction affects in particular the central aromatic cores of the additives. - Abstract: The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical 'leveling' concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper

  16. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    Science.gov (United States)

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  17. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  18. Site-specific incorporation of redox active amino acids into proteins

    Science.gov (United States)

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  19. Site-specific incorporation of redox active amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2017-10-10

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  20. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  1. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  2. De Novo Construction of Redox Active Proteins.

    Science.gov (United States)

    Moser, C C; Sheehan, M M; Ennist, N M; Kodali, G; Bialas, C; Englander, M T; Discher, B M; Dutton, P L

    2016-01-01

    Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways. © 2016 Elsevier Inc. All rights reserved.

  3. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with Redox Active Ligand

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O.

    2017-01-01

    The oxidation of water to dioxygen is important in natural photosynthesis. One of nature’s strategies for managing such multi-electron transfer reactions is to employ redox active metal-organic cofactor arrays. One prototype example is the copper-tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel-phenolate complex capable of catalyzing the oxidation of water to O2 electrochemically at neutral pH with a modest overpotential. The employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s−1) is retained. PMID:29099176

  4. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    KAUST Repository

    Chen, Wei

    2013-01-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). This journal is © The Royal Society of Chemistry.

  5. Redox-active porous coordination polymer based on trinuclear pivalate: Temperature-dependent crystal rearrangement and redox-behavior

    Energy Technology Data Exchange (ETDEWEB)

    Lytvynenko, Anton S. [L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028 (Ukraine); Kiskin, Mikhail A., E-mail: mkiskin@igic.ras.ru [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect 31, GSP-1, 119991 Moscow (Russian Federation); Dorofeeva, Victoria N.; Mishura, Andrey M.; Titov, Vladimir E.; Kolotilov, Sergey V. [L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028 (Ukraine); Eremenko, Igor L.; Novotortsev, Vladimir M. [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect 31, GSP-1, 119991 Moscow (Russian Federation)

    2015-03-15

    Linking of trinuclear pivalate Fe{sub 2}NiO(Piv){sub 6} (Piv=O{sub 2}CC(CH{sub 3}){sub 3}) by 2,6-bis(4-pyridyl)-4-(1-naphthyl)pyridine (L) resulted in formation of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)·Solv, which was characterized in two forms: DMSO solvate Fe{sub 2}NiO(Piv){sub 6}(L)(DMSO)·2.5DMSO (1) or water solvate Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) (2). X-ray structure of 1 was determined. Crystal lattice of 1 at 160 K contained open channels, filled by captured solvent, while temperature growth to 296 K led to the crystal lattice rearrangement and formation of closed voids. Redox-behavior of 2 was studied by cyclic voltammetry for a solid compound, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. The presence of pores in desolvated sample Fe{sub 2}NiO(Piv){sub 6}(L) was confirmed by the measurements of N{sub 2} and H{sub 2} adsorption at 77 K. Potential barriers of the different molecules diffusion through pores were estimated by the means of molecular mechanics. - Graphical abstract: Redox-behavior of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) was studied by cyclic voltammetry in thin film, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. Potential barriers of different molecules diffusion through pores were estimated by the means of molecular mechanics. - Highlights: • Porous 1D coordination polymer was synthesized. • Temperature growth led to pores closing due to crystal lattice rearrangement. • Redox-activity of ligand preserved upon incorporation into coordination polymer. • Redox-properties of solid coordination polymer were studied in thin film. • Diffusion barriers were evaluated by molecular mechanics.

  6. Redox-active labile iron in fortified flours from the Brazilian market Ferro lábil redox-ativo em farinhas fortificadas do mercado brasileiro

    Directory of Open Access Journals (Sweden)

    Breno Pannia Espósito

    2007-08-01

    Full Text Available OBJECTIVE: To quantify the fraction of redox-active labile iron in iron-fortified flours acquired on the Brazilian market. METHODS: Samples of wheat flour, maize flour and breadcrumbs were extracted with buffers that mimic gastric juice, saliva and intestinal juice. Redox-active labile iron levels were assessed through the reaction of autoxidation of ascorbic acid catalyzed by iron in the presence of a fluorescence probe. RESULTS: Redox-active labile iron represents 1% to 9% of the total iron in the flour and breadcrumb samples, with the lowest values found under gastric juice conditions and the highest in the more alkaline media. Redox-active labile iron possibly arises from the decomposition of an iron-phytic acid complex. A positive correlation between redox-active labile iron and total iron was found in saline biomimetic fluids. CONCLUSION: Redox-active labile iron may be a risk factor for people with impaired antioxidant defenses, such as those who are atransferrinemic or iron overloaded (e.g. thalassemic. Total iron can be used to predict redox-active labile iron absorption at each stage of the gastrointestinal tract after ingestion of iron-fortified flours.OBJETIVO: Quantificar a porcentagem de ferro lábil redox ativo em farinhas fortificadas adquiridas no comércio popular. MÉTODOS: Amostras de farinha de trigo, fubá e rosca foram extraídas com tampões miméticos de suco gástrico, saliva e suco intestinal. Os níveis de ferro lábil redox ativo foram determinados por meio da reação de auto-oxidação do ácido ascórbico catalisada pelo ferro, em presença de uma sonda fluorimétrica. RESULTADOS: A fração de ferro lábil redox ativo representa entre 1% e 9% do ferro total nas farinhas estudadas, sendo os menores valores encontrados em condições miméticas do suco gástrico e os maiores nos meios mais alcalinos. Há indícios de que o ferro lábil redox ativo origina-se da decomposição de um complexo entre ferro e ácido f

  7. Highly sensitive electrochemical immunoassay for human IgG using double-encoded magnetic redox-active nanoparticles

    International Nuclear Information System (INIS)

    Tang, D.; Tang, J.; Su, B.; Chen, H.; Chen, G.; Huang, J.

    2010-01-01

    A new sandwich-type electrochemical immunoassay was developed for the detection of human IgG using doubly-encoded and magnetic redox-active nanoparticles as recognition elements on the surface of a glassy carbon electrode modified with anti-IgG on nanogold particles. The recognition elements were synthesized by coating magnetic Fe3O4 nanoparticles with Prussian blue nanoparticles and then covered with peroxidase-labeled anti-IgG antibodies (POx-anti-IgG) on Prussian blue nanoparticles. The immunoelectrode displays very good electrochemical properties towards detection of IgG via using double-encoded magnetic redox-active nanoparticles as trace and hydrogen peroxide as enzyme substrate. Its limit of detection (10 pmol.L -1 ) is 10-fold better than that of using plain POx-anti-IgG secondary antibodies. The method was applied to the detection of IgG in serum samples, and an excellent correspondence with the reference values was found. (author)

  8. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    Science.gov (United States)

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.

  9. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Redox electrode materials for supercapatteries

    OpenAIRE

    Yu, Linpo; Chen, George Z.

    2016-01-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power...

  11. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    KAUST Repository

    Chen, Wei; Baby, Rakhi Raghavan; Alshareef, Husam N.

    2013-01-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active

  12. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries

    Science.gov (United States)

    Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.

    2017-10-01

    The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.

  13. A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor

    International Nuclear Information System (INIS)

    Ma, Guofu; Feng, Enke; Sun, Kanjun; Peng, Hui; Li, Jiajia; Lei, Ziqiang

    2014-01-01

    Graphical abstract: - Highlights: • Alkali and P-phenylenediamine doped polyvinyl alcohol gel electrolyte is prepared. • The PVA-KOH-PPD gel electrolyte can also be used as separator. • The introduction of PPD increases the ionic conductivity of electrolyte. • The supercapacitor exhibits flexible and high energy density. - Abstract: A supercapacitor utilize a novel redox-mediated gel polymer (PVA-KOH-PPD) as electrolyte and separator, and activated carbon as electrodes is assembled. The PVA-KOH-PPD gel polymer as potential electrolyte for supercapacitor is investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. It is found that the supercapacitor exhibits high ionic conductivity (25 mS cm −1 ), large electrode specific capacitance (611 F g −1 ) and high energy density (82.56 Wh kg −1 ). The high performance is attributed to the addition of quick redox reactions at the electrolyte|electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation during cycling. Furthermore, the supercapacitor with PVA-KOH-PPD gel polymer shows excellent charge-discharge stability, after 1000 charge-discharge cycles, the supercapacitor still retains a high electrode specific capacitance of 470 F g −1 . It is believed that the idea using redox mediator has a good prospect for improving the performances of supercapacitors

  14. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  15. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  16. A non-aqueous all-copper redox flow battery with highly soluble active species

    International Nuclear Information System (INIS)

    Li, Yun; Sniekers, Jeroen; Malaquias, João; Li, Xianfeng; Schaltin, Stijn; Stappers, Linda; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F.J.

    2017-01-01

    A metal-based redox pair with acetonitrile as ligand [Cu(MeCN)_4][Tf_2N] is described for use in non-aqueous redox flow battery (RFB). The electrode kinetics of the anode and cathode are studied using cyclic voltammetry. The Cu"2"+/Cu"+ and Cu"+/Cu couples in this system yield a cell potential of 1.24 V. The diffusion coefficient for [Cu(MeCN)_4][Tf_2N] in acetonitrile is estimated to be 6.8 × 10"−"6 cm"2 s"−"1 at room temperature. The copper-acetonitrile complex has a very high solubility of 1.68 M in acetonitrile, the most widely used organic solvent for non-aqueous electrochemical applications. Hence, a maximum theoretical energy density around 28 Wh L"−"1 can be reached with the reported system. The RFB with this electrolyte shows a promising performance, with coulombic efficiencies of 87% and energy efficiencies of 44% (5 mA cm"−"2).

  17. High CO2 Primes Plant Biotic Stress Defences through Redox-Linked Pathways.

    Science.gov (United States)

    Mhamdi, Amna; Noctor, Graham

    2016-10-01

    Industrial activities have caused tropospheric CO 2 concentrations to increase over the last two centuries, a trend that is predicted to continue for at least the next several decades. Here, we report that growth of plants in a CO 2 -enriched environment activates responses that are central to defense against pathogenic attack. Salicylic acid accumulation was triggered by high-growth CO 2 in Arabidopsis (Arabidopsis thaliana) and other plants such as bean (Phaseolus vulgaris). A detailed analysis in Arabidopsis revealed that elevated CO 2 primes multiple defense pathways, leading to increased resistance to bacterial and fungal challenge. Analysis of gene-specific mutants provided no evidence that activation of plant defense pathways by high CO 2 was caused by stomatal closure. Rather, the activation is partly linked to metabolic effects involving redox signaling. In support of this, genetic modification of redox components (glutathione contents and NADPH-generating enzymes) prevents full priming of the salicylic acid pathway and associated resistance by high CO 2 The data point to a particularly influential role for the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a cytosolic enzyme whose role in plants remains unclear. Our observations add new information on relationships between high CO 2 and oxidative signaling and provide novel insight into plant stress responses in conditions of increased CO 2 . © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Microfluidic sensor for ultra high redox cycling amplification for highly selective electrochemical measurements

    NARCIS (Netherlands)

    Odijk, Mathieu; Straver, Martin; Olthuis, Wouter; van den Berg, Albert

    2011-01-01

    In this contribution a SU8/glass-based microfluidic sensor is described with two closely spaced parallel electrodes for highly selective measurements using the redox cycling (RC) effect. Using this sensor, a RC amplification of ~2000x is measured using the ferrocyanide redox couple, which is much

  19. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    Science.gov (United States)

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    International Nuclear Information System (INIS)

    Distefano, M.D.; Au, K.G.; Walsh, C.T.

    1989-01-01

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys 135 Cys 140 , catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys 135 (Ala 135 Cys 140 ), Cys 14 (Cys 135 Ala 140 ), or both (Ala 135 Ala 140 ). Additionally, they have made double mutants that lack Cys 135 (Ala 135 Cys 139 Cys 140 ) or Cys 140 (Cys 135 Cys 139 Ala 140 ) but introduce a new Cys in place of Gly 139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH 2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala 135 Cys 139 Cys 14 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala 135 Cys 140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys 135 and Cys 140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate

  1. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with a Redox-Active Ligand.

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O

    2017-11-20

    The oxidation of water (H 2 O) to dioxygen (O 2 ) is important in natural photosynthesis. One of nature's strategies for managing such multi-electron transfer reactions is to employ redox-active metal-organic cofactor arrays. One prototype example is the copper tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel phenolate complex capable of catalyzing the oxidation of H 2 O to O 2 electrochemically at neutral pH with a modest overpotential. Employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s -1 ) is retained.

  2. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  3. Redox-active antibiotics control gene expression and community behavior in divergent bacteria.

    Science.gov (United States)

    Dietrich, Lars E P; Teal, Tracy K; Price-Whelan, Alexa; Newman, Dianne K

    2008-08-29

    It is thought that bacteria excrete redox-active pigments as antibiotics to inhibit competitors. In Pseudomonas aeruginosa, the endogenous antibiotic pyocyanin activates SoxR, a transcription factor conserved in Proteo- and Actinobacteria. In Escherichia coli, SoxR regulates the superoxide stress response. Bioinformatic analysis coupled with gene expression studies in P. aeruginosa and Streptomyces coelicolor revealed that the majority of SoxR regulons in bacteria lack the genes required for stress responses, despite the fact that many of these organisms still produce redox-active small molecules, which indicates that redox-active pigments play a role independent of oxidative stress. These compounds had profound effects on the structural organization of colony biofilms in both P. aeruginosa and S. coelicolor, which shows that "secondary metabolites" play important conserved roles in gene expression and development.

  4. Non-volatile memory devices with redox-active diruthenium molecular compound

    International Nuclear Information System (INIS)

    Pookpanratana, S; Zhu, H; Bittle, E G; Richter, C A; Li, Q; Hacker, C A; Natoli, S N; Ren, T

    2016-01-01

    Reduction-oxidation (redox) active molecules hold potential for memory devices due to their many unique properties. We report the use of a novel diruthenium-based redox molecule incorporated into a non-volatile Flash-based memory device architecture. The memory capacitor device structure consists of a Pd/Al 2 O 3 /molecule/SiO 2 /Si structure. The bulky ruthenium redox molecule is attached to the surface by using a ‘click’ reaction and the monolayer structure is characterized by x-ray photoelectron spectroscopy to verify the Ru attachment and molecular density. The ‘click’ reaction is particularly advantageous for memory applications because of (1) ease of chemical design and synthesis, and (2) provides an additional spatial barrier between the oxide/silicon to the diruthenium molecule. Ultraviolet photoelectron spectroscopy data identified the energy of the electronic levels of the surface before and after surface modification. The molecular memory devices display an unsaturated charge storage window attributed to the intrinsic properties of the redox-active molecule. Our findings demonstrate the strengths and challenges with integrating molecular layers within solid-state devices, which will influence the future design of molecular memory devices. (paper)

  5. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling.

    Science.gov (United States)

    Parker, Lewan; Trewin, Adam; Levinger, Itamar; Shaw, Christopher S; Stepto, Nigel K

    2018-04-01

    Redox homeostasis and redox-sensitive protein signaling play a role in exercise-induced adaptation. The effects of sprint-interval exercise (SIE), high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CMIE), on post-exercise plasma redox status are unclear. Furthermore, whether post-exercise plasma redox status reflects skeletal muscle redox-sensitive protein signaling is unknown. In a randomized crossover design, eight healthy adults performed a cycling session of HIIE (5×4min at 75% W max ), SIE (4×30s Wingate's), and CMIE work-matched to HIIE (30min at 50% of W max ). Plasma hydrogen peroxide (H 2 O 2 ), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) activity, and catalase activity were measured immediately post, 1h, 2h and 3h post-exercise. Plasma redox status biomarkers were correlated with phosphorylation of skeletal muscle p38-MAPK, JNK, NF-κB, and IκBα protein content immediately and 3h post-exercise. Plasma catalase activity was greater with SIE (56.6±3.8Uml -1 ) compared to CMIE (42.7±3.2, pexercise plasma TBARS and SOD activity significantly (pexercise protocol. A significant positive correlation was detected between plasma catalase activity and skeletal muscle p38-MAPK phosphorylation 3h post-exercise (r=0.40, p=0.04). No other correlations were detected (all p>0.05). Low-volume SIE elicited greater post-exercise plasma catalase activity compared to HIIE and CMIE, and greater H 2 O 2 compared to CMIE. Plasma redox status did not, however, adequately reflect skeletal muscle redox-sensitive protein signaling. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Improving the electrocatalytic performance of carbon nanotubes for VO{sup 2+}/VO{sub 2}{sup +} redox reaction by KOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu [School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009 (China); Wang, Ling, E-mail: tswling@126.com [School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009 (China); He, Zhangxing, E-mail: zxhe@ncst.edu.cn [School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology, Nanchang 330013 (China)

    2017-04-15

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO{sup 2+}/VO{sub 2}{sup +} redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO{sup 2+}/VO{sub 2}{sup +} redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO{sup 2+}/VO{sub 2}{sup +} redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO{sup 2+}/VO{sub 2}{sup +} redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO{sup 2+}/VO{sub 2}{sup +} redox reaction for VRFB system.

  7. High-energy redox-flow batteries with hybrid metal foam electrodes.

    Science.gov (United States)

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  8. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States.

    Science.gov (United States)

    Halvorsen, Bente L; Carlsen, Monica H; Phillips, Katherine M; Bøhn, Siv K; Holte, Kari; Jacobs, David R; Blomhoff, Rune

    2006-07-01

    Supplements containing ascorbic acid, alpha-tocopherol, or beta-carotene do not protect against oxidative stress-related diseases in most randomized intervention trials. We suggest that other redox-active phytochemicals may be more effective and that a combination of different redox-active compounds (ie, antioxidants or reductants) may be needed for proper protection against oxidative damage. We aimed to generate a ranked food table with values for total content of redox-active compounds to test this alternative antioxidant hypothesis. An assay that measures the total concentration of redox-active compounds above a certain cutoff reduction potential was used to analyze 1113 food samples obtained from the US Department of Agriculture National Food and Nutrient Analysis Program. Large variations in the content of antioxidants were observed in different foods and food categories. The food groups spices and herbs, nuts and seeds, berries, and fruit and vegetables all contained foods with very high antioxidant contents. Most food categories also contained products almost devoid of antioxidants. Of the 50 food products highest in antioxidant concentrations, 13 were spices, 8 were in the fruit and vegetables category, 5 were berries, 5 were chocolate-based, 5 were breakfast cereals, and 4 were nuts or seeds. On the basis of typical serving sizes, blackberries, walnuts, strawberries, artichokes, cranberries, brewed coffee, raspberries, pecans, blueberries, ground cloves, grape juice, and unsweetened baking chocolate were at the top of the ranked list. This ranked antioxidant food table provides a useful tool for investigations into the possible health benefit of dietary antioxidants.

  9. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries

    Science.gov (United States)

    Hollas, Aaron; Wei, Xiaoliang; Murugesan, Vijayakumar; Nie, Zimin; Li, Bin; Reed, David; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2018-06-01

    Aqueous soluble organic (ASO) redox-active materials have recently attracted significant attention as alternatives to traditional transition metal ions in redox flow batteries (RFB). However, reported reversible capacities of ASO are often substantially lower than their theoretical values based on the reported maximum solubilities. Here, we describe a phenazine-based ASO compound with an exceptionally high reversible capacity that exceeds 90% of its theoretical value. By strategically modifying the phenazine molecular structure, we demonstrate an increased solubility from near-zero with pristine phenazine to as much as 1.8 M while also shifting its redox potential by more than 400 mV. An RFB based on a phenazine derivative (7,8-dihydroxyphenazine-2-sulfonic acid) at its near-saturation concentration exhibits an operating voltage of 1.4 V with a reversible anolyte capacity of 67 Ah l-1 and a capacity retention of 99.98% per cycle over 500 cycles.

  10. Redox active polymer devices and methods of using and manufacturing the same

    Science.gov (United States)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise

    2018-06-05

    The disclosed technology relates generally to apparatus comprising conductive polymers and more particularly to tag and tag devices comprising a redox-active polymer film, and method of using and manufacturing the same. In one aspect, an apparatus includes a substrate and a conductive structure formed on the substrate which includes a layer of redox-active polymer film having mobile ions and electrons. The conductive structure further includes a first terminal and a second terminal configured to receive an electrical signal therebetween, where the layer of redox-active polymer is configured to conduct an electrical current generated by the mobile ions and the electrons in response to the electrical signal. The apparatus additionally includes a detection circuit operatively coupled to the conductive structure and configured to detect the electrical current flowing through the conductive structure.

  11. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin

    International Nuclear Information System (INIS)

    Cho, Arthur K.; Sioutas, Constantinos; Miguel, Antonio H.; Kumagai, Yoshito; Schmitz, Debra A.; Singh, Manisha; Eiguren-Fernandez, Arantza; Froines, John R.

    2005-01-01

    Epidemiologic studies have shown associations between ambient particulate matter (PM) and adverse health outcomes including increased mortality, emergency room visits, and time lost from school and work. The mechanisms of PM-related health effects are still incompletely understood, but a hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. While the adverse effects from PM have historically been associated with the airborne concentration of PM and more recently fine-particle PM, we considered it relevant to develop an assay to quantitatively measure the ability of PM to catalyze ROS generation as the initial step in the induction of oxidative stress. This ability of PM could then be related to different sources, chemical composition, and physical and spatial/temporal characteristics in the ambient environment. The measurement of ROS-forming ability in relation to sources and other factors will have potential relevance to control of redox-active PM. If oxidative stress represents a relevant mechanism of toxicity from PM, the measurement of redox activity represents a first step in the elucidation of the subsequent downstream processes. We have developed an assay for PM redox activity, utilizing the reduction of oxygen by dithiothreitol which serves as an electron source. We have found that PM will catalyze the reduction of oxygen and have examined the distribution and chemical characteristics of the redox activity of PM fractions collected in different sites in the Los Angeles Basin. Samples of concentrated coarse, fine, and ultrafine PM, obtained with aerosol concentrators, were studied with regard to their chemical properties and redox activity. Redox activity was highest in the ultrafine fraction, in agreement with results indicating ultrafines were the most potent toward inducing that heme oxygenase expression and depleting

  12. The Redox Proteome*

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2013-01-01

    The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges. PMID:23861437

  13. 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries

    Science.gov (United States)

    Milshtein, Jarrod D.; Barton, John L.; Darling, Robert M.; Brushett, Fikile R.

    2016-09-01

    Nonaqueous redox flow batteries (NAqRFBs) that utilize redox active organic molecules are an emerging energy storage concept with the possibility of meeting grid storage requirements. Sporadic and uneven advances in molecular discovery and development, however, have stymied efforts to quantify the performance characteristics of nonaqueous redox electrolytes and flow cells. A need exists for archetypal redox couples, with well-defined electrochemical properties, high solubility in relevant electrolytes, and broad availability, to serve as probe molecules. This work investigates the 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (AcNH-TEMPO) redox pair for such an application. We report the physicochemical and electrochemical properties of the reduced and oxidized compounds at dilute concentrations for electroanalysis, as well as moderate-to-high concentrations for RFB applications. Changes in conductivity, viscosity, and UV-vis absorbance as a function of state-of-charge are quantified. Cyclic voltammetry investigates the redox potential, reversibility, and diffusion coefficients of dilute solutions, while symmetric flow cell cycling determines the stability of the AcNH-TEMPO redox pair over long experiment times. Finally, single electrolyte flow cell studies demonstrate the utility of this redox couple as a platform chemistry for benchmarking NAqRFB performance.

  14. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  15. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators.

    Science.gov (United States)

    Foyer, Christine H; Wilson, Michael H; Wright, Megan H

    2018-03-29

    Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  16. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay

    International Nuclear Information System (INIS)

    Gade, Sudeep Kumar; Bhattacharya, Subarna; Manoj, Kelath Murali

    2012-01-01

    Highlights: ► At low concentrations, cytochrome c/vitamin C do not catalyze peroxidations. ► But low levels of cytochrome c/vitamin C enhance diverse heme peroxidase activities. ► Enhancement positively correlates to the concentration of peroxide in reaction. ► Reducible additives serve as non-specific agents for redox relay in the system. ► Insight into electron transfer processes in routine and oxidative-stress states. -- Abstract: We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome c and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding – (1) the promiscuous role of cytochrome b 5 in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.

  17. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein.

    Science.gov (United States)

    Han, Seong-Jeong; Lee, Byung Cheon; Yim, Sun Hee; Gladyshev, Vadim N; Lee, Seung-Rock

    2014-01-01

    Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.

  18. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein.

    Directory of Open Access Journals (Sweden)

    Seong-Jeong Han

    Full Text Available Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO, the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.

  19. High CO2 Primes Plant Biotic Stress Defences through Redox-Linked Pathways1[OPEN

    Science.gov (United States)

    2016-01-01

    Industrial activities have caused tropospheric CO2 concentrations to increase over the last two centuries, a trend that is predicted to continue for at least the next several decades. Here, we report that growth of plants in a CO2-enriched environment activates responses that are central to defense against pathogenic attack. Salicylic acid accumulation was triggered by high-growth CO2 in Arabidopsis (Arabidopsis thaliana) and other plants such as bean (Phaseolus vulgaris). A detailed analysis in Arabidopsis revealed that elevated CO2 primes multiple defense pathways, leading to increased resistance to bacterial and fungal challenge. Analysis of gene-specific mutants provided no evidence that activation of plant defense pathways by high CO2 was caused by stomatal closure. Rather, the activation is partly linked to metabolic effects involving redox signaling. In support of this, genetic modification of redox components (glutathione contents and NADPH-generating enzymes) prevents full priming of the salicylic acid pathway and associated resistance by high CO2. The data point to a particularly influential role for the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a cytosolic enzyme whose role in plants remains unclear. Our observations add new information on relationships between high CO2 and oxidative signaling and provide novel insight into plant stress responses in conditions of increased CO2. PMID:27578552

  20. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    Science.gov (United States)

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DNA repair enzyme APE1 from evolutionarily ancient Hydra reveals redox activity exclusively found in mammalian APE1.

    Science.gov (United States)

    Pekhale, Komal; Haval, Gauri; Perween, Nusrat; Antoniali, Giulia; Tell, Gianluca; Ghaskadbi, Surendra; Ghaskadbi, Saroj

    2017-11-01

    Only mammalian apurinic/apyrimidinic endonuclease1 (APE1) has been reported to possess both DNA repair and redox activities. C terminal of the protein is required for base excision repair, while the redox activity resides in the N terminal due to cysteine residues at specific positions. APE1s from other organisms studied so far lack the redox activity in spite of having the N terminal domain. We find that APE1 from the Cnidarian Hydra exhibits both endonuclease and redox activities similar to mammalian APE1. We further show the presence of the three indispensable cysteines in Hydra APE1 for redox activity by site directed mutagenesis. Importance of redox domain but not the repair domain of APE1 in regeneration has been demonstrated by using domain-specific inhibitors. Our findings clearly demonstrate that the redox function of APE1 evolved very early in metazoan evolution and is not a recent acquisition in mammalian APE1 as believed so far. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    Science.gov (United States)

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  3. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    Science.gov (United States)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  4. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay

    Energy Technology Data Exchange (ETDEWEB)

    Gade, Sudeep Kumar; Bhattacharya, Subarna [Heme and Flavo Proteins Laboratory, 204, Center for Biomedical Research, VIT University, Vellore, Tamil Nadu 632014 (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [Heme and Flavo Proteins Laboratory, 204, Center for Biomedical Research, VIT University, Vellore, Tamil Nadu 632014 (India)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer At low concentrations, cytochrome c/vitamin C do not catalyze peroxidations. Black-Right-Pointing-Pointer But low levels of cytochrome c/vitamin C enhance diverse heme peroxidase activities. Black-Right-Pointing-Pointer Enhancement positively correlates to the concentration of peroxide in reaction. Black-Right-Pointing-Pointer Reducible additives serve as non-specific agents for redox relay in the system. Black-Right-Pointing-Pointer Insight into electron transfer processes in routine and oxidative-stress states. -- Abstract: We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome c and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding - (1) the promiscuous role of cytochrome b{sub 5} in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.

  5. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    OpenAIRE

    Kristina Wedege; Emil Dražević; Denes Konya; Anders Bentien

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined ...

  6. The mechanism behind redox instability of anodes in high-temperature SOFCs

    DEFF Research Database (Denmark)

    Klemensø, Trine; Chung, Charissa; Larsen, Peter Halvor

    2005-01-01

    Bulk expansion of the anode upon oxidation is considered to be responsible for the lack of redox stability in high-temperature solid oxide fuel cells (SOFCs). The bulk expansion of nickel-yttria stabilized zirconia (YSZ) anode materials was measured by dilatometry as a function of sample geometry......, ceramic component, temperature, and temperature cycling. The strength of the ceramic network and the degree of Ni redistribution appeared to be key parameters of the redox behavior. A model of the redox mechanism in nickel-YSZ anodes was developed based on the dilatometry data and macro...

  7. A High-Throughput Mass Spectrometry Assay Coupled with Redox Activity Testing Reduces Artifacts and False Positives in Lysine Demethylase Screening.

    Science.gov (United States)

    Wigle, Tim J; Swinger, Kerren K; Campbell, John E; Scholle, Michael D; Sherrill, John; Admirand, Elizabeth A; Boriack-Sjodin, P Ann; Kuntz, Kevin W; Chesworth, Richard; Moyer, Mikel P; Scott, Margaret Porter; Copeland, Robert A

    2015-07-01

    Demethylation of histones by lysine demethylases (KDMs) plays a critical role in controlling gene transcription. Aberrant demethylation may play a causal role in diseases such as cancer. Despite the biological significance of these enzymes, there are limited assay technologies for study of KDMs and few quality chemical probes available to interrogate their biology. In this report, we demonstrate the utility of self-assembled monolayer desorption/ionization (SAMDI) mass spectrometry for the investigation of quantitative KDM enzyme kinetics and for high-throughput screening for KDM inhibitors. SAMDI can be performed in 384-well format and rapidly allows reaction components to be purified prior to injection into a mass spectrometer, without a throughput-limiting liquid chromatography step. We developed sensitive and robust assays for KDM1A (LSD1, AOF2) and KDM4C (JMJD2C, GASC1) and screened 13,824 compounds against each enzyme. Hits were rapidly triaged using a redox assay to identify compounds that interfered with the catalytic oxidation chemistry used by the KDMs for the demethylation reaction. We find that overall this high-throughput mass spectrometry platform coupled with the elimination of redox active compounds leads to a hit rate that is manageable for follow-up work. © 2015 Society for Laboratory Automation and Screening.

  8. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state.

    Science.gov (United States)

    Huchzermeyer, Christine; Albus, Klaus; Gabriel, Hans-Jürgen; Otáhal, Jakub; Taubenberger, Nando; Heinemann, Uwe; Kovács, Richard; Kann, Oliver

    2008-01-30

    Gamma oscillations have been implicated in higher cognitive processes and might critically depend on proper mitochondrial function. Using electrophysiology, oxygen sensor microelectrode, and imaging techniques, we investigated the interactions of neuronal activity, interstitial pO2, and mitochondrial redox state [NAD(P)H and FAD (flavin adenine dinucleotide) fluorescence] in the CA3 subfield of organotypic hippocampal slice cultures. We find that gamma oscillations and spontaneous network activity decrease significantly at pO2 levels that do not affect neuronal population responses as elicited by moderate electrical stimuli. Moreover, pO2 and mitochondrial redox states are tightly coupled, and electrical stimuli reveal transient alterations of redox responses when pO2 decreases within the normoxic range. Finally, evoked redox responses are distinct in somatic and synaptic neuronal compartments and show different sensitivity to changes in pO2. We conclude that the threshold of interstitial pO2 for robust CA3 network activities and required mitochondrial function is clearly above the "critical" value, which causes spreading depression as a result of generalized energy failure. Our study highlights the importance of a functional understanding of mitochondria and their implications on activities of individual neurons and neuronal networks.

  9. The Redox Code.

    Science.gov (United States)

    Jones, Dean P; Sies, Helmut

    2015-09-20

    The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.

  10. Harnessing redox activity for the formation of uranium tris(imido) compounds

    Science.gov (United States)

    Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.

    2014-10-01

    Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

  11. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Hendriks, Koen H; Robinson, Sophia G; Braten, Miles N; Sevov, Christo S; Helms, Brett A; Sigman, Matthew S; Minteer, Shelley D; Sanford, Melanie S

    2018-02-28

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application.

  12. Redox fronts

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.

    1993-01-01

    This article describes the investigations of redox fronts performed at the Osamu Utsumi mine. Results obtained by modelling groups on the rate of movement of the redox fronts and on the chemical reactions involved are discussed. Some of the most important rockwater interactions which occur at redox fronts can be modelled reasonably well but the complex redox chemistry of elements like sulphur is poorly simulated. The observed enrichment of many trace elements close to the redox fronts could be of significance for high-level waste repositories, but cannot be quantified by existing models. (author) 6 figs., 1 tab

  13. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs......In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  14. Polyarene mediators for mediated redox flow battery

    Science.gov (United States)

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  15. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  16. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Skomski, Daniel; Tempas, Christopher D.; Bukowski, Gregory S.; Smith, Kevin A.; Tait, Steven L., E-mail: tait@indiana.edu [Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405 (United States)

    2015-03-14

    Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

  17. A redox-flow battery with an alloxazine-based organic electrolyte

    Science.gov (United States)

    Lin, Kaixiang; Gómez-Bombarelli, Rafael; Beh, Eugene S.; Tong, Liuchuan; Chen, Qing; Valle, Alvaro; Aspuru-Guzik, Alán; Aziz, Michael J.; Gordon, Roy G.

    2016-09-01

    Redox-flow batteries (RFBs) can store large amounts of electrical energy from variable sources, such as solar and wind. Recently, redox-active organic molecules in aqueous RFBs have drawn substantial attention due to their rapid kinetics and low membrane crossover rates. Drawing inspiration from nature, here we report a high-performance aqueous RFB utilizing an organic redox compound, alloxazine, which is a tautomer of the isoalloxazine backbone of vitamin B2. It can be synthesized in high yield at room temperature by single-step coupling of inexpensive o-phenylenediamine derivatives and alloxan. The highly alkaline-soluble alloxazine 7/8-carboxylic acid produces a RFB exhibiting open-circuit voltage approaching 1.2 V and current efficiency and capacity retention exceeding 99.7% and 99.98% per cycle, respectively. Theoretical studies indicate that structural modification of alloxazine with electron-donating groups should allow further increases in battery voltage. As an aza-aromatic molecule that undergoes reversible redox cycling in aqueous electrolyte, alloxazine represents a class of radical-free redox-active organics for use in large-scale energy storage.

  18. A High-Current, Stable Nonaqueous Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua; Zhang, Lu; Li, Bin; Reed, David; Xu, Wu; Sprenkle, Vincent; Wang, Wei

    2016-10-14

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at high current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.

  19. A stability comparison of redox-active layers produced by chemical coupling of an osmium redox complex to pre-functionalized gold and carbon electrodes

    International Nuclear Information System (INIS)

    Boland, Susan; Foster, Kevin; Leech, Donal

    2009-01-01

    The production of stable redox active layers on electrode surfaces is a key factor for the development of practical electronic and electrochemical devices. Here, we report on a comparison of the stability of redox layers formed by covalently coupling an osmium redox complex to pre-functionalized gold and graphite electrode surfaces. Pre-treatment of gold and graphite electrodes to provide surface carboxylic acid groups is achieved via classical thiolate self-assembled monolayer formation on gold surfaces and the electro-reduction of an in situ generated aryldiazonium salt from 4-aminobenzoic acid on gold, glassy carbon and graphite surfaces. These surfaces have been characterized by AFM and electrochemical blocking studies. The surface carboxylate is then used to tether an osmium complex, [Os(2,2'-bipyridyl) 2 (4-aminomethylpyridine)Cl]PF 6 , to provide a covalently bound redox active layer, E 0 '' of 0.29 V (vs. Ag/AgCl in phosphate buffer, pH 7.4), on the pre-treated electrodes. The aryldiazonium salt-treated carbon-based surfaces showed the greatest stability, represented by a decrease of <5% in the peak current for the Os(II/III) redox transition of the immobilized complex over a 3-day period, compared to a decrease of 19% and 14% for the aryldiazonium salt treated and thiolate treated gold surfaces, respectively, over the same period

  20. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl; Wiberg, Joanna; El-Sagheer, Afaf H.; Ljungdahl, Thomas; Må rtensson, Jerker; Brown, Tom; Nordén, Bengt; Albinsson, Bo

    2010-01-01

    , such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore

  1. Time- and cell-resolved dynamics of redox-sensitive Nrf2, HIF and NF-κB activities in 3D spheroids enriched for cancer stem cells

    Directory of Open Access Journals (Sweden)

    Anna P. Kipp

    2017-08-01

    Full Text Available Cancer cells have an altered redox status, with changes in intracellular signaling pathways. The knowledge of how such processes are regulated in 3D spheroids, being well-established tumor models, is limited. To approach this question we stably transfected HCT116 cells with a pTRAF reporter that enabled time- and cell-resolved activity monitoring of three redox-regulated transcription factors Nrf2, HIF and NF-κB in spheroids enriched for cancer stem cells. At the first day of spheroid formation, these transcription factors were activated and thereafter became repressed. After about a week, both HIF and Nrf2 were reactivated within the spheroid cores. Further amplifying HIF activation in spheroids by treatment with DMOG resulted in a dominant quiescent stem-cell-like phenotype, with high resistance to stress-inducing treatments. Auranofin, triggering oxidative stress and Nrf2 activation, had opposite effects with increased differentiation and proliferation. These novel high-resolution insights into spatiotemporal activation patterns demonstrate a striking coordination of redox regulated transcription factors within spheroids not occurring in conventional cell culture models. Keywords: Redox regulation, Cancer stem cells, Spheroids, Nrf2, HIF, NF-κB

  2. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    Science.gov (United States)

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  4. Geochemistry of Natural Redox Fronts

    International Nuclear Information System (INIS)

    Hofmann, B.A.

    1999-05-01

    Redox fronts are important geochemical boundaries which need to be considered in safety assessment of deep repositories for radioactive waste. In most cases, selected host-rock formations will be reducing due to the presence of ferrous minerals, sulphides, etc. During construction and operation of the repository, air will be introduced into the formation. After repository closure, oxidising conditions may persist locally until all oxygen is consumed. In the case of high-level waste, radiolysis of water may provide an additional source of oxidants. Oxidising conditions within a repository are thus possible and potentially have a strong influence on the mobility of many elements. The rate of movement of redox fronts, the boundary between oxidising and reducing environments, and their influence on migrating radionuclides are thus important factors influencing repository performance. The present report is a review of elemental behaviour at natural redox fronts, based on published information and work of the author. Redox fronts are geochemically and geometrically variable manifestations of a global interface between generally oxidising geochemical milieux in contact with the atmosphere and generally reducing milieux in contact with rocks containing ferrous iron, sulphide and/or organic carbon. A classification of redox fronts based on a subdivision into continental near-surface, marine near-surface, and deep environments is proposed. The global redox interface is often located close to the surface of rocks and sediments and, sometimes, within bodies of water. Temperature conditions are close to ambient. A deeper penetration of the global redox front to depths of several kilometres is found in basins containing oxidised sediments (red beds) and in some hydrothermal circulation systems. Temperatures at such deep redox fronts may reach 200 o C. Both near-surface and deep redox fronts are sites of formation of economic deposits of redox-sensitive elements, particularly of

  5. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    Science.gov (United States)

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  6. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl

    2010-09-28

    We have synthesized and studied a supramolecular system comprising a 39-mer DNA with porphyrin-modified thymidine nucleosides anchored to the surface of large unilamellar vesicles (liposomes). Liposome porphyrin binding characteristics, such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore, the binding characteristics and hybridization capabilities were studied as a function of anchor size and number of anchoring points, properties that are of importance for our future plans to use the addressability of these redox-active nodes in larger DNA-based nanoconstructs. Electron transfer from photoexcited porphyrin to a lipophilic benzoquinone residing in the lipid membrane was characterized by steady-state and time-resolved fluorescence and verified by femtosecond transient absorption. © 2010 American Chemical Society.

  7. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L -1 , giving a total energy density of 38 Wh L -1 at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm -2 the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery

    Science.gov (United States)

    Lee, Wonmi; Jo, Changshin; Youk, Sol; Shin, Hun Yong; Lee, Jinwoo; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    For enhancing the performance of vanadium redox flow battery (VRFB), a sluggish reaction rate issue of V2+/V3+ redox couple evaluated as the rate determining reaction should be addressed. For doing that, mesoporous tungsten oxide (m-WO3) and oxyniride (m-WON) structures are proposed as the novel catalysts, while m-WON is gained by NH3 heat treatment of m-WO3. Their specific surface area, crystal structure, surface morphology and component analysis are measured using BET, XRD, TEM and XPS, while their catalytic activity for V2+/V3+ redox reaction is electrochemically examined. As a result, the m-WON shows higher peak current, smaller peak potential difference, higher electron transfer rate constant and lower charge transfer resistance than other catalysts, like the m-WO3, WO3 nanoparticle and mesoporous carbon, proving that it is superior catalyst. Regarding the charge-discharge curve tests, the VRFB single cell employing the m-WON demonstrates high voltage and energy efficiencies, high specific capacity and low capacity loss rate. The excellent results of m-WON are due to the reasons like (i) reduced energy band gap, (ii) reaction familiar surface functional groups and (ii) greater electronegativity.

  9. Electrochemical investigation of tetravalent uranium β-diketones for active materials of all-uranium redox flow battery

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu; Ikeda, Yasuhisa

    2002-01-01

    For active materials of the all-uranium redox flow battery for the power storage, tetravalent uranium β-diketones were investigated. The electrode reactions of U(ba) 4 and U(btfa) 4 were examined in comparison with that of U(acac) 4 , where ba denotes benzoylacetone, btfa benzoyltrifluoroacetone and acac acetylacetone. The cyclic voltammograms of U(ba) 4 and U(btfa) 4 solutions indicate that there are two series of redox reactions corresponding to the complexes with different coordination numbers of four and three. The electrode kinetics of the U(IV)/U(III) redox reactions for btfa complexes is examined. The obtained result supports that the uranium β-diketone complexes examined in the present study will serve as excellent active materials for negative electrolyte in the redox flow battery. (author)

  10. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.

    Science.gov (United States)

    de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor

    2015-11-11

    A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more

  11. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes

    Science.gov (United States)

    Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J.-M.

    2013-09-01

    Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li1+xNiyCozMn(1-x-y-z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru1-ySnyO3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g-1. Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (O2-→O22-) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.

  12. Redox behaviors of iron by absorption spectroscopy and redox potential measurement

    International Nuclear Information System (INIS)

    Oh, Jae Yong

    2010-02-01

    This work is performed to study the redox (reduction/oxidation) behaviors of iron in aqueous system by a combination of absorption spectroscopy and redox potential measurements. There are many doubts on redox potential measurements generally showing low accuracies and high uncertainties. In the present study, redox potentials are measured by utilizing various redox electrodes such as Pt, Au, Ag, and glassy carbon (GC) electrodes. Measured redox potentials are compared with calculated redox potentials based on the chemical oxidation speciation of iron and thermodynamic data by absorption spectroscopy, which provides one of the sensitive and selective spectroscopic methods for the chemical speciation of Fe(II/III). From the comparison analyses, redox potential values measured by the Ag redox electrode are fairly consistent with those calculated by the chemical aqueous speciation of iron in the whole system. In summary, the uncertainties of measured redox potentials are closely related with the total Fe concentration and affected by the formation of mixed potentials due to Fe(III) precipitates in the pH range of 6 ∼ 9 beyond the solubility of Fe(III), whilst being independent of the initially prepared concentration ratios between Fe(II) and Fe(III)

  13. Redox poly[Ni(saldMp)] modified activated carbon electrode in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gao Fei [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Li Jianling, E-mail: lijianling@ustb.edu.c [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang Yakun; Wang Xindong [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Kang Feiyu [Department of Material Science and Engineering, Tsinghua University, Beijing 100083 (China)

    2010-08-01

    The complex (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), [Ni(saldMp)], was oxidatively electropolymerized on activated carbon (AC) electrode in acetonitrile solution. The poly[Ni(saldMp)] presented an incomplete coated film on the surface of carbon particles of AC electrode by field emission scanning electron microscopy. The electrochemical behaviors of poly[Ni(saldMp)] modified activated carbon (PAC) electrode were evaluated in different potential ranges by cyclic voltammetry. Counterions and solvent swelling mainly occurred up to 0.6 V for PAC electrode by the comparison of D{sup 1/2}C values calculated from chronoamperometry experiments. Both the Ohmic resistance and Faraday resistance of PAC electrode gradually approached to those of AC electrode when its potential was ranging from 1.2 V to 0.0 V. Galvanostatic charge/discharge experiments indicated that both the specific capacitance and energy density were effectively improved by the reversible redox reaction of poly[Ni(saldMp)] film under the high current density up to 10 mA cm{sup -2} for AC electrode. The specific capacitance of PAC electrode decreased during the first 50 cycles but thereafter it remained constant for the next 200 cycles. This study showed the redox polymer may be an attractive material in supercapacitors.

  14. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P.; Yi, Ling; Kaler, Stephen G.; Lutsenko, Svetlana; Ralle, Martina

    2016-05-16

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).

  15. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    Science.gov (United States)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  16. A high-energy-density redox flow battery based on zinc/polyhalide chemistry.

    Science.gov (United States)

    Zhang, Liqun; Lai, Qinzhi; Zhang, Jianlu; Zhang, Huamin

    2012-05-01

    Zn and the Art of Battery Development: A zinc/polyhalide redox flow battery employs Br(-) /ClBr(2-) and Zn/Zn(2+) redox couples in its positive and negative half-cells, respectively. The performance of the battery is evaluated by charge-discharge cycling tests and reveals a high energy efficiency of 81%, based on a Coulombic efficiency of 96% and voltage efficiency of 84%. The new battery technology can provide high performance and energy density at an acceptable cost. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.

    Science.gov (United States)

    Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier

    2017-04-01

    Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

  18. Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.

    Science.gov (United States)

    Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong

    2018-03-01

    This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature

    International Nuclear Information System (INIS)

    Durán-Klie, Gabriela; Rodrigues, Davide; Delpech, Sylvie

    2016-01-01

    Measurement of redox potential in fluoride media is a major problem due to the difficulty to design a reference electrode with high stability, high mechanical resistance and high accuracy. In the frame of molten salt reactor studies, a dynamic reference electrode (DRE) is developed to measure redox potential in fluoride molten salt at high temperature. DRE is based on the in-situ generation of a transient redox system. The choice of the redox couple corresponds to the cathodic limit of the molten salt considered. As a preliminary step, the demonstration of feasibility of generating a DRE was done in LiF-NaF-KF (46.5–11.5–42 mol%) media at 500 °C. In this salt, the reference redox system generated by coulometry at applied current is KF/K, metallic potassium being electrodeposited on a tungsten wire electrode. The validation of the DRE response and the experimental optimization parameters for DRE generation were realized by following the NiF 2 /Ni redox potential evolution as a function of NiF 2 concentration in the fused salt. The current value applied for DRE generation was optimized. It depends on the amount of metallic cations contained in the fused salt and which can be electrochemically reduced simultaneously during the DRE generation. The current corresponding to the DRE generation has to be 4 times greater than the current corresponding to the reduction of the other elements.

  20. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3.

    Science.gov (United States)

    Pearce, Paul E; Perez, Arnaud J; Rousse, Gwenaelle; Saubanère, Mathieu; Batuk, Dmitry; Foix, Dominique; McCalla, Eric; Abakumov, Artem M; Van Tendeloo, Gustaaf; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-05-01

    Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g -1 . In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li 2 IrO 3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e - per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (M n+ ) and anionic (O 2 ) n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li 2 IrO 3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir 4+ at potentials as low as 3.4 V versus Li + /Li 0 , as equivalently observed in the layered α-Li 2 IrO 3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

  1. Materials and Systems for Organic Redox Flow Batteries: Status and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Pan, Wenxiao [Department; Duan, Wentao [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Hollas, Aaron [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Yang, Zheng [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Li, Bin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Nie, Zimin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Liu, Jun [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Reed, David [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Wang, Wei [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Sprenkle, Vincent [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States

    2017-08-14

    Redox flow batteries are propitious stationary energy storage technologies with exceptional scalability and flexibility to improve the stability, efficiency and sustainability of our power grid. The redox-active materials are the central component to RFBs for achieving high energy density and good cyclability. Traditional inorganic-based materials encounter critical technical and economic limitations such as low solubility, inferior electrochemical activity, and high cost. Redox-active organic materials (ROMs) are promising alternative “green” candidates to push the boundaries of energy storage because of the significant advantages of molecular diversity, structural tailorability, and natural abundance. Here the recent development of a variety of ROM families and associated battery designs in both aqueous and nonaqueous electrolytes are reviewed. Moreover, the critical challenges and potential research opportunities for developing practically relevant organic flow batteries are discussed.

  2. Antioxidant activity and electrochemical elucidation of the enigmatic redox behavior of curcumin and its structurally modified analogues

    International Nuclear Information System (INIS)

    Jha, Niki S.; Mishra, Satyendra; Jha, Shailendra K.; Surolia, Avadhesha

    2015-01-01

    Highlights: • Structural analogues of curcumin have been synthesized. • Confirmation of redox behaviour emanates from H- shift from central methylene group in curcumin. • Mechanism of curcumin oxidation has been proposed. • Correlation between redox behavior and antioxidant activity has been established. - Abstract: Here, we report studies on the antioxidant activity and redox behavior of curcumin and its structurally modified synthetic analogues. We have synthesized a number of analogues of curcumin which abrogate its keto-enol tautomerism or substitute the methylene group at the centre of its heptadione moiety implicated in the hydride transfer and studied their redox property. From cyclic voltammetric studies, it is demonstrated that H- atom transfer from CH 2 group at the center of the heptadione link also plays an important role in the antioxidant properties of curcumin along with that of its phenolic –OH group. In addition, we also show that the conversion of 1, 3- dicarbonyl moiety of curcumin to an isosteric heterocycle as in pyrazole curcumin, which decreases its rotational freedom, leads to an improvement of its redox properties as well as its antioxidant activity

  3. Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.

    Science.gov (United States)

    Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2013-05-01

    The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.

  4. Lymphocyte Redox Imbalance and Reduced Proliferation after a Single Session of High Intensity Interval Exercise.

    Science.gov (United States)

    Tossige-Gomes, Rosalina; Costa, Karine Beatriz; Ottone, Vinícius de Oliveira; Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Rocha-Vieira, Etel

    2016-01-01

    This study investigated whether an acute session of high-intensity interval training (HIIT) is sufficient to alter lymphocyte function and redox status. Sixteen young healthy men underwent a HIIT session on a cycloergometer, consisting of eight bouts of 1 min at 90-100% of peak power, with 75 seconds of active recovery at 30 W between bouts. Venous blood was collected before, immediately after, and 30 minutes after the HIIT session. In response to Staphylococcus aureus superantigen B (SEB) stimulation, lymphocyte proliferation decreased and the IL-2 concentration increased after the HIIT session. However, the HIIT session had no effect on lymphocyte proliferation or IL-2 response to phytohemagglutinin stimulation. The HIIT session also induced lymphocyte redox imbalance, characterized by an increase in the concentration of thiobarbituric acid reactive substances and a decrease in the activity of the antioxidant enzyme catalase. Lymphocyte viability was not affected by the HIIT session. The frequencies of CD25+ and CD69+ T helper and B lymphocytes in response to superantigen stimulation were lower after exercise, suggesting that superantigen-induced lymphocyte activation was reduced by HIIT. However, HIIT also led to a reduction in the frequency of CD4+ and CD19+ cells, so the frequencies of CD25+ and CD69+ cells within the CD4 and CD19 cell populations were not affected by HIIT. These data indicate that the reduced lymphocyte proliferation observed after HIIT is not due to reduced early lymphocyte activation by superantigen. Our findings show that an acute HIIT session promotes lymphocyte redox imbalance and reduces lymphocyte proliferation in response to superantigenic, but not to mitogenic stimulation. This observation cannot be explained by alteration of the early lymphocyte activation response to superantigen. The manner in which lymphocyte function modulation by an acute HIIT session can affect individual immunity and susceptibility to infection is important

  5. Cupryphans, metal-binding, redox-active, redesigned conopeptides.

    Science.gov (United States)

    Barba, Marco; Sobolev, Anatoli P; Romeo, Cristina; Schininà, M Eugenia; Pietraforte, Donatella; Mannina, Luisa; Musci, Giovanni; Polticelli, Fabio

    2009-03-01

    Contryphans are bioactive peptides, isolated from the venom of marine snails of the genus Conus, which are characterized by the short length of the polypeptide chain and the high degree of unusual post-translational modifications. The cyclization of the polypeptide chain through a single disulphide bond, the presence of two conserved Pro residues, and the epimerization of a Trp/Leu residue confer to Contryphans a stable and well-defined structure in solution, conserved in all members of the family, and tolerant to multiple substitutions. The potential of Contryphans as scaffolds for the design of redox-active (macro)molecules was tested by engineering a copper-binding site on two different variants of the natural peptide Contryphan-Vn. The binding site was designed by computational modeling, and the redesigned peptides were synthesized and characterized by optical, fluorescence, electron spin resonance, and nuclear magnetic resonance spectroscopy. The novel peptides, named Cupryphan and Arg-Cupryphan, bind Cu(2+) ions with a 1:1 stoichiometry and a K(d) in the 100 nM range. Other divalent metals (e.g., Zn(2+) and Mg(2+)) are bound with much lower affinity. In addition, Cupryphans catalyze the dismutation of superoxide anions with an activity comparable to other nonpeptidic superoxide dismutase mimics. We conclude that the Contryphan motif represents a natural robust scaffold which can be engineered to perform different functions, providing additional means for the design of catalytically active mini metalloproteins.

  6. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Flox, Cristina; Skoumal, Marcel; Rubio-Garcia, Javier; Andreu, Teresa; Morante, Juan Ramón

    2013-01-01

    Highlights: ► Improved reactions at the positive electrode in all-vanadium redox flow batteries. ► Graphene-derived and PAN-modified electrodes have been successfully prepared. ► Modification with bimetallic CuPt 3 nanocubes yielded the best catalytic behavior. ► N and O-containing groups enhances the vanadium flow battery performance. - Abstract: Two strategies for improving the electroactivity towards VO 2+ /VO 2 + redox pair, the limiting process in all-vanadium redox flow batteries (VFBs), were presented. CuPt 3 nanoparticles supported onto graphene substrate and nitrogen and oxygen polyacrylonitrile (PAN)-functionalized electrodes materials have been evaluated. The morphology, composition, electrochemical properties of all electrodes prepared was characterized with field emission-scanning electrode microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and cell charge–discharge test. The presence of the CuPt 3 nanocubes and nitrogen and oxygen functionalities enhance the electrocatalytic activity of the electrodes materials accelerating the oxygen and electron transfer processes. The battery performance was also evaluated using PAN-functionalized electrodes exhibiting a high of energy efficiency of 84% (at current density 20 mA cm −2 ) up to 30th cycle, indicating a promising alternative for improving the VFB

  7. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.

  8. Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion

    Science.gov (United States)

    Sonego, Giona; Abonnenc, Mélanie; Tissot, Jean-Daniel; Prudent, Michel; Lion, Niels

    2017-01-01

    Blood banks use pathogen inactivation (PI) technologies to increase the safety of platelet concentrates (PCs). The characteristics of PI-treated PCs slightly differ from those of untreated PCs, but the underlying reasons are not well understood. One possible cause is the generation of oxidative stress during the PI process. This is of great interest since reactive oxygen species (ROS) act as second messengers in platelet functions. Furthermore, there are links between protein oxidation and phosphorylation, another mechanism that is critical for cell regulation. Current research efforts focus on understanding the underlying mechanisms and identifying new target proteins. Proteomics technologies represent powerful tools for investigating signaling pathways involving ROS and post-translational modifications such as phosphorylation, while quantitative techniques enable the comparison of the platelet resting state versus the stimulated state. In particular, redox cysteine is a key player in platelet activation upon stimulation by different agonists. This review highlights the experiments that have provided insights into the roles of ROS in platelet function and the implications for platelet transfusion, and potentially in diseases such as inflammation and platelet hyperactivity. The review also describes the implication of redox mechanism in platelet storage considerations. PMID:28208668

  9. Investigation of multi-state charge-storage properties of redox-active organic molecules in silicon-molecular hybrid devices for DRAM and Flash applications

    Science.gov (United States)

    Gowda, Srivardhan Shivappa

    studied as a function of tunnel oxide thickness, dielectric permittivity and energy barrier, and modified Butler-Volmer expressions were postulated to describe the redox kinetics. The speed vs. retention performance of the devices was improved via asymmetric layered tunnel barriers. The properties of molecules can be tailored by molecular design and synthetic chemistry. In this work, it was demonstrated that an alternate route to tune/enhance the properties of the hybrid device is to engineer the substrate (silicon) component. The molecules were attached to diode surfaces to tune redox voltages and improve charge-retention characteristics. N+ pockets embedded in P-Si well were utilized to obtain multiple states from a two-state molecule. The structure was also employed as a characterization tool in investigating the intrinsic properties of the molecules such as lateral conductivity within the monolayer. Redox molecules were also incorporated on an ultra thin gate-oxide of Si MOSFETs with the intent of studying the interaction of redox states with Si MOSFETs. The discrete molecular states were manifested in the drain current and threshold voltage characteristics of the device. This work demonstrates the multi-state modulation of Si-MOSFETs' drain current via redox-active molecular monolayers. Polymeric films of redox-active molecules were incorporated to improve the charge-density (ON/OFF ratio) and these structures may be employed for multi-state, low-voltage Flash memory applications. The most critical aspect of this research effort is to build a reliable and high density solid state memory technology. To this end, efforts were directed towards replacement of the electrolytic gate, which forms an extremely thin insulating double layer (˜10 nm) at the electrolyte-molecule interface, with a combination of an ultra-thin high-K dielectric layer and a metal gate. Several interesting observations were made in the research approaches towards integration and provided valuable

  10. Unravelling ``off-target'' effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells

    Science.gov (United States)

    Beretta, Giovanni L.; Folini, Marco; Cavalieri, Francesca; Yan, Yan; Fresch, Enrico; Kaliappan, Subramanian; Hasenöhrl, Christoph; Richardson, Joseph J.; Tinelli, Stella; Fery, Andreas; Caruso, Frank; Zaffaroni, Nadia

    2015-03-01

    Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell lines. This suggests that the simultaneous action of carboxyl and disulfide groups in PMASH polymer or capsules may play a role in mediating the intracellular off-target effects. Our work provides evidence that the rational design of redox-active carriers for therapeutic-related application should be guided by a careful investigation on potential disturbance of the cellular machineries related to the carrier association.Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell

  11. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Impaired redox state and respiratory chain enzyme activities in the cerebellum of vitamin A-treated rats

    International Nuclear Information System (INIS)

    Oliveira, Marcos Roberto de; Fonseca Moreira, Jose Claudio

    2008-01-01

    Vitamin A is a micronutrient that participates in the maintenance of the mammalian cells homeostasis. However, excess of vitamin A, which may be achieved through increased intake of the vitamin either therapeutically or inadvertently, induces several deleterious effects in a wide range of mammalian cells, including neuronal cells. Vitamin A is a redox-active molecule, and it was previously demonstrated that it induces oxidative stress in several cell types. Therefore, in the present work, we investigated the effects of vitamin A supplementation at clinical doses (1000-9000 IU/(kg day)) on redox environment and respiratory chain activity in the adult rat cerebellum. Glutathione-S-transferase (GST) enzyme activity was also measured here. The animals were treated for 3, 7, or 28 days with vitamin A as retinol palmitate. We found increased levels of molecular markers of oxidative damage in the rat cerebellum in any period analyzed. Additionally, vitamin A supplementation impaired cerebellar mitochondrial electron transfer chain (METC) activity. GST enzyme activity was increased in the cerebellum of rats chronically treated with vitamin A. Based on our results and data previously published, we recommend more caution in prescribing vitamin A at high doses even clinically, since there is a growing concern regarding toxic effects associated to vitamin A intake

  13. Application of a redox gradostat reactor for assessing rhizosphere microorganism activity on lambda-cyhalothrin.

    Science.gov (United States)

    Peacock, T J; Mikell, A T; Moore, M T; Smith, S

    2014-03-01

    Bacterial activity on pesticides can lead to decreased toxicity or persistence in aquatic systems. Rhizosphere activity is difficult to measure in situ. To mimic rhizosphere properties of the soft rush, Juncus effusus, a single-stage gradostat reactor was developed to study cycling of lambda-cyhalothrin by rhizobacteria and the effects of Fe(III) and citrate, both common in wetland soil, on lambda-cyhalothrin degradation. Redox gradient changes, greater than ± 10 mV, were apparent within days 5-15 both in the presence and absence of ferric citrate. Through the production of a redox gradient (p < 0.05) by rhizobacteria and the ability to measure pesticide loss over time (p < 0.05), reactors were useful in expanding knowledge on this active environment.

  14. TEMPO/viologen electrochemical heterojunction for diffusion-controlled redox mediation: a highly rectifying bilayer-sandwiched device based on cross-reaction at the interface between dissimilar redox polymers.

    Science.gov (United States)

    Tokue, Hiroshi; Oyaizu, Kenichi; Sukegawa, Takashi; Nishide, Hiroyuki

    2014-03-26

    A couple of totally reversible redox-active molecules, which are different in redox potentials, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and viologen (V(2+)), were employed to give rise to a rectified redox conduction effect. Single-layer and bilayer devices were fabricated using polymers containing these sites as pendant groups per repeating unit. The devices were obtained by sandwiching the redox polymer layer(s) with indium tin oxide (ITO)/glass and Pt foil electrodes. Electrochemical measurements of the single-layer device composed of polynorbornene-bearing TEMPO (PTNB) exhibited a diffusion-limited current-voltage response based on the TEMPO(+)/TEMPO exchange reaction, which was almost equivalent to a redox gradient through the PTNB layer depending upon the thickness. The bilayer device gave rise to the current rectification because of the thermodynamically favored cross-reaction between TEMPO(+) and V(+) at the polymer/polymer interface. A current-voltage response obtained for the bilayer device demonstrated a two-step diffusion-limited current behavior as a result of the concurrent V(2+)/V(+) and V(+)/V(0) exchange reactions according to the voltage and suggested that the charge transport process through the device was most likely to be rate-determined by a redox gradient in the polymer layer. Current collection experiments revealed a charge transport balance throughout the device, as a result of the electrochemical stability and robustness of the polymers in both redox states.

  15. Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells.

    Science.gov (United States)

    Chen, Tian; Liu, Zhi; Sun, Wenhua; Li, Jingyu; Liang, Yan; Yang, Xianrui; Xu, Yang; Yu, Mei; Tian, Weidong; Chen, Guoqing; Bai, Ding

    2015-12-07

    Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway.

  16. Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms

    Science.gov (United States)

    Cho, Se Youn; Yoon, Hyeon Ji; Kim, Na Rae; Yun, Young Soo; Jin, Hyoung-Joon

    2016-10-01

    Nanostructured carbon-based materials fabricated via simple methods from renewable bio-resources have great potential in rechargeable energy storage systems. In this study, nanoporous pyroproteins containing a large amount of redox-active heteroatoms (H-NPs) were fabricated from silk fibroin by an in situ carbonization/activation method. The H-NPs have a large surface area of ∼3050 m2 g-1, which is mainly comprised of nanometer-scale pores. Also, these H-NPs have oxygen and nitrogen heteroatoms of 17.4 wt% and 2.9 wt%, respectively. Synergistic sodium ion storage behaviors originate from electrochemical double layer capacitance and pseudocapacitance, leading to very high electrochemical performances of H-NPs in aqueous and non-aqueous electrolyte systems. Sodium-ion supercapacitors (NISs) based on commercial graphite//H-NPs show a high specific power of ∼1900 W kg-1 at ∼77 Wh kg-1. Also, NISs based on commercial hard carbon//H-NPs exhibit a high specific energy of ∼217 Wh kg-1 at ∼42 W kg-1. In addition, outstanding cycling performances over 30,000 cycles are achieved for symmetric NISs.

  17. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte.

    Science.gov (United States)

    Park, Jinwoo; Kim, Byungwoo; Yoo, Young-Eun; Chung, Haegeun; Kim, Woong

    2014-11-26

    We demonstrate for the first time that the incorporation of a redox-active molecule in an organic electrolyte can increase the cell voltage of a supercapacitor. The redox molecule also contributes to increasing the cell capacitance by a faradaic redox reaction, and therefore the energy density of the supercapacitor can be significantly increased. More specifically, the addition of redox-active decamethylferrocene in an organic electrolyte results in an approximately 27-fold increase in the energy density of carbon-nanotube-based supercapacitors. The resulting high energy density (36.8 Wh/kg) stems from the increased cell voltage (1.1 V→2.1 V) and cell capacitance (8.3 F/g→61.3 F/g) resulting from decamethylferrocene addition. We found that the voltage increase is associated with the potential of the redox species relative to the electrochemical stability window of the supporting electrolyte. These results will be useful in identifying new electrolytes for high-energy-density supercapacitors.

  18. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  19. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries

    Science.gov (United States)

    Assat, Gaurav; Tarascon, Jean-Marie

    2018-05-01

    Our increasing dependence on lithium-ion batteries for energy storage calls for continual improvements in the performance of their positive electrodes, which have so far relied solely on cationic redox of transition-metal ions for driving the electrochemical reactions. Great hopes have recently been placed on the emergence of anionic redox—a transformational approach for designing positive electrodes as it leads to a near-doubling of capacity. But questions have been raised about the fundamental origins of anionic redox and whether its full potential can be realized in applications. In this Review, we discuss the underlying science that triggers a reversible and stable anionic redox activity. Furthermore, we highlight its practical limitations and outline possible approaches for improving such materials and designing new ones. We also summarize their chances for market implementation in the face of the competing nickel-based layered cathodes that are prevalent today.

  20. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework.

    Science.gov (United States)

    Zhang, Zhongyue; Yoshikawa, Hirofumi; Awaga, Kunio

    2014-11-19

    By adopting a facile synthetic strategy, we obtained a microporous redox-active metal-organic framework (MOF), namely, Cu(2,7-AQDC) (2,7-H2AQDC = 2,7-anthraquinonedicarboxylic acid) (1), and utilized it as a cathode active material in lithium batteries. With a voltage window of 4.0-1.7 V, both metal clusters and anthraquinone groups in the ligands exhibited reversible redox activity. The valence change of copper cations was clearly evidenced by in situ XANES analysis. By controlling the voltage window of operation, extremely high recyclability of batteries was achieved, suggesting the framework was robust. This MOF is the first example of a porous material showing independent redox activity on both metal cluster nodes and ligand sites.

  1. Pyridine nucleotides in regulation of cell death and survival by redox and non-redox reactions.

    Science.gov (United States)

    Novak Kujundžić, Renata; Žarković, Neven; Gall Trošelj, Koraljka

    2014-01-01

    Changes of the level and ratios of pyridine nucleotides determine metabolism- dependent cellular redox status and the activity of poly(ADP-ribose) polymerases (PARPs) and sirtuins, thereby influencing several processes closely related to cell survival and death. Pyridine nucleotides participate in numerous metabolic reactions whereby their net cellular level remains constant, but the ratios of NAD+/NADP+ and NADH/NADPH oscillate according to metabolic changes in response to diverse stress signals. In non-redox reactions, NAD+ is degraded and quickly, afterward, resynthesized in the NAD+ salvage pathway, unless overwhelming activation of PARP-1 consumes NAD+ to the point of no return, when the cell can no longer generate enough ATP to accommodate NAD+ resynthesis. The activity of PARP-1 is mandatory for the onset of cytoprotective autophagy on sublethal stress signals. It has become increasingly clear that redox status, largely influenced by the metabolism-dependent composition of the pyridine nucleotides pool, plays an important role in the synthesis of pro-apoptotic and anti-apoptotic sphingolipids. Awareness of the involvement of the prosurvival sphingolipid, sphingosine-1-phosphate, in transition from inflammation to malignant transformation has recently emerged. Here, the participation of pyridine nucleotides in redox and non-redox reactions, sphingolipid metabolism, and their role in cell fate decisions is reviewed.

  2. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries

    Science.gov (United States)

    Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.

    2017-02-01

    In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.

  3. Redox signaling in plants.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  4. A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries

    Science.gov (United States)

    Cao, Jianyu; Tao, Meng; Chen, Hongping; Xu, Juan; Chen, Zhidong

    2018-05-01

    The development of electroactive organic materials for use in aqueous redox flow battery (RFB) electrolytes is highly attractive because of their structural flexibility, low cost and sustainability. Here, we report on a highly reversible anthraquinone-based anolyte (1,8-dihydroxyanthraquinone, 1,8-DHAQ) for alkaline aqueous RFB applications. Electrochemical measurements reveal the substituent position of hydroxyl groups for DHAQ isomers has a significant impact on the redox potential, electrochemical reversibility and water-solubility. 1,8-DHAQ shows the highest redox reversibility and rapidest mass diffusion among five isomeric DHAQs. The alkaline aqueous RFB using 1,8-DHAQ as the anolyte and potassium ferrocyanide as the catholyte yields open-circuit voltage approaching 1.1 V and current efficiency and capacity retention exceeding 99.3% and 99.88% per cycle, respectively. This aqueous RFB produces a maximum power density of 152 mW cm-2 at 100% SOC and 45 °C. Choline hydroxide was used as a hydrotropic agent to enhance the water-solubility of 1,8-DHAQ. 1,8-DHAQ has a maximum solubility of 3 M in 1 M KOH with 4 M choline hydroxide.

  5. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.

    Science.gov (United States)

    Liu, Xiaoyang; Abbott, Nicholas L

    2011-04-15

    We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems. © 2011 American Chemical Society

  6. Exercise redox biochemistry: Conceptual, methodological and technical recommendations

    Directory of Open Access Journals (Sweden)

    James N. Cobley

    2017-08-01

    Full Text Available Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded: which often complicates attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling. Keywords: Exercise, Oxidative stress, Free radical, Antioxidants, Redox signalling

  7. High Performance Redox Flow Batteries: An Analysis of the Upper Performance Limits of Flow Batteries Using Non-aqueous Solvents

    International Nuclear Information System (INIS)

    Sun, C.-N.; Mench, M.M.; Zawodzinski, T.A.

    2017-01-01

    Redox Flow Batteries (RFBs) are a promising technology for grid-scale electrochemical energy storage. In this work, we use a recently achieved high-performance flow battery performance curve as a basis to assess the maximum achievable performance of a RFB employing non-aqueous solutions as active materials. First we show high performance in a vanadium redox flow battery (VRFB), specifically a limiting situation in which the cell losses are ohmic in nature and derive from electrolyte conductance. Based on that case, we analyze the analogous limiting behavior of non-aqueous (NA) systems using a series of calculations assuming similar ohmic losses, scaled by the relative electrolyte resistances, with a higher voltage redox couple assumed for the NA battery. The results indicate that the NA battery performance is limited by the low electrolyte conductivity to a fraction of the performance of the VRFB. Given the narrow window in which the NARFB offers advantages, even for the most generous limiting assumptions related to performance while ignoring the numerous other disadvantageous aspects of these systems, we conclude that this technology is unlikely under present circumstances to provide practical large-scale energy storage solutions.

  8. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  9. Superposed Redox Chemistry of Fused Carbon Rings in Cyclooctatetraene-Based Organic Molecules for High-Voltage and High-Capacity Cathodes.

    Science.gov (United States)

    Zhao, Xiaolin; Qiu, Wujie; Ma, Chao; Zhao, Yingqin; Wang, Kaixue; Zhang, Wenqing; Kang, Litao; Liu, Jianjun

    2018-01-24

    Even though many organic cathodes have been developed and have made a significant improvement in energy density and reversibility, some organic materials always generate relatively low voltage and limited discharge capacity because their energy storage mechanism is solely based on redox reactions of limited functional groups [N-O, C═X (X = O, N, S)] linking to aromatic rings. Here, a series of cyclooctatetraene-based (C 8 H 8 ) organic molecules were demonstrated to have electrochemical activity of high-capacity and high-voltage from carbon rings by means of first-principles calculations and electronic structure analysis. Fused molecules of C 8 -C 4 -C 8 (C 16 H 12 ) and C 8 -C 4 -C 8 -C 4 -C 8 (C 24 H 16 ) contain, respectively, four and eight electron-deficient carbons, generating high-capacity by their multiple redox reactions. Our sodiation calculations predict that C 16 H 12 and C 24 H 16 exhibit discharge capacities of 525.3 and 357.2 mA h g -1 at the voltage change from 3.5 to 1.0 V and 3.7 to 1.3 V versus Na + /Na, respectively. Electronic structure analysis reveals that the high voltages are attributed to superposed electron stabilization mechanisms, including double-bond reformation and aromatization from carbon rings. High thermodynamic stability of these C 24 H 16 -based systems strongly suggests feasibility of experimental realization. The present work provides evidence that cyclooctatetraene-based organic molecules fused with the C 4 ring are promising in designing high-capacity and high-voltage organic rechargeable cathodes.

  10. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  11. Exercise redox biochemistry: Conceptual, methodological and technical recommendations.

    Science.gov (United States)

    Cobley, James N; Close, Graeme L; Bailey, Damian M; Davison, Gareth W

    2017-08-01

    Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded: which often complicates attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei

    2014-12-03

    A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Regulatory redox state in tree seeds

    Directory of Open Access Journals (Sweden)

    Ewelina Ratajczak

    2017-12-01

    Full Text Available Peroxiredoxins (Prx are important regulators of the redox status of tree seeds during maturation and long-term storage. Thioredoxins (Trx are redox transmitters and thereby regulate Prx activity. Current research is focused on the association of Trx with Prx in tree seeds differing in the tolerance to desiccation. The results will allow for better understanding the regulation of the redox status in orthodox, recalcitrant, and intermediate seeds. The findings will also elucidate the role of the redox status during the loss of viability of sensitive seeds during drying and long-term storage.

  14. Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria

    OpenAIRE

    Dietrich, Lars E. P.; Teal, Tracy K.; Price-Whelan, Alexa; Newman, Dianne K.

    2008-01-01

    It is thought that bacteria excrete redox-active pigments as antibiotics to inhibit competitors. In Pseudomonas aeruginosa, the endogenous antibiotic pyocyanin activates SoxR, a transcription factor conserved in Proteo- and Actinobacteria. In Escherichia coli, SoxR regulates the superoxide stress response. Bioinformatic analysis coupled with gene expression studies in P. aeruginosa and Streptomyces coelicolor revealed that the majority of SoxR regulons in bacteria lack the genes required for ...

  15. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage

    Directory of Open Access Journals (Sweden)

    Claudia von Montfort

    2015-04-01

    Full Text Available Recently, it has been published that cerium (Ce oxide nanoparticles (CNP; nanoceria are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS-induced cell death and stimulate proliferation due to the antioxidative property of these particles.

  16. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  17. Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology.

    Science.gov (United States)

    Baier, Margarete; Dietz, Karl-Josef

    2005-06-01

    During the evolution of plants, chloroplasts have lost the exclusive genetic control over redox regulation and antioxidant gene expression. Together with many other genes, all genes encoding antioxidant enzymes and enzymes involved in the biosynthesis of low molecular weight antioxidants were transferred to the nucleus. On the other hand, photosynthesis bears a high risk for photo-oxidative damage. Concomitantly, an intricate network for mutual regulation by anthero- and retrograde signals has emerged to co-ordinate the activities of the different genetic and metabolic compartments. A major focus of recent research in chloroplast regulation addressed the mechanisms of redox sensing and signal transmission, the identification of regulatory targets, and the understanding of adaptation mechanisms. In addition to redox signals communicated through signalling cascades also used in pathogen and wounding responses, specific chloroplast signals control nuclear gene expression. Signalling pathways are triggered by the redox state of the plastoquinone pool, the thioredoxin system, and the acceptor availability at photosystem I, in addition to control by oxolipins, tetrapyrroles, carbohydrates, and abscisic acid. The signalling function is discussed in the context of regulatory circuitries that control the expression of antioxidant enzymes and redox modulators, demonstrating the principal role of chloroplasts as the source and target of redox regulation.

  18. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila.

    Science.gov (United States)

    Whon, Tae Woong; Shin, Na-Ri; Jung, Mi-Ja; Hyun, Dong-Wook; Kim, Hyun Sik; Kim, Pil Soo; Bae, Jin-Woo

    2017-12-01

    Changes in the composition of the gut microbiota contribute to the development of obesity and subsequent complications that are associated with metabolic syndrome. However, the role of increased numbers of certain bacterial species during the progress of obesity and factor(s) controlling the community structure of gut microbiota remain unclear. Here, we demonstrate the inter-relationship between Drosophila melanogaster and their resident gut microbiota under chronic high-sugar diet (HSD) conditions. Chronic feeding of an HSD to Drosophila resulted in a predominance of resident uracil-secreting bacteria in the gut. Axenic insects mono-associated with uracil-secreting bacteria or supplemented with uracil under HSD conditions promoted larval development. Redox signaling induced by bacterial uracil promoted larval growth by regulating sugar and lipid metabolism via activation of p38a mitogen-activated protein kinase. The present study identified a new redox-dependent mechanism by which uracil-secreting bacteria (previously regarded as opportunistic pathobionts) protect the host from metabolic perturbation under chronic HSD conditions. These results illustrate how Drosophila and gut microbes form a symbiotic relationship under stress conditions, and changes in the gut microbiota play an important role in alleviating deleterious diet-derived effects such as hyperglycemia. Antioxid. Redox Signal. 27, 1361-1380.

  19. Effect of the Linker in Terephthalate-Functionalized Conducting Redox Polymers

    International Nuclear Information System (INIS)

    Yang, Li; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2016-01-01

    The combination of high capacity redox active pendent groups and conducting polymers, realized in conducting redox polymers (CRPs), provides materials with high charge storage capacity that are electronically conducting which makes CRPs attractive for electrical energy storage applications. In this report, six polythiophene and poly(3,4-ethylenedioxythiophene)(PEDOT)-based CRPs with a diethyl terephthalate unit covalently bound to the polymer chain by various linkers have been synthesized and characterized electrochemically. The effects of the choice of polymer backbone and of the nature of the link on the electrochemistry, and in particular the cycling stability of these polymers, are discussed. All CRPs show both the doping of the polymer backbone as well as the redox behavior of the pendent groups and the redox potential of the pendent groups in the CRPs is close to that of corresponding monomer, indicating insignificant interaction between the pendant and the polymer backbone. While all CRPs show various degrees of charge decay upon electrochemical redox conversion, the PEDOT-based CRPs show significantly improved stability compared to the polythiophene counterparts. Moreover, we show that by the right choice of link the cycling stability of diethyl terephthalate substituted PEDOT-based CRPs can be significantly improved.

  20. Acute High-intensity Interval Exercise-induced Redox Signaling is Associated with Enhanced Insulin Sensitivity in Obese Middle-aged Men.

    Directory of Open Access Journals (Sweden)

    Lewan Parker

    2016-09-01

    Full Text Available Background. Obesity and ageing are associated with increased oxidative stress, activation of stress and mitogen activated protein kinases (SAPK, and the development of insulin resistance and metabolic disease. In contrast, acute exercise also increases oxidative stress and SAPK signaling, yet is reported to enhance insulin sensitivity and reduce the risk of metabolic disease. This study explored this paradox by investigating the effect of a single session of high-intensity interval-exercise (HIIE on redox status, muscle SAPK and insulin protein signaling in eleven middle-aged obese men. Methods. Participants completed a 2 hour hyperinsulinaemic-euglycaemic clamp at rest, and 60 minutes after HIIE (4x4 mins at 95% HRpeak; 2 min recovery periods, separated by 1-3 weeks. Results. Irrespective of exercise-induced changes to redox status, insulin stimulation both at rest and after HIIE similarly increased plasma superoxide dismutase activity, plasma catalase activity, and skeletal muscle 4-HNE; and significantly decreased plasma TBARS and hydrogen peroxide. The SAPK signaling pathways of p38 MAPK, NF-κB p65, and JNK, and the distal insulin signaling protein AS160Ser588, were activated with insulin stimulation at rest and to a greater extent with insulin stimulation after a prior bout of HIIE. Higher insulin sensitivity after HIIE was associated with higher insulin-stimulated SAPK phosphorylation (JNK, p38 MAPK and NF-κB and SOD activity (p<0.05. Conclusion. These findings support a role for redox homeostasis and SAPK signaling in insulin-stimulated glucose uptake which may contribute to the enhancement of insulin sensitivity in obese men 3 hours after HIIE.

  1. Redox-capacitor to connect electrochemistry to redox-biology.

    Science.gov (United States)

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  2. Investigating Mitochondrial Dysfunction in Human Lung Cells Exposed to Redox-Active PM Components

    Science.gov (United States)

    Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ incr...

  3. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.

    Science.gov (United States)

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H

    2009-05-01

    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  4. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  5. The Intra- or Extracellular Redox State Was Not Affected by a High vs. Low Glycemic Response Diet in Mice

    Science.gov (United States)

    Kleckner, Amber S.; Wong, Siu; Corkey, Barbara E.

    2015-01-01

    A low glycemic response (LGR) vs. high glycemic response (HGR) diet helps curtail the development of obesity and diabetes, though the mechanisms are unknown. We hypothesized that consumption of a HGR vs. a LGR diet would lead to a more oxidized circulating redox state and predicted that a HGR diet would increase fat accumulation, reduce insulin sensitivity, and impair metabolic acclimation to a high fat diet in a mouse model. Hence, male C57BL/6 mice consumed a HGR or LGR diet for 16 weeks and a subset of the mice subsequently consumed a high fat diet for 4 weeks. We found that body mass increased at a faster rate for those consuming the HGR diet. Percent body fat was greater and percent lean mass was lesser in the HGR group starting at 12 weeks. However, the groups did not differ in terms of glucose tolerance at week 14 and metabolic parameters (respiratory exchange ratio, heat production, activity) at weeks 4 or 15. Moreover, mice on either diet did not show differences in metabolic acclimation to the high fat leg of the study. At the termination of the study, the groups did not differ in terms of redox pairs (lactate/pyruvate and β-hydroxybutyrate/acetoacetate) or thioredoxin reductase activity in blood. Also, total and oxidized glutathione levels and lipid peroxidation were similar in blood and liver. Correlations between baseline measures, longitudinal parameters, environmental conditions, and terminal metrics revealed that individual mice have innate propensities to metabolic regulation that may be difficult to perturb with diet alone; for example, starting mass correlated negatively with energy expenditure 4 weeks into the study and total hepatic glutathione at the end of the study. In conclusion, these data suggest that the mechanism by which HGR carbohydrates contributes to obesity is not via prolonged oxidation of the circulating redox state. PMID:26030878

  6. The Intra- or Extracellular Redox State Was Not Affected by a High vs. Low Glycemic Response Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Amber S Kleckner

    Full Text Available A low glycemic response (LGR vs. high glycemic response (HGR diet helps curtail the development of obesity and diabetes, though the mechanisms are unknown. We hypothesized that consumption of a HGR vs. a LGR diet would lead to a more oxidized circulating redox state and predicted that a HGR diet would increase fat accumulation, reduce insulin sensitivity, and impair metabolic acclimation to a high fat diet in a mouse model. Hence, male C57BL/6 mice consumed a HGR or LGR diet for 16 weeks and a subset of the mice subsequently consumed a high fat diet for 4 weeks. We found that body mass increased at a faster rate for those consuming the HGR diet. Percent body fat was greater and percent lean mass was lesser in the HGR group starting at 12 weeks. However, the groups did not differ in terms of glucose tolerance at week 14 and metabolic parameters (respiratory exchange ratio, heat production, activity at weeks 4 or 15. Moreover, mice on either diet did not show differences in metabolic acclimation to the high fat leg of the study. At the termination of the study, the groups did not differ in terms of redox pairs (lactate/pyruvate and β-hydroxybutyrate/acetoacetate or thioredoxin reductase activity in blood. Also, total and oxidized glutathione levels and lipid peroxidation were similar in blood and liver. Correlations between baseline measures, longitudinal parameters, environmental conditions, and terminal metrics revealed that individual mice have innate propensities to metabolic regulation that may be difficult to perturb with diet alone; for example, starting mass correlated negatively with energy expenditure 4 weeks into the study and total hepatic glutathione at the end of the study. In conclusion, these data suggest that the mechanism by which HGR carbohydrates contributes to obesity is not via prolonged oxidation of the circulating redox state.

  7. Impact of estrogenic compounds on DNA integrity in human spermatozoa: Evidence for cross-linking and redox cycling activities

    International Nuclear Information System (INIS)

    Bennetts, L.E.; De Iuliis, G.N.; Nixon, B.; Kime, M.; Zelski, K.; McVicar, C.M.; Lewis, S.E.; Aitken, R.J.

    2008-01-01

    A great deal of circumstantial evidence has linked DNA damage in human spermatozoa with adverse reproductive outcomes including reduced fertility and high rates of miscarriage. Although oxidative stress is thought to make a significant contribution to DNA damage in the male germ line, the factors responsible for creating this stress have not been elucidated. One group of compounds that are thought to be active in this context are the estrogens, either generated as a result of the endogenous metabolism of androgens within the male reproductive tract or gaining access to the latter as a consequence of environmental exposure. In this study, a wide variety of estrogenic compounds were assessed for their direct effects on human spermatozoa in vitro. DNA integrity was assessed using the Comet and TUNEL assays, lesion frequencies were quantified by QPCR using targets within the mitochondrial and nuclear (β-globin) genomes, DNA adducts were characterized by mass spectrometry and redox activity was monitored using dihydroethidium (DHE) as the probe. Of the estrogenic and estrogen analogue compounds evaluated, catechol estrogens, quercetin, diethylstilbestrol and pyrocatechol stimulated intense redox activity while genistein was only active at the highest doses tested. Other estrogens and estrogen analogues, such as 17β-estradiol, nonylphenol, bisphenol A and 2,3-dihydroxynaphthalene were inactive. Estrogen-induced redox activity was associated with a dramatic loss of motility and, in the case of 2-hydroxyestradiol, the induction of significant DNA fragmentation. Mass spectrometry also indicated that catechol estrogens were capable of forming dimers that can cross-link the densely packed DNA strands in sperm chromatin, impairing nuclear decondensation. These results highlight the potential importance of estrogenic compounds in creating oxidative stress and DNA damage in the male germ line and suggest that further exploration of these compounds in the aetiology of male

  8. Impact of estrogenic compounds on DNA integrity in human spermatozoa: Evidence for cross-linking and redox cycling activities

    Energy Technology Data Exchange (ETDEWEB)

    Bennetts, L.E.; De Iuliis, G.N.; Nixon, B.; Kime, M.; Zelski, K. [ARC Centre of Excellence in Biotechnology and Development and Discipline of Biological Sciences, University of Newcastle, NSW (Australia); McVicar, C.M.; Lewis, S.E. [Obstetrics and Gynaecology, Queen' s University, Belfast (United Kingdom); Aitken, R.J. [ARC Centre of Excellence in Biotechnology and Development and Discipline of Biological Sciences, University of Newcastle, NSW (Australia)], E-mail: jaitken@mail.newcastle.edu.au

    2008-05-10

    A great deal of circumstantial evidence has linked DNA damage in human spermatozoa with adverse reproductive outcomes including reduced fertility and high rates of miscarriage. Although oxidative stress is thought to make a significant contribution to DNA damage in the male germ line, the factors responsible for creating this stress have not been elucidated. One group of compounds that are thought to be active in this context are the estrogens, either generated as a result of the endogenous metabolism of androgens within the male reproductive tract or gaining access to the latter as a consequence of environmental exposure. In this study, a wide variety of estrogenic compounds were assessed for their direct effects on human spermatozoa in vitro. DNA integrity was assessed using the Comet and TUNEL assays, lesion frequencies were quantified by QPCR using targets within the mitochondrial and nuclear ({beta}-globin) genomes, DNA adducts were characterized by mass spectrometry and redox activity was monitored using dihydroethidium (DHE) as the probe. Of the estrogenic and estrogen analogue compounds evaluated, catechol estrogens, quercetin, diethylstilbestrol and pyrocatechol stimulated intense redox activity while genistein was only active at the highest doses tested. Other estrogens and estrogen analogues, such as 17{beta}-estradiol, nonylphenol, bisphenol A and 2,3-dihydroxynaphthalene were inactive. Estrogen-induced redox activity was associated with a dramatic loss of motility and, in the case of 2-hydroxyestradiol, the induction of significant DNA fragmentation. Mass spectrometry also indicated that catechol estrogens were capable of forming dimers that can cross-link the densely packed DNA strands in sperm chromatin, impairing nuclear decondensation. These results highlight the potential importance of estrogenic compounds in creating oxidative stress and DNA damage in the male germ line and suggest that further exploration of these compounds in the aetiology of

  9. Characterization of a BODIPY Dye as an Active Species for Redox Flow Batteries.

    Science.gov (United States)

    Kosswattaarachchi, Anjula M; Friedman, Alan E; Cook, Timothy R

    2016-12-08

    An all-organic redox flow battery (RFB) employing a fluorescent boron-dipyrromethene (BODIPY) dye (PM567) was investigated. In a RFB, the stability of the electrolyte in all charged states is critically linked to coulombic efficiency. To evaluate stability, bulk electrolysis and cyclic voltammetry (CV) experiments were performed. Oxidized and reduced, PM567 does not remain intact; however, the products of bulk electrolysis evolve over time to show stable redox behavior, making the dye a precursor for the active species of an RFB. A theoretical cell potential of 2.32 V was predicted from CV experiments with a working discharge voltage of approximately 1.6 V in a static test cell. Mass spectrometry was used to identify the products of bulk electrolysis. Related experiments were carried out using ferrocene and cobaltocenium hexafluorophosphate as redox-stable benchmarks to further explain the stability results. The coulombic efficiency of a model cell using PM567 as a precursor for charge carriers stabilized around 73 %. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. STAT3-RXR-Nrf2 activates systemic redox and energy homeostasis upon steep decline in pO2 gradient

    Directory of Open Access Journals (Sweden)

    Subhojit Paul

    2018-04-01

    Full Text Available Hypobaric hypoxia elicits several patho-physiological manifestations, some of which are known to be lethal. Among various molecular mechanisms proposed so far, perturbation in redox state due to imbalance between radical generation and antioxidant defence is promising. These molecular events are also related to hypoxic status of cancer cells and therefore its understanding has extended clinical advantage beyond high altitude hypoxia. In present study, however, the focus was to understand and propose a model for rapid acclimatization of high altitude visitors to enhance their performance based on molecular changes. We considered using simulated hypobaric hypoxia at some established thresholds of high altitude stratification based on known physiological effects. Previous studies have focused on the temporal aspect while overlooking the effects of varying pO2 levels during exposure to hypobaric hypoxia. The pO2 levels, indicative of altitude, are crucial to redox homeostasis and can be the limiting factor during acclimatization to hypobaric hypoxia. In this study we present the effects of acute (24 h exposure to high (3049 m; pO2: 71 kPa, very high (4573 m; pO2: 59 kPa and extreme altitude (7620 m; pO2: 40 kPa zones on lung and plasma using semi-quantitative redox specific transcripts and quantitative proteo-bioinformatics workflow in conjunction with redox stress assays. It was observed that direct exposure to extreme altitude caused 100% mortality, which turned into high survival rate after pre-exposure to 59 kPa, for which molecular explanation were also found. The pO2 of 59 kPa (very high altitude zone elicits systemic energy and redox homeostatic processes by modulating the STAT3-RXR-Nrf2 trio. Finally we posit the various processes downstream of STAT3-RXR-Nrf2 and the plasma proteins that can be used to ascertain the redox status of an individual. Keywords: STAT3, RXR, Nrf2, Network biology, Cytoskeleton, Redox homeostasis, Energy

  11. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    Science.gov (United States)

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-08-01

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases. Copyright © 2017 Elsevier Inc. All

  12. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei; Xia, Chuan; Baby, Rakhi Raghavan; Alshareef, Husam N.

    2014-01-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline

  13. Redox Pioneer: Professor Vadim N. Gladyshev.

    Science.gov (United States)

    Hatfield, Dolph L

    2016-07-01

    Professor Vadim N. Gladyshev is recognized here as a Redox Pioneer, because he has published an article on antioxidant/redox biology that has been cited more than 1000 times and 29 articles that have been cited more than 100 times. Gladyshev is world renowned for his characterization of the human selenoproteome encoded by 25 genes, identification of the majority of known selenoprotein genes in the three domains of life, and discoveries related to thiol oxidoreductases and mechanisms of redox control. Gladyshev's first faculty position was in the Department of Biochemistry, the University of Nebraska. There, he was a Charles Bessey Professor and Director of the Redox Biology Center. He then moved to the Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, where he is Professor of Medicine and Director of the Center for Redox Medicine. His discoveries in redox biology relate to selenoenzymes, such as methionine sulfoxide reductases and thioredoxin reductases, and various thiol oxidoreductases. He is responsible for the genome-wide identification of catalytic redox-active cysteines and for advancing our understanding of the general use of cysteines by proteins. In addition, Gladyshev has characterized hydrogen peroxide metabolism and signaling and regulation of protein function by methionine-R-sulfoxidation. He has also made important contributions in the areas of aging and lifespan control and pioneered applications of comparative genomics in redox biology, selenium biology, and aging. Gladyshev's discoveries have had a profound impact on redox biology and the role of redox control in health and disease. He is a true Redox Pioneer. Antioxid. Redox Signal. 25, 1-9.

  14. High-Performance Vanadium Redox Flow Batteries with Graphite Felt Electrodes

    Directory of Open Access Journals (Sweden)

    Trevor J. Davies

    2018-01-01

    Full Text Available A key objective in the development of vanadium redox flow batteries (VRFBs is the improvement of cell power density. At present, most commercially available VRFBs use graphite felt electrodes under relatively low compression. This results in a large cell ohmic resistance and limits the maximum power density. To date, the best performing VRFBs have used carbon paper electrodes, with high active area compression pressures, similar to that used in fuel cells. This article investigates the use of felt electrodes at similar compression pressures. Single cells are assembled using compression pressures of 0.2–7.5 bar and tested in a VRFB system. The highest cell compression pressure, combined with a thin Nafion membrane, achieved a peak power density of 669 mW cm−2 at a flow rate of 3.2 mL min−1 per cm2 of active area, more than double the previous best performance from a felt-VRFB. The results suggest that felt electrodes can compete with paper electrodes in terms of performance when under similar compression pressures, which should help guide electrode development and cell optimization in this important energy storage technology.

  15. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts.

    Science.gov (United States)

    Yuan, Zhe; Peng, Hong-Jie; Hou, Ting-Zheng; Huang, Jia-Qi; Chen, Cheng-Meng; Wang, Dai-Wei; Cheng, Xin-Bing; Wei, Fei; Zhang, Qiang

    2016-01-13

    Lithium-sulfur (Li-S) battery system is endowed with tremendous energy density, resulting from the complex sulfur electrochemistry involving multielectron redox reactions and phase transformations. Originated from the slow redox kinetics of polysulfide intermediates, the flood of polysulfides in the batteries during cycling induced low sulfur utilization, severe polarization, low energy efficiency, deteriorated polysulfide shuttle, and short cycling life. Herein, sulfiphilic cobalt disulfide (CoS2) was incorporated into carbon/sulfur cathodes, introducing strong interaction between lithium polysulfides and CoS2 under working conditions. The interfaces between CoS2 and electrolyte served as strong adsorption and activation sites for polar polysulfides and therefore accelerated redox reactions of polysulfides. The high polysulfide reactivity not only guaranteed effective polarization mitigation and promoted energy efficiency by 10% but also promised high discharge capacity and stable cycling performance during 2000 cycles. A slow capacity decay rate of 0.034%/cycle at 2.0 C and a high initial capacity of 1368 mAh g(-1) at 0.5 C were achieved. Since the propelling redox reaction is not limited to Li-S system, we foresee the reported strategy herein can be applied in other high-power devices through the systems with controllable redox reactions.

  16. A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

    OpenAIRE

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-01-01

    Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes ...

  17. Factors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions

    Directory of Open Access Journals (Sweden)

    Chunzhen Yang

    2017-05-01

    Full Text Available Triggering the redox reaction of oxygens has become essential for the development of (electro catalytic properties of transition metal oxides, especially for perovskite materials that have been envisaged for a variety of applications such as the oxygen evolution or reduction reactions (OER and ORR, respectively, CO or hydrocarbons oxidation, NO reduction and others. While the formation of ligand hole for perovskites is well-known for solid state physicists and/or chemists and has been widely studied for the understanding of important electronic properties such as superconductivity, insulator-metal transitions, magnetoresistance, ferroelectrics, redox properties etc., oxygen electrocatalysis in aqueous media at low temperature barely scratches the surface of the concept of oxygen ions oxidation. In this review, we briefly explain the electronic structure of perovskite materials and go through a few important parameters such as the ionization potential, Madelung potential, and charge transfer energy that govern the oxidation of oxygen ions. We then describe the surface reactivity that can be induced by the redox activity of the oxygen network and the formation of highly reactive surface oxygen species before describing their participation in catalytic reactions and providing mechanistic insights and strategies for designing new (electro catalysts. Finally, we give a brief overview of the different techniques that can be employed to detect the formation of such transient oxygen species.

  18. A high-performance dual-scale porous electrode for vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zeng, Y. K.; Zhu, X. B.; Wei, L.; Zhao, T. S.

    2016-09-01

    In this work, we present a simple and cost-effective method to form a dual-scale porous electrode by KOH activation of the fibers of carbon papers. The large pores (∼10 μm), formed between carbon fibers, serve as the macroscopic pathways for high electrolyte flow rates, while the small pores (∼5 nm), formed on carbon fiber surfaces, act as active sites for rapid electrochemical reactions. It is shown that the Brunauer-Emmett-Teller specific surface area of the carbon paper is increased by a factor of 16 while maintaining the same hydraulic permeability as that of the original carbon paper electrode. We then apply the dual-scale electrode to a vanadium redox flow battery (VRFB) and demonstrate an energy efficiency ranging from 82% to 88% at current densities of 200-400 mA cm-2, which is record breaking as the highest performance of VRFB in the open literature.

  19. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling

    Science.gov (United States)

    Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar

    2017-01-01

    Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499

  20. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christine M. [Brandeis Univ., Waltham, MA (United States)

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, with the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in

  1. The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites.

    Science.gov (United States)

    Ehrhardt, Katharina; Deregnaucourt, Christiane; Goetz, Alice-Anne; Tzanova, Tzvetomira; Gallo, Valentina; Arese, Paolo; Pradines, Bruno; Adjalley, Sophie H; Bagrel, Denyse; Blandin, Stephanie; Lanzer, Michael; Davioud-Charvet, Elisabeth

    2016-09-01

    Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation.

    Science.gov (United States)

    Simon, Jillian N; Ziberna, Klemen; Casadei, Barbara

    2016-04-01

    Although the initiation, development, and maintenance of atrial fibrillation (AF) have been linked to alterations in myocyte redox state, the field lacks a complete understanding of the impact these changes may have on cellular signalling, atrial electrophysiology, and disease progression. Recent studies demonstrate spatiotemporal changes in reactive oxygen species production shortly after the induction of AF in animal models with an uncoupling of nitric oxide synthase activity ensuing in the presence of long-standing persistent AF, ultimately leading to a major shift in nitroso-redox balance. However, it remains unclear which radical or non-radical species are primarily involved in the underlying mechanisms of AF or which proteins are targeted for redox modification. In most instances, only free radical oxygen species have been assessed; yet evidence from the redox signalling field suggests that non-radical species are more likely to regulate cellular processes. A wider appreciation for the distinction of these species and how both species may be involved in the development and maintenance of AF could impact treatment strategies. In this review, we summarize how redox second-messenger systems are regulated and discuss the recent evidence for alterations in redox regulation in the atrial myocardium in the presence of AF, while identifying some critical missing links. We also examine studies looking at antioxidants for the prevention and treatment of AF and propose alternative redox targets that may serve as superior therapeutic options for the treatment of AF. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  3. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  4. Feasibility of a Supporting-Salt-Free Nonaqueous Redox Flow Battery Utilizing Ionic Active Materials.

    Science.gov (United States)

    Milshtein, Jarrod D; Fisher, Sydney L; Breault, Tanya M; Thompson, Levi T; Brushett, Fikile R

    2017-05-09

    Nonaqueous redox flow batteries (NAqRFBs) are promising devices for grid-scale energy storage, but high projected prices could limit commercial prospects. One route to reduced prices is to minimize or eliminate the expensive supporting salts typically employed in NAqRFBs. Herein, the feasibility of a flow cell operating in the absence of supporting salt by utilizing ionic active species is demonstrated. These ionic species have high conductivities in acetonitrile (12-19 mS cm -1 ) and cycle at 20 mA cm -2 with energy efficiencies (>75 %) comparable to those of state-of-the-art NAqRFBs employing high concentrations of supporting salt. A chemistry-agnostic techno-economic analysis highlights the possible cost savings of minimizing salt content in a NAqRFB. This work offers the first demonstration of a NAqRFB operating without supporting salt. The associated design principles can guide the development of future active species and could make NAqRFBs competitive with their aqueous counterparts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. NAC selectively inhibit cancer telomerase activity: A higher redox homeostasis threshold exists in cancer cells

    Directory of Open Access Journals (Sweden)

    Pengying Li

    2016-08-01

    Full Text Available Telomerase activity controls telomere length, and this plays an important role in stem cells, aging and tumors. Antioxidant was shown to protect telomerase activity in normal cells but inhibit that in cancer cells, but the underlying mechanism is elusive. Here we found that 7721 hepatoma cells held a higher redox homeostasis threshold than L02 normal liver cells which caused 7721 cells to have a higher demand for ROS; MnSOD over-expression in 7721 decreased endogenous reactive oxygen species (ROS and inhibited telomerase activity; Akt phosphorylation inhibitor and NAC both inhibited 7721 telomerase activity. The over-elimination of ROS by NAC resulted in the inhibition of Akt pathway. Our results suggest that ROS is involved in the regulation of cancer telomerase activity through Akt pathway. The different intracellular redox homeostasis and antioxidant system in normal cells and tumor cells may be the cause of the opposite effect on telomerase activity in response to NAC treatment. Our results provide a theoretical base of using antioxidants selectively inhibit cancer telomerase activity. Findings of the present study may provide insights into novel approaches for cancer treatment.

  6. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    Science.gov (United States)

    Criado, Maria; Provis, John L.

    2018-06-01

    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

  7. Cost-driven materials selection criteria for redox flow battery electrolytes

    Science.gov (United States)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  8. Characterisation of the Redox Sensitive NMDA Receptor

    KAUST Repository

    Alzahrani, Ohood

    2016-05-01

    Glucose entry into the brain and its subsequent metabolism to L-lactate, regulated by astrocytes, plays a major role in synaptic plasticity and memory formation. A recent study has shown that L-lactate produced by the brain upon stimulation of glycolysis, and glycogen-derived L-lactate from astrocytes and its transport into neurons, is crucial for memory formation. A recent study revealed the molecular mechanisms that underlie the role of L-lactate in neuronal plasticity and long-term memory formation. L-lactate was shown to induce a cascade of molecular events via modulation of redox-sensitive N-Methyl-D-aspartate (NMDA) receptor activity that was mimicked by nicotinamide adenine dinucleotide hydride (NADH) co-enzyme. This indicated that changes in cellular redox state, following L-lactate transport inside the cells and its subsequent metabolism, production of NADH, and favouring a reduced state are the key effects of L-lactate. Therefore, we are investigating the role of L-lactate in modulating NMDA receptor function via redox modulatory sites. Accordingly, crucial redox-sensitive cysteine residues, Cys320 and Cys87, of the NR2A NMDA receptor subunit are mutated using site-directed mutation, transfected, and expressed in HEK293 cells. This cellular system will then be used to characterise and monitor its activity upon Llactate stimulation, compared to the wild type. This will be achieved by calcium imaging, using fluorescent microscopy. Our data shows that L-lactate potentiated NMDA receptor activity and increased intracellular calcium influx in NR1/NR2A wild type compared to the control condition (WT NR1/NR2A perfused with (1μM) glutamate and (1μM) glycine agonist only), showing faster response initiation and slower decay rate of the calcium signal to the baseline. Additionally, stimulating with L-lactate associated with greater numbers of cells having high fluorescent intensity (peak amplitude) compared to the control. Furthermore, L-lactate rescued the

  9. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery.

    Science.gov (United States)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2013-03-13

    Employing electrolytes containing Bi(3+), bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). The influence of the Bi nanoparticles on the electrochemical performance of the VRFB is thoroughly investigated. It is confirmed that Bi is only present at the negative electrode and facilitates the redox reaction between V(II) and V(III). However, the Bi nanoparticles significantly improve the electrochemical performance of VRFB cells by enhancing the kinetics of the sluggish V(II)/V(III) redox reaction, especially under high power operation. The energy efficiency is increased by 11% at high current density (150 mA·cm(-2)) owing to faster charge transfer as compared with one without Bi. The results suggest that using Bi nanoparticles in place of noble metals offers great promise as high-performance electrodes for VRFB application.

  10. Membranes for Redox Flow Battery Applications

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  11. Membranes for redox flow battery applications.

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-06-19

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  12. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  13. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  14. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin.

    Science.gov (United States)

    Temoçin, Zülfikar; Kim, Eunkyoung; Li, Jinyang; Panzella, Lucia; Alfieri, Maria Laura; Napolitano, Alessandra; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-20

    Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O 2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.

  15. Theoretical treatment of high-frequency, large-amplitude ac voltammetry applied to ideal surface-confined redox systems

    International Nuclear Information System (INIS)

    Bell, Christopher G.; Anastassiou, Costas A.; O’Hare, Danny; Parker, Kim H.; Siggers, Jennifer H.

    2012-01-01

    Highlights: ► Theory of ac voltammetry on ideal surface-confined redox systems. ► Analytical description of the harmonics and transient of the current response. ► Solution valid for high frequency, large-amplitude sinusoidal input voltage. ► Protocol for determining system parameters from experimental current responses. - Abstract: Large-amplitude ac voltammetry, where the applied voltage is a large-amplitude sinusoidal waveform superimposed onto a dc ramp, is a powerful method for investigating the reaction kinetics of surface-confined redox species. Here we consider the large-amplitude ac voltammetric current response of a quasi-reversible, ideal, surface-confined redox system, for which the redox reaction is described by Butler–Volmer theory. We derive an approximate analytical solution, which is valid whenever the angular frequency of the sine-wave is much larger than the rate of the dc ramp and the standard kinetic rate constant of the redox reaction. We demonstrate how the third harmonic and the initial transient of the current response can be used to estimate parameters of the electrochemical system, namely the kinetic rate constant, the electron transfer coefficient, the adsorption formal potential, the initial proportion of oxidised molecules and the linear double-layer capacitance.

  16. Unusual thiol-based redox metabolism of parasitic flukes.

    Science.gov (United States)

    Tripathi, Timir; Suttiprapa, Sutas; Sripa, Banchob

    2017-08-01

    Parasitic flukes are exposed to free radicals and, to a greater extent, reactive oxygen species (ROS) during their life cycle. Despite being relentlessly exposed to ROS released by activated immune cells, these parasites can survive for many years in the host. Cellular thiol-based redox metabolism plays a crucial role in parasite survival within their hosts. Evidence shows that oxidative stress and redox homeostasis maintenance are important clinical and pathobiochemical as well as effective therapeutic principles in various diseases. The characterization of redox and antioxidant enzymes is likely to yield good target candidates for novel drugs and vaccines. The absence of active catalase in fluke parasites offers great potential for the development of chemotherapeutic agents that act by perturbing the redox equilibrium of the cell. One of the redox-sensitive enzymes, thioredoxin glutathione reductase (TGR), has been accepted as a drug target against blood fluke infections, and related clinical trials are in progress. TGR is the sole enzyme responsible for Trx and GSH reduction in parasitic flukes. The availability of helminth genomes has accelerated the research on redox metabolism of flukes; however, significant achievements have yet to be attained. The present review summarizes current knowledge on the redox and antioxidant system of the parasitic flukes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator.

    Science.gov (United States)

    Zhu, Yun Guang; Du, Yonghua; Jia, Chuankun; Zhou, Mingyue; Fan, Li; Wang, Xingzhu; Wang, Qing

    2017-05-10

    Redox flow batteries, despite great operation flexibility and scalability for large-scale energy storage, suffer from low energy density and relatively high cost as compared to the state-of-the-art Li-ion batteries. Here we report a redox flow lithium battery, which operates via the redox targeting reactions of LiFePO 4 with a bifunctional redox mediator, 2,3,5,6-tetramethyl-p-phenylenediamine, and presents superb energy density as the Li-ion battery and system flexibility as the redox flow battery. The battery has achieved a tank energy density as high as 1023 Wh/L, power density of 61 mW/cm 2 , and voltage efficiency of 91%. Operando X-ray absorption near-edge structure measurements were conducted to monitor the evolution of LiFePO 4 , which provides insightful information on the redox targeting process, critical to the device operation and optimization.

  18. Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress.

    Science.gov (United States)

    Sun, Qian; Gao, Wentao; Loughran, Patricia; Shapiro, Rick; Fan, Jie; Billiar, Timothy R; Scott, Melanie J

    2013-05-31

    Caspase 1 activation can be induced by oxidative stress, which leads to the release of the proinflammatory cytokines IL1β and IL18 in myeloid cells and a potentially damaging inflammatory response. However, little is known about the role of caspase 1 in non-immune cells, such as hepatocytes, that express and activate the inflammasome but do not produce a significant amount of IL1β/IL18. Here we demonstrate that caspase 1 activation protects against cell death after redox stress induced by hypoxia/reoxygenation in hepatocytes. Mechanistically, we show that caspase 1 reduces mitochondrial respiration and reactive oxygen species by increasing mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after hypoxia/reoxygenation. Caspase 1 increases autophagic flux through up-regulating autophagy initiator beclin 1 during redox stress and is an important cell survival factor in hepatocytes. We find that during hemorrhagic shock with resuscitation, an in vivo mouse model associated with severe hepatic redox stress, caspase 1 activation is also protective against liver injury and excessive oxidative stress through the up-regulation of beclin 1. Our findings suggest an alternative role for caspase 1 activation in promoting adaptive responses to oxidative stress and, more specifically, in limiting reactive oxygen species production and damage in cells and tissues where IL1β/IL18 are not highly expressed.

  19. Caspase 1 Activation Is Protective against Hepatocyte Cell Death by Up-regulating Beclin 1 Protein and Mitochondrial Autophagy in the Setting of Redox Stress*

    Science.gov (United States)

    Sun, Qian; Gao, Wentao; Loughran, Patricia; Shapiro, Rick; Fan, Jie; Billiar, Timothy R.; Scott, Melanie J.

    2013-01-01

    Caspase 1 activation can be induced by oxidative stress, which leads to the release of the proinflammatory cytokines IL1β and IL18 in myeloid cells and a potentially damaging inflammatory response. However, little is known about the role of caspase 1 in non-immune cells, such as hepatocytes, that express and activate the inflammasome but do not produce a significant amount of IL1β/IL18. Here we demonstrate that caspase 1 activation protects against cell death after redox stress induced by hypoxia/reoxygenation in hepatocytes. Mechanistically, we show that caspase 1 reduces mitochondrial respiration and reactive oxygen species by increasing mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after hypoxia/reoxygenation. Caspase 1 increases autophagic flux through up-regulating autophagy initiator beclin 1 during redox stress and is an important cell survival factor in hepatocytes. We find that during hemorrhagic shock with resuscitation, an in vivo mouse model associated with severe hepatic redox stress, caspase 1 activation is also protective against liver injury and excessive oxidative stress through the up-regulation of beclin 1. Our findings suggest an alternative role for caspase 1 activation in promoting adaptive responses to oxidative stress and, more specifically, in limiting reactive oxygen species production and damage in cells and tissues where IL1β/IL18 are not highly expressed. PMID:23589298

  20. STAT3-RXR-Nrf2 activates systemic redox and energy homeostasis upon steep decline in pO2 gradient.

    Science.gov (United States)

    Paul, Subhojit; Gangwar, Anamika; Bhargava, Kalpana; Ahmad, Yasmin

    2018-04-01

    Hypobaric hypoxia elicits several patho-physiological manifestations, some of which are known to be lethal. Among various molecular mechanisms proposed so far, perturbation in redox state due to imbalance between radical generation and antioxidant defence is promising. These molecular events are also related to hypoxic status of cancer cells and therefore its understanding has extended clinical advantage beyond high altitude hypoxia. In present study, however, the focus was to understand and propose a model for rapid acclimatization of high altitude visitors to enhance their performance based on molecular changes. We considered using simulated hypobaric hypoxia at some established thresholds of high altitude stratification based on known physiological effects. Previous studies have focused on the temporal aspect while overlooking the effects of varying pO 2 levels during exposure to hypobaric hypoxia. The pO 2 levels, indicative of altitude, are crucial to redox homeostasis and can be the limiting factor during acclimatization to hypobaric hypoxia. In this study we present the effects of acute (24h) exposure to high (3049m; pO 2 : 71kPa), very high (4573m; pO 2 : 59kPa) and extreme altitude (7620m; pO 2 : 40kPa) zones on lung and plasma using semi-quantitative redox specific transcripts and quantitative proteo-bioinformatics workflow in conjunction with redox stress assays. It was observed that direct exposure to extreme altitude caused 100% mortality, which turned into high survival rate after pre-exposure to 59kPa, for which molecular explanation were also found. The pO 2 of 59kPa (very high altitude zone) elicits systemic energy and redox homeostatic processes by modulating the STAT3-RXR-Nrf2 trio. Finally we posit the various processes downstream of STAT3-RXR-Nrf2 and the plasma proteins that can be used to ascertain the redox status of an individual. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Arteriovenous oscillations of the redox potential: Is the redox state influencing blood flow?

    Science.gov (United States)

    Poznanski, Jaroslaw; Szczesny, Pawel; Pawlinski, Bartosz; Mazurek, Tomasz; Zielenkiewicz, Piotr; Gajewski, Zdzislaw; Paczek, Leszek

    2017-09-01

    Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system.

  2. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  3. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice.

    Science.gov (United States)

    Navarro, Claudia D C; Figueira, Tiago R; Francisco, Annelise; Dal'Bó, Genoefa A; Ronchi, Juliana A; Rovani, Juliana C; Escanhoela, Cecilia A F; Oliveira, Helena C F; Castilho, Roger F; Vercesi, Anibal E

    2017-12-01

    The mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.B6 congenic mice with (Nnt +/+ ) or without (Nnt -/- ) NNT activity; the spontaneously mutated allele (Nnt -/- ) was inherited from the C57BL/6J mouse substrain. After 20 weeks on a HFD, Nnt -/- mice exhibited a higher prevalence of steatohepatitis and content of liver triglycerides compared to Nnt +/+ mice on an identical diet. Under a HFD, the aggravated NAFLD phenotype in the Nnt -/- mice was accompanied by an increased H 2 O 2 release rate from mitochondria, decreased aconitase activity (a redox-sensitive mitochondrial enzyme) and higher susceptibility to Ca 2+ -induced mitochondrial permeability transition. In addition, HFD led to the phosphorylation (inhibition) of pyruvate dehydrogenase (PDH) and markedly reduced the ability of liver mitochondria to remove peroxide in Nnt -/- mice. Bypass or pharmacological reactivation of PDH by dichloroacetate restored the peroxide removal capability of mitochondria from Nnt -/- mice on a HFD. Noteworthy, compared to mice that were chow-fed, the HFD did not impair peroxide removal nor elicit redox imbalance in mitochondria from Nnt +/+ mice. Therefore, HFD interacted with Nnt mutation to generate PDH inhibition and further suppression of peroxide removal. We conclude that NNT plays a critical role in counteracting mitochondrial redox imbalance, PDH inhibition and advancement of NAFLD in mice fed a HFD. The present study provide seminal experimental evidence that redox imbalance in liver mitochondria potentiates the progression from simple steatosis to steatohepatitis following a HFD. Copyright

  4. Redox homeostasis: The Golden Mean of healthy living.

    Science.gov (United States)

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  5. Recent developments in organic redox flow batteries: A critical review

    Science.gov (United States)

    Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.

    2017-08-01

    Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.

  6. Redox flow batteries having multiple electroactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Liyu; Yang, Zhenguo; Nie, Zimin

    2018-05-01

    Introducing multiple redox reactions with a suitable voltage range can improve the energy density of redox flow battery (RFB) systems. One example includes RFB systems utilizing multiple redox pairs in the positive half cell, the negative half cell, or in both. Such RFB systems can have a negative electrolyte, a positive electrolyte, and a membrane between the negative electrolyte and the positive electrolyte, in which at least two electrochemically active elements exist in the negative electrolyte, the positive electrolyte, or both.

  7. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  8. Glutathione Redox System in β-Thalassemia/Hb E Patients

    Directory of Open Access Journals (Sweden)

    Ruchaneekorn W. Kalpravidh

    2013-01-01

    Full Text Available β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH/glutathione disulfide (GSSG and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body’s first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores.

  9. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  10. Membranes for Redox Flow Battery Applications

    OpenAIRE

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. Th...

  11. Direct voltammetric determination of redox-active iron in carbon nanotubes.

    Science.gov (United States)

    Teo, Wei Zhe; Pumera, Martin

    2014-12-01

    With the advances in nanotechnology over the past decade, consumer products are increasingly being incorporated with carbon nanotubes (CNTs). As the harmful effects of CNTs are suggested to be primarily due to the bioavailable amounts of metallic impurities, it is vital to detect and quantify these species using sensitive and facile methods. Therefore, in this study, we investigated the possibility of quantifying the amount of redox-available iron-containing impurities in CNTs with voltammetric techniques such as cyclic voltammetry. We examined the electrochemistry of Fe3 O4 nanoparticles in phosphate buffer solution and discovered that its electrochemical behavior could be affected by pH of the electrolyte. By utilizing the unique redox reaction between the iron and phosphate species, the redox available iron content in CNTs was determined successfully using voltammetry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A simple method to fabricate electrochemical sensor systems with predictable high-redox amplification

    NARCIS (Netherlands)

    Straver, M.G.; Odijk, Mathieu; Olthuis, Wouter; van den Berg, Albert

    2012-01-01

    In this paper an easy to fabricate SU8/glass-based microfluidic sensor is described with two closely spaced parallel electrodes for highly selective measurements using the redox cycling effect. By varying the length of the microfluidic entrance channel, a diffusion barrier is created for non-cycling

  13. Electrochemical Switching of Conductance with Diarylethene-Based Redox-Active Polymers

    DEFF Research Database (Denmark)

    Logtenberg, Hella; van der Velde, Jasper H. M.; de Mendoza, Paula

    2012-01-01

    Reversible switching of conductance using redox triggered switching of a polymer-modified electrode is demonstrated. A bifunctional monomer comprising a central electroswitchable core and two bithiophene units enables formation of a film through anodic electropolymerization. The conductivity...... of the polymer can be switched electrochemically in a reversible manner by redox triggered opening and closing of the diarylethene unit. In the closed state, the conductivity of the modified electrode is higher than in the open state....

  14. Redox substoichiometric determination of arsenic in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Kanda, Y.; Suzuki, N.

    1979-01-01

    Redox substoichiometry is proposed for an accurate and precise determination of arsenic. This method is based on the substoichiometric oxidation of trivalent arsenic to pentavalent with potassium bromate or ceric sulfate followed by the separation of these species by thionalide extraction of trivalent arsenic. It was applied to neutron activation analysis of arsenic in the NBS SRM Orchard Leaves and the Shark Powder. The results were obtained with and excellent accuracy and precision. (author)

  15. Functionalized carbon nanotube based hybrid electrochemical capacitors using neutral bromide redox-active electrolyte for enhancing energy density

    Science.gov (United States)

    Tang, Xiaohui; Lui, Yu Hui; Chen, Bolin; Hu, Shan

    2017-06-01

    A hybrid electrochemical capacitor (EC) with enhanced energy density is realized by integrating functionalized carbon nanotube (FCNT) electrodes with redox-active electrolyte that has a neutral pH value (1 M Na2SO4 and 0.5 M KBr mixed aqueous solution). The negative electrode shows an electric double layer capacitor-type behavior. On the positive electrode, highly reversible Br-/Br3- redox reactions take place, presenting a battery-type behavior, which contributes to increase the capacitance of the hybrid cell. The voltage window of the whole cell is extended up to 1.5 V because of the high over-potentials of oxygen and hydrogen evolution reactions in the neutral electrolyte. Compared with raw CNT, the FCNT has better wettability in the aqueous electrolyte and contributes to increase the electric double layer capacitance of the cell. As a result, the maximum energy density of 28.3 Wh kg-1 is obtained from the hybrid EC at 0.5 A g-1 without sacrificing its power density, which is around 4 times larger than that of the electrical double layer capacitor constructed by FCNT electrodes and 1 M Na2SO4 electrolyte. Moreover, the discharge capacity retained 86.3% of its initial performance after 10000 cycles of galvanostatic charge and discharge test (10 A/g), suggesting its long life cycle even at high current loading.

  16. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    International Nuclear Information System (INIS)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-01

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe"2"+ is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe"2"+. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe"2"+/Fe_t_o_t_a_l ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe"2"+ were also able to buffer the reduction potential E_H between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  17. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-15

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe{sup 2+} is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe{sup 2+}. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe{sup 2+}/Fe{sub total} ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe{sup 2+} were also able to buffer the reduction potential E{sub H} between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  18. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    Science.gov (United States)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  19. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    Science.gov (United States)

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.

    2016-01-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470

  20. Redox-Active Selenium Compounds—From Toxicity and Cell Death to Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Sougat Misra

    2015-05-01

    Full Text Available Selenium is generally known as an antioxidant due to its presence in selenoproteins as selenocysteine, but it is also toxic. The toxic effects of selenium are, however, strictly concentration and chemical species dependent. One class of selenium compounds is a potent inhibitor of cell growth with remarkable tumor specificity. These redox active compounds are pro-oxidative and highly cytotoxic to tumor cells and are promising candidates to be used in chemotherapy against cancer. Herein we elaborate upon the major forms of dietary selenium compounds, their metabolic pathways, and their antioxidant and pro-oxidant potentials with emphasis on cytotoxic mechanisms. Relative cytotoxicity of inorganic selenite and organic selenocystine compounds to different cancer cells are presented as evidence to our perspective. Furthermore, new novel classes of selenium compounds specifically designed to target tumor cells are presented and the potential of selenium in modern oncology is extensively discussed.

  1. Analytical redox reactions and redox potentials of tungsten and its concomitants

    Energy Technology Data Exchange (ETDEWEB)

    Wuensch, G.; Mintrop, L.; Tracht, U.

    1985-01-01

    It is demonstrated that tungsten can be more effectively determined by redox titrimetry than by gravimetry. In addition to its inherent greater simplicity the volumetric approach offers to determine several components of the sample from consecutive redox titrations. To provide the necessary information the conditional redox potentials of W, Mo, Fe, V, Ti, Sn, Cu, Cr in HCl, HCl + HF and HCl + H/sub 3/PO/sub 4/ have been determined. Use of HF and/or H/sub 3/PO/sub 4/ allows sample preparations without any precipitation of tungstic acid. The influence of these auxiliary complexing agents on the potentials and kinetics is discussed. The titrations can be performed reductimetrically or more conveniently oxidimetrically using potentiometric or amperometric indication. The use of strongly reducing agents restricts the tolerance interval to +-0.6%, so that the gravimetric determination of tungsten remains superior for high precision analyses.

  2. Analytical redox reactions and redox potentials of tungsten and its concomitants

    International Nuclear Information System (INIS)

    Wuensch, G.; Mintrop, L.; Tracht, U.

    1985-01-01

    It is demonstrated that tungsten can be more effectively determined by redox titrimetry than by gravimetry. In addition to its inherent greater simplicity the volumetric approach offers to determine several components of the sample from consecutive redox titrations. To provide the necessary information the conditional redox potentials of W, Mo, Fe, V, Ti, Sn, Cu, Cr in HCl, HCl + HF and HCl + H 3 PO 4 have been determined. Use of HF and/or H 3 PO 4 allows sample preparations without any precipitation of tungstic acid. The influence of these auxiliary complexing agents on the potentials and kinetics is discussed. The titrations can be performed reductimetrically or more conveniently oxidimetrically using potentiometric or amperometric indication. The use of strongly reducing agents restricts the tolerance interval to +-0.6%, so that the gravimetric determination of tungsten remains superior for high precision analyses. (orig.) [de

  3. Redox-reversible perovskite ferrite cathode for high temperature solid oxide steam electrolyser

    International Nuclear Information System (INIS)

    Li, Zhe; Li, Shisong; Tseng, Chung-Jen; Tao, Shanwen; Xie, Kui

    2017-01-01

    Highlights: • Redox reversible ferrite cathode is demonstrated for solid oxide electrolyser. • Promising electrical conductivity is obtained with Pr doping in hydrogen. • High performance of steam electrolysis is achieved with ferrite cathode. - Abstract: In this work, perovskite Sr 1−x Pr x FeO 3-δ (SPF) (x = 0.02, 0.04, 0.06, 0.08 and 0.10) are investigated and employed as solid oxide steam electrolyser cathode at 800 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM) analysis together indicate that the Sr 1−x Pr x FeO 3-δ is redox reversible with a phase transition from cubic to orthorhombic structure in redox cycles. The doping of Pr in A site has remarkably enhanced the electronic conduction to 1.0–1.2 S cm −1 at intermediate temperatures in reducing atmosphere. Electrochemical measurements demonstrate that the polarization resistance with Sr 0.96 Pr 0.04 FeO 3-δ electrode shows the lowest values of 0.25 Ω cm 2 in symmetric cells in reducing atmosphere at 800 °C. Direct steam electrolysis with Sr 0.96 Pr 0.04 FeO 3-δ cathode shows a current density of 1.64 A cm −2 at 2.0 V when fed with 5%H 2 O/Ar. The hydrogen production rate reaches 4.73, 6.68, 8.35 and 10.23 mL min −1 cm −2 at 1.4, 1.6, 1.8, 2.0 V, respectively, while the highest Faraday efficiency is as high as 97.16% at 1.8 V.

  4. Redox signaling in acute pancreatitis

    Science.gov (United States)

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  5. Redox signaling in acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Salvador Pérez

    2015-08-01

    Full Text Available Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis.

  6. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    Science.gov (United States)

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  7. Thiol/disulfide redox states in signaling and sensing

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  8. A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application

    International Nuclear Information System (INIS)

    Wen, Y.H.; Zhang, H.M.; Qian, P.; Zhou, H.T.; Zhao, P.; Yi, B.L.; Yang, Y.S.

    2006-01-01

    The electrochemical behavior of the Fe(III)/Fe(II)-triethanolamine(TEA) complex redox couple in alkaline medium and influence of the concentration of TEA were investigated. A change of the concentration of TEA mainly produces the following two results. (1) With an increase of the concentration of TEA, the solubility of the Fe(III)-TEA can be increased to 0.6 M, and the solubility of the Fe(II)-TEA is up to 0.4 M. (2) In high concentration of TEA with the ratio of TEA to NaOH ranging from 1 to 6, side reaction peaks on the cathodic main reaction of the Fe(III)-TEA complex at low scan rate can be minimized. The electrode process of Fe(III)-TEA/Fe(II)-TEA is electrochemically reversible with higher reaction rate constant than the uncomplexed species. Constant current charge-discharge shows that applying anodic active materials of relatively high concentrations facilitates the improvement of cell performance. The open-circuit voltage of the Fe-TEA/Br 2 cell with the Fe(III)-TEA of 0.4 M, after full charging, is nearly 2.0 V and is about 32% higher than that of the all-vanadium batteries, together with the energy efficiency of approximately 70%. The preliminary exploration shows that the Fe(III)-TEA/Fe(II)-TEA couple is electrochemically promising as negative redox couple for redox flow battery (RFB) application

  9. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    2010-11-01

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  10. The effects of chromium(VI) on the thioredoxin system: Implications for redox regulation

    Science.gov (United States)

    Myers, Charles R.

    2014-01-01

    Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2. PMID:22542445

  11. Evaluation of in situ sulfate reduction as redox buffer capacity in groundwater flow path

    International Nuclear Information System (INIS)

    Ioka, Seiichiro; Iwatsuki, Teruki; Amano, Yuki; Furue, Ryoji

    2007-01-01

    For safety assessment of geological isolation, it is important to evaluate in situ redox buffer capacity in high-permeability zone as groundwater flow path. The study evaluated in situ sulfate reduction as redox buffer capacity in the conglomerate bedding in Toki Lignite-bearing Formation, which occurs at the lowest part of sedimentary rocks overlying basement granite. The bedding plays an important role as the main groundwater flow path. The result showed that in situ redox buffer capacity in the conglomerate bedding has been identified on first nine months, whereas in the following period the redox buffer capacity has not been identified for about fifteen months. This will be caused by the bedding became inappropriate for microbial survival as the organic matter which is needfuel for microbial activity was consumed. Thus, there will be limited redox buffer capacity in groundwater flow path even in formation including organic matter-bearing layer. (author)

  12. A catalytic approach to estimate the redox potential of heme-peroxidases

    International Nuclear Information System (INIS)

    Ayala, Marcela; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-01-01

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple

  13. Neutral Red and Ferroin as Reversible and Rapid Redox Materials for Redox Flow Batteries.

    Science.gov (United States)

    Hong, Jeehoon; Kim, Ketack

    2018-04-17

    Neutral red and ferroin are used as redox indicators (RINs) in potentiometric titrations. The rapid response and reversibility that are prerequisites for RINs are also desirable properties for the active materials in redox flow batteries (RFBs). This study describes the electrochemical properties of ferroin and neutral red as a redox pair. The rapid reaction rates of the RINs allow a cell to run at a rate of 4 C with 89 % capacity retention after the 100 th  cycle. The diffusion coefficients, electrode reaction rates, and solubilities of the RINs were determined. The electron-transfer rate constants of ferroin and neutral red are 0.11 and 0.027 cm s -1 , respectively, which are greater than those of the components of all-vanadium and Zn/Br 2 cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.

    Science.gov (United States)

    Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik

    2018-05-04

    A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.

    Science.gov (United States)

    Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang

    2017-09-01

    Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.

  16. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Park, Minjoon; Ryu, Jaechan; Cho, Jaephil

    2015-10-01

    Vanadium redox reactions have been considered as a key factor affecting the energy efficiency of the all-vanadium redox flow batteries (VRFBs). This redox reaction determines the reaction kinetics of whole cells. However, poor kinetic reversibility and catalytic activity towards the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples on the commonly used carbon substrate limit broader applications of VRFBs. Consequently, modified carbon substrates have been extensively investigated to improve vanadium redox reactions. In this Focus Review, recent progress on metal- and carbon-based nanomaterials as an electrocatalyst for VRFBs is discussed in detail, without the intention to provide a comprehensive review on the whole components of the system. Instead, the focus is mainly placed on the redox chemistry of vanadium ions at a surface of various metals, different dimensional carbons, nitrogen-doped carbon nanostructures, and metal-carbon composites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation

    International Nuclear Information System (INIS)

    Giannoni, Elisa; Raugei, Giovanni; Chiarugi, Paola; Ramponi, Giampietro

    2006-01-01

    Low molecular weight-PTP has been reported as a redox-sensitive protein during both platelet-derived growth factor and integrin signalling. In response to oxidation the phosphatase undergoes a reversible inactivation, which in turn leads to the increase in tyrosine phosphorylation of its substrates and the properly executed anchorage-dependent proliferation program. Here, we report that an exogenous oxidative stress enhances LMW-PTP tyrosine phosphorylation, through oxidation/inactivation of the enzyme, thus preventing its auto-dephosphorylation activity. In particular, we observed a selective hyper-phosphorylation of Tyr132, that acts as a docking site for the adaptor protein Grb2. The redox-dependent enhancement of Grb2 recruitment to LMW-PTP ultimately leads to an improvement of ERK activation, likely triggering a prosurvival signal against the oxidant environment

  18. Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation

    Science.gov (United States)

    Korkina, Liudmila G.; Mayer, Wolfgang; de Luca, Chiara

    2017-01-01

    Recently, aggressive advertisement claimed a “magic role” for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully “biological” anti-age cosmetics. PMID:28498360

  19. Redox imbalance and mitochondrial abnormalities in the diabetic lung.

    Science.gov (United States)

    Wu, Jinzi; Jin, Zhen; Yan, Liang-Jun

    2017-04-01

    Although the lung is one of the least studied organs in diabetes, increasing evidence indicates that it is an inevitable target of diabetic complications. Nevertheless, the underlying biochemical mechanisms of lung injury in diabetes remain largely unexplored. Given that redox imbalance, oxidative stress, and mitochondrial dysfunction have been implicated in diabetic tissue injury, we set out to investigate mechanisms of lung injury in diabetes. The objective of this study was to evaluate NADH/NAD + redox status, oxidative stress, and mitochondrial abnormalities in the diabetic lung. Using STZ induced diabetes in rat as a model, we measured redox-imbalance related parameters including aldose reductase activity, level of poly ADP ribose polymerase (PAPR-1), NAD + content, NADPH content, reduced form of glutathione (GSH), and glucose 6-phophate dehydrogenase (G6PD) activity. For assessment of mitochondrial abnormalities in the diabetic lung, we measured the activities of mitochondrial electron transport chain complexes I to IV and complex V as well as dihydrolipoamide dehydrogenase (DLDH) content and activity. We also measured the protein content of NAD + dependent enzymes such as sirtuin3 (sirt3) and NAD(P)H: quinone oxidoreductase 1 (NQO1). Our results demonstrate that NADH/NAD + redox imbalance occurs in the diabetic lung. This redox imbalance upregulates the activities of complexes I to IV, but not complex V; and this upregulation is likely the source of increased mitochondrial ROS production, oxidative stress, and cell death in the diabetic lung. These results, together with the findings that the protein contents of DLDH, sirt3, and NQO1 all are decreased in the diabetic lung, demonstrate that redox imbalance, mitochondrial abnormality, and oxidative stress contribute to lung injury in diabetes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cho, KT; Ridgway, P; Weber, AZ; Haussener, S; Battaglia, V; Srinivasan, V

    2012-01-01

    The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.018211jes] All rights reserved.

  1. Assessing the impact of electrolyte conductivity and viscosity on the reactor cost and pressure drop of redox-active polymer flow batteries

    Science.gov (United States)

    Iyer, Vinay A.; Schuh, Jonathon K.; Montoto, Elena C.; Pavan Nemani, V.; Qian, Shaoyi; Nagarjuna, Gavvalapalli; Rodríguez-López, Joaquín; Ewoldt, Randy H.; Smith, Kyle C.

    2017-09-01

    Redox-active small molecules, used traditionally in redox flow batteries (RFBs), are susceptible to crossover and require expensive ion exchange membranes (IEMs) to achieve long lifetimes. Redox-active polymer (RAP) solutions show promise as candidate electrolytes to mitigate crossover through size-exclusion, enabling the use of porous separators instead of IEMs. Here, poly(vinylbenzyl ethyl viologen) is studied as a surrogate RAP for RFBs. For oxidized RAPs, ionic conductivity varies weakly between 1.6 and 2.1 S m-1 for RAP concentrations of 0.13-1.27 mol kg-1 (monomeric repeat unit per kg solvent) and 0.32 mol kg-1 LiBF4 with a minor increase upon reduction. In contrast, viscosity varies between 1.8 and 184.0 mPa s over the same concentration range with weakly shear-thinning rheology independent of oxidation state. Techno-economic analysis is used to quantify reactor cost as a function of electrolyte transport properties for RAP concentrations of 0.13-1.27 mol kg-1, assuming a hypothetical 3V cell and facile kinetics. Among these concentrations, reactor cost is minimized over a current density range of 600-1000 A m-2 with minimum reactor cost between 11-17 per kWh, and pumping pressures below 10 kPa. The predicted low reactor cost of RAP RFBs is enabled by sustained ionic mobility in spite of the high viscosity of concentrated RAP solutions.

  2. The Role of Ru Redox in pH-Dependent Oxygen Evolution on Rutile Ruthenium Dioxide Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A.; Rao, Reshma R.; Wang, Xiao Renshaw; Hong, Wesley T.; Rouleau, Christopher M.; Shao-Horn, Yang

    2017-05-01

    Rutile RuO2 is known to exhibit high catalytic activity for the oxygen evolution reaction (OER) and large pseudocapacitance associated with redox of surface Ru, however the mechanistic link between these properties and the role of pH is yet to be understood. Here we report that the OER activities of the (101), (001) and (111) RuO2 surfaces were found to increase while the potential of a pseudocapacitive feature just prior to OER shifted to lower potentials (“super-Nernstian” shift) with increasing pH on the reversible hydrogen electrode (RHE) scale. This behavior is in contrast to the (100) and (110) surfaces that have pH-independent Ru redox and OER activity. The link in catalytic and pseudocapacitive behavior illustrates the importance of this redox feature in generating active sites, building new mechanistic understanding of the OER.

  3. Redox Impact on Starch Biosynthetic Enzymes in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna

    Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism are coordina......Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism...... are coordinated by the redox state of the cell via post-translational modification of the starch metabolic enzymes containing redox active cysteine residues and these cysteine residues became cross-linked upon oxidation providing a conformational change leading to activity loss; 2) cysteine residues...... of chloroplast enzymes can play a role not only in enzyme activity and redox sensitivity but also in protein folding and stability upon oxidation. Several redox sensitive enzymes identified in this study can serve as potential targets to control the carbon flux to and from starch during the day and night...

  4. Effect of organic additives on positive electrolyte for vanadium redox battery

    International Nuclear Information System (INIS)

    Li Sha; Huang Kelong; Liu Suqin; Fang Dong; Wu Xiongwei; Lu Dan; Wu Tao

    2011-01-01

    Highlights: → Four organics as electrolyte additives of vanadium redox battery. → Changes are examined in the electrochemical properties of vanadium redox battery. → D-sorbitol is a suitable additive to the electrolyte for the vanadium redox battery. → The mechanism of improvement is discussed in detail. - Abstract: Fructose, mannitol, glucose, D-sorbitol are explored as additives in electrolyte for vanadium redox battery (VRB), respectively. The effects of additives on electrolyte are studied by cyclic voltammetry (CV), charge-discharge technique, electrochemical impedance spectroscopy (EIS) and Raman spectroscopy. The results indicate that the vanadium redox cell using the electrolyte with the additive of D-sorbitol exhibits the best electrochemical performance (the energy efficiency 81.8%). The EIS results indicate that the electrochemical activity of the electrolyte is improved by adding D-sorbitol, which can be interpreted as the increase of available (-OH) groups providing active sites for electron transfer. The Raman spectra show that VO 2+ ions take part in forming a complex with the D-sorbitol, which not only improve solubility of V(V) electrolyte, but also provide more activity sites for the V(IV)/V(V) redox reaction.

  5. Effect of organic additives on positive electrolyte for vanadium redox battery

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Huang Kelong, E-mail: lisha_csu@163.com [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu Suqin; Fang Dong; Wu Xiongwei; Lu Dan; Wu Tao [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2011-06-30

    Highlights: > Four organics as electrolyte additives of vanadium redox battery. > Changes are examined in the electrochemical properties of vanadium redox battery. > D-sorbitol is a suitable additive to the electrolyte for the vanadium redox battery. > The mechanism of improvement is discussed in detail. - Abstract: Fructose, mannitol, glucose, D-sorbitol are explored as additives in electrolyte for vanadium redox battery (VRB), respectively. The effects of additives on electrolyte are studied by cyclic voltammetry (CV), charge-discharge technique, electrochemical impedance spectroscopy (EIS) and Raman spectroscopy. The results indicate that the vanadium redox cell using the electrolyte with the additive of D-sorbitol exhibits the best electrochemical performance (the energy efficiency 81.8%). The EIS results indicate that the electrochemical activity of the electrolyte is improved by adding D-sorbitol, which can be interpreted as the increase of available (-OH) groups providing active sites for electron transfer. The Raman spectra show that VO{sup 2+} ions take part in forming a complex with the D-sorbitol, which not only improve solubility of V(V) electrolyte, but also provide more activity sites for the V(IV)/V(V) redox reaction.

  6. Redox non-innocent ligands: versatile new tools to control catalytic reactions

    NARCIS (Netherlands)

    Lyaskovskyy, V.; de Bruin, B.

    2012-01-01

    In this (tutorial overview) perspective we highlight the use of "redox non-innocent" ligands in catalysis. Two main types of reactivity in which the redox non-innocent ligand is involved can be specified: (A) The redox active ligand participates in the catalytic cycle only by accepting/donating

  7. Sediment phosphorus speciation and mobility under dynamic redox conditions

    Science.gov (United States)

    Parsons, Chris T.; Rezanezhad, Fereidoun; O'Connell, David W.; Van Cappellen, Philippe

    2017-07-01

    Anthropogenic nutrient enrichment has caused phosphorus (P) accumulation in many freshwater sediments, raising concerns that internal loading from legacy P may delay the recovery of aquatic ecosystems suffering from eutrophication. Benthic recycling of P strongly depends on the redox regime within surficial sediment. In many shallow environments, redox conditions tend to be highly dynamic as a result of, among others, bioturbation by macrofauna, root activity, sediment resuspension and seasonal variations in bottom-water oxygen (O2) concentrations. To gain insight into the mobility and biogeochemistry of P under fluctuating redox conditions, a suspension of sediment from a hypereutrophic freshwater marsh was exposed to alternating 7-day periods of purging with air and nitrogen gas (N2), for a total duration of 74 days, in a bioreactor system. We present comprehensive data time series of bulk aqueous- and solid-phase chemistry, solid-phase phosphorus speciation and hydrolytic enzyme activities demonstrating the mass balanced redistribution of P in sediment during redox cycling. Aqueous phosphate concentrations remained low ( ˜ 2.5 µM) under oxic conditions due to sorption to iron(III) oxyhydroxides. During anoxic periods, once nitrate was depleted, the reductive dissolution of iron(III) oxyhydroxides released P. However, only 4.5 % of the released P accumulated in solution while the rest was redistributed between the MgCl2 and NaHCO3 extractable fractions of the solid phase. Thus, under the short redox fluctuations imposed in the experiments, P remobilization to the aqueous phase remained relatively limited. Orthophosphate predominated at all times during the experiment in both the solid and aqueous phase. Combined P monoesters and diesters accounted for between 9 and 16 % of sediment particulate P. Phosphatase activities up to 2.4 mmol h-1 kg-1 indicated the potential for rapid mineralization of organic P (Po), in particular during periods of aeration when the

  8. Electron transfer across the polarized interface between water and a hydrophobic redox-active ionic liquid

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Trojánek, Antonín; Samec, Zdeněk

    2010-01-01

    Roč. 12, č. 10 (2010), s. 1333-1335 ISSN 1388-2481 R&D Projects: GA MŠk ME08098; GA ČR GAP206/10/1231 Institutional research plan: CEZ:AV0Z40400503 Keywords : redox-active ionic liquid * membrane * cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 4.282, year: 2010

  9. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.

    Science.gov (United States)

    Groten, Karin; Dutilleul, Christelle; van Heerden, Philippus D R; Vanacker, Hélène; Bernard, Stéphanie; Finkemeier, Iris; Dietz, Karl-Josef; Foyer, Christine H

    2006-02-20

    Redox factors contributing to nodule senescence were studied in pea. The abundance of the nodule cytosolic peroxiredoxin but not the mitochondrial peroxiredoxin protein was modulated by ascorbate. In contrast to redox-active antioxidants such as ascorbate and cytosolic peroxiredoxin that decreased during nodule development, maximal extractable nodule proteinase activity increased progressively as the nodules aged. Cathepsin-like activities were constant throughout development but serine and cysteine proteinase activities increased during senescence. Senescence-induced cysteine proteinase activity was inhibited by cysteine, dithiotreitol, or E-64. Senescence-dependent decreases in redox-active factors, particularly ascorbate and peroxiredoxin favour decreased redox-mediated inactivation of cysteine proteinases.

  10. A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes.

    Science.gov (United States)

    Kim, Myeongjin; Yoo, Jeeyoung; Kim, Jooheon

    2017-05-23

    A unique redox active flexible solid-state asymmetric supercapacitor with ultra-high capacitance and energy density was fabricated using a composite comprising MgCo 2 O 4 nanoneedles and micro and mesoporous silicon carbide flakes (SiCF) (SiCF/MgCo 2 O 4 ) as the positive electrode material. Due to the synergistic effect of the two materials, this hybrid electrode has a high specific capacitance of 516.7 F g -1 at a scan rate of 5 mV s -1 in a 1 M KOH aqueous electrolyte. To obtain a reasonable matching of positive and negative electrode pairs, a composite of Fe 3 O 4 nanoparticles and SiCF (SiCF/Fe 3 O 4 ) was synthesized for use as a negative electrode material, which shows a high capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 . Therefore, by pairing the SiCF/MgCo 2 O 4 positive electrode and the SiCF/Fe 3 O 4 negative electrode with a redox active quasi-solid-state PVA-KOH-p-nitroaniline (PVA-KOH-PNA) gel electrolyte, a novel solid-state asymmetric supercapacitor device was assembled. Because of the synergistic effect between the highly porous SiCF and the vigorous redox-reaction of metal oxides, the hybrid nanostructure electrodes exhibited outstanding charge storage and transport. In addition, the redox active PVA-KOH-PNA electrolyte adds additional pseudocapacitance, which arises from the nitro-reduction and oxidation and reduction process of the reduction product of p-phenylenediamine, resulting in an enhancement of the capacitance (a specific capacitance of 161.77 F g -1 at a scan rate of 5 mV s -1 ) and energy density (maximum energy density of 72.79 Wh kg -1 at a power density of 727.96 W kg -1 ).

  11. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species...... (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model...... organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  12. Metabolic Control of Redox and Redox Control of Metabolism in Plants

    Science.gov (United States)

    Fernie, Alisdair R.

    2014-01-01

    Abstract Significance: Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. Recent Advances: The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. Critical Issues: It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. Future Directions: Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and

  13. Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules.

    Science.gov (United States)

    Harper, Jason C; Polsky, Ronen; Wheeler, David R; Brozik, Susan M

    2008-03-04

    A versatile and simple method is introduced for formation of maleimide-functionalized surfaces using maleimide-activated aryl diazonium salts. We show for the first time electrodeposition of N-(4-diazophenyl)maleimide tetrafluoroborate on gold and carbon electrodes which was characterized via voltammetry, grazing angle FTIR, and ellipsometry. Electrodeposition conditions were used to control film thickness and yielded submonolayer-to-multilayer grafting. The resulting phenylmaleimide surfaces served as effective coupling agents for electrode functionalization with ferrocene and the redox-active protein cytochrome c. The utility of phenylmaleimide diazonium toward formation of a diazonium-activated conjugate, followed by direct electrodeposition of the diazonium-modified DNA onto the electrode surface, was also demonstrated. Effective electron transfer was obtained between immobilized molecules and the electrodes. This novel application of N-phenylmaleimide diazonium may facilitate the development of bioelectronic devices including biofuel cells, biosensors, and DNA and protein microarrays.

  14. Fenton Redox Chemistry : Arsenite Oxidation by Metallic Surfaces

    NARCIS (Netherlands)

    Borges Freitas, S.C.; Van Halem, D.; Badruzzaman, A.B.M.; Van der Meer, W.G.J.

    2014-01-01

    Pre-oxidation of As(III) is necessary in arsenic removal processes in order to increase its efficiency. Therefore, the Fenton Redox Chemistry is defined by catalytic activation of H2O2 and currently common used for its redox oxidative properties. In this study the effect of H2O2 production catalysed

  15. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    Science.gov (United States)

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. An application of actinide elements for a redox flow battery

    International Nuclear Information System (INIS)

    Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The electrochemical properties of U, Np, Pu and Am were discussed from the viewpoint of cell active materials. From the thermodynamic properties and the kinetics of electrode reactions, it is found that neptunium in the aqueous system can be utilized as an active material of the redox flow battery for the electric power storage. A new neptunium redox battery is proposed in the present article: the galvanic cell is expressed by (-)|Np 3+ , Np 4+ |NpO 2 + , NpO 2 2+ |(+). The neptunium battery is expected to have more excellent charge and discharge performance than the current vanadium battery, whereas the thermodynamic one of the former is comparable to the latter. For the development of a uranium redox battery, the application of the redox reactions in the non-aqueous solvents is essential. (author)

  17. The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2012-01-01

    Highlights: ► SWCNT shows excellent electrochemical catalytic activity towards VO 2 + /VO 2+ and V 3+ /V 2+ redox couples. ► The anodic reactions are more sensitive to the surface oxygen atom content change compared with the cathodic reactions. ► The enhanced battery performance clearly demonstrated that the SWCNT is suitable to be used as an electrode catalyst for VRFB. - Abstract: Single-walled carbon nanotube (SWCNT) was used as an electrode catalyst for an all vanadium redox flow battery (VRFB). The electrochemical property of SWCNT towards VO 2 + /VO 2+ and V 3+ /V 2+ was carefully characterized by cyclic voltammetric (CV) and electrochemical impedance spectroscopy (EIS) measurements. The peak current values for these redox pairs were significantly higher on the modified glassy carbon electrode compared with those obtained on the bare electrode, suggesting the excellent electrochemical activity of the SWCNT. Moreover, it was proved that the anodic process was more dependent on the surface oxygen of the SWCNT than the cathodic process through changing its surface oxygen content. Detailed EIS analysis of different modified electrodes revealed that the charge and mass transfer processes were accelerated at the modified electrode–electrolyte interface, which could be ascribed to the large specific surface area, the surface defects and the oxygen functional groups of the SWCNT. The enhanced battery performance effectively demonstrated that the SWCNT was suitable to serve as an electrode catalyst for the VRFB.

  18. Specific inhibition of the redox activity of ape1/ref-1 by e3330 blocks tnf-α-induced activation of IL-8 production in liver cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Laura Cesaratto

    Full Text Available APE1/Ref-1 is a main regulator of cellular response to oxidative stress via DNA-repair function and co-activating activity on the NF-κB transcription factor. APE1 is central in controlling the oxidative stress-based inflammatory processes through modulation of cytokines expression and its overexpression is responsible for the onset of chemoresistance in different tumors including hepatic cancer. We examined the functional role of APE1 overexpression during hepatic cell damage related to fatty acid accumulation and the role of the redox function of APE1 in the inflammatory process. HepG2 cells were stably transfected with functional and non-functional APE1 encoding plasmids and the protective effect of APE1 overexpression toward genotoxic compounds or FAs accumulation, was tested. JHH6 cells were stimulated with TNF-α in the presence or absence of E3330, an APE1 redox inhibitor. IL-8 promoter activity was assessed by a luciferase reporter assay, gene expression by Real-Time PCR and cytokines (IL-6, IL-8, IL-12 levels measured by ELISA. APE1 over-expression did not prevent cytotoxicity induced by lipid accumulation. E3330 treatment prevented the functional activation of NF-κB via the alteration of APE1 subcellular trafficking and reduced IL-6 and IL-8 expression induced by TNF-α and FAs accumulation through blockage of the redox-mediated activation of NF-κB. APE1 overexpression observed in hepatic cancer cells may reflect an adaptive response to cell damage and may be responsible for further cell resistance to chemotherapy and for the onset of inflammatory response. The efficacy of the inhibition of APE1 redox activity in blocking TNF-α and FAs induced inflammatory response opens new perspectives for treatment of inflammatory-based liver diseases.

  19. Specific Inhibition of the Redox Activity of Ape1/Ref-1 by E3330 Blocks Tnf-Α-Induced Activation of Il-8 Production in Liver Cancer Cell Lines

    Science.gov (United States)

    Vascotto, Carlo; Leonardi, Antonio; Kelley, Mark R.; Tiribelli, Claudio; Tell, Gianluca

    2013-01-01

    APE1/Ref-1 is a main regulator of cellular response to oxidative stress via DNA-repair function and co-activating activity on the NF-κB transcription factor. APE1 is central in controlling the oxidative stress-based inflammatory processes through modulation of cytokines expression and its overexpression is responsible for the onset of chemoresistance in different tumors including hepatic cancer. We examined the functional role of APE1 overexpression during hepatic cell damage related to fatty acid accumulation and the role of the redox function of APE1 in the inflammatory process. HepG2 cells were stably transfected with functional and non-functional APE1 encoding plasmids and the protective effect of APE1 overexpression toward genotoxic compounds or FAs accumulation, was tested. JHH6 cells were stimulated with TNF-α in the presence or absence of E3330, an APE1 redox inhibitor. IL-8 promoter activity was assessed by a luciferase reporter assay, gene expression by Real-Time PCR and cytokines (IL-6, IL-8, IL-12) levels measured by ELISA. APE1 over-expression did not prevent cytotoxicity induced by lipid accumulation. E3330 treatment prevented the functional activation of NF-κB via the alteration of APE1 subcellular trafficking and reduced IL-6 and IL-8 expression induced by TNF-α and FAs accumulation through blockage of the redox-mediated activation of NF-κB. APE1 overexpression observed in hepatic cancer cells may reflect an adaptive response to cell damage and may be responsible for further cell resistance to chemotherapy and for the onset of inflammatory response. The efficacy of the inhibition of APE1 redox activity in blocking TNF-α and FAs induced inflammatory response opens new perspectives for treatment of inflammatory-based liver diseases. PMID:23967134

  20. Iron and Zinc Complexes of Bulky Bis-Imidazole Ligands : Enzyme Mimicry and Ligand-Centered Redox Activity

    NARCIS (Netherlands)

    Folkertsma, E.

    2016-01-01

    The research described in this thesis is directed to the development of cheap and non-toxic iron-based homogeneous catalysts, using enzyme models and redox non-innocent ligands. Inspired by nature, the first approach focuses on the synthesis of structural models of the active site of non-heme iron

  1. Measurement of the Structure and Molecular Dynamics of Ionic Solutions for Redox Flow Battery

    Science.gov (United States)

    Li, Zhixia; Robertson, Lily; Moore, Jeffery; Zhang, Yang

    Redox flow battery (RFB) is a promising electrical energy storage technology with great potential to finally realize alternative energy sources for the next-generation vehicles and at grid scales. The design of RFB is unique as the power scales separately from the energy capacity. The latter depends on the size of storage tanks and the concentration of the active materials. Redox-active organic molecules are excellent candidates with high synthetic tunability for both redox properties as well as, importantly, solubility. However, upon increasing concentrations, the flow cell has less cycling stability and more capacity fade. Further, after charging the battery, the viscosity increases while the ionic conductivity decreases, and thus the cell becomes overall ineffective. To understand the mechanism of the increased viscosity, we performed differential scanning calorimetry, wide and small angle X-rays scattering, and quasi-elastic neutron scattering measurements. Herein, we will present the measurement results and relative analysis.

  2. Dimensional behavior of Ni-YSZ composites during redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Larsen, Peter Halvor

    2009-01-01

    The dimensional behavior of Ni-yttria-stabilized zirconia (YSZ) cermets during redox cycling was tested in dilatometry within the temperature range 600-1000 degrees C. The effect Of humidity oil redox stability was investigated at intermediate and low temperatures. We show that both the sintering...... of nickel depending on temperature of the initial reduction and the operating conditions, and the temperature of reoxidation are very important for the size of the dimensional change. Cumulative redox strain (CRS) is shown to be correlated with temperature. Measured maximum CRS after three redox cycles...... varies within 0.25-3.2% dL/L in dry gas and respective temperature range of 600-1000 degrees C. A high degree of redox reversibility was reached at low temperature. however. reversibility is lost at elevated temperatures. We found that at 850 degrees C, 6% steam and a very high p(H2O)/p(H2) ratio...

  3. Modulation of redox regulatory molecules and electron transport chain activity in muscle of air breathing fish Heteropneustes fossilis under air exposure stress.

    Science.gov (United States)

    Paital, Biswaranjan

    2014-01-01

    Responses of redox regulatory system to long-term survival (>18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 °C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.

  4. Redox regulation of plant development.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2014-09-20

    We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.

  5. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering.

    Science.gov (United States)

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-08-01

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO 4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.

  6. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.

    Science.gov (United States)

    Hwang, Byunghyun; Park, Min-Sik; Kim, Ketack

    2015-01-01

    Ferrocene and cobaltocene and their derivatives are studied as new redox materials for redox flow cells. Their high reaction rates and moderate solubility are attractive properties for their use as active materials. The cyclability experiments are carried out in a static cell; the results showed that these materials exhibit stable capacity retention and predictable discharge potentials, which agree with the potential values from the cyclic voltammograms. The diffusion coefficients of these materials are 2 to 7 times higher than those of other non-aqueous materials such as vanadium acetylacetonate, iron tris(2,2'-bipyridine) complexes, and an organic benzene derivative. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The N-terminal domain of human DNA helicase Rtel1 contains a redox active iron-sulfur cluster.

    Science.gov (United States)

    Landry, Aaron P; Ding, Huangen

    2014-01-01

    Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN) expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of -248 ± 10 mV (pH 8.0). The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss) and double-stranded (ds) DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1.

  8. The N-Terminal Domain of Human DNA Helicase Rtel1 Contains a Redox Active Iron-Sulfur Cluster

    Directory of Open Access Journals (Sweden)

    Aaron P. Landry

    2014-01-01

    Full Text Available Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of −248 ± 10 mV (pH 8.0. The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss and double-stranded (ds DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1.

  9. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator......The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... metabolic pathways and for optimizing chloroplast functions. The redox poise of photosynthetic electron transport components like plastoquinone is crucial to initiate signaling cascades and might also be involved in key biosynthetic pathways such as chlorophyll biosynthesis. We, therefore, explored...

  10. ETL 1 kW redox flow cell

    International Nuclear Information System (INIS)

    Nozaki, K.; Ozawa, T.

    1984-01-01

    A 1 kW scale redox flow cell system was set up in the laboratory (ETL), while three different types of batteries were also assembled by private companies in early 1983. In this article, this cell system is described. The concept of a modern type redox flow cell is based on a couple of fully soluble redox ions and a highly selective ion-exchange membrane. In the cell, the redox ion stored in a tank is flowed to and reduced on the electrode, while the other ion is also flowed to and oxidized on the other electrode. This electrochemical reaction produces electronic current in the external circuit and ionic current through the membrane sandwiched as a separator between the two electrodes. The reverse reaction proceeds in the charging process. In ETL, the concept was preliminarily tested, and conceptual design and cost estimation of the redox flow cells were carried out to confirm the feasibility; the R and D started on these bases in 1975

  11. Extracting the redox orbitals in Li battery materials with high-resolution x-ray compton scattering spectroscopy.

    Science.gov (United States)

    Suzuki, K; Barbiellini, B; Orikasa, Y; Go, N; Sakurai, H; Kaprzyk, S; Itou, M; Yamamoto, K; Uchimoto, Y; Wang, Yung Jui; Hafiz, H; Bansil, A; Sakurai, Y

    2015-02-27

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel Li_{x}Mn_{2}O_{4}, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.

  12. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide....../tri-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  13. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  14. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.

  15. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-01-01

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.

  16. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes...... with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet...... supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support....

  17. Electrochemical and AFM characterization on gold and carbon electrodes of a high redox potential laccase from Fusarium proliferatum.

    Science.gov (United States)

    González Arzola, K; Gimeno, Y; Arévalo, M C; Falcón, M A; Hernández Creus, A

    2010-08-01

    The redox potential of the T1 copper site of laccase from Fusarium proliferatum was determined by titration to be about 510 mV vs. SCE (750 mV vs. NHE), which makes it a high redox potential enzyme. Anaerobic electron transfer reactions between laccase and carbon and gold electrodes were detected, both in solution and when the enzyme was adsorbed on these surfaces. In solution, a single high-potential signal (660 mV vs. SCE) was recorded at the carbon surfaces, attributable to the T1 copper site of the enzyme. However, a well-defined oxidative process at about 660 mV and an anodic wave at 350 mV vs. SCE were recorded at the gold electrode, respectively associated with the T1 and T2 copper sites. Laccase-modified carbon electrodes behaved analogously when the enzyme was in solution, unlike laccase adsorbed on gold, which showed only a low-potential signal. Laccase molecules were successfully imaged by AFM; obtaining a thick compact stable film on Au(111), and large aggregates forming a complex network of small branches leaving voids on the HOPG surface. Laccase-modified carbon electrodes retained significant enzymatic activity, efficiently oxidising violuric acid and reducing molecular oxygen. Explanations are proposed for how protein-film organisation affects the electrode function. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.

    Science.gov (United States)

    Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun

    2016-08-30

    Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved.

  19. Graphene-Nanowall-Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2+/VO2+ Couple for All Vanadium Redox Flow Battery.

    Science.gov (United States)

    Li, Wenyue; Zhang, Zhenyu; Tang, Yongbing; Bian, Haidong; Ng, Tsz-Wai; Zhang, Wenjun; Lee, Chun-Sing

    2016-04-01

    3D graphene-nanowall-decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graphene edges with good catalytic activities to the vanadium ions. As a result, the VRFB with this novel electrode shows three times higher reaction rate toward VO 2 + /VO 2+ redox couple and 11% increased energy efficiency over VRFB with an unmodified CF electrode. Moreover, this designed architecture shows excellent stability in the battery operation. After 100 charging-discharging cycles, the electrode not only shows no observable morphology change, it can also be reused in another battery and practical with the same performance. It is believed that this novel structure including the synthesis procedure will provide a new developing direction for the VRFB electrode.

  20. Graphene‐Nanowall‐Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2 +/VO2+ Couple for All Vanadium Redox Flow Battery

    Science.gov (United States)

    Li, Wenyue; Zhang, Zhenyu; Bian, Haidong; Ng, Tsz‐Wai

    2015-01-01

    3D graphene‐nanowall‐decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graphene edges with good catalytic activities to the vanadium ions. As a result, the VRFB with this novel electrode shows three times higher reaction rate toward VO2 +/VO2+ redox couple and 11% increased energy efficiency over VRFB with an unmodified CF electrode. Moreover, this designed architecture shows excellent stability in the battery operation. After 100 charging–discharging cycles, the electrode not only shows no observable morphology change, it can also be reused in another battery and practical with the same performance. It is believed that this novel structure including the synthesis procedure will provide a new developing direction for the VRFB electrode. PMID:27774399

  1. Energy efficiency of neptunium redox battery in comparison with vanadium battery

    International Nuclear Information System (INIS)

    Yamamura, T.; Watanabe, N.; Shiokawa, Y.

    2006-01-01

    A neptunium ion possesses two isostructural and reversible redox couples (Np 3+ /Np 4+ and NpO 2 + /NpO 2 2+ ) and is therefore suitable as an active material for a redox-flow battery. Since the plastic formed carbon (PFC) is known to show the largest k values for Np(IV)/Np(III) and Np(V)/Np(VI) reactions among various carbon electrodes, a cell was constructed by using the PFC, with the circulation induced by bubbling gas through the electrolyte. In discharge experiments with a neptunium and a vanadium battery using the cell, the former showed a lower voltage loss which suggests a smaller reaction overvoltage. Because of the high radioactivity of the neptunium, it was difficult to obtain sufficient circulation required for the redox-flow battery, therefore a model for evaluating the energy efficiency of the redox-flow battery was developed. By using the known k values for neptunium and vanadium electrode reactions at PFC electrodes, the energy efficiency of the neptunium battery was calculated to be 99.1% at 70 mA cm -2 , which exceeds that of the vanadium battery by ca. 16%

  2. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jinsheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Wang Min [School of Medicine, Ehime University, Toon 791-0295 (Japan); Yang Zhenyu [Department of Chemistry, Nanchang University, Jiangxi 330047 (China); Wang Zhong [School of Medicine, Ehime University, Toon 791-0295 (Japan); Wang Huaisheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Yang Zhengyu [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101 (China)

    2007-07-30

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay.

  3. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Zhao Jinsheng; Wang Min; Yang Zhenyu; Wang Zhong; Wang Huaisheng; Yang Zhengyu

    2007-01-01

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay

  4. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.

    Science.gov (United States)

    Ren, Xiaoyuan; Zou, Lili; Zhang, Xu; Branco, Vasco; Wang, Jun; Carvalho, Cristina; Holmgren, Arne; Lu, Jun

    2017-11-01

    The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.

  5. Nrf2 and Redox Status in Prediabetic and Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Angélica S. Jiménez-Osorio

    2014-11-01

    Full Text Available The redox status associated with nuclear factor erythroid 2-related factor-2 (Nrf2 was evaluated in prediabetic and diabetic subjects. Total antioxidant status (TAS in plasma and erythrocytes, glutathione (GSH and malondialdehyde (MDA content and activity of antioxidant enzymes were measured as redox status markers in 259 controls, 111 prediabetics and 186 diabetic type 2 subjects. Nrf2 was measured in nuclear extract fractions from peripheral blood mononuclear cells (PBMC. Nrf2 levels were lower in prediabetic and diabetic patients. TAS, GSH and activity of glutamate cysteine ligase were lower in diabetic subjects. An increase of MDA and superoxide dismutase activity was found in diabetic subjects. These results suggest that low levels of Nrf2 are involved in the development of oxidative stress and redox status disbalance in diabetic patients.

  6. One-step synthesis of redox-active polymer/AU nanocomposites for electrochemical immunoassay of multiplexed tumor markers.

    Science.gov (United States)

    Liu, Zhimin; Rong, Qinfeng; Ma, Zhanfang; Han, Hongliang

    2015-03-15

    In this work, a simple and sensitive multiplexed immunoassay protocol for simultaneous electrochemical determination of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) was designed using redox-active nanocomposites. As the redox-active species, the poly(o-phenylenediamine) (POPD)/Au nanocomposite and poly(vinyl ferrocene-2-aminothiophenol) (poly(VFc-ATP))/Au nanocomposite were obtained by one-step method which HAuCl4 was used as the oxidant. With Au nanoparticles (AuNPs), the nanocomposites were successful to immobilize labeled anti-CEA and anti-AFP as the immunosensing probes. The proposed electrochemical immunoassay enabled the simultaneous monitoring of AFP and CEA in a wide range of 0.01-100ngmL(-1). The detection limits was 0.006ngmL(-1) for CEA and 0.003ngmL(-1) for AFP (S/N=3). The assay results of serum samples with the proposed method were well consistent with the reference values from standard ELISA method. And the negligible cross-reactivity between the two analytes makes it possesses potential promise in clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    Science.gov (United States)

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  8. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage.

    Science.gov (United States)

    Jayaramulu, Kolleboyina; Dubal, Deepak P; Nagar, Bhawna; Ranc, Vaclav; Tomanec, Ondrej; Petr, Martin; Datta, Kasibhatta Kumara Ramanatha; Zboril, Radek; Gómez-Romero, Pedro; Fischer, Roland A

    2018-04-01

    The design of advanced high-energy-density supercapacitors requires the design of unique materials that combine hierarchical nanoporous structures with high surface area to facilitate ion transport and excellent electrolyte permeability. Here, shape-controlled 2D nanoporous carbon sheets (NPSs) with graphitic wall structure through the pyrolysis of metal-organic frameworks (MOFs) are developed. As a proof-of-concept application, the obtained NPSs are used as the electrode material for a supercapacitor. The carbon-sheet-based symmetric cell shows an ultrahigh Brunauer-Emmett-Teller (BET)-area-normalized capacitance of 21.4 µF cm -2 (233 F g -1 ), exceeding other carbon-based supercapacitors. The addition of potassium iodide as redox-active species in a sulfuric acid (supporting electrolyte) leads to the ground-breaking enhancement in the energy density up to 90 Wh kg -1 , which is higher than commercial aqueous rechargeable batteries, maintaining its superior power density. Thus, the new material provides a double profits strategy such as battery-level energy and capacitor-level power density. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity

    Directory of Open Access Journals (Sweden)

    He N. Xu

    2014-03-01

    Full Text Available NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes as well as in the regulation of embryonic development and aging. To fluorimetrically assess the mitochondrial redox state, Dr. Chance and co-workers measured the fluorescence of NADH and oxidized flavoproteins (Fp including flavin–adenine–dinucleotide (FAD and demonstrated their ratio (i.e. the redox ratio is a sensitive indicator of the mitochondrial redox states. The Chance redox scanner was built to simultaneously measure NADH and Fp in tissue at submillimeter scale in 3D using the freeze-trap protocol. This paper summarizes our recent research experience, development and new applications of the redox scanning technique in collaboration with Dr. Chance beginning in 2005. Dr. Chance initiated or actively involved in many of the projects during the last several years of his life. We advanced the redox scanning technique by measuring the nominal concentrations (in reference to the frozen solution standards of the endogenous fluorescent analytes, i.e., [NADH] and [Fp] to quantify the redox ratios in various biological tissues. The advancement has enabled us to identify an array of the redox indices as quantitative imaging biomarkers (including [NADH], [Fp], [Fp]/([NADH]+[Fp], [NADH]/[Fp], and their standard deviations for studying some important biological questions on cancer and normal tissue metabolism. We found that the redox indices were associated or changed with (1 tumorigenesis (cancer versus non-cancer of human breast tissue biopsies; (2 tumor metastatic potential; (3 tumor glucose uptake; (4 tumor p53 status; (5 PI3K pathway activation in pre-malignant tissue; (6 therapeutic effects on tumors; (7 embryonic stem cell differentiation; (8 the heart under fasting. Together, our work demonstrated that the tissue redox indices obtained from the redox scanning technique may provide useful information about tissue metabolism and physiology status in normal

  10. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    Energy Technology Data Exchange (ETDEWEB)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, F-69622 Villeurbanne (France); Baudelet, F, E-mail: cochain@ipgp.jussieu.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin (France)

    2009-11-15

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe{sup 2+} and Fe{sup 3+}, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  11. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    International Nuclear Information System (INIS)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P; Ligny, D de; Baudelet, F

    2009-01-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe 2+ and Fe 3+ , but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  12. Redox-active quinones induces genome-wide DNA methylation changes by an iron-mediated and Tet-dependent mechanism

    DEFF Research Database (Denmark)

    Zhao, Bailin; Yang, Ying; Wang, Xiaoli

    2014-01-01

    DNA methylation has been proven to be a critical epigenetic mark important for various cellular processes. Here, we report that redox-active quinones, a ubiquitous class of chemicals found in natural products, cancer therapeutics and environment, stimulate the conversion of 5 mC to 5 hmC in vivo,...

  13. Synthesis, structural characterisation and bonding in an anionic hexavanadate bearing redox-active ferrocenyl groups at the periphery

    Czech Academy of Sciences Publication Activity Database

    Schulz, J.; Gyepes, Robert; Císařová, I.; Štěpnička, P.

    2010-01-01

    Roč. 34, č. 12 (2010), s. 2749-2756 ISSN 1144-0546 R&D Projects: GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40400503 Keywords : synthesis * redox-active ferrocenyl groups * ferrocene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.631, year: 2010

  14. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    Science.gov (United States)

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  15. Silver nanoparticle catalysed redox reaction: An electron relay effect

    International Nuclear Information System (INIS)

    Mallick, Kaushik; Witcomb, Mike; Scurrell, Mike

    2006-01-01

    A silver cluster shows efficient catalytic activity in a redox reaction because the cluster acts as the electron relay centre behaving alternatively as an acceptor and as a donor of electrons. An effective transfer of electrons is possible when the redox potential of the cluster is intermediate between the electron donor and electron acceptor system

  16. Cleavage and synthesis function of high and low redox potential laccases towards 4-morpholinoaniline and aminated as well as chlorinated phenols.

    Science.gov (United States)

    Hahn, Veronika; Mikolasch, Annett; Schauer, Frieder

    2014-02-01

    Laccases are able to mediate both cleavage and synthesis processes. The basis for this dual reaction capability lies in the property of the enzyme laccase to oxidize phenolic, and to some extent non-phenolic substances, to reactive radicals which can undergo on the one hand separations of small substitutents or large molecule parts from the parent compound and on the other hand coupling reactions with other radicals or molecules which are not themselves oxidizable by laccase. The cleavage of the non-phenolic compound 4-morpholinoaniline as well as the deamination of 4-aminophenol and the dechlorination of 4-chlorophenol resulted in the formation of 1,4-hydroquinone which is immediately oxidized by laccase to 1,4-benzoquinone. The formation of the 1,4-hydroquinone/1,4-benzoquinone is the rate limiting step for the synthesis of the heteromolecular dimers and trimers composed of 1,4-benzoquinone and one or two molecules of morpholine. In addition to the synthesis of new compounds from the cleavage products, 4-morpholinoaniline polymerized probably via azo groups and C-N bonds to a homomolecular dimer and trimer. Similarities and differences in cleavage and synthesis reactions catalyzed by the low redox potential laccase of Myceliophthora thermophila (0.46 V) and the high redox potential laccase of Pycnoporus cinnabarinus (0.79 V) were determined. In addition, the dependency of the cleavage and synthesis efficiencies on the (a) structure and redox potential of the laccase, (b) structure and redox potential of the substrate, (c) pH value of the buffer used, (d) incubation temperature, (e) solvent concentration, and (f) laccase activity is discussed in general.

  17. Proteostasis and REDOX state in the heart

    Science.gov (United States)

    Christians, Elisabeth S.

    2012-01-01

    Force-generating contractile cells of the myocardium must achieve and maintain their primary function as an efficient mechanical pump over the life span of the organism. Because only half of the cardiomyocytes can be replaced during the entire human life span, the maintenance strategy elicited by cardiac cells relies on uninterrupted renewal of their components, including proteins whose specialized functions constitute this complex and sophisticated contractile apparatus. Thus cardiac proteins are continuously synthesized and degraded to ensure proteome homeostasis, also termed “proteostasis.” Once synthesized, proteins undergo additional folding, posttranslational modifications, and trafficking and/or become involved in protein-protein or protein-DNA interactions to exert their functions. This includes key transient interactions of cardiac proteins with molecular chaperones, which assist with quality control at multiple levels to prevent misfolding or to facilitate degradation. Importantly, cardiac proteome maintenance depends on the cellular environment and, in particular, the reduction-oxidation (REDOX) state, which is significantly different among cardiac organelles (e.g., mitochondria and endoplasmic reticulum). Taking into account the high metabolic activity for oxygen consumption and ATP production by mitochondria, it is a challenge for cardiac cells to maintain the REDOX state while preventing either excessive oxidative or reductive stress. A perturbed REDOX environment can affect protein handling and conformation (e.g., disulfide bonds), disrupt key structure-function relationships, and trigger a pathogenic cascade of protein aggregation, decreased cell survival, and increased organ dysfunction. This review covers current knowledge regarding the general domain of REDOX state and protein folding, specifically in cardiomyocytes under normal-healthy conditions and during disease states associated with morbidity and mortality in humans. PMID:22003057

  18. Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II)

    Science.gov (United States)

    Agarwal, Rashmi A.

    2018-03-01

    A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr2O3/CrO2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.

  19. Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II).

    Science.gov (United States)

    Agarwal, Rashmi A

    2018-03-09

    A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr 2 O 3 /CrO 2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.

  20. Redox regulation of the Calvin-Benson cycle: something old, something new

    Directory of Open Access Journals (Sweden)

    Laure eMichelet

    2013-11-01

    Full Text Available Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin-Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin-Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.

  1. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism

    Science.gov (United States)

    Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E.; Napolitano, Alessandra; Payne, Gregory F.

    2015-01-01

    Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin’s pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin’s redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism. PMID:26669666

  2. Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Yang, Chunmei; Wang, Haining; Lu, Shanfu; Wu, Chunxiao; Liu, Yiyang; Tan, Qinglong; Liang, Dawei; Xiang, Yan

    2015-01-01

    Titanium nitride nanoparticles (TiN NPs) are proposed as a novel catalyst towards the V(II)/V(III) redox pair for the negative electrode in vanadium redox flow batteries (VRFB). Electrochemical properties of TiN NPs were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that TiN NPs demonstrate better electrochemical activity and reversibility for the processes of V(II)/V(III) redox couples as compared with the graphite NPs. TiN NPs facilitate the charge transfer in the V(II)/V(III) redox reaction. Performance of a VRFB using a TiN NPs coated carbon paper as a negative electrode is much higher than that of a VRFB with a raw carbon paper electrode. The columbic efficiency (CE), the voltage efficiency (VE) and the energy efficiency (EE) of the VRFB single cell at charge-discharge current density of 30 mA/cm 2 are 91.74%, 89.11% and 81.74%, respectively. During a 50 charge-discharge cycles test, the CE values of VRFB with TiN NPs consistently remain higher than 90%.

  3. Redox electrodes comprised of polymer-modified carbon nanomaterials

    Science.gov (United States)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  4. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  5. Redox Regulation of Mitochondrial Function

    Science.gov (United States)

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  6. Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors

    International Nuclear Information System (INIS)

    Serban, Simona; El Murr, Nabil

    2006-01-01

    A generic amperometric bioassay based on the enzymatic oxidation catalysed by the stable NADH oxidase (NAox) from Thermus thermophilus has been developed for NADH measurements. The NAox uses O 2 as its natural electron acceptor and produces H 2 O 2 in a two-electron process. Electrochemical and spectrophotometric experiments showed that the NAox used in this work, presents a very good activity towards its substrate and, in contrary to previously mentioned NADH oxidases, does not require the addition of any exogenous flavin cofactor neither to promote nor to maintain its activity. In addition, the NAox used also works with artificial electron acceptors like ferrocene derivatives. O 2 was successfully replaced by redox mediators such as hydroxymethyl ferrocene (FcCH 2 OH) for the regeneration of the active enzyme. Combining the NAox with the mediator and the horseradish peroxidase we developed an original, high sensitive 'redox-flexible' NADH amperometric bioassay working in a large window of applied potentials in both oxidation and reduction modes. The biosensor has a continuous and complementary linearity range permitting to measure NADH concentrations starting from 5 x 10 -6 M in reduction until 2 x 10 3 M in oxidation. This redox-flexibility allows choosing the applied potential in order to avoid electrochemical interferences. The association of the 'redox-flexible' concept with NADH dependent enzymes opens a novel strategy for dehydrogenases based bioassays and biosensors. The great number of dehydrogenases available makes the concept applicable for numerous substrates to analyse. Moreover it allows the development of a wide range of biosensors on the basis of a generic platform. This gives several advantages over the previous manufacturing techniques and offers a general and flexible scheme for the fabrication of biosensors presenting high sensitivities, wide calibration ranges and less affected by electrochemical interferences

  7. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Emilia Rios-Del Toro, E. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Celis, Lourdes B. [División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Rangel-Mendez, J. Rene, E-mail: rene@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-09-15

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO{sub 3} to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents.

  8. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    International Nuclear Information System (INIS)

    Emilia Rios-Del Toro, E.; Celis, Lourdes B.; Cervantes, Francisco J.; Rangel-Mendez, J. Rene

    2013-01-01

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO 3 to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents

  9. A study of tiron in aqueous solutions for redox flow battery application

    International Nuclear Information System (INIS)

    Xu Yan; Wen Yuehua; Cheng Jie; Cao Gaoping; Yang Yusheng

    2010-01-01

    In this study, the electrochemical behavior of tiron in aqueous solutions and the influence of pH were investigated. A change of pH mainly produces the following results. In acidic solutions of pH below 4, the electrode reaction of tiron exhibits a simple process at a relatively high potential with a favorable quasi-reversibility. The tiron redox reaction exhibits fast electrode kinetics and a diffusion-controlled process. In solutions of pH above 4, the electrode reaction of tiron tends to be complicated. Thus, acidic aqueous solutions of pH below 4 are favorable for the tiron as active species of a redox flow battery (RFB). Constant-current electrolysis shows that a part of capacity is irreversible and the structure of tiron is changed for the first electrolysis, which may result from an ECE process for the tiron electro-oxidation. Thus, the tiron needs an activation process for the application of a RFB. Average coulombic and energy efficiencies of the tiron/Pb battery are 93 and 82%, respectively, showing that self-discharge is small during the short-term cycling. The preliminary exploration shows that the tiron is electrochemically promising for redox flow battery application.

  10. Location of the redox-active thiols of ribonucleotide reductase: sequences similarity between the Escherichia coli and Lactobacillus leichmannii enzymes

    International Nuclear Information System (INIS)

    Lin, A.N.I.; Ashley, G.W.; Stubbe, J.

    1987-01-01

    The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with [1- 14 C]iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of 14 C. Sequencing of tryptic peptides shows that 2.8 equiv of 14 C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of 14 C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of 14 C. Sequencing of tryptic peptides shows that 1.4 equiv of 14 C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I

  11. Cooperative redox-active additives of anthraquinone-2,7-disulphonate and K4Fe(CN)6 for enhanced performance of active carbon-based capacitors

    Science.gov (United States)

    Tian, Ying; Liu, Ming; Che, Ruxing; Xue, Rong; Huang, Liping

    2016-08-01

    Two redox additives of anthraquinone-2,7-disulphonate (AQDS) and K4Fe(CN)6 are introduced into the neutral medium of KNO3 for enhanced performance of active carbon-based (AC) capacitor. The Faradaic redox reactions of AQ/H2AQ and Fe(CN)63-/Fe(CN)64- are diffusion-controlled and occurred on the negative electrode and the positive electrode respectively and simultaneously, resulting in the enhancement of specific capacitance, power density and energy density of 240 F g-1, 527 W kg-1 and 26.3 Wh kg-1, respectively at a current density of 1.0 A g-1 for a symmetric AC capacitor in the electrolyte of 1 M KNO3-0.017 M K4Fe(CN)6-0.017 M AQDS. These values are much higher than those in the controls of either 1 M KNO3-0.017 M K4Fe(CN)6 or 1 M KNO3-0.017 M AQDS with only one pair of redox additives. These results demonstrate the cooperative K4Fe(CN)6 and AQDS for enhanced performance of AC capacitor, and thus provide an alternative approach for efficient capacitors.

  12. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  13. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1.

    Science.gov (United States)

    Hannemann, Liya; Suppanz, Ida; Ba, Qiaorui; MacInnes, Katherine; Drepper, Friedel; Warscheid, Bettina; Koch, Hans-Georg

    2016-01-20

    YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. Our data identify a redox-regulated monomer-dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response.

  14. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  15. PKI 166 induced redox signalling and apoptosis through activation of p53, MAP kinase and caspase pathway in epidermoid carcinoma.

    Science.gov (United States)

    Das, Subhasis; Dey, Kaushik Kumar; Bharti, Rashmi; MaitiChoudhury, Sujata; Maiti, Sukumar; Mandal, Mahitosh

    2012-01-01

    Cellular redox changes have emerged as a pivotal and proximal event in cancer. PKI 166 is used to determine the effects of redox sensitive inhibition of EGFR, metastasis and apoptosis in epidermoid carcinoma. Cytotoxicity study of PKI 166 (IC50 1.0 microM) treated A431 cells were performed by MTT assay for 48 and 72 hrs. Morphological analysis of PKI 166 treated A431 cells for 48 hrs. revealed the cell shrinkage, loss of filopodia and lamellipodia by phase contrast and SEM images in dose dependent manner. It has cytotoxic effects through inhibiting cellular proliferation, leads to the induction of apoptosis, as increased fraction of sub-G1 phase of the cell cycle, chromatin condensation and DNA ladder. It inhibited cyclin-D1 and cyclin-E expression and induced p53, p21 expression in dose dependent manner. Consequently, an imbalance of Bax/Bcl-2 ratio triggered caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favour of apoptosis. PKI 166 treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. It inhibited some metastatic properties of A431 cells supressing colony formation by soft agar assay and inhibition of MMP 9 activity by gelatin zymography and western blot analysis. PKI 166 inhibited growth factor induced phosphorylation of EGFR, Akt, MAPK, JNK and colony formation in A431 cells. Thus the inhibition of proliferation was associated with redox regulation of the caspase cascade, EGFR, Akt/PI3K, MAPK/ ERK and JNK pathway. On the other hand, increased antioxidant activity leads to decreased ROS generation inhibit the anti-proliferative and apoptotic properties of PKI 166 in A431 cells. These observations indicated PKI 166 induced redox signalling dependent inhibition of cell proliferation, metastatic properties and induction of apoptotic potential in epidermoid carcinoma.

  16. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  17. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.

    Science.gov (United States)

    Yoo, Seung Joon; Evanko, Brian; Wang, Xingfeng; Romelczyk, Monica; Taylor, Aidan; Ji, Xiulei; Boettcher, Shannon W; Stucky, Galen D

    2017-07-26

    Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the EDLCs. Aqueous redox-enhanced electrochemical capacitors (redox ECs) have, however, performed poorly due to cross-diffusion of soluble redox couples, reduced cycle life, and low operating voltages. In this manuscript, we propose that these challenges can be simultaneously met by mechanistically designing a liquid-to-solid phase transition of oxidized catholyte (or reduced anolyte) with confinement in the pores of electrodes. Here we demonstrate the realization of this approach with the use of bromide catholyte and tetrabutylammonium cation that induces reversible solid-state complexation of Br 2 /Br 3 - . This mechanism solves the inherent cross-diffusion issue of redox ECs and has the added benefit of greatly stabilizing the reactive bromine generated during charging. Based on this new mechanistic insight on the utilization of solid-state bromine storage in redox ECs, we developed a dual-redox EC consisting of a bromide catholyte and an ethyl viologen anolyte with the addition of tetrabutylammonium bromide. In comparison to aqueous and organic electric double-layer capacitors, this system enhances energy by factors of ca. 11 and 3.5, respectively, with a specific energy of ∼64 W·h/kg at 1 A/g, a maximum power density >3 kW/kg, and cycling stability over 7000 cycles.

  18. Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts*

    Science.gov (United States)

    Yoshida, Keisuke; Hara, Satoshi; Hisabori, Toru

    2015-01-01

    Redox regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of various functions in chloroplasts. Five Trx subtypes have been reported to reside in chloroplasts, but their functional diversity in the redox regulation of Trx target proteins remains poorly clarified. To directly address this issue, we studied the Trx-dependent redox shifts of several chloroplast thiol-modulated enzymes in vitro and in vivo. In vitro assays using a series of Arabidopsis recombinant proteins provided new insights into Trx selectivity for the redox regulation as well as the underpinning for previous suggestions. Most notably, by combining the discrimination of thiol status with mass spectrometry and activity measurement, we identified an uncharacterized aspect of the reductive activation of NADP-malate dehydrogenase; two redox-active Cys pairs harbored in this enzyme were reduced via distinct utilization of Trxs even within a single polypeptide. In our in vitro assays, Trx-f was effective in reducing all thiol-modulated enzymes analyzed here. We then investigated the in vivo physiological relevance of these in vitro findings, using Arabidopsis wild-type and Trx-f-deficient plants. Photoreduction of fructose-1,6-bisphosphatase was partially impaired in Trx-f-deficient plants, but the global impact of Trx-f deficiency on the redox behaviors of thiol-modulated enzymes was not as striking as expected from the in vitro data. Our results provide support for the in vivo functionality of the Trx system and also highlight the complexity and plasticity of the chloroplast redox network. PMID:25878252

  19. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.

    Science.gov (United States)

    Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G

    2014-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.

  20. Redox modulation of thimet oligopeptidase activity by hydrogen peroxide.

    Science.gov (United States)

    Icimoto, Marcelo Y; Ferreira, Juliana C; Yokomizo, César H; Bim, Larissa V; Marem, Alyne; Gilio, Joyce M; Oliveira, Vitor; Nantes, Iseli L

    2017-07-01

    Thimet oligopeptidase (EC 3.4.24.15, TOP) is a cytosolic mammalian zinc protease that can process a diversity of bioactive peptides. TOP has been pointed out as one of the main postproteasomal enzymes that process peptide antigens in the MHC class I presentation route. In the present study, we describe a fine regulation of TOP activity by hydrogen peroxide (H 2 O 2 ). Cells from a human embryonic kidney cell line (HEK293) underwent an ischemia/reoxygenation-like condition known to increase H 2 O 2 production. Immediately after reoxygenation, HEK293 cells exhibited a 32% increase in TOP activity, but no TOP activity was observed 2 h after reoxygenation. In another model, recombinant rat TOP (rTOP) was challenged by H 2 O 2 produced by rat liver mitoplasts (RLMt) alone, and in combination with antimycin A, succinate, and antimycin A plus succinate. In these conditions, rTOP activity increased 17, 30, 32 and 38%, respectively. Determination of H 2 O 2 concentration generated in reoxygenated cells and mitoplasts suggested a possible modulation of rTOP activity dependent on the concentration of H 2 O 2 . The measure of pure rTOP activity as a function of H 2 O 2 concentration corroborated this hypothesis. The data fitted to an asymmetrical bell-shaped curve in which the optimal activating H 2 O 2 concentration was 1.2 nM, and the maximal inhibition (75% about the control) was 1 μm. Contrary to the oxidation produced by aging associated with enzyme oligomerization and inhibition, H 2 O 2 oxidation produced sulfenic acid and maintained rTOP in the monomeric form. Consistent with the involvement of rTOP in a signaling redox cascade, the H 2 O 2 -oxidized rTOP reacted with dimeric thioredoxin-1 (TRx-1) and remained covalently bound to one subunit of TRx-1.

  1. Catalytic Efficiency of Basidiomycete Laccases: Redox Potential versus Substrate-Binding Pocket Structure

    Directory of Open Access Journals (Sweden)

    Olga A. Glazunova

    2018-04-01

    Full Text Available Laccases are copper-containing oxidases that catalyze a one-electron abstraction from various phenolic and non-phenolic compounds with concomitant reduction of molecular oxygen to water. It is well-known that laccases from various sources have different substrate specificities, but it is not completely clear what exactly provides these differences. The purpose of this work was to study the features of the substrate specificity of four laccases from basidiomycete fungi Trametes hirsuta, Coriolopsis caperata, Antrodiella faginea, and Steccherinum murashkinskyi, which have different redox potentials of the T1 copper center and a different structure of substrate-binding pockets. Enzyme activity toward 20 monophenolic substances and 4 phenolic dyes was measured spectrophotometrically. The kinetic parameters of oxidation of four lignans and lignan-like substrates were determined by monitoring of the oxygen consumption. For the oxidation of the high redox potential (>700 mV monophenolic substrates and almost all large substrates, such as phenolic dyes and lignans, the redox potential difference between the enzyme and the substrate (ΔE played the defining role. For the low redox potential monophenolic substrates, ΔE did not directly influence the laccase activity. Also, in the special cases, the structure of the large substrates, such as dyes and lignans, as well as some structural features of the laccases (flexibility of the substrate-binding pocket loops and some amino acid residues in the key positions affected the resulting catalytic efficiency.

  2. Oligo-carrageenan kappa-induced reducing redox status and increase in TRR/TRX activities promote activation and reprogramming of terpenoid metabolism in Eucalyptus trees.

    Science.gov (United States)

    González, Alberto; Gutiérrez-Cutiño, Marlen; Moenne, Alejandra

    2014-06-05

    In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR)/thioredoxin(TRX) system induced by oligo-carrageenan (OC) kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(P)H, ascorbate (ASC) and (GSH) synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO) and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%), α-pinene (7.4%), aromadendrene (3.6%), silvestrene (2.8%), sabinene (2%) and α-terpineol (0.9%). Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65%) and sabinene (0.8%) and an increase in aromadendrene (5%), silvestrene (7.8%) and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  3. Oligo-Carrageenan Kappa-Induced Reducing Redox Status and Increase in TRR/TRX Activities Promote Activation and Reprogramming of Terpenoid Metabolism in Eucalyptus Trees

    Directory of Open Access Journals (Sweden)

    Alberto González

    2014-06-01

    Full Text Available In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR/thioredoxin(TRX system induced by oligo-carrageenan (OC kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(PH, ascorbate (ASC and (GSH synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%, α-pinene (7.4%, aromadendrene (3.6%, silvestrene (2.8%, sabinene (2% and α-terpineol (0.9%. Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65% and sabinene (0.8% and an increase in aromadendrene (5%, silvestrene (7.8% and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  4. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  5. High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes

    Science.gov (United States)

    Zhang, Huanhuan; Li, Jinyu; Gu, Cheng; Yao, Mingming; Yang, Bing; Lu, Ping; Ma, Yuguang

    2016-11-01

    The relatively low energy density is now a central issue hindering the development of supercapacitors as energy storage devices. Various approaches are thus developed to enhance the energy density, mainly centering on the fabrication of electrode materials or optimization of cell configurations. Compared with these approaches, modifications in electrolytes are much simple and versatile. Herein, we integrate the wide voltages endowed by organic electrolytes and the additional capacitances brought by redox mediators, to fabricate high energy density supercapacitors. On the basis of this idea, supercapacitors with poly(3,4-ethylenedioxythiophene) (PEDOT) as electrode material exhibit extended operating voltage of 1.5 V, extraordinary capacitance of 363 F g-1 and high energy density of 27.4 Wh kg-1. The redox mediators reported here, ferrocene and 4-oxo-2,2,6,6-tetramethylpiperidinooxy, are the first time being applied in supercapacitors, especially in the gel state. While providing additional faradaic capacitances, they also exhibit synergistic interaction with PEDOT and improve the cycling stability of supercapacitors.

  6. Redox interplay between mitochondria and peroxisomes

    Directory of Open Access Journals (Sweden)

    Celien eLismont

    2015-05-01

    Full Text Available Reduction-oxidation or ‘redox’ reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from ‘omics’ technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of

  7. A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

    Science.gov (United States)

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc

    2017-01-01

    Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof‐of‐concept of a membrane‐free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L−1, and is able to deliver 90 % of its theoretical capacity while showing excellent long‐term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). PMID:28658538

  8. A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes.

    Science.gov (United States)

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-10-02

    Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short-lifetimes, and expensive ion-selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane-free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof-of-concept of a membrane-free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L -1 , and is able to deliver 90 % of its theoretical capacity while showing excellent long-term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Biodegradation of NSO-compounds under different redox-conditions

    DEFF Research Database (Denmark)

    Dyreborg, S.; Arvin, E.; Broholm, K.

    1997-01-01

    Laboratory experiments were carried out to investigate the potential of groundwater microorganisms to degrade selected heterocyclic aromatic compounds containing nitrogen, sulphur, or oxygen (NSO-compounds) under four redox-conditions over a period of 846 days. Eight compounds (pyrrole, 1...... anaerobic conditions, even though the microorganisms present in the anaerobic microcosms were active throughout the incubation period. A high variability in the lag period among the NSO-compounds was observed under aerobic conditions. While quinoline, indole, and carbazole were degraded with a lag period...

  10. Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions.

    Science.gov (United States)

    Menahem, Adi; Dror, Ishai; Berkowitz, Brian

    2016-02-01

    The release of pharmaceuticals and personal care products (PPCPs) to the soil-water environment necessitates understanding of PPCP transport behavior under conditions that account for dynamic flow and varying redox states. This study investigates the transport of two organometallic PPCPs, Gd-DTPA and roxarsone (arsenic compound) and their metal salts (Gd(NO3)3, AsNaO2); Gd-DTPA is used widely as a contrasting agent for MRI, while roxarsone is applied extensively as a food additive in the broiler poultry industry. Here, we present column experiments using sand and Mediterranean red sandy clay soil, performed under several redox conditions. The metal salts were almost completely immobile. In contrast, transport of Gd-DTPA and roxarsone was affected by the soil type. Roxarsone was also affected by the different redox conditions, showing delayed breakthrough curves as the redox potential became more negative due to biological activity (chemically-strong reducing conditions did not affect the transport). Mechanisms that include adsorptive retardation for aerobic and nitrate-reducing conditions, and non-adsorptive retardation for iron-reducing, sulfate-reducing and biologically-strong reducing conditions, are suggested to explain the roxarsone behavior. Gd-DTPA is found to be a stable complex, with potential for high mobility in groundwater systems, whereas roxarsone transport through groundwater systems is affected by redox environments, demonstrating high mobility under aerobic and nitrate-reducing conditions and delayed transport under iron-reducing, sulfate-reducing and biologically-strong reducing conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanan [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xiao, Qingbo, E-mail: qbxiao2011@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Wang, Jian [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xi, Yonglan [Laboratory for Agricultural Wastes Treatment and Recycling Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing 210014 (China); Li, Fujin [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Feng, Yamin [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Shi, Liyi [College of Sciences, Shanghai University, Shanghai 200444 (China); Lin, Hongzhen, E-mail: hzlin2010@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China)

    2016-05-15

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF{sub 4}:Yb/Er nanorods with the redox-active Ce{sup 3+}/Ce{sup 4+} ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF{sub 4} host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce{sup 3+}/Ce{sup 4+} ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  12. Compartmentation of redox metabolism in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Sebastian Kehr

    Full Text Available Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.

  13. Thioredoxin Txnl1/TRP32 Is a Redox-active Cofactor of the 26 S Proteasome

    DEFF Research Database (Denmark)

    Andersen, Katrine M; Klausen, Louise Kjær; Prag, Søren

    2009-01-01

    in the cytoplasm and nucleus. Txnl1 has thioredoxin activity with a redox potential of about -250 mV. Mutant Txnl1 with one active site cysteine replaced by serine formed disulfide bonds to eEF1A1, a substrate-recruiting factor of the 26S proteasome. eEF1A1 is therefore a likely physiological substrate....... In response to knock-down of Txnl1, ubiquitin-protein conjugates were moderately stabilised. Hence, Txnl1 is the first example of a direct connection between protein reduction and proteolysis, two major intracellular protein quality control mechanisms....

  14. Skin Redox Balance Maintenance: The Need for an Nrf2-Activator Delivery System

    Directory of Open Access Journals (Sweden)

    Maya Ben-Yehuda Greenwald

    2016-01-01

    Full Text Available The skin, being the largest organ of the body, functions as a barrier between our body and the environment. It is consistently exposed to various exogenous and endogenous stressors (e.g., air pollutants, ionizing and non-ionizing irradiation, toxins, mitochondrial metabolism, enzyme activity, inflammatory process, etc. producing reactive oxygen species (ROS and physical damage (e.g., wounds, sunburns also resulting in reactive oxygen species production. Although skin is equipped with an array of defense mechanisms to counteract reactive oxygen species, augmented exposure and continued reactive oxygen species might result in excessive oxidative stress leading to many skin disorders including inflammatory diseases, pigmenting disorders and some types of cutaneous malignancy. The nuclear factor erythroid 2-related factor 2 (Nrf2 is an emerging regulator of cellular resistance and of defensive enzymes such as the phase II enzymes. Induction of the Keap1–Nrf2 pathway may have a beneficial effect in the treatment of a large number of skin disorders by stimulating an endogenous defense mechanism. However, prolonged and enhanced activation of this pathway is detrimental and, thus, limits the therapeutic potential of Keap1–Nrf2 modulators. Here, we review the consequences of oxidative stress to the skin, and the defense mechanisms that skin is equipped with. We describe the challenges of maintaining skin redox balance and its impact on skin status and function. Finally, we suggest a novel strategy for maintenance of skin redox homeostasis by modulating the Keap1–Nrf2 pathway using nanotechnology-based delivery systems.

  15. Assessment of the development of a battery charging infrastructure for a redox flow battery based electromobility concept; Bewertung des Aufbaus einer Ladeinfrastruktur fuer eine Redox-Flow-Batteriebasierte Elektromobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Arpad Funke, Simon; Wietschel, Martin [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energietechnologien und Energiesysteme

    2012-07-01

    Apart from the high acquisition cost, the major obstacles to widespread use of electric-powered vehicles today are long battery charging times and limited mileage. Rechargeable batteries might be a solution. The publication investigates a potential infrastructure for electric-powered vehicles based on so-called redox flow batteries. Redox flow batteries are characterized in that active materials are dissolved in liquid electrolyte and are stored outside the cell. Batteries are recharged by exchanging charged electrolyte for discharged electrolyte, which can be done in fuel stations. Redox flow batteries have the drawback of low energy and power density and were hardly ever considered for mobile applications so far. A technical analysis of RFB technology identified the vanadium oxygen redox flow fuel cell (VOFC) as a promising version. It provides higher energy density than conventional redox flow batteries, but development is still in an early stage. Assuming a 'best case' scenario, a refuelling infrastructure for VOFC vehicles was developed and compared with battery-powered vehicles (BEV) and fuel cell vehicles (FVEV). It was found that electromobility based on VOFC may be a promising alternative to current electromobility concepts. (orig./AKB) [German] Neben den Anschaffungsausgaben stehen lange Ladezeiten und eine beschraenkte Reichweite dem heutigen Einsatz von Elektrofahrzeugen oft entgegen. Eine moegliche Abhilfe koennten betankbare Batterien leisten. In der vorliegenden Arbeit soll ein moeglicher Infrastrukturaufbau fuer Elektrofahrzeuge mit sogenannten Redox-Flow-Batterien untersucht werden. Redox-Flow-Batterien besitzen die Eigenschaft, dass aktive Materialien geloest in Fluessigelektrolyten ausserhalb der Zelle gespeichert werden. Dieser Aufbau ermoeglicht das Aufladen der Batterie, indem der entladene Elektrolyt durch geladenen ausgetauscht wird. Dieser Tausch kann an einer Tankstelle durchgefuehrt werden. Ein wesentlicher Nachteil von Redox

  16. High energy density redox flow device

    Science.gov (United States)

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  17. Swiss roll nanomembranes with controlled proton diffusion as redox micro-supercapacitors.

    Science.gov (United States)

    Ji, Hengxing; Mei, Yongfeng; Schmidt, Oliver G

    2010-06-14

    We demonstrate a redox Swiss roll micro-supercapacitor by rolling up a multilayered nanomembrane with an electrochemical active layer at either the outer or inner surface for different proton diffusion behaviors. The Swiss roll micro-supercapacitor could achieve high performance (e.g. capacity and life time) in a microscale power source and is helpful for studying charge transfer at the electrolyte/electrode interface.

  18. Hourly and daily variation of sediment redox potential in tidal wetland sediments

    Science.gov (United States)

    Catallo, W. James

    1999-01-01

    Variation of electrochemical oxidation-reduction (redox) potential was examined in surface salt march sediments under conditions of flooding and tidal simulation in mesocosms and field sites. Time series were generated of redox potential measured in sediment profiles at 2-10 cm depth using combination Pt-Ag/AgCl (ORP) electrodes. Redox potential data were acquired at rapid rates (1-55 samples/h) over extended periods (3-104 days) along with similar times series of temperature (water, air, soil) and pH. It was found that redox potential vaired as a result of water level changes and was unrelated to diurnal changes in temperature or pH, the latter of which changed by 370 mV redox potential decrease in under 48 hours). Attenuatoin of microbial activity by [gamma] y-radiation and toxic chemicals elimintated this response. In tidal salt marsh mesocosms where the sediment-plant assemblages were exposed to a simulated diurnal tide, redox potenial oscillations of 40-300 mV amplitude were recoded that has the same periodicity as the flood-drain cycle. Periodic redoc potential time series were observed repeatedly in sediments receiving tidal pulsing but not in those sediments exposed to static hydrological conditions. Data collected over 12 days from a coastal marsh site experiencing diurnal tides showed similar fluctuations in redox potential. Data from the experimentents indicated that (a) redox potential can be a dynamic, nonlinear variable in coastal and estuarine wetland sediments over hourly and daily scales, and the designs of biogeochemical experiments should reflect this, (b) redox potential can change rapidly and signigicantly in coastal wetland sediments in response of flooding and draining, (c) microbial community processes are primarily determinants of the time course of redox potential in wetland sediments, and elimination of inhibition of microbial activity (e.g. by pollutants) can significantly alter that behavior, and (d) fast redox potential dynamics appear

  19. Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process

    International Nuclear Information System (INIS)

    Jeong, Sanghyun; Kim, Sunhoe; Kwon, Yongchai

    2013-01-01

    Sluggish reaction rate of [VO] 2+ /[VO 2 ] + redox couple is an obstacle to be addressed in vanadium redox flow battery (VRFB). To improve the slow reaction rate, Pt/C catalyst synthesized by polyol method is suggested. Its catalytic activity, reaction reversibility and charge–discharge performance are evaluated by half cell and single cell tests, while its crystal structure, particle size and particle distribution are measured by XRD and TEM. The XRD and TEM measurements show the polyol Pt/C catalyst has larger electrochemically active surface (EAS) area and smaller particle size than commercial Pt/C catalyst. When catalytic activities of all the catalysts are estimated, the Pt-included catalysts demonstrate high peak current ratio, small peak potential difference and high electron transfer rate constant, confirming that their catalytic activity and reaction reversibility are excellent. In charge–discharge performance tests, the catalysts indicate high efficiencies as well as low overpotential and internal resistance. Excellent performances of the Pt-included catalysts are attributed to positively charged Pts that serve as active sites for activating [VO] 2+ /[VO 2 ] + reaction. Indeed, adoption of the Pt-included catalysts, especially, use of the polyol Pt/C consisting of uniform and small particles helps improve performance of VRFB

  20. Control of high level radioactive waste-glass melters - Part 5: Modeling of complex redox effects

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Computerized thermodynamic computations are useful in predicting the sequence and products of redox reactions and in assessing process variations. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Continuous melter test results have been compared to this improved staged-thermodynamic model of redox behavior

  1. Hydrologic influence on redox dynamics in estuarine environments

    Science.gov (United States)

    Michael, H. A.; Kim, K. H.; Guimond, J. A.; Heiss, J.; Ullman, W. J.; Seyfferth, A.

    2017-12-01

    Redox conditions in coastal aquifers control reactions that impact nutrient cycling, contaminant release, and carbon budgets, with implications for water resources and ecosystem health. Hydrologic changes can shift redox boundaries and inputs of reactants, especially in dynamic coastal systems subject to fluctuations on tidal, lunar, and longer timescales. We present two examples of redox shifts in estuarine systems in Delaware, USA: a beach aquifer and a saltmarsh. Beach aquifers are biogeochemical hot spots due to mixing between fresh groundwater and infiltrating seawater. At Cape Henlopen, DE, geochemical measurements identified reactions in the intertidal aquifer that include cycling of carbon, nitrogen, iron, and sulfur. Measurements and modeling illustrate that redox potential as well as the locations of redox reactions shift on tidal to seasonal timescales and in response to changing beach and aquifer properties, impacting overall rates of reactions such as denitrification that reduces N loads to coastal waters. In the St. Jones National Estuarine Research Reserve, tidal fluctuations in channels cause periodic groundwater-surface water exchange, water table movement, and intermittent flooding that varies spatially across the saltmarsh. These changes create shifts in redox potential that are greatest near channels and in the top 20 cm of sediments. The magnitude of redox change depends on hydrologic setting (near channels or in marsh interior), hydrologic conditions (tidal stage, seasonal shifts), as well as prevalence of macropores created by crab burrows that change seasonally with crab activity. These shifts correspond to changes in porewater chemistry that have implications for nutrient cycling and carbon export to the ocean. Understanding hydrologic influence on redox geochemistry is critical for predicting how these systems and their ecosystem services may change in the future in response to anthropogenic and climate change.

  2. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics.

    Science.gov (United States)

    Korkina, Liudmila

    2016-01-01

    Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.

  3. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  4. Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system

    Science.gov (United States)

    Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan

    2014-04-01

    Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance

  5. Digallane with redox-active diimine ligand: dualism of electron-transfer reactions.

    Science.gov (United States)

    Fedushkin, Igor L; Skatova, Alexandra A; Dodonov, Vladimir A; Chudakova, Valentina A; Bazyakina, Natalia L; Piskunov, Alexander V; Demeshko, Serhiy V; Fukin, Georgy K

    2014-05-19

    The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1), which consists of redox-active ligand 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian), has been studied. The reaction of 1 with I2 proceeds via one-electron oxidation of each of two dpp-Bian ligands to a radical-anionic state and affords complex (dpp-Bian)IGa-GaI(dpp-Bian) (2). Dissolution of complex 2 in pyridine (Py) gives monomeric compound (dpp-Bian)GaI(Py) (3) as a result of a solvent-induced intramolecular electron transfer from the metal-metal bond to the dpp-Bian ligands. Treatment of compound 3 with B(C6F5)3 leads to removal of pyridine and restores compound 2. The reaction of compound 1 with 3,6-di-tert-butyl-ortho-benzoquinone (3,6-Q) proceeds with oxidation of all the redox-active centers in 1 (the Ga-Ga bond and two dpp-Bian dianions) and results in mononuclear catecholate (dpp-Bian)Ga(Cat) (4) (Cat = [3,6-Q](2-)). Treatment of 4 with AgBF4 gives a mixture of [(dpp-Bian)2Ag][BF4] (5) and (dpp-Bian)GaF(Cat) (6), which both consist of neutral dpp-Bian ligands. The reduction of benzylideneacetone (BA) with 1 generates the BA radical-anions, which dimerize, affording (dpp-Bian)Ga-(BA-BA)-Ga(dpp-Bian) (7). In this case the Ga-Ga bond remains unchanged. Within 10 min at 95 °C in solution compound 7 undergoes transformation to paramagnetic complex (dpp-Bian)Ga(BA-BA) (8) and metal-free compound C36H40N2 (9). The latter is a product of intramolecular addition of the C-H bond of one of the iPr groups to the C═N bond in dpp-Bian. Diamagnetic compounds 3, 5, 6, and 9 have been characterized by NMR spectroscopy, and paramagnetic complexes 2, 4, 7, and 8 by ESR spectroscopy. Molecular structures of 2-7 and 9 have been established by single-crystal X-ray analysis.

  6. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  7. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions☆

    Science.gov (United States)

    Mailloux, Ryan J.; Jin, Xiaolei; Willmore, William G.

    2013-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling. PMID:24455476

  8. The Effects of Acrolein on the Thioredoxin System: Implications for Redox-Sensitive Signaling

    Science.gov (United States)

    Myers, Charles R.; Myers, Judith M.; Kufahl, Timothy D.; Forbes, Rachel; Szadkowski, Adam

    2012-01-01

    The reactive aldehyde acrolein is a ubiquitous environmental pollutant and is also generated endogenously. It is a strong electrophile and reacts rapidly with nucleophiles including thiolates. This review focuses on the effects of acrolein on thioredoxin reductase (TrxR) and thioredoxin (Trx), which are major regulators of intracellular protein thiol redox balance. Acrolein causes irreversible effects on TrxR and Trx, which are consistent with the formation of covalent adducts to selenocysteine and cysteine residues that are key to their activity. TrxR and Trx are more sensitive than some other redox-sensitive proteins, and their prolonged inhibition could disrupt a number of redox-sensitive functions in cells. Among these effects are the oxidation of peroxiredoxins and the activation of apoptosis signal regulating kinase (ASK1). ASK1 promotes MAP kinase activation, and p38 activation contributes to apoptosis and a number of other acrolein-induced stress responses. Overall, the disruption of the TrxR/Trx system by acrolein could be significant early and prolonged events that affects many aspects of redox-sensitive signaling and oxidant stress. PMID:21812108

  9. Double-membrane triple-electrolyte redox flow battery design

    Science.gov (United States)

    Yushan, Yan; Gu, Shuang; Gong, Ke

    2018-03-13

    A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers great freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.

  10. Thermodynamic aspects of the electron transfer across the interface between water and a hydrophobic redox-active ionic liquid

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Samec, Zdeněk

    2011-01-01

    Roč. 58, - (2011), s. 606-613 ISSN 0013-4686 R&D Projects: GA ČR GAP206/11/0707; GA ČR GAP206/10/1231 Institutional research plan: CEZ:AV0Z40400503 Keywords : redox-active ionic liquid * membrane * cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 3.832, year: 2011

  11. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  12. REDOX IMAGING OF THE p53-DEPENDENT MITOCHONDRIAL REDOX STATE IN COLON CANCER EX VIVO

    Science.gov (United States)

    XU, HE N.; FENG, MIN; MOON, LILY; DOLLOFF, NATHAN; EL-DEIRY, WAFIK; LI, LIN Z.

    2015-01-01

    The mitochondrial redox state and its heterogeneity of colon cancer at tissue level have not been previously reported. Nor has how p53 regulates mitochondrial respiration been measured at (deep) tissue level, presumably due to the unavailability of the technology that has sufficient spatial resolution and tissue penetration depth. Our prior work demonstrated that the mitochondrial redox state and its intratumor heterogeneity is associated with cancer aggressiveness in human melanoma and breast cancer in mouse models, with the more metastatic tumors exhibiting localized regions of more oxidized redox state. Using the Chance redox scanner with an in-plane spatial resolution of 200 μm, we imaged the mitochondrial redox state of the wild-type p53 colon tumors (HCT116 p53 wt) and the p53-deleted colon tumors (HCT116 p53−/−) by collecting the fluorescence signals of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins [Fp, including flavin adenine dinucleotide (FAD)] from the mouse xenografts snap-frozen at low temperature. Our results show that: (1) both tumor lines have significant degree of intratumor heterogeneity of the redox state, typically exhibiting a distinct bi-modal distribution that either correlates with the spatial core–rim pattern or the “hot/cold” oxidation-reduction patches; (2) the p53−/− group is significantly more heterogeneous in the mitochondrial redox state and has a more oxidized tumor core compared to the p53 wt group when the tumor sizes of the two groups are matched; (3) the tumor size dependence of the redox indices (such as Fp and Fp redox ratio) is significant in the p53−/− group with the larger ones being more oxidized and more heterogeneous in their redox state, particularly more oxidized in the tumor central regions; (4) the H&E staining images of tumor sections grossly correlate with the redox images. The present work is the first to reveal at the submillimeter scale the intratumor heterogeneity pattern

  13. Vanadium and Chromium Redox Behavior in borosilicate Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    McKeown, D.; Muller, I.; Gan, H.; Feng, Z.; Viragh, C.; Pegg, I.

    2011-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V 2 O 5 was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO 2 mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V 4+ /V total ranges from 8 to 35%, while Cr 3+ /Cr total can range from 15 to 100% and even to population distributions including Cr 2+ . As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V 4+ populations increase after initial bubbling, but as bubbling time increases, V 4+ populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr 2+ populations.

  14. High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Aida Barreiro-Alonso

    2016-01-01

    Full Text Available Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.

  15. Flexible strategy for immobilizing redox-active compounds using in situ generation of diazonium salts. Investigations of the blocking and catalytic properties of the layers.

    Science.gov (United States)

    Noël, Jean-Marc; Sjöberg, Béatrice; Marsac, Rémi; Zigah, Dodzi; Bergamini, Jean-François; Wang, Aifang; Rigaut, Stéphane; Hapiot, Philippe; Lagrost, Corinne

    2009-11-03

    A versatile two-step method is developed to covalently immobilize redox-active molecules onto carbon surfaces. First, a robust anchoring platform is grafted onto surfaces by electrochemical reduction of aryl diazonium salts in situ generated. Depending on the nature of the layer termini, -COOH or -NH(2), a further chemical coupling involving ferrocenemethylamine or ferrocene carboxylic acid derivatives leads to the covalent binding of ferrocene centers. The chemical strategy using acyl chloride activation is efficient and flexible, since it can be applied either to surface-reactive end groups or to reactive species in solution. Cyclic voltammetry analyses point to the covalent binding of ferrocene units restricted to the upper layers of the underlying aryl films, while AFM measurements show a lost of compactness of the layers after the chemical attachment of ferrocene centers. The preparation conditions of the anchoring layers were found to determine the interfacial properties of the resulted ferrocenyl-modified electrodes. The ferrocene units promoted effective redox mediation providing that the free redox probes are adequately chosen (i.e., vs size/formal potential) and the underlying layers exhibit strong blocking properties. For anchoring films with weaker blocking effect, the coexistence of two distinct phenomena, redox mediation and ET at pinholes could be evidenced.

  16. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione.

    Science.gov (United States)

    Sun, Chunlong; Du, Wen; Wang, Peng; Wu, Yang; Wang, Baoqin; Wang, Jun; Xie, Wenjun

    2017-12-16

    Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO - ) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO - /GSH levels in cells. This probe can reversibly respond to ONOO - and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO - outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Evaluation of electrolytes for redox flow battery applications

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Dryfe, R.A.W.; Roberts, E.P.L.

    2007-01-01

    A number of redox systems have been investigated in this work with the aim of identifying electrolytes suitable for testing redox flow battery cell designs. The criteria for the selection of suitable systems were fast electrochemical kinetics and minimal cross-contamination of active electrolytes. Possible electrolyte systems were initially selected based on cyclic voltammetry data. Selected systems were then compared by charge/discharge experiments using a simple H-type cell. The all-vanadium electrolyte system has been developed as a commercial system and was used as the starting point in this study. The performance of the all-vanadium system was significantly better than an all-chromium system which has recently been reported. Some metal-organic and organic redox systems have been reported as possible systems for redox flow batteries, with cyclic voltammetry data suggesting that they could offer near reversible kinetics. However, Ru(acac) 3 in acetonitrile could only be charged efficiently to 9.5% of theoretical charge, after which irreversible side reactions occurred and [Fe(bpy) 3 ](ClO 4 ) 2 in acetonitrile was found to exhibit poor charge/discharge performance

  18. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    Science.gov (United States)

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Redox regulation of Rac1 by thiol oxidation

    Science.gov (United States)

    Hobbs, G. Aaron; Mitchell, Lauren E.; Arrington, Megan E.; Gunawardena, Harsha P.; DeCristo, Molly J.; Loeser, Richard F.; Chen, Xian; Cox, Adrienne D.; Campbell, Sharon L.

    2016-01-01

    The Rac1 GTPase is an essential and ubiquitous protein that signals through numerous pathways to control critical cellular processes, including cell growth, morphology, and motility. Rac1 deletion is embryonic lethal, and its dysregulation or mutation can promote cancer, arthritis, cardiovascular disease, and neurological disorders. Rac1 activity is highly regulated by modulatory proteins and posttranslational modifications. Whereas much attention has been devoted to guanine nucleotide exchange factors that act on Rac1 to promote GTP loading and Rac1 activation, cellular oxidants may also regulate Rac1 activation by promoting guanine nucleotide exchange. Herein, we show that Rac1 contains a redox-sensitive cysteine (Cys18) that can be selectively oxidized at physiological pH because of its lowered pKa. Consistent with these observations, we show that Rac1 is glutathiolated in primary chondrocytes. Oxidation of Cys18 by glutathione greatly perturbs Rac1 guanine nucleotide binding and promotes nucleotide exchange. As aspartate substitutions have been previously used to mimic cysteine oxidation, we characterized the biochemical properties of Rac1C18D. We also evaluated Rac1C18S as a redox-insensitive variant and found that it retains structural and biochemical properties similar to those of Rac1WT but is resistant to thiol oxidation. In addition, Rac1C18D, but not Rac1C18S, shows greatly enhanced nucleotide exchange, similar to that observed for Rac1 oxidation by glutathione. We employed Rac1C18D in cell-based studies to assess whether this fast-cycling variant, which mimics Rac1 oxidation by glutathione, affects Rac1 activity and function. Expression of Rac1C18D in Swiss 3T3 cells showed greatly enhanced GTP-bound Rac1 relative to Rac1WT and the redox-insensitive Rac1C18S variant. Moreover, expression of Rac1C18D in HEK-293T cells greatly promoted lamellipodia formation. Our results suggest that Rac1 oxidation at Cys18 is a novel posttranslational modification that

  20. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....

  1. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel.

    Science.gov (United States)

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2017-09-01

    An injectable dual redox responsive diselenide-containing poly(ethylene glycol) (PEG) hydrogel was successfully developed by combining the conceptions of injectable hydrogels and dual redox responsive diselenides. In the first step, four-armed PEG was modified with N-hydroxysuccinimide (NHS)-activated esters and thereafter, crosslinked by selenocystamine crosslinkers to form injectable hydrogels via the rapid reaction between NHS-activated esters and amino groups. The cross-sectional morphology, mechanical properties, and crosslinking modes of hydrogels were well characterized via scanning electron microscope (SEM), rheological measurements, and Fourier transform infrared spectra, respectively. In addition, the oxidation- and reduction-responsive degradation behaviors of hydrogels were observed and analyzed. The model drug, rhodamine B, was encapsulated in the hydrogel. The drug-loaded hydrogel exhibited a dual redox responsive release profile, which was consistent with the degradation experiments. The results of all experiments indicated that the formulated injectable dual redox responsive diselenide-containing PEG hydrogel can have potential applications in various biomedical fields such as drug delivery and stimuli-responsive drug release. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2451-2460, 2017. © 2017 Wiley Periodicals, Inc.

  2. A biomimetic redox flow battery based on flavin mononucleotide

    OpenAIRE

    Orita, A; Verde, MG; Sakai, M; Meng, YS

    2016-01-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactio...

  3. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    International Nuclear Information System (INIS)

    Kostela, J.; Elmgren, M.; Almgren, M.

    2005-01-01

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E 0 -values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase

  4. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    Energy Technology Data Exchange (ETDEWEB)

    Kostela, J. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)]. E-mail: johan.kostela@fki.uu.se; Elmgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden); Almgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)

    2005-05-30

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E {sup 0}-values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase.

  5. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation

    Energy Technology Data Exchange (ETDEWEB)

    Chapalamadugu, Kalyan C.; Panguluri, Siva K. [Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL (United States); Bennett, Eric S. [Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL (United States); Kolliputi, Narasaiah [Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (United States); Tipparaju, Srinivas M., E-mail: stippara@health.usf.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL (United States)

    2015-01-01

    Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72 h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia, arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD{sub 90}; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD and NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias. - Highlights: • Hyperoxia treatment leads to arrhythmia with prolonged QTc and action potential duration. • Hyperoxia treatment alters cardiac pyridine nucleotide [NAD(P)H/NAD(P)] levels. • SiRT1 and Kv1.5 are co

  6. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation

    International Nuclear Information System (INIS)

    Chapalamadugu, Kalyan C.; Panguluri, Siva K.; Bennett, Eric S.; Kolliputi, Narasaiah; Tipparaju, Srinivas M.

    2015-01-01

    Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72 h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia, arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD 90 ; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD and NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias. - Highlights: • Hyperoxia treatment leads to arrhythmia with prolonged QTc and action potential duration. • Hyperoxia treatment alters cardiac pyridine nucleotide [NAD(P)H/NAD(P)] levels. • SiRT1 and Kv1.5 are co-regulated in

  7. An assessment of the role of redox cycling in mediating the toxicity of paraquat and nitrofurantoin

    Energy Technology Data Exchange (ETDEWEB)

    Adam, A.; Cohen, G.M. (Univ. of London (England)); Smith, L.L. (Imperial Chemical Industries plc, Cheshire (England))

    1990-04-01

    The abilities of paraquat, diquat, and nitrofurantoin to undergo cyclic oxidation and reduction with rat microsomal systems have been assessed and compared to that of the potent redox cycler, menadione. Diquat and menadione were found to be potent redox cyclers with comparable abilities to elicit a nonstoichiometric increase in both the consumption of O{sub 2} and the oxidation of NADPH, compared to the amounts of substrate added. In contrast, paraquat and nitrofurantoin redox cycled poorly, being an order of magnitude less potent than either diquat or menadione. This was reflected in kinetic studies using lung and liver microsomes. In order to assess redox cycling of the substrates in an intact lung system, the O{sub 2} consumption of rat lung slices was measured in the presence of all four compounds. A small increase in lung slice O{sub 2} uptake was observed with paraquat in the first 2.5 hr of incubation, possibly because of redox cycling of a high intracellular concentration of paraquat resulting from active accumulation into target cells. This stimulation in O{sub 2} uptake was no longer observed when slices were incubated for a longer period or with higher paraquat concentrations (10{sup {minus}4}M), possibly because of toxic effects in target cells. These results together with the poor ability to redox cycle with microsomes and the absence of a specific uptake system highlight the problem of associating redox cycling and oxidative stress in the mechanism of nitrofurantoin toxicity.

  8. The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch.

    Science.gov (United States)

    Mauney, Christopher H; Rogers, LeAnn C; Harris, Reuben S; Daniel, Larry W; Devarie-Baez, Nelmi O; Wu, Hanzhi; Furdui, Cristina M; Poole, Leslie B; Perrino, Fred W; Hollis, Thomas

    2017-12-01

    Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.

  9. Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi

    Science.gov (United States)

    Ibáñez-Contreras, Alejandra; Miranda-Labra, Roxana U.; Flores-Martínez, José Juan

    2018-01-01

    Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage. PMID:29293551

  10. Electro-kinetic separation of rare earth elements using a redox-active ligand

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Huayi; Cole, Bren E.; Qiao, Yusen; Bogart, Justin A.; Cheisson, Thibault; Manor, Brian C.; Carroll, Patrick J.; Schelter, Eric J. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA (United States)

    2017-10-16

    Purification of rare earth elements is challenging due to their chemical similarities. All of the deployed separation methods rely on thermodynamic properties, such as distribution equilibria in solvent extraction. Rare-earth-metal separations based on kinetic differences have not been examined. Herein, we demonstrate a new approach for rare-earth-element separations by exploiting differences in the oxidation rates within a series of rare earth compounds containing the redox-active ligand [{2-(tBuN(O))C_6H_4CH_2}{sub 3}N]{sup 3-}. Using this method, a single-step separation factor up to 261 was obtained for the separation of a 50:50 yttrium-lutetium mixture. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.

    Science.gov (United States)

    Lei, Zhendong; Yang, Qinsi; Xu, Yi; Guo, Siyu; Sun, Weiwei; Liu, Hao; Lv, Li-Ping; Zhang, Yong; Wang, Yong

    2018-02-08

    Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g -1 and can sustain 500 cycles at 100 mA g -1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.

  12. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing.

    Science.gov (United States)

    Ahmed, Khan Behlol Ayaz; Senthilnathan, Rajendran; Megarajan, Sengan; Anbazhagan, Veerappan

    2015-10-01

    Owing to the benign nature, plant extracts mediated green synthesis of metal nanoparticles (NPs) is rapidly expanding. In this study, we demonstrated the successful green synthesis of silver nanoparticles (AgNPs) by utilizing natural sunlight and redox protein complex composed of ferredoxin-NADP(+) reductase (FNR) and ferredoxin (FD). The capping and stabilization of the AgNPs by the redox protein was confirmed by Fourier transform infrared spectroscopy. Light and redox protein is the prerequisite factor for the formation of AgNPs. The obtained result shows that the photo generated free radicals by the redox protein is responsible for the reduction of Ag(+) to Ag(0). Transmission electron microscopy revealed the formation of spherical AgNPs with size ranging from 10 to 15 nm. As-prepared AgNPs exhibit excellent catalytic activity toward the degradation of hazardous organic dyes, such as methylene blue, methyl orange and methyl red. These bio-inspired AgNPs is highly sensitive and selective in sensing hazardous mercury ions in the water at micromolar concentration. In addition, FNR/FD extract stabilized AgNPs showed good antimicrobial activity against gram positive and gram negative bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The interplay between sulphur and selenium metabolism influences the intracellular redox balance in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Mapelli, Valeria; Hillestrøm, Peter René; Patil, Kalpesh

    2012-01-01

    oxidative stress response is active when yeast actively metabolizes Se, and this response is linked to the generation of intracellular redox imbalance. The redox imbalance derives from a disproportionate ratio between the reduced and oxidized forms of glutathione and also from the influence of Se metabolism...

  14. A fibre optic fluorescence sensor to measure redox level in tissues

    Science.gov (United States)

    Zhang, Wen Qi; Morrison, Janna L.; Darby, Jack R. T.; Plush, Sally; Sorvina, Alexandra; Brooks, Doug; Monro, Tanya M.; Afshar Vahid, Shahraam

    2018-01-01

    We report the design of a fibre optic-based redox detection system for investigating differences in metabolic activities of tissues. Our system shows qualitative agreement with the results collected from a commercial two- photon microscope system. Thus, demonstrating the feasibility of building an ex vivo and in vivo redox detection system that is low cost and portable.

  15. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment.

    Science.gov (United States)

    Song, Yu; Cai, Han; Yin, Tingjie; Huo, Meirong; Ma, Ping; Zhou, Jianping; Lai, Wenfang

    2018-01-01

    Lung cancer is the primary cause of cancer-related death worldwide. A redox-sensitive nanocarrier system was developed for tumor-targeted drug delivery and sufficient drug release of the chemotherapeutic agent paclitaxel (PTX) for improved lung cancer treatment. The redox-sensitive nanocarrier system constructed from a hyaluronic acid-disulfide-vitamin E succinate (HA-SS-VES, HSV) conjugate was synthesized and PTX was loaded in the delivery system. The physicochemical properties of the HSV nanoparticles were characterized. The redox-sensitivity, tumor-targeting and intracellular drug release capability of the HSV nanoparticles were evaluated. Furthermore, in vitro and in vivo antitumor activity of the PTX-loaded HSV nanoparticles was investigated in a CD44 over-expressed A549 tumor model. This HSV conjugate was successfully synthesized and self-assembled to form nanoparticles in aqueous condition with a low critical micelle concentration of 36.3 μg mL -1 . Free PTX was successfully entrapped into the HSV nanoparticles with a high drug loading of 33.5% (w/w) and an entrapment efficiency of 90.6%. Moreover, the redox-sensitivity of the HSV nanoparticles was confirmed by particle size change of the nanoparticles along with in vitro release profiles in different reducing environment. In addition, the HA-receptor mediated endocytosis and the potency of redox-sensitivity for intracellular drug delivery were further verified by flow cytometry and confocal laser scanning microscopic analysis. The antitumor activity results showed that compared to redox-insensitive nanoparticles and Taxol ® , PTX-loaded redox-sensitive nanoparticles exhibited much greater in vitro cytotoxicity and apoptosis-inducing ability against CD44 over-expressed A549 tumor cells. In vivo, the PTX-loaded HSV nanoparticles possessed much higher antitumor efficacy in an A549 mouse xenograft model and demonstrated improved safety profile. In summary, our PTX-loaded redox-sensitive HSV nanoparticles

  16. Medium activity long-lived nuclear waste; microbial paradise or hadean environment - Evaluation of biomass and impact on redox conditions

    International Nuclear Information System (INIS)

    Albrecht, A.; Libert, M.

    2010-01-01

    Document available in extended abstract form only. The evaluation of the impact of possible microbial activity in nuclear waste cells has been a subject for more than a quarter of a century. Some of the items of interest in relation to microbial impact on near field biogeochemistry indicated in Table 1 had already been known as pertinent. Recently, it became clear that a distinction needed to be made between high-level, vitrified waste and organic matter containing intermediate-level waste, of which the bituminized waste is used as an example here. For high-level waste the canister walls play an important safety role and the most probable limiting aspects, next to space and water, are the low concentrations in organic matter as a carbon source and phosphorous and nitrogen as essential elements. In this particular case, microbially induced corrosion is of primary concern. In the case of the French intermediate bituminized waste, primary interest is on the impact of microbial activity on redox reactions, with the high pH environment, as a consequence of the concrete engineered barrier, as the most probable limiting condition. The canister wall has no explicit long-term safety role and all components for microbial activity will become readily available. The presence of nitrates, sulphates and Fe(III) as electron acceptors and organic matter, hydrogen gas and zero-valent metals (i.e. Fe) as electron donors allows the system to supply energy for bacterial activity and to move through the entire redox sequence from O 2 (present only shortly after waste-cell closure) to nitrate, Fe(III), sulphate and organic matter reduction. Prevailing uncertainties do not allow specification of timing for the redox-changes. These uncertainties are essentially related to the lack of knowledge regarding microbial catalysis. As no natural or anthropogenic analogues are available, parameters need to be obtained from experiments. Two approaches will be presented that allow estimation of the

  17. Fundamental studies of uranium and neptunium redox flow batteries (II)

    International Nuclear Information System (INIS)

    Shiokawa, Y.; Yamamura, T.; Watanabe, N.

    2002-01-01

    The atomic power generation entails production of so-called minor actinides and accumulation of depleted uranium. The theoretical and experimental investigations are underway to transmute minor actinides for minimizing the long-term radiotoxicity and reducing the radioactive waste. The utilization, however, would be alternative means. The actinide redox couples, An(VI)/An(V) and An(IV)/An(III), have excellent properties as battery active materials. Here j the uranium and neptunium redox flow batteries for the electric power storage are discussed from the electrochemical properties of U, Np, Pu and Am [1,2]. One of the required properties for the batteries for electric power storage is high energy efficiency, which is defined by the ratio of the discharge energy to the charge energy. These energies are dependent on the rapidness of kinetics in the electrode reactions, namely the standard rate constants and also the internal resistance of the battery

  18. Assessment of redox conditions based on fracture mineralogy

    International Nuclear Information System (INIS)

    Tullborg, E.L.

    1999-01-01

    The frequency and distribution of fracture minerals like calcite, Fe-oxides/hydroxides, and sulphides can be used in performance assessment since their presence reflects the redox processes that are active or have been active in the fractures. The advantage in using fracture minerals is that they undoubtedly represent conditions prior to disturbances caused by drilling or tunnel excavations. In addition, they give a continuous record from the surface to great depth. On the other hand the disadvantage is that the fracture mineral distribution is a result of both past and present processes such that the mineral distribution alone can not discriminate between old and recent processes. Nevertheless it is suggested that the fracture mineral distribution provides important information about the redox capacity in the fracture system. (author)

  19. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  20. Engineering redox balance through cofactor systems.

    Science.gov (United States)

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hybrid anodes for redox flow batteries

    Science.gov (United States)

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  2. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states

    Energy Technology Data Exchange (ETDEWEB)

    Nakashimada, Y.; Rachman, M.A.; Kakizono, T.; Nishio, N. [Hiroshima University, Higashi-Hiroshima (Japan). Graduate School of Advanced Sciences of Matter, Department of Molecular Biotechnology

    2002-12-01

    Enterobacter aerogenes HU-101, tested for its hydrogen production in batch cultures on various substrates, produced the highest amount of hydrogen when the substrate was glycerol. The yield of hydrogen is a function of the degree to which the substrates are reduced. To examine the effect of intracellular redox state on hydrogen yield, glucose-limiting chemostat cultures were carried out at various pH using strain HU-101 and its mutant AY-2. For both strains, the molar yield and the production rate of hydrogen and the hydrogenase activity in the cell-free extract were optimal at the culture pH of 6.3. The highest NADH/NAD ratio in both strains was also observed at pH 6.3, at which the ratio in AY-2 was more than two-fold that of HU-101. Furthermore, NAD(P)H-dependent hydrogen formation was observed in the cell-free extract of AY-2, and hydrogenase activity was found not in the cytoplasmic but in the cell membrane fraction, suggesting that a high intracellular redox state, that is a high NADH/NAD ratio, would accelerate hydrogen production by driving membrane-bound NAD(P)H-dependent hydrogenase. (author)

  3. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.

    Science.gov (United States)

    Duan, Wentao; Vemuri, Rama S; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-02-13

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

  4. Integration of the thiol redox status with cytokine response to physical training in professional basketball players.

    Science.gov (United States)

    Zembron-Lacny, A; Slowinska-Lisowska, M; Ziemba, A

    2010-01-01

    The present study was designed to evaluate the plasma markers of reactive oxygen species (ROS) activity and cytokines, and their relationship with thiol redox status of basketball players during training. Sixteen professional players of the Polish Basketball Extraleague participated in the study. The study was performed during the preparatory period and the play-off round. Markers of ROS activity (lipid peroxidation TBARS, protein carbonylation PC) and reduced glutathione (GSH) demonstrated regularity over time, i.e. TBARS, PC and GSH were elevated at the beginning and decreased at the end of training periods. Oxidized glutathione (GSSG) was not affected by exercise training. Thiol redox status (GSH(total)-2GSSG/GSSG) correlated with TBARS and PC in both training periods. The level of interleukin-6 (IL-6) was increased and positively correlated with thiol redox (r=0.423) in the preparatory period, whereas tumor necrosis factor alpha (TNFalpha) was increased and inversely correlated with thiol redox (r= 0.509) in the play-off round. The present study showed significant shifts in markers of ROS activity, thiol redox status and inflammatory mediators (IL-6, TNFalpha) following professional sport training as well as correlation between changes in thiol redox and cytokine response.

  5. Special Issue: Redox Active Natural Products and Their Interaction with Cellular Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Claus Jacob

    2014-11-01

    Full Text Available During the last decade, research into natural products has experienced a certain renaissance. The urgent need for more and more effective antibiotics in medicine, the demand for ecologically friendly plant protectants in agriculture, “natural” cosmetics and the issue of a sustainable and healthy nutrition in an ageing society have fuelled research into Nature’s treasure chest of “green gold”. Here, redox active secondary metabolites from plants, fungi, bacteria and other (micro-organisms often have been at the forefront of the most interesting developments. These agents provide powerful means to interfere with many, probably most cellular signaling pathways in humans, animals and lower organisms, and therefore can be used to protect, i.e., in form of antioxidants, and to frighten off or even kill, i.e., in form of repellants, antibiotics, fungicides and selective, often catalytic “sensor/effector” anticancer agents. Interestingly, whilst natural product research dates back many decades, in some cases even centuries, and compounds such as allicin and various flavonoids have been investigated thoroughly in the past, it has only recently become possible to investigate their precise interactions and mode(s of action inside living cells. Here, fluorescent staining and labelling on the one side, and appropriate detection, either qualitatively under the microscope or quantitatively in flow cytometers and plate readers, on the other, enable researchers to obtain the various pieces of information necessary to construct a fairly complete puzzle of how such compounds act and interact in living cells. Complemented by the more traditional activity assays and Western Blots, and increasingly joined by techniques such as proteomics, chemogenetic screening and mRNA profiling, these cell based bioanalytical techniques form a powerful platform for “intracellular diagnostics”. In the case of redox active compounds, especially of Reactive Sulfur

  6. Seasonality of major redox constituents in a shallow subterranean estuary

    Science.gov (United States)

    O'Connor, Alison E.; Krask, Julie L.; Canuel, Elizabeth A.; Beck, Aaron J.

    2018-03-01

    The subterranean estuary (STE), the subsurface mixing zone of outflowing fresh groundwater and infiltrating seawater, is an area of extensive geochemical reactions that determine the composition of groundwater that flows into coastal environments. This study examined the porewater composition of a shallow STE (redox gradients on STE geochemistry. Two freshwater endmembers were identified, between which redox potential and composition varied with depth-a shallow freshwater endmember was oxidizing and high in DOC, whereas a deep freshwater endmember was reducing, lower in DOC, and high in sulfide. Results showed that dissolved Fe, Mn, and sulfide varied along a redox gradient distinct from the salinity gradient, and that three-endmember mixing was required to quantify non-conservative chemical addition/removal in the STE. In addition to salinity, humic carbon was used as a quasi-conservative tracer to quantify mixing according to a three-endmember model. The vertical distributions of DOC and reduced metabolites remained approximately constant over time, but concentrations varied with season. Dissolved organic carbon concentrations were greatest in the summer, and shallow meteoric groundwater supplied the majority of DOC to the STE. In summer, there was additional evidence for shallow non-conservative addition of DOC. Dissolved Fe and Mn were highest in a subsurface plume through the middle of the STE (100-140 cm below sediment surface at the high tide line) which was characterized by higher concentrations and greater non-conservative addition in the winter. In contrast, sulfide was higher in summer at depths within the Fe and Mn plume (100-140 cm). We attribute the contrasting seasonal patterns of dissolved Fe, Mn, and sulfide to differences in microbial response to temperature changes and organic matter availability, and to competition at the ferrous-sulfidic transition zone between dissimilatory metal reduction and sulfate reduction, leading to sulfate

  7. Dissecting Redox Biology Using Fluorescent Protein Sensors.

    Science.gov (United States)

    Schwarzländer, Markus; Dick, Tobias P; Meyer, Andreas J; Morgan, Bruce

    2016-05-01

    Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.

  8. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  9. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  10. Redox Buffer Strength

    Science.gov (United States)

    de Levie, Robert

    1999-04-01

    The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.

  11. Computational design of molecules for an all-quinone redox flow battery.

    Science.gov (United States)

    Er, Süleyman; Suh, Changwon; Marshak, Michael P; Aspuru-Guzik, Alán

    2015-02-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH 2 ) ( i.e. , two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships.

  12. Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wu, Xiaoxin; Xu, Hongfeng; Shen, Yang; Xu, Pengcheng; Lu, Lu; Fu, Jie; Zhao, Hong

    2014-01-01

    A novel and highly effective treatment based on modified Hummers method was firstly used to improve the electrochemical activity of graphite felt as the positive electrode in all-vanadium redox flow battery (VRFB). The graphite felt was treated by the modified Hummers method and characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The electrochemical performance of the prepared electrode was evaluated through cyclic voltammetry and electrochemical impedance spectroscopy. Results show that graphite felt treated by modified Hummers method exhibits excellent electrocatalytic activity and reaction rate to vanadium redox couples. In our research, the hydrogen electrode and H 2 replaced the graphite felt and V 2+ /V 3+ couple in the negative side in the VRFB performance test. The coulombic, voltage, and energy efficiencies of the VRFB with the as-prepared electrodes at 50 mA cm −2 are 95.0%, 81.3%, and 77.2%, respectively. These values are much higher than those of the cell-assembled graphite felt electrodes that were conventionally and thermally treated. The graphite felt treated by the modified Hummers method carries more hydrophilic groups, such as–OH, on its defects, which is advantageous in facilitating the redox reaction of vanadium ions, thereby improving the operation efficiency of the vanadium redox flow battery

  13. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties

    Directory of Open Access Journals (Sweden)

    Mirko eZaffagnini

    2013-11-01

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is a ubiquitous enzyme involved in glycolysis and shown, particularly in animal cells, to play additional roles in several unrelated non-metabolic processes such as control of gene expression and apoptosis. This functional versatility is regulated, in part at least, by redox post-translational modifications that alter GAPDH catalytic activity and influence the subcellular localization of the enzyme. In spite of the well established moonlighting (multifunctional properties of animal GAPDH, little is known about non-metabolic roles of GAPDH in plants. Plant cells contain several GAPDH isoforms with different catalytic and regulatory properties, located both in the cytoplasm and in plastids, and participating in glycolysis and the Calvin-Benson cycle. A general feature of all GAPDH proteins is the presence of an acidic catalytic cysteine in the active site that is overly sensitive to oxidative modifications, including glutathionylation and S-nitrosylation. In Arabidopsis, oxidatively-modified cytoplasmic GAPDH has been successfully used as a tool to investigate the role of reduced glutathione, thioredoxins and glutaredoxins in the control of different types of redox post-translational modifications. Oxidative modifications inhibit GAPDH activity, but might enable additional functions in plant cells. Mounting evidence support the concept that plant cytoplasmic GAPDH may fulfill alternative, non-metabolic functions that are triggered by redox post-translational modifications of the protein under stress conditions. The aim of this review is to detail the molecular mechanisms underlying the redox regulation of plant cytoplasmic GAPDH in the light of its crystal structure, and to provide a brief inventory of the well known redox-dependent multi-facetted properties of animal GAPDH, together with the emerging roles of oxidatively-modified GAPDH in stress signaling pathways in plants.

  14. Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion

    Directory of Open Access Journals (Sweden)

    Marizela Delic

    2014-10-01

    Full Text Available Oxidative folding of secretory proteins in the endoplasmic reticulum (ER is a redox active process, which also impacts the redox conditions in the cytosol. As the transcription factor Yap1 is involved in the transcriptional response to oxidative stress, we investigate its role upon the production of secretory proteins, using the yeast Pichia pastoris as model, and report a novel important role of Yap1 during oxidative protein folding. Yap1 is needed for the detoxification of reactive oxygen species (ROS caused by increased oxidative protein folding. Constitutive co-overexpression of PpYAP1 leads to increased levels of secreted recombinant protein, while a lowered Yap1 function leads to accumulation of ROS and strong flocculation. Transcriptional analysis revealed that more than 150 genes were affected by overexpression of YAP1, in particular genes coding for antioxidant enzymes or involved in oxidation-reduction processes. By monitoring intracellular redox conditions within the cytosol and the ER using redox-sensitive roGFP1 variants, we could show that overexpression of YAP1 restores cellular redox conditions of protein-secreting P. pastoris by reoxidizing the cytosolic redox state to the levels of the wild type. These alterations are also reflected by increased levels of oxidized intracellular glutathione (GSSG in the YAP1 co-overexpressing strain. Taken together, these data indicate a strong impact of intracellular redox balance on the secretion of (recombinant proteins without affecting protein folding per se. Re-establishing suitable redox conditions by tuning the antioxidant capacity of the cell reduces metabolic load and cell stress caused by high oxidative protein folding load, thereby increasing the secretion capacity.

  15. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering

    OpenAIRE

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-01-01

    Abstract: Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delit...

  16. Ruthenium nanocatalysis on redox reactions.

    Science.gov (United States)

    Veerakumar, Pitchaimani; Ramdass, Arumugam; Rajagopal, Seenivasan

    2013-07-01

    Nanoparticles have generated intense interest over the past 20 years due to their high potential applications in different areas such as catalysis, sensors, nanoscale electronics, fuel and solar cells and optoelectronics. As the large fractions of metal atoms are exposed to the surface, the use of metal nanoparticles as nanocatalysts allows mild reaction conditions and high catalytic efficiency in a large number of chemical transformations. They have emerged as sustainable heterogeneous catalysts and catalyst supports alternative to conventional materials. This review focuses on the synthesis, characterization and catalytic role of ruthenium nanoparticles (RuNPs) on the redox reactions of heteroatom containing organic compounds with the green reagent H2O2, a field that has attracted immense interest among the chemical, materials and industrial communities. We intend to present a broad overview of Ru nanocatalysts for redox reactions with an emphasis on their performance, stability and reusability. The growth in the chemistry of organic sulfoxides and N-oxides during last decade was due to their importance as synthetic intermediates for the production of a wide range of chemically and biologically active molecules. Thus design of efficient methods for the synthesis of sulfoxides and N-oxides becomes important. This review concentrates on the catalysis of RuNPs on the H2O2 oxidation of organic sulfides to sulfoxides and amines to N-oxides. The deoxygenation reactions of sulfoxides to sulfides and reduction of nitro compounds to amines are fundamental reactions in both chemistry and biology. Here, we also highlight the catalysis of metal nanoparticles on the deoxygenation of sulfoxides and sulfones and reduction of nitro compounds with particular emphasis on the mechanistic aspects.

  17. The lightest organic radical cation for charge storage in redox flow batteries.

    Science.gov (United States)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S; Su, Liang; Brushett, Fikile R; Cheng, Lei; Liao, Chen; Ferrandon, Magali S; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K; Curtiss, Larry A; Shkrob, Ilya A; Moore, Jeffrey S; Zhang, Lu

    2016-08-25

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.

  18. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  19. Redox reaction triggered nanomotors based on soft-oxometalates with high and sustained motility

    Science.gov (United States)

    Mallick, Apabrita; Laskar, Abhrajit; Adhikari, R.; Roy, Soumyajit

    2018-05-01

    The recent interest in self-propulsion raises an immediate challenge in facile and single-step synthesis of active particles. Here, we address this challenge and synthesize soft oxometalate nanomotors that translate ballistically in water using the energy released in a redox reaction of hydrazine fuel with the soft-oxometalates. Our motors reach a maximum speed of ̴ 370 body lengths per second and remain motile over a period of approximately three days. We report measurements of the speed of a single motor as a function of the concentration of hydrazine. It is also possible to induce a transition from single-particle translation to collective motility with biomimetic bands simply by tuning the loading of the fuel. We rationalize the results from a physicochemical hydrodynamic theory. Our nanomotors may also be used for transport of catalytic materials in harsh chemical environments that would otherwise passivate the active catalyst.

  20. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    Directory of Open Access Journals (Sweden)

    Mayumi Yamato

    2016-08-01

    Full Text Available Continuous energy conversion is controlled by reduction–oxidation (redox processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity.

  1. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Ana L. R. L. Zimbardi

    2016-05-01

    Full Text Available Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1 was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w milled corncob, 0.8% (w/w NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1, the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate. Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate (ABTS were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE. ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB, remazol brilliant blue R and reactive blue 4 (RB4, at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.

  2. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.

    Science.gov (United States)

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-03-14

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as 'redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.

  3. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.

    Science.gov (United States)

    Okubo, Masashi; Yamada, Atsuo

    2017-10-25

    Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.

  4. Control by substrate of the cytochrome p450-dependent redox machinery: mechanistic insights.

    Science.gov (United States)

    Hlavica, Peter

    2007-08-01

    Based on initial studies with bacterial CYP101A1, a popular concept emerged predicting that substrate-induced low-to-high spin conversion of P450s is universally associated with shifts of the midpoint potential to a more positive value to maximize rates of electron transfer and metabolic turnover. However, evaluation of the plethora of observations with pro- and eukaryotic hemoproteins suggests a caveat as to generalization of this principle. Thus, some P450s are inherently high-spin, so that there is no need for a supportive substrate-triggered impulse to electron flow. With other enzymes, high-spin content is not consonant with reductive activity, and spin transition as such is not essential to sustaining substrate oxidation. Also, with certain proteins the low-spin conformer is reduced as swift as the high-spin entity. Moreover, there is not regularly a linear relationship between high-spin level and anodic shift of the reduction potential. Similarly, in given cases turnover may proceed despite insignificant or even lacking substrate-provoked alterations in the redox behaviour. Thus, folding of the disparate and sometimes conflicting data into a harmonized overall picture is a lingering problem. Apart from direct perturbation of the electrochemical properties, substrate docking may entail changes in enzyme conformation such as to favour productive complexation with redox partners or modulate electron transfer conduits within preformed donor/acceptor adducts, resulting in elevated ease of flow of reducing equivalents. Substrate-steered ordering of the oligomeric aggregation state of P450s is likely to impose steric constraints on heterodimers, causing one component to more readily align with electron carriers. Careful uncovering of electrochemical mechanisms in these systems will be fruitful to tailoring of novel bioenergetic machines and redox chains via redox-inspired protein engineering or molecular Lego, capable of generating products of interest or degrading

  5. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    Science.gov (United States)

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  6. New function of aldoxime dehydratase: Redox catalysis and the formation of an unexpected product.

    Science.gov (United States)

    Yamada, Masatoshi; Hashimoto, Yoshiteru; Kumano, Takuto; Tsujimura, Seiya; Kobayashi, Michihiko

    2017-01-01

    In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig's blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.

  7. New function of aldoxime dehydratase: Redox catalysis and the formation of an unexpected product.

    Directory of Open Access Journals (Sweden)

    Masatoshi Yamada

    Full Text Available In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA, which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities of wild-type OxdA, OxdA(WT. Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT and OxdA(H320D revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D was 30 times higher than that of OxdA(WT. Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT and OxdA(H320D showed the activity, the activity of OxdA(H320D was dozens of times higher than that of OxdA(WT. These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT, which was due to the known product, Russig's blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.

  8. New function of aldoxime dehydratase: Redox catalysis and the formation of an expected product

    Science.gov (United States)

    Kumano, Takuto; Tsujimura, Seiya; Kobayashi, Michihiko

    2017-01-01

    In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig’s blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate. PMID:28410434

  9. Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project

    Science.gov (United States)

    Karagiannakis, George; Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.; Tescari, Stefania; Singh, Abhishek; Roeb, Martin; Lange, Matthias; Marcher, Johnny; Jové, Aleix; Prieto, Cristina; Rattenbury, Michael; Chasiotis, Andreas

    2017-06-01

    The present work provides an overview of activities performed in the framework of the EU-funded collaborative project RESTRUCTURE, the main goal of which was to develop and validate a compact structured reactor/heat exchanger for thermochemical storage driven by 2-step high temperature redox metal oxide cycles. The starting point of development path included redox materials qualification via both theoretical and lab-scale experimental studies. Most favorable compositions were cobalt oxide/alumina composites. Preparation of small-scale structured bodies included various approaches, ranging from perforated pellets to more sophisticated honeycomb geometries, fabricated by extrusion and coating. Proof-of-concept of the proposed novel reactor/heat exchanger was successfully validated in small-scale structures and the next step included scaling up of redox honeycombs production. Significant challenges were identified for the case of extruded full-size bodies and the final qualified approach related to preparation of cordierite substrates coated with cobalt oxide. The successful experimental evaluation of the pilot reactor/heat exchanger system constructed motivated the preliminary techno-economic evaluation of the proposed novel thermochemical energy storage concept. Taking into account experimental results, available technologies and standard design aspects a model for a 70.5 MWe CSP plant was defined. Estimated LCOE costs were calculated to be in the range of reference values for Combined Cycle Power Plants operated by natural gas. One of main cost contributors was the storage system itself, partially due to relatively high cost of cobalt oxide. This highlighted the need to identify less costly and equally efficient to cobalt oxide redox materials.

  10. Redox rhythm reinforces the circadian clock to gate immune response.

    Science.gov (United States)

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  11. Development of a local anesthetic lidocaine-loaded redox-active injectable gel for postoperative pain management.

    Science.gov (United States)

    Nagasaki, Yukio; Mizukoshi, Yutaro; Gao, Zhenyu; Feliciano, Chitho P; Chang, Kyungho; Sekiyama, Hiroshi; Kimura, Hiroyuki

    2017-07-15

    Although local anesthesia is commonly applied for pain relief, there are several issues such as its short duration of action and low effectiveness at the areas of inflammation due to the acidic pH. The presence of excessive amount of reactive oxygen species (ROS) is known to induce inflammation and aggravate pain. To resolve these issues, we developed a redox-active injectable gel (RIG) with ROS-scavenging activity. RIG was prepared by mixing polyamine-b-poly(ethylene glycol)-b-polyamine with nitroxide radical moieties as side chains on the polyamine segments (PMNT-b-PEG-b-PMNT) with a polyanion, which formed a flower-type micelle via electrostatic complexation. Lidocaine could be stably incorporated in its core. When the temperature of the solution was increased to 37°C, the PIC-type flower micelle transformed to gel. The continuous release of lidocaine from the gel was observed for more than three days, without remarkable initial burst, which is probably owing to the stable entrapment of lidocaine in the PIC core of the gel. We evaluated the analgesic effect of RIG in carrageenan-induced arthritis mouse model. Results showed that lidocaine-loaded RIG has stronger and longer analgesic effect when administered in inflamed areas. In contrast, while the use of non-complexed lidocaine did not show analgesic effect one day after its administration. Note that no effect was observed when PIC-type flower micelle without ROS-scavenging ability was used. These findings suggest that local anesthetic-loaded RIG can effectively reduce the number of injection times and limit the side effects associated with the use of anti-inflammatory drugs for postoperative pain management. 1. We have been working on nanomaterials, which effectively eliminate ROS, avoiding dysfunction of mitochondria in healthy cells. 2. We designed redox injectable gel using polyion complexed flower type micelle, which can eliminates ROS locally. 3. We could prepare local anesthesia-loaded redox injectable

  12. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun

    2016-08-15

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy of integrating a redox species-based electrolyte in batteries to boost their performance. Taking the olivine LiFePO4-based battery as an example, the incorporation of redox species (i.e., polysulfide of Li2S8) in the electrolyte results in much lower polarization and superior stability, where the dissociated Li+/Sx2– can significantly speed up the lithium diffusion. More importantly, the presence of the S82–/S2– redox reaction further contributes extra capacity, making a completely new LiFePO4/Li2Sx hybrid battery with a high energy density of 1124 Wh kgcathode–1 and a capacity of 442 mAh gcathode–1. The marriage of appropriate redox species in an electrolyte for a rechargeable battery is an efficient and scalable approach for obtaining higher energy density storage devices.

  13. Natural analogue of redox front formation in near-field environment at post-closure phase of HLW geological disposal

    International Nuclear Information System (INIS)

    Yoshida, Hidekazu; Yamamoto, Koushi; Amano, Yuki

    2005-01-01

    Redox fronts are created in the near field of rocks, in a range of oxidation environments, by microbial activity in rock groundwater. Such fronts, and the associated oxide formation, are usually unavoidable around high level radioactive waste (HLW) repositories, whatever their design. The long term behaviour of these oxides after repositories have been closed is however little known. Here we introduce an analogue of redox front formation, such as 'iron oxide' deposits, known as takashikozo forming cylindrical nodules, and the long term behaviour of secondarily formed iron oxyhydroxide in subsequent geological environments. (author)

  14. Breast Cancer Redox Heterogeneity Detectable with Chemical Exchange Satruation Transfer (CEST) MRI

    Science.gov (United States)

    Cai, Kejia; Xu, He N.; Singh, Anup; Moon, Lily; Haris, Mohammad; Reddy, Ravinder; Li, Lin

    2014-01-01

    Purpose Tissue redox state is an important mediator of various biological processes in health and diseases such as cancer. Previously, we discovered that the mitochondrial redox state of ex vivo tissues detected by redox scanning (an optical imaging method) revealed interesting tumor redox state heterogeneity that could differentiate tumor aggressiveness. Because the noninvasive chemical exchange saturation transfer (CEST) MRI can probe the proton transfer and generate contrasts from endogenous metabolites, we aim to investigate if the in vivo CEST contrast is sensitive to proton transfer of the redox reactions so as to reveal the tissue redox states in breast cancer animal models. Procedures CEST MRI has been employed to characterize tumor metabolic heterogeneity and correlated with the redox states measured by the redox scanning in two human breast cancer mouse xenograft models, MDA-MB-231 and MCF-7. The possible biological mechanism on the correlation between the two imaging modalities was further investigated by phantom studies where the reductants and the oxidants of the representative redox reactions were measured. Results The CEST contrast is found linearly correlated with NADH concentration and the NADH redox ratio with high statistical significance, where NADH is the reduced form of nicotinamide adenine dinucleotide. The phantom studies showed that the reductants of the redox reactions have more CEST contrast than the corresponding oxidants, indicating that higher CEST effect corresponds to the more reduced redox state. Conclusions This preliminary study suggests that CEST MRI, once calibrated, might provide a novel noninvasive imaging surrogate for the tissue redox state and a possible diagnostic biomarker for breast cancer in the clinic. PMID:24811957

  15. Redox Fluctuations Increase the Contribution of Lignin to Soil Respiration

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.; Timokhin, V.; Hammel, K.

    2014-12-01

    Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia has long been thought to suppress lignin decomposition, yet variation in oxygen (O2) availability in surface soils accompanying moisture fluctuations could potentially stimulate this process by generating reactive oxygen species via coupled biotic and abiotic iron (Fe) redox cycling. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl and propyl Cβ) to provide highly sensitive and specific measures of lignin mineralization not previously employed in soils. Four-day redox fluctuations increased the percent contribution of methoxyl C to soil respiration, and cumulative methoxyl C mineralization was equivalent under static aerobic and fluctuating redox conditions despite lower total C mineralization in the latter treatment. Contributions of the highly stable Cβ to mineralization were also equivalent in static aerobic and fluctuating redox treatments during periods of O2 exposure, and nearly doubled in the fluctuating treatment after normalizing to cumulative O2 exposure. Oxygen fluctuations drove substantial net Fe reduction and oxidation, implying that reactive oxygen species generated during abiotic Fe oxidation likely contributed to the elevated contribution of lignin to C mineralization. Iron redox cycling provides a mechanism for lignin breakdown in soils that experience conditions unfavorable for canonical lignin-degrading organisms, and provides a potential mechanism for lignin depletion in soil organic matter during late-stage decomposition. Thus, close couplings between soil moisture, redox fluctuations, and lignin breakdown provide potential a link between climate variability and

  16. Activated Carbon as an Electron Acceptor and Redox Mediator during the Anaerobic Biotransformation of Azo Dyes

    NARCIS (Netherlands)

    Zee, van der F.P.; Bisschops, I.A.E.; Lettinga, G.; Field, J.A.

    2003-01-01

    The role of AC as redox mediator in accelerating the reductive transformation of pollutants as well as a terminal electron acceptor in the biological oxidation of an organic substrate is described. This study explores the use of AC as an immobilized redox mediator for the reduction of a recalcitrant

  17. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  18. A biomimetic redox flow battery based on flavin mononucleotide.

    Science.gov (United States)

    Orita, Akihiro; Verde, Michael G; Sakai, Masanori; Meng, Ying Shirley

    2016-10-21

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures.

  19. A biomimetic redox flow battery based on flavin mononucleotide

    Science.gov (United States)

    Orita, Akihiro; Verde, Michael G.; Sakai, Masanori; Meng, Ying Shirley

    2016-10-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures.

  20. Simultaneous Activation of Iron- and Thiol-Based Sensor-Regulator Systems by Redox-Active Compounds.

    Science.gov (United States)

    Lee, Kang-Lok; Yoo, Ji-Sun; Oh, Gyeong-Seok; Singh, Atul K; Roe, Jung-Hye

    2017-01-01

    Bacteria in natural habitats are exposed to myriad redox-active compounds (RACs), which include producers of reactive oxygen species (ROS) and reactive electrophile species (RES) that alkylate or oxidize thiols. RACs can induce oxidative stress in cells and activate response pathways by modulating the activity of sensitive regulators. However, the effect of a certain compound on the cell has been investigated primarily with respect to a specific regulatory pathway. Since a single compound can exert multiple chemical effects in the cell, its effect can be better understood by time-course monitoring of multiple sensitive regulatory pathways that the compound induces. We investigated the effect of representative RACs by monitoring the activity of three sensor-regulators in the model actinobacterium Streptomyces coelicolor ; SoxR that senses reactive compounds directly through oxidation of its [2Fe-2S] cluster, CatR/PerR that senses peroxides through bound iron, and an anti-sigma factor RsrA that senses RES via disulfide formation. The time course and magnitude of induction of their target transcripts were monitored to predict the chemical activities of each compound in S. coelicolor . Phenazine methosulfate (PMS) was found to be an effective RAC that directly activated SoxR and an effective ROS-producer that induced CatR/PerR with little thiol-perturbing activity. p -Benzoquinone was an effective RAC that directly activated SoxR, with slower ROS-producing activity, and an effective RES that induced the RsrA-SigR system. Plumbagin was an effective RAC that activated SoxR, an effective ROS-producer, and a less agile but effective RES. Diamide was an RES that effectively formed disulfides and a weak RAC that activated SoxR. Monobromobimane was a moderately effective RES and a slow producer of ROS. Interestingly, benzoquinone induced the SigR system by forming adducts on cysteine thiols in RsrA, revealing a new pathway to modulate RsrA activity. Overall, this study showed

  1. Redox and the circadian clock in plant immunity: A balancing act.

    Science.gov (United States)

    Karapetyan, Sargis; Dong, Xinnian

    2018-05-01

    Plants' reliance on sunlight for energy makes their light-driven circadian clock a critical regulator in balancing the energy needs for vital activities such as growth and defense. Recent studies show that the circadian clock acts as a strategic planner to prime active defense responses towards the morning or daytime when conditions, such as the opening of stomata required for photosynthesis, are favorable for attackers. Execution of the defense response, on the other hand, is determined according to the cellular redox state and is regulated in part by the production of reactive oxygen and nitrogen species upon pathogen challenge. The interplay between redox and the circadian clock further gates the onset of defense response to a specific time of the day to avoid conflict with growth-related activities. In this review, we focus on discussing the roles of the circadian clock as a robust overseer and the cellular redox as a dynamic executor of plant defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  3. The redox reaction kinetics of Sinai ore for chemical looping combustion applications

    International Nuclear Information System (INIS)

    Ksepko, Ewelina; Babiński, Piotr; Nalbandian, Lori

    2017-01-01

    Highlights: • Redox reaction kinetics of Fe-Mn-rich Sinai ore was determined by TGA. • The most suitable model for reduction was D3, while R3 for oxidation. • Activation energies 35.3 and 16.70 kJ/mole were determined for reduction and oxidation. • Repetitive redox reactions favor the formation of spinel phases in Sinai ore. • Multiple redox cycles induce formation of extensive porosity of the particles. - Abstract: The objective of this work was to study the use of Sinai ore, a Fe–Mn-based ore from Egypt, as a low-cost oxygen carrier (OC) in Chemical Looping Combustion (CLC). The Sinai ore was selected because it possesses relatively high amounts of iron and manganese oxides. Furthermore, those oxides have low cost, very favorable environmental and thermodynamic properties for the CLC process. The performance of the Sinai ore as an OC in CLC was compared to that of ilmenite (Norway Tellnes mine), the most extensively studied naturally occurring Fe-based mineral. The kinetics of the reduction and oxidation reactions with the two minerals were studied using a thermogravimetric analyzer (TGA). Experiments were conducted under isothermal conditions, with multiple redox cycles, at temperatures between 750 and 950 °C. For the reduction and oxidation reactions, different concentrations of CH_4 (10–25 vol.%) and O_2 (5–20 vol.%) were applied, respectively. The kinetic parameters, such as the activation energy (E_a), pre-exponential factor (A_0), and reaction order (n), were determined for the redox reactions. Furthermore, models of the redox reactions were selected by means of a model-fitting method. For the Sinai ore, the D3 model (3-dimensional diffusion) was suitable for modeling reduction reaction kinetics. The calculated E_a was 35.3 kJ/mole, and the reaction order was determined to be approximately 0.76. The best fit for the oxidation reaction was obtained for the R3 model (shrinking core). The oxidation (regeneration) reaction E_a was equal to 16

  4. Effect of redox conditions on bacterial community structure in Baltic Sea sediments with contrasting redox conditions

    NARCIS (Netherlands)

    Steenbergh, A.K.; Bodelier, P.L.E.; Slomp, C.P; Laanbroek, H.J.

    2014-01-01

    Phosphorus release from sediments can exacerbate the effect of eutrophication in coastal marine ecosystems. The flux of phosphorus from marine sediments to the overlying water is highly dependent on the redox conditions at the sediment-water interface. Bacteria are key players in the biological

  5. Thioredoxin-dependent Redox Regulation of Chloroplastic Phosphoglycerate Kinase from Chlamydomonas reinhardtii*

    Science.gov (United States)

    Morisse, Samuel; Michelet, Laure; Bedhomme, Mariette; Marchand, Christophe H.; Calvaresi, Matteo; Trost, Paolo; Fermani, Simona; Zaffagnini, Mirko; Lemaire, Stéphane D.

    2014-01-01

    In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (−335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys227 and Cys361. Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view. PMID:25202015

  6. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Arumugam

    2014-04-01

    reduction of actinides and their subsequent immobilization. Highly under-investigated is the role of redox-active semiconducting mineral surfaces as catalysts for promoting natural redox processes. Such knowledge is crucial to derive process-oriented mechanisms, kinetics, and rate laws for inorganic and organic redox processes in nature. In addition, molecular-level details still need to be explored and understood to plan for safer disposal of hazardous materials. In light of this, we include new research on the effect of iron-sulfide mineral surfaces, such as pyrite and mackinawite, on the redox chemistry of actinyl aqua complexes in aqueous solution.

  7. Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn_3O_4 nanoparticles for vanadium redox flow battery application

    International Nuclear Information System (INIS)

    Di Blasi, A.; Busaccaa, C.; Di Blasia, O.; Briguglioa, N.; Squadritoa, G.; Antonuccia, V.

    2017-01-01

    Highlights: • Mn_3O_4/CNF electrode is investigated for vanadium redox flow battery application. • The high reversibility is ascribed to the several type of redox couples on the spinel structure. • Cell electrochemical parameters confirm the high reversibility for Mn_3O_4/CNF electrodes. - Abstract: Flexible carbon nanofiber (CNF)-based electrodes and CNF with a 20% of manganese oxide incorporated (Mn_3O_4/CNF) are prepared by using the electrospinning method for vanadium redox flow battery (VRFB) application. A blend consisting of manganese acetate (Mn(OAc)_2) and polyacrilonitrile (PAN) is electrospun and successively subjected to different thermal treatments in which the growth of Mn_3O_4 particles and CNFs occurred together guaranteeing an appropriate electron conductivity for electrodes thus synthesized. Cyclic voltammetry (CV) measurements show an interesting electrocatalytic activity toward the [VO]"2"+/[VO_2]"+ as well as the V"2"+/V"3"+ redox reactions for the Mn_3O_4/CNF electrospun sample. Charge-discharge tests, carried out at 80 mA cm"−"2, show a state of charge (SOC) and a depth of discharge (DoD) of 81% and 73%, respectively, for the cells assembled with Mn_3O_4/CNF electrodes. These data are indicative of a high vanadium active species utilization thanks to the better electrocatalytic activity at high current densities. Furthermore, the cell with Mn_3O_4/CNF shows EE values of about 81% (88% of VE and 92% of CE) vs. 70% (75% of VE and 93% of CE) with respect to a commercial carbon felt (CF) electrode used for comparison. These results are attributable to the higher oxygen species content as well as the improved electron conductivity due to the synergetic effect of the more graphitic carbon and to the structural defects within the Mn_3O_4 spinel structure.

  8. Disruption of Pyridine Nucleotide Redox Status During Oxidative Challenge at Normal and Low-Glucose States: Implications for Cellular Adenosine Triphosphate, Mitochondrial Respiratory Activity, and Reducing Capacity in Colon Epithelial Cells

    Science.gov (United States)

    Circu, Magdalena L.; Maloney, Ronald E.

    2011-01-01

    Abstract We recently demonstrated that menadione (MQ), a redox cycling quinone, mediated the loss of mitochondrial glutathione/glutathione disulfide redox balance. In this study, we showed that MQ significantly disrupted cellular pyridine nucleotide (NAD+/NADH, NADP+/NADPH) redox balance that compromised cellular ATP, mitochondrial respiratory activity, and NADPH-dependent reducing capacity in colonic epithelial cells, a scenario that was exaggerated by low glucose. In the cytosol, MQ induced NAD+ loss concurrent with increased NADP+ and NAD kinase activity, but decreased NADPH. In the mitochondria, NADH loss occurred in conjunction with increased nicotinamide nucleotide transhydrogenase activity and NADP+, and decreased NADPH. These results are consistent with cytosolic NAD+-to-NADP+ and mitochondrial NADH-to-NADPH shifts, but compromised NADPH availability. Thus, despite the sacrifice of NAD+/NADH in favor of NADPH generation, steady-state NADPH levels were not maintained during MQ challenge. Impairments of cellular bioenergetics were evidenced by ATP losses and increased mitochondrial O2 dependence of pyridine nucleotide oxidation–reduction; half-maximal oxidation (P50) was 10-fold higher in low glucose, which was lowered by glutamate or succinate supplementation. This exaggerated O2 dependence is consistent with increased O2 diversion to nonmitochondrial O2 consumption by MQ-semiquinone redox cycling secondary to decreased NADPH-dependent MQ detoxication at low glucose, a situation that was corrected by glucose-sparing mitochondrial substrates. Antioxid. Redox Signal. 14, 2151–2162. PMID:21083422

  9. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae)

    KAUST Repository

    Šustr, Vladimír

    2014-08-01

    The saprophagous larvae of bibionid flies harbor bacteria in their alkaline intestinal tracts, but little is known about the contribution of the gut microbiota to the digestion of their recalcitrant diet. In this study, we measured oxygen and hydrogen partial pressure, redox potential and pH in the midgut, gastric caeca and hindgut of larvae of the bibionid fly Penthetria holosericea with Clark-type O2 and H2 microsensors, platinum redox microelectrodes, and LIX-type pH microelectrodes. The center of the midgut lumen was anoxic, whereas gastric caeca and hindgut were hypoxic. However, redox potential profiles indicated oxidizing conditions throughout the gut, with lowest values in the midgut (+20 to +60mV). Hydrogen production was not detected. The midgut was extremely alkaline (pH around 11), whereas hindgut and gastric caeca were neutral to slightly alkaline. While HPLC analysis showed high concentrations of glucose in the midgut (15mM) and gastric caeca (27mM), the concentrations of microbial fermentation products such as lactate (2-4mM), acetate (<1mM) and succinate (<0.5mM) were low in all gut regions, suggesting that the contribution of microorganisms to the digestive process, particularly in the alkaline midgut, is only of minor importance. We conclude that the digestive strategy of the saprophytic larva of P. holosericea, which feeds selectively on decomposed leaves and its own microbe-rich faeces, differs fundamentally from those of detritivorous and humivorous insects, which host a highly active, fermentative microbiota in their alkaline midgut or hindgut compartments. © 2014 Elsevier Ltd.

  10. Redox reaction studies by nanosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Moorthy, P.N.

    1979-01-01

    Free radicals are formed as intermediates in many chemical and biochemical reactions. An important type of reaction which they can undergo is a one electron or redox process. The direction and rate of such electron transfer reactions is governed by the relative redox potentials of the participating species. Because of the generally short lived nature of free radicals, evaluation of their redox potentials poses a number of problems. Two techniques are described for the experimental determination of the redox potentials of short lived species generated by either a nanosecond electron pulse or laser flash. In the first method, redox titration of the short lived species with stable molecules of known redox potential is carried out, employing the technique of fast kinetic spectrophotometry. Conversely, by the same method it is also possible to evaluate the one electron redox potentials of stable molecules by redox titration with free radicals of known redox potential produced as above. In the second method, electrochemical reduction or oxidation of the short lived species at an appropriate electrode (generally a mercury drop) is carried out at different fixed potentials, and the redox potential evaluated from the current-potential curves (polarograms). Full description of the experimental set up and theoretical considerations for interpretation of the raw data are given. The relative merits of the two methods and their practical applicability are discussed. (auth.)

  11. Redox-active porous coordination polymers prepared by trinuclear heterometallic pivalate linking with the redox-active nickel(II) complex: synthesis, structure, magnetic and redox properties, and electrocatalytic activity in organic compound dehalogenation in heterogeneous medium.

    Science.gov (United States)

    Lytvynenko, A S; Kolotilov, S V; Kiskin, M A; Cador, O; Golhen, S; Aleksandrov, G G; Mishura, A M; Titov, V E; Ouahab, L; Eremenko, I L; Novotortsev, V M

    2014-05-19

    Linking of the trinuclear pivalate fragment Fe2CoO(Piv)6 by the redox-active bridge Ni(L)2 (compound 1; LH is Schiff base from hydrazide of 4-pyridinecarboxylic acid and 2-pyridinecarbaldehyde, Piv(-) = pivalate) led to formation of a new porous coordination polymer (PCP) {Fe2CoO(Piv)6}{Ni(L)2}1.5 (2). X-ray structures of 1 and 2 were determined. A crystal lattice of compound 2 is built from stacked 2D layers; the Ni(L)2 units can be considered as bridges, which bind two Fe2CoO(Piv)6 units. In desolvated form, 2 possesses a porous crystal lattice (SBET = 50 m(2) g(-1), VDR = 0.017 cm(3) g(-1) estimated from N2 sorption at 78 K). At 298 K, 2 absorbed a significant quantity of methanol (up to 0.3 cm(3) g(-1)) and chloroform. Temperature dependence of molar magnetic susceptibility of 2 could be fitted as superposition of χMT of Fe2CoO(Piv)6 and Ni(L)2 units, possible interactions between them were taken into account using molecular field model. In turn, magnetic properties of the Fe2CoO(Piv)6 unit were fitted using two models, one of which directly took into account a spin-orbit coupling of Co(II), and in the second model the spin-orbit coupling of Co(II) was approximated as zero-field splitting. Electrochemical and electrocatalytic properties of 2 were studied by cyclic voltammetry in suspension and compared with electrochemical and electrocatalytic properties of a soluble analogue 1. A catalytic effect was determined by analysis of the catalytic current dependency on concentrations of the substrate. Compound 1 possessed electrocatalytic activity in organic halide dehalogenation, and such activity was preserved for the Ni(L)2 units, incorporated into the framework of 2. In addition, a new property occurred in the case of 2: the catalytic activity of PCP depended on its sorption capacity with respect to the substrate. In contrast to homogeneous catalysts, usage of solid PCPs may allow selectivity due to porous structure and simplify separation of product.

  12. Redox Mediators for Li-O2 Batteries: Status and Perspectives.

    Science.gov (United States)

    Park, Jin-Bum; Lee, Seon Hwa; Jung, Hun-Gi; Aurbach, Doron; Sun, Yang-Kook

    2018-01-01

    Li-O 2 batteries have received much attention due to their extremely large theoretical energy density. However, the high overpotentials required for charging Li-O 2 batteries lower their energy efficiency and degrade the electrolytes and carbon electrodes. This problem is one of the main obstacles in developing practical Li-O 2 batteries. To solve this problem, it is important to facilitate the oxidation of Li 2 O 2 upon charging by using effective electrocatalysis. Using solid catalysts is not too effective for oxidizing the electronically isolating Li-peroxide layers. In turn, for soluble catalysts, red-ox mediators (RMs) are homogeneously dissolved in the electrolyte solutions and can effectively oxidize all of the Li 2 O 2 precipitated during discharge. RMs can decompose solid Li 2 O 2 species no matter their size, morphology, or thickness and thus dramatically increase energy efficiency. However, some negative side effects, such as the shuttle reactions of RMs and deterioration of the Li-metal occur. Therefore, it is necessary to study the activity and stability of RMs in Li-O 2 batteries in detail. Herein, recent studies related to redox mediators are reviewed and the mechanisms of redox reactions are illustrated. The development opportunities of RMs for this important battery technology are discussed and future directions are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Effect of the medium redox potential on the growth and metabolism of anaerobic bacteria].

    Science.gov (United States)

    Vasilian, A; Trchunian, A

    2008-01-01

    Based on the available literature data on a decrease in the redox potential of medium to low negative values and a decrease in pH during the growth of sugar-fermenting anaerobic bacteria, it was concluded that these processes cannot be described by the theory of redox potential. A theory was developed according to which the regulation of bacterial metabolism is accomplished through changes in the redox potential. The theory considers the redox potential as a factor determining the growth of anaerobic bacteria, which is regulated by oxidizers and reducers. The assumption is put forward that, under anaerobic conditions, bacteria are sensitive to changes in the redox potential and have a redox taxis. The effect of the redox potential on the transport of protons and other substances through membranes and the activity of membrane-bound enzymes, including the proton F1-F0-ATPase, whose mechanisms of action involve changes in the proton conductance of the membrane, the generation of proton-driving force, and dithiol-disulfide transitions in proteins was studied.

  14. Imaging dynamic redox processes with genetically encoded probes.

    Science.gov (United States)

    Ezeriņa, Daria; Morgan, Bruce; Dick, Tobias P

    2014-08-01

    Redox signalling plays an important role in many aspects of physiology, including that of the cardiovascular system. Perturbed redox regulation has been associated with numerous pathological conditions; nevertheless, the causal relationships between redox changes and pathology often remain unclear. Redox signalling involves the production of specific redox species at specific times in specific locations. However, until recently, the study of these processes has been impeded by a lack of appropriate tools and methodologies that afford the necessary redox species specificity and spatiotemporal resolution. Recently developed genetically encoded fluorescent redox probes now allow dynamic real-time measurements, of defined redox species, with subcellular compartment resolution, in intact living cells. Here we discuss the available genetically encoded redox probes in terms of their sensitivity and specificity and highlight where uncertainties or controversies currently exist. Furthermore, we outline major goals for future probe development and describe how progress in imaging methodologies will improve our ability to employ genetically encoded redox probes in a wide range of situations. This article is part of a special issue entitled "Redox Signalling in the Cardiovascular System." Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  16. Solid-phase vibrational redox reactions in coordinated oxides

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Korol'kov, D.V.; Kostikov, Yu.P.

    1996-01-01

    The properties of multicomponent oxides (YBa 2 Cu 3 O 7-x , etc.), incorporating different valency forms of each of two (or more) different elements have been compared with the properties of the known chemical systems, where vibrational (periodic) redox-reactions are realized a fortiori. The essence of the new theoretical concept suggested consists in the following: high-T c superconductivity of the complex oxides and similar compounds originates from vibrational redox reaction proceeding in solid phase and involving different valency atoms of every element

  17. Interactions between magnetite and humic substances: redox reactions and dissolution processes.

    Science.gov (United States)

    Sundman, Anneli; Byrne, James M; Bauer, Iris; Menguy, Nicolas; Kappler, Andreas

    2017-10-19

    Humic substances (HS) are redox-active compounds that are ubiquitous in the environment and can serve as electron shuttles during microbial Fe(III) reduction thus reducing a variety of Fe(III) minerals. However, not much is known about redox reactions between HS and the mixed-valent mineral magnetite (Fe 3 O 4 ) that can potentially lead to changes in Fe(II)/Fe(III) stoichiometry and even dissolve the magnetite. To address this knowledge gap, we incubated non-reduced (native) and reduced HS with four types of magnetite that varied in particle size and solid-phase Fe(II)/Fe(III) stoichiometry. We followed dissolved and solid-phase Fe(II) and Fe(III) concentrations over time to quantify redox reactions between HS and magnetite. Magnetite redox reactions and dissolution processes with HS varied depending on the initial magnetite and HS properties. The interaction between biogenic magnetite and reduced HS resulted in dissolution of the solid magnetite mineral, as well as an overall reduction of the magnetite. In contrast, a slight oxidation and no dissolution was observed when native and reduced HS interacted with 500 nm magnetite. This variability in the solubility and electron accepting and donating capacity of the different types of magnetite is likely an effect of differences in their reduction potential that is correlated to the magnetite Fe(II)/Fe(III) stoichiometry, particle size, and crystallinity. Our study suggests that redox-active HS play an important role for Fe redox speciation within minerals such as magnetite and thereby influence the reactivity of these Fe minerals and their role in biogeochemical Fe cycling. Furthermore, such processes are also likely to have an effect on the fate of other elements bound to the surface of Fe minerals.

  18. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  19. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  20. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  1. Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2012-09-04

    Structural Fe in clay minerals is an important, albeit poorly characterized, redox-active phase found in many natural and engineered environments. This work develops an experimental approach to directly assess the redox properties of a natural Fe-bearing smectite (ferruginous smectite, SWa-1, 12.6 wt % Fe) with mediated electrochemical reduction (MER) and oxidation (MEO). By utilizing a suite of one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in SWa-1 and a working electrode, we show that the Fe2+/Fe3+ couple in SWa-1 is redox-active over a large range of potentials (from E(H) = -0.63 V to +0.61 V vs SHE). Electrochemical and spectroscopic analyses of SWa-1 samples that were subject to reduction and re-oxidation cycling revealed both reversible and irreversible structural Fe rearrangements that altered the observed apparent standard reduction potential (E(H)(ø)) of structural Fe. E(H)(ø)-values vary by as much as 0.56 V between SWa-1 samples with different redox histories. The wide range of E(H)-values over which SWa-1 is redox-active and redox history-dependent E(H)(ø)-values underscore the importance of Fe-bearing clay minerals as redox-active phases in a wide range of redox regimes.

  2. A redox-mediated chromogenic reaction and application in immunoassay.

    Science.gov (United States)

    Yu, Ru-Jia; Ma, Wei; Peng, Mao-Pan; Bai, Zhi-Shan; Long, Yi-Tao

    2016-08-31

    A novel redox-mediated chromogenic reaction was demonstrated based on the reaction between HAuCl4 and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), which generate various color responses from red to green in the resulting solutions. Various redox substance could be used to mediate the reaction and trigger a distinct color response. We established a sensitive hydrogen peroxide colorimetric sensor based on the redox-mediated chromogenic reaction and depicted the application both in detection of enzyme and in an immunoassay. Combining the traditional chromogenic reagent with gold nanoparticles, our assay has the advantage in short response time (within three minutes), high sensitivity (10(-12) g mL(-1) for HBsAg) and stability. Copyright © 2016. Published by Elsevier B.V.

  3. Interaction between heavy metals and thiol-linked redox reactions in germination.

    Science.gov (United States)

    Smiri, M; Chaoui, A; Ferjani, E E

    2010-09-15

    Thioredoxin (TRX) proteins perform important biological functions in cells by changing the redox state of proteins via dithiol disulfide exchange. Several systems are able to control the activity, stability, and correct folding of enzymes through dithiol/disulfide isomerization reactions including the enzyme protein disulfide-isomerase, the glutathione-dependent glutaredoxin system, and the thioredoxin systems. Plants have devised sophisticated mechanisms to cope with biotic and abiotic stresses imposed by their environment. Among these mechanisms, those collectively referred to as redox reactions induced by endogenous systems. This is of agronomical importance since a better knowledge of the involved mechanisms can offer novel means for crop protection. In the plant life cycle, the seed and seedling stages are key developmental stages conditioning the final yield of crops. Both are very sensitive to heavy metal stress. Plant redox reactions are principally studied on adult plant organs and there is only very scarce informations about the onset of redox regulation at the level of seed germination. In the here presented study, we discussed the importance of redox proteins in plant cell metabolism and defence. Special focus is given to TRX, which are involved in detoxification of ROS and also to their targets.

  4. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Hua [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Baker, Angela A. [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  5. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    International Nuclear Information System (INIS)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  6. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.

    Science.gov (United States)

    Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean

    2017-01-18

    As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.

  7. Redox Regulation of Endothelial Cell Fate

    Science.gov (United States)

    Song, Ping; Zou, Ming-Hui

    2014-01-01

    Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions. PMID:24633153

  8. Coordinate Activation of Redox-Dependent ASK1/TGF-β Signaling by a Multiprotein Complex (MPK38, ASK1, SMADs, ZPR9, and TRX) Improves Glucose and Lipid Metabolism in Mice.

    Science.gov (United States)

    Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung

    2016-03-10

    To explore the molecular connections between redox-dependent apoptosis signal-regulating kinase 1 (ASK1) and transforming growth factor-β (TGF-β) signaling pathways and to examine the physiological processes in which coordinated regulation of these two signaling pathways plays a critical role. We provide evidence that the ASK1 and TGF-β signaling pathways are interconnected by a multiprotein complex harboring murine protein serine-threonine kinase 38 (MPK38), ASK1, Sma- and Mad-related proteins (SMADs), zinc-finger-like protein 9 (ZPR9), and thioredoxin (TRX) and demonstrate that the activation of either ASK1 or TGF-β activity is sufficient to activate both the redox-dependent ASK1 and TGF-β signaling pathways. Physiologically, the restoration of the downregulated activation levels of ASK1 and TGF-β signaling in genetically and diet-induced obese mice by adenoviral delivery of SMAD3 or ZPR9 results in the amelioration of adiposity, hyperglycemia, hyperlipidemia, and impaired ketogenesis. Our data suggest that the multiprotein complex linking ASK1 and TGF-β signaling pathways may be a potential target for redox-mediated metabolic complications.

  9. Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement.

    Science.gov (United States)

    Wu, Junjun; Zhang, Xia; Zhou, Peng; Huang, Jiaying; Xia, Xiudong; Li, Wei; Zhou, Ziyu; Chen, Yue; Liu, Yinghao; Dong, Mingsheng

    2017-11-01

    Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains unclear. In this work, the metabolic efficiency of r-BOX for medium-chain fatty acid (C 6 -C 10 , MCFA) production was optimized by redox cofactor engineering. Stoichiometric analysis of the r-BOX pathway and further experimental examination identified NADH as a crucial determinant of r-BOX process yield. Furthermore, the introduction of formate dehydrogenase from Candida boidinii using fermentative inhibitor byproduct formate as a redox NADH sink improved MCFA titer from initial 1.2g/L to 3.1g/L. Moreover, coupling of increasing the supply of acetyl-CoA with NADH to achieve fermentative redox balance enabled product synthesis at maximum titers. To this end, the acetate re-assimilation pathway was further optimized to increase acetyl-CoA availability associated with the new supply of NADH. It was found that the acetyl-CoA synthetase activity and intracellular ATP levels constrained the activity of acetate re-assimilation pathway, and 4.7g/L of MCFA titer was finally achieved after alleviating these two limiting factors. To the best of our knowledge, this represented the highest titer reported to date. These results demonstrated that the key constraint of r-BOX was redox imbalance and redox engineering could further unleash the lipogenic potential of this cycle. The redox engineering strategies could be applied to acetyl-CoA-derived products or other bio-products requiring multiple redox cofactors for biosynthesis. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Hernández-Burgos, Kenneth [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Silberstein, Katharine E. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Rodríguez-Calero, Gabriel G. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Bisbey, Ryan P. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Dichtel, William R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States

    2015-02-17

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  11. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.; Rodríguez-Calero, Gabriel G.; Bisbey, Ryan P.; Abruña, Héctor D.; Dichtel, William R.

    2015-03-24

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  12. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte

    Science.gov (United States)

    Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae

    2016-02-01

    Herein, we are successfully prepared cobalt molybdate (CoMoO4) grown on nickel foam as a binder free electrode by hydrothermal approach for supercapacitors and improved their electrochemical performances using potassium ferricyanide (K3Fe(CN)6) as redox additive. The formation of CoMoO4 on Ni foam with high crystallinity is confirmed using XRD, Raman, and XPS measurements. The nanoplate arrays (NPAs) of CoMoO4 are uniformly grown on Ni foam which is confirmed by FE-SEM analysis. The prepared binder-free CoMoO4 NPAs achieved maximum areal capacity of 227 μAh cm-2 with KOH electrolyte at 2.5 mA cm-2. This achieved areal capacity is further improved about three times using the addition of K3Fe(CN)6 as redox additive. The increased electrochemical performances of CoMoO4 NPAs on Ni foam electrode via redox additive are discussed in detail and the mechanism has been explored. Moreover, the assembled CoMoO4 NPAs on Ni foam//activated carbon asymmetric supercapacitor device with an extended operating voltage window of 1.5 V exhibits an excellent performances such as high energy density and cyclic stability. The overall performances of binder-free CoMoO4 NPAs on Ni foam with redox additives suggesting their potential use as positive electrode material for high performance supercapacitors.

  13. A Mononuclear Non-Heme Manganese(IV)-Oxo Complex Binding Redox-Inactive Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M.; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N.; Nam, Wonwoo [Ewha; (Purdue); (Osaka)

    2013-05-29

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal–oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)–oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)–oxo complex binding scandium ions. The Mn(IV)–oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)–oxo complex are markedly influenced by binding of Sc3+ ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C–H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)–oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal–oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  14. Flat Graphene-Enhanced Electron Transfer Involved in Redox Reactions.

    Science.gov (United States)

    Pan, Meilan; Zhang, Yanyang; Shan, Chao; Zhang, Xiaolin; Gao, Guandao; Pan, Bingcai

    2017-08-01

    Graphene is easily warped in the out-of-plane direction because of its high in-plane Young's modulus, and exploring the influence of wrinkled graphene on its properties is essential for the design of graphene-based materials for environmental applications. Herein, we prepared wrinkled graphene (WGN-1 and WGN-2) by thermal treatment and compared their electrochemical properties with those of flat graphene nanosheets (FGN). FGN exhibit activities that are much better than those of wrinkled graphene nanosheets (WGN), not only in the electrochemical oxidation of methylene blue (MB) but also in the electrochemical reduction of nitrobenzene (NB). Transformation ratios of MB and NB in FGN, WGN-1, and WGN-2 were 97.5, 80.1, and 57.9% and 94.6, 92.1, and 81.2%, respectively. Electrochemical impedance spectroscopy and the surface resistance of the graphene samples increased in the following order: FGN reaction charges transfer faster across the reaction interfaces and along the surface of FGN than that of WGN, and wrinkles restrict reaction charge transfer and reduce the reaction rates. This study reveals that the morphology of the graphene (flat or wrinkle) greatly affects redox reaction activities and may have important implications for the design of novel graphene-based nanostructures and for our understanding of graphene wrinkle-dependent redox reactions in environmental processes.

  15. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.

    Directory of Open Access Journals (Sweden)

    Nora Gutsche

    Full Text Available The Arabidopsis TGA transcription factor (TF PERIANTHIA (PAN regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG, which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly

  16. Redox Biology in Neurological Function, Dysfunction, and Aging.

    Science.gov (United States)

    Franco, Rodrigo; Vargas, Marcelo R

    2018-04-23

    Reduction oxidation (redox) reactions are central to life and when altered, they can promote disease progression. In the brain, redox homeostasis is recognized to be involved in all aspects of central nervous system (CNS) development, function, aging, and disease. Recent studies have uncovered the diverse nature by which redox reactions and homeostasis contribute to brain physiology, and when dysregulated to pathological consequences. Redox reactions go beyond what is commonly described as oxidative stress and involve redox mechanisms linked to signaling and metabolism. In contrast to the nonspecific nature of oxidative damage, redox signaling involves specific oxidation/reduction reactions that regulate a myriad of neurological processes such as neurotransmission, homeostasis, and degeneration. This Forum is focused on the role of redox metabolism and signaling in the brain. Six review articles from leading scientists in the field that appraise the role of redox metabolism and signaling in different aspects of brain biology including neurodevelopment, neurotransmission, aging, neuroinflammation, neurodegeneration, and neurotoxicity are included. An original research article exemplifying these concepts uncovers a novel link between oxidative modifications, redox signaling, and neurodegeneration. This Forum highlights the recent advances in the field and we hope it encourages future research aimed to understand the mechanisms by which redox metabolism and signaling regulate CNS physiology and pathophysiology. Antioxid. Redox Signal. 00, 000-000.

  17. Electron flow in multicenter enzymes: theory, applications, and consequences on the natural design of redox chains.

    Science.gov (United States)

    Léger, Christophe; Lederer, Florence; Guigliarelli, Bruno; Bertrand, Patrick

    2006-01-11

    In protein film voltammetry, a redox enzyme is directly connected to an electrode; in the presence of substrate and when the driving force provided by the electrode is appropriate, a current flow reveals the steady-state turnover. We show that, in the case of a multicenter enzyme, this signal reports on the energetics and kinetics of electron transfer (ET) along the redox chain that wires the active site to the electrode, and this provides a new strategy for studying intramolecular ET. We propose a model which takes into account all the enzyme's redox microstates, and we prove it useful to interpret data for various enzymes. Several general ideas emerge from this analysis. Considering the reversibility of ET is a requirement: the usual picture, where ET is depicted as a series of irreversible steps, is oversimplified and lacks the important features that we emphasize. We give justification to the concept of apparent reduction potential on the time scale of turnover and we explain how the value of this potential relates to the thermodynamic and kinetic properties of the system. When intramolecular ET does not limit turnover, the redox chain merely mediates the driving force provided by the electrode or the soluble redox partner, whereas when intramolecular ET is slow, the enzyme behaves as if its active active site had apparent redox properties which depend on the reduction potentials of the relays. This suggests an alternative to the idea that redox chains are optimized in terms of speed: evolutionary pressure may have resulted in slowing down intramolecular ET in order to tune the enzyme's "operating potential".

  18. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  19. Radii of Redox Components from Absolute Redox Potentials Compared with Covalent and Aqueous Ionic Radii

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2010-01-01

    Roč. 22, č. 9 (2010), s. 903-907 ISSN 1040-0397 Institutional support: RVO:68081707 Keywords : Electrochemistry * Absolute redox potentials * Radii of redox components Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  20. PHB Biosynthesis Counteracts Redox Stress in Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    Marcelo B. Batista

    2018-03-01

    Full Text Available The ability of bacteria to produce polyhydroxyalkanoates such as poly(3-hydroxybutyrate (PHB enables provision of a carbon storage molecule that can be mobilized under demanding physiological conditions. However, the precise function of PHB in cellular metabolism has not been clearly defined. In order to determine the impact of PHB production on global physiology, we have characterized the properties of a ΔphaC1 mutant strain of the diazotrophic bacterium Herbaspirillum seropedicae. The absence of PHB in the mutant strain not only perturbs redox balance and increases oxidative stress, but also influences the activity of the redox-sensing Fnr transcription regulators, resulting in significant changes in expression of the cytochrome c-branch of the electron transport chain. The synthesis of PHB is itself dependent on the Fnr1 and Fnr3 proteins resulting in a cyclic dependency that couples synthesis of PHB with redox regulation. Transcriptional profiling of the ΔphaC1 mutant reveals that the loss of PHB synthesis affects the expression of many genes, including approximately 30% of the Fnr regulon.

  1. PHB Biosynthesis Counteracts Redox Stress in Herbaspirillum seropedicae.

    Science.gov (United States)

    Batista, Marcelo B; Teixeira, Cícero S; Sfeir, Michelle Z T; Alves, Luis P S; Valdameri, Glaucio; Pedrosa, Fabio de Oliveira; Sassaki, Guilherme L; Steffens, Maria B R; de Souza, Emanuel M; Dixon, Ray; Müller-Santos, Marcelo

    2018-01-01

    The ability of bacteria to produce polyhydroxyalkanoates such as poly(3-hydroxybutyrate) (PHB) enables provision of a carbon storage molecule that can be mobilized under demanding physiological conditions. However, the precise function of PHB in cellular metabolism has not been clearly defined. In order to determine the impact of PHB production on global physiology, we have characterized the properties of a Δ phaC1 mutant strain of the diazotrophic bacterium Herbaspirillum seropedicae . The absence of PHB in the mutant strain not only perturbs redox balance and increases oxidative stress, but also influences the activity of the redox-sensing Fnr transcription regulators, resulting in significant changes in expression of the cytochrome c -branch of the electron transport chain. The synthesis of PHB is itself dependent on the Fnr1 and Fnr3 proteins resulting in a cyclic dependency that couples synthesis of PHB with redox regulation. Transcriptional profiling of the Δ phaC1 mutant reveals that the loss of PHB synthesis affects the expression of many genes, including approximately 30% of the Fnr regulon.

  2. Characterization of Mammalian Selenoprotein O: A Redox-Active Mitochondrial Protein

    OpenAIRE

    Han, Seong-Jeong; Lee, Byung Cheon; Yim, Sun Hee; Gladyshev, Vadim N.; Lee, Seung-Rock

    2014-01-01

    Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells ...

  3. Thiol/Disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum.

    Directory of Open Access Journals (Sweden)

    Javiera Norambuena

    Full Text Available Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe(2+ as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balance. We studied the composition of thiol/disulfide systems and their role in the oxidative stress response in this extremophile bacterium. Bioinformatic analysis using genomic data and enzymatic assays using protein extracts from cells grown under oxidative stress revealed that the major thiol/disulfide system from L. ferriphilum are a cytoplasmic thioredoxin system (composed by thioredoxins Trx and thioredoxin reductase TR, periplasmic thiol oxidation system (DsbA/DsbB and a c-type cytochrome maturation system (DsbD/DsbE. Upon exposure of L. ferriphilum to reactive oxygen species (ROS-generating compounds, transcriptional activation of the genes encoding Trxs and the TR enzyme, which results in an increase of the corresponding activity, was observed. Altogether these data suggest that the thioredoxin-based thiol/disulfide system plays an important role in redox protection of L. ferriphilum favoring the survival of this microorganism under extreme environmental oxidative conditions.

  4. Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery.

    Science.gov (United States)

    Zhu, Yun Guang; Jia, Chuankun; Yang, Jing; Pan, Feng; Huang, Qizhao; Wang, Qing

    2015-06-11

    A redox flow lithium-oxygen battery (RFLOB) by using soluble redox catalysts with good performance was demonstrated for large-scale energy storage. The new device enables the reversible formation and decomposition of Li2O2 via redox targeting reactions in a gas diffusion tank, spatially separated from the electrode, which obviates the passivation and pore clogging of the cathode.

  5. Scleroglucan-borax hydrogel: a flexible tool for redox protein immobilization.

    Science.gov (United States)

    Frasconi, Marco; Rea, Sara; Matricardi, Pietro; Favero, Gabriele; Mazzei, Franco

    2009-09-15

    A highly stable biological film was prepared by casting an aqueous dispersion of protein and composite hydrogel obtained from the polysaccharide Scleroglucan (Sclg) and borax as a cross-linking agent. Heme proteins, such as hemoglobin (Hb), myoglobin (Mb), and horseradish peroxidase (HRP), were chosen as model proteins to investigate the immobilized system. A pair of well-defined quasi-reversible redox peaks, characteristics of the protein heme FeII/FeIII redox couples, were obtained at the Sclg-borax/proteins films on pyrolytic graphite (PG) electrodes, as a consequence of the direct electron transfer between the protein and the PG electrode. A full characterization of the electron transfer kinetic was performed by opportunely modeling data obtained from cyclic voltammetry and square wave voltammetry experiments. The efficiency of our cross-linking approach was investigated by studying the influence of different borax groups percentage in the Sclg matrix, revealing the versatility of this hydrogel in the immobilization of redox proteins. The native conformation of the three heme proteins entrapped in the hydrogel films were proved to be unchanged, reflected by the unaltered Soret adsorption band and by the catalytic activity toward hydrogen peroxide (H2O2). The main kinetic parameters, such as the apparent Michaelis-Menten constant, for the electrocatalytic reaction were also evaluated. The peculiar characteristics of Sclg-borax matrix make it possible to find wide opportunities as proteins immobilizing agent for studies of direct electrochemistry and biosensors development.

  6. Enhanced energy density of carbon-based supercapacitors using Cerium (III) sulphate as inorganic redox electrolyte

    International Nuclear Information System (INIS)

    Díaz, Patricia; González, Zoraida; Santamaría, Ricardo; Granda, Marcos; Menéndez, Rosa; Blanco, Clara

    2015-01-01

    Highlights: •Ce 2 (SO 4 ) 3 /H 2 SO 4 redox electrolyte as a new route to increase the energy density of SCs. •Increased operating cell voltage with no electrolyte decomposition. •Redox reactions on the battery-type electrode. •The negative electrode retains its capacitor behaviour. •Outstanding energy density values compared to those measured in H 2 SO 4 . -- ABSTRACT: The energy density of carbon based supercapacitors (CBSCs) was significantly increased by the addition of an inorganic redox species [Ce 2 (SO 4 ) 3 ] to an aqueous electrolyte (H 2 SO 4 ). The development of the faradaic processes on the positive electrode not only significantly increased the capacitance but also the operational cell voltage of these devices (up to 1.5 V) due to the high redox potentials at which the Ce 3+ /Ce 4+ reactions occur. Therefore, in asymmetric CBSCs assembled using an activated carbon as negative electrode and MWCNTs as the positive one, the addition of Ce 2 (SO 4 ) 3 moderately increases the energy density of the device (from 1.24 W h kg −1 to 5.08 W h kg −1 ). When a modified graphite felt is used as positive electrode the energy density of the cell reaches values as high as 13.84 W h kg −1 . The resultant systems become asymmetric hybrid devices where energy is stored due to the electrical double layer formation in the negative electrode and the development of the faradaic process in the positive electrode, which acts as a battery-type electrode

  7. Synthesis and Electrochemical Study of a TCAA Derivative – A potential bipolar redox-active material

    International Nuclear Information System (INIS)

    Hagemann, Tino; Winsberg, Jan; Wild, Andreas; Schubert, Ulrich S.

    2017-01-01

    The 2,3,7,8-tetracyano-1,4,5,6,9,10-hexazaanthracene (TCAA) derivatives represent an interesting substance class for future research on organic electronic devices, such as solar cells, organic batteries or redox-flow batteries (RFBs). Because of their multivalent redox behavior they are potentially “bipolar”, usable both as cathode and anode activ charge-storage materials. Furthermore, they show a strong absorption and fluorescence behavior both in solution and solid state, rendering them a promising emitter for electroluminescence devices, like lamps or displays. In order to evaluate a TCAA for electrochemical applications the derivative 2,3,7,8-tetracyano-5,10-diphenyl-5,10-dihydrodipyrazino[2,3-b:2′,3′-e] pyrazine (2) was synthesized in two straightforward synthesis steps. The electrochemical behavior of 2 was initially determined by density functional theory (DFT) calculation and afterwards investigated via rotating disc electrode (RDE), UV–vis–NIR spectroelectrochemical as well as cyclic voltammetry (CV) measurements. It features a quasi-reversible oxidation and re-reduction at E ½ = 1.42 V vs. Fc + /Fc with a peak split of 96 mV and a quasi-reversible reduction and re-oxidation at E ½ = −1.49 V vs. Fc + /Fc with a peak split of 174 mV, which lead to a theoretical potential difference of 2.91 V.

  8. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance.

    Science.gov (United States)

    Karpinska, Barbara; Zhang, Kaiming; Rasool, Brwa; Pastok, Daria; Morris, Jenny; Verrall, Susan R; Hedley, Pete E; Hancock, Robert D; Foyer, Christine H

    2018-05-01

    The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild-type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 μmol m -2  s -1 ] and high [high light (HL); 1600 μmol m -2  s -1 ] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL-grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub-sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state. © 2017 John Wiley & Sons Ltd.

  9. Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin.

    Science.gov (United States)

    Amdursky, Nadav; Ferber, Doron; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2013-10-28

    Integrating proteins in molecular electronic devices requires control over their solid-state electronic transport behavior. Unlike "traditional" electron transfer (ET) measurements of proteins that involve liquid environments and a redox cycle, no redox cofactor is needed for solid-state electron transport (ETp) across the protein. Here we show the fundamental difference between these two approaches by macroscopic area measurements, which allow measuring ETp temperature dependence down to cryogenic temperatures, via cytochrome C (Cyt C), an ET protein with a heme (Fe-porphyrin) prosthetic group as a redox centre. We compare the ETp to electrochemical ET measurements, and do so also for the protein without the Fe (with metal-free porphyrin) and without porphyrin. As removing the porphyrin irreversibly alters the protein's conformation, we repeat these measurements with human serum albumin (HSA), 'doped' (by non-covalent binding) with a single hemin equivalent, i.e., these natural and artificial proteins share a common prosthetic group. ETp via Cyt C and HSA-hemin are very similar in terms of current magnitude and temperature dependence, which suggests similar ETp mechanisms via these two systems, thermally activated hopping (with ~0.1 eV activation energy) >190 K and tunneling by superexchange Fe(3+) + e(-)), measured by electrochemistry of HSA-hemin are only 4 times lower than those for Cyt C. However, while removing the Fe redox centre from the porphyrin ring markedly affects the ET rate, it hardly changes the ETp currents through these proteins, while removing the macrocycle (from HSA, which retains its conformation) significantly reduces ETp efficiency. These results show that solid-state ETp across proteins does not require the presence of a redox cofactor, and that while for ET the Fe ion is the main electron mediator, for ETp the porphyrin ring has this function.

  10. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.

    Science.gov (United States)

    Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei

    2015-03-01

    A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Ferredoxin-Like Proteins HydN and YsaA Enhance Redox Dye-Linked Activity of the Formate Dehydrogenase H Component of the Formate Hydrogenlyase Complex.

    Science.gov (United States)

    Pinske, Constanze

    2018-01-01

    Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H 2 and CO 2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H 2 -production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H 2 -production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA , but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H 2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described

  12. Nitrogen-Doped Graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery

    International Nuclear Information System (INIS)

    Shi, Lang; Liu, Suqin; He, Zhen; Shen, Junxi

    2014-01-01

    Nitrogen-doped graphene nanosheets (NGS), prepared by a simple hydrothermal reaction of graphene oxide (GO) with urea as nitrogen source were studied as positive electrodes in vanadium redox flow battery (VRFB). The synthesized NGS with the nitrogen level as high as 10.12 atom% is proven to be a promising material for VRFB. The structures and electrochemical properties of the materials are investigated by scanning electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and electrochemical impendence spectroscopy. The results demonstrate that not only the nitrogen doping level but the nitrogen type in the NGS are significant for its catalytic activity towards the [VO] 2+ /[VO 2 ] + redox couple reaction. In more detail, among four types of nitrogen species (pyridinic-N, pyrrolic-N, quaternary-N, oxidic-N) doped into the graphene lattice, quaternary-N play mainly roles for improving the catalytic activity toward the [VO] 2+ /[VO 2 ] + couple reaction

  13. Redox-assisted Li+-storage in lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang Qizhao; Wang Qing

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e − and h + ) and ionic species (Li + ) at the electrode–electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li + storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. (topical review)

  14. Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Omrani, Ismail; Babanejad, Niloofar; Shendi, Hasan Kashef; Nabid, Mohammad Reza, E-mail: m-nabid@sbu.ac.ir

    2017-01-01

    Polyurethanes are important class of biomaterials that are extensively used in medical devices. In spite of their easy synthesis, polyurethanes that are fully degradable in response to the intracellular reducing environment are less explored for controlled drug delivery. Herein, a novel glutathione degradable waterborne polyurethane (WPU) nanocarrier for redox triggered intracellular delivery of a model lipophilic anticancer drug, doxorubicin (DOX) is reported. The WPU was prepared from polyaddition reaction of isophorone diisocyanate (IPDI) and a novel linear polyester polyol involving disulfide linkage, disulfide labeled chain extender, dimethylolpropionic acid (DMPA) using dibutyltin dilaurate (DBTDL) as a catalyst. The resulting polyurethane self-assembles into nanocarrier in water. The dynamic light scattering (DLS) measurements and scanning electron microscope (SEM) revealed fast swelling and disruption of nanocarriers under an intracellular reduction-mimicking environment. The in vitro release studies showed that DOX was released in a controlled and redox-dependent manner. MTT assays showed that DOX-loaded WPU had a high in vitro antitumor activity in both HDF noncancer cells and MCF- 7 cancer cells. In addition, it is found that the blank WPU nanocarriers are nontoxic to HDF and MCF-7 cells even at a high concentration of 2 mg/mL. Hence, nanocarriers based on disulfide labeled WPU have appeared as a new class of biocompatible and redox-degradable nanovehicle for efficient intracellular drug delivery. - Highlights: • A novel fully glutathione degradable waterborne polyurethane was developed. • The waterborne nanocarrier with disulfide bonds in both hard and soft segment were developed for redox-triggered intracellular delivery of DOX. • The polyester diol bearing disulfide bonds in the backbone was prepared by a polycondensation polymerization reaction.

  15. Methods of simulating low redox potential (Eh) for a basalt repository

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1983-01-01

    Basalt groundwaters have inherently low redox potentials, approximately -0.4V, which can be measured with platinum electrodes, but are difficult to reproduce during leaching experiments. In the presence of deionized water, crushed basalt reaches the measured Eh-pH values of a basalt repository. Other waste package components, such as iron, will interact with groundwater in different ways under oxic or anoxic conditions since the presence of any redox active solid will affect the groundwater Eh. 26 references, 4 figures

  16. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations

    Directory of Open Access Journals (Sweden)

    V. Naudet

    2004-01-01

    Full Text Available Accurate mapping of the electrical conductivity and of the redox potential of the groundwater is important in delineating the shape of a contaminant plume. A map of redox potential in an aquifer is indicative of biodegradation of organic matter and of concentrations of redox-active components; a map of electrical conductivity provides information on the mineralisation of the groundwater. Both maps can be used to optimise the position of pumping wells for remediation. The self-potential method (SP and electrical resistivity tomography (ERT have been applied to the contaminant plume associated with the Entressen landfill in south-east France. The self-potential depends on groundwater flow (electrokinetic contribution and redox conditions ('electro-redox' contribution. Using the variation of the piezometric head in the aquifer, the electrokinetic contribution is removed from the SP signals. A good linear correlation (R2=0.85 is obtained between the residual SP data and the redox potential values measured in monitoring wells. This relationship is used to draw a redox potential map of the overall contaminated site. The electrical conductivity of the subsoil is obtained from 3D-ERT analysis. A good linear correlation (R2=0.91 is observed between the electrical conductivity of the aquifer determined from the 3D-ERT image and the conductivity of the groundwater measured in boreholes. This indicates that the formation factor is nearly homogeneous in the shallow aquifer at the scale of the ERT. From this correlation, a map of the pore water conductivity of the aquifer is obtained. Keywords: self-potential, redox potential, electrical resistivity tomography, fluid conductivity, contaminant plume

  17. Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple.

    Science.gov (United States)

    Zhou, Peng; Zhang, Jing; Liang, Juan; Zhang, Yongli; Liu, Ya; Liu, Bei

    2016-01-01

    Cuprous copper [Cu(I)] reacts with sodium persulfate (PDS) to generate sulfate radical SO4(-)•, but it has been seldom investigated owing to its instability and difficulty in dissolving it. This study proposes a new method to regenerate Cu(I) from cupric copper [Cu(II)] by addition of hydroxylamine (HA) to induce the continuous production of radicals through active PDS, and investigates the resulting enhanced methyl orange (MO) degradation efficiency and mechanism in the new system. HA accelerated the degradation of MO markedly in the pH range from 6.0 to 8.0 in the HA/Cu(II)/PDS process. Both SO4(-)• and hydroxyl radicals (•OH) were considered as the primary reactive radicals in the process. The MO degradation in the HA/Cu(II)/PDS process can be divided into three stages: the fast stage, the transitory stage, and the low stage. MO degradation was enhanced with increased dosage of PDS. Although high dosage of HA could accelerate the transformation of the Cu(II)/Cu(I) cycle to produce more reactive radicals, excess HA can quench the reactive radicals. This study indicates that through a copper-redox cycling mechanism by HA, the production of SO4(-)• and •OH can be strongly enhanced, and the effective pH range can be expanded to neutral conditions.

  18. Gold Redox Catalysis through Base-Initiated Diazonium Decomposition toward Alkene, Alkyne, and Allene Activation.

    Science.gov (United States)

    Dong, Boliang; Peng, Haihui; Motika, Stephen E; Shi, Xiaodong

    2017-08-16

    The discovery of photoassisted diazonium activation toward gold(I) oxidation greatly extended the scope of gold redox catalysis by avoiding the use of a strong oxidant. Some practical issues that limit the application of this new type of chemistry are the relative low efficiency (long reaction time and low conversion) and the strict reaction condition control that is necessary (degassing and inert reaction environment). Herein, an alternative photofree condition has been developed through Lewis base induced diazonium activation. With this method, an unreactive Au I catalyst was used in combination with Na 2 CO 3 and diazonium salts to produce a Au III intermediate. The efficient activation of various substrates, including alkyne, alkene and allene was achieved, followed by rapid Au III reductive elimination, which yielded the C-C coupling products with good to excellent yields. Relative to the previously reported photoactivation method, our approach offered greater efficiency and versatility through faster reaction rates and broader reaction scope. Challenging substrates such as electron rich/neutral allenes, which could not be activated under the photoinitiation conditions (<5 % yield), could be activated to subsequently yield the desired coupling products in good to excellent yield. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.

    Science.gov (United States)

    Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael

    2013-11-15

    In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Composition and Redox Potential of High-Grade Fluids: An Example from the Nilgiri Block, Southern India

    Science.gov (United States)

    Samuel, V. O.; Harlov, D. E.; Kwon, S.

    2017-12-01

    Composition and redox potential of fluids present during high-grade metamorphism exert an enormous influence on mineral textures and their regional trends within metamorphic complexes. We examine silicate, oxide, and sulfide trends in the Nilgiri Block, southern India. This terrain formed through subduction-related arc magmatic processes in the Neoarchean (ca. 2500 Ma). The Nilgiri highlands are characterized by granulite-facies metagabbro in the north, a two-pyroxene granulite transition zone, and tonalitic-granodioritic charnockites in the central and southern part. Garnet-orthopyroxene and orthopyroxene-clinopyroxene thermometry and garnet-orthopyroxene-plagioclase-quartz barometric results indicate a regional trend both in temperature ( 650 to 800 °C) and in pressure (700 to 1100 MPa) from SW to NE across the Nilgiri highlands. Regional trends are also seen in the oxide-sulfide mineralogy. The main oxide assemblage in the charnockites is rutile-ilmenite, whereas in the two-pyroxene granulites and metagabbros, hemo-ilmenite-magnetite dominates. The key sulfide mineral in the charnockites is pyrrhotite, with minor chalcopyrite. In the two-pyroxene granulites and metagabbros, the principle sulfide assemblage is pyrite +/- minor pyrrhotite. This reveals a regional oxidation trend. The metagabbros and two-pyroxene granulites are highly oxidized compared to the charnockites. Their higher oxidation state is proposed to be the result of highly oxidizing agents (probably as SO2) in low H2O activity fluids (most likely concentrated NaCl brines) during granulite-facies metamorphism of the metagabbros and two-pyroxene granulites. These agents were considerably more reducing (possibly as H2S) during granulite-facies metamorphism of the charnockites. This study emphasizes the potential role of oxidizing and reducing, low H2O activity fluids during granulite-facies metamorphism.

  1. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries.

    Science.gov (United States)

    Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui

    2017-09-27

    A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.

  2. Chemical synthesis, redox transformation, and identification of sonnerphenolic C, an antioxidant in Acer nikoense.

    Science.gov (United States)

    Iwadate, Takehiro; Nihei, Ken-Ichi

    2017-04-15

    Sonnerphenolic C (3), which was predicted in a redox product of epirhododendrin (1) isolated from Acer nikoense, was synthesized for the first time via the epimeric separation of benzylidene acetal intermediates as a key step. From a similar synthetic route, 1 was obtained concisely. As a result of their antioxidative evaluation, only 3 revealed potent activity. The redox transformation of 1 into 3 was achieved in the presence of tyrosinase and vitamin C. Moreover, 3 was identified in the decoction of A. nikoense by HPLC analysis with the effective use of synthesized 3. Thus, a novel naturally occurring antioxidant 3 was developed through the sequential flow including redox prediction, chemical synthesis, evaluation of the activity, and identification as the natural product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Zhao, G.; An, L.; Zeng, L.

    2016-01-01

    Highlights: • Propose a carbon nanoparticle-decorated graphite felt electrode for VRFBs. • The energy efficiency is up to 84.8% at 100 mA cm"−"2. • The new electrode allows the peak power density to reach 508 mW cm"−"2. - Abstract: Increasing the performance of vanadium redox flow batteries (VRFBs), especially the energy efficiency and power density, is critically important to reduce the system cost to a level for widespread commercialization. Unlike conventional VRFBs with flow-through structure, in this work we create a VRFB featuring a flow-field structure with a carbon nanoparticle-decorated graphite felt electrode for the battery. This novel structure, exhibiting a significantly reduced ohmic loss through reducing electrode thickness, an increased surface area and improved electrocatalytic activity by coating carbon nanoparticles, allows the energy efficiency up to 84.8% at a current density of as high as 100 mA cm"−"2 and the peak power density to reach a value of 508 mW cm"−"2. In addition, it is demonstrated that the battery with this proposed structure exhibits a substantially improved rate capability and capacity retention as opposed to conventional flow-through structured battery with thick graphite felt electrodes.

  4. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics.

    Science.gov (United States)

    Tan, Jiajia; Deng, Zhengyu; Liu, Guhuan; Hu, Jinming; Liu, Shiyong

    2018-03-21

    Inflammation serves as a natural defense mechanism to protect living organisms from infectious diseases. Nonsteroidal anti-inflammatory drugs (NSAIDs) can help relieve inflammatory reactions and are clinically used to treat pain, fever, and inflammation, whereas long-term use of NSAIDs may lead to severe side effects including gastrointestinal damage and cardiovascular toxicity. Therefore, it is of increasing importance to configure new dosing strategies and alleviate the side effects of NSAIDs. Towards this goal, glutathione (GSH)-responsive disulfide bonds and hydrogen peroxide (H 2 O 2 )-reactive phenylboronic ester linkages were utilized as triggering moieties in this work to design redox-responsive prodrug monomers and polyprodrug amphiphiles based on indomethacin (IND) drug. Note that IND is a widely prescribed NSAID in the clinic. Starting from three types of redox-reactive IND prodrug monomers, redox-responsive polyprodrug amphiphiles were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerizations of prodrug monomers using poly(ethylene oxide) (PEO)-based macroRAFT agent. The resultant polyprodrug amphiphiles with high IND loading contents (>33 wt%) could self-assemble into polymersomes with PEO shielding coronas and redox-responsive bilayer membranes composed of IND prodrugs. Upon incubation with GSH or H 2 O 2 , controlled release of intact IND in the active form from polyprodrug polymersomes was actuated by GSH-mediated disulfide cleavage reaction and H 2 O 2 -mediated oxidation of phenylboronic ester moieties, respectively, followed by self-immolative degradation events. Furthermore, in vitro studies at the cellular level revealed that redox-responsive polymersomes could efficiently relieve inflammatory responses induced by lipopolysaccharide (LPS) in RAW264.7 macrophage cells. Copyright © 2018. Published by Elsevier Ltd.

  5. All-oxide Raman-active traps for light and matter: probing redox homeostasis model reactions in aqueous environment.

    Science.gov (United States)

    Alessandri, Ivano; Depero, L E

    2014-04-09

    Core-shell colloidal crystals can act as very efficient traps for light and analytes. Here it is shown that Raman-active probes can be achieved using SiO2-TiO2 core-shell beads. These systems are successfully tested in monitoring of glutathione redox cycle at physiological concentration in aqueous environment, without need of any interfering enhancers. These materials represent a promising alternative to conventional, metal-based SERS probes for investigating chemical and biochemical reactions under real working conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  7. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences

    Science.gov (United States)

    Zhu, Xiao-Hong; Lu, Ming; Lee, Byeong-Yeul; Ugurbil, Kamil; Chen, Wei

    2015-01-01

    NAD is an essential metabolite that exists in NAD+ or NADH form in all living cells. Despite its critical roles in regulating mitochondrial energy production through the NAD+/NADH redox state and modulating cellular signaling processes through the activity of the NAD+-dependent enzymes, the method for quantifying intracellular NAD contents and redox state is limited to a few in vitro or ex vivo assays, which are not suitable for studying a living brain or organ. Here, we present a magnetic resonance (MR) -based in vivo NAD assay that uses the high-field MR scanner and is capable of noninvasively assessing NAD+ and NADH contents and the NAD+/NADH redox state in intact human brain. The results of this study provide the first insight, to our knowledge, into the cellular NAD concentrations and redox state in the brains of healthy volunteers. Furthermore, an age-dependent increase of intracellular NADH and age-dependent reductions in NAD+, total NAD contents, and NAD+/NADH redox potential of the healthy human brain were revealed in this study. The overall findings not only provide direct evidence of declined mitochondrial functions and altered NAD homeostasis that accompany the normal aging process but also, elucidate the merits and potentials of this new NAD assay for noninvasively studying the intracellular NAD metabolism and redox state in normal and diseased human brain or other organs in situ. PMID:25730862

  8. Mitochondrial Cytochrome c Oxidase Biogenesis Is Regulated by the Redox State of a Heme-Binding Translational Activator.

    Science.gov (United States)

    Soto, Iliana C; Barrientos, Antoni

    2016-02-20

    Mitochondrial cytochrome c oxidase (COX), the last enzyme of the respiratory chain, catalyzes the reduction of oxygen to water and therefore is essential for cell function and viability. COX is a multimeric complex, whose biogenesis is extensively regulated. One type of control targets cytochrome c oxidase subunit 1 (Cox1), a key COX enzymatic core subunit translated on mitochondrial ribosomes. In Saccharomyces cerevisiae, Cox1 synthesis and COX assembly are coordinated through a negative feedback regulatory loop. This coordination is mediated by Mss51, a heme-sensing COX1 mRNA-specific processing factor and translational activator that is also a Cox1 chaperone. In this study, we investigated whether Mss51 hemylation and Mss51-mediated Cox1 synthesis are both modulated by the reduction-oxidation (redox) environment. We report that Cox1 synthesis is attenuated under oxidative stress conditions and have identified one of the underlying mechanisms. We show that in vitro and in vivo exposure to hydrogen peroxide induces the formation of a disulfide bond in Mss51 involving CPX motif heme-coordinating cysteines. Mss51 oxidation results in a heme ligand switch, thereby lowering heme-binding affinity and promoting its release. We demonstrate that in addition to affecting Mss51-dependent heme sensing, oxidative stress compromises Mss51 roles in COX1 mRNA processing and translation. H2O2-induced downregulation of mitochondrial translation has so far not been reported. We show that high H2O2 concentrations induce a global attenuation effect, but milder concentrations specifically affect COX1 mRNA processing and translation in an Mss51-dependent manner. The redox environment modulates Mss51 functions, which are essential for regulation of COX biogenesis and aerobic energy production.

  9. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments

    Directory of Open Access Journals (Sweden)

    Jason eBenzine

    2013-12-01

    Full Text Available Microorganisms capable of reducing or oxidizing structural iron (Fe in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ i-chip enrichment strategies were employed. One Fe(III-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria and six Fe(II phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8, Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5, and Actinobacteria (Nocardioides sp. strain in31 were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II-oxidizing Nocardioides, and to date only one other Fe(II-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.

  10. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    Science.gov (United States)

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  11. REDOX state analysis of platinoid elements in simulated high-level radioactive waste glass by synchrotron radiation based EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Yoshihiro, E-mail: okamoto.yoshihiro@jaea.go.jp [Condensed Matter Chemistry Group, Quantum Beam Science Center, Japan Atomic Energy Agency, Shirakata 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Shiwaku, Hideaki [Quantum Beam Science Center, Japan Atomic Energy Agency, Kouto 1-1-1, Sayo-cho, Hyogo 679-5143 (Japan); Nakada, Masami [Nuclear Engineering Science Center, Japan Atomic Energy Agency, Shirakata 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Komamine, Satoshi; Ochi, Eiji [Japan Nuclear Fuel Limited, 4-108 Aza Okitsuke, Oaza Obuchi, Rokkasho-mura, Aomori 030-3212 (Japan); Akabori, Mitsuo [Nuclear Engineering Science Center, Japan Atomic Energy Agency, Shirakata 2-4, Tokai-mura, Ibaraki 319-1195 (Japan)

    2016-04-01

    Extended X-ray Absorption Fine Structure (EXAFS) analyses were performed to evaluate REDOX (REDuction and OXidation) state of platinoid elements in simulated high-level nuclear waste glass samples prepared under different conditions of temperature and atmosphere. At first, EXAFS functions were compared with those of standard materials such as RuO{sub 2}. Then structural parameters were obtained from a curve fitting analysis. In addition, a fitting analysis used a linear combination of the two standard EXAFS functions of a given elements metal and oxide was applied to determine ratio of metal/oxide in the simulated glass. The redox state of Ru was successfully evaluated from the linear combination fitting results of EXAFS functions. The ratio of metal increased at more reducing atmosphere and at higher temperatures. Chemical form of rhodium oxide in the simulated glass samples was RhO{sub 2} unlike expected Rh{sub 2}O{sub 3}. It can be estimated rhodium behaves according with ruthenium when the chemical form is oxide.

  12. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    Science.gov (United States)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  13. Multiple redox states of multiheme cytochromes may enable bacterial response to changing redox environments

    Science.gov (United States)

    Arbour, T.; Wrighton, K. C.; Mullin, S. W.; Castelle, C.; Luef, B.; Gilbert, B.; Banfield, J. F.

    2013-12-01

    Multiheme c-type cytochromes (MHCs) are key components in electron-transport pathways that enable some microorganisms to transfer electron byproducts of metabolism to a variety of minerals. As a response to changes in mineral redox potential, microbial communities may shift their membership, or individual organisms may adjust protein expression. Alternatively, the ability to respond may be conferred by the innate characteristics of certain electron-transport-chain components. Here, we used potentiostat-controlled microbial fuel cells (MFCs) to measure the timescale of response to imposed changes in redox conditions, thus placing constraints on the importance of these different mechanisms. In the experiments, a solid electrode acts as an electron-accepting mineral whose redox potential can be precisely controlled. We inoculated duplicate MFCs with a sediment/groundwater mixture from an aquifer at Rifle, Colorado, supplied acetate as an electron donor, and obtained stable, mixed-species biofilms dominated by Geobacter and a novel Geobacter-related family. We poised the anode at potentials spanning the range of natural Fe(III)-reduction, then performed cyclic voltammetry (CV) to characterize the overall biofilm redox signature. The apparent biofilm midpoint potential shifted directly with anode set potential when the latter was changed within the range from about -250 to -50 mV vs. SHE. Following a jump in set potential by 200 mV, the CV-midpoint shift by ~100 mV over a timescale of ~30 minutes to a few hours, depending on the direction of the potential change. The extracellular electron transfer molecules, whose overall CV signature is very similar to those of purified MHCs, appear to span a broad redox range (~200 mV), supporting the hypothesis that MHCs confer substantial redox flexibility. This flexibility may be a principle reason for the abundance of MHCs expressed by microorganisms capable of extracellular electron transfer to minerals.

  14. Electrochemical behaviour of gold and stainless steel under proton irradiation and active RedOx couples

    Energy Technology Data Exchange (ETDEWEB)

    Leoni, E. [Commissariat a l' Energie Atomique, DEN/DANS/DPC/SCCME, CEA-Saclay, 91191 Gif sur Yvette (France)], E-mail: elisa.leoni@polytechnique.edu; Corbel, C. [Laboratoire des Solides Irradies, Ecole Polytechnique, 91128 Palaiseau (France)], E-mail: catherine.corbel@polytechnique.fr; Cobut, V. [Laboratoire Atomes et Molecules en Astrophysique, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville/Oise, 95031 Cergy-Pontoise Cedex (France); Simon, D. [CNRS-CERI 3a rue de la Ferollerie, 45071 Cedex 2 Orleans (France); Feron, D. [Commissariat a l' Energie Atomique, DEN/DANS/DPC/SCCME, CEA-Saclay, 91191 Gif sur Yvette (France)], E-mail: Damien.FERON@cea.fr; Roy, M.; Raquet, O. [Commissariat a l' Energie Atomique, DEN/DANS/DPC/SCCME, CEA-Saclay, 91191 Gif sur Yvette (France)

    2007-12-01

    Model experiments are reported where proton beams delivered by the cyclotron located at CERI (CNRS-Orleans) are used for irradiating AISI 316L/water and Au/water high purity interfaces with 6 MeV protons. The free exchange potentials at the interfaces are recorded as a function of time at room temperature in situ before, under, and after proton irradiation. The evolutions are compared to those calculated for the Nernst potentials associated with the radiolytic RedOx couples. It is shown how the comparison gives evidence that five radiolytic species - O{sub 2}{center_dot}, H{sub 2}O{sub 2}, HO{sub 2}{sup -}, HO{sub 2}{center_dot} and O{sub 2}{center_dot}{sup -} exchange electrons at the Au interfaces in a range of dose rates that vary over three orders of magnitudes, i.e. 0.0048 < dr(10{sup 7} Gy h{sup -1}) < 4.8. The balance between the electron exchanges at Au interfaces is adjusted by the RedOx reactions associated with the above species. The free exchange potential reaches the same steady value for Au and AISI 316L interfaces irradiated at high doses, {>=}2.5 x 10{sup 7} Gy, (0.020 {+-} 0.025) V versus NHE. Such low values are the first ones to be reported. The HO{sub 2}{center_dot} and O{sub 2}{center_dot}{sup -} radical disproportionations play a key role and control the potential at the interfaces under 6 MeV proton flux. This role is generally mostly overlooked for gamma irradiation.

  15. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  16. Characterization of redox conditions in groundwater contaminant plumes

    Science.gov (United States)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  17. Preservation of organic matter in nontronite against iron redox cycling.

    Science.gov (United States)

    Zeng, Q.

    2015-12-01

    It is generally believed that clay minerals can protect organic matter from degradation in redox active environments, but both biotic and abiotic factors can influence the redox process and thus potentially change the clay-organic associations. However, the specific mechanisms involved in this process remain poorly understood. In this study, a model organic compound, 12-Aminolauric acid (ALA) was selected to intercalate into the structural interlayer of nontronite (an iron-rich smectite, NAu-2) to form an ALA-intercalated NAu-2 composite (ALA-NAu-2). Shawanella putrefaciens CN32 and sodium dithionite were used to reduce structural Fe(III) to Fe(II) in NAu-2 and ALA-NAu-2. The bioreduced ALA-NAu-2 was subsequently re-oxidized by air. The rates and extents of bioreduction and air re-oxidation were determined with wet chemistry methods. ALA release from ALA-NAu-2 via redox process was monitored. Mineralogical changes after iron redox cycle were investigated with X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy. At the beginning stage of bioreduction, S. putrefaciens CN32 reduced Fe(III) from the edges of nontronite and preferentially reduced and dissolved small and poorly crystalline particles, and released ALA, resulting a positive correlation between ALA release and iron reduction extent (80%). Because bacteria are the principal agent for mediating redox process in natural environments, our results demonstrated that the structural interlayer of smectite can serve as a potential shelter to protect organic matter from oxidation.

  18. Response of humic-reducing microorganisms to the redox properties of humic substance during composting.

    Science.gov (United States)

    Zhao, Xinyu; He, Xiaosong; Xi, Beidou; Gao, Rutai; Tan, Wenbing; Zhang, Hui; Huang, Caihong; Li, Dan; Li, Meng

    2017-12-01

    Humic substance (HS) could be utilized by humus-reducing microorganisms (HRMs) as the terminal acceptors. Meanwhile, the reduction of HS can support the microbial growth. This process would greatly affect the redox conversion of inorganic and organic pollutants. However, whether the redox properties of HS lined with HRMs community during composting still remain unclear. This study aimed to assess the relationships between the redox capability of HS [i.e. humic acids (HA) and fulvic acids (FA)] and HRMs during composting. The results showed that the changing patterns of electron accepting capacity and electron donating capacity of HS were diverse during seven composting. Electron transfer capacities (ETC) of HA was significantly correlated with the functional groups (i.e. alkyl C, O-alkyl C, aryl C, carboxylic C, aromatic C), aromaticity and molecular weight of HA. Aromatic C, phenols, aryl C, carboxylic C, aromaticity and molecular weight of HS were the main structuralfeatures associated with the ETC of FA. Ten key genera of HRMs were found significantly determine these redox-active functional groups of HS during composting, thus influencing the ETC of HS in composts. In addition, a regulating method was suggested to enhance the ETC of HS during composting based on the relationships between the key HRMs and redox-active functional groups as well as environmental variables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes

    Directory of Open Access Journals (Sweden)

    Stephen Joseph

    2015-07-01

    Full Text Available Biochars are complex heterogeneous materials that consist of mineral phases, amorphous C, graphitic C, and labile organic molecules, many of which can be either electron donors or acceptors when placed in soil. Biochar is a reductant, but its electrical and electrochemical properties are a function of both the temperature of production and the concentration and composition of the various redox active mineral and organic phases present. When biochars are added to soils, they interact with plant roots and root hairs, micro-organisms, soil organic matter, proteins and the nutrient-rich water to form complex organo-mineral-biochar complexes Redox reactions can play an important role in the development of these complexes, and can also result in significant changes in the original C matrix. This paper reviews the redox processes that take place in soil and how they may be affected by the addition of biochar. It reviews the available literature on the redox properties of different biochars. It also reviews how biochar redox properties have been measured and presents new methods and data for determining redox properties of fresh biochars and for biochar/soil systems.

  20. Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine.

    Science.gov (United States)

    Reid, Graham K; Berardinelli, Andrew J; Ray, Laurie; Jackson, Arena R; Neish, Andrew S; Hansen, Jason M; Denning, Patricia W

    2017-08-01

    BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.