WorldWideScience

Sample records for highly polluted region

  1. Air pollution exposure, cause-specific deaths and hospitalizations in a highly polluted Italian region.

    Science.gov (United States)

    Carugno, Michele; Consonni, Dario; Randi, Giorgia; Catelan, Dolores; Grisotto, Laura; Bertazzi, Pier Alberto; Biggeri, Annibale; Baccini, Michela

    2016-05-01

    The Lombardy region in northern Italy ranks among the most air polluted areas of Europe. Previous studies showed air pollution short-term effects on all-cause mortality. We examine here the effects of particulate matter with aerodynamic diameter ≤10µm (PM10) and nitrogen dioxide (NO2) exposure on deaths and hospitalizations from specific causes, including cardiac, cerebrovascular and respiratory diseases. We considered air pollution, mortality and hospitalization data for a non-opportunistic sample of 18 highly polluted and most densely populated areas of the region in the years 2003-2006. We obtained area-specific effect estimates for PM10 and NO2 from a Poisson regression model on the daily number of total deaths or cause-specific hospitalizations and then combined them in a Bayesian random-effects meta-analysis. For cause-specific mortality, we applied a case-crossover analysis. Age- and season-specific analyses were also performed. Effect estimates were expressed as percent variation in mortality or hospitalizations associated with a 10µg/m(3) increase in PM10 or NO2 concentration. Natural mortality was positively associated with both pollutants (0.30%, 90% Credibility Interval [CrI]: -0.31; 0.78 for PM10; 0.70%, 90%CrI: 0.10; 1.27 for NO2). Cardiovascular deaths showed a higher percent variation in association with NO2 (1.12%, 90% Confidence Interval [CI]: 0.14; 2.11), while the percent variation for respiratory mortality was highest in association with PM10 (1.64%, 90%CI: 0.35; 2.93). The effect of both pollutants was more evident in the summer season. Air pollution was also associated to hospitalizations, the highest variations being 0.77% (90%CrI: 0.22; 1.43) for PM10 and respiratory diseases, and 1.70% (90%CrI: 0.39; 2.84) for NO2 and cerebrovascular diseases. The effect of PM10 on respiratory hospital admissions appeared to increase with age. For both pollutants, effects on cerebrovascular hospitalizations were more evident in subjects aged less than

  2. Regional Air Pollutions in Three Different Regions of Asia From a Transcontinental Transport Perspective

    Science.gov (United States)

    Pochanart, P.; Kanaya, Y.; Komazaki, Y.; Liu, Y.; Akimoto, H.

    2007-12-01

    Asia is known as one of the regions with the fastest rate of growing in industrialization and urbanization. As a result, the rapid increases of large-scale air pollution in Asia emerge as a serious concern at both domestic and international levels. Apart from the problems of air quality degradation, emission control, environmental risk, and health effect in a domestic level, evidences from scientific studies indicate that by the long-range transport, Asian air pollution is becoming a global problem. Observations and model studies confirm that air pollution from Asia could be transported to North America or farther. In this work, we investigate the Asian air pollutions, in particular ozone and some other atmospheric components such as carbon monoxide and black carbon, from the ground- based observations in the three different regions, namely 1) background region of Siberia and central Asia, 2) highly anthropogenic region in eastern China, and 3) the rim region of the Asia-Pacific. In a transcontinental transport perspective, these regions are regarded as the inflow region, source region, and outflow region of Asia, respectively. From the results, it is found that the influences from large-scale emission in East Asia are observed clearly in the source region, and to the significant extent in the outflow region. For the inflow region of Asia, our data in Siberia and Kyrgyzstan indicate that air masses in this region are mostly intact from large-scale anthropogenic emission, and remain much of the global background atmospheric pollution characteristic. When the air masses are transported to source region, the air pollutants level increased sharply and frequent episodes of extremely high pollutions have been observed. Our results show good correlation between the residence time of air masses over the source region in eastern China and the observed levels of air pollutants verifying the strong enhancements by anthropogenic emissions from industrialization and

  3. Integrated Studies of a Regional Ozone Pollution Synthetically Affected by Subtropical High and Typhoon System in the Yangtze River Delta Region, China

    Science.gov (United States)

    Xie, M.; Shu, L.

    2017-12-01

    Severe high ozone (O3) episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD) region in China during August 7-12, 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. By means of the observational analysis and the WRF/CMAQ numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are investigated. The observational analysis shows that the atmospheric subsidence dominated by Western Pacific subtropical high plays a crucial role in the formation of high-level O3. In addition, when the YRD cities at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause more serious air pollution. But when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The Integrated Process Rate (IPR) analysis incorporated in CMAQ is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF) and the gas-phase chemistry (CHEM) are two major contributors to O3 formation. On August 10-11, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb/h in Shanghai and 19.76 ppb/h in Hangzhou. When the YRD region is under the control of the typhoon system, the contribution values of all individual processes decrease to a low level in all cities. These results provide an insight for the O3 pollution synthetically impacted by the Western Pacific subtropical high and the tropical cyclone system.

  4. The role of regional pollution conventions

    International Nuclear Information System (INIS)

    Haywar, P.

    1989-01-01

    Within the last 12 years a number of regional pollution conventions and action plans have been negotiated to protect the world's seas from pollution. This paper traces the development of this activity and points out the specific role of regional, as opposed to global, pollution conventions. Chief among the functions of regional conventions is the specific legal framework they provide for a particular geographical region. They also provide a forum for neighboring states to develop a coherent policy for a particular regional sea, as well as being the means of establishing regional control over potentially polluting activities. Regional agreements also constitute a suitable framework for monitoring the input of pollutants to the marine environment and assessing their effects. In addition, they provide a forum for the exchange of scientific and technical information and for developing cooperation between states. The paper concludes by summarizing the most important functions of a regional convention and suggesting that, with increasing industrialization and pollution stress, there will continue to be a need for action to be taken at the regional level

  5. Process analysis of regional aerosol pollution during spring in the Pearl River Delta region, China

    Science.gov (United States)

    Fan, Qi; Lan, Jing; Liu, Yiming; Wang, Xuemei; Chan, Pakwai; Hong, Yingying; Feng, Yerong; Liu, Yexin; Zeng, Yanjun; Liang, Guixiong

    2015-12-01

    A numerical simulation analysis was performed for three air pollution episodes in the Pearl River Delta (PRD) region during March 2012 using the third-generation air quality modeling system Models-3/CMAQ. The results demonstrated that particulate matter was the primary pollutant for all three pollution episodes and was accompanied by relatively low visibility in the first two episodes. Weather maps indicate that the first two episodes occurred under the influence of warm, wet southerly air flow systems that led to high humidity throughout the region. The liquid phase reaction of gaseous pollutants resulted in the generation of fine secondary particles, which were identified as the primary source of pollution in the first two episodes. The third pollution episode occurred during a warming period following a cold front. Relative humidity was lower during this episode, and coarse particles were the major pollution contributor. Results of process analysis indicated that emissions sources, horizontal transport and vertical transport were the primary factors affecting pollutant concentrations within the near-surface layer during all three episodes, while aerosol processes, cloud processes, horizontal transport and vertical transport had greater influence at approximately 900 m above ground. Cloud processes had a greater impact during the first two pollution episodes because of the higher relative humidity. In addition, by comparing pollution processes from different cities (Guangzhou and Zhongshan), the study revealed that the first two pollution episodes were the result of local emissions within the PRD region and transport between surrounding cities, while the third episode exhibited prominent regional pollution characteristics and was the result of regional pollutant transport.

  6. Integrated studies of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    L. Shu

    2016-12-01

    Full Text Available Severe high ozone (O3 episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD region in China during 7–12 August 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. The maximum hourly concentration of O3 reached 167.1 ppb. By means of the observational analysis and the numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are comprehensively investigated. The observational analysis shows that the atmospheric subsidence dominated by the western Pacific subtropical high plays a crucial role in the formation of high-level O3. The favorable weather conditions, such as extremely high temperature, low relative humidity and weak wind speed, caused by the abnormally strong subtropical high are responsible for the trapping and the chemical production of O3 in the boundary layer. In addition, when the YRD cities are at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause worse air quality. However, when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The integrated process rate (IPR analysis incorporated in the Community Multi-scale Air Quality (CMAQ model is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF and the gas-phase chemistry (CHEM are two major contributors to O3 formation. During the episode, the contributions of VDIF and CHEM to O3 maintain the high values over the YRD region. On 10–12 August, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb h−1 in Shanghai and 19.76 ppb h−1 in

  7. Urban rivers as hotspots of regional nitrogen pollution

    International Nuclear Information System (INIS)

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-01-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3–5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. - Highlights: • Nitrogen concentrations in urban rivers are much higher than that in regional rivers. • Domestic wastewater is the main source of urban river pollution in Hangzhou. • Pollutant collecting and water diversion can sharply reduce the urban river pollution. - Urban river pollution is not being measured by the current monitoring networks that are designed to measure regional patterns causing an underestimation

  8. Regional air pollution over Malaysia

    Science.gov (United States)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  9. [Regional differences and development tendency of livestock manure pollution in China].

    Science.gov (United States)

    Qiu, Huan-Guang; Liao, Shao-Pan; Jing, Yue; Luan, Jiang

    2013-07-01

    The rapid development of livestock production in China has brought livestock manure pollution as a serious environment problem, even threatens China's agriculture sustainable development. On the basis of public statistical data and field research data, this paper analyzed the magnitude of livestock manure excretion and pollution of China and different provinces in 2010, and predicted development tendencies of livestock manure excretion and pollution in 2020 through the Decision Support System for China's Agricultural Sustainable Development (CHINAGRO). The result shows that total livestock manure excretion of China in 2010 is 1 900 million tons, and livestock manure pollution is 227 million tons, while per hectare arable land of livestock manure pollution is 1.86 tons. Provinces in the southeast China, such as Guangdong and Fujian, are areas with high pressure of livestock manure pollution. Model simulation shows that China's total amount of livestock manure pollution will increase to 298 million tons in 2020 without government intervention. The pressure of livestock manure pollution will become higher in most regions of China, especially in east and south regions. The situation in central and western region is better than that in east regions although the pollution pressure will also increase in those areas. Policy intervention such as taxes and subsidies should be adopted to reduce the discharge of livestock manure pollution, and encourage livestock production transfer from eastern areas to the central and western regions.

  10. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Qi, Ji; Zheng, Bo; Li, Meng; Yu, Fang; Chen, Chuchu; Liu, Fei; Zhou, Xiafei; Yuan, Jing; Zhang, Qiang; He, Kebin

    2017-12-01

    We developed a high-resolution Beijing-Tianjin-Hebei (BTH) regional air pollutants emission inventory for the year 2013. The inventory was established using a bottom-up approach based on facility-level activity data obtained from multiple data sources. The estimates from the BTH 2013 emission inventory show that the total emissions of SO2, NOX, PM2.5, PM10, CO, NMVOC, NH3, BC, and OC were 2,305, 2,686, 1,090, 1,494, 20,567, 2,207, 623, 160, and 254 Gg, respectively. The industry sector is the largest emissions source for SO2, NOX, PM2.5, PM10, CO, and NMVOC in the BTH region, contributing 72.6%, 43.7%, 59.6%, 64.7%, 60.3%, and 70.4% of the total emissions, respectively. Power plants contributed 11.8% and 23.3% of the total SO2 and NOX emissions, respectively. The transportation sector contributed 28.9% of the total NOX emissions. Emissions from the residential sector accounted for 31.3%, 21.5%, 46.6% and 71.7% of the total PM2.5, NMVOC, BC and OC emissions, respectively. In addition, more than 90% of the total NH3 emissions originate from the agriculture sector, with 44.2% from fertilizer use and 47.7% from livestock. The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions. Beijing, Tianjin, Shijiazhuang, Tangshan and Handan are the major contributors of air pollutants. The major NMVOC species in the BTH region are ethylene, acetylene, ethane and toluene. Ethylene is the biggest contributor in Tianjin and Hebei. The largest contributor in Beijing is toluene. There is relatively low uncertainty in SO2 and NOX emission estimates, medium uncertainty in PM2.5, PM10 and CO emission estimates, and high uncertainties in VOC, NH3, BC and OC emission estimates. The proposed policy recommendations, based on the BTH 2013 emission inventory, would be helpful to develop strategies for air pollution control.

  11. Climatological variability in regional air pollution

    International Nuclear Information System (INIS)

    Shannon, J.D.; Trexler, E.C. Jr.

    1995-01-01

    Although some air pollution modeling studies examine events that have already occurred (e.g., the Chernobyl plume) with relevant meteorological conditions largely known, most pollution modeling studies address expected or potential scenarios for the future. Future meteorological conditions, the major pollutant forcing function other than emissions, are inherently uncertain although much relevant information is contained in past observational data. For convenience in our discussions of regional pollutant variability unrelated to emission changes, we define meteorological variability as short-term (within-season) pollutant variability and climatological variability as year-to-year changes in seasonal averages and accumulations of pollutant variables. In observations and in some of our simulations the effects are confounded because for seasons of two different years both the mean and the within-season character of a pollutant variable may change. Effects of climatological and meteorological variability on means and distributions of air pollution parameters, particularly those related to regional visibility, are illustrated. Over periods of up to a decade climatological variability may mask or overstate improvements resulting from emission controls. The importance of including climatological uncertainties in assessing potential policies, particularly when based partly on calculated source-receptor relationships, is highlighted

  12. Identification of Regional Air Pollution Characteristic and the Correlation with Public Health in Taiwan

    Directory of Open Access Journals (Sweden)

    Huey H. Hsieh

    2007-06-01

    Full Text Available This study aims to classify regions with different air pollution characteristics into groups in Taiwan, and further to evaluate and compare the air quality of various groups. A selected multivariate analysis technique, cluster analysis, is applied to the pollution monitoring dataset which including PM10, SO2, NO2, CO and O3. The obtained results have proved that the regions with similar air pollution characteristic can be appropriately grouped by applying cluster analysis. All 22 regions are classified into six groups, and the pollution pattern for each group is characterized as: Group 1 (high SO2/NO2; low PM10, Group 2 (high PM10, Group 3 (high SO2/PM10, Group 4 (low SO2/NO2/CO; high O3, Group 5 (low CO/NO2; high O3 and Group 6 (low PM10/SO2/NO2/O3/CO. Results from air quality evaluation indicate that the regions in group 6 (Ilan, Hualien and Taitung have the best air quality while the regions in group 3 (Kaohsiung and Kaohsiung City have the worst air quality in Taiwan. The results from correlation analysis reveal that incidence of the respiratory system disease is significantly positively correlated with pollution of NO2 and CO at 99% confidence level.

  13. Assessment of regional air pollution variability in Istanbul

    International Nuclear Information System (INIS)

    Sen, Z.; Oztopal, A.

    2001-01-01

    Air pollution concentrations have temporal and spatial variations depending on the prevailing weather conditions, topographic features, city building heights and locations. When the measurements of air pollutants are available at set measurement sites, the regional variability degree of air pollutants is quantified using the point cumulative semi-variogram (PCSV). This technique provides a systematic method for calculating the changes in the concentrations of air pollutants with distance from a specific site. Regional variations of sulphur dioxide (SO 2 ) and total suspended particulate (TSP) matter concentrations in Istanbul city were evaluated using the PCSV concept. The data were available from 16 different air pollution measurement stations scattered all over the city for a period from 1988 to 1994. Monthly regional variation maps were drawn in and around the city at different radii of influence. These maps provide a reference for measuring future changes of air pollution in the city. (author)

  14. Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China

    Science.gov (United States)

    Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen

    2017-11-01

    Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air

  15. A regional high-resolution emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China

    Science.gov (United States)

    Liu, Huanjia; Wu, Bobo; Liu, Shuhan; Shao, Panyang; Liu, Xiangyang; Zhu, Chuanyong; Wang, Yong; Wu, Yiming; Xue, Yifeng; Gao, Jiajia; Hao, Yan; Tian, Hezhong

    2018-05-01

    A high resolution regional emission inventory of typical primary air pollutants (PAPs) for the year 2012 in Beijing and the surrounding five provinces (BSFP) of North China is developed. It is compiled with the combination of bottom-up and top-down methods, based on city-level collected activity data and the latest updated specific emission factors for different sources. The considered sources are classified into 12 major categories and totally 36 subcategories with respect to their multi-dimensional characteristics, such as economic sector, combustion facility or industrial process, installed air pollution control devices, etc. Power plant sector is the dominant contributor of NOX emissions with an average contribution of 34.1%, while VOCs emissions are largely emitted from industrial process sources (33.9%). Whereas, other stationary combustion sources represent major sources of primary PM2.5, PM10 and BC emissions, accounting for 22.7%, 30.0% and 33.9% of the total emissions, respectively. Hebei province contributes over 34% of the regional total CO emissions because of huge volume of iron and steel production. By comparison, Shandong province ranks as the biggest contributor for NOX, PM10, PM2.5, SO2, VOCs and OC. Further, the BSFP regional total emissions are spatially distributed into grid cells with a high resolution of 9 km × 9 km using GIS tools and surrogate indexes, such regional population, gross domestic product (GDP) and the types of arable soils. The highest emission intensities are mainly located in Beijing-Tianjin-Tangshan area, Jinan-Laiwu-Zibo area and several other cities such as Shijiazhuang, Handan, and Zhengzhou. Furthermore, in order to establish a simple method to estimate and forecast PAPs emissions with macroscopic provincial-level statistical parameters in China, multi-parameter regression equations are firstly developed to estimate emissions outside the BSFP region with routine statistics (e.g. population, total final coal consumption

  16. Soil and water pollution in a banana production region in tropical Mexico.

    Science.gov (United States)

    Geissen, Violette; Ramos, Franzisco Que; de J Bastidas-Bastidas, Pedro; Díaz-González, Gilberto; Bello-Mendoza, Ricardo; Huerta-Lwanga, Esperanza; Ruiz-Suárez, Luz E

    2010-10-01

    The effects of abundant Mancozeb (Mn, Zn-bisdithiocarbamate) applications (2.5 kg ha⁻¹week⁻¹ for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the main metabolite ethylenethiourea was near the detection limit. Surface and subsurface water was highly polluted with ethylenethiourea, the main metabolite of Mancozeb (22.5 and 4.3 μg L⁻¹, respectively), but not with manganese. In deep ground water, no ethylenethiourea was detected. The level of pollution in the region presents a worrisome risk for aquatic life and for human health.

  17. Regional contribution to PM1 pollution during winter haze in Yangtze River Delta, China.

    Science.gov (United States)

    Tang, Lili; Yu, Hongxia; Ding, Aijun; Zhang, Yunjiang; Qin, Wei; Wang, Zhuang; Chen, Wentai; Hua, Yan; Yang, Xiaoxiao

    2016-01-15

    To quantify regional sources contributing to submicron particulate matter (PM1) pollution in haze episodes, on-line measurements combining two modeling methods, namely, positive matrix factorization (PMF) and backward Lagrangian particle dispersion modeling (LPDM), were conducted for the period of one month in urban Nanjing, a city located in the western part of Yangtze River Delta (YRD) region of China. Several multi-day haze episodes were observed in December 2013. Long-range transport of biomass burning from the southwestern YRD region largely contributed to PM1 pollution with more than 25% of total organics mass in a lasting heavy haze. The LPDM analysis indicates that regional transport is a main source contributing to secondary low-volatility production. The high-potential source regions of secondary low-volatility production are mainly located in areas to the northeast of the city. High aerosol pollution was mainly contributed by regional transport associated with northeastern air masses. Such regional transport on average accounts for 46% of total NR-PM1 with sulfate and aged low-volatility organics being the largest fractions (>65%). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Study on management plan of pollutants in agricultural region

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jee Yong; Shin, Eun Sung [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The water environment in fishing and agricultural region in Korea is getting poor. For improving the quality of water, it is essential to manage pollutants by agricultural activities. For an efficient water quality control, a reasonable examination of the amount of agricultural pollutant load, and the development of efficient technology and policy for reducing the amount of pollution load are required. The management of pollutants considering agricultural characteristics was derived in this study and the amount of discharged pollutants by land usage in agricultural region was researched. 43 refs., 17 figs., 61 tabs.

  19. Risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions.

    Science.gov (United States)

    Yang, Yu; Lian, Xin-Ying; Jiang, Yong-Hai; Xi, Bei-Dou; He, Xiao-Song

    2017-11-01

    Agricultural regions are a significant source of groundwater pesticide pollution. To ensure that agricultural regions with a significantly high risk of groundwater pesticide contamination are properly managed, a risk-based ranking method related to groundwater pesticide contamination is needed. In the present paper, a risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions was established. The method encompasses 3 phases, including indicator selection, characterization, and classification. In the risk ranking index system employed here, 17 indicators involving the physicochemical properties, environmental behavior characteristics, pesticide application methods, and inherent vulnerability of groundwater in the agricultural region were selected. The boundary of each indicator was determined using K-means cluster analysis based on a survey of a typical agricultural region and the physical and chemical properties of 300 typical pesticides. The total risk characterization was calculated by multiplying the risk value of each indicator, which could effectively avoid the subjectivity of index weight calculation and identify the main factors associated with the risk. The results indicated that the risk for groundwater pesticide contamination from agriculture in a region could be ranked into 4 classes from low to high risk. This method was applied to an agricultural region in Jiangsu Province, China, and it showed that this region had a relatively high risk for groundwater contamination from pesticides, and that the pesticide application method was the primary factor contributing to the relatively high risk. The risk ranking method was determined to be feasible, valid, and able to provide reference data related to the risk management of groundwater pesticide pollution from agricultural regions. Integr Environ Assess Manag 2017;13:1052-1059. © 2017 SETAC. © 2017 SETAC.

  20. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko

    2011-03-17

    We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..

  1. Model calculated global, regional and megacity premature mortality due to air pollution

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2013-07-01

    Full Text Available Air pollution by fine particulate matter (PM2.5 and ozone (O3 has increased strongly with industrialization and urbanization. We estimate the premature mortality rates and the years of human life lost (YLL caused by anthropogenic PM2.5 and O3 in 2005 for epidemiological regions defined by the World Health Organization (WHO. This is based upon high-resolution global model calculations that resolve urban and industrial regions in greater detail compared to previous work. Results indicate that 69% of the global population is exposed to an annual mean anthropogenic PM2.5 concentration of >10 μg m−3 (WHO guideline and 33% to > 25 μg m−3 (EU directive. We applied an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global respiratory mortality of about 773 thousand/year (YLL ≈ 5.2 million/year, 186 thousand/year by lung cancer (YLL ≈ 1.7 million/year and 2.0 million/year by cardiovascular disease (YLL ≈ 14.3 million/year. The global mean per capita mortality caused by air pollution is about 0.1% yr−1. The highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively where more than a dozen of the most highly polluted megacities are located.

  2. Soil and water pollution in a banana production region in tropical Mexico

    OpenAIRE

    Geissen, V.; Que Ramos, F.; Bastidas-Bastidas, de, P.J.; Díaz-González, G.; Bello-Mendoza, R.; Huerta-Lwanga, E.; Ruiz-Suárez, L.E.

    2010-01-01

    The effects of abundant Mancozeb (Mn, Zn— bisdithiocarbamate) applications (2.5 kg ha-1week-1 for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the main metabolite ethylenethiourea was near the detection limit. Surface and subsurface water was highly polluted with ethylenethiourea, the main metabolite of Mancozeb (22.5 and 4.3 lg L-1, respective...

  3. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko; Steyn, Douw G.

    2011-01-01

    formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate

  4. Cooperation control strategies for China's cross-region pollution in a lake basin based on green reduction cost.

    Science.gov (United States)

    Li, Changmin; Sun, Dong; Xie, Xiaoqiang; Xue, Jian

    2016-05-01

    The cross-region water pollution issue has always been the widespread concern around the world. It becomes especially critical for China due to the imbalance relates to environmental costs that have accompanied rapid growth of economy. Though the government makes great efforts to improve it, the potential for water pollution conflict is still great. We consider the problem of determining combined control strategies for China's cross-region lake pollution based on the environmental green costs. The problem is first formulated as a generalized bilevel mathematical program where the upper level consists in each region that reduces environmental green costs including three parts: the reduction cost, pollution permit trade cost and cost of environment damage, while the lower level is represented by pollution permit equilibrium market. Finally, we take an empirical analysis in Taihu lake. The numerical study shows that the minimum costs of both total and regional are obviously superior to the current processing costs, which provides theoretical basis for the price of emission permits. Today, China's rapid gross domestic product (GDP) growth has come at a very high cost, as real estate prices have skyrocketed, the wealth gap has widened, and environmental pollution has worsened. China's central government is urged to correct the GDP-oriented performance evaluation system that is used to judge administrative region leaders. The cross-region water pollution issue has become a troubling issue that urgently needs to be resolved in China. This paper will not only actively aid efforts to govern Lake Taihu and other cross-region valleys, but it will also provide a supplement for theoretical research on cross-region pollution issues.

  5. Regional anomalies in chronic obstructive pulmonary disease; comparison with acid air pollution particulate characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Winchester, J W

    1989-01-01

    Mortality rates due to chronic obstructive pulmonary disease (COPD) for males and females in standard metropolitan statistical areas are highest in two broad regions of the U.S. One is the southeast, with age-adjusted rates high in Georgia and north Florida but decreasing toward south Florida; the other is the western plains, with rates high in Colorado and north Texas but decreasing toward south Texas. Rates are generally low in the northeast, upper midwest, and far west, as well as in the largest cities of these regions. These geographic patterns suggest that atmospheric environmental conditions may contribute to the risk of COPD. Based on measured aerosol characteristics and atmospheric chemical reasoning, it is argued that ambient air in the high COPD regions may be especially irritating to the respiratory tract because of fine particles that contain the reaction products of acid air pollutants. In the southeast, sulfuric acid aerosol concentrations are high, apparently because of a sunny warm humid climate that favors rapid oxidation of sulfur dioxide as well as the region's proximity to large primary air pollution sources further north. Particulate sulfur is also associated with soil mineral constituents. In the western plains, concentrations of alkaline dust are high because of soil erosion during windy dry conditions. Acid air pollutants can be scavenged to mineral particle surfaces and form chemical reaction products that may include solubilized mineral aluminum. These may be inhaled and deposited in the respiratory tract so as to contribute to COPD mortality risk.

  6. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2012-01-01

    Full Text Available Huabei, located between 32° N and 42° N, is part of eastern China and includes administratively the Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC.

    Our estimates are based on data from the statistical yearbooks of the state, provinces and local districts, including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2, 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC.

    For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2, 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and

  7. Strengthening Coastal Pollution Management in the Wider Caribbean Region

    NARCIS (Netherlands)

    Lavieren, van H.; Metcalfe, C.D.; Drouillard, K.; Sale, P.; Gold-Bouchot, G.; Reid, R.; Vermeulen, L.C.

    2011-01-01

    Control of aquatic pollution is critical for improving coastal zone management and for the conservation of fisheries resources. Countries in the Wider Caribbean Region (WCR) generally lack monitoring capacity and do not have reliable information on the levels and distribution of pollutants,

  8. ARAMIS a regional air quality model for air pollution management: evaluation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Solar, M. R.; Gamez, P.; Olid, M.

    2015-07-01

    The aim of this research was to better understand the dynamics of air pollutants and to forecast the air quality over regional areas in order to develop emission abatement strategies for air pollution and adverse health effects. To accomplish this objective, we developed and applied a high resolution Eulerian system named ARAMIS (A Regional Air Quality Modelling Integrated System) over the north-east of Spain (Catalonia), where several pollutants exceed threshold values for the protection of human health. The results indicate that the model reproduced reasonably well observed concentrations, as statistical values fell within Environmental Protection Agency (EPA) recommendations and European (EU) regulations. Nevertheless, some hourly O{sub 3} exceedances in summer and hourly peaks of NO{sub 2} in winter were underestimated. Concerning PM10 concentrations less accurate model levels were obtained with a moderate trend towards underestimation during the day. (Author)

  9. ARAMIS a regional air quality model for air pollution management: evaluation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Soler, M.R.; Gamez, P.; Olid, M.

    2015-07-01

    The aim of this research was to better understand the dynamics of air pollutants and to forecast the air quality over regional areas in order to develop emission abatement strategies for air pollution and adverse health effects. To accomplish this objective, we developed and applied a high resolution Eulerian system named ARAMIS (A Regional Air Quality Modelling Integrated System) over the north-east of Spain (Catalonia), where several pollutants exceed threshold values for the protection of human health. The results indicate that the model reproduced reasonably well observed concentrations, as statistical values fell within Environmental Protection Agency (EPA) recommendations and European (EU) regulations. Nevertheless, some hourly O3 exceedances in summer and hourly peaks of NO2 in winter were underestimated. Concerning PM10 concentrations less accurate model levels were obtained with a moderate trend towards underestimation during the day. (Author)

  10. Regional air pollution at a turning point.

    Science.gov (United States)

    Grennfelt, Peringe; Hov, Oystein

    2005-02-01

    The control of transboundary air pollution in Europe has been successful. Emissions of many key pollutants are decreasing and there are signs of improvements in damaged ecosystems. The strategies under development within the CAFE programme under the European Commission and the Convention on Long-range Transboundary Air Pollution (CLRTAP), aim to take regional air pollution control a large step further, in particular with respect to small particles. In this paper we highlight the new strategies but look primarily at socioeconomic trends and climate change feedbacks that may have a significant influence on the outcome of the strategies and which so far have not been considered. In particular, we point out the influence on air quality of increased summer temperatures in Europe and of increasing emissions including international shipping, outside of Europe. Taken together the further emissions reductions in Europe and the increasing background pollution, slowly cause a greying of the Northern Hemisphere troposphere rather than the traditional picture of dominant emissions in Europe and North America ('black') with much lower emission intensities elsewhere ('white'). A hemispheric approach to further combat air pollution will become necessary in Europe and elsewhere.

  11. Regional distribution and pollution evaluation of heavy metal pollution in topsoils of the Chengdu plain

    International Nuclear Information System (INIS)

    Li Bing; Wang Changquan; Yang Juan; Tan Ting; Li Huanxiu; Li Qiquan; Yuan Quan

    2009-01-01

    197 farm field samples were designated by GPS and the spatial distribution characteristic and pollution evaluation of Cd, Pb, Cr and Hg in the soils were studied. Compared to the background investigated 20 years ago, the content of Cd in Guanghan, Xindu, Qionglai increased 1, 1.26 and 2 times; respectively; and the content of Pb in Xinjin, Deyang, Guanghan, Xindu increased 1.1 and 3.3 times. However, the content of Cr and Hg in most regions changed much smaller. The results of Kriging interpolation analysis of the heavy metals showed that the content of Cd was grandly decreased followed with the direction from northeast to southwest, the content of other elements exhibited the regional characteristics. The geoaccumulation index was used to evaluate the heavy metals pollution and results indicated that nearly 50% of the soils was polluted by Pb and Cd in different degrees influenced by men activities. With the key contaminated area of Xindu, Guanghan, Xinjing, Deyang the pollution ranks of Pb in soils was in 1 to 4. The Cd pollution although small, but still ranks in 1 to 2 level, the pollution area was bigger, mainly distributed in Xindu, Deyang, Guanghan, Shuangliu, Xinjing, Pengzhou. Only a small number of samples was contaminated by Cr or Hg. (authors)

  12. Regional model of EKC for air pollution: Evidence from the Republic of Korea

    International Nuclear Information System (INIS)

    Park, Soonae; Lee, Youngmi

    2011-01-01

    This study aims to investigate a relationship between economic development and air pollution at the regional level, and further suggest energy policies for climate change mitigation. The present study examines an Environmental Kuznets Curve (EKC) hypothesis analyzing annual panel data of 16 metropolitan regions in Korea over a 16-year time period. The analysis results show that there is no one-dominant shape of EKC for SO 2 and NO 2 ; each region has its own EKC. That is, although we find the potential existence of U-shaped and N-shaped curves, the region-specific coefficients are enormously heterogeneous across regions. For CO, on the other hand, the random coefficient model shows that there is a dominant U-shaped curve across regions. In addition, energy consumption appears to be the most significant variable in explaining air pollution. Based on these results, we assert that environmental policy should consider the different characteristics of each region and type of pollutant. - Highlights: → Environmental Kuznets Curve (EKC) hypotheses are tested for air pollution in Korea. → A relationship of economic growth and pollution is analyzed at the regional level. → No-dominant EKC is found for SO 2 and NO 2 , but a dominant U-shaped curve for CO. → Environmental Policy should consider different features of each pollutant and region.

  13. Regional model of EKC for air pollution: Evidence from the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soonae, E-mail: psoonae@snu.ac.kr [Graduate School of Public Administration, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Youngmi, E-mail: youngmil@usc.edu [School of Policy, Planning, and Development, University of Southern California, Los Angeles, CA 90089 (United States)

    2011-10-15

    This study aims to investigate a relationship between economic development and air pollution at the regional level, and further suggest energy policies for climate change mitigation. The present study examines an Environmental Kuznets Curve (EKC) hypothesis analyzing annual panel data of 16 metropolitan regions in Korea over a 16-year time period. The analysis results show that there is no one-dominant shape of EKC for SO{sub 2} and NO{sub 2}; each region has its own EKC. That is, although we find the potential existence of U-shaped and N-shaped curves, the region-specific coefficients are enormously heterogeneous across regions. For CO, on the other hand, the random coefficient model shows that there is a dominant U-shaped curve across regions. In addition, energy consumption appears to be the most significant variable in explaining air pollution. Based on these results, we assert that environmental policy should consider the different characteristics of each region and type of pollutant. - Highlights: > Environmental Kuznets Curve (EKC) hypotheses are tested for air pollution in Korea. > A relationship of economic growth and pollution is analyzed at the regional level. > No-dominant EKC is found for SO{sub 2} and NO{sub 2}, but a dominant U-shaped curve for CO. > Environmental Policy should consider different features of each pollutant and region.

  14. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment.

    Science.gov (United States)

    Yang, Qianqi; Li, Zhiyuan; Lu, Xiaoning; Duan, Qiannan; Huang, Lei; Bi, Jun

    2018-06-14

    Soil heavy metal pollution has been becoming serious and widespread in China. To date, there are few studies assessing the nationwide soil heavy metal pollution induced by industrial and agricultural activities in China. This review obtained heavy metal concentrations in soils of 402 industrial sites and 1041 agricultural sites in China throughout the document retrieval. Based on the database, this review assessed soil heavy metal concentration and estimated the ecological and health risks on a national scale. The results revealed that heavy metal pollution and associated risks posed by cadmium (Cd), lead (Pb) and arsenic (As) are more serious. Besides, heavy metal pollution and associated risks in industrial regions are severer than those in agricultural regions, meanwhile, those in southeast China are severer than those in northwest China. It is worth noting that children are more likely to be affected by heavy metal pollution than adults. Based on the assessment results, Cd, Pb and As are determined as the priority control heavy metals; mining areas are the priority control areas compared to other areas in industrial regions; food crop plantations are the priority control areas in agricultural regions; and children are determined as the priority protection population group. This paper provides a comprehensive ecological and health risk assessment on the heavy metals in soils in Chinese industrial and agricultural regions and thus provides insights for the policymakers regarding exposure reduction and management. Copyright © 2018. Published by Elsevier B.V.

  15. The contribution of ship emissions to air pollution in the North Sea regions

    Energy Technology Data Exchange (ETDEWEB)

    Matthias, Volker, E-mail: volker.matthias@gkss.d [GKSS Research Centre Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Bewersdorff, Ines [GKSS Research Centre Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Aulinger, Armin, E-mail: armin.aulinger@gkss.d [GKSS Research Centre Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Quante, Markus, E-mail: markus.quante@gkss.d [GKSS Research Centre Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

    2010-06-15

    As a consequence of the global distribution of manufacturing sites and the increasing international division of labour, ship traffic is steadily increasing and is becoming more and more important as an origin of air pollution. This study investigates the impact of ship emissions in coastal areas of the North Sea under conditions of the year 2000 by means of a regional chemistry transport model which runs on a sufficiently high resolution to study air pollution in coastal regions. It was found that northern Germany and Denmark in summer suffer from more than 50% higher sulphate, nitrate and ammonium aerosol concentrations due to contributions from ships. The implementation of a sulphur emission control area (SECA) in the North Sea, as it was implemented at the end of 2007, directly results in reduced sulphur dioxide and sulphate aerosol concentrations while nitrate aerosol concentrations are slightly increased. - Ship emissions lead to significantly enhanced air pollution by secondary inorganic aerosols in North Sea coastal areas.

  16. Atmospheric pollution biomonitoring of the Sao Paulo metropolitan region using epiphytic lichens

    International Nuclear Information System (INIS)

    Fuga, Alessandra

    2006-01-01

    Due to the increasing problems of atmospheric pollution in the Sao Paulo metropolitan region that affect the environment and human health the application of biomonitoring methodologies using cosmopolite organisms has now become relevant. Biomonitoring is a method to evaluate the response of live organisms to pollution. This method offers advantages such as reduced costs, efficient monitoring of large geographic areas and accumulated pollutants over a large period in which low concentrations of chemicals elements in the environment can be evaluated. In the present study, neutron activation analysis method was applied to determine elements accumulated in Canoparmelia texana lichenized fungi. Samples were collected in two distinct areas: Carlos Botelho (PECB) and Intervales (PEI) State Parks that are considered as non-polluted areas and that belong to the Atlantic Forest - SP ecosystem; and Sao Paulo city metropolitan region in sites near automatic monitoring stations of the Environmental Protection Agency of the State of Sao Paulo (CETESB). The lichens collected from the bark of the trees were properly treated, and irradiated with neutrons from IEA-R1 nuclear reactor along with synthetic standards of elements. The precision and the accuracy of the results were evaluated by the analyses of IAEA-336 LICHEN and Mixed Polish Herbs (INCT -MPH-2) certified reference materials. The results obtained for these materials were in accordance with the certified values and presented good precision with variation coefficients ranging from 0.9 to 14.6%. Results obtained for lichens showed that elements As, Co, Cr, Cs, La, Mo, Sb, Sc, Se and U are present at ng g -1 levels, Ba, Br, Cl, Fe, K, Mn, Na, Rb and Zn at μg g -1 and Ca at mg g -1 . By applying cluster and discriminant analyses to the results for the lichen samples from areas with different levels of pollution, the sampling sites were grouped according to their chemical similarities and their elemental composition. It was

  17. Methods of valuing air pollution and estimated monetary values of air pollutants in various U.S. regions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.Q.; Santini, D.J.; Warinner, S.A.

    1994-12-01

    Air pollutant emission values are used to determine the social costs of various technologies that cause air pollution and to estimate the benefits of emission control technologies. In this report, the authors present two methods of estimating air pollutant emission values--the damage value method and the control cost method--and review 15 recent studies in which these methods were employed to estimate emission values. The reviewed studies derived emission values for only a limited number of areas; emission value estimates are needed for other US regions. Using the emission values estimated in the reviewed studies, they establish regression relationships between emission values, air pollutant concentrations, and total population exposed, and apply the established relationships to 17 US metropolitan areas to estimate damage-based and control-cost-based emission values for reactive organic gases, nitrogen oxides, particulate matter measuring less than 10 microns, sulfur oxides, and carbon monoxide in these areas. Their estimates show significant variations in emission values across the 17 regions.

  18. [Micro-simulation of firms' heterogeneity on pollution intensity and regional characteristics].

    Science.gov (United States)

    Zhao, Nan; Liu, Yi; Chen, Ji-Ning

    2009-11-01

    In the same industrial sector, heterogeneity of pollution intensity exists among firms. There are some errors if using sector's average pollution intensity, which are calculated by limited number of firms in environmental statistic database to represent the sector's regional economic-environmental status. Based on the production function which includes environmental depletion as input, a micro-simulation model on firms' operational decision making is proposed. Then the heterogeneity of firms' pollution intensity can be mechanically described. Taking the mechanical manufacturing sector in Deyang city, 2005 as the case, the model's parameters were estimated. And the actual COD emission intensities of environmental statistic firms can be properly matched by the simulation. The model's results also show that the regional average COD emission intensity calculated by the environmental statistic firms (0.002 6 t per 10 000 yuan fixed asset, 0.001 5 t per 10 000 yuan production value) is lower than the regional average intensity calculated by all the firms in the region (0.003 0 t per 10 000 yuan fixed asset, 0.002 3 t per 10 000 yuan production value). The difference among average intensities in the six counties is significant as well. These regional characteristics of pollution intensity attribute to the sector's inner-structure (firms' scale distribution, technology distribution) and its spatial deviation.

  19. Genetic and oncological consequences of chemical and radiation pollution of the Kuzbass and Altai regions

    International Nuclear Information System (INIS)

    Ilyinskikh, E.N.; Kozlova, S.V.; Ilyinskikh, N.N.; Ilyinskikh, I.N.

    2005-01-01

    The paper presents assessment of frequencies of micronucleated lymphocytes in 12307 individuals living in 7 towns in the south part of the Kuzbass and Altai regions. Among the towns the majority of individuals with significantly high frequencies of micronucleated lymphocytes were detected in towns adjacent to the Semipalatinsk Test Site (STS). The pollution of the environment was also caused by the activity of metallurgical plants and coal industry in this region. The most considerable genome instability was found in individuals born during intensive operation of the Site (1949-1962). Moreover, we have determined that residents of the towns located close to STS have significantly high levels of antibodies to potentially oncogenic Epstein-Barr virus. The considerable Epstein-Barr virus contamination among the residents in the radiation polluted zone around the STS was supposed to be caused by immunodeficiency disorders in these individuals and induce high frequencies of micronucleated cells. (author)

  20. Air pollution and environmental justice in the Great Lakes region

    Science.gov (United States)

    Comer, Bryan

    While it is true that air quality has steadily improved in the Great Lakes region, air pollution remains at unhealthy concentrations in many areas. Research suggests that vulnerable and susceptible groups in society -- e.g., minorities, the poor, children, and poorly educated -- are often disproportionately impacted by exposure to environmental hazards, including air pollution. This dissertation explores the relationship between exposure to ambient air pollution (interpolated concentrations of fine particulate matter, PM2.5) and sociodemographic factors (race, housing value, housing status, education, age, and population density) at the Census block-group level in the Great Lakes region of the United States. A relatively novel approach to quantitative environmental justice analysis, geographically weighted regression (GWR), is compared with a simplified approach: ordinary least squares (OLS) regression. While OLS creates one global model to describe the relationship between air pollution exposure and sociodemographic factors, GWR creates many local models (one at each Census block group) that account for local variations in this relationship by allowing the value of regression coefficients to vary over space, overcoming OLS's assumption of homogeneity and spatial independence. Results suggest that GWR can elucidate patterns of potential environmental injustices that OLS models may miss. In fact, GWR results show that the relationship between exposure to ambient air pollution and sociodemographic characteristics is non-stationary and can vary geographically and temporally throughout the Great Lakes region. This suggests that regulators may need to address environmental justice issues at the neighborhood level, while understanding that the severity of environmental injustices can change throughout the year.

  1. Regional Persistent Organic Pollutants' Environmental Impact Assessment and Control Model

    Directory of Open Access Journals (Sweden)

    Jurgis Staniskis

    2008-10-01

    Full Text Available The sources of formation, environmental distribution and fate of persistent organic pollutants (POPs are increasingly seen as topics to be addressed and solved at the global scale. Therefore, there are already two international agreements concerning persistent organic pollutants: the Protocol of 1998 to the 1979 Convention on the Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (Aarhus Protocol; and the Stockholm Convention on Persistent Organic Pollutants. For the assessment of environmental pollution of POPs, for the risk assessment, for the evaluation of new pollutants as potential candidates to be included in the POPs list of the Stokholmo or/and Aarhus Protocol, a set of different models are developed or under development. Multimedia models help describe and understand environmental processes leading to global contamination through POPs and actual risk to the environment and human health. However, there is a lack of the tools based on a systematic and integrated approach to POPs management difficulties in the region.

  2. Regional approaches to water pollution in the environment

    NARCIS (Netherlands)

    Rijtema, P.E.; Eliás, V.

    1996-01-01

    The book gives the main lectures of a NATO workshop dealing with aspects of regional modelling and practical experiences concerning pollution problems related to industrial, agricultural, municipal and former military sites. Special emphasis is given on the Black Triangle in Central Europe, because

  3. Regional risk assessment approaches to land planning for industrial polluted areas in China: the Hulunbeier region case study.

    Science.gov (United States)

    Li, Daiqing; Zhang, Chen; Pizzol, Lisa; Critto, Andrea; Zhang, Haibo; Lv, Shihai; Marcomini, Antonio

    2014-04-01

    The rapid industrial development and urbanization processes that occurred in China over the past 30years has increased dramatically the consumption of natural resources and raw materials, thus exacerbating the human pressure on environmental ecosystems. In result, large scale environmental pollution of soil, natural waters and urban air were recorded. The development of effective industrial planning to support regional sustainable economy development has become an issue of serious concern for local authorities which need to select safe sites for new industrial settlements (i.e. industrial plants) according to assessment approaches considering cumulative impacts, synergistic pollution effects and risks of accidental releases. In order to support decision makers in the development of efficient and effective regional land-use plans encompassing the identification of suitable areas for new industrial settlements and areas in need of intervention measures, this study provides a spatial regional risk assessment methodology which integrates relative risk assessment (RRA) and socio-economic assessment (SEA) and makes use of spatial analysis (GIS) methodologies and multicriteria decision analysis (MCDA) techniques. The proposed methodology was applied to the Chinese region of Hulunbeier which is located in eastern Inner Mongolia Autonomous Region, adjacent to the Republic of Mongolia. The application results demonstrated the effectiveness of the proposed methodology in the identification of the most hazardous and risky industrial settlements, the most vulnerable regional receptors and the regional districts which resulted to be the most relevant for intervention measures since they are characterized by high regional risk and excellent socio-economic development conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs.

    Science.gov (United States)

    Xie, Yujing; Zhao, Laijun; Xue, Jian; Hu, Qingmi; Xu, Xiang; Wang, Hongbo

    2016-12-15

    How to effectively control severe regional air pollution has become a focus of global concern recently. The non-cooperative reduction model (NCRM) is still the main air pollution control pattern in China, but it is both ineffective and costly, because each province must independently fight air pollution. Thus, we proposed a cooperative reduction model (CRM), with the goal of maximizing the reduction in adverse health effects (AHEs) at the lowest cost by encouraging neighboring areas to jointly control air pollution. CRM has two parts: a model of optimal pollutant removal rates using two optimization objectives (maximizing the reduction in AHEs and minimizing pollutant reduction cost) while meeting the regional pollution control targets set by the central government, and a model that allocates the cooperation benefits (i.e., health improvement and cost reduction) among the participants according to their contributions using the Shapley value method. We applied CRM to the case of sulfur dioxide (SO 2 ) reduction in Yangtze River Delta region. Based on data from 2003 to 2013, and using mortality due to respiratory and cardiovascular diseases as the health endpoints, CRM saves 437 more lives than NCRM, amounting to 12.1% of the reduction under NCRM. CRM also reduced costs by US $65.8×10 6 compared with NCRM, which is 5.2% of the total cost of NCRM. Thus, CRM performs significantly better than NCRM. Each province obtains significant benefits from cooperation, which can motivate them to actively cooperate in the long term. A sensitivity analysis was performed to quantify the effects of parameter values on the cooperation benefits. Results shown that the CRM is not sensitive to the changes in each province's pollutant carrying capacity and the minimum pollutant removal capacity, but sensitive to the maximum pollutant reduction capacity. Moreover, higher cooperation benefits will be generated when a province's maximum pollutant reduction capacity increases. Copyright

  5. Long-range transport of persistent pollutants into Arctic regions; Schadstoff-Ferntransport in die Arktis

    Energy Technology Data Exchange (ETDEWEB)

    Kallenborn, R.; Herzke, D. [Norwegian Inst. for Air Research, The Polar Environmental Centre, Tromso (Norway)

    2001-07-01

    In recent years, high concentrations of persistent pollutants (organic chemicals, metals) were detected in top predators of the Arctic food chain and indigenous peoples from the Canadian and Greenland Arctic, although no local contamination sources are known. The comprehensive, scientific investigations of the past 20 years confirmed that the combination of atmospheric and waterborne long-range transport is the major source of the high concentrations of persistent organic pollutants (POPs) in the pristine Arctic environment. However, also pelagic marine organisms (e.g. Atlantic cod, marine mammals) can transport large amounts of persistent pollutants in their lipids and introduce contaminants into the Arctic food web. Thus, the pollutants are transported into the Arctic and subsequently accumulated through the short and unbranched Arctic food web of the top predators. The most accepted theory nowadays describes the long-range transport of persistent pollutants as a combination of atmospheric and sea current transport, or as a 'global distillation' process. Depending on such physical properties of the substances as vapour pressure and the ambient temperature, persistent (semivolatile) contaminants are transported over different distances prior to deposition (sea surface, sediment, soil). After the deposition, however, and depending on the weather conditions and surrounding temperature, persistent pollutants will be re-evaporated into the atmosphere and undergo further atmospheric transport to the Arctic region. This process is also called the 'grasshopper effect'. The global transport of persistent pollutants into Arctic regions can be described as a repeatedly occurring combination of atmospheric and waterborne transport in which the main transport vehicle depends on the physical properties of the transported compound. The role of characteristic meteorological conditions in the respective climate zones through which the contaminant is

  6. Methodological approach in determination of small spatial units in a highly complex terrain in atmospheric pollution research: the case of Zasavje region in Slovenia.

    Science.gov (United States)

    Kukec, Andreja; Boznar, Marija Z; Mlakar, Primoz; Grasic, Bostjan; Herakovic, Andrej; Zadnik, Vesna; Zaletel-Kragelj, Lijana; Farkas, Jerneja; Erzen, Ivan

    2014-05-01

    The study of atmospheric air pollution research in complex terrains is challenged by the lack of appropriate methodology supporting the analysis of the spatial relationship between phenomena affected by a multitude of factors. The key is optimal design of a meaningful approach based on small spatial units of observation. The Zasavje region, Slovenia, was chosen as study area with the main objective to investigate in practice the role of such units in a test environment. The process consisted of three steps: modelling of pollution in the atmosphere with dispersion models, transfer of the results to geographical information system software, and then moving on to final determination of the function of small spatial units. A methodology capable of designing useful units for atmospheric air pollution research in highly complex terrains was created, and the results were deemed useful in offering starting points for further research in the field of geospatial health.

  7. A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in china based on long-term and massive data mining of pollutant concentration

    Science.gov (United States)

    Wang, Hongbo; Zhao, Laijun

    2018-02-01

    China's Beijing-Tianjin-Hebei (BTH) region suffers from the country's worst air pollution. The problem has caused widespread concern both at home and abroad. Based on long-term and massive data mining of PM2.5 and PM10 concentration, we found that these pollutants showed similar variations in four seasons, but the most severe pollution was in winter. Through cluster analysis of the winter daily average concentration (DAC) of the two pollutants, we defined regions with similar variations in pollutant concentrations in winter. For the most polluted cities in BTH, the relationship between correlation coefficients for winter DAC and the distance between cities revealed that PM2.5 has regional, large-scale characteristics, with concentrated outbreaks, whereas PM10 has local, small-scale characteristics, with outbreaks at multiple locations. By selecting the key cities with the strongest linear relationship between the pollutant's DAC of each city and the daily individual air quality index values of the BTH region and through cluster analysis on the correlations between the pollutant DACs of the key cities, we defined regional divisions suitable for Joint Prevention and Control of Atmospheric Pollution (JPCAP) program to control PM2.5 and PM10. Comprehensively considering the degree of influence of regional atmospheric pollution control (RAPC) on air quality in BTH, as well as the elasticity and urgency of RAPC, we defined the control grades of the JPCAP regions. We found both the regions and corresponding control grades were consistent for PM2.5 and PM10. The thinking and methods of atmospheric pollution control we proposed will have broad significance for implementation of RAPC in other regions around the world.

  8. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    International Nuclear Information System (INIS)

    Shepherd, Thomas J.; Chenery, Simon R.N.; Pashley, Vanessa; Lord, Richard A.; Ander, Louise E.; Breward, Neil; Hobbs, Susan F.; Horstwood, Matthew; Klinck, Benjamin A.; Worrall, Fred

    2009-01-01

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  9. Efficient air pollution abatement for regions in China

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.L. [National Chiao Tung University, Taipei (Taiwan). Inst. for Business & Management

    2006-08-15

    This paper computes the efficient air pollution abatement ratios of 30 regions in China during the period 1996-2002. Three air emissions (SO{sub 2}, soot and dust) are considered. Data envelopment analysis (DEA) with a single output (real GDP) and five inputs (labour, real capital stock, SO{sub 2}, dust and soot emissions) is used to compute the target emissions of each region for each year. The efficient abatement ratios of each region in each year are then obtained by dividing the target emission by the actual emission of an air pollutant. Our major findings are: 1. The eastern area is the most efficient region with respect to SO{sub 2}, soot and dust emissions in every year during the research period. 2. The eastern, central and western areas have the lowest, medium and highest 1996-2002 average target abatement ratios of SO, (22.09%, 42.23% and 57.58%), soot (26.19%, 56.34% and 66.37%) and dust (15.20%, 29.09% and 40.59%), respectively. 3. These results are consistent with the Environmental Kuznets Curve (EKC) theory, whereby a more developed area will use environmental goods more efficiently than a less developed area. 4. Compared to dust emission, the average target abatement ratios for SO{sub 2} and soot emissions (as direct outcomes of burning coal) are relatively much higher for all three areas.

  10. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    Directory of Open Access Journals (Sweden)

    T. Wang

    2010-08-01

    Full Text Available This paper presents the first results of the measurements of trace gases and aerosols at three surface sites in and outside Beijing before and during the 2008 Olympics. The official air pollution index near the Olympic Stadium and the data from our nearby site revealed an obvious association between air quality and meteorology and different responses of secondary and primary pollutants to the control measures. Ambient concentrations of vehicle-related nitrogen oxides (NOx and volatile organic compounds (VOCs at an urban site dropped by 25% and 20–45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions. A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed >34–88% to the peak ozone concentrations at the urban site in Beijing. Regional sources also contributed significantly to the CO concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv, indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2, total sulfur (SO2+PM2.5 sulfate, carbon monoxide (CO, reactive aromatics (toluene and xylenes sharply decreased (by 8–64% in 2008, but no significant changes were observed for the concentrations of

  11. Air pollution reduction and control in south asia need for a regional agreement

    International Nuclear Information System (INIS)

    Khwaja, M.A.; Shaheen, N.; Sherazi, A.; Shaheen, F.H.

    2012-01-01

    With increasing urbanization and economic growth, air pollution is becoming an urgent concern in South Asia. The objective of this study is to look into and discuss the socioeconomic situation of South Asia, the existing situation of air pollution in the countries of the region, resulting health impacts of air pollution on the population and the responses, if any, of national governments to combat this problem. With the increase in industrial activity and exponential growth in number of vehicles and population, the contribution of each South Asian country to the regional air pollution will increase over time. As evident from the review of the available country data, sulfur dioxides, nitrogen oxides and particulate matter (PM) emissions have been rising steadily over past few decades. The air pollutants can be transported across state and national boundaries, therefore, pollutants produced by one country can, as well, have adverse impacts on the environment and public health of neighboring countries. It has been reported by the country national health authorities that air pollution has pushed respiratory diseases up in the ranks as the leading cause of hospitalization. To minimize the socio-economic and health impacts, resulting from air pollution, South Asian states have developed environmental legal and regulatory frameworks in their respective countries. However, the implementation of country national environmental action plan has been limited due to lack of financial resources and technical know-how. Recommendations have been made for policy actions, including a legally binding agreement for South Asia (LBA-SA), for strengthening the framework for air pollution reduction at regional and national levels in South Asia. (author)

  12. Quantifying regional consumption-based health impacts attributable to ambient air pollution in China.

    Science.gov (United States)

    Zhang, Yanxia; Qu, Shen; Zhao, Jing; Zhu, Ge; Zhang, Yanxu; Lu, Xi; Sabel, Clive E; Wang, Haikun

    2018-03-01

    Serious air pollution has caused about one million premature deaths per year in China recently. Besides cross-border atmospheric transport of air pollution, trade also relocates pollution and related health impacts across China as a result of the spatial separation between consumption and production. This study proposes an approach for calculating the health impacts of emissions due to a region's consumption based on a multidisciplinary methodology coupling economic, atmospheric, and epidemiological models. These analyses were performed for China's Beijing and Hebei provinces. It was found that these provinces' consumption-based premature deaths attributable to ambient PM 2.5 were respectively 22,500 and 49,700, which were 23% higher and 37% lower than the numbers solely within their boundaries in 2007. The difference between the effects of trade and trade-related emissions on premature deaths attributable to air pollution in a region has also been clarified. The results illustrate the large and broad impact of domestic trade on regional air quality and the need for comprehensive consideration of supply chains in designing policy to mitigate the negative health impacts of air pollution across China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cost of near-roadway and regional air pollution-attributable childhood asthma in Los Angeles County

    Science.gov (United States)

    Brandt, Sylvia; Perez, Laura; Künzli, Nino; Lurmann, Fred; Wilson, John; Pastor, Manuel; McConnell, Rob

    2014-01-01

    Background Emerging evidence suggests that near-roadway air pollution (NRP) exposure causes childhood asthma. Associated costs are not well documented. Objective We estimated the cost of childhood asthma attributable to residential NRP exposure and regional ozone (O3) and nitrogen dioxide (NO2) in Los Angeles County. We developed a novel approach to apportion the costs between these exposures under different pollution scenarios. Methods We integrated results from a study of willingness to pay to reduce the burden of asthma with studies of health care utilization and charges to estimate the costs of an asthma case and exacerbation. We applied those costs to the number of asthma cases and exacerbations due to regional pollution in 2007 and to hypothetical scenarios of a 20% reduction in regional pollution in combination with a 20% reduction or increase in the proportion of the total population living within 75m of a major roadway. Results Cost of air pollution-related asthma in Los Angeles County in 2007 was $441 million for O3 and $202 million for NO2 in 2010 dollars. Cost of routine care (care in absence of exacerbation) accounted for 18% of the combined NRP and O3 cost and 39% of the combined NRP and NO2 cost—costs not recognized in previous analyses. NRP-attributable asthma accounted for 43% (O3) to 51% (NO2) of the total annual cost of exacerbations and routine care associated with pollution. Hypothetical scenarios showed that costs from increased NRP exposure may offset savings from reduced regional pollution. Conclusions Our model disaggregates the costs of regional pollution and NRP exposure and illustrates how they might vary under alternative exposure scenarios. The cost of air pollution is a substantial burden on families and an economic loss for society. PMID:25439228

  14. Extreme value analysis of air pollution data and their comparison between two large urban regions of South America

    Directory of Open Access Journals (Sweden)

    Leila Droprinchinski Martins

    2017-12-01

    Full Text Available Sixteen years of hourly atmospheric pollutant data (1996–2011 in the Metropolitan Area of São Paulo (MASP, and seven years (2005–2011 of data measured in the Metropolitan Area of Rio de Janeiro (MARJ, were analyzed in order to study the extreme pollution events and their return period. In addition, the objective was to compare the air quality between the two largest Brazilian urban areas and provide information for decision makers, government agencies and civil society. Generalized Extreme Value (GEV and Generalized Pareto Distribution (GPD were applied to investigate the behavior of pollutants in these two regions. Although GEV and GPD are different approaches, they presented similar results. The probability of higher concentrations for CO, NO, NO2, PM10 and PM2.5 was more frequent during the winter, and O3 episodes occur most frequently during summer in the MASP. On the other hand, there is no seasonally defined behavior in MARJ for pollutants, with O3 presenting the shortest return period for high concentrations. In general, Ibirapuera and Campos Elísios stations present the highest probabilities of extreme events with high concentrations in MASP and MARJ, respectively. When the regions are compared, MASP presented higher probabilities of extreme events for all analyzed pollutants, except for NO; while O3 and PM2.5 are those with most frequent probabilities of presenting extreme episodes, in comparison other pollutants. Keywords: Air pollutants, Extreme events, Megacities, Ozone, Particulate matter

  15. Air pollution in the Benelux/Rhine-Ruhr area: Numerical simulations with a multi-scale regional chemistry-transport model

    Science.gov (United States)

    Memmesheimer, M.; Jakobs, H. J.; Wurzler, S.; Friese, E.; Piekorz, G.; Ebel, A.

    2009-04-01

    The Rhine-Ruhr area is a strongly industrialized region with about 10 Million inhabitants. It is one of the regions in Europe, which has the characteristics of a megacity with respect to population density, traffic, industry and environmental issues. The main centre of European steel production and the biggest inland port of the world is located in Duisburg, one of the major cities in the Rhine-Ruhr area. Together with the nearby urban agglomerations in the Benelux area including Brussels, Amsterdam and in particular Rotterdam as one of the most important sea-harbours of the world together with Singapore and Shanghai, it forms one of the regions in Europe heavily loaded with air pollutants as ozone, NO2 and particulate matter. Ammonia emissions outside the urban agglomerations but within the domain are also on a quite high level due to intense agricultural usage in Benelux, North-Rhine-Westphalia and lower Saxony. Therefore this area acts also as an important source region for gaseous precursors contributing to the formation of secondary particles in the atmosphere. The Benelux/Rhine-Ruhr area therefore has been selected within the framework of the recently established FP7 research project CityZen as one hot spot for detailed investigations of the past and current status of air pollution and its future development on different spatial and temporal scales. Some examples from numerical simulations with the regional multi-scale chemistry transport model EURAD for Central Europe and the Rhine-Ruhr area will be presented. The model calculates the transport, chemical transformations and deposition of trace constituents in the troposphere from the surface up to about 16 km using MM5 as meteorological driver, the RACM-MIM gas-phase chemistry and MADE-SORGAM for the treatment of particulate matter. Horizontal grid sizes are in the range of 100 km down to 1 km for heavily polluted urbanized areas within Benelux/Rhine-Ruhr. The planetary boundary layer is resolved by 15

  16. Evaluation of nitrate pollution of groundwater in Mnasra region

    International Nuclear Information System (INIS)

    Marouane, B.; El hajjaji, S.; Dahchour, A.; Dousset, S.

    2012-01-01

    Gharb area is one of the most important agricultural regions in Morocco, where the application of fertilizers is conducted in many cases without any respect of standards. This situation may generate negative environmental impact in vulnerable areas such as Mnasra groundwater. Our study tends to evaluate the level of contamination by nitrate of groundwater in a Mnasra area. The results show that 80% of the sampled wells are highly concentrated in nitrates in comparison with the standard of WHO. Intensification of agriculture in the area associated to excessive fertilizer application, repeated applications, irrigation and rainfall are reasons for an increasing nitrates pollution of water resources. Leaching of nitrate to the groundwater should receive more attention for its potential high mobile propriety which could cause serious damages for the environment and negative impact to the health of population.

  17. [Characteristics of Winter Atmospheric Mixing Layer Height in Beijing-Tianjin-Hebei Region and Their Relationship with the Atmospheric Pollution].

    Science.gov (United States)

    Li, Meng; Tang, Gui-qian; Huang, Jun; Liu, Zi-rui; An, Jun-lin; Wang, Yue-si

    2015-06-01

    Atmospheric mixing layer height (MLH) is one of the main factors affecting the atmospheric diffusion and plays an important role in air quality assessment and distribution of the pollutants. Based on the ceilometers data, this paper has made synchronous observation on MLH in Beijing-Tianjin-Hebei region (Beijing, Tianjin, Shijiazhuang and Qinhuangdao) in heavy polluted February 2014 and analyzed the respective overall change and its regional features. Results show that in February 2014,the average of mixing layer height in Qinhuangdao is the highest, up to 865 +/- 268 m, and in Shijiazhuang is the lowest (568 +/- 207 m), Beijing's and Tianjin's are in between, 818 +/- 319 m and 834 +/- 334 m respectively; Combined with the meteorological data, we find that radiation and wind speed are main factors of the mixing layer height; The relationship between the particle concentration and mixing layer height in four sites suggests that mixing layer is less than 800 m, concentration of fine particulate matter in four sites will exceed the national standard (GB 3095-2012, 75 microg x m(-3)). During the period of observation, the proportion of days that mixing layer is less than 800 m in Beijing, Tianjin, Shijiazhuang and Qinhuangdao are 50%, 43%, 80% and 50% respectively. Shijiazhuang though nearly formation contaminant concentration is high, within the atmospheric mixed layer pollutant load is not high. Unfavorable atmospheric diffusion conditions are the main causes of heavy pollution in Shijiazhuang for a long time. The results of the study are of great significance for cognitive Beijing-Tianjin-Hebei area pollution distribution, and can provide a scientific reference for reasonable distribution of regional pollution sources.

  18. Solutions Network Formulation Report. Reducing Light Pollution in U.S. Coastal Regions Using the High Sensitivity Cameras on the SAC-C and Aquarius/SAC-D Satellites

    Science.gov (United States)

    Andrews, Jane C.; Knowlton, Kelly

    2007-01-01

    Light pollution has significant adverse biological effects on humans, animals, and plants and has resulted in the loss of our ability to view the stars and planets of the universe. Over half of the U.S. population resides in coastal regions where it is no longer possible to see the stars and planets in the night sky. Forty percent of the entire U.S. population is never exposed to conditions dark enough for their eyes to convert to night vision capabilities. In coastal regions, urban lights shine far out to sea where they are augmented by the output from fishing boat, cruise ship and oil platform floodlights. The proposed candidate solution suggests using HSCs (high sensitivity cameras) onboard the SAC-C and Aquarius/SAC-D satellites to quantitatively evaluate light pollution at high spatial resolution. New products modeled after pre-existing, radiance-calibrated, global nighttime lights products would be integrated into a modified Garstang model where elevation, mountain screening, Rayleigh scattering, Mie scattering by aerosols, and atmospheric extinction along light paths and curvature of the Earth would be taken into account. Because the spatial resolution of the HSCs on SAC-C and the future Aquarius/SAC-D missions is greater than that provided by the DMSP (Defense Meteorological Satellite Program) OLS (Operational Linescan System) or VIIRS (Visible/Infrared Imager/Radiometer Suite), it may be possible to obtain more precise light intensity data for analytical DSSs and the subsequent reduction in coastal light pollution.

  19. Pollutants impact bioassay from waters and soils in Banat region

    Directory of Open Access Journals (Sweden)

    Crina Laura Mosneang

    2014-12-01

    Full Text Available Analyses of water and soil samples by chemical methods identified the quantities of chlorides, nitrates and phosphates by comparison with the maximum limits of law. Acute toxicity tests on zebra fish embryos is an alternative test of water samples around swine farms in Banat region, because embryos are not subject to animal protection legislation during experiments. The use of Eisenia fetida earthworms as pollution indicators allowed assessment of avoidance behavior of potentially polluting soils collected from different distances from farms.

  20. Assessment of nitrate pollution of groundwater in South-East of Isfahan region

    International Nuclear Information System (INIS)

    Gheisari, M. M.; Hoodaji, M.; Najafi, P.; Abdollahi, A.

    2007-01-01

    Because the increasing population and food in the world, as well as unavailability and limitation of agricultural lands, needs to increase the agricultural yield quality and quantity. One way to have high quality products is applying fertilizers. Nitrogen fertilizer is the most common one used for this purpose. Impractical and weak management in controlling the improper use of fertilizer causes high concentration of Nitrate in soil and groundwater resources. High concentration of Nitrate in water causes many health problems. This research is conducted to determine the rate of Nitrate polluted water in South-East of Isfahan. In this research, sampling was done from selected water wells and the amount of Nitrate in water was determined by using special Electrodes and Ion -Selective method. Surfer Software identified the variation process. Then, the results were compared with US-Environmental Protected Agency (US-EPA). In some areas, the results show the concentration of Nitrate more than US-EPA standards, especially in South-East of the region. The highest Nitrate concentrations in the first and second sampling in the polluted area were 189.1 and 248.3 mg per liters, respectively. In the first sampling 80.0% and in the second sampling 90.0% of wells were identified to have high concentration of Nitrate. The Nitrate pollution averages in the first and second sampling were 76.9 ppm and 93.1 ppm, respectively. Therefore, in order to apply this kind of fertilizer, proper management, scientific and practical control must be employed so that increasing concentration of Nitrate can be controlled

  1. A framework for delineating the regional boundaries of PM2.5 pollution: A case study of China.

    Science.gov (United States)

    Liu, Jianzheng; Li, Weifeng; Wu, Jiansheng

    2018-04-01

    Fine particulate matter (PM 2.5 ) pollution has been a major issue in many countries. Considerable studies have demonstrated that PM 2.5 pollution is a regional issue, but little research has been done to investigate the regional extent of PM 2.5 pollution or to define areas in which PM 2.5 pollutants interact. To allow for a better understanding of the regional nature and spatial patterns of PM 2.5 pollution, This study proposes a novel framework for delineating regional boundaries of PM 2.5 pollution. The framework consists of four steps, including cross-correlation analysis, time-series clustering, generation of Voronoi polygons, and polygon smoothing using polynomial approximation with exponential kernel method. Using the framework, the regional PM 2.5 boundaries for China are produced and the boundaries define areas where the monthly PM 2.5 time series of any two cities show, on average, more than 50% similarity with each other. These areas demonstrate straightforwardly that PM 2.5 pollution is not limited to a single city or a single province. We also found that the PM 2.5 areas in China tend to be larger in cold months, but more fragmented in warm months, suggesting that, in cold months, the interactions between PM 2.5 concentrations in adjacent cities are stronger than in warmer months. The proposed framework provides a tool to delineate PM 2.5 boundaries and identify areas where PM 2.5 pollutants interact. It can help define air pollution management zones and assess impacts related to PM 2.5 pollution. It can also be used in analyses of other air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Blood lead concentrations in wild birds from a polluted mining region at Villa de La Paz, San Luis Potosi, Mexico.

    Science.gov (United States)

    Chapa-Vargas, Leonardo; Mejia-Saavedra, Jose J; Monzalvo-Santos, Karina; Puebla-Olivares, Fernando

    2010-01-01

    This investigation was undertaken to determine the concentrations of lead in bird blood samples from a mining region in central Mexico and to compare concentrations among several different feeding guilds. The study took place in the Mexican state of San Luis Potosi in a region known as "Villa de la Paz." This is one of the most intensely exploited mining regions in central Mexico and has been actively mined for over four centuries. Lead concentrations from bird blood samples taken from four polluted sites were significantly higher than those from a control, unpolluted site (F = 6.3, P birds from a highly polluted site were higher than those from a site that has intermediate pollution levels (P birds had significantly lower lead concentrations compared to granivores, frugivores-insectivores, and omnivores (F = 4.86, P = 0.004), and a large proportion of all individuals had blood lead concentrations indicative of low, sub-lethal toxic effects. Finally, in two polluted sites, remarkably small numbers of insectivore-frugivores, and granivores were trapped, and in one polluted site a large number of insectivores was trapped (X(2) = 29.9, P = 0.03), and no differences in proportions of migrants and non-migrants were found among sampling sites (X(2) = 0.6, P = 0.96). To date, it has not been determined to what extent constant exposure to these levels of pollution can influence health at the individual level, lifespan, and, therefore, population demography of birds from this region.

  3. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Thomas J., E-mail: shepherdtj@aol.com [Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE (United Kingdom); Chenery, Simon R.N. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Pashley, Vanessa [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Lord, Richard A. [School of Science and Technology, University of Teesside, Middlesbrough, Tees Valley TS1 3BA (United Kingdom); Ander, Louise E.; Breward, Neil; Hobbs, Susan F. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Horstwood, Matthew [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Klinck, Benjamin A. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Worrall, Fred [Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE (United Kingdom)

    2009-08-15

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  4. Cadmium and high temperature effects on brain and behaviour of Lymantria dispar L. caterpillars originating from polluted and less-polluted forests.

    Science.gov (United States)

    Perić-Mataruga, Vesna; Petković, Branka; Ilijin, Larisa; Mrdaković, Marija; Dronjak Čučaković, Slađana; Todorović, Dajana; Vlahović, Milena

    2017-10-01

    Insects brain as a part of nervous system is the first-line of fast stress response that integrate stress signals to regulate all aspects of insect physiology and behaviour. The cadmium (Cd) bioaccumulation factor (BF), activity of the neurotoxicity biomarker acetylcholinesterase (AChE), dopamine content, expression and amount of Hsp70 in the brain and locomotor activity were evaluated in the 4th instar of Lymantria dispar L. caterpillars fed a Cd supplemented diet and reared in an optimal temperature regime (23 °C) and/or exposed to high temperature (28 °C). The insects originated from two forests, one close to "Nikola Tesla" thermoelectric power plant, Obrenovac (polluted population), and the other Kosmaj mountain (less-polluted population, far from any industrial region). The Cd BF was higher in the less-polluted than in the polluted population especially at the high ambient temperature. AChE activity and dopamine content were changed in the brains of L. dispar from both populations in the same manner. Hsp70 concentration in caterpillar brains showed opposite trends, a decrease in the less-polluted and an increase in the polluted population. Locomotor activity was modified in both Lymantria dispar populations, but the pattern of changes depended on the stressors and their combined effect. ACh activity and dopamine content are sensitive parameters to Cd exposure, regardless of pollutant experience, and might be promising biomarkers in monitoring forest ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Investment strategy for sustainable society by development of regional economies and prevention of industrial pollutions in Japanese manufacturing sectors

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika

    2014-01-01

    A balance between industrial pollution prevention and economic growth becomes a world-wide issue to develop a sustainable society in many industrial nations. To discuss the issue, this study proposes a new use of DEA environmental assessment to determine how to effectively allocate capital for developing regional industries. The amount of capital is used to invest for technology innovation for both local economic growth and environmental protection. In this study, the proposed approach separates outputs into desirable and undesirable categories. Inputs are also separated into two categories, one of which indicates an amount of investment on capital assets. The other category is used for production activities. The proposed approach unifies them by two disposability concepts. This study has evaluated the performance of manufacturing industries in 47 prefectures (local government units in Japan) by Unified Efficiency under Natural disposability (UEN), Unified Efficiency under Managerial disposability (UEM) and Unified Efficiency under Natural and Managerial disposability (UENM). The UENM is further separated into its two cases: with and without a possible occurrence on desirable congestion, or technology innovation, on undesirable outputs. This study has empirically confirmed that Japanese manufacturing industries need to make their efforts to reduce greenhouse gas emissions and air pollution substances by investing in technology innovation. Furthermore, most of economic activities are currently located at metropolitan regions (e.g., Tokyo) in Japan. To develop a sustainable society, Japan needs to allocate capital into regions with a high level of investment effectiveness by shifting the manufacturing industries from the metropolitan regions to much promising local areas identified in this study. Such a shift, along with technology innovation, makes it possible to reduce air pollutions in the entire Japan by balancing economic growth and pollution prevention. This

  6. The environmental Kuznets curve hypothesis for water pollution. Do regions matter?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chien-Chiang; Chiu, Yi-Bin [Department of Finance, National Sun Yat-Sen University Kaohsiung (China); Sun, Chia-Hung [Department of Economics, National Chung Cheng University (China)

    2010-01-15

    This study revisits the environmental Kuznets curve (EKC) hypothesis for water pollution by using a recent dynamic technique, which is the generalized method of moments (GMM) approach, for a board sample of 97 countries during the period 1980-2001. On a global scale, as we cannot obtain the EKC relationship between real income and biological oxygen demand (BOD) emissions, this paper further classifies these countries into four regional groups - Africa, Asia and Oceania, America, and Europe - to explore whether the different regions have different ECK relationships. The empirical results show evidence of the inverted U-shaped EKC relationships' existence in America and Europe, but not in Africa and Asia and Oceania. Thus, the regional difference of EKC for water pollution is supported. Furthermore, the estimated turning points are, approximately, US$13,956 and US$38,221 for America and Europe, respectively. (author)

  7. The environmental Kuznets curve hypothesis for water pollution: Do regions matter?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.-C., E-mail: leecc@seed.net.t [Department of Finance, National Sun Yat-Sen University Kaohsiung, Taiwan (China); Chiu, Y.-B. [Department of Finance, National Sun Yat-Sen University Kaohsiung, Taiwan (China); Sun, C.-H. [Department of Economics, National Chung Cheng University, Taiwan (China)

    2010-01-15

    This study revisits the environmental Kuznets curve (EKC) hypothesis for water pollution by using a recent dynamic technique, which is the generalized method of moments (GMM) approach, for a board sample of 97 countries during the period 1980-2001. On a global scale, as we cannot obtain the EKC relationship between real income and biological oxygen demand (BOD) emissions, this paper further classifies these countries into four regional groups - Africa, Asia and Oceania, America, and Europe - to explore whether the different regions have different ECK relationships. The empirical results show evidence of the inverted U-shaped EKC relationships' existence in America and Europe, but not in Africa and Asia and Oceania. Thus, the regional difference of EKC for water pollution is supported. Furthermore, the estimated turning points are, approximately, US$13,956 and US$38,221 for America and Europe, respectively.

  8. The environmental Kuznets curve hypothesis for water pollution: Do regions matter?

    International Nuclear Information System (INIS)

    Lee, C.-C.; Chiu, Y.-B.; Sun, C.-H.

    2010-01-01

    This study revisits the environmental Kuznets curve (EKC) hypothesis for water pollution by using a recent dynamic technique, which is the generalized method of moments (GMM) approach, for a board sample of 97 countries during the period 1980-2001. On a global scale, as we cannot obtain the EKC relationship between real income and biological oxygen demand (BOD) emissions, this paper further classifies these countries into four regional groups - Africa, Asia and Oceania, America, and Europe - to explore whether the different regions have different ECK relationships. The empirical results show evidence of the inverted U-shaped EKC relationships' existence in America and Europe, but not in Africa and Asia and Oceania. Thus, the regional difference of EKC for water pollution is supported. Furthermore, the estimated turning points are, approximately, US$13,956 and US$38,221 for America and Europe, respectively.

  9. Depletion velocities for atmospheric pollutants oriented To improve the simplified regional dispersion modelling

    International Nuclear Information System (INIS)

    Sanchez Gacita, Madeleine; Turtos Carbonell, Leonor; Rivero Oliva, Jose de Jesus

    2005-01-01

    The present work is aimed to improve externalities assessment using Simplified Methodologies, through the obtaining of depletion velocities for primary pollutants SO 2 , NO X and TSP (Total Suspended Particles) and for sulfate and nitrate aerosols, the secondary pollutants created from the first ones. The main goal proposed was to estimate these values for different cases, in order to have an ensemble of values for the geographic area, among which the most representative could be selected for using it in future studies that appeal to a simplified methodology for the regional dispersion assessment, taking into account the requirements of data, qualified manpower and time for a detailed approach. The results where obtained using detailed studies of the regional dispersion that were conduced for six power facilities, three from Cuba (at the localities of Mariel, Santa Cruz and Tallapiedra) and three from Mexico (at the localities of Tuxpan, Tula and Manzanillo). The depletion velocity for SO 2 was similar for all cases. Results obtained for Tallapiedra, Santa Cruz, Mariel and Manzanillo were similar. For Tula and Tuxpan a high uncertainty was found

  10. IOC-UNEP regional workshop to review priorities for marine pollution monitoring, research, control and abatement in the wider Caribbean

    International Nuclear Information System (INIS)

    1989-01-01

    The IOC-UNEP Regional Workshop to Review Priorities for Marine Pollution Monitoring, Research, Control and Abatement in the Wider Caribbean Region (San Jose, 24-30 August 1989) examined a possible general framework for a regionally co-ordinated comprehensive joint IOC/UNEP programme for marine pollution assessment and control in the Wider Caribbean region (CEPPOL). The overall objective of CEPPOL is to establish a regionally co-ordinated comprehensive joint IOC/UNEP Marine Pollution Assessment and Control Programme catering to the immediate and long-term requirements of the Cartagena Convention as well as the requirements of the member States of IOCARIBE. The specific objectives of the programmes are: (i) To organize and carry out a regionally co-ordinated marine pollution monitoring and research programme concentrating on contaminants and pollutants affecting the quality of the marine and coastal environment, as well as the human health in the Wider Caribbean and to interpret/assess the results of the programme as part of the scientific basis for the region; (ii) To generate information on the sources, levels, amounts, trends and effects of marine pollution within the Wider Caribbean region as an additional component of the scientific basis upon which the formulation of proposals for preventive and remedial actions can be based; (iii) To formulate proposals for technical, administrative and legal pollution control, abatement, and preventive measures and to assist the Governments in the region in implementing and evaluating their effectiveness; and (iv) To strengthen and , when necessary, to develop/establish the capabilities of national institutions to carry out marine pollution monitoring and research, as well as to formulate and apply pollution control and abatement measures

  11. 18th international symposium on environmental pollution and its impact on life in the Mediterranean region

    International Nuclear Information System (INIS)

    2017-01-01

    The 18th International Symposium on environmental pollution and its impact on life in the Mediterranean region was held on September 26-30, 2015 in Crete. Its main theme was sustainable resource use and impact on health and well-being. This is the theme of the current special issue, which is based on the scientific works of the Symposium. This overarching theme was further developed in thematic sessions focusing on the following: - Sustainable natural resource and waste management; - Environmental health and well-being; - Climate change mitigation and adaptation; - Indoor and outdoor air pollution; - Water and soil pollution and control; - Ecotoxicity and biodiversity; - Energy, environment and sustainability; - Environmental aspects of nutrition; - Environmental economics, policy and education. The quality of the presentations was high and several colleagues expressed their interest in publishing their work presented in the symposium into this Special Issue. After a thorough peer review process, where each manuscript was evaluated by two independent reviewers, 70 high quality manuscripts were finally selected for publication.

  12. 18th international symposium on environmental pollution and its impact on life in the Mediterranean region

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-08-01

    The 18th International Symposium on environmental pollution and its impact on life in the Mediterranean region was held on September 26-30, 2015 in Crete. Its main theme was sustainable resource use and impact on health and well-being. This is the theme of the current special issue, which is based on the scientific works of the Symposium. This overarching theme was further developed in thematic sessions focusing on the following: - Sustainable natural resource and waste management; - Environmental health and well-being; - Climate change mitigation and adaptation; - Indoor and outdoor air pollution; - Water and soil pollution and control; - Ecotoxicity and biodiversity; - Energy, environment and sustainability; - Environmental aspects of nutrition; - Environmental economics, policy and education. The quality of the presentations was high and several colleagues expressed their interest in publishing their work presented in the symposium into this Special Issue. After a thorough peer review process, where each manuscript was evaluated by two independent reviewers, 70 high quality manuscripts were finally selected for publication.

  13. Metal pollution investigation of Goldman Park, Middletown Ohio: Evidence for steel and coal pollution in a high child use setting.

    Science.gov (United States)

    Dietrich, Matthew; Huling, Justin; Krekeler, Mark P S

    2018-03-15

    A geochemical investigation of both ballfield sediment and street sediment in a park adjacent to a major steel manufacturing site in Middletown, Ohio revealed Pb, Cu, Cr and Zn exceeded background levels, but in heterogeneous ways and in varying levels of health concern. Pb, Sn, and Zn had geoaccumulation values>2 (moderate to heavy pollutants) in street sediment samples. Cr had a geoaccumulation value>1, while Ni, W, Fe and Mn had geoaccumulation values between 1 and 0 in street sediment. Street sediment contamination factors for respective elements are Zn (10.41), Sn (5.45), Pb (4.70), Sb (3.45), Cr (3.19), W (2.59), and Mn (2.43). The notable elements with the highest factors for ball fields are Zn (1.72), Pb (1.36), Cr (0.99), V (0.95), and Mn (1.00). High correlation coefficients of known constituents of steel, such as Fe and Mo, Ni and Cr, W and Co, W and V, as well as particulate steel and coal spherule fragments found by SEM suggest probable sourcing of some of the metals from the AK Steel facility directly adjacent to the park. However, overall extensive heterogeneity of metal pollutants in the area points to the difficulties in sourcing pollutant metals, with many outside sources likely contributing as well. This study demonstrates that different sediment media can be impacted by significantly different metal pollutants even when in very close proximity to a single source and points to unrecognized complexity in urban pollution processes in the region. This study pertains to large-scale regional importance, as Middletown, Ohio is indicative of a typical post-industrial Midwestern U.S. city where limited investigation has been conducted regarding urban pollution and sourcing of materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Atmospheric pollution reduction effect and regional predicament: An empirical analysis based on the Chinese provincial NOx emissions.

    Science.gov (United States)

    Ding, Lei; Liu, Chao; Chen, Kunlun; Huang, Yalin; Diao, Beidi

    2017-07-01

    Atmospheric pollution emissions have become a matter of public concern in recent years. However, most of the existing researches on NOx pollution are from the natural science and technology perspective, few studies have been conducted from an economic point, and regional differences have not been given adequate attention. This paper adopts provincial panel data from 2006 to 2013 and the LMDI model to analyze the key driving factors and regional dilemmas of NOx emissions. The results show that significant regional disparities still exit on NO x emissions and its reduction effect 27 provinces didn't accomplish their corresponding reduction targets. Economic development factor is the dominating driving factor of NO x emissions during the study period, while energy efficiency and technology improvement factors offset total NO x emissions in the majority of provinces. In addition, the industrial structure factor plays a more significant role in reducing the NO x emissions after 2011. Therefore, the government should consider all these factors as well as regional heterogeneity in developing appropriate pollution mitigating policies. It's necessary to change NOx emissions control attitude from original key areas control to divided-zone control, not only attaches great importance to the reduction of the original key areas, but also emphasizes the new potential hotspots with high NO x emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Validating a continental-scale groundwater diffuse pollution model using regional datasets.

    Science.gov (United States)

    Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik

    2017-12-11

    In this study, we assess the validity of an African-scale groundwater pollution model for nitrates. In a previous study, we identified a statistical continental-scale groundwater pollution model for nitrate. The model was identified using a pan-African meta-analysis of available nitrate groundwater pollution studies. The model was implemented in both Random Forest (RF) and multiple regression formats. For both approaches, we collected as predictors a comprehensive GIS database of 13 spatial attributes, related to land use, soil type, hydrogeology, topography, climatology, region typology, nitrogen fertiliser application rate, and population density. In this paper, we validate the continental-scale model of groundwater contamination by using a nitrate measurement dataset from three African countries. We discuss the issue of data availability, and quality and scale issues, as challenges in validation. Notwithstanding that the modelling procedure exhibited very good success using a continental-scale dataset (e.g. R 2  = 0.97 in the RF format using a cross-validation approach), the continental-scale model could not be used without recalibration to predict nitrate pollution at the country scale using regional data. In addition, when recalibrating the model using country-scale datasets, the order of model exploratory factors changes. This suggests that the structure and the parameters of a statistical spatially distributed groundwater degradation model for the African continent are strongly scale dependent.

  16. Modeling Regional Pollution Episodes With The Ctm Mocage.

    Science.gov (United States)

    Dufour, A.; Brocheton, F.; Amodei, M.; Peuch, V.-H.

    Several regional ozone pollution episodes have been studied in the context of two recent extensive field campaigns in France: ESQUIF, in the Paris region and ES- COMPTE, in the vicinity of Marseilles. MOCAGE is an off-line multi-scale Chem- istry and Transport Model (CTM), driven by the operational numerical weather pre- diction models of Météo-France, ARPEGE and ALADIN. It covers from the global to the regional scale, by means of up to four levels of nested domains, and extends up to the middle stratosphere; thus, there is no need for external boundary conditions, neither on the horizontal or on the vertical. These original features allows to cover with MOCAGE a wide range of scientific applications, from routine air-pollution fore- casts to long-term simulations related to climate issues. The present study focuses on the simulation of regional-scale photo-oxidant episodes and on the impact on larger scales of the transport of ozone, of precursors and of reservoir species. The first ex- ample concerns a polluted episode of the ESQUIF campaign (IOP6). In addition to ground measurements, 8 flights have documented the situation, showing a diversity of chemical regimes. This variability is quite satisfactorily reproduced by the model. A special attention was also paid to vertical and horizontal exchanges, particularly to interactions between the boundary layer and the free troposphere. An interesting case of an ill-represented residual nocturnal plume in the simulation of ESQUIF IOP5 will be presented: during this IOP, the vertical structure of the lower troposphere was well characterized by four flights. Free troposphere concentrations of ozone appear to be well reproduced by the model, except for the intensity and vertical extent of a residual plume, which are overestimated. For the day after, in addition to a direct impact on surface concentrations, the simulated development of the boundary layer is found to be too slow ; both errors contribute to an

  17. Impacts of urbanization on regional nonpoint source pollution: case study for Beijing, China.

    Science.gov (United States)

    Zhi, Xiaosha; Chen, Lei; Shen, Zhenyao

    2018-04-01

    Due to limits on available data, the effects of urban sprawl on regional nonpoint source pollution (NPS) have not been investigated over long time periods. In this paper, the characteristics of urban sprawl from 1999 to 2014 in Beijing were explored by analyzing historical land-use data. The Event Mean Concentration data have been collected from all available references, which were used to estimate the variation in urban NPSs. Moreover, the impacts of variation in urban sprawl on regional NPSs were qualified. The results indicated that the urbanization process showed different influences on pollutants, while COD and TN were identified as key NPS pollutants. Residential areas contributed more NPS pollutants than did roads, which played a tremendous role in the control of urban NPS. The results also suggested in part that the impact of urban sprawl on the variation of COD decreased while TN increased in Beijing during the study period. These results would provide insight into the impacts of urban sprawl on NPS variation over a long period, as well as the reference for reasonable urban planning directives.

  18. Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences.

    Science.gov (United States)

    Ge, Baozhu; Wang, Zifa; Lin, Weili; Xu, Xiaobin; Li, Jie; Ji, Dongshen; Ma, Zhiqiang

    2018-03-01

    High concentrations of the fine particles (PM 2.5 ) are frequently observed during all seasons over the North China Plain (NCP) region in recent years. In NCP, the contributions of regional transports to certain area, e.g. Beijing city, are often discussed and estimated by models when considering an effective air pollution controlling strategy. In this study, we selected three sites from southwest to northeast in NCP, in which the concentrations of air pollutants displayed a multi-step decreasing trend in space. An approach based on the measurement results at these sites has been developed to calculate the relative contributions of the minimal local emission (MinLEC) and the maximum regional transport (MaxRTC) to the air pollutants (e.g., SO 2 , NO 2 , CO, PM 2.5 ) in Beijing. The minimal influence of local emission is estimated by the difference of the air pollutants' concentrations between urban and rural areas under the assumption of a similar influence of regional transport. Therefore, it's convenient to estimate the contributions of local emission from regional transport based on the selective measurement results instead of the complex numerical model simulation. For the whole year of 2013, the averaged contributions of MinLEC (MaxRTC) for NO 2 , SO 2 , PM 2.5 and CO are 61.7% (30.7%), 46.6% (48%), 52.1% (40.2%) and 35.8% (45.5%), respectively. The diurnal variation of MaxRTC for SO 2 , PM 2.5 and CO shows an increased pattern during the afternoon and reached a peak (more than 50%) around 18:00, which indicates that the regional transport is the important role for the daytime air pollution in Beijing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quantification of the sources of long-range transport of PM2.5 pollution in the Ordos region, Inner Mongolia, China

    International Nuclear Information System (INIS)

    Khuzestani, Reza Bashiri; Schauer, James J.; Wei, Yongjie; Zhang, Lulu; Cai, Tianqi; Zhang, Yang; Zhang, Yuanxun

    2017-01-01

    The Ordos region of Inner Mongolia is rapidly developing and suffers from poor air quality and unhealthy levels of fine particulate matter. PM 2.5 concentrations in the Ordos region were found to exceed 75 μg/m 3 on average, annually, with peak pollution days in excess of 350 μg/m 3 , but local air pollution emissions from surrounding sources are not sufficient to drive pollution levels to these concentrations. The current study was designed to quantify sources of PM 2.5 and assess the local source contributions and effects of regional transport on local pollution. The results show that the Ordos region is primarily impacted by regional long-range transport of pollutants from anthropogenic sources located outside of the Inner Mongolia in Shanxi province areas but is also largely affected by regional dust transported from the deserts located in western Inner Mongolia. The analysis proved that approximately 77% of PM 2.5 mass is transported long-range from the sites exterior to the study area and contributes 59.32 μg/m 3 on average, annually, while the local sources contribute 17.41 μg/m 3 (23%) on annual average to the PM 2.5 mass in the study area. High spatial correlation coefficients (R 2  > 0.6) were observed for most of the factors pointing to the transport of external emissions into the area. Spatial correlation analysis, bivariate polar plots and hybrid trajectory models for industrial and secondary inorganic factors provide evidence for the impact of long-range transport from Shanxi province areas. In addition, the deserts in western Inner Mongolia were found to be the source regions for dust. Finally, our analysis shows that the source of oil combustion and mobile factors are impacted by local sources in the Ordos region; however, some regional impacts from other regions were also observed for mobile source in the area. - Dominance of the regional long-range transport of PM 2.5 sources in the Ordos region. Around 77% of PM 2.5 mass is transported

  20. Risk assessment of water pollution sources based on an integrated k-means clustering and set pair analysis method in the region of Shiyan, China.

    Science.gov (United States)

    Li, Chunhui; Sun, Lian; Jia, Junxiang; Cai, Yanpeng; Wang, Xuan

    2016-07-01

    Source water areas are facing many potential water pollution risks. Risk assessment is an effective method to evaluate such risks. In this paper an integrated model based on k-means clustering analysis and set pair analysis was established aiming at evaluating the risks associated with water pollution in source water areas, in which the weights of indicators were determined through the entropy weight method. Then the proposed model was applied to assess water pollution risks in the region of Shiyan in which China's key source water area Danjiangkou Reservoir for the water source of the middle route of South-to-North Water Diversion Project is located. The results showed that eleven sources with relative high risk value were identified. At the regional scale, Shiyan City and Danjiangkou City would have a high risk value in term of the industrial discharge. Comparatively, Danjiangkou City and Yunxian County would have a high risk value in terms of agricultural pollution. Overall, the risk values of north regions close to the main stream and reservoir of the region of Shiyan were higher than that in the south. The results of risk level indicated that five sources were in lower risk level (i.e., level II), two in moderate risk level (i.e., level III), one in higher risk level (i.e., level IV) and three in highest risk level (i.e., level V). Also risks of industrial discharge are higher than that of the agricultural sector. It is thus essential to manage the pillar industry of the region of Shiyan and certain agricultural companies in the vicinity of the reservoir to reduce water pollution risks of source water areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Simulation of West African air pollution during the DACCIWA experiment with the GEOS-Chem West African regional model.

    Science.gov (United States)

    Morris, Eleanor; Evans, Mathew

    2017-04-01

    Pollutant emissions from West African cities are forecast to increase rapidly in future years because of extensive economic and population growth, together with poorly regulated industrialisation and urbanisation. Observational constraints in this region are few, leading to poor understanding of present-day air pollution in this region. To increase our understanding of the processes controlling air pollutants over the region, airborne observations were made from three research aircraft based out of Lomé, Togo during the DACCIWA field campaign in June-July 2016. A new 0.25x0.3125 degree West Africa regional version of the GEOS-Chem offline chemical transport model has also been developed to explore the processes controlling pollutants over the region. We evaluate the model using the aircraft data and focus on primary (CO, SO2, NOx, VOCs) and secondary pollutants (O3, aerosol). We find significant differences between the model and the measurements for certain primary compounds which is indicative of significant uncertainties in the base (EDGAR) emissions. For CO (a general tracer of pollution) we evaluate the role of different emissions sources (transport, low temperature combustion, power generation) in determining its concentration in the region. We conclude that the leading cause of uncertainty in our simulation is associated with the emissions datasets and explore the impact of using differing datasets.

  2. Air pollution and forest ecosystems: a regional to global perspective

    International Nuclear Information System (INIS)

    Taylor, G.E.; Johnson, D.W.; Andersen, C.P.

    1994-01-01

    Changes in the atmospheric concentrations of a number of air pollutants over the last century are hallmarks of the magnitude and extent of human impact on the environment. Some of these changes are important to ecologists because many pollutants, acting singly or in combination, affect ecological systems in general and forests in particular. The greatest concern lies with chronic levels of tropospheric ozone, cumulative deposition of hydrogen ion, nitrogen, and sulfur via wet and dry processes, a select number of airborne chemicals (e.g., mercury) that tend to bio accumulate in continental landscapes, and ultraviolet—B radiation through the loss of stratospheric ozone. Because the atmospheric residence time of most pollutants of concern to ecologists is measured on time frames extending from a few weeks to decades, pollutant distribution and effects are regional to global in dimension. We present evidence that ambient levels of some air pollutants in North America are affecting managed and unmanaged forests, and that the two most important pollutants are tropospheric ozone and chronic nitrogen loading. Further evidence indicates that while concentrations of some air pollutants have been declining over the last decade in North America, others are expected to remain unchanged or increase, including tropospheric ozone. We conclude that air pollution is affecting many North American forests and some remote forests around the globe. In the immediate future, the concern for air pollution effects on forests and associated natural resources will broaden to include interactions with changes in climate and pollution effects in the world's developing countries. There has been a rapid evolution in air pollution studies in ecology, shifting away from the agricultural paradigm of single—factor experimentation toward new methodologies that are ecologically and multidisciplinarily based. This shift has been promoted by the recognition that air pollution is one of several

  3. Mapping Social Vulnerability to Air Pollution: A Case Study of the Yangtze River Delta Region, China

    Directory of Open Access Journals (Sweden)

    Yi Ge

    2017-01-01

    Full Text Available Many frequent and severe air pollution incidents have emerged across the vast parts of China recently. The identification of factors and mapping social vulnerability has become extremely necessary for environmental management and sustainable development. However, studies associating social vulnerability with air pollution remain sparse. With reference to research achievements of social vulnerability, this study made a new trial regarding social vulnerability assessment to air pollution. With the projection pursuit cluster (PPC model, the top three factors contributing to social vulnerability index (SVI were discovered and SVI and SVI dimensions (susceptibility, exposure, and adaptability were evaluated. Results revealed that adaptability values are higher than susceptibility and exposure values. SVI is in a poor condition as, for the whole region, most values belong to the high-medium level. High SVI values mainly appear in the northern and the southern ends of study area. SVI in Shanghai is lower than in Jiangsu and Zhejiang provinces. On the scale of prefecture-level city, it can be found that the low-value centers of SVI always occurred in urban core areas. The spatial variation and inequality in social vulnerability provide policy-makers a scientific basis for air pollution prevention and sustainable management.

  4. Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution.

    Science.gov (United States)

    Li, Hui; Ma, Yongliang; Duan, Fengkui; He, Kebin; Zhu, Lidan; Huang, Tao; Kimoto, Takashi; Ma, Xiaoxuan; Ma, Tao; Xu, Lili; Xu, Beiyao; Yang, Shuo; Ye, Siqi; Sun, Zhenli; An, Jiutao; Zhang, Zhaolu

    2017-10-01

    Heavy haze pollution occurs frequently in northern China, most critically in the Beijing-Tianjin-Hebei area (BTH). Zibo, an industrial city located in Shandong province, is often listed as one of the top ten most polluted cities in China, particularly in winter. However, no studies of haze in Zibo have been conducted, which limits the understanding of the source and formation of haze pollution in this area, as well as mutual effects with the BTH area. We carried out online and continuous integrated field observation of particulate matter in winter, from 11 to 25 January 2015. SO 4 2- , NO 3 - , and NH 4 + (SIA) and organics were the main constituents of PM 2.5 , contributing 59.4% and 33.6%, respectively. With the increasing severity of pollution, the contribution of SIA increased while that of organics decreased. Meteorological conditions play an important role in haze formation; high relative humidity (RH) and low wind speed increased both the accumulation of pollutants and the secondary transition from gas precursors (gas-particle phase partitioning). Since RH and the presence of O 3 can indicate heterogeneous and photochemistry processes, respectively, we carried out correlation analysis and linear regression to identify their relative importance to the three main secondary species (sulfate, nitrate, and secondary organic carbon (SOC)). We found that the impact of RH is in the order of SO 4 2-  > NO 3 -  > SOC, while the impact of O 3 is reversed, in the order of SOC > NO 3 -  > SO 4 2- , indicating different effect of these factors on the secondary formation of main species in winter. Cluster analysis of backward trajectories showed that, during the observation period, six directional sources of air masses were identified, and more than 90% came from highly industrialized areas, indicating that regional transport from industrialized areas aggravates the haze pollution in Zibo. Inter-regional joint prevention and control is necessary to prevent further

  5. Dynamics of China's regional development and pollution : an investigation into the Environmental Kuznets Curve

    NARCIS (Netherlands)

    Groot, de H.L.F.; Withagen, C.A.A.M.; Minliang, Z.

    2001-01-01

    This paper addresses the existence of an Environmental Kuznets Curve for China, using a sample of thirty regions, covering the period 1982–1997. The types of pollution included are wastewater, waste gas and solid waste. We consider the development of the sources of pollution in a pooled

  6. [Monitoring of the chemical composition of snow cover pollution in the Moscow region].

    Science.gov (United States)

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2014-01-01

    Monitoring of snow cover pollution as an indicator of ambient air pollution in 20 districts in the Moscow region during 2009-2013 was performed. The identification with a quantitative assessment of a wide array of organic compounds and the control of the main physical and chemical and inorganic indices of snow water pollution were carried out. More than 60 organic substances for most of which there are no the hygienic standards were established. The assessment of pollution levels of basic inorganic indices was given by means of the comparing them with the average values in the snow cover in the European territory of Russia and natural content in areas not been exposed to human impact.

  7. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune

    Science.gov (United States)

    Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George

    2018-01-01

    Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or ;airsheds,; for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM10 anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM10 increases by 16.34 μg m-3, visibility decreases by 0.155 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM2.5 in the 2013 post-monsoon burning season, which coincided

  8. Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress, Challenges and Opportunities

    Science.gov (United States)

    Wang, Li; Zhang, Fengying; Pilot, Eva; Yu, Jie; Holdaway, Jennifer; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Vardoulakis, Sotiris; Krafft, Thomas

    2018-01-01

    Due to rapid urbanization, industrialization and motorization, a large number of Chinese cities are affected by heavy air pollution. In order to explore progress, remaining challenges, and sustainability of air pollution control in the Beijing-Tianjin-Hebei (BTH) region after 2013, a mixed method analysis was undertaken. The quantitative analysis comprised an overview of air quality management in the BTH region. Semi-structured expert interviews were conducted with 12 stakeholders from various levels of government and research institutions who played substantial roles either in decision-making or in research and advising on air pollution control in the BTH region. The results indicated that with the stringent air pollution control policies, the air quality in BTH meets the targets of the Air Pollution Prevention and Control Action Plan. However, improvements vary across the region and for different pollutants. Although implementation has been decisive and was at least in parts effectively enforced, significant challenges remained with regard to industrial and traffic emission control, and national air quality limits continued to be significantly exceeded and competing development interests remained mainly unsolved. There were also concerns about the sustainability of the current air pollution control measures especially for industries due to the top-down enforcement, and the associated large burden of social cost including unemployment and social inequity resulting industrial restructuring. Better mechanisms for ensuring cross-sectoral coordination and for improved central-local government communication were suggested. Further suggestions were provided to improve the conceptual design and effective implementation of respective air pollution control strategies in BTH. Our study highlights some of the major hurdles that need to be addressed to succeed with a comprehensive air pollution control management for the Chinese mega-urban agglomerations. PMID:29425189

  9. Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress, Challenges and Opportunities.

    Science.gov (United States)

    Wang, Li; Zhang, Fengying; Pilot, Eva; Yu, Jie; Nie, Chengjing; Holdaway, Jennifer; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Vardoulakis, Sotiris; Krafft, Thomas

    2018-02-09

    Due to rapid urbanization, industrialization and motorization, a large number of Chinese cities are affected by heavy air pollution. In order to explore progress, remaining challenges, and sustainability of air pollution control in the Beijing-Tianjin-Hebei (BTH) region after 2013, a mixed method analysis was undertaken. The quantitative analysis comprised an overview of air quality management in the BTH region. Semi-structured expert interviews were conducted with 12 stakeholders from various levels of government and research institutions who played substantial roles either in decision-making or in research and advising on air pollution control in the BTH region. The results indicated that with the stringent air pollution control policies, the air quality in BTH meets the targets of the Air Pollution Prevention and Control Action Plan. However, improvements vary across the region and for different pollutants. Although implementation has been decisive and was at least in parts effectively enforced, significant challenges remained with regard to industrial and traffic emission control, and national air quality limits continued to be significantly exceeded and competing development interests remained mainly unsolved. There were also concerns about the sustainability of the current air pollution control measures especially for industries due to the top-down enforcement, and the associated large burden of social cost including unemployment and social inequity resulting industrial restructuring. Better mechanisms for ensuring cross-sectoral coordination and for improved central-local government communication were suggested. Further suggestions were provided to improve the conceptual design and effective implementation of respective air pollution control strategies in BTH. Our study highlights some of the major hurdles that need to be addressed to succeed with a comprehensive air pollution control management for the Chinese mega-urban agglomerations.

  10. Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH Region: Progress, Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-02-01

    Full Text Available Due to rapid urbanization, industrialization and motorization, a large number of Chinese cities are affected by heavy air pollution. In order to explore progress, remaining challenges, and sustainability of air pollution control in the Beijing-Tianjin-Hebei (BTH region after 2013, a mixed method analysis was undertaken. The quantitative analysis comprised an overview of air quality management in the BTH region. Semi-structured expert interviews were conducted with 12 stakeholders from various levels of government and research institutions who played substantial roles either in decision-making or in research and advising on air pollution control in the BTH region. The results indicated that with the stringent air pollution control policies, the air quality in BTH meets the targets of the Air Pollution Prevention and Control Action Plan. However, improvements vary across the region and for different pollutants. Although implementation has been decisive and was at least in parts effectively enforced, significant challenges remained with regard to industrial and traffic emission control, and national air quality limits continued to be significantly exceeded and competing development interests remained mainly unsolved. There were also concerns about the sustainability of the current air pollution control measures especially for industries due to the top-down enforcement, and the associated large burden of social cost including unemployment and social inequity resulting industrial restructuring. Better mechanisms for ensuring cross-sectoral coordination and for improved central-local government communication were suggested. Further suggestions were provided to improve the conceptual design and effective implementation of respective air pollution control strategies in BTH. Our study highlights some of the major hurdles that need to be addressed to succeed with a comprehensive air pollution control management for the Chinese mega-urban agglomerations.

  11. Biochemical diagnosis of spruce trees in regions polluted by smoke

    Energy Technology Data Exchange (ETDEWEB)

    Cvrkal, H

    1959-01-01

    The material showing different degrees of damage caused by gases in smoke was sampled from 24 trees (spruces) in two smoke polluted regions - the Svatonice and Krusne Hory regions of Czechoslovakia. The essential oils were distilled out in the usual manner and chromatographed. The following terpenes were investigated: santene, ..cap alpha..-pinene, camphene, ..beta..-pinene, ..beta..-phelandrene, substance A, which could not be identified. The following relationships were determined on the basis of the compiled per cent content tables and the degree of damage caused by gases in smoke: the highest degree of damage occurs in spruce trees in whose essential oils camphene is represented in minimal amounts; smoke damages are not observed when the dipentene content is increased even at the cost of a lower camphene content; the degree of damage is also influenced to some extent by the presence of ..beta..-pinene. A higher degree of damage caused by gases in smoke presupposes a high ..beta..-pinene content in essential oils. Results suggest that the terpene changes do not occur during the damage, but are the consequence of specific species characteristics.

  12. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China.

    Science.gov (United States)

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-08-21

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  13. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    Science.gov (United States)

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

  14. Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables

    International Nuclear Information System (INIS)

    Cogliani, E.

    2001-01-01

    There are many different air pollution indexes which represent the global urban air pollution situation. The daily index studied here is also highly correlated with meteorological variables and this index is capable of identifying those variables that significantly affect the air pollution. The index is connected with attention levels of NO 2 , CO and O 3 concentrations. The attention levels are fixed by a law proposed by the Italian Ministries of Health and Environment. The relation of that index with some meteorological variables is analysed by the linear multiple partial correlation statistical method. Florence, Milan and Vicence were selected to show the correlation among the air pollution index and the daily thermic excursion, the previous day's air pollution index and the wind speed. During the January-March period the correlation coefficient reaches 0.85 at Milan. The deterministic methods of forecasting air pollution concentrations show very high evaluation errors and are applied on limited areas around the observation stations, as opposed to the whole urban areas. The global air pollution, instead of the concentrations at specific observation stations, allows the evaluation of the level of the sanitary risk regarding the whole urban population. (Author)

  15. Comprehensive assessment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Saradhi, I.V.; Raghunath, R.; Pandit, G.G.; Puranik, V.D.

    2006-04-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually found their way into various environmental compartments. These pollutants get distributed among soil, water bodies, air and if left unattended can cause serious health risk to all exposed ecosystem components including human beings. These compounds may produce immediate toxicity to ecosystems or exhibit long term effects such as mutagenicity, carcinogenicity or biomagnify (concentrations of pollutant increase per unit body weight) in higher trophic organism of the food chain. Thus regular monitoring of these toxic chemicals in all the environmental matrices is unquestionably essential for reclaiming our natural resources. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report attempt has been made to compare the data on various toxic chemical pollutants that are being monitored regularly at Trombay site and their levels are compared with existing regulations. For monitoring, methodologies have been standardized for characterization of toxic chemical pollutants using different analytical techniques. Regular sample collection from different environmental matrices has been done. Sample analysis has been carried out using different analytical instruments such as high performance liquid chromatograph, ion chromatograph, gas chromatograph, atomic absorption spectrophotometer, and differential pulse anodic stripping voltammetry. Major portion of the study covers Air quality monitoring of toxic chemical pollutants, as the other

  16. Air pollution, greenhouse gases and climate change: Global and regional perspectives

    Science.gov (United States)

    Ramanathan, V.; Feng, Y.

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC

  17. Particulate matter pollution from aviation-related activity at a small airport of the Aegean Sea Insular Region.

    Science.gov (United States)

    Psanis, C; Triantafyllou, E; Giamarelou, M; Manousakas, M; Eleftheriadis, K; Biskos, G

    2017-10-15

    The unprecedented growth in aviation during the last years has resulted in a notable increase of local air pollution related to airports. The impacts of aviation on air quality can be extremely high particularly around airports serving remote insular regions with pristine atmospheric environments. Here we report measurements that show how the atmospheric aerosol is affected by the activity at a small airport in a remote region. More specifically, we provide measurements performed at the airport of Mytilene, Greece, a regional yet international airport that serves the entire island of Lesvos; the third largest island of the country. The measurements show that the activity during landing, taxiing and take-off of the aircrafts accounted for up to a 10-fold increase in particulate matter (PM) mass concentration in the vicinity of the airport. The number concentration of particles having diameters from 10 to 500nm also increased from ca. 4×10 2 to 8×10 5 particlescm -3 , while the mean particle diameter decreased to 20nm when aircrafts were present at the airport. Elemental analysis on particle samples collected simultaneously at the airport and at a remote site 3km away, showed that the former were significantly influenced by combustion sources, and specifically from the engines of the aircrafts. Our results show that despite their small size, local airports serving remote insular regions should be considered as important air pollution hotspots, raising concerns for the exposure of the people working and leaving in their vicinities to hazardous pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Regions of pollution with particulate matter in Poland

    Directory of Open Access Journals (Sweden)

    Rawicki Kacper

    2018-01-01

    Full Text Available The study presents the temporal and spatial variability of particulate matter concentration in Poland in the calendar winter season (December-February. The basis for the study were the hourly and daily values of particulate matter PM10 concentration from the period 2005/06 – 2014/15, obtained from 33 air pollution monitoring stations. In Poland, the obligation to monitor the concentration of the finer fraction of particles smaller than 2.5µm in aerodynamic diameter was introduced only in 2010. Consequently, data on PM2.5 concentration refer to a shorter period, i.e. 2009/10 – 2014/15, and were obtained from 23 stations. Using the cluster analysis (k-means method, three regions of comparable variability of particulate matter concentration were delineated. The largest region, i.e. Region I, comprises the northern and eastern central area of Poland, and its southern boundary is along the line Gorzów Wlkp-Bydgoszcz-Konin-Łódź-Kielce-Lublin. Markedly smaller Region II is located to the south of Region I. By far the smallest area was designated to Region III which covers the south west area of Poland. The delineated regions show a marked variability in terms of mean concentration of both PM fractions in winter (PM10: region I - 33 µg·m-3, region II - 55 µg·m-3, region III - 83 µg·m-3; PM2,5: region I - 35 µg·m-3, region II - 50 µg·m-3, region III - 60 µg·m-3 and, in the case of PM10, the frequency of excessive daily limit value.

  19. Regions of pollution with particulate matter in Poland

    Science.gov (United States)

    Rawicki, Kacper; Czarnecka, Małgorzata; Nidzgorska-Lencewicz, Jadwiga

    2018-01-01

    The study presents the temporal and spatial variability of particulate matter concentration in Poland in the calendar winter season (December-February). The basis for the study were the hourly and daily values of particulate matter PM10 concentration from the period 2005/06 - 2014/15, obtained from 33 air pollution monitoring stations. In Poland, the obligation to monitor the concentration of the finer fraction of particles smaller than 2.5µm in aerodynamic diameter was introduced only in 2010. Consequently, data on PM2.5 concentration refer to a shorter period, i.e. 2009/10 - 2014/15, and were obtained from 23 stations. Using the cluster analysis (k-means method), three regions of comparable variability of particulate matter concentration were delineated. The largest region, i.e. Region I, comprises the northern and eastern central area of Poland, and its southern boundary is along the line Gorzów Wlkp-Bydgoszcz-Konin-Łódź-Kielce-Lublin. Markedly smaller Region II is located to the south of Region I. By far the smallest area was designated to Region III which covers the south west area of Poland. The delineated regions show a marked variability in terms of mean concentration of both PM fractions in winter (PM10: region I - 33 µg·m-3, region II - 55 µg·m-3, region III - 83 µg·m-3; PM2,5: region I - 35 µg·m-3, region II - 50 µg·m-3, region III - 60 µg·m-3) and, in the case of PM10, the frequency of excessive daily limit value.

  20. How serious are health impacts in one of the most polluted regions of Central Europe?

    Science.gov (United States)

    Jiřík, Vítězslav; Dalecká, Andrea; Vašendová, Veronika; Janoutová, Jana; Janout, Vladimír

    2017-03-01

    The long-term exposure to pollutants in ambient air is associated with higher mortality and occurrence of respiratory and cardiopulmonary diseases. The longitudinal cross-section study focuses on the associations between long-term exposures to carcinogenic and non-carcinogenic pollutants and the prevalence and incidence of such specific diseases including immunodeficiencies. The data on health status from industrial and non-industrial regions were obtained from health documentation for a 5-year period from 2007 to 2011 and represent the whole population living in polluted (1,249,323 inhabitants) and unpolluted (631,387 inhabitants) regions. The data on concentrations of PM10, PM2,5, NO2, SO2, benzene and benzo[a]pyrene were collected. The concentrations of pollutants were estimated from measured data by using dispersion models. The average population-weighted concentration of pollutants, which is representative for a defined geographic area and time period from 2007 to 2011, was calculated from the obtained data. The logistic regression and the Mantel-Haenszel χ2 test were used to determine the odds ratios (OR) and p-values for a linear trend. Moreover, the relative risks of mortality and morbidity to specific diseases were calculated according to theoretical dose-response association published by World Health Organization (WHO). The probability of incidence of chronic obstructive pulmonary disease and bronchial asthma is statistically significantly higher in the population living in the polluted region compared to the population living in the unpolluted region. The association between long-term exposure to pollutants and the prevalence of immunodeficiency with predominantly antibody defects (D80) was confirmed. The strongest association was found for exposures to particulate matter (PM2,5). The prevalence of immunodeficiency with predominantly antibody defects was also observed in both regions depending on the age of the population and statistically significant

  1. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI in the Multi-Provincial Boundary Region of the Taihu Basin, China

    Directory of Open Access Journals (Sweden)

    Hong Yao

    2015-08-01

    Full Text Available Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  2. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China

    Science.gov (United States)

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-01-01

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution. PMID:26308032

  3. The dynamics of China's regional development and pollution: an investigation into the environmental Kuznets curve

    NARCIS (Netherlands)

    Withagen, C.A.A.M.; de Groot, H.L.F.; Minliang, Z.

    2004-01-01

    This paper addresses the existence of an Environmental Kuznets Curve for China, using a sample of 30 regions, covering the period 1982-1997. The types of pollution included are wastewater, waste gas, and solid waste. We consider the development of the sources of pollution in a pooled cross-section

  4. The dynamics of China's regional development and pollution: an investigation into the Environmental Kuznets Curve

    NARCIS (Netherlands)

    Groot, de H.L.F.; Withagen, C.A.A.M.; Minliang, Z.

    2004-01-01

    This paper addresses the existence of an Environmental Kuznets Curve for China, using a sample of 30 regions, covering the period 1982–1997. The types of pollution included are wastewater, waste gas, and solid waste. We consider the development of the sources of pollution in a pooled cross-section

  5. Computer mapping as an aid in air-pollution studies: Montreal region study

    Energy Technology Data Exchange (ETDEWEB)

    Granger, J M

    1972-01-01

    Through the use of computer-mapping programs, an operational technique has been designed which allows an almost-instant appraisal of the intensity of atmospheric pollution in an urban region on the basis of epiphytic sensitivity. The epiphytes considered are essentially lichens and mosses growing on trees. This study was applied to the Montreal region, with 349 samplings statiions distributed nearly uniformly. Computer graphics of the findings are included in the appendix.

  6. The Siberian High and Arctic Sea Ice: Long-term Climate Change and Impacts on Air Pollution during Wintertime in China

    Science.gov (United States)

    Long, X.; Zhao, S.; Feng, T.; Tie, X.; Li, G.

    2017-12-01

    China has undergone severe air pollution during wintertime as national industrialization and urbanization have been increasingly developed in the past three decades. It has been suggested that high emission and adverse weather patterns contribute to wintertime air pollution. Recent studies propose that climate change and Arctic sea ice loss likely lead to extreme haze events in winter. Here we use two reanalysis and observational datasets to present the trends of Siberian High (SH) intensity over Eurasia, and Arctic temperature and sea ice. The results show the Arctic region of Asia is becoming warming accompanied by a rapid decline of sea ice while Eurasia is cooling and SH intensity is gradually enhancing. Wind patterns induced by these changes cause straight westerly prevailing over Eurasia at the year of weak SH while strengthened northerly winds at the year of strong SH. Therefore, we utilize regional dynamical and chemical WRF-Chem model to determine the impact of SH intensity difference on wintertime air pollution in China. As a result, enhancing northerly winds at the year of strong SH rapidly dilute and transport air pollution, causing a decline of 50 - 400 µg m-3 PM2.5 concentrations relative to that at the year of weak SH. We also assess the impact of emission reduction to half the current level on air pollution. The results show that emission reduction by 50% has an equivalent impact as the variability of SH intensity. This suggests that climate change over Eurasia has largely offset the negative impact of emission on air pollution and it is urgently needed to take measures to mitigate air pollution. In view of current high emission scenario in China, it will be a long way to effectively mitigate, or ultimately prevent wintertime air pollution.

  7. Measurements of Background and Polluted Air in Rural Regions of Rwanda

    Science.gov (United States)

    DeWitt, L.; Gasore, J.; Prinn, R. G.; Potter, K. E.

    2015-12-01

    Rwanda, a mountainous nation in Equatorial East Africa, is one of the least-urbanized nations in Africa. The majority of the population are subsistence farmers, and major sources of air pollution (e.g., particulates, greenhouse gases) in Rwanda include agricultural burning and cookstoves in rural areas, and older diesel vehicles and mototaxis in cities. Currently, initiatives to supply efficient cookstoves, development of cleaner-burning fuel from recycled agricultural waste, and new regulations on vehicle emissions and importation are underway. These initiatives seek to help Rwanda grow in the greenest way possible, to mitigate negative health and climate effects of development; however, little ambient data on air quality is available in different regions of Rwanda for a baseline study before and benefits study after these initiatives. The Rwanda Climate Observatory, located on the summit of Mt. Mugogo (-1.5833°, 29.5667°), a 2.5 km peak, has recently begun measurements of black carbon (BC) aerosol concentration and O3 and CO gas concentrations. BC measurements were performed with a 7-wavelength Magee Scientific aethalometer and the aethalometer model was used to calculate the influence of fossil fuel and biomass burning sources on BC concentrations. CO and O3 measurements were used in conjunction with BC aerosol data, and HYSPLIT back trajectories were also used to help discriminate between periods of heavy burning and periods of regional influence from traffic and general cookfire emissions. Since Mt. Mugogo is in a rural area, this station captures a snapshot of regional background pollution away from high anthropogenic influence. The nearby households and fields also allow case studies of household and crop burning during localized events and help quanitfy potential daily exposure to particulates and climate-forcing emissions in remote areas of this developing country. We will present time series of the BC, O3, CO and insolation measurements at Mt. Mugogo

  8. Characteristics of air pollutant dispersion around a high-rise building

    International Nuclear Information System (INIS)

    Zhang, Y.; Kwok, K.C.S.; Liu, X.-P.; Niu, J.-L.

    2015-01-01

    A numerical wind tunnel model was proposed. The computed results of the pollutant diffusion around a typical Hong Kong high-rise building model (at a linear scale of 1:30), were found to show a similar trend to the outcomes of self-conducted experimental measurements that the pathways of pollutant migration for windward and leeward pollutant emission are different. For the case with windward pollutant emission at the 3rd floor within a re-entry, the pollutant migrated downwards due to the downwash created by the wind. In contrast, for the case with leeward pollution emission, dispersion is dominated by intense turbulent mixing in the near wake and characterized by the upward migration of the pollutant in the leeward re-entry. The simulated results of haze-fog (HF) studies confirm that the pathway of pollutant migration is dominated by wind–structure interaction and buoyancy effect only plays a minor role in the dispersion process. - Highlights: • A self-developed numerical wind tunnel model was proposed. • Characteristics of air pollutant dispersion with windward/leeward emission were discussed. • Wind–structure interaction controls the air pollutant dispersion around the building. - The different characteristics of air pollutant dispersion around a high-rise building, for both cases of a dispersion source in either the windward face or leeward face, are dominated by wind–structure interaction, with buoyancy effect playing only a minor role

  9. A cohort study with children living in an air-polluted region--a model for public health.

    Science.gov (United States)

    Marth, E; Haselbacher-Marko, S; Schaffler, K

    1996-11-01

    Regions with heavy industry are in many ways regions of crisis. The health of the population is primarily affected by the different air pollutants. Dust, with all its organic (dioxins and furans) and inorganic (heavy metals) contents, makes up the greatest part of the air-borne pollutants. The influence on health of environmental pollution was ascertained through the determination of different parameters (functional methods and determination of physiological parameters). This influence could be observed in children over a period of 8 years with regular investigations (e.g. determination of pulmonary function by spirometry and immunological parameters). Besides this exogenous load the persons are exposed to other environmental stresses-shift work, unemployment, alcoholism and divorce-which have a particular influence on the attitude and the upbringing of the children. Sixty per cent of the children in this polluted region ate no breakfast in the morning. Consequently it could be shown that the blood sugar in 70% of the children was below 70 mg/dl. Additionally, a relatively high amount of COHb (2.5% to 3%), and an increased concentration of serum IgE (47% of children with a concentration over 100 IU/ml), could be detected. Through a change in the environmental awareness of the children and their consequent influence, an effort should be made to achieve a positive effect on the health of the whole population. The children were given a chance to participate in various sports for the whole day during a week in the mountains at 1200 m. The teachers exercised with the children for at least 8 h per day. Besides gymnastics the program consisted of downhill and cross-country skiing. In addition, the children were offered a balanced and natural diet and they were instructed accordingly. This week of activity led to a clear reduction of the concentration of COHb, but to a far less clear improvement in the concentration of blood sugar and the pulmonary function.

  10. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China

    Directory of Open Access Journals (Sweden)

    Wei-Kang Zhang

    2015-08-01

    Full Text Available Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2. The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily.

  11. Ground water pollution due to aquaculture in east coast region of ...

    African Journals Online (AJOL)

    Abstract. Ground water quality parameters were studied for pollution due to aquaculture in the east coast region of district Andhrapradesh, India. Over a period of two years, 46 groundwater samples were collected for analyses. The results showed that the alkalinity ranged from 120 - 482 mg/L, and pH ranged from 7.1 to 8.6.

  12. Spatial-temporal Variations and Source Apportionment of typical Heavy Metals in Beijing-Tianjin-Hebei (BTH) region of China Based on Localized Air Pollutants Emission Inventory and WRF-CMAQ modelling

    Science.gov (United States)

    Tian, H.; Liu, S.; Zhu, C.; Liu, H.; Wu, B.

    2017-12-01

    Abstract: Anthropogenic atmospheric emissions of air pollutants have caused worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available emission factors for varied source categories, we established the comprehensive atmospheric emission inventories of hazardous air pollutants including 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn) from primary anthropogenic activities in Beijing-Tianjin-Hebei (BTH) region of China for the period of 2012 for the first time. The annual emissions of these pollutants were allocated at a high spatial resolution of 9km × 9km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Notably, the total heavy metal emissions from this region represented about 10.9% of the Chinese national total emissions. The areas with high emissions of heavy metals were mainly concentrated in Tangshan, Shijiazhuang, Handan and Tianjin. Further, WRF-CMAQ modeling system were applied to simulate the regional concentration of heavy metals to explore their spatial-temporal variations, and the source apportionment of these heavy metals in BTH region was performed using the Brute-Force method. Finally, integrated countermeasures were proposed to minimize the final air pollutants discharge on account of the current and future demand of energy-saving and pollution reduction in China. Keywords: heavy metals; particulate matter; emission inventory; CMAQ model; source apportionment Acknowledgment. This work was funded by the National Natural Science Foundation of China (21377012 and 21177012) and the Trail Special Program of Research on the Cause and Control Technology of Air Pollution under the National Key Research and Development Plan of China (2016YFC0201501).

  13. Soil and water pollution in a banana production region in tropical Mexico

    NARCIS (Netherlands)

    Geissen, V.; Que Ramos, F.; Bastidas-Bastidas, de P.J.; Díaz-González, G.; Bello-Mendoza, R.; Huerta-Lwanga, E.; Ruiz-Suárez, L.E.

    2010-01-01

    The effects of abundant Mancozeb (Mn, Zn— bisdithiocarbamate) applications (2.5 kg ha-1week-1 for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the

  14. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries

    International Nuclear Information System (INIS)

    Thevenon, Florian; Graham, Neil D.; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-01-01

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750–1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (> 100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Highlights: ► Natural sources dominated trace element

  15. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    Science.gov (United States)

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. [Adsorption Capacity of the Air Particulate Matter in Urban Landscape Plants in Different Polluted Regions of Beijing].

    Science.gov (United States)

    Zhang, Wei-kang; Wang, Bing; Niu, Xiang

    2015-07-01

    Urban landscape plants, as one of the important factors of the urban ecosystem, play an important role in stagnating airborne particulates and purifying urban atmospheric environment. In this article, six kinds of common garden plants were studied, and aerosol generator (QRJZFSQ-I) was used to measure the ability of their leaves to stagnate atmospheric particulates (TSP and PM2.5) in different polluted regions. Meanwhile, environmental scanning electron microscope was used to observe changes in the leaf structure of the tested tree species. The results showed: (1)Among the tested tree species, the ability of coniferous species to stagnate atmospheric particulates was higher than that of broad-leaved species per unit leaf area. Pinus tabuliformis stagnated the highest volume of (3. 89± 0. 026) µg . m-2, followed by Pinus bungeana of (2. 82 ± 0. 392) µg . cm-2, and Populus tomentosa stagnated the minimum of (2. 00 ± 0. 118) µg . cm-2; (2) Through observing the leaf microstructure morphology, coniferous species were found to have tightly packed stomas, stoma density and surface roughness higher than those of broad-leaved species, and they could also secrete oil; (3) In different polluted regions, the leaves of the same tree species showed significant difference in stagnating TSP. Per unit leaf area, the tree species leaves situated around the 5th Ring Road had higher ability to absorb TSP than the tree species leaves at Botanical Garden, while their abilities to absorb PM2.5 showed no significant difference; (4) In different polluted regions, significantly adaptive changes were found in leaf structure. Comparing to the region with light pollution, the outer epidermal cells of the plant leaves in region with heavy pollution shrank, and the roughness of the leaf skin textures as well as the stomatal frequency and villous length increased. In spite of the significant changes in plant leaves exposed to the heavy pollution, these plants could still maintain normal

  17. International Trade, Pollution Accumulation and Sustainable Growth: A VAR Estimation from the Pearl River Delta Region

    Science.gov (United States)

    Zuo, Hui; Tian, Lu

    2018-03-01

    In order to investigate international trade influence in the regional environment. This paper constructs a vector auto-regression (VAR) model and estimates the equations with the environment and trade data of the Pearl River Delta Region. The major mechanisms to the lag are discussed and the fit simulation of the environmental change by the international impulse is given. The result shows that impulse of pollution-intensive export deteriorates the environment continuously and impulse of such import improves it. These effects on the environment are insignificantly correlated with contemporary regional income but significantly correlative to early-stage trade feature. To a typical trade-dependent economy, both export and import have hysteresis influence in the regional environment. The lagged impulse will change environmental development in the turning point, maximal pollution level and convergence.

  18. Contrasting regional versus global radiative forcing by megacity pollution emissions

    Science.gov (United States)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  19. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming

    2017-10-01

    The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary

  20. Air pollution and its control in China

    Institute of Scientific and Technical Information of China (English)

    HAO Jiming; HE Kebin; DUAN Lei; LI Junhua; WANG Litao

    2007-01-01

    The rapid growth of China's economy has led to severe air pollution characterized by acid rain,severe pollution in cities,and regional air pollution.High concentrations are found for various pollutants such as sulfur dioxides(SO2),nitrogen oxides(NOx),and fine particulates.Great efforts have thus been undertaken for the control of air pollution in the country.This paper discusses the development and application of appropriate technologies for reducing the major pollutants produced by coal and vehicles,and investi gates air quality modeling as an important support for policy-making.

  1. Assessment of Non-Point Source Total Phosphorus Pollution from Different Land Use and Soil Types in a Mid-High Latitude Region of China

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2016-11-01

    Full Text Available The transport characteristics of phosphorus in soil and the assessment of its environmental risk have become hot topics in the environmental and agricultural fields. The Sanjiang Plain is an important grain production base in China, and it is characterised by serious land use change caused by large-scale agricultural exploitation. Agricultural inputs and tillage management have destroyed the soil nutrient balance formed over long-term conditions. There are few studies on non-point source phosphorus pollution in the Sanjiang Plain, which is the largest swampy low plain in a mid-high-latitude region in China. Most studies have focused on the water quality of rivers in marsh areas, or the export mechanism of phosphorus from specific land uses. They were conducted using experimental methods or empirical models, and need further development towards mechanism models and the macro-scale. The question is how to find a way to couple processes in phosphorus cycling and a distributed hydrological model considering local hydrological features. In this study, we report an attempt to use a distributed phosphorus transport model to analyse non-point source total phosphorus pollution from different land uses and soil types on the Sanjiang Plain. The total phosphorus concentration generally shows an annually increasing trend in the study area. The total phosphorus load intensity is heterogeneous in different land use types and different soil types. The average total phosphorus load intensity of different land use types can be ranked in descending order from paddy field, dry land, wetlands, grassland, and forestland. The average total phosphorus load intensity of different soil types can be ranked in descending order: paddy soil, bog soil, planosol, meadow soil, black soil, and dark brown earth. The dry land and paddy fields account for the majority of total phosphorus load in the study area. This is mainly caused by extensive use of phosphate fertilizer on the

  2. Ocean Pollution as a Result of Onshore Offshore Petroleum Activities in the African Gulf of Guinea Region

    Science.gov (United States)

    Abubakar, B.

    2007-05-01

    The Gulf of Guinea region is located on the Atlantic side of Africa; the sub region has a total population of approximately 190million people. It comprises of five different countries and their territorial waters, which are as follows: Nigeria, Sao Tome & Principe, Equatorial Guinea, Gabon and Cameroon. The sub region is blessed with so many types of natural resources ranging from petroleum, Natural gas, Bitumen, Uranium Diamond and Gold to mention but a few. However the region since the last two decades started attracting the World's attention as a result of the continuous increasing discoveries of new oil fields on both its on shores and off shores. In view of this extra ordinary increasing discoveries of new oil fields in the region, the Gulf of Guinea has become a "Gold rush" to the oil companies and it has so far attracted almost all the top oil firms in the world including; Exxon Mobil, Shell, Total, Texaco, Agip, Chevron, Slumberger, Stat Oil and Conoco Phillips among many other oil giants. In the more recent time even the U.S. Marine Corp have stationed their War Ship in the territorial waters of the Gulf in the name of providing protection to the "Liquid Gold" (Petroleum) underlying the beneath of the region. OIL ACTIVITIES AND ITS ASSOCIATED PROBLEMS IN THE GULF OF GUINEA As a result of the geometrically increasing oil activities in the region ranging from Drilling, Gas flaring, Bunkering and Exploration activities, there was increase in the general pollution of the region. For example recent reports released in June, 2005 by the internationally renown nongovernmental organization on environmental pollution the Netherlands based Climate Justice programme and the Nigeria's Environmental Rights Action, Under the aegis of friends of the Earth, had it that the region is ranked top on the world's total flare with Nigeria along accounting for 16 percent of the world's total flare. Another example is the increasing cases of oil spillages leading to the

  3. Gaseous and particulate urban air pollution in the region of Vojvodina (Serbia

    Directory of Open Access Journals (Sweden)

    Malinović-Milićević Slavica B.

    2015-01-01

    Full Text Available The present study focuses on interpretations of the temporal variations and variations between urban locations of sulfur dioxide (SO2, nitrogen dioxide (NO2 and black smoke (BS during the period 2001-2008 in the Vojvodina Region of Serbia (VR_S. In this study we examined variations of pollutants concentrations during household heating and non-heating seasons and the effect of household heating, traffic, rainfall and wind speed on the air pollution levels of SO2, NO2 and BS in eight locations. The analyses showed that the annual limit values of these pollutants as recommended by the Serbian regulations and recommendations were not exceeded, unlike the daily limits. Higher SO2 concentrations during household heating season in four locations indicate the substantial impact of house­hold heating on air quality. Positive effects of the use of environmentally cleaner fuels were observed in only two locations. The growing impact of traffic on air pollution is shown by the increasing trend of NO2 during both seasons. Calm wind conditions and an absence of rainfall were found to have incremental effects on pollution levels in most locations. [Projekat Ministarstva nauke Republike Srbije, br. III 43007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation i br. III 43002: Biosensing Technolo­gies and Global System for Continuous Research and Integrated Management

  4. Development of the regional policy process for air pollution in South Asia, southern Africa and Latin America

    CSIR Research Space (South Africa)

    Hicks, WK

    2001-08-01

    Full Text Available issues in three sub-regions of three continents. Experiences gained through activities within a programme on Regional Air Pollution in Developing Countries are used to illustrate progress. The sub-regional process in South Asia developed through a series...

  5. Huguangyan Maar Lake (SE China): A solid record of atmospheric mercury pollution history in a non-remote region

    Science.gov (United States)

    Zeng, Yan; Chen, Jingan; Yang, Yongqiong; Wang, Jianxu; Zhu, Zhengjie; Li, Jian

    2017-10-01

    Mercury is a highly toxic metal that can cause harm to environment and human health. As atmospheric deposition is the main source of total Hg input to aquatic system in remote and pristine regions, almost all the studies on atmospheric Hg pollution history concentrated in these areas, while the studies in non-remote areas are much limited, especially for the long history records. In this study, Huguangyan Maar Lake, an undisturbed lake system at low altitude in China, was selected to reconstruct the atmospheric mercury pollution history. Variation patterns of TOC, Hg and non-residual Sr in the sediment core indicated that, compared to the direct atmospheric Hg deposition, the effect of either Hg scavenging from water column by algae or the catchment inputs of previously deposited Hg on the Hg accumulation in the lake sediment was limited. The sediment Hg content in Huguangyan Lake was mainly controlled by the atmospheric Hg deposition, and thus accurately reflected the atmospheric Hg pollution history. The Hga (Hg content from atmospheric deposition) in Huguangyan Lake presented a comparable variation pattern to that in remote sites. It had the same variation trend as the global atmospheric Hg before 1950 CE, which could be attributed to the Industrial Revolution. After that, it was mainly controlled by Hg emissions from Asian countries. The variation of Hga also indicated that atmospheric Hg deposition accelerated significantly since 2000 CE. This study, along with other investigations in remote sites in China, showed that the sediment Hg in Huguangyan Lake responded to the atmospheric Hg pollution more sensitively than in the alpine regions. It should be noted that, the more intensive acceleration of Hg deposition in Huguangyan Lake may imply that the South of China suffered from much more serious atmospheric Hg pollution than previous studies revealed.

  6. Light pollution: Assessment of sky glow on two dark sky regions of Portugal.

    Science.gov (United States)

    Lima, Raul Cerveira; Pinto da Cunha, José; Peixinho, Nuno

    2016-01-01

    Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day-night (bright-dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of "dark skies reserves" is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a "Starlight Tourism Destination" by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions.

  7. Biomonitoring polluted sediments in Arctic regions - possibilities and challenges using benthic foraminifera. Case studies from northern Norway

    Science.gov (United States)

    Skirbekk, Kari; Dijkstra, Noortje; Junttila, Juho; Sternal, Beata; Pedersen, Kristine Bondo; Forwick, Matthias; Carroll, JoLynn

    2016-04-01

    Biomonitoring pollution in marine environments using benthic foraminifera assemblages have proven to be a valid method for many regions. Two important reasons for their suitability are their sensitivity to changes in the environment and their rapid response time due to short life cycles. In addition, they are preserved in the sedimentary record, allowing for baseline studies of conditions prior to introduction of contaminants. Species of benthic foraminifera that appear to tolerate polluted sediments are referred to as opportunistic species. This notion is in general used for species able to dominate environments that are too stressful for most species. The high latitude setting of the northern Norwegian coastal zone experience high seasonality and, hence, largely changing conditions throughout a year: variations in water mass domination, freshwater influence, temperature and current velocity. It is possible that an environment like this is inhibited by a higher amount of opportunistic species generally thriving under high stress conditions. This might make the use of benthic foraminifera for biomonitoring more challenging, as the faunal compositions may be a result of a complex set of processes. Consequently, large datasets are necessary in order to make reliable conclusions, which in time may be used as generalized guidelines for biomonitoring in this geographical area. Here, we present preliminary results of benthic foraminiferal assemblages from two sites in Finnmark, northern Norway, which have been exposed to pollution. The main site is Repparfjorden, where the inner parts of the fjord were used as a submarine waste deposal site for mine tailings from a local copper mine during the 1970´s. Results from four marine sediment cores (10-20 cm long) containing sediments classified to be in moderate to very bad state (according to Norwegian sediment quality criteria) are presented. The contamination is seen in intervals of elevated copper content dated to the 1970

  8. Environmental pollution and kidney diseases.

    Science.gov (United States)

    Xu, Xin; Nie, Sheng; Ding, Hanying; Hou, Fan Fan

    2018-05-01

    The burden of disease and death attributable to environmental pollution is becoming a public health challenge worldwide, especially in developing countries. The kidney is vulnerable to environmental pollutants because most environmental toxins are concentrated by the kidney during filtration. Given the high mortality and morbidity of kidney disease, environmental risk factors and their effect on kidney disease need to be identified. In this Review, we highlight epidemiological evidence for the association between kidney disease and environmental pollutants, including air pollution, heavy metal pollution and other environmental risk factors. We discuss the potential biological mechanisms that link exposure to environmental pollutants to kidney damage and emphasize the contribution of environmental pollution to kidney disease. Regulatory efforts should be made to control environmental pollution and limit individual exposure to preventable or avoidable environmental risk. Population studies with accurate quantification of environmental exposure in polluted regions, particularly in developing countries, might aid our understanding of the dose-response relationship between pollutants and kidney diseases.

  9. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries

    Energy Technology Data Exchange (ETDEWEB)

    Thevenon, Florian, E-mail: Florian.Thevenon@yahoo.fr [Institute F.-A. Forel, University of Geneva, Versoix (Switzerland); Graham, Neil D. [Institute F.-A. Forel, University of Geneva, Versoix (Switzerland); Chiaradia, Massimo [Department of Mineralogy, University of Geneva, Geneva (Switzerland); Arpagaus, Philippe; Wildi, Walter; Pote, John [Institute F.-A. Forel, University of Geneva, Versoix (Switzerland)

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (> 100 {mu}g Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Highlights: Black-Right-Pointing-Pointer Natural sources

  10. Biogas from organically high polluted industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Sixt, H

    1985-06-01

    Organically high polluted waste water sets special claims for an economical purification and the process treatment. Up to now these waste waters are being purified by anaerobic processes with simultaneous biogas generation. The fourstep anaerobic degradation is influenced by a lot of important parameters. Extensive researchers in the field of anaerobic microbiology has improved the knowledge of the fundamental principles. Parallel the reactor technology is developed worldwide. In general it seems that the fixed-film-reactor with immobilized bacteria has the best future to purify organically high polluted industrial waste water with short retention times under stable operation conditions.

  11. Spatiotemporal Patterns, Monitoring Network Design, and Environmental Justice of Air Pollution in the Phoenix Metropolitan Region: A Landscape Approach

    Science.gov (United States)

    Pope, Ronald L.

    Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity

  12. Assessment of Water Quality and Identification of Polluted Risky Regions Based on Field Observations & GIS in the Honghe River Watershed, China

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie; Liu, Yuanmin; Deng, Cai; Nie, Ning

    2015-01-01

    Water quality assessment at the watershed scale requires not only an investigation of water pollution and the recognition of main pollution factors, but also the identification of polluted risky regions resulted in polluted surrounding river sections. To realize this objective, we collected water samplings from 67 sampling sites in the Honghe River watershed of China with Grid GIS method to analyze six parameters including dissolved oxygen (DO), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), total nitrogen (TN) and total phosphorus (TP). Single factor pollution index and comprehensive pollution index were adopted to explore main water pollutants and evaluate water quality pollution level. Based on two evaluate methods, Geo-statistical analysis and Geographical Information System (GIS) were used to visualize the spatial pollution characteristics and identifying potential polluted risky regions. The results indicated that the general water quality in the watershed has been exposed to various pollutants, in which TP, NO2-N and TN were the main pollutants and seriously exceeded the standard of Category III. The zones of TP, TN, DO, NO2-N and NH3-N pollution covered 99.07%, 62.22%, 59.72%, 37.34% and 13.82% of the watershed respectively, and they were from medium to serious polluted. 83.27% of the watershed in total was polluted by comprehensive pollutants. These conclusions may provide useful and effective information for watershed water pollution control and management. PMID:25768942

  13. Heavy metal pollution associated with an abandoned lead-zinc mine in the Kirki region, NE Greece.

    Science.gov (United States)

    Nikolaidis, Christos; Zafiriadis, Ilias; Mathioudakis, Vasileios; Constantinidis, Theodore

    2010-09-01

    The "Agios Philippos" mine in the Kirki region (NE Greece) has been abandoned in 1998 after half a century of ore exploration without a reclamation or remediation plan. This article aims at elucidating the potential environmental risks associated with this site by quantifying pollution in tailing basins, stream waters, stream sediments and agricultural fields. Concentrations of heavy metals in the abandoned mine tailings reached 12,567 mg/kg for Pb, 22,292 mg/kg for Zn, 174 mg/kg for Cd and 241 mg/kg for As. The geoaccumulation index and enrichment factor for these metals were indicative of extremely high contamination (I(geo) > 5) and extremely high enrichment (EF > 40), respectively. Stream waters in the proximity of the mine had an acidic pH equal to 5.96 and a high sulfate content (SO(4)(-2) = 545.5 mg/L), whereas concentrations of Mn, Zn and Cd reached 2,399 microg/L, 7,681 microg/L and 11.2 microg/L. High I(geo) and EF values for Cd, Zn and As in stream sediments indicates that surface water pollution has a historic background, which is typically associated with acid mine drainage. Agricultural fields in the proximity of the mine exhibited high I(geo) and EF values, which were in decreasing order Cd > Pb > Zn > As. These findings urge for an immediate remediation action of the afflicted area.

  14. An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Oscar Alvear

    2016-01-01

    Full Text Available Mobile sensing is becoming the best option to monitor our environment due to its ease of use, high flexibility, and low price. In this paper, we present a mobile sensing architecture able to monitor different pollutants using low-end sensors. Although the proposed solution can be deployed everywhere, it becomes especially meaningful in crowded cities where pollution values are often high, being of great concern to both population and authorities. Our architecture is composed of three different modules: a mobile sensor for monitoring environment pollutants, an Android-based device for transferring the gathered data to a central server, and a central processing server for analyzing the pollution distribution. Moreover, we analyze different issues related to the monitoring process: (i filtering captured data to reduce the variability of consecutive measurements; (ii converting the sensor output to actual pollution levels; (iii reducing the temporal variations produced by mobile sensing process; and (iv applying interpolation techniques for creating detailed pollution maps. In addition, we study the best strategy to use mobile sensors by first determining the influence of sensor orientation on the captured values and then analyzing the influence of time and space sampling in the interpolation process.

  15. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2017-10-01

    Full Text Available The Beijing–Tianjin–Hebei (BTH region has been suffering from the most severe fine-particle (PM2. 5 pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM. The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24–36 % to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM

  16. Meteorological conditions during a severe, prolonged regional heavy air pollution episode in eastern China from December 2016 to January 2017

    Science.gov (United States)

    Deng, Xueliang; Cao, Weihua; Huo, Yanfeng; Yang, Guanying; Yu, Caixia; He, Dongyan; Deng, Weitao; Fu, Wei; Ding, Heming; Zhai, Jing; Cheng, Long; Zhao, Xuhui

    2018-03-01

    A severe, prolonged and harmful regional heavy air pollution episode occurred in eastern China from December 2016 to January 2017. In this paper, the pollutant characteristics and the meteorological formation mechanism of this pollution event, including climate anomalies, surface weather conditions, planetary boundary layer structure and large-scale circulation features, were analysed based on observational pollution data, surface meteorological data, sounding data and ERA-Interim reanalysis data. The results are as follows. (1) Five pollution stages were identified in eastern China. The two most severe episodes occurred from December 27, 2016 to January 4, 2017 and from January 8 to 12 2017. During these two pollution episodes, fine mode particles were major contributors, and hourly PM2.5 concentrations often exceeded 150 μg/m3, reaching a maximum of 333 μg/m3 at Fuyang station. Gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of PM2.5. (2) Compared with the same period over the years 2000-2016, 2017 presented meteorological field climate anomalies in conjunction with unfavourable surface conditions (weak winds, high relative humidity, fewer hours of sunshine, high cloud cover) and adverse atmospheric circulation (weak East Asian winter monsoon and an abnormal geopotential height of 500 hPa), which caused poorer visibility in 2017 than in the other analysed years. (3) During the development of heavy pollution event, unfavourable surface weather conditions, including poorer visibility, weaker pressure, higher relative humidity, lower wind speed with unfavourable wind direction and less precipitation suppressed the horizontal diffusion ability of air pollutants. Furthermore, the unfavourable structure of the atmospheric boundary layer was the key cause of the rapid PM2.5 increase. The deep, strong temperature inversion layer and weak vertical wind velocity could have suppressed vertical motion and enhanced

  17. An overview of the RCA/IAEA activities in the Australasian region using nuclear analysis techniques for monitoring air pollution

    International Nuclear Information System (INIS)

    Markwitz, Andreas

    2005-01-01

    The International Atomic Energy Agency (IAEA) via the Regional Co-operative Agreement (RCA) has identified air particulate matter pollution as a major transboundary environmental issue in the Australasian region. Sixteen countries in the region spanning from Pakistan to the Philippines and from China to New Zealand are participating in the regional programme RAS/7/013-Improved information of urban air quality management in the RCA region' that started in 1997. New Zealand is the lead-country for this programme in which nuclear analytical techniques, such as particle induced X-ray emission (PIXE), neutron activation analysis (NAA) and X-ray fluorescence spectrometry (XRF) are used to measure key elements in PM 2.5-0 and PM 10-2.5 filters from GENT stacked samplers collected twice weekly. Major sources of air particulate matter pollution are identified using statistical source apportionment techniques. To identify transboundary air particulate matter pollution events, the data is collated in a large database. Additionally, the data is used by end-users of the participating countries in the programme. An overview is presented. (author)

  18. Estimation of health and economic costs of air pollution over the Pearl River Delta region in China.

    Science.gov (United States)

    Lu, Xingcheng; Yao, Teng; Fung, Jimmy C H; Lin, Changqing

    2016-10-01

    The Pearl River Delta region (PRD) is the economic growth engine of China and also one of the most urbanized regions in the world. As a two-sided sword, rapid economic development causes air pollution and poses adverse health effects to the citizens in this area. This work estimated the negative health effects in the PRD caused by the four major ambient pollutants (SO2, NO2, O3 and PM10) from 2010 to 2013 by using a log linear exposure-response function and the WRF-CMAQ modeling system. Economic loss due to mortality and morbidity was evaluated by the value of statistical life (VSL) and cost of illness (COI) methods. The results show that the overall possible short-term all-cause mortality due to NO2, O3 and PM10 reached the highest in 2013 with the values being 13,217-22,800. The highest total economic loss, which ranged from 14,768 to 25,305million USD, occurred in 2013 and was equivalent to 1.4%-2.3% of the local gross domestic product. The monthly profile of cases of negative health effects varied by city and the types of ambient pollutants. The ratio of mortality attributed to air pollutants to total population was higher in urban areas than in rural areas. People living in the countryside should consider the possible adverse health effects of urban areas before they plan a move to the city. The results show that the health burden caused by the ambient pollutants over this region is serious and suggest that tighter control policies should be implemented in the future to reduce the level of air pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Air pollution and health implications of regional electricity transfer at generational centre and design of compensation mechanism

    Science.gov (United States)

    Relhan, Nemika

    India's electricity generation is primarily from coal. As a result of interconnection of grid and establishment of pithead power plants, there has been increased electricity transfer from one region to the other. This results in imbalance of pollution loads between the communities located in generation vis-a-vis consumption region. There may be some states, which are major power generation centres and hence are facing excessive environmental degradation. On the other hand, electricity importing regions are reaping the benefits without paying proper charges for it because present tariff structure does not include the full externalities in it. The present study investigates the distributional implications in terms of air pollution loads between the electricity generation and consumption regions at the state level. It identifies the major electricity importing and exporting states in India. Next, as a case study, it estimates the health damage as a result of air pollution from thermal power plants (TPPs) located in a critically polluted region that is one of the major generator and exporter of electricity. The methodology used to estimate the health damage is based on impact pathway approach. In this method, air pollution modelling has been performed in order to estimate the gridded Particulate Matter (PM) concentration at various receptor locations in the study domain. The air quality modeling exercise helps to quantify the air pollution concentration in each grid and also apportion the contribution of power plants to the total concentration. The health impacts as a result of PM have been estimated in terms of number of mortality and morbidity cases using Concentration Response Function (CRF's) available in the literature. Mortality has been converted into Years of Life Lost (YOLL) using life expectancy table and age wise death distribution. Morbidity has been estimated in terms of number of cases with respect to various health end points. To convert this health

  20. Regionally differentiated air pollution control regulations in the installation-related emission control law of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Buettner, T.W.

    1992-01-01

    The volume treats an issue from the boundary zone between environmental law and environmental economics, namely the regionalization of air pollution control standards in installation-related emission control law. In order to examine the question of whether this proposal, which originates in the field of environmental economics, can be adopted and is purposeful, the author initially performs a complete inventorization of applicable norms, this covering emission control law, the law of regional planning, and the provisions of international law. This status quo is then reviewed using conformity and optimization criteria developed by the political sciences. The assessment comes to the conclusion that the introduction of regionally differentiated air pollution control standards is not desirable. The author further submits proposals for the streamlining of the law of installation-related air pollution control in the Federal Republic of Germany. (orig.) [de

  1. Morbidity Forecast in Cities: A Study of Urban Air Pollution and Respiratory Diseases in the Metropolitan Region of Curitiba, Brazil.

    Science.gov (United States)

    de Souza, Fabio Teodoro

    2018-05-29

    In the last two decades, urbanization has intensified, and in Brazil, about 90% of the population now lives in urban centers. Atmospheric patterns have changed owing to the high growth rate of cities, with negative consequences for public health. This research aims to elucidate the spatial patterns of air pollution and respiratory diseases. A data-based model to aid local urban management to improve public health policies concerning air pollution is described. An example of data preparation and multivariate analysis with inventories from different cities in the Metropolitan Region of Curitiba was studied. A predictive model with outstanding accuracy in prediction of outbreaks was developed. Preliminary results describe relevant relations among morbidity scales, air pollution levels, and atmospheric seasonal patterns. The knowledge gathered here contributes to the debate on social issues and public policies. Moreover, the results of this smaller scale study can be extended to megacities.

  2. Estimation of snow pollution in the region of non-ferrous metallurgy enterprises by the neutron activation method

    International Nuclear Information System (INIS)

    Khatamov, Sh.; Khamidova, R.; Kist, A.A.

    1980-01-01

    Possibility of determination of more than 25 chemical elements in snow water selected in the region of non-ferrous metallurgy enterprises has been shown using the methods of neutron activation and γ-spectrometry of high resolution. Elements were determined from one sample by three-fold irradiation in the nuclear reactor depending on the half-life period and other nuclear activation parameters of the formed radioisotopes. The analysis of snow cover has revealed the character of pollution of surrounding medium and air basin by toxical elements

  3. Climatological variability in modeling of long-term regional transport and deposition of air pollutants

    International Nuclear Information System (INIS)

    Shannon, J.D.

    1984-01-01

    In a growing number of emission policy analyses, regulatory proceedings, and cost/benefit assessments, numerical models of long-range transport and deposition of air pollutants have been exercised to estimate source-receptor (S-R) relationships--for the particular meteorological conditions input to the model. The representativeness of the meteorological conditions, or the variability of the model estimates with climatological input from different years or corresponding seasons from different years, is seldom evaluated. Here, two full years (1980 and 1981) of meteorological data, as well as data from January and July of 1978, are used in the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model (Shannon, 1981), one of the eight Memorandum of Intent (MOI) models, to estimate deposition for the S-R matrix combination of eleven source regions and nine receptors used in the MOI reports. (S-R matrices of dimensions 40 by 9 were also examined in the MOI reports.) Improvements in the ASTRAP model and in the emission inventory since the earlier work require recalculation of the two-month 1978 simulation in order for the comparison to isolate the effect of meteorological variability. The source regions are listed, and the receptor regions are provide. For completeness, an additional source region, the western states and provinces, has been added, as well as a total for the 48 contiguous states and 10 provinces. 4 references, 9 tables

  4. How do emission patterns in megacities affect regional air pollution?

    Science.gov (United States)

    Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.

    2010-12-01

    Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3

  5. Prediction of ozone pollution peaks in the Etang de Berre area; Prevision des pics de pollution par l'ozone dans la region de l'etang de Berre

    Energy Technology Data Exchange (ETDEWEB)

    Valfre, G.; Thieleke, R.; Leopold, A.; Mesbah, B.A. [AIRFOBEP, Association agreee de surveillance de la qualite de l' air, 13 - Martigues (France)

    1999-09-01

    Prediction of ozone pollution peaks is very useful in the procedure of people information, in particular sensitive persons, about photochemical pollution episodes occurrence. We have developed a technique to predict ozone pollution peaks in the Etang de Berre area, where air qualify monitoring is operated by the network AIRFOBEP (Association for air quality monitoring in the Etang de Berre and the west of Bouches-du-Rhone area). The technique indirectly models the regional photochemical pollution by the use of a set of linked binary logic tests. These tests are carried out on some relevant parameters. The selection of the most sensitive parameters for the prediction is done starting from: the background knowledge concerning the regional air pollution phenomena (experts experiences), the measurement data analysis. Characteristics of those parameters, like the time, the place of their measurement and their thresholds, are optimized with a simulation program, run on the five last years AIRFOBEP measurements data. Models elaborated with this technique have been tested during the 1998 summer. Results concerning both a D day and a (D+ 1) day prediction are good. They are consistent with the expected performances and with the five last years simulation results. (authors)

  6. Gaseous Criteria Pollutants in Bangkok Metropolitan Region, Thailand: Analysis, Issues and Management

    Science.gov (United States)

    Uttamang, P.; Aneja, V. P.; Hanna, A. F.

    2017-12-01

    Analysis of gaseous criteria pollutants in Bangkok Metropolitan Region (BMR), Thailand, during 2010 to 2014 reveals that the hourly concentrations of CO, SO2 and NO2 were mostly below the National Ambient Air Quality Standards (NAAQs) of Thailand. However, the hourly concentrations of Ozone (O3) exceeded the Thailand NAAQs. The maximum concentrations of O3 were from 120 to 190 ppb. On average, the number of hourly O3 exceedances were from 1 to 60 hours a year depending on monitoring station locations. The exceedances were found during the dry season in both summer and winter. Inter-conversion between O3, NO and NO2 indicates the crossover point between species occur when the concentration of NOx ([NOx = NO + NO2]) is about 60 ppb. When [NOx] 60 ppb. The calculated photochemical reaction rate during photostationary state ranges from 0.12 to 1.22 min-1. Linear regression analysis between the concentrations of Ox ([Ox = O3 + NO2]) and NOx provides the role of local and regional contributions to Ox. Both the local and regional Ox contributions play an important role in the increase of [Ox] and those values were about double during O3 episodes ([O3] > 100 ppb). Ratio analysis suggests that the major contributors of primary pollutants over BMR are mobile sources (CO/NOx = 19.8). However, this region may also be influenced by point sources, but they are not dominant. An analysis of the air quality showed that the air quality index (AQI) for BMR was predominantly between good to moderate; however, during episode conditions in the region, unhealthy O3 categories were also observed. Note the manuscript is under review by a publication

  7. After Indonesia’s Ratification: The ASEAN Agreement on Transboundary Haze Pollution and Its Effectiveness As a Regional Environmental Governance Tool

    Directory of Open Access Journals (Sweden)

    Daniel Heilmann

    2015-01-01

    Full Text Available On 20 January 2015 Indonesia deposited its instrument of ratification for the ASEAN Agreement on Transboundary Haze Pollution with the ASEAN Secretariat, becoming the last ASEAN member state to join the treaty. Haze pollution poses a serious health threat to the people of Indonesia, Singapore and Malaysia, and for decades haze pollution has been a highly contentious issue among ASEAN member states. This article argues that Indonesia’s ratification will not be an immediate game changer. The mechanisms of the agreement are too weak to contribute much to a reduction of haze pollution in the region. The agreement is designed according to the ASEAN way: a non-binding approach that is based on the principles of state sovereignty and non-intervention. This makes it unlikely that the agreement itself will bring about change, even now that all ASEAN member states have ratified it.

  8. Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes

    Science.gov (United States)

    Yue, D. L.; Hu, M.; Wu, Z. J.; Guo, S.; Wen, M. T.; Nowak, A.; Wehner, B.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Wang, X. S.; Li, Y. P.; Zeng, L. M.; Zhang, Y. H.

    2010-10-01

    In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 μm at BG was (1.7±0.8)×104 cm-3, about 40% lower than that at GZ, (2.9±1.1)×104 cm-3. The total particle volume concentration at BG was 94±34 μm3 cm-3, similar to that at GZ, 96±43 μm3 cm-3. More 20-100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100-660 nm particle number concentrations were similar at both sites as they are more regional. PM2.5 values were similar at GZ (69±43 μg m-3) and BG (69±58 μg m-3) with R2 of 0.71 for the daily average PM2.5 at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO42-, NO3- accounted for about 60% in 100-660 nm particle mass and PM2.5 increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM1.0 than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO42-, NO3-, and NH4+ accounted for about 70% and 40% of PM1.0 and PM2.5, respectively.

  9. Spatial variations in biomarkers of Mytilus edulis mussels at four polluted regions spanning the Northern Hemisphere

    International Nuclear Information System (INIS)

    Gagne, F.; Burgeot, T.; Hellou, J.; St-Jean, S.; Farcy, E.; Blaise, C.

    2008-01-01

    Economic and social developments have taken place at the expense of the health of the environment, both locally and on a global scale. In an attempt to better understand the large-scale effects of pollution and other stressors like climate change on the health status of Mytilus edulis, mussels were collected during the first two weeks of June 2005 at three sites (one pristine and two affected by pollution) located in each of the regions of the Canadian West Coast, the St. Lawrence estuary, the Atlantic East Coast and the northwestern coast of France, covering a total distance of some 11 000 km. The mussels were analyzed for morphologic integrity (condition factor), gametogenic activity (gonado-somatic and gonad maturation index, vitellogenin(Vtg)-like proteins), energy status (temperature-dependent mitochondrial electron transport activity and gonad lipid stores), defense mechanisms (glutathione S-transferase, metallothioneins, cytochrome P4503A activity and xanthine oxidoreductase-XOR), and tissue damage (lipid peroxidation-LPO and DNA strand breaks). The results showed that data from the reference sites in each region were usually not normally distributed, with discriminant factors reaching the number of regions (i.e. four), except for the biomarkers gonadal lipids, XOR and LPO in digestive gland. The integrated responses of the biomarkers revealed that biomarkers of stress were significantly more pronounced in mussels from the Seine estuary, suggesting that the impacts of pollution are more generalized in this area. Mussels from the Seine estuary and the Atlantic East Coast (Halifax Harbor) responded more strongly for Vtg-like proteins, but was not related to gonad maturation and gonado-somatic indexes, suggesting the presence of environmental estrogens. Moreover, these mussels displayed reduced DNA repair activity and increased LPO. Factorial analyses revealed that energy status, cytochrome P4503A activity and Vtg-like proteins were the most important

  10. The role of micronutrients in the response to air pollutants ...

    Science.gov (United States)

    People living in regions of low socioeconomic status are thought to be prone to higher exposures to environmental pollutants, poor nutrition, and numerous preventable diseases and infections. Poverty correlates with pollution and malnutrition, however limited studies examined their interrelationship. The well-studied, deleterious health effects attributed to environmental pollutants and poor nutrition may act in combination to produce more severe adverse health outcomes than any one factor alone. Deficiency in specific nutrients render the body more susceptible to injury which may influence the pathways that serve as the mechanistic responses to air pollutants. This review (1) explores specific micronutrients that are of global concern, (2) explains how these nutrients may impact the body’s response to ambient air pollution, and (3) provides guidance on designing animal models of nutritional deficiency. It is likely that those individuals who reside in regions of high ambient air pollution are similarly malnourished. Therefore, it is important that research identifies specific nutrients of concern and their impact in identified regions of high ambient air pollution. The purpose of the current paper is to (1) provide an understanding of the known nutrients of concern worldwide. Selected nutrients will be discussed in depth in the following sections based on information from the World Health Organization, World Food Programme data, and also demonstrate risk of

  11. Co-Mitigation of Ozone and PM2.5 Pollution over the Beijing-Tianjin-Hebei Region

    Science.gov (United States)

    Liu, J.; Xiang, S.; Yi, K.; Tao, W.

    2017-12-01

    With the rapid industrialization and urbanization, emissions of air pollutants in China were increasing rapidly during the past few decades, causing severe particulate matter and ozone pollution in many megacities. Facing these knotty environmental problems, China has released a series of pollution control policies to mitigate air pollution emissions and optimize energy supplement structure. Consequently, fine particulate matters (PM2.5) decrease recently. However, the concentrations of ambient ozone have been increasing, especially during summer time and over megacities. In this study, we focus on the opposite trends of ozone and PM2.5 over the Beijing-Tianjin-Hebei region. We use the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate and analyze the best emission reduction strategies, and adopt the Empirical Kinetics Modeling Approach (EKMA) to depict the influences of mitigating NOx and VOCs. We also incorporate the abatement costs for NOx and VOCs in our analysis to explore the most cost-effective mitigation strategies for both ozone and PM2.5.

  12. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    Science.gov (United States)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-12-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plumes of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) project, an intensive campaign was launched in the greater Paris region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind of the Paris region. Two mechanisms of secondary OA (SOA) formation are used, both including SOA formation from oxidation and chemical aging of primary semivolatile and intermediate volatility organic compounds (SI-SOA) in the volatility basis set (VBS) framework. As for SOA formed from traditional VOC (volatile organic compound) precursors (traditional SOA), one applies chemical aging in the VBS framework adopting different SOA yields for high- and low-NOx environments, while another applies a single-step oxidation scheme without chemical aging. Two emission inventories are used for discussion of emission uncertainties. The slopes of the airborne OA levels versus Ox (i.e., O3 + NO2) show SOA formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. The simulated slopes were overestimated slightly by factors of 1.1, 1.7 and 1.3 with respect to those observed for the three airborne measurements, when the most realistic "high-NOx" yields for traditional SOA formation in the VBS scheme are used in the model. In addition, these slopes are relatively stable from one day to another, which suggests that they are characteristic for the given megacity plume environment. The configuration with increased primary

  13. Emerging Persistent Organic Pollutants in Chinese Bohai Sea and Its Coastal Regions

    Science.gov (United States)

    Wang, Yawei; Pan, Yuanyuan

    2014-01-01

    Emerging persistent organic pollutants (POPs) have widely aroused public concern in recent years. Polybrominated diphenyl ethers (PBDEs) and perfluorooctane sulfonyl fluoride/perfluorooctane sulfonic acid (POSF/PFOS) had been newly listed in Stockholm Convention in 2009, and short chain chlorinated paraffins (SCCPs) and hexabromocyclododecanes (HBCDs) were listed as candidate POPs. Bohai Sea is located in the arms of numbers of industrial cities, the semienclosed location of which makes it an ideal sink of emerging pollutants. In the present paper, latest contamination status of emerging POPs in Bohai Sea was reviewed. According to the literature data, Bohai Sea areas are not heavily contaminated by emerging POPs (PBDE: 0.01–720 ng/g; perfluorinated compounds: 0.1–304 ng/g; SCCPs: 64.9–5510 ng/g; HBCDs: nd-634 ng/g). Therefore, humans are not likely to be under serious risk of emerging POPs exposure through consuming seafood from Bohai Sea. However, the ubiquitous occurrence of emerging POPs in Bohai Sea region might indicate that more work should be done to expand the knowledge about potential risk of emerging POPs pollution. PMID:24688410

  14. Emerging Persistent Organic Pollutants in Chinese Bohai Sea and Its Coastal Regions

    Directory of Open Access Journals (Sweden)

    Xiaomin Li

    2014-01-01

    Full Text Available Emerging persistent organic pollutants (POPs have widely aroused public concern in recent years. Polybrominated diphenyl ethers (PBDEs and perfluorooctane sulfonyl fluoride/perfluorooctane sulfonic acid (POSF/PFOS had been newly listed in Stockholm Convention in 2009, and short chain chlorinated paraffins (SCCPs and hexabromocyclododecanes (HBCDs were listed as candidate POPs. Bohai Sea is located in the arms of numbers of industrial cities, the semienclosed location of which makes it an ideal sink of emerging pollutants. In the present paper, latest contamination status of emerging POPs in Bohai Sea was reviewed. According to the literature data, Bohai Sea areas are not heavily contaminated by emerging POPs (PBDE: 0.01–720 ng/g; perfluorinated compounds: 0.1–304 ng/g; SCCPs: 64.9–5510 ng/g; HBCDs: nd-634 ng/g. Therefore, humans are not likely to be under serious risk of emerging POPs exposure through consuming seafood from Bohai Sea. However, the ubiquitous occurrence of emerging POPs in Bohai Sea region might indicate that more work should be done to expand the knowledge about potential risk of emerging POPs pollution.

  15. Origin of pollutants in South Asia

    International Nuclear Information System (INIS)

    Siddique, N.; Waheed, S.

    2012-01-01

    Transboundary transport of air pollution in the South Asian region has been an issue of increasing importance over the past several decades. Long-range transport of pollution produced by natural processes such as dust storms or natural forest fires. Airborne particulate matter datasets covering the period from 2002 to 2007 from the neighbouring countries like Bangladesh, India, Pakistan and Sri Lanka were used to find the source areas that are primarily responsible for long range transported pollutants. All countries collected samples with the same type of sampler and used the same techniques for mass and BC measurements. It was found that high fine soil contributions were from dust storms. On the other hand smoke in this region mainly comes from Northern India where agricultural waste is often burned is shown. (Orig./A.B.)

  16. [Impact of industrial pollution on emission of carbon dioxide by soils in the Kola Subarctic Region].

    Science.gov (United States)

    Koptsik, G N; Kadulin, M S; Zakharova, A I

    2015-01-01

    Soil emission of carbon dioxide, the key component of carbon cycle and the characteristic of soil biological activity, has been studied in background and polluted ecosystems in the Kola subarctic, the large industrial region of Russia. Long-term air pollution by emissions of "Pechenganikel" smelter, the largest source of sulphur dioxide and heavy metals in Northern Europe, has caused the technogenic digression of forest ecosystems. As a result of the digression, the tree layer was destructed, the number of plant species was diminished, the activity of soil biota was weakened, the soils were polluted and exhausted, biogeochemical cycles of elements were disturbed and productivity of ecosystems shrunk. Field investigations revealed the decrease of the in.situ soil respiration in average from 190-230 mg C-CO2/m2 x per h in background pine forests to 130-160, 100, and 20 mg C-CO2/m2.per h at the stages of pine defoliation, sparse pine forest and technogenic barrens of the technogenic succession, respectively. The soil respira- tion in birch forests was more intense than in pine forests and tended to decrease from about 290 mg C-CO2/m2 x per h in background forests to 210-220 and 170-190 mg C-CO2/m2 x per h in defoliating forests and technogenic sparse forests, respectively. Due to high spatial variability of soil respiration in both pine and birch forests significant differences from the background level were found only in technogenic sparse forests and barrens. Soil respiration represents total production of carbon dioxide by plant roots and soil microorganisms. The decrease in share of root respiration in the total soil respiration with the rise of pollution from 38-57% in background forests up to zero in technogenic barrens has been revealed for the first time for this region. This indicates that plants seem to be more sensitive to pollution as compared to relatively resistant microorganisms. Soil respiration and the contribution of roots to the total respiration

  17. Measurement and mapping of the GSM-based electromagnetic pollution in the Black Sea region of Turkey.

    Science.gov (United States)

    Tuysuz, Burak; Mahmutoglu, Yigit

    2017-01-01

    Electromagnetic pollution caused by mobile communication devices, a new form of environmental pollution, has been one of the most concerning problems to date. Consequences of long-term exposure to the electromagnetic radiation caused by cell phone towers are still unknown and can potentially be a new health hazard. It is important to measure, analyze and map the electromagnetic radiation levels periodically because of the potential risks. The electromagnetic pollution maps can be used for the detection of diseases caused by the radiation. With the help of the radiation maps of different regions, comparative analysis can be provided and distribution of the diseases can be investigated. In this article, Global System for Mobile communication (GSM)-based electromagnetic pollution map of the Rize Providence, which has high cancer rates because of the Chernobyl nuclear explosion, is generated. First, locations of the GSM base stations are identified and according to the antenna types of the base stations, safety distances are determined. Subsequently, 155 measurements are taken during November 2014 from the nearest living quarters of the Rize city center in Turkey. The measurements are then assessed statistically. Thenceforth, for visual judgment of the determined statistics, collected measurements are presented on the map. It is observed that national limits are not exceeded, but it is also discovered that the safety distance is waived at some of the measurement points and above the average radiation levels are noted. Even if the national limits are not exceeded, the long-term effects of the exposition to the electromagnetic radiation can cause serious health problems.

  18. Dawn song in natural and artificial continuous day: Light pollution affects songbirds at high latitudes.

    Science.gov (United States)

    Derryberry, Elizabeth P

    2017-10-01

    In Focus: Da Silva, A., & Kempenaers, B. (2017). Singing from North to South: Latitudinal variation in timing of dawn singing under natural and artificial light conditions. Journal of Animal Ecology, 86, 1286-1297. doi: 10.1111/1365-2656.12739 Satellite images of the world at night show bright dots connected by glowing lines crisscrossing the globe. As these connect-the-dots become brighter and expand into more and more remote regions, much of the flora and fauna of the world are experiencing evolutionarily unprecedented levels of light at night. Light cues are essential to most physiological and behavioural processes, and so the need to measure the effects of light pollution on these processes is critical. In this issue, Da Silva and Kempenaers take on this task using an important reproductive behaviour in songbirds-dawn song. The geographic, temporal and taxonomic breadth of sampling in this study allows for a close examination of a potentially complex interaction between light pollution and natural variation in the behaviour of dawn singing across latitude, season and species. Their extensive dataset highlights complexity in how songbirds respond to light pollution. Although light pollution has a strong effect on the timing of dawn song, not all songbirds respond the same way to light pollution, and the effects of light pollution vary with changes in natural light levels. Early dawn singers show more flexibility in the timing of dawn song across the season and across latitudes than late dawn singers, and also appear less affected by light pollution at high latitudes than are late dawn singers. These findings suggest that not all songbirds are responding to artificial continuous daylight as they do to natural continuous daylight, highlighting the general need to measure the fitness effects of light pollution. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  19. Modeling of Trans-boundary Transport of Air Pollutants in the California-Mexico Border Region during Cal-Mex 2010

    Science.gov (United States)

    Bei, N.; Zavala, M. A.; Lei, W.; Li, G.; Molina, L. T.

    2010-12-01

    The US and Mexico share a common air basin along the ~200 km border between California and Baja California. The economical activities in this region are heavily influenced by the international trade and commerce between Mexico and the US that mainly occurs through the borders of the sister cities of San Diego-Tijuana and Calexico-Mexicali. The diversity and differences in the characteristics of emissions sources of air pollutants in the California-Mexico border region make this an important area for the study of the chemistry and trans-boundary transport of air pollutants. During May-June of 2010, the Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region and assessing the possible impacts of these emissions on local and regional air quality. In this work we will present the results of the use of the Comprehensive Air quality model with extensions (CAMx) in a modeling domain that includes the sister cities of San Diego-Tijuana and Calexico-Mexicali for studying events of trans-boundary transport of air pollutants during Cal-Mex 2010. The measurements obtained during the Cal-Mex 2010 field campaign are used in the evaluation of the model performance and in the design of air quality improvement policies in the California-Mexico border region.

  20. Assessment of atmospheric metallic pollution in the metropolitan region of Sao Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor

    International Nuclear Information System (INIS)

    Figueiredo, A.M.G.; Nogueira, C.A.; Saiki, M.; Milian, F.M.; Domingos, M.

    2007-01-01

    Tillandsia usneoides L. is an epiphytic bromeliad plant able to absorb water and nutrients directly from the air. For this reason this species was selected to carry out a monitoring study of air pollution in the metropolitan region of Sao Paulo, Brazil. Five consecutive transplantation experiments (8 weeks each) were performed in 10 sites of the city, submitted to different sources of air pollution (industrial, vehicular), using plants collected from an unpolluted area. After exposure, trace metals were analyzed in the plant by instrumental neutron activation analysis. Traffic-related elements such as Zn and Ba presented high concentrations in exposure sites near to heavy traffic avenues (cars, buses and trucks) and may be associated to vehicular sources. For Zn and Co the highest contents were related to industrial zones and can be associated to the presence of anthropogenic emission sources. The rare earth elements, Fe and Rb, probably have soil particles as main source. - This paper is the first work on the use of biomonitors to assess metal pollution in Sao Paulo, Brazil, the biggest city in Latin America

  1. Assessment of atmospheric metallic pollution in the metropolitan region of Sao Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, A.M.G. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, CEP 05508-000, Sao Paulo, SP (Brazil)]. E-mail: anamaria@ipen.br; Nogueira, C.A. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, CEP 05508-000, Sao Paulo, SP (Brazil); Saiki, M. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, CEP 05508-000, Sao Paulo, SP (Brazil); Milian, F.M. [Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, Travessa R, 187, Cidade Universitaria, CEP 05508-090, Sao Paulo, SP (Brazil); Domingos, M. [Instituto de Botanica, Av. Miguel Stefano No. 3687, CEP 04301-012, Sao Paulo, SP (Brazil)

    2007-01-15

    Tillandsia usneoides L. is an epiphytic bromeliad plant able to absorb water and nutrients directly from the air. For this reason this species was selected to carry out a monitoring study of air pollution in the metropolitan region of Sao Paulo, Brazil. Five consecutive transplantation experiments (8 weeks each) were performed in 10 sites of the city, submitted to different sources of air pollution (industrial, vehicular), using plants collected from an unpolluted area. After exposure, trace metals were analyzed in the plant by instrumental neutron activation analysis. Traffic-related elements such as Zn and Ba presented high concentrations in exposure sites near to heavy traffic avenues (cars, buses and trucks) and may be associated to vehicular sources. For Zn and Co the highest contents were related to industrial zones and can be associated to the presence of anthropogenic emission sources. The rare earth elements, Fe and Rb, probably have soil particles as main source. - This paper is the first work on the use of biomonitors to assess metal pollution in Sao Paulo, Brazil, the biggest city in Latin America.

  2. Impacts of air pollution wave on years of life lost: A crucial way to communicate the health risks of air pollution to the public.

    Science.gov (United States)

    Huang, Jing; Pan, Xiaochuan; Guo, Xinbiao; Li, Guoxing

    2018-04-01

    Limited studies have explored the impacts of exposure to sustained high levels of air pollution (air pollution wave) on mortality. Given that the frequency, intensity and duration of air pollution wave has been increasing in highly polluted regions recently, understanding the impacts of air pollution wave is crucial. In this study, air pollution wave was defined as 2 or more consecutive days with air pollution index (API) > 100. The impacts of air pollution wave on years of life lost (YLL) due to non-accidental, cardiovascular and respiratory deaths were evaluated by considering both consecutive days with high levels of air pollution and daily air pollution levels in Tianjin, China, from 2006 to 2011. The results showed the durational effect of consecutive days with high levels of air pollution was substantial in addition to the effect of daily air pollution. For instance, the durational effect was related to an increase in YLL of 116.6 (95% CI: 4.8, 228.5) years from non-accidental deaths when the air pollution wave was sustained for 4 days, while the corresponding daily air pollution's effect was 121.2 (95% CI: 55.2, 187.1) years. A better interpretation of the health risks of air pollution wave is crucial for air pollution control policy making and public health interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The impact of foreign capital inflows and trade expansion on integrated pollutant discharge from China: Regional differences

    Directory of Open Access Journals (Sweden)

    Fan Xiufeng

    2015-04-01

    Full Text Available This article is based on the years from 1991 to 2012 of the nine categories of the provincial pollutant discharge indexes of China, uses the „vertical and horizontal method“ to calculate the comprehensive indexes that can fully measure the provincial pollutant discharge situation of China, establishes a dynamic inter-provincial panel data regression model and makes an empirical test on the relationship among foreign direct investments, foreign trade and pollutant discharge these three factors. The results show that foreign direct investment and foreign trade in different regions have a different impact on pollutant discharge. Therefore, local governments should at all levels be based on local conditions to attract foreign investment and develop foreign trade for the targeted optimization of the structure of introducing foreign investment and improving the quality of foreign trade growth, thus improving the overall situation of China’s pollutant discharge.

  4. Air pollution: a tale of two countries.

    Science.gov (United States)

    Haryanto, Budi; Franklin, Peter

    2011-01-01

    The fast growing economies and continued urbanization in Asian countries have increased the demand for mobility and energy in the region, resulting in high levels of air pollution in cities from mobile and stationary sources. In contrast, low level of urbanization in Australia produces low level of urban air pollution. The World Health Organization estimates that about 500,000 premature deaths per year are caused by air pollution, leaving the urban poor particularly vulnerable since they live in air pollution hotspots, have low respiratory resistance due to bad nutrition, and lack access to quality health care. Identifying the differences and similarities of air pollution levels and its impacts, between Indonesia and Australia, will provide best lesson learned to tackle air pollution problems for Pacific Basin Rim countries.

  5. Regional monitoring of deposition and effects of air pollution; Regional oevervakning av nedfall och effekter av luftfoeroreningar. Sammanfattande slutrapport fraan ett samarbetsprojekt mellan IVL, laenen och Naturvaardsverket

    Energy Technology Data Exchange (ETDEWEB)

    Akselsson, Cecilia; Ferm, Martin; Hallgren Larsson, Eva; Knulst, Johan; Loevblad, Gun; Malm, Gunnar; Westling, Olle

    2000-05-01

    Regional programmes in Sweden focused on deposition and effects of air pollutants have been evaluated by IVL, Swedish Environmental Research Institute. Various air quality protection associations and regional environmental authorities initiated the monitoring programmes during the period 1985 to 1990. The result of the evaluation is a revised and coordinated programme with improved methods. The new regional programme combines collection of field data with national model calculations of deposition of air pollutants. The new programme involves collection of deposition on open field (bulk) and in forest stands (throughfall), and soil solution, according to national and international standards. Improved methods for monitoring of base cation and nitrogen deposition have been developed. Ambient air concentrations are measured at some locations. The purpose is to describe environmental conditions, regional differences, and temporal changes. Data on forest stands, such as needle loss, growth, and soil chemistry, are available since most locations are permanent forest plots, established for scientific forest observations. Regional dispersion and deposition of air pollutants will be calculated with a model (SMHI-MATCH), developed for simulating the dispersion and deposition of Swedish emissions in relation to the long-range transport on a relatively fine scale (grid square 11 km). The programme also includes developed methods for data handling, interpretation, evaluation, quality assurance and demonstration of results in written reports and via Internet.

  6. Neutron activation analysis - NAA: studies of environmental pollution in Steel Valley region, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Veado, Maria Adelaide R.V.; Queiroz, Marluce A.T.; Costa, Alex A., E-mail: mariavasc@unilestemg.b, E-mail: marluce.queiroz@yahoo.com.b, E-mail: alexaderson@ig.com.b [Centro Universitario do Leste de Minas Gerais (UNILESTE-MG), Coronel Fabriciano, MG (Brazil). Curso de Mestrado em Engenharia Industrial; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Arno H. de, E-mail: heeren@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2009-07-01

    The Steel Valley region in Minas Gerais State, Brazil, receives intense waste from anthropogenic activities: industries (steel, cellulose, ore mining); untreated domestic; sewage and agricultural discharges. This work presents results obtained from analysis of air quality (Ipatinga, Santana do Paraiso, Coronel Fabriciano Timoteo and Marlieria cities) and by the Piracicaba River (surface water, border sediment, and fish muscle - Acara (Geophagus Brasiliensis). Concentrations of Al, Mn, V, As, Br, K, La, Na, Ce, Co, Cr, Cs, Fe, Hg, Rb, Sc, Sm, Th and Zn were determined for Neutron Activation Analysis, NAA. High concentrations were found in sediment and water (Cr, Fe, Co, Zn, As, Al, Mn, V) and in fish muscle (As, Cr, Hg). Results were compared to the maximum limits for metal set by 357/2005 of the National Environmental Council (CONAMA). Terrestrial epiphytic community samples have been used as biomonitor of air pollution. The samples were collected in trees Oiti (Licania tomentosa) and Angico (Piptadenia rigida), very common in studied region. The samples were collected in 17 points and two weather stations: January (rainy) and June (dried) of 2007. The results indicate high concentrations of the elements Al, Au, Co, Cr, Cu, Fe, Hg, Mn, Mg, Zn, V and Th when compared with the values cited in the literature. The biomonitor used in this work, terrestrial epiphytic community, showed an excellent capacity for metals retention by atmospheric contamination. (author)

  7. An environmental assessment strategy for the identification of pollution prevention opportunities in the southern Urals Region of Russia

    International Nuclear Information System (INIS)

    Gonzalez, M.A.; Ott, R.L.

    1993-01-01

    The serious environmental problems of the South Urals Region of Russia have been broadly described in a report coauthored by Russian weapons scientists. The importance of taking the first steps to prevent further environmental damage and adverse public health effects has been recognized by the international scientific community. Scientists at the Lawrence Livermore National Laboratory have initiated a project to assist the Russians in their pollution prevention efforts. The specific objectives of this project are to: (1) conduct a pragmatic survey of the industrial and governmental pollution sources in a limited geographic region of the South Urals and (2) identify the priorities for pollution prevention and for food and water supply improvements at distribution points. The emphasis is on preventing adverse impacts to human health and improving industrial productivity. This project focuses on immediate pollution problems resulting from current operations and their solutions, not on long-term research related to the large-scale cleanup of legacy wastes. The project emphasizes near-term cost effective solutions to prevent pollution while longer term research aimed at contamination from past practices is pursued by other scientists. The project is being conducted in collaboration with environmental and physical scientists from institutes associated with the Ural Branch of the Russian Academy of Sciences; government officials at the national, regional, and local levels; and non-governmental Russian environmental groups. A broad cross section of Russian technical, political, and environmental abilities and interests is mandatory. This cross section will ensure the technical quality, the political acceptability, and the popular credibility of the project results to the affected Russians in the South Urals. Progress on this project is presented in this paper

  8. Analytic studies on pollutant deposition through domestic coal combustion -influence of the current structural change on pollution in an urban region. Final report

    International Nuclear Information System (INIS)

    Engewald, W.; Knobloch, T.; Asperger, A.

    1996-01-01

    In the present paper the author reports on the continuation of an OEKOR part project in which he had undertaken a chemical characterisation of emissions from domestic brown coal combustion. On the basis of a partitioning by land use of the Greater Leipzig region he initiated long-term observations of local pollution levels for the various structural types of land. The aim of the work was to facilitate a comprehensive analysis of local air quality in terms of VOC levels. The current concern about VOCs results from the toxicological risk they have been proven to pose to the human organism and from their relevance to the chemistry of the atmosphere (e.g., as precursors of ground-level ozone and other oxidising agents). The task to be accomplished was broken down into the following main steps: Development and trial of a sampling and analysis method for determining an as wide a spectrum of environmental VOCs as possible; elaboration of a measuring strategy for obtaining results of high representativeness and power; installation and operation of pollution monitoring sites in selected structural types of area characteristic of Leipzig; execution of measuring campaigns of several weeks each at selected sites during both winter and summer periods. (orig./MSK) [de

  9. [Study on ecological risk assessment technology of fluoride pollution from arid oasis soil].

    Science.gov (United States)

    Xue, Su-Yin; Li, Ping; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    According to translocation regulation of fluoride in the typical oasis soil-plant system under field, an ecological risk assessment model of fluoride was established, and this model was used to assess ecological risk to fluoride pollution from suburban oasis soils in Baiyin City, which was specifically expressed with the potential ecological risk of bioavailability (ER(bc)) model to assess ecological risk of fluoride pollution in oasis regions. Results showed that the ecological risk indices of fluoride pollution from this region were 1.37-24.81, the level of risk at most sites was high to very high, the average ecological risk index was 11.28, belonged to very high risk. This indicated that in the suburb soil of Baiyin City needs to be concerned about the remediation of fluoride pollution.

  10. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  11. Regional climate, local climate and ozone air pollution in Tours and Orleans cities

    International Nuclear Information System (INIS)

    Berthelot, M.

    2006-10-01

    The importance of the relations between climate and the air pollution justifies the interest related to the role of the urban heat island of heat with respect to the night persistence of ozone in urban environment. When the days are favourable with important ozone concentrations, the agglomerations of the area observe a dynamics day laborer of ozone different from that observed in rural environment. The study is undertaken on the towns of Turns and Orleans where the observations of Lig'Air revealed a night persistence of ozone whereas the concentrations drop more quickly in periphery. This phenomenon is remarkable during the little broken down anticyclonic days. The region region Centre is a ground of study privileged for ozone because of its situation in the south-west of the Island of France rich in precursors of ozone. When flow is of continental origin, the Centre area is found then under the influence of the Paris area. The investigation of a study of the air pollution must take into account the notes of the regional climate and local climate. Several preliminary studies must intervene to answer our principal problems. First of all a descriptive study of the regional climate is carried out with the participation of Meteo-France. The current absence of climatic atlas as well as the many disparities of the climate related to extended from the territory partly justify the interest of our study. The regional approach of the climate is also essential for the continuation of work on a finer scale on the agglomerations of Turns and Orleans in order to detect the urban heat island of heat there. Collaboration with Meteo-France and Lig'Air made it possible to establish a satisfying network of measurement making it possible to obtain notable thermal differences between the downtown area and the surrounding rural environment. The correlation between meteorology and the proven air pollution leads us to establish the climatology of ozone. Many are the studies having

  12. The prevalence of molar incisor hypomineralization (MIH) in a group of children in a highly polluted urban region and a windfarm-green energy island.

    Science.gov (United States)

    Kuscu, Ozgur Onder; Caglar, Esber; Aslan, Seda; Durmusoglu, Ertan; Karademir, Aykan; Sandalli, Nuket

    2009-05-01

    Children's developing teeth may be sensitive to environmental pollutants such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans. The term molar incisor hypomineralization (MIH) was introduced to describe the clinical appearance of enamel hypomineralization of systemic origin affecting one or more permanent first molars (PFMs) that are associated frequently with affected incisors. The aim of this study was to determine the prevalance of MIH in children from the most industrialized and polluted region and the most green-energy island of Turkey. In September 2007, a retrospective study was initiated in two elementary schools: one, a group of children (N = 153) who fitted the criteria from Tavsancil, Kocaeli (N = 109) and the other from Bozcaada island, Canakkale (N = 44). The soil samples were collected from selected regions in order to determine the contamination levels in a heavily industrialized area and a non-industrialized area. Prevalance of MIH in children in Bozcaada island was 9.1%, while prevalance of MIH was 9.2% in Tavsancil. The PCDD/F levels in soil samples collected from Bozcaada and Tavsancil were determined as 1,12 and 8,4 I-TEQ ng/kg dry soil, respectively (P MIH did not seem to be associated with the levels of PCDD/Fs in the environment.

  13. A pollution fate and transport model application in a semi-arid region: Is some number better than no number?

    Science.gov (United States)

    Özcan, Zeynep; Başkan, Oğuz; Düzgün, H Şebnem; Kentel, Elçin; Alp, Emre

    2017-10-01

    Fate and transport models are powerful tools that aid authorities in making unbiased decisions for developing sustainable management strategies. Application of pollution fate and transport models in semi-arid regions has been challenging because of unique hydrological characteristics and limited data availability. Significant temporal and spatial variability in rainfall events, complex interactions between soil, vegetation and topography, and limited water quality and hydrological data due to insufficient monitoring network make it a difficult task to develop reliable models in semi-arid regions. The performances of these models govern the final use of the outcomes such as policy implementation, screening, economical analysis, etc. In this study, a deterministic distributed fate and transport model, SWAT, is applied in Lake Mogan Watershed, a semi-arid region dominated by dry agricultural practices, to estimate nutrient loads and to develop the water budget of the watershed. To minimize the discrepancy due to limited availability of historical water quality data extensive efforts were placed in collecting site-specific data for model inputs such as soil properties, agricultural practice information and land use. Moreover, calibration parameter ranges suggested in the literature are utilized during calibration in order to obtain more realistic representation of Lake Mogan Watershed in the model. Model performance is evaluated using comparisons of the measured data with 95%CI for the simulated data and comparison of unit pollution load estimations with those provided in the literature for similar catchments, in addition to commonly used evaluation criteria such as Nash-Sutcliffe simulation efficiency, coefficient of determination and percent bias. These evaluations demonstrated that even though the model prediction power is not high according to the commonly used model performance criteria, the calibrated model may provide useful information in the comparison of the

  14. Integrating a street-canyon model with a regional Gaussian dispersion model for improved characterisation of near-road air pollution

    Science.gov (United States)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-03-01

    The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.

  15. The impact of the "Air Pollution Prevention and Control Action Plan" on PM2.5 concentrations in Jing-Jin-Ji region during 2012-2020.

    Science.gov (United States)

    Cai, Siyi; Wang, Yangjun; Zhao, Bin; Wang, Shuxiao; Chang, Xing; Hao, Jiming

    2017-02-15

    In order to cope with heavy haze pollution in China, the Air Pollution Prevention and Control Action Plan including phased goals of the fine particulate matter (PM 2.5 ) was issued in 2013. In this study, China's emission inventories in the baseline 2012 and the future scenarios of 2017 and 2020 have been developed based on this Action Plan. Beijing-Tianjin-Hebei (Jing-Jin-Ji) region, one of the most polluted regions in China, was taken as a case to assess the impact of phased emission control measures on PM 2.5 concentration reduction using WRF-CMAQ model system. With the implementation of the Action Plan, the emissions of sulfur dioxide (SO 2 ), nitrogen oxides (NO X ) , PM 2.5 , non-methane volatile organic compound (NMVOC), and ammonia (NH 3 ) in 2017 will decrease by36%, 31%, 30%,12%, and -10% from the 2012 levels in Jing-Jin-Ji, respectively. In 2020, the emissions of SO 2 , NO X, PM 2.5 , NMVOC, and NH 3 will decrease by 40%, 44%, 40%, 22%, and -3% from the 2012 levels in Jing-Jin-Ji, respectively. Consequently, the ambient annual PM 2.5 concentration under the scenarios of 2017 and 2020 will be 28.3% and 37.8% lower than those in 2012, respectively. The Action Plan provided an effective approach to alleviate PM 2.5 pollution level in Jing-Jin-Ji region. However, emission control of NMVOC and NH 3 should be paid more attention and be strengthened in future. Meanwhile, emission control of NO x , SO 2 , NH 3 and NMVOC synergistically are highly needed in the future because multiple pollutants impact on PM 2.5 and O 3 concentrations nonlinearly. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Modeling of atmospheric pollution at the regional scale: application to the Esquif campaign; Modelisation a l'echelle regionale de la pollution atmospherique: application a la campagne Esquif

    Energy Technology Data Exchange (ETDEWEB)

    Sarrat, C

    2003-06-01

    The Esquif experimental campaign (study and simulation of air quality in Ile-de-France (Paris region, France)) took place between 1998 and 2000 with the aim of better understanding the dynamical and chemical processes leading to atmospheric pollution peaks in Paris. The construction of a rich and diversified database (12 periods of intensive monitoring (PIM)) has been implemented with the aim of improving the existing chemical-transport models in general and air quality forecasting models in particular. In the framework of this study, the data collected during PIM 2 and 6 were used for the validation and analysis of situations of intensive pollution, simulated with the meso-scale numerical meteorological and chemical model Meso-NHC. The validation of both the dynamic fields (temperature and potential temperature, wind, height of the boundary layer) and the chemical fields (mainly O{sub 3}, NO{sub x}, NO{sub y}, PAN, isoprene) of the model allows to discuss some of the parameters of the model such as the initialization, the boundary forcing and the resolution. Then, a study of the dynamical processes allows to analyze the formation and reinforcement of the pollution conditions. Stress is put on the interaction of the regional scale processes with the photochemical pollution events. In this framework, the dynamical-chemical interaction processes are analyzed in detail, in particular when pollution levels are reinforced by the intrusion of residual ozone inside the convective boundary layer, dragged by the turbulence. Also, the impact of the urban hot island and of the urban wind on the redistribution of primary and secondary pollutants are considered. An analysis of the impact of hydrocarbons of biogenic origin on the ozone concentrations with respect to the temperature and to the presence of primary compounds has been performed for the PIM 2 and 6 of the Esquif campaign. (J.S.)

  17. Interaction between local and regional pollution during Escompte 2001: impact on surface ozone concentrations (IOP2a and 2b)

    Science.gov (United States)

    Cousin, F.; Tulet, P.; Rosset, R.

    2005-03-01

    Escompte, a European programme which took place in the Marseille region in June-July 2001, has been designed as an exhaustive database to be used for the development and validation of air pollution models. The air quality Mesoscale NonHydrostatic Chemistry model (Meso-NH-C) is used to simulate 2 days of an Intensive Observation Period (IOP) documented during the Escompte campaign, June 23 and 24, 2001. We first study the synoptic and local meteorological situation on June 23 and 24, using surface and aircraft measurements. Then, we focus on the pollution episode of June 24. This study emphasizes the deep impact of synoptic and local dynamics on observed ozone concentrations. It is shown that ozone levels are due both to regional and local factors, with highlights of the importance of ozone layering. More generally this confirms, even in an otherwise predominant local sea-breeze regime, the need to consider larger scale regional pollutant transport.

  18. Screening procedure to evaluate effects of air pollution on Eastern Region wildernesses cited as Class I air quality areas.

    Science.gov (United States)

    Mary Beth Adams; Dale S. Nichols; Anthony C. Federer; Keith F. Jensen; Harry Parrott

    1991-01-01

    The USDA Forest Service's Eastern Region manages eight wilderness areas that have been designated as Class I air quality areas by the Federal Clean Air Act. As part of this legislation, Federal land managers are required to consult with air pollution regulators on the potential impacts of proposed air pollution emissions--including phytotoxic gases and acidic...

  19. Analysing the Air: Experiences and Results of Long Term Air Pollution Monitoring in the Asia-Pacific Region Using Nuclear Analysis Techniques

    International Nuclear Information System (INIS)

    Atanacio, Armand J.

    2015-01-01

    Particles present in the air we breathe are now recognized as a major cause of disease and premature death globally. In fact, a World Health Organization (WHO) report recently ranked ambient air pollution as one of the top 10 causes of death in the world, directly contributing annually to around 3.7 million premature deaths worldwide 65% of which occurred in the Asian region alone. Airborne particulate matter (PM) can be generated from natural sources such as windblown soil or coastal sea-spray; as well as anthropogenic sources such as power stations, industry, vehicles and domestic biomass burning. At low concentration these fine pollution particles are too small to be seen by eye, but penetrate deep into our lungs and even our blood stream as our nose and throat are inefficient at filtering them out. At large concentrations, they can also have wider regional effects including reduced visibility, acid rain and even climate variability. The International Atomic Energy Agency (IAEA) in 2000, recognizing air pollution as a significant local, national and global challenge, initiated a collaborative air pollution study involving 14 countries across the greater Asia-pacific region from 2000 to 2015. This has amassed a database containing more than 14,000 data lines of PM mass concentration and the concentration of up to 40 elements using nuclear analytical techniques. It represents the most comprehensive and long-term airborne PM data set compiled to date for the Asia-Pacific region and as will be discussed, can be used to statistically resolve individual source fingerprints and their contributions to total air pollution using Positive Matrix Factorization (PMF). This sort of data necessary for implementing or reviewing the effectiveness of policy level changes aimed at targeted air pollution reduction. (author)

  20. Addressing Air Pollution and Greenhouse Gas Emissions in the Pan-Japan Sea Region. An Overview of Economic Instruments

    International Nuclear Information System (INIS)

    Boyle, G.; Kambu, A.

    2005-11-01

    The health and environmental impacts of fossil fuel consumption are of increasing concern to countries in the Pan-Japan Sea region, where economic growth has led to increased energy consumption in recent years. Economic instruments like green taxes and emissions-trading schemes represent important tools to help reduce air pollution and greenhouse gas (GHG) emissions in China, Japan, South Korea and Russia. Over the past several years, OECD countries have made progress in the use of economic instruments to reduce atmospheric air pollution. In Europe, new environmental taxes have been used most extensively, while in the United States market creation and emissions-trading schemes are more common. In the Pan-Japan Sea region, there has been considerable experience with pollution charge and levy systems, including the longstanding Japanese sulfur levy and the Russian and Chinese pollution charge systems. Generally, tax and emissions-trading systems are only beginning to emerge in the region although China has been experimenting with SOx emissions-trading schemes for several years now and South Korea and Japan have already begun experimenting with CO2 emissions-trading schemes. Only Japan has seriously looked at a carbon tax to curb GHG emissions among the four countries while direct subsidies for cleaner technologies have been adopted in the different Pan-Japan Sea countries. The costs and benefits of different economic instruments like taxes, charges, emissions-trading schemes and subsidies vary from case to case because they all have to be financially feasible, rest on informed and competent public institutions and perform effectively in local market and economic conditions. On top of all these is the fact that their overall success depends on their political acceptability. Given the experience of Pan-Japan Sea countries with economic instruments so far vis-a-vis the lessons learned in OECD countries and the nature of current and emerging pollution problems in Pan

  1. Observation of regional air pollutant transport between the megacity Beijing and the North China Plain

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-11-01

    Full Text Available Megacities have strong interactions with the surrounding regions through transport of air pollutants. It has been frequently addressed that the air quality of Beijing is influenced by the influx of air pollutants from the North China Plain (NCP. Estimations of air pollutant cross-boundary transport between Beijing and the NCP are important for air quality management. However, evaluation of cross-boundary transport using long-term observations is very limited. Using the observational results of the gaseous pollutants SO2, NO, NO2, O3, and CO from August 2006 to October 2008 at the Yufa site, a cross-boundary site between the megacity Beijing and the NCP, together with meteorological parameters, we explored a method for evaluating the transport flux intensities at Yufa, as part of the “Campaign of Air Quality Research in Beijing and Surrounding Region 2006–2008” (CAREBeijing 2006–2008. The hourly mean ± SD (median concentration of SO2, NO, NO2, NOx, O3, Ox, and CO was 15 ± 16 (9 ppb, 12 ± 25 (3 ppb, 24 ± 19 (20 ppb, 36 ± 39 (23 ppb, 28 ± 27 (21 ppb, 52 ± 24 (45 ppb, and 1.6 ± 1.4 (1.2 ppm during the observation period, respectively. The bivariate polar plots showed the dependence of pollutant concentrations on both wind speed and wind direction, and thus inferred their dominant transport directions. Surface flux intensity calculations further demonstrated the regional transport influence of Beijing and the NCP on Yufa. The net surface transport flux intensity (mean ± SD of SO2, NO, NO2, NOx, O3, Ox, and CO was 6.2 ± 89.5, −4.3 ± 29.5, −0.6 ± 72.3, −4.9 ± 93.0, 14.7 ± 187.8, 14.8 ± 234.9, and 70 ± 2830 µg s−1 m−2 during the observation period, respectively. For SO2, CO, O3, and Ox the surface flux intensities from the NCP to Yufa surpassed those from Beijing to Yufa in all seasons except winter, with the strongest net fluxes largely

  2. Time-Spatial Convergence of Air Pollution and Regional Economic Growth in China

    Directory of Open Access Journals (Sweden)

    Zhengning Pu

    2017-07-01

    Full Text Available The haze pollution caused by fine particulate matter (PM 2.5 emissions has become one of the most crucial topics of sustainable environmental governance in China. Using the average concentration of PM 2.5 in China’s key cities from 2000 to 2012, as measured by aerosol optical depth, this study tested the time-spatial convergence of fine particulate matter pollution in China. The results show that there is a trend of absolute convergence between timespan and China’s PM 2.5 emissions. At the same time, in the geographic areas divided by the east, middle and west zones, there is a significant difference in the convergence rate of PM 2.5. The growth rate of PM 2.5 in the middle and west zones is significantly higher than that of the east zone. The correlation test between regional economic growth and PM 2.5 emissions suggest a significant positive N-type Environmental Kuznets Curve (EKC after considering spatial lag and spatial error effect.

  3. Agricultural and forest means to reduce damage caused by air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Knabe, W

    1971-01-01

    Agriculture and forestry may try to reduce damage caused by air pollution by the following means: under heavy pollution sensitive crops can be replaced by more tolerant ones through changes in land use; at lower grades of air pollution the kind of land use may be maintained by planting relatively tolerant species and strains; breeding of plant material which is more tolerant than the present average is necessary to meet future requirements; certain damage may be decreased by soil amelioration, fertilization and watering of plants; the impact of certain air pollutants can be reduced by planting shelterbelts and by silvicultural means which affect the structure of a stand; and a strict control of insect pests and plant diseases is of special value in air polluted regions. Any special case has to be handled individually. It has to be asked whether one of the means mentioned above will be successful and in what area it should be applied. Several methods for the delineation of polluted regions are listed. Agricultural and forest means to adapt to a given situation of air pollution is gaining increasing importance because of the large areas with a medium high level of pollution, even if the general prospects of success are not regarded as very high.

  4. Investigation of the dispersion of airborne pollutants in the Upper Rhine and Lake Constance region

    International Nuclear Information System (INIS)

    Fiedler, F.; Adrian, G.; Kohler, M.

    1991-01-01

    The aim of the project is to calculate the regional flow and propagation conditions using the expensive three-dimensional meteorological model, the ''Karlsruher Atmosphaerisches Mesoskaliges Modell'' (KAMM) in order to derive the immission and the deposition of the conducting substance of pollutant matter, i.e., sulphur dioxide. In this report, calculations of the flowing field are described for the region Upper Rhine - Lake of Constance''. In the last part, the concentration fields for SO 2 are calculated for the region for typical large-area atmospheric conditions with disclosure of sources. An appraising discussion of the results concludes this work. (orig.) [de

  5. Regional transport and dilution during high-pollution episodes in southern France: Summary of findings from the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE)

    Science.gov (United States)

    Drobinski, P.; SaïD, F.; Ancellet, G.; Arteta, J.; Augustin, P.; Bastin, S.; Brut, A.; Caccia, J. L.; Campistron, B.; Cautenet, S.; Colette, A.; Coll, I.; Corsmeier, U.; Cros, B.; Dabas, A.; Delbarre, H.; Dufour, A.; Durand, P.; GuéNard, V.; Hasel, M.; Kalthoff, N.; Kottmeier, C.; Lasry, F.; Lemonsu, A.; Lohou, F.; Masson, V.; Menut, L.; Moppert, C.; Peuch, V. H.; Puygrenier, V.; Reitebuch, O.; Vautard, R.

    2007-07-01

    In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation.

  6. Regional transport and dilution during high-pollution episodes in southern France: Summary of findings from the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE)

    International Nuclear Information System (INIS)

    Drobinski, P.; Menut, L.; Ancellet, G.; Bastin, S.; Colette, A.; Said, F.; Brut, A.; Campistron, B.; Cros, B.; Durand, P.; Lohou, F.; Moppert, C.; Puygrenier, V.; Arteta, J.; Cautenet, S.; Augustin, P.; Delbarre, H.; Caccia, J.L.; Guenard, V.; Coll, I.; Lasry, F.; Corsmeier, U.; Hasel, M.; Kalthoff, N.; Kottmeier, C.; Dabas, A.; Dufour, A.; Lemonsu, A.; Masson, V.; Peuch, V.H.; Reitebuch, O.; Vautard, R.

    2007-01-01

    In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation. (authors)

  7. Regional transport and dilution during high-pollution episodes in southern France: Summary of findings from the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE)

    Energy Technology Data Exchange (ETDEWEB)

    Drobinski, P.; Menut, L. [Ecole Polytechnique, Inst Pierre Simon Laplace, Laboratoire de Meteorologie Dynamique, F-91128 Palaiseau (France); Ancellet, G.; Bastin, S.; Colette, A. [Universite Pierre et Marie Curie, Institut Pierre Simon Laplace, Service d' aeronomie, 4 place Jussieu, F-75252 Paris, (France); Said, F.; Brut, A.; Campistron, B.; Cros, B.; Durand, P.; Lohou, F.; Moppert, C.; Puygrenier, V. [Univ Toulouse, Lab Aerol, F-31400 Toulouse, (France); Arteta, J.; Cautenet, S. [Univ Clermont Ferrand, Lab Meteorol Phys, F-63174 Aubiere, (France); Augustin, P.; Delbarre, H. [Univ Littoral Cote d' Opale, Lab Physicochim Atmosphere, F-59140 Dunkerque, (France); Caccia, J.L.; Guenard, V. [Univ Toulon and Var, Lab Sondages Electromagnet Environm Terr, F-83957 La Garde, (France); Coll, I.; Lasry, F. [Fac Sci and Technol, Lab Interuniv Syst Atmospher, F-94010 Creteil, (France); Corsmeier, U.; Hasel, M.; Kalthoff, N.; Kottmeier, C. [Univ Karlsruhe, Inst Meteorol and Klimaforsch, Forschungszentrum, D-76133 Karlsruhe, (Germany); Dabas, A.; Dufour, A.; Lemonsu, A.; Masson, V.; Peuch, V.H. [Ctr Natl Rech Meteorol, F-31057 Toulouse, (France); Reitebuch, O. [Deutsch Zentrum Luft and Raumfahrt, Inst Atmospher Phys, D-82234 Wessling, (Germany); Vautard, R. [Inst Pierre Simon Laplace, CEA Saclay, Lab Sci Climat and Environm, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation. (authors)

  8. Relevance of the EU Structural Funds’ Allocation to the Needs of Combating Air Pollution in Poland. Analysis of the Operational Programmes of Regions Threatened With Critical Air Pollution from Distributed Energy Sources

    Science.gov (United States)

    Włodarski, Marcin; Martyniuk-Pęczek, Justyna

    2017-10-01

    Recent years, the European Environmental Agency, has been reporting air quality parameters in Poland, as the poorest among all the EU countries. Despite of adoption of the EU legislation on energy efficiency and energy performance of buildings, existing legal solutions occur insufficient in reducing air pollution in Polish regions. Lack of an effective schemes supporting complex thermal renovation of buildings, exchange of inefficient boilers, developing district heating based on clean and renewable fuels results in severe health problems and 40 000 of premature deaths related to air pollution. Availability of the EU structural funds may become a tremendous opportunity, especially for the residential sector, to conduct a massive scale modernization. Nevertheless, lack of a coordinated action involving all levels of governance may put the opportunity at risk. The article aims to answer the question on the readiness of the regional governments to effectively implement energy efficiency measures mitigating the problem of air pollution. Second objective is to analyse whether the Regional Operational Programmes allocating the ERDF funds to support specific development needs of the regions, have been constructed in a way that properly addresses the problems related to energy performance of residential buildings.

  9. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    Science.gov (United States)

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  10. Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival

    Science.gov (United States)

    Wang, Chuan; Huang, Xiao-Feng; Zhu, Qiao; Cao, Li-Ming; Zhang, Bin; He, Ling-Yan

    2017-07-01

    The emission of pollutants is extremely reduced during the annual Chinese Spring Festival (SF) in Shenzhen, China. During the SF, traffic flow drops by ˜ 50 % and the industrial plants are almost entirely shut down in Shenzhen. To characterize the variation in ambient air pollutants due to the Spring Festival effect, various gaseous and particulate pollutants were measured in real time in urban Shenzhen over three consecutive winters (2014-2016). The results indicate that the concentrations of NOx, volatile organic compounds (VOCs), black carbon (BC), primary organic aerosols, chloride, and nitrate in submicron aerosols decrease by 50-80 % during SF periods relative to non-Spring Festival periods, regardless of meteorological conditions. This decrease suggests that these pollutants are mostly emitted or secondarily formed from urban local emissions. The concentration variation in species mostly from regional or natural sources, however, is found to be much less, such as for bulk fine particulate matter (PM2. 5). More detailed analysis of the Spring Festival effect reveals an urgent need to reduce emissions of SO2 and VOCs on a regional scale rather than on an urban scale to reduce urban PM2. 5 in Shenzhen, which can also be useful as a reference for other megacities in China.

  11. Acromegaly Is More Severe in Patients With AHR or AIP Gene Variants Living in Highly Polluted Areas.

    Science.gov (United States)

    Cannavo, S; Ragonese, M; Puglisi, S; Romeo, P D; Torre, M L; Alibrandi, A; Scaroni, C; Occhi, G; Ceccato, F; Regazzo, D; De Menis, E; Sartorato, P; Arnaldi, G; Trementino, L; Trimarchi, F; Ferrau, F

    2016-04-01

    An increased prevalence of acromegaly was found some years ago in a highly polluted area in North-Eastern Sicily, where high concentration of nonmethane hydrocarbons, volatile organic compounds, and cadmium was found. Aryl hydrocarbon receptor (AHR) pathway has a key role in detoxification of these compounds and in tumorigenesis. We correlated the occurrence of AHR and/or AHR-interacting protein (AIP) gene variants with acromegaly severity according to pollution exposition. This was an observational, perspective study conducted over 7 years in four Italian referral centers for pituitary diseases in which 210 patients with acromegaly were enrolled between 2008 and 2015. Genetic screening of patients for AHR and AIP variants. Clinical, biochemical, and radiological data of patients with and without AIP and/or AHR gene variants, living in polluted (high-risk for health, [HR]) or nonpolluted (NP) areas of five Italian regions were evaluated and compared. Among the 23 patients from HR areas, nine showed AHR or AIP variants. Mean IGF-I levels and pituitary tumor diameter were significantly higher in these nine patients (HR/VAR+) than in the other 14 (HR/VAR−) and in the 187 from NP areas (44 NP/VAR+). Somatostatin analogs significantly decreased mean GH and IGF-I levels in patients from NP areas and in HR/VAR− (GH P acromegaly, increased pituitary tumor size, and somatostatin analog resistance in patients living in HR areas.

  12. Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK.

    Science.gov (United States)

    Rothwell, James J; Evans, Martin G; Lindsay, John B; Allott, Timothy E H

    2007-01-01

    Increasingly, within-site and regional comparisons of peatland lead pollution have been undertaken using the inventory approach. The peatlands of the Peak District, southern Pennines, UK, have received significant atmospheric inputs of lead over the last few hundred years. A multi-core study at three peatland sites in the Peak District demonstrates significant within-site spatial variability in industrial lead pollution. Stochastic simulations reveal that 15 peat cores are required to calculate reliable lead inventories at the within-site and within-region scale for this highly polluted area of the southern Pennines. Within-site variability in lead pollution is dominant at the within-region scale. The study demonstrates that significant errors may be associated with peatland lead inventories at sites where only a single peat core has been used to calculate an inventory. Meaningful comparisons of lead inventories at the regional or global scale can only be made if the within-site variability of lead pollution has been quantified reliably.

  13. Modeling of atmospheric pollution at the regional scale: application to the Esquif campaign; Modelisation a l'echelle regionale de la pollution atmospherique: application a la campagne Esquif

    Energy Technology Data Exchange (ETDEWEB)

    Sarrat, C.

    2003-06-01

    The Esquif experimental campaign (study and simulation of air quality in Ile-de-France (Paris region, France)) took place between 1998 and 2000 with the aim of better understanding the dynamical and chemical processes leading to atmospheric pollution peaks in Paris. The construction of a rich and diversified database (12 periods of intensive monitoring (PIM)) has been implemented with the aim of improving the existing chemical-transport models in general and air quality forecasting models in particular. In the framework of this study, the data collected during PIM 2 and 6 were used for the validation and analysis of situations of intensive pollution, simulated with the meso-scale numerical meteorological and chemical model Meso-NHC. The validation of both the dynamic fields (temperature and potential temperature, wind, height of the boundary layer) and the chemical fields (mainly O{sub 3}, NO{sub x}, NO{sub y}, PAN, isoprene) of the model allows to discuss some of the parameters of the model such as the initialization, the boundary forcing and the resolution. Then, a study of the dynamical processes allows to analyze the formation and reinforcement of the pollution conditions. Stress is put on the interaction of the regional scale processes with the photochemical pollution events. In this framework, the dynamical-chemical interaction processes are analyzed in detail, in particular when pollution levels are reinforced by the intrusion of residual ozone inside the convective boundary layer, dragged by the turbulence. Also, the impact of the urban hot island and of the urban wind on the redistribution of primary and secondary pollutants are considered. An analysis of the impact of hydrocarbons of biogenic origin on the ozone concentrations with respect to the temperature and to the presence of primary compounds has been performed for the PIM 2 and 6 of the Esquif campaign. (J.S.)

  14. Health risk assessment of China’s main air pollutants

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2017-02-01

    Full Text Available Abstract Background With the rapid development of China’s economy, air pollution has attracted public concern because of its harmful effects on health. Methods The source apportioning of air pollution, the spatial distribution characteristics, and the relationship between atmospheric contamination, and the risk of exposure were explored. The in situ daily concentrations of the principal air pollutants (PM2.5, PM10, SO2, NO2, CO and O3 were obtained from 188 main cities with many continuous air-monitoring stations across China (2014 and 2015. Results The results indicate positive correlations between PM2.5 and SO2 (R 2 = 0.395/0.404, P  0.05 for both 2014 and 2015. Additionally, a significant relationship between SO2, NO2, and CO was discovered using regression analysis (P < 0.0001, indicating that the origin of air pollutants is likely to be vehicle exhaust, coal consumption, and biomass open-burning. For the spatial pattern of air pollutants, we found that the highest concentration of SO2, NO2, and CO were mainly distributed in north China (Beijing-Tianjin-Hebei regions, Shandong, Shanxi and Henan provinces, part of Xinjiang and central Inner Mongolia (2014 and 2015. Conclusions The highest concentration and risk of PM2.5 was observed in the Beijing–Tianjin–Hebei economic belts, and Shandong, Henan, Shanxi, Hubei and Anhui provinces. Nevertheless, the highest concentration of O3 was irregularly distributed in most areas of China. A high-risk distribution of PM10, SO2 and NO2 was also observed in these regions, with the high risk of PM10 and NO2 observed in the Hebei and Shandong province, and high-risk of PM10 in Urumchi. The high-risk of NO2 distributed in Beijing-Yangtze River Delta region-Pearl River Delta region-central. Although atmospheric contamination slightly improved in 2015 compared to 2014, humanity faces the challenge of reducing the environmental and public health effects of air pollution by altering the present

  15. Contributions of Pakistan in the IAEA/RCA/UNDP regional project on management of marine coastal environment and its pollution

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Mashiatullah, A.; Fazil, M.; Ahmad, E.; Tasneem, M.A.; Khan, H.A.; Sajjad, M.I.

    2002-01-01

    The International Atomic Energy Agency (IAEA), Vienna, launched a five years (duration: 1998 - 2002) Joint Project on 'Better Management of the Environment and Industrial Growth Through Isotope and Radiation Technology (RAS/97/030)' in co-operation with the RCA (Regional Co-operative Agreement) office, Vienna, and United Nations Development Programme (UNDP). The Marine Sub-project entitled 'Management of Marine Coastal Environment and its Pollution (RAS/8/083)' is 'Output 1.2' of this joint project. Pakistan is very actively participating in activities of the IAEA/RCA/UNDP Marine Sub-Project that were planned in two Project Formulation Meetings (PFMs) held at Manila, Philippines, during 1998. In Pakistan, various activities of the national marine pollution project are being administered by the nuclear institute namely, Pakistan Institute of Nuclear Science and Technology (PINSTECH), in collaboration with national end user institutions. To-date, Pakistan has significantly contributed in this project, both at national level and at RCA regional level. This paper highlights the progress and some accomplishments of Pakistan, up to the year 2001, for marine pollution studies related to the IAEA/RCA regional marine sub project. (author)

  16. Assurance of risk assessment and protection distant transportation and fall out of pollutants under large anthropogenic on nuclear power stations due to mountainous regional peculiarities

    International Nuclear Information System (INIS)

    Tsitskishvili, M.; Tsitskishvili, N.; Kordzakhia, G.; Valiaev, A.; Kazakov, S.; Aitmatov, I.; Petrov, V.

    2005-01-01

    Full text: All types of industrial activities require the norms of protection, assessment of corresponding risks to preserve the pollution and degradation of corresponding areas. To make available the sustainable development of the country the risk assessment of possible accidents on the big enterprises is foreseen that provides preparedness of the country and possibility of the prevention measures and mitigation of the accidents. While big anthropogenic accidents in mountainous countries - the main paths for transportation of the pollution are the rivers and sea basins. Due to overpopulation of these areas assessment of the pollution risks are very important. Problem of forecast and distant atmospheric transportation of the toxic products and corresponding risk assessment under anthropogenic damages is multi-component and depends on meteorological conditions and frontier layer of atmosphere. Generally, for real relief and basic fields the problem is not solved yet especially taking into consideration the big level and shortest time of the process being of the natural anthropogenic accidents in mountainous regions. Usually, geostropic drawing for determined relief is used. Integral differential equations taking into consideration a physical- chemical characteristic of the pollutants, their transformations, fall out, coagulations, washing out and self rectification in general cannot be solved. In last time essential success in formalization of above-mentioned equations i.e. carrying out some simplifications give possibility to establish necessary modeling on the basis of numerical calculations. In the most general case forecasting model is essentially limited because of bulky size of accounting schemes and necessity of powerful and high-speed computers. Main ways of achievement of further success is connected with so called 'seasonal typification' with applied a priory calculation of probabilistic picture of the pollutants concentration fields, as well as

  17. Buddha's birthplace (Lumbini, Nepal) is polluted

    Science.gov (United States)

    Rupakheti, Dipesh; Adhikary, Bhupesh; Praveen Puppala, Siva; Kang, Shichang; Naja, Manish; Panday, Arnico; Zhang, Qianggong; Rupakheti, Maheswar; Mahata, Khadak; Lawrence, Mark

    2016-04-01

    combustion. Given the high pollution levels, there is a clear and urgent need for setting up a network of long-term air quality monitoring stations in the greater Lumbini region. This is a special place which demands special attention to safeguard the valuable world heritage properties as well as public health and agro-ecosystems in the region from impacts of air pollution.

  18. The effects of global changes upon regional ozone pollution in the United States

    Science.gov (United States)

    Chen, J.; Avise, J.; Lamb, B.; Salathé, E.; Mass, C.; Guenther, A.; Wiedinmyer, C.; Lamarque, J.-F.; O'Neill, S.; McKenzie, D.; Larkin, N.

    2009-02-01

    A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model) and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2), coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model) and CMAQ (Community Multi-scale Air Quality model). The modeling system was applied for two 10-year simulations: 1990-1999 as a present-day base case and 2045-2054 as a future case. For the current decade, the daily maximum 8-h moving average (DM8H) ozone mixing ratio distributions for spring, summer and fall showed good agreement with observations. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC) A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC) due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO+NO2) and VOC (volatile organic carbon) emissions increased by approximately 6% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045-2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%). The changes were higher in the spring and winter (25%) and smaller in the summer (17%). The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard at least once a year increased by 38%. In addition, the length of the ozone season was projected to increase with

  19. Anthropogenic Air Pollution Observed Near Dust Source Regions in Northwestern China During Springtime 2008

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing; hide

    2010-01-01

    Trace gases and aerosols were measured in Zhangye (39.082degN, 100.276degE, 1460 m a.s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO:265 ppb; SO2:3.4 ppb; NO(*y): 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 micro-g/cu m) and light scattering (159/Mm at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3/Mm at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 mn) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to Pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NO(y), NO(y)/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(exp -3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(exp -3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.

  20. Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution.

    Science.gov (United States)

    Longman, Jack; Veres, Daniel; Finsinger, Walter; Ersek, Vasile

    2018-05-29

    The Balkans are considered the birthplace of mineral resource exploitation and metalworking in Europe. However, since knowledge of the timing and extent of metallurgy in southeastern Europe is largely constrained by discontinuous archaeological findings, the long-term environmental impact of past mineral resource exploitation is not fully understood. Here, we present a high-resolution and continuous geochemical record from a peat bog in western Serbia, providing a clear indication of the extent and magnitude of environmental pollution in this region, and a context in which to place archaeological findings. We observe initial evidence of anthropogenic lead (Pb) pollution during the earliest part of the Bronze Age [∼3,600 years before Common Era (BCE)], the earliest such evidence documented in European environmental records. A steady, almost linear increase in Pb concentration after 600 BCE, until ∼1,600 CE is observed, documenting the development in both sophistication and extent of southeastern European metallurgical activity throughout Antiquity and the medieval period. This provides an alternative view on the history of mineral exploitation in Europe, with metal-related pollution not ceasing at the fall of the western Roman Empire, as was the case in western Europe. Further comparison with other Pb pollution records indicates the amount of Pb deposited in the Balkans during the medieval period was, if not greater, at least similar to records located close to western European mining regions, suggestive of the key role the Balkans have played in mineral resource exploitation in Europe over the last 5,600 years. Copyright © 2018 the Author(s). Published by PNAS.

  1. Status of the petroleum pollution in the Wider Caribbean Sea

    Energy Technology Data Exchange (ETDEWEB)

    Botello, Alfonso V; Villanueva F, Susana [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias del Mar y Limnologia

    1996-07-01

    In 1976, the IOC-UNESCO and UNEP convened a meeting in Port of Spain to analyze the marine pollution problems in the region and noted that petroleum pollution was of region-wide concern and recommended to initiate a research and monitoring program to determine the severity of the problem and monitor its effects. Actually, the Wider Caribbean is potentially one of the largest oil producing areas in the world. Major production sites include Louisiana and Texas; USA; the Bay of Campeche, Mexico; Lake Maracaibo, Venezuela; and the Gulf of Paria, Trinidad; all which are classified as production accident high-risk zones. Main sources of petroleum pollution in the Wider Caribbean are: production, exploitation, transportation, urban and municipal discharges, refining and chemical wastes, normal loading operations and accidental spills. About 5 million of barrels are transported daily in the Caribbean, thus generating an intense tanker traffic. It has been estimated that oil discharges from tank washings within the Wider Caribbean could be as high as 7 millions barrels/year. The results of the CARIPOL Regional Programme conducted between 1980-1987 pointed out that a significant levels of petroleum pollution exists throughout the Wider Caribbean and include serious tar contamination of windward exposed beaches, high levels of floating tar within the major currents system and very high levels of dissolved/dispersed hydrocarbons in surface waters. Major effects of this petroleum pollution include: high tar level on many beaches that either prevent recreational use or require very expensive clean-up operations, distress and death to marine life and responses in the enzyme systems of marine organisms that have been correlated with declines in reproductive success. Finally the presence of polycyclic aromatic hydrocarbons in tissues of important economic species have been reported with its potential carcinogenic effects. (author)

  2. Status of the petroleum pollution in the Wider Caribbean Sea

    International Nuclear Information System (INIS)

    Botello, Alfonso V.; Villanueva F, Susana

    1996-01-01

    In 1976, the IOC-UNESCO and UNEP convened a meeting in Port of Spain to analyze the marine pollution problems in the region and noted that petroleum pollution was of region-wide concern and recommended to initiate a research and monitoring program to determine the severity of the problem and monitor its effects. Actually, the Wider Caribbean is potentially one of the largest oil producing areas in the world. Major production sites include Louisiana and Texas; USA; the Bay of Campeche, Mexico; Lake Maracaibo, Venezuela; and the Gulf of Paria, Trinidad; all which are classified as production accident high-risk zones. Main sources of petroleum pollution in the Wider Caribbean are: production, exploitation, transportation, urban and municipal discharges, refining and chemical wastes, normal loading operations and accidental spills. About 5 million of barrels are transported daily in the Caribbean, thus generating an intense tanker traffic. It has been estimated that oil discharges from tank washings within the Wider Caribbean could be as high as 7 millions barrels/year. The results of the CARIPOL Regional Programme conducted between 1980-1987 pointed out that a significant levels of petroleum pollution exists throughout the Wider Caribbean and include serious tar contamination of windward exposed beaches, high levels of floating tar within the major currents system and very high levels of dissolved/dispersed hydrocarbons in surface waters. Major effects of this petroleum pollution include: high tar level on many beaches that either prevent recreational use or require very expensive clean-up operations, distress and death to marine life and responses in the enzyme systems of marine organisms that have been correlated with declines in reproductive success. Finally the presence of polycyclic aromatic hydrocarbons in tissues of important economic species have been reported with its potential carcinogenic effects. (author)

  3. Decomposing Air Pollutant Emissions in Asia: Determinants and Projections

    OpenAIRE

    Rafaj, P.; Amann, M.

    2018-01-01

    High levels of air pollution pose an urgent social and public health challenge in many Asian regions. This study evaluates the role of key factors that determined the changes in emission levels in China, India and Japan over the past 25 years. While emissions of air pollutants have been declining in Japan since the 1990s, China and India have experienced a rapid growth in pollution levels in recent years. Around 2005, control measures for sulfur emissions started to deliver expected reduction...

  4. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    elements which constitute an important class of pollutants. Such pollutants ... spheric transport processes. In rural regions ... response of redox potential: those which are fixed in reducing conditions ... pollution in urban areas of northern Britain in the eighteenth .... adjusting the desired flame condition, the instrument is cali-.

  5. Reference methods and materials. A programme of support for regional and global marine pollution assessments

    International Nuclear Information System (INIS)

    1990-01-01

    This document describes a programme of comprehensive support for regional and global marine pollution assessments developed by the United Nations Environment Programme (UNEP) in cooperation with the International Atomic Energy Agency (IAEA) and the Intergovernmental Oceanographic Commission (IOC) and with the collaboration of a number of other United Nations Specialized agencies including the Food and Agriculture Organisation (FAO), the World Meteorological Organisation (WMO), the World Health Organisation (WHO) and the International Maritime Organisation (IMO). Two of the principle components of this programme, Reference Methods and Reference materials are given special attention in this document and a full Reference Method catalogue is included, giving details of over 80 methods currently available or in an advanced stage of preparation and testing. It is important that these methods are seen as a functional component of a much wider strategy necessary for assuring good quality and intercomparable data for regional and global pollution monitoring and the user is encouraged to read this document carefully before employing Reference Methods and Reference Materials in his/her laboratory. 3 figs

  6. Measures to maintain the forests in the regions of North Rhine Westphalia suffering from pollution

    Energy Technology Data Exchange (ETDEWEB)

    Rost, F

    1972-01-01

    Air pollution in the steadily expanding industrial and residential areas on the Rhine and Ruhr presents great problems for forestry. According to the data at present available, the polluted area in the Rhine-Ruhr region alone amounts to about 5200 sq km, i.e. about 15% of the total area of North Rhine/Westphalia. The Ruhr region proper is already extremely short of forests, but on the northern and southern sides the forest still covers comparatively large areas with differing site conditions. Different growth regions adjoin here. This is shown by the fact that on the northern edge of the Ruhr the Scots pine, and on the southern edge the spruce, have been the important species for forestry before the natural broadleaved species (oak and beech). These conifers can no longer be managed on normal rotations, without accepting considerable losses in increment. In order to maintain the forest, the regional government has therefore developed a program to promote non-state forestry, which will put the private and communal forest owners into a position to collaborate in the task of maintaining the forest by conversion, afforestation and tending. The focal point of this program is the recommendation to plant only three species relatively resistant to fumes. In the field of forestry research, special attention has been paid to provenance research, breeding for resistance, and differentiated demarcation of damaged stands by interpretation of false-color aerial photographs.

  7. The role of technology and policy in mitigating regional nitrogen pollution

    International Nuclear Information System (INIS)

    Gu Baojing; Zhu Yimei; Chang Jie; Liu Dong; Min Yong; Ge Ying; Peng Changhui; Luo Weidong; Howarth, Robert W

    2011-01-01

    Human activity greatly influences nitrogen (N) pollution in urbanized and adjacent areas. We comprehensively studied the N cycling in an urban-rural complex system, the Greater Hangzhou Area (GHA) in southeastern China. Our results indicated that subsurface N accumulation doubled, riverine N export tripled and atmospheric N pollutants increased 2.5 times within the GHA from 1980-2004. Agriculture was the largest N pollution source to air and water before 2000, whereas industry and human living gradually became the primary N pollution sources with the socioeconomic development. Based on the sensitivity analysis, we developed a scenario analysis to quantify the effects of technology and policy on environmental N dynamics. The fertilization reduction scenario suggested that the groundwater N pollution could decrease by 17% with less than a 5% reduction in crop production; the N effluent standard revision scenario led to a surface water N pollution reduction of 45%; the constructed wetlands implementation scenario could reduce surface water pollution by 43%-64%. Lastly, the technological improvement scenario mitigated atmospheric N pollution by 65%. Technologies play a key role in atmospheric N pollution control, policies mainly contribute to groundwater N pollution control, while technology and policy both work on surface water N mitigation within an urban-rural complex.

  8. Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2016-01-01

    Full Text Available Multivariate statistical methods including cluster analysis (CA, discriminant analysis (DA and component analysis/factor analysis (PCA/FA, were applied to explore the surface water quality datasets including 14 parameters at 28 sites of the Eastern Poyang Lake Basin, Jiangxi Province of China, from January 2012 to April 2015, characterize spatiotemporal variation in pollution and identify potential pollution sources. The 28 sampling stations were divided into two periods (wet season and dry season and two regions (low pollution and high pollution, respectively, using hierarchical CA method. Four parameters (temperature, pH, ammonia-nitrogen (NH4-N, and total nitrogen (TN were identified using DA to distinguish temporal groups with close to 97.86% correct assignations. Again using DA, five parameters (pH, chemical oxygen demand (COD, TN, Fluoride (F, and Sulphide (S led to 93.75% correct assignations for distinguishing spatial groups. Five potential pollution sources including nutrients pollution, oxygen consuming organic pollution, fluorine chemical pollution, heavy metals pollution and natural pollution, were identified using PCA/FA techniques for both the low pollution region and the high pollution region. Heavy metals (Cuprum (Cu, chromium (Cr and Zinc (Zn, fluoride and sulfide are of particular concern in the study region because of many open-pit copper mines such as Dexing Copper Mine. Results obtained from this study offer a reasonable classification scheme for low-cost monitoring networks. The results also inform understanding of spatio-temporal variation in water quality as these topics relate to water resources management.

  9. Interactions Between Asian Air Pollution and Monsoon System: South Asia (ROSES-2014 ACMAP)

    Science.gov (United States)

    Pan, Xiaohua; Chin, Mian; Tao, Zhining; Kim, Dongchul; Bian, Huisheng; Kucsera, Tom

    2018-01-01

    Asia's rapid economic growth over the past several decades has brought a remarkable increase in air pollution levels in that region. High concentrations of aerosols (also known as particulate matter or PM) from pollution sources pose major health hazards to half of the world population in Asia including South Asia. How do pollution and dust aerosols regulate the monsoon circulation and rainfall via scattering and absorbing solar radiation, changing the atmospheric heating rates, and modifying the cloud properties? We conducted a series of regional model experiments with NASA-Unified Weather Research and Forecast (NUWRF) regional model with coupled aerosol-chemistry-radiation-microphysics processes over South Asia for winter, pre-monsoon, and monsoon seasons to address this question. This study investigates the worsening air quality problem in South Asia by focusing on the interactions between pollution and South Asian monsoon, not merely focusing on the increase of pollutant emissions.

  10. Biomarkers in an invasive fish species, Oreochromis niloticus, to assess the effects of pollution in a highly degraded Brazilian River.

    Science.gov (United States)

    Linde-Arias, Ana Rosa; Inácio, Alan F; de Alburquerque, Carla; Freire, Marina M; Moreira, Josino C

    2008-07-25

    Paraiba do Sul watershed is one of the most important Brazilian water bodies (5.5 million people depend on the river). It is in a critical environmental situation, polluted by industrial discharges, non-treated urban wastes, and pesticides, which have had cumulatively negative effects. This study analyzes the effects of pollution, with a biomarker approach, by using the invasive fish species, Oreochromis niloticus, as a sentinel species. The approach comprehends a general biomarker of the health of individual fish, the condition factor, a biomarker of genotoxicity, the micronuclei test; and specific biomarkers of contaminant exposure such as metallothionein (MT) and acetylcholinesterase (AChE) activity. The results revealed different effects in fish from diverse locations with varying degrees of pollution. Low AChE activities were found in fish from the region with strong agriculture activity, showing the effects of pesticides. Fish from an industrialized and heavily environmentally degraded area presented high levels of MT and low AChE activities, indicating an intricate polluted condition. It is noteworthy that fish located just upstream of the main water-treatment plant of the metropolitan area Rio de Janeiro presented high levels of MT, showing to be affected by metals. This can be an alert to public health officials. O. niloticus has proven a suitable sentinel species to assess the effects of pollutions in an aquatic system with a complex and serious polluted situation. The present study also shows the usefulness of integrating a set of biomarkers to define the exposure and the effects of anthropogenic inputs among impacted and reference sites in this water body.

  11. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China.

    Science.gov (United States)

    Zeng, X T; Tong, Y F; Cui, L; Kong, X M; Sheng, Y N; Chen, L; Li, Y P

    2017-07-15

    In recent years, increscent emissions in the city of Beijing due to expanded population, accelerated industrialization and inter-regional pollutant transportation have led to hazardous atmospheric pollution issues. Although a number of anthropogenic control measures have been put into use, frequent/severe haze events have still challenged regional governments. In this study, a hybrid population-production-pollution nexus model (PPP) is proposed for air pollution management and air quality planning (AMP) with the aim to coordinate human activities and environmental protection. A fuzzy-stochastic mixed quadratic programming method (FSQ) is developed and introduced into a PPP for tackling atmospheric pollution issues with uncertainties. Based on the contribution of an index of population-production-pollution, a hybrid PPP-based AMP model that considers employment structure, industrial layout pattern, production mode, pollutant purification efficiency and a pollution mitigation scheme have been applied in Beijing. Results of the adjustment of employment structure, pollution mitigation scheme, and green gross domestic product under various environmental regulation scenarios are obtained and analyzed. This study can facilitate the identification of optimized policies for alleviating population-production-emission conflict in the study region, as well as ameliorating the hazardous air pollution crisis at an urban level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Integrated solutions for urban runoff pollution control in Brazilian metropolitan regions.

    Science.gov (United States)

    Morihama, A C D; Amaro, C; Tominaga, E N S; Yazaki, L F O L; Pereira, M C S; Porto, M F A; Mukai, P; Lucci, R M

    2012-01-01

    One of the most important causes for poor water quality in urban rivers in Brazil is the low collection efficiency of the sewer system due to unforeseen interconnections with the stormwater drainage system. Since the beginning of the 20th century, Brazilian cities have adopted separate systems for sanitary sewers and stormwater runoff. Gradually these two systems became interconnected. A major challenge faced today by water managers in Brazil is to find efficient and low cost solutions to deal with this mixed system. The current situation poses an important threat to the improvement of the water quality in urban rivers and lakes. This article presents an evaluation of the water quality parameters and the diffuse pollution loads during rain events in the Pinheiros River, a tributary of the Tietê River in São Paulo. It also presents different types of integrated solutions for reducing the pollution impact of combined systems, based on the European experience in urban water management. An evaluation of their performance and a comparison with the separate system used in most Brazilian cities is also presented. The study is based on an extensive water quality monitoring program that was developed for a special investigation in the Pinheiros River and lasted 2.5 years. Samples were collected on a daily basis and water quality variables were analyzed on a daily, weekly or monthly basis. Two hundred water quality variables were monitored at 53 sampling points. During rain events, additional monitoring was carried out using an automated sampler. Pinheiros River is one of the most important rivers in the São Paulo Metropolitan Region and it is also a heavily polluted one.

  13. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE model v1.0

    Directory of Open Access Journals (Sweden)

    C. B. Zapata

    2018-04-01

    Full Text Available The California Regional Multisector Air Quality Emissions (CA-REMARQUE model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU scenario and an 80 % GHG reduction (GHG-Step scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors that are consistent with the future GHG scenarios for the following economic sectors: (i on-road, (ii rail and off-road, (iii marine and aviation, (iv residential and commercial, (v electricity generation, and (vi biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG

  14. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

    Science.gov (United States)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs

  15. Antarctic-Wide Array of High-Resolution Ice Core Records Reveals Pervasive Lead Pollution Began in 1889 and Persists Today

    Science.gov (United States)

    McConnell, J. R.; Maselli, O. J.; Sigl, M.; Vallelonga, P.; Neumann, Thomas Allen; Anschutz, H.; Bales, R. C.; Curran, M. A. J.; Das, S. B.; Edwards, R.; hide

    2014-01-01

    Interior Antarctica is among the most remote places on Earth and was thought to be beyond the reach of human impacts when Amundsen and Scott raced to the South Pole in 1911. Here we show detailed measurements from an extensive array of 16 ice cores quantifying substantial toxic heavy metal lead pollution at South Pole and throughout Antarctica by 1889 - beating polar explorers by more than 22 years. Unlike the Arctic where lead pollution peaked in the 1970s, lead pollution in Antarctica was as high in the early 20th century as at any time since industrialization. The similar timing and magnitude of changes in lead deposition across Antarctica, as well as the characteristic isotopic signature of Broken Hill lead found throughout the continent, suggest that this single emission source in southern Australia was responsible for the introduction of lead pollution into Antarctica at the end of the 19th century and remains a significant source today. An estimated 660 t of industrial lead have been deposited over Antarctica during the past 130 years as a result of mid-latitude industrial emissions, with regional-to-global scale circulation likely modulating aerosol concentrations. Despite abatement efforts, significant lead pollution in Antarctica persists into the 21st century.

  16. Levels and predictors of persistent organic pollutants in an adult population from four Spanish regions

    International Nuclear Information System (INIS)

    Fernández-Rodríguez, M.; Arrebola, J.P.; Artacho-Cordón, F.; Amaya, E.; Aragones, N.; Llorca, J.; Perez-Gomez, B.

    2015-01-01

    This research aimed to assess serum concentrations of a group of persistent organic pollutants (POPs) in a sample of adults recruited in four different regions from Spain and to assess socio-demographic, dietary, and lifestyle predictors of the exposure. The study population comprised 312 healthy adults selected from among controls recruited in the MCC-Spain multicase-control study. Study variables were collected using standardized questionnaires, and pollutants were analyzed by means of gas chromatography with electron capture detection. Multivariable analyses were performed to identify predictors of log-transformed pollutant concentrations, using combined backward and forward stepwise multiple linear regression models. Detection rates ranged from 89.1% (hexachlorobenzene, HCB) to 93.6% (Polychlorinated biphenyl-153 [PCB-153]); p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) showed the highest median concentrations (1.04 ng/ml), while HCB showed the lowest (0.24 ng/ml). In the multivariable models, age was positively associated with HCB, p,p′-DDE, and PCB-180. BMI was associated positively with p,p′-DDE but negatively with PCB-138. Total accumulated time residing in an urban area was positively associated with PCB-153 concentrations. The women showed higher HCB and lower p,p′-DDE concentrations versus the men. Notably, POP exposure in our study population was inversely associated with the breastfeeding received by participants and with the number of pregnancies of their mothers but was not related to the participants' history of breastfeeding their children or parity. Smoking was negatively associated with HCB and PCB-153 concentrations. Consumption of fatty foods, including blue fish, was in general positively associated with POP levels. Although POP environmental levels are declining worldwide, there is a need for the continuous monitoring of human exposure in the general population. The results of the present study confirm previous findings and point

  17. Levels and predictors of persistent organic pollutants in an adult population from four Spanish regions

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Rodríguez, M., E-mail: mafero@ugr.es [Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada (Spain); Arrebola, J.P., E-mail: jparrebola@ugr.es [Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada (Spain); Oncology Unit, Virgen de las Nieves University Hospital, Granada (Spain); Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid (Spain); Artacho-Cordón, F.; Amaya, E. [Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada (Spain); Aragones, N. [Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid (Spain); Cancer Epidemiology Unit, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid (Spain); Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Majadahonda, Madrid (Spain); Llorca, J. [Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid (Spain); Universidad de Cantabria-IDIVAL, Santander (Spain); Perez-Gomez, B. [Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid (Spain); Cancer Epidemiology Unit, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid (Spain); Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Majadahonda, Madrid (Spain); and others

    2015-12-15

    This research aimed to assess serum concentrations of a group of persistent organic pollutants (POPs) in a sample of adults recruited in four different regions from Spain and to assess socio-demographic, dietary, and lifestyle predictors of the exposure. The study population comprised 312 healthy adults selected from among controls recruited in the MCC-Spain multicase-control study. Study variables were collected using standardized questionnaires, and pollutants were analyzed by means of gas chromatography with electron capture detection. Multivariable analyses were performed to identify predictors of log-transformed pollutant concentrations, using combined backward and forward stepwise multiple linear regression models. Detection rates ranged from 89.1% (hexachlorobenzene, HCB) to 93.6% (Polychlorinated biphenyl-153 [PCB-153]); p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) showed the highest median concentrations (1.04 ng/ml), while HCB showed the lowest (0.24 ng/ml). In the multivariable models, age was positively associated with HCB, p,p′-DDE, and PCB-180. BMI was associated positively with p,p′-DDE but negatively with PCB-138. Total accumulated time residing in an urban area was positively associated with PCB-153 concentrations. The women showed higher HCB and lower p,p′-DDE concentrations versus the men. Notably, POP exposure in our study population was inversely associated with the breastfeeding received by participants and with the number of pregnancies of their mothers but was not related to the participants' history of breastfeeding their children or parity. Smoking was negatively associated with HCB and PCB-153 concentrations. Consumption of fatty foods, including blue fish, was in general positively associated with POP levels. Although POP environmental levels are declining worldwide, there is a need for the continuous monitoring of human exposure in the general population. The results of the present study confirm previous findings and

  18. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation

    Science.gov (United States)

    van Zelm, Rosalie; Preiss, Philipp; van Goethem, Thomas; Van Dingenen, Rita; Huijbregts, Mark

    2016-06-01

    We developed regionalized characterization factors (CFs) for human health damage from particulate matter (PM2.5) and ozone, and for damage to vegetation from ozone, at the global scale. These factors can be used in the impact assessment phase of an environmental life cycle assessment. CFs express the overall damage of a certain pollutant per unit of emission of a precursor, i.e. primary PM2.5, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs). The global chemical transport model TM5 was used to calculate intake fractions of PM2.5 and ozone for 56 world regions covering the whole globe. Furthermore, region-specific effect and damage factors were derived, using mortality rates, background concentrations and years of life lost. The emission-weighted world average CF for primary PM2.5 emissions is 629 yr kton-1, varying up to 3 orders of magnitude over the regions. Larger CFs were obtained for emissions in central Asia and Europe, and smaller factors in Australia and South America. The world average CFs for PM2.5 from secondary aerosols, i.e. NOx, NH3, and SO2, is 67.2 to 183.4 yr kton-1. We found that the CFs for ozone human health damage are 2-4 orders of magnitude lower compared to the CFs for damage due to primary PM2.5 and PM2.5 precursor emissions. Human health damage due to the priority air pollutants considered in this study was 1.7·10-2 yr capita-1 worldwide in year 2010, with primary PM2.5 emissions as the main contributor (62%). The emission-weighted world average CF for ecosystem damage due to ozone was 2.5 km2 yr kton-1 for NMVOCs and 8.7 m2 yr kg-1 for NOx emissions, varying 2-3 orders of magnitude over the regions. Ecosystem damage due to the priority air pollutants considered in this study was 1.6·10-4 km2 capita-1 worldwide in 2010, with NOx as the main contributor (72%). The spatial range in CFs stresses the importance of including spatial variation in life cycle impact assessment of

  19. Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK

    International Nuclear Information System (INIS)

    Rothwell, James J.; Evans, Martin G.; Lindsay, John B.; Allott, Timothy E.H.

    2007-01-01

    Increasingly, within-site and regional comparisons of peatland lead pollution have been undertaken using the inventory approach. The peatlands of the Peak District, southern Pennines, UK, have received significant atmospheric inputs of lead over the last few hundred years. A multi-core study at three peatland sites in the Peak District demonstrates significant within-site spatial variability in industrial lead pollution. Stochastic simulations reveal that 15 peat cores are required to calculate reliable lead inventories at the within-site and within-region scale for this highly polluted area of the southern Pennines. Within-site variability in lead pollution is dominant at the within-region scale. The study demonstrates that significant errors may be associated with peatland lead inventories at sites where only a single peat core has been used to calculate an inventory. Meaningful comparisons of lead inventories at the regional or global scale can only be made if the within-site variability of lead pollution has been quantified reliably. - Multiple peat cores are required for accurate peatland Pb inventories

  20. Spatial-Temporal Hotspot Pattern Analysis of Provincial Environmental Pollution Incidents and Related Regional Sustainable Management in China in the Period 1995–2012

    Directory of Open Access Journals (Sweden)

    Lei Ding

    2015-10-01

    Full Text Available Spatial-temporal hotspot pattern analysis of environmental pollution incidents provides an indispensable source of information for the further development of incident prevention measures. In this study, the spatial-temporal patterns of environmental pollution incidents in China in the period of 1995–2012 were analyzed, using the Spatial Getis-Ord statistic and an Improved Prediction Accuracy Index (IAPI. The results show that, in this period, the occurrence of environmental incidents exhibited a dynamic growth pattern but then dropped and continued to drop after the year 2006, which was considered a crucial turning point. Not coincidentally, this corresponds to the year when the State Council issued its National Environmental Emergency Plan, and following the examination of major incidents, special actions were taken to strengthen the control of incidents and emergency responses. The results from Getis-Ord General G statistical analysis show that the spatial agglomeration phenomenon was statistically significant after 1999 and that the level of spatial agglomeration was rising, while the Getis-Ord Gi* statistical analysis reveals that environmental pollution incidents were mainly agglomerated in the Pan Yangtze River Delta and Pan Pearl River Delta regions. Accordingly, the spatial-temporal hotspot pattern based on the IAPI values at the provincial scale could be categorized into: stable hotspots, unstable hotspots, and cold-spot areas. The stable hotspots category was further divided into three subtypes: industrial distribution type, industrial transfer type, and extensive economic growth type. Finally, the corresponding measures for sustainable management were proposed: stable hotspots were classified as essential regions requiring the immediate prevention and control of environmental pollution incidents; unstable hotspots were characterized by their need for ongoing and continual prevention measures, and cold-spots were those areas that

  1. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Chen, Tao; Chang, Qingrui; Clevers, J.G.P.W.; Kooistra, L.

    2015-01-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool. In a case study, 76 soil samples were collected and their reflectance spectra were used to estimate cadmium (Cd) concentration by partial least squares regression (PLSR) and back propagation neural network (BPNN). To reduce noise, six pre-treatments were compared, in which orthogonal signal correction (OSC) was first used in soil Cd estimation. Spectral analysis and geostatistics were combined to identify Cd pollution hotspots. Results showed that Cd was accumulated in topsoil at the study area. OSC can effectively remove irrelevant information to improve prediction accuracy. More accurate estimation was achieved by applying a BPNN. Soil Cd pollution hotspots could be identified by interpolating the predicted values obtained from spectral estimates. - Highlights: • Soil reflectance spectroscopy provides a promising tool for detecting soil contaminants. • Orthogonal signal correction efficiently extracted information from noisy spectra. • Back propagation neural network achieved a more accurate estimation for soil Cd. • Soil Cd pollution hotspots could be identified by interpolating the predicted Cd. - Combining spectral analysis and geostatistics can provide a rapid method for identifying the pollution hotspot of soil heavy metal at regional scale.

  2. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization.

    Science.gov (United States)

    Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa

    2013-09-01

    Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.

  3. Source apportionment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Puranik, V.D.

    2007-05-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually find their way into various environmental compartments. One of the main issues of environmental pollution is the chemical composition of aerosols and their sources. In spite of all the efforts a considerable part of the atmospheric aerosol mass is still not accounted for. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report an attempt has been made to collect different size fractionated ambient aerosols and to quantify the percentage contribution of each size fraction to the total aerosol mass. Subsequently, an effort has been made for chemical characterization (inorganic, organic and carbon content) of these particulate matter using different analytical techniques. The comprehensive data set on chemical characterization of particulate matter thus generated is being used with receptor modeling techniques to identify the possible sources contributing to the observed concentrations of the measured pollutants. The use of this comprehensive data set in receptor modeling has been helpful in distinguishing the source types in a better way. Receptor modeling techniques are powerful tools that can be used to locate sources of pollutants to the atmosphere. The major advantage of the receptor models is that actual ambient data are used to apportion source contributions, negating the need for dispersion calculations. Pollution sources affecting the sampling site were statistically identified using varimax rotated factor analysis of

  4. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    Science.gov (United States)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords

  5. The birthweight toll of mining pollution: evidence from the most contaminated mine site in the Andean region.

    Science.gov (United States)

    Arrieta, A; Guillen, J

    2018-04-26

    To assess the effect of mining pollution on birthweight. A retrospective before-and-after study with an untreated comparison group. La Oroya, a mining town in the Peruvian Andes, considered the most contaminated town in the Andean region. All pregnant women who delivered in the social security healthcare system in years 2005, 2006, 2008 and 2009. A total of 214 983 births records were used, 957 from La Oroya and 214 026 from the rest of the country. A difference-in-difference estimation is used to assess the effect of mining pollution on birthweight before and after two business policy changes: a partial environmental improvement and a subsequent closure of smelter operations in La Oroya. Birthweight was compared with a group not affected by the environmental changes in La Oroya. Birthweight in grams. A steep reduction in mining pollution due to the closure of smelter operations in La Oroya showed an increased birthweight of 71.6 g after controlling for socio-economic and medical characteristics. None of the environmental improvements prior to the closure had a statistically significant effect on birthweight. Mining pollution in La Oroya had a negative impact on birthweight. Partial environmental improvements were not enough to improve birthweight. Only after the closure of all mining and smelter operations in La Oroya was a significant gain in birthweight shown. The closure of the most contaminated mine site in the Andean region increased birthweight by 72 g. © 2018 Royal College of Obstetricians and Gynaecologists.

  6. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA)

    Science.gov (United States)

    Beier, Colin M.; Caputo, Jesse; Lawrence, Gregory B.; Sullivan, Timothy J.

    2017-01-01

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global ‘hot-spot’ of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils – an estimated loss of ∼ $10,000 ha−1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact – relative to the effects of surficial geology and till depth – on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8–5.5, but are costly and limited in scope. Although any estimates of the monetary ‘damages’ of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition.

  7. Identifying the impacts of climate on the regional transport of haze pollution and inter-cities correspondence within the Yangtze River Delta

    International Nuclear Information System (INIS)

    Xiao, Hang; Huang, Zhongwen; Zhang, Jingjing; Zhang, Huiling; Chen, Jinsheng; Zhang, Han; Tong, Lei

    2017-01-01

    Regional haze pollution has become an important environmental issue in the Yangtze River Delta (YRD) region. Regional transport and inter-influence of PM 2.5 among cities occurs frequently as a result of the subtropical monsoon climate. Backward trajectory statistics indicated that a north wind prevailed from October to March, while a southeast wind predominated from May to September. The temporal relationships of carbon and nitrogen isotopes among cities were dependent on the prevailing wind direction. Regional PM 2.5 pollution was confirmed in the YRD region by means of significant correlations and similar cyclical characteristics of PM 2.5 among Lin'an, Ningbo, Nanjing and Shanghai. Granger causality tests of the time series of PM 2.5 values indicate that the regional transport of haze pollutants is governed by prevailing wind direction, as the PM 2.5 concentrations from upwind area cities generally influence that of the downwind cities. Furthermore, stronger correlation coefficients were identified according to monsoon pathways. To clarify the impacts of the monsoon climate, a vector autoregressive (VAR) model was introduced. Variance decomposition in the VAR model also indicated that the upwind area cities contributed significantly to PM 2.5 in the downwind area cities. Finally, we attempted to predict daily PM 2.5 concentrations in each city based on the VAR model using data from all cities and obtained fairly reasonable predictions. These indicate that statistical methods of the Granger causality test and VAR model have the potential to evaluate inter-influence and the relative contribution of PM 2.5 among cities, and to predict PM 2.5 concentrations as well. - Graphical abstract: The above figures clearly show that the variation of PM 2.5 concentrations at a city could be Granger cause for the corresponding changes at the other cities. Panel A and B represent the statistically significant correlations during winter time for 2014 and 2015 respectively

  8. Lung cancer risk and pollution in an industrial region of Northern Spain: a hospital-based case-control study.

    Science.gov (United States)

    López-Cima, María Felicitas; García-Pérez, Javier; Pérez-Gómez, Beatriz; Aragonés, Nuria; López-Abente, Gonzalo; Tardón, Adonina; Pollán, Marina

    2011-01-25

    Asturias, an Autonomous Region in Northern Spain with a large industrial area, registers high lung cancer incidence and mortality. While this excess risk of lung cancer might be partially attributable to smoking habit and occupational exposure, the role of industrial and urban pollution also needs to be assessed. The objective was to ascertain the possible effect of air pollution, both urban and industrial, on lung cancer risk in Asturias. This was a hospital-based case-control study covering 626 lung cancer patients and 626 controls recruited in Asturias and matched by ethnicity, hospital, age, and sex. Distances from the respective participants' residential locations to industrial facilities and city centers were computed. Using logistic regression, odds ratios (ORs) and 95% confidence intervals (95%CIs) for categories of distance to urban and industrial pollution sources were calculated, with adjustment for sex, age, hospital area, tobacco consumption, family history of cancer, and occupation. Whereas individuals living near industries displayed an excess risk of lung cancer (OR = 1.49; 95%CI = 0.93-2.39), which attained statistical significance for small cell carcinomas (OR = 2.23; 95%CI = 1.01-4.92), residents in urban areas showed a statistically significant increased risk for adenocarcinoma (OR = 1.92; 95%CI = 1.09-3.38). In the Gijon health area, residents in the urban area registered a statistically significant increased risk of lung cancer (OR = 2.17; 95%CI = 1.25-3.76), whereas in the Aviles health area, no differences in risk were found by area of exposure. This study provides further evidence that air pollution is a moderate risk factor for lung cancer.

  9. Atmospheric pollution biomonitoring of the Sao Paulo metropolitan region using epiphytic lichens; Uso de liquens epifiticos no biomonitoramento da poluicao atmosferica da regiao metropolitana de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Fuga, Alessandra

    2006-07-01

    Due to the increasing problems of atmospheric pollution in the Sao Paulo metropolitan region that affect the environment and human health the application of biomonitoring methodologies using cosmopolite organisms has now become relevant. Biomonitoring is a method to evaluate the response of live organisms to pollution. This method offers advantages such as reduced costs, efficient monitoring of large geographic areas and accumulated pollutants over a large period in which low concentrations of chemicals elements in the environment can be evaluated. In the present study, neutron activation analysis method was applied to determine elements accumulated in Canoparmelia texana lichenized fungi. Samples were collected in two distinct areas: Carlos Botelho (PECB) and Intervales (PEI) State Parks that are considered as non-polluted areas and that belong to the Atlantic Forest - SP ecosystem; and Sao Paulo city metropolitan region in sites near automatic monitoring stations of the Environmental Protection Agency of the State of Sao Paulo (CETESB). The lichens collected from the bark of the trees were properly treated, and irradiated with neutrons from IEA-R1 nuclear reactor along with synthetic standards of elements. The precision and the accuracy of the results were evaluated by the analyses of IAEA-336 LICHEN and Mixed Polish Herbs (INCT -MPH-2) certified reference materials. The results obtained for these materials were in accordance with the certified values and presented good precision with variation coefficients ranging from 0.9 to 14.6%. Results obtained for lichens showed that elements As, Co, Cr, Cs, La, Mo, Sb, Sc, Se and U are present at ng g{sup -1} levels, Ba, Br, Cl, Fe, K, Mn, Na, Rb and Zn at {mu}g g{sup -1} and Ca at mg g{sup -1}. By applying cluster and discriminant analyses to the results for the lichen samples from areas with different levels of pollution, the sampling sites were grouped according to their chemical similarities and their elemental

  10. The Effects of Combustion Parameters on Pollutant Emissions in a Porous Burner

    Directory of Open Access Journals (Sweden)

    Negin Moallemi Khiavi

    2014-06-01

    Full Text Available This paper reports a two-dimensional numerical prediction of premixed methane/air combustion in inert porous media. The two dimensional Navier-stokes equations, the two separate energy equations for solid and gas and conservation equations for chemical species are solved using finite volume method based on SIMPLE algorithm. The burner under study is a rectangular one with two different regions. First region is a preheating zone (low porosity matrix that followed by the actual combustion region (high porosity matrix. For simulating the chemical reactions, skeletal mechanism (26 species and 77 reactions is used. For studying the pollutant emissions in this porous burner, the effects of porous matrix properties, excess air ratio and inlet velocity are studied. The predicted gas temperature contour and pollutant formations are in good agreement with the available experimental data. The results indicate that the downstream of the burner should be constructed from materials with high conductivity, high convective heat transfer coefficient and high porosity in order to decrease the CO and NO emissions. Also, with increasing the inlet velocity of gas mixture and the excess air ratio, the pollutant emissions are decreased.

  11. Photochemical smog pollution in the Bangkok Metropolitan Region of Thailand in relation to O 3 precursor concentrations and meteorological conditions

    Science.gov (United States)

    Zhang, B.-N.; Kim Oanh, N. T.

    Analysis of photochemical pollution was done using the available 5-yr monitoring data (1996-2000) from 11 monitoring stations in Bangkok and 5 stations in other surrounding provinces, i.e. the Bangkok Metropolitan Region (BMR). Status and trend of O 3 as well as the monthly and diurnal variations were analyzed in relation to the local meteorological conditions as well as the regional transport of pollutants associated with the monsoon. The O 3 in Bangkok was found to be typical for the polluted urban areas with a lower concentration in the city center, especially at curbside stations, and higher concentration at the downwind locations. O 3 pollution was highest in 1997 with the maximum hourly average of 370 ppbv and the total hours exceeding the national hourly O 3 standard (100 ppbv) of 314 h, which is most likely related to the strong El Niño and the forest fire in Southeast Asia in this year. Meteorology-unadjusted trend shows a slight increase in O 3 from 1998 to 2000. Local emission and photochemistry are mainly responsible for O 3 episodes in the BMR. Seasonal fluctuations of O 3, however, were found to relate to the regional transport associated with the Asian monsoon. Highest O 3 pollution was found in the period from January to April (winter and local summer) and lowest during mid-rainy season, August. The O 3 increase isopleth diagram was constructed which shows that O 3 production in BMR is effective when the NO x/NMHC ratio is in the range of 0.04-0.15 with optimum ratio of around 0.07. Seasonal variations in NO x/NMHC ratios are consistent with the O 3 variations, i.e., optimum in summer (0.07), followed by winter (0.05), and the lowest in rainy season (0.03).

  12. Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor.

    Science.gov (United States)

    Figueiredo, A M G; Nogueira, C A; Saiki, M; Milian, F M; Domingos, M

    2007-01-01

    Tillandsia usneoides L. is an epiphytic bromeliad plant able to absorb water and nutrients directly from the air. For this reason this species was selected to carry out a monitoring study of air pollution in the metropolitan region of São Paulo, Brazil. Five consecutive transplantation experiments (8 weeks each) were performed in 10 sites of the city, submitted to different sources of air pollution (industrial, vehicular), using plants collected from an unpolluted area. After exposure, trace metals were analyzed in the plant by instrumental neutron activation analysis. Traffic-related elements such as Zn and Ba presented high concentrations in exposure sites near to heavy traffic avenues (cars, buses and trucks) and may be associated to vehicular sources. For Zn and Co the highest contents were related to industrial zones and can be associated to the presence of anthropogenic emission sources. The rare earth elements, Fe and Rb, probably have soil particles as main source.

  13. Air pollution and health impact emboided in supply chains in China

    Science.gov (United States)

    Zhang, Q.

    2016-12-01

    Close economic linkage and consequent air pollutant emissions embodied in trade among Chinese regions have been widely discussed. Yet the related health impacts across regions remain unaddressed. Here, we integrated four state-of-the-art models to for the first time estimate PM2.5 related premature deaths along the supply chains across seven Chinese regions, and we quantified cross impacts among receptors, producers, assemblers, consumers, and sectors. We find that, due to the atmospheric transport, in 2010, 33% of national premature deaths were caused by emissions released in other regions, and the trans-boundary effect is more significant from north to south and from east to west. From a supply chain perspective, 38% of national premature deaths were associated with production for in a region to supply other regions' consumption. For instance, 20-35% of premature deaths related to the highly developed east coastal regions' consumption were caused by emissions in the central and western regions. Sectorally, similar to the widely concerned heavy industries, direct emissions from agricultural and residential activities together contributed near half of national total premature deaths, posing a great challenge for recent pollution reduction action, which are mainly focusing on industrial restructuring. Our results emphasize the importance of regarding pollution related premature deaths in China as a national systemic problem, instead of targeting the pollution producers (region or sector) in isolation. Multilateral and multi-sector cooperation is in urgent need to improve the national atmospheric environment.

  14. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015

    Directory of Open Access Journals (Sweden)

    N. A. Krotkov

    2016-04-01

    Full Text Available The Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite has been providing global observations of the ozone layer and key atmospheric pollutant gases, such as nitrogen dioxide (NO2 and sulfur dioxide (SO2, since October 2004. The data products from the same instrument provide consistent spatial and temporal coverage and permit the study of anthropogenic and natural emissions on local-to-global scales. In this paper, we examine changes in SO2 and NO2 over some of the world's most polluted industrialized regions during the first decade of OMI observations. In terms of regional pollution changes, we see both upward and downward trends, sometimes in opposite directions for NO2 and SO2, for different study areas. The trends are, for the most part, associated with economic and/or technological changes in energy use, as well as regional regulatory policies. Over the eastern US, both NO2 and SO2 levels decreased dramatically from 2005 to 2015, by more than 40 and 80 %, respectively, as a result of both technological improvements and stricter regulations of emissions. OMI confirmed large reductions in SO2 over eastern Europe's largest coal-fired power plants after installation of flue gas desulfurization devices. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend has been observed since 2011, with about a 50 % reduction in 2012–2015, due to an economic slowdown and government efforts to restrain emissions from the power and industrial sectors. In contrast, India's SO2 and NO2 levels from coal power plants and smelters are growing at a fast pace, increasing by more than 100 and 50 %, respectively, from 2005 to 2015. Several SO2 hot spots observed over the Persian Gulf are probably related to oil and gas operations and indicate a possible underestimation of emissions from these sources in bottom-up emission inventories. Overall, OMI observations have proved valuable in documenting rapid changes in air

  15. Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology

    Science.gov (United States)

    Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.

    2017-06-01

    Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.

  16. Oil pollution of the sea – global and regional aspects

    Directory of Open Access Journals (Sweden)

    Marek Begányi

    2006-10-01

    Full Text Available Transport of oil is very important for the world economic and industry. Oil is transported to the countries and states, where it is transformed for the industry. The oil transport is connected with some advantages and disadvantages. One of the disadvantages is the pollution of seas. The pollution is very dangerous for everything and everyone. Transport companies of oil must stop the pollution with new, safety and effective transport technologies.

  17. Lead (Pb) Air Pollution

    Science.gov (United States)

    ... Regional Offices Labs and Research Centers Lead (Pb) Air Pollution Contact Us Share As a result of EPA's ... and protect aquatic and terrestrial ecosystems. Lead (Pb) Air Pollution Basic Information How does lead get in the ...

  18. An Overview of Air Pollution Problem in Megacities and City Clusters in China

    Science.gov (United States)

    Tang, X.

    2007-05-01

    China has experienced the rapid economic growth in last twenty years. City clusters, which consist of one or several mega cities in close vicinity and many satellite cities and towns, are playing a leading role in Chinese economic growth, owing to their collective economic capacity and interdependency. However, accompanying with the economic boom, population growth and increased energy consumption, the air quality has been degrading in the past two decades. Air pollution in those areas is characterized by concurrent occurrence of high concentrations of multiple primary pollutants leading to form complex secondary pollution problem. After decades long efforts to control air pollution, both the government and scientific communities have realized that to control regional scale air pollution, regional efforts are needed. Field experiments covering the regions like Pearl River Delta region and Beijing City with surrounding areas are critical to understand the chemical and physical processes leading to the formation of regional scale air pollution. In order to formulate policy suggestions for air quality attainment during 2008 Beijing Olympic game and to propose objectives of air quality attainment in 2010 in Beijing, CAREBEIJING (Campaigns of Air Quality Research in Beijing and Surrounding Region) was organized by Peking University in 2006 to learn current air pollution situation of the region, and to identify the transport and transformation processes that lead to the impact of the surrounding area on air quality in Beijing. Same as the purpose for understanding the chemical and physical processes happened in regional scale, the fall and summer campaigns in 2004 and 2006 were carried out in Pearl River Delta. More than 16 domestic and foreign institutions were involved in these campaigns. The background, current status, problems, and some results of these campaigns will be introduced in this presentation.

  19. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  20. Carry-over of pollutants from the atmosphere and on forest soil pollution in the ARGE ALP and ALPEN-ADRIA countries. Proceedings

    International Nuclear Information System (INIS)

    Kirchner, M.; Roesel, K.; Reuther, M.

    1993-11-01

    The issue of the pollution of the alpine region, especially the mountain forest ecosystem which, - together with some additional subject matters and issues constitutes the main issue of this conference and is, of course an ecological and economical issue of some urgency and an area where several problems compete with one another. This ecosystem is very sensitive both in terms of location and climate and in terms of the additional loads created by road traffic, tourism, agriculture and forestry. High precipitation in form of rain, fog and snow in the alpine regions means that air-borne pollutants from other areas can be deposited in large amounts. Higher mountaineous regions are especially prone to the generation of photooxidants which represent another potential of stress and danger for the forests. (orig./EW) [de

  1. Assessment of atmospheric metallic pollution in the metropolitan region of Sao Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor

    International Nuclear Information System (INIS)

    Nogueira, Claudio Ailton

    2006-01-01

    Tillandsia usneoides L. is an epiphytic bromeliad that lives on trees or other kinds of inert substrates, absorbing water and nutrients directly from the environment without roots. Due to its morphological and physiological characteristics, this species accumulates the pollutants present in the atmosphere. In the present work, Tillandsia usneoides was used as a bio monitor of metal atmospheric pollution in Sao Paulo, Brazil, which is the biggest city in South America with a population of 18 million inhabitants and a strong industrial activity. The urban area is polluted by industrial emissions but, according to the Environmental Protection Agency of the State of Sao Paulo (CETESB), the governmental agency of air quality control, regularly occurring emissions from about 7.8 million motor vehicles provide the principal source of air pollution. The Tillandsia samples were collected from an unpolluted area and were exposed bimonthly in 10 sites of the city with different pollution levels and in a control site. After exposure, trace metals were analyzed in the plant by instrumental neutron activation analysis and ICP-MS (Pb, Cd, Co, Cu, Ni, Sb e V). The results of the investigation showed a notable concentration of Co and Ni in the plants exposed in an industrial area where there is a metal processing plant, which produces about 600 tons/year of Co and 16,000 tons/year of Ni. Copper and chromium were equally distributed in industrial regions and in sites near heavy traffic avenues, suggesting that these elements can be associated to both vehicular and industrial sources. A high accumulation of Cd in the plant exposed in industrial areas indicates industrial activities as the main source of this element. For Pb, no evident sources could be identified so far as it was spread evenly along the monitoring sites. Traffic-related elements such as Zn, Ba and Sb presented high concentrations in plants exposed in sites near to heavy traffic avenues (cars, buses and trucks) and

  2. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  3. Nitrate-driven urban haze pollution during summertime over the North China Plain

    Science.gov (United States)

    Li, Haiyan; Zhang, Qiang; Zheng, Bo; Chen, Chunrong; Wu, Nana; Guo, Hongyu; Zhang, Yuxuan; Zheng, Yixuan; Li, Xin; He, Kebin

    2018-04-01

    Compared to the severe winter haze episodes in the North China Plain (NCP), haze pollution during summertime has drawn little public attention. In this study, we present the highly time-resolved chemical composition of submicron particles (PM1) measured in Beijing and Xinxiang in the NCP region during summertime to evaluate the driving factors of aerosol pollution. During the campaign periods (30 June to 27 July 2015, for Beijing and 8 to 25 June 2017, for Xinxiang), the average PM1 concentrations were 35.0 and 64.2 µg m-3 in Beijing and Xinxiang. Pollution episodes characterized with largely enhanced nitrate concentrations were observed at both sites. In contrast to the slightly decreased mass fractions of sulfate, semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA) in PM1, nitrate displayed a significantly enhanced contribution with the aggravation of aerosol pollution, highlighting the importance of nitrate formation as the driving force of haze evolution in summer. Rapid nitrate production mainly occurred after midnight, with a higher formation rate than that of sulfate, SV-OOA, or LV-OOA. Based on observation measurements and thermodynamic modeling, high ammonia emissions in the NCP region favored the high nitrate production in summer. Nighttime nitrate formation through heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) enhanced with the development of haze pollution. In addition, air masses from surrounding polluted areas during haze episodes led to more nitrate production. Finally, atmospheric particulate nitrate data acquired by mass spectrometric techniques from various field campaigns in Asia, Europe, and North America uncovered a higher concentration and higher fraction of nitrate present in China. Although measurements in Beijing during different years demonstrate a decline in the nitrate concentration in recent years, the nitrate contribution in PM1 still remains high. To effectively alleviate

  4. Nitrate-driven urban haze pollution during summertime over the North China Plain

    Directory of Open Access Journals (Sweden)

    H. Li

    2018-04-01

    Full Text Available Compared to the severe winter haze episodes in the North China Plain (NCP, haze pollution during summertime has drawn little public attention. In this study, we present the highly time-resolved chemical composition of submicron particles (PM1 measured in Beijing and Xinxiang in the NCP region during summertime to evaluate the driving factors of aerosol pollution. During the campaign periods (30 June to 27 July 2015, for Beijing and 8 to 25 June 2017, for Xinxiang, the average PM1 concentrations were 35.0 and 64.2 µg m−3 in Beijing and Xinxiang. Pollution episodes characterized with largely enhanced nitrate concentrations were observed at both sites. In contrast to the slightly decreased mass fractions of sulfate, semivolatile oxygenated organic aerosol (SV-OOA, and low-volatility oxygenated organic aerosol (LV-OOA in PM1, nitrate displayed a significantly enhanced contribution with the aggravation of aerosol pollution, highlighting the importance of nitrate formation as the driving force of haze evolution in summer. Rapid nitrate production mainly occurred after midnight, with a higher formation rate than that of sulfate, SV-OOA, or LV-OOA. Based on observation measurements and thermodynamic modeling, high ammonia emissions in the NCP region favored the high nitrate production in summer. Nighttime nitrate formation through heterogeneous hydrolysis of dinitrogen pentoxide (N2O5 enhanced with the development of haze pollution. In addition, air masses from surrounding polluted areas during haze episodes led to more nitrate production. Finally, atmospheric particulate nitrate data acquired by mass spectrometric techniques from various field campaigns in Asia, Europe, and North America uncovered a higher concentration and higher fraction of nitrate present in China. Although measurements in Beijing during different years demonstrate a decline in the nitrate concentration in recent years, the nitrate contribution in PM1 still remains high

  5. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA).

    Science.gov (United States)

    Beier, Colin M; Caputo, Jesse; Lawrence, Gregory B; Sullivan, Timothy J

    2017-04-15

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global 'hot-spot' of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils - an estimated loss of ∼ $10,000 ha -1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact - relative to the effects of surficial geology and till depth - on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8-5.5, but are costly and limited in scope. Although any estimates of the monetary 'damages' of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Modelling of the diffusion of pollutants in the atmosphere under varying conditions in large cultivated regions

    International Nuclear Information System (INIS)

    Wueneke, C.D.; Schultz, H.

    1975-01-01

    The most important routines of a numerical code based on the particle-in-cell-method for calculating the transport and the turbulent dispersion of inert and radio-active pollutants in the atmosphere have been programmed and have been tested successfully on the CDC computer CYBER 73/76 of the Regional Computer Centre for Niedersachsen in Hanover. Compared to the Gaussian plume model such a numerical code based on the particle-in-cell-method offers several advantages for the computation of the diffusion under varying conditions in large cultivated regions. (orig.) [de

  7. Tackling the salinity-pollution nexus in coastal aquifers from arid regions using nitrate and boron isotopes.

    Science.gov (United States)

    Re, V; Sacchi, E

    2017-05-01

    Salinization and nitrate pollution are generally ascertained as the main issues affecting coastal aquifers worldwide. In arid zones, where agricultural activities also result in soil salinization, both phenomena tend to co-exist and synergically contribute to alter groundwater quality, with severe negative impacts on human populations and natural ecosystems' wellbeing. It becomes therefore necessary to understand if and to what extent integrated hydrogeochemical tools can help in distinguishing among possible different salinization and nitrate contamination origins, in order to provide adequate science-based support to local development and environmental protection. The alluvial plain of Bou-Areg (North Morocco) extends over about 190 km 2 and is separated from the Mediterranean Sea by the coastal Lagoon of Nador. Its surface is covered for more than 60% by agricultural activities, although the region has been recently concerned by urban population increase and tourism expansion. All these activities mainly rely on groundwater exploitation and at the same time are the main causes of both aquifer and lagoon water quality degradation. For this reason, it was chosen as a case study representative of the typical situation of coastal aquifers in arid zones worldwide, where a clear identification of salinization and pollution sources is fundamental for the implementation of locally oriented remedies and long-term management strategies. Results of a hydrogeochemical investigation performed between 2009 and 2011 show that the Bou-Areg aquifer presents high salinity (often exceeding 100 mg/L in TDS) due to both natural and anthropogenic processes. The area is also impacted by nitrate contamination, with concentrations generally exceeding the WHO statutory limits for drinking water (50 mg/L) and reaching up to about 300 mg/L, in both the rural and urban/peri-urban areas. The isotopic composition of dissolved nitrates (δ 15 N NO3 and δ 18 O NO ) was used to constrain

  8. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region

    Science.gov (United States)

    Song, Yiliao; Qin, Shanshan; Qu, Jiansheng; Liu, Feng

    2015-10-01

    The issue of air quality regarding PM pollution levels in China is a focus of public attention. To address that issue, to date, a series of studies is in progress, including PM monitoring programs, PM source apportionment, and the enactment of new ambient air quality index standards. However, related research concerning computer modeling for PM future trends estimation is rare, despite its significance to forecasting and early warning systems. Thereby, a study regarding deterministic and interval forecasts of PM is performed. In this study, data on hourly and 12 h-averaged air pollutants are applied to forecast PM concentrations within the Yangtze River Delta (YRD) region of China. The characteristics of PM emissions have been primarily examined and analyzed using different distribution functions. To improve the distribution fitting that is crucial for estimating PM levels, an artificial intelligence algorithm is incorporated to select the optimal parameters. Following that step, an ANF model is used to conduct deterministic forecasts of PM. With the identified distributions and deterministic forecasts, different levels of PM intervals are estimated. The results indicate that the lognormal or gamma distributions are highly representative of the recorded PM data with a goodness-of-fit R2 of approximately 0.998. Furthermore, the results of the evaluation metrics (MSE, MAPE and CP, AW) also show high accuracy within the deterministic and interval forecasts of PM, indicating that this method enables the informative and effective quantification of future PM trends.

  9. The Interplay of Climate Change and Air Pollution on Health.

    Science.gov (United States)

    Orru, H; Ebi, K L; Forsberg, B

    2017-12-01

    Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.

  10. Temporal and spatial variation of polychlorinated biphenyls (PCBs) contamination in environmental compartments of highly polluted area in Central Russia.

    Science.gov (United States)

    Malina, Natalia; Mazlova, Elena A

    2017-10-01

    This study highlights the fact that serious contamination from polychlorinated biphenyls (PCBs) still exists in Serpukhov City (Russia). The research help to determine the temporal (16- and 24-year periods) and spatial PCBs distribution in the environmental compartments of the studied region. Samples of soil, sediments, water and plants were analysed in order to establish their contamination levels. The most recent data on the Serpukhov City's soil contamination showed that the PCBs concentrations varies from 0.0009 to 1169 mg/kg depending on the sampling point and the distance from the pollution source. The temporal trends of the contamination distribution with the soil depth showed contamination migration in the upper soil layers of the highly polluted site. The high level of water pollution (11.5 μg/L) in the proximity to the contamination source and the sediments contamination (0.098-119 mg/kg) were determined, as well as the water migration pathways of the PCBs that were prevalent in the studied region. The PCB congener group (by the level of chlorination) analysis showed that heptachlorinated biphenyls were only found in the soils in close proximity to the contamination place, while biphenyls with Cl ≤ 6 were found in the soil samples downstream of the condenser plant and with Cl ≤ 5 in the soil samples upstream of the plant. The plant uptake of PCBs, even on the extremely contaminated site, was shown. In turn, this research present new knowledge necessary for the development of a contaminated territory remediation strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Marine pollution. Proceedings of an international symposium

    International Nuclear Information System (INIS)

    1999-07-01

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of Oceans. Over 400 international experts from 61 Member States and 8 international organizations delivered 114 oral presentations in plenary and parallel sessions and made 215 poster presentations. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for the studies of transport and circulation processes in the world's oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. Information on global and regional marine pollution studies programmes was also given and participants had the chance to interacts with leading experts in the field and ro discuss future trends in marine pollution studies. This TECDOC contains some of the papers submitted on issues falling within the thematic scope od the symposium which were presented in oral and poster presentations

  12. Marine pollution. Proceedings of an international symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of Oceans. Over 400 international experts from 61 Member States and 8 international organizations delivered 114 oral presentations in plenary and parallel sessions and made 215 poster presentations. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for the studies of transport and circulation processes in the world`s oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. Information on global and regional marine pollution studies programmes was also given and participants had the chance to interacts with leading experts in the field and ro discuss future trends in marine pollution studies. This TECDOC contains some of the papers submitted on issues falling within the thematic scope od the symposium which were presented in oral and poster presentations Refs, figs, tabs

  13. Assessment of metals pollution on agricultural soil surrounding a lead-zinc mining area in the Karst region of Guangxi, China.

    Science.gov (United States)

    Zhang, Chaolan; Li, Zhongyi; Yang, Weiwei; Pan, Liping; Gu, Minghua; Lee, DoKyoung

    2013-06-01

    Soil samples were collected on farmland in a lead-zinc mining area in the Karst region of Guangxi, China. The contamination of the soil by eight metals (Cd, Hg, As, Cu, Pb, Cr, Zn, Ni) was determined. Among all these metals, Cd is the most serious pollutant in this area. Zn, Hg as well asPb can also be measured at high levels, which may affect the crop production. All other metals contributed marginally to the overall soil contamination. Besides the evaluation of single metals, the Nemerow synthetic index indicated that the soil is not suitable for agricultural use.

  14. Phisiological and biochemical characteristics of protein and lipid exchanges of maple and chestnut seeds from different regions of Dnepropetrovsk city technogenic pollution

    Directory of Open Access Journals (Sweden)

    I. O. Filonik

    2015-04-01

    Full Text Available The indexes of protein and lipid exchanges - the content of proteins, lipase activity, level of lipids and their composition, component composition of free fatty acids in the maple and chestnut seeds from several sites of Dnepropetrovsk technical pollution were investigated. The revealed figures can be used as biomarkers of anthropogenic pollution in industrial region.

  15. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    Science.gov (United States)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  16. Primary organic pollutants in New Zealand urban aerosol in winter during high PM1 episodes

    International Nuclear Information System (INIS)

    Krivacsy, Zoltan; Blazso, Marianne; Shooter, David

    2006-01-01

    In the two biggest New Zealand cities, Auckland and Christchurch, the mass concentration of the PM 1 atmospheric aerosol can exceed the 50 μg m -3 24 h health guideline in winter. This high pollution level is thought to be caused mainly by old-fashioned domestic heating systems based on wood combustion. Therefore the chemistry of the carbonaceous aerosol has been investigated in several high-pollution level urban situations in order to assess the origin of the pollution. All the high concentration organic tracers, including levoglucosan and dehydroabietic acid, were characteristic for biomass burning. The findings have confirmed via advanced chemical analytical methods that domestic heating can be the main contributor to the high level of wintertime pollution, especially in Christchurch. The results are of great importance in supporting the ambition of authorities and environmental associations to change the domestic heating regimes. - PM 1 aerosol concentrations can exceed air quality guidelines during winter in Christchurch, New Zealand

  17. Participatory measurements of individual exposure to air pollution in urban areas

    Science.gov (United States)

    Madelin, Malika; Duché, Sarah; Dupuis, Vincent

    2016-04-01

    Air pollution is a major environmental issue in urban areas. Chronic and high concentration exposure presents a health risk with cardiovascular and respiratory problems and longer term nervous, carcinogenic and endocrine problems. In addition to the estimations based on simulations of both background and regional pollution and of the pollution induced by the traffic, knowing exposure of each individual is a key issue. This exposure reflects the high variability of pollution at fine spatial and time scales, according to the proximity of emission sources and the urban morphology outside. The emergence of citizen science and the progress of miniaturized electronics, low-cost and accessible to (almost) everyone, offers new opportunities for the monitoring of air pollution, but also for the citizens' awareness of their individual exposure to air pollution. In this communication, we propose to present a participatory research project 'What is your air?' (project funded by the Île-de-France region), which aims at raising awareness on the theme of air quality, its monitoring with sensors assembled in a FabLab workshop and an online participatory mapping. Beyond the discussion on technical choices, the stages of manufacture or the sensor calibration procedures, we discuss the measurements made, in this case the fine particle concentration measurements, which are dated and georeferenced (communication via a mobile phone). They show high variability between the measurements (in part linked to the substrates, land use, traffic) and low daily contrasts. In addition to the analysis of the measurements and their comparison with the official data, we also discuss the choice of representation of information, including mapping, and therefore the message about pollution to communicate.

  18. A Unified Spatiotemporal Modeling Approach for Predicting Concentrations of Multiple Air Pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    Science.gov (United States)

    Olives, Casey; Kim, Sun-Young; Sheppard, Lianne; Sampson, Paul D.; Szpiro, Adam A.; Oron, Assaf P.; Lindström, Johan; Vedal, Sverre; Kaufman, Joel D.

    2014-01-01

    Background: Cohort studies of the relationship between air pollution exposure and chronic health effects require predictions of exposure over long periods of time. Objectives: We developed a unified modeling approach for predicting fine particulate matter, nitrogen dioxide, oxides of nitrogen, and black carbon (as measured by light absorption coefficient) in six U.S. metropolitan regions from 1999 through early 2012 as part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Methods: We obtained monitoring data from regulatory networks and supplemented those data with study-specific measurements collected from MESA Air community locations and participants’ homes. In each region, we applied a spatiotemporal model that included a long-term spatial mean, time trends with spatially varying coefficients, and a spatiotemporal residual. The mean structure was derived from a large set of geographic covariates that was reduced using partial least-squares regression. We estimated time trends from observed time series and used spatial smoothing methods to borrow strength between observations. Results: Prediction accuracy was high for most models, with cross-validation R2 (R2CV) > 0.80 at regulatory and fixed sites for most regions and pollutants. At home sites, overall R2CV ranged from 0.45 to 0.92, and temporally adjusted R2CV ranged from 0.23 to 0.92. Conclusions: This novel spatiotemporal modeling approach provides accurate fine-scale predictions in multiple regions for four pollutants. We have generated participant-specific predictions for MESA Air to investigate health effects of long-term air pollution exposures. These successes highlight modeling advances that can be adopted more widely in modern cohort studies. Citation: Keller JP, Olives C, Kim SY, Sheppard L, Sampson PD, Szpiro AA, Oron AP, Lindström J, Vedal S, Kaufman JD. 2015. A unified spatiotemporal modeling approach for predicting concentrations of multiple air pollutants in the Multi

  19. Quantifying light pollution

    International Nuclear Information System (INIS)

    Cinzano, P.; Falchi, F.

    2014-01-01

    In this paper we review new available indicators useful to quantify and monitor light pollution, defined as the alteration of the natural quantity of light in the night environment due to introduction of manmade light. With the introduction of recent radiative transfer methods for the computation of light pollution propagation, several new indicators become available. These indicators represent a primary step in light pollution quantification, beyond the bare evaluation of the night sky brightness, which is an observational effect integrated along the line of sight and thus lacking the three-dimensional information. - Highlights: • We review new available indicators useful to quantify and monitor light pollution. • These indicators are a primary step in light pollution quantification. • These indicators allow to improve light pollution mapping from a 2D to a 3D grid. • These indicators allow carrying out a tomography of light pollution. • We show an application of this technique to an Italian region

  20. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China

    Science.gov (United States)

    Sun, Tianze; Che, Huizheng; Qi, Bing; Wang, Yaqiang; Dong, Yunsheng; Xia, Xiangao; Wang, Hong; Gui, Ke; Zheng, Yu; Zhao, Hujia; Ma, Qianli; Du, Rongguang; Zhang, Xiaoye

    2018-03-01

    The climatological variation of aerosol properties and the planetary boundary layer (PBL) during 2013-2015 over the Yangtze River Delta (YRD) region were investigated by employing ground-based Micro Pulse Lidar (MPL) and CE-318 sun-photometer observations. Combining Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite products, enhanced haze pollution events affected by different types of aerosol over the YRD region were analyzed through vertical structures, spatial distributions, backward trajectories, and the potential source contribution function (PSCF) model. The results show that aerosols in the YRD are dominated by fine-mode particles, except in March. The aerosol optical depth (AOD) in June and September is higher due to high single scattering albedo (SSA) from hygroscopic growth, but it is lower in July and August due to wet deposition from precipitation. The PBL height (PBLH) is greater (means ranging from 1.23 to 1.84 km) and more variable in the warmer months of March to August, due to the stronger diurnal cycle and exchange of heat. Northern fine-mode pollutants are brought to the YRD at a height of 1.5 km. The SSA increases, blocking the radiation to the surface, and cooling the surface, thereby weakening turbulence, lowering the PBL, and in turn accelerating the accumulation of pollutants, creating a feedback to the cooling effect. Originated from the deserts in Xinjiang and Inner Mongolia, long-range transported dust masses are seen at heights of about 2 km over the YRD region with an SSA440 nm below 0.84, which heat air and raise the PBL, accelerating the diffusion of dust particles. Regional transport from biomass-burning spots to the south of the YRD region bring mixed aerosol particles at a height below 1.5 km, resulting in an SSA440 nm below 0.89. During the winter, the accumulation of the local emission layer is facilitated by stable weather conditions

  1. Regulation of Water Pollution from Hydraulic Fracturing in Horizontally-Drilled Wells in the Marcellus Shale Region, USA

    Directory of Open Access Journals (Sweden)

    Heather Hatzenbuhler

    2012-12-01

    Full Text Available Hydraulic fracturing is an industrial process used to extract fossil fuel reserves that lie deep underground. With the introduction of horizontal drilling, new commercial sources of energy have become available. Wells are drilled and injected with large quantities of water mixed with specially selected chemicals at high pressures that allow petroleum reserves to flow to the surface. While the increased economic activities and the outputs of domestic energy are welcomed, there is growing concern over negative environmental impacts from horizontal drilling in shale formations. The potential for water contamination, land destruction, air pollution, and geologic disruption has raised concerns about the merits of production activities used during extraction. This paper looks at the impacts of horizontal drilling using hydraulic fracturing on water supplies and takes a comprehensive look at legislative and regulatory approaches to mitigate environmental risks in the Marcellus shale region. The overview identifies shortcomings associated with regulatory controls by local and state governments and offers two policy suggestions to better protect waters of the region.

  2. Empirical research on the correlation between economic development and environmental pollution in natural resource abundant regions: the case of China Shaanxi province

    Science.gov (United States)

    Luo, Bo; Zhang, Jinsuo

    2018-02-01

    This paper investigates the relationship between economic development and environmental pollution in natural resource abundant regions via testing the Environmental Kuznets Curve (EKC) hypothesis by regression analysis, based on the statistical data of per capita GDP growth and environmental pollution indicators in Shaanxi Province from 1989 to 2015. The results show that the per capita GDP and environmental pollution in Shaanxi Province do not always accord with the “inverted U” Environmental Kuznets Curve, which mainly show “N” shapes; only SO2 show the “Inverted U” shapes.

  3. Identifying the impacts of climate on the regional transport of haze pollution and inter-cities correspondence within the Yangtze River Delta.

    Science.gov (United States)

    Xiao, Hang; Huang, Zhongwen; Zhang, Jingjing; Zhang, Huiling; Chen, Jinsheng; Zhang, Han; Tong, Lei

    2017-09-01

    Regional haze pollution has become an important environmental issue in the Yangtze River Delta (YRD) region. Regional transport and inter-influence of PM 2.5 among cities occurs frequently as a result of the subtropical monsoon climate. Backward trajectory statistics indicated that a north wind prevailed from October to March, while a southeast wind predominated from May to September. The temporal relationships of carbon and nitrogen isotopes among cities were dependent on the prevailing wind direction. Regional PM 2.5 pollution was confirmed in the YRD region by means of significant correlations and similar cyclical characteristics of PM 2.5 among Lin'an, Ningbo, Nanjing and Shanghai. Granger causality tests of the time series of PM 2.5 values indicate that the regional transport of haze pollutants is governed by prevailing wind direction, as the PM 2.5 concentrations from upwind area cities generally influence that of the downwind cities. Furthermore, stronger correlation coefficients were identified according to monsoon pathways. To clarify the impacts of the monsoon climate, a vector autoregressive (VAR) model was introduced. Variance decomposition in the VAR model also indicated that the upwind area cities contributed significantly to PM 2.5 in the downwind area cities. Finally, we attempted to predict daily PM 2.5 concentrations in each city based on the VAR model using data from all cities and obtained fairly reasonable predictions. These indicate that statistical methods of the Granger causality test and VAR model have the potential to evaluate inter-influence and the relative contribution of PM 2.5 among cities, and to predict PM 2.5 concentrations as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions.

    Science.gov (United States)

    Mazur, Dmitry M; Harir, Mourad; Schmitt-Kopplin, Philippe; Polyakova, Olga V; Lebedev, Albert T

    2016-07-01

    High field Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry analysis of eight snow samples from Moscow city allowed us to identify more than 2000 various elemental compositions corresponding to regional air pollutants. The hierarchical cluster analysis (HCA) of the data showed good concordance of three main groups of samples with the main wind directions. The North-West group (A1) is represented by several homologous CHOS series of aliphatic organic aerosols. They may form as a result of enhanced photochemical reactions including oxidation of hydrocarbons with sulfonations due to higher amount of SO2 emissions in the atmosphere in this region. Group A2, corresponding to the South-East part of Moscow, contains large amount of oxidized hydrocarbons of different sources that may form during oxidation in atmosphere. These hydrocarbons appear correlated to emissions from traffic, neighboring oil refinery, and power plants. Another family of compounds specific for this region involves CHNO substances formed during oxidation processes including NOx and NO3 radical since emissions of NOx are higher in this part of the city. Group A3 is rich in CHO type of compounds with high H/C and low O/C ratios, which is characteristic of oxidized hydrocarbon-like organic aerosol. CHNO types of compounds in A3 group are probably nitro derivatives of condensed hydrocarbons such as PAH. This non-targeted profiling revealed site specific distribution of pollutants and gives a chance to develop new strategies in air quality control and further studies of Moscow environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. On-site phytoremediation applicability assessment in Alur Ilmu, Universiti Kebangsaan Malaysia based on spatial and pollution removal analyses.

    Science.gov (United States)

    Mahmud, Mohd Hafiyyan; Lee, Khai Ern; Goh, Thian Lai

    2017-10-01

    The present paper aims to assess the phytoremediation performance based on pollution removal efficiency of the highly polluted region of Alur Ilmu urban river for its applicability of on-site treatment. Thirteen stations along Alur Ilmu were selected to produce thematic maps through spatial distribution analysis based on six water quality parameters of Malaysia's Water Quality Index (WQI) for dry and raining seasons. The maps generated were used to identify the highly polluted region for phytoremediation applicability assessment. Four free-floating plants were tested in treating water samples from the highly polluted region under three different conditions, namely controlled, aerated and normal treatments. The selected free-floating plants were water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), rose water lettuce (Pistia sp.) and pennywort (Centella asiatica). The results showed that Alur Ilmu was more polluted during dry season compared to raining season based on the water quality analysis. During dry season, four parameters were marked as polluted along Alur Ilmu, namely dissolve oxygen (DO), 4.72 mg/L (class III); ammoniacal nitrogen (NH 3 -N), 0.85 mg/L (class IV); total suspended solid (TSS), 402 mg/L (class V) and biological oxygen demand (BOD), 3.89 mg/L (class III), whereas, two parameters were classed as polluted during raining season, namely total suspended solid (TSS), 571 mg/L (class V) and biological oxygen demand (BOD), 4.01 mg/L (class III). The thematic maps generated from spatial distribution analysis using Kriging gridding method showed that the highly polluted region was recorded at station AL 5. Hence, water samples were taken from this station for pollution removal analysis. All the free-floating plants were able to reduce TSS and COD in less than 14 days. However, water hyacinth showed the least detrimental effect from the phytoremediation process compared to other free-floating plants, thus made it a suitable

  6. A campaign to study atmospheric pollution at the regional scale: the Escompte programme; Une experience d'etude de la pollution atmospherique a l'echelle regionale. Le programme Escompte

    Energy Technology Data Exchange (ETDEWEB)

    Durand, P. [Meteo-France - Centre National de Recherches Meteorologiques, Centre National de la Recherche Scientifique (CNRS URA 1357), 31 - Toulouse (France); Cros, B. [Observatoire Midi-Pyrenees, Lab. d' Aerologie, Centre National de la Recherche Scientifique (CNRS UMR 5560), 31 - Toulouse (France)

    2004-02-01

    The Escompte programme was set up to improve and validate regional scale chemistry-transport numerical models. During summer 2001, an ambitious field campaign collected data on the meteorological and chemical parameters of the atmosphere during some photo-oxidant pollution events. Performed in the region of Marseille city and Berre lake, this campaign deployed a huge quantity of instruments, and constitutes one of the major operations in this field. (authors)

  7. Structural changes in fluorosed dental enamel of red deer (Cervus elaphus L.) from a region with severe environmental pollution by fluorides

    International Nuclear Information System (INIS)

    Kierdorf, U.; Kierdorf, H.; Sedlacek, F.; Fejerskov, O.

    1996-01-01

    A macroscopic, microradiographic and scanning electron microscope study was performed on the structure of fluorosed dental enamel in red deer from a fluoride polluted region (North Bohemia, Czech Republic). As was revealed by analysis of mandibular bone fluoride content, the rate of skeletal fluoride accumulation in the fluorotic deer was about 6 times that in controls taken from a region not exposed to excessive fluoride deposition. In all fluorosed mandibles, the 1st molar was consistently less fluorotic than the other permanent teeth. This was related to the fact that crown formation in the M1 takes place prenatally and during the lactation period. Fluorosed teeth exhibited opaque and posteruptively stained enamel, reduction or loss of enamel ridges, moderately to grossly increased wear and, in more severe cases, also enamel surface lesions of partly posteruptive, partly developmental origin. Microradiographically, fluorosed enamel was characterised by subsurface hypomineralisation, interpreted as a result of fluoride interference with the process of enamel maturation. In addition, an accentuation of the incremental pattern due to the occurrence of alternating bands with highly varying mineral content was observed in severely fluorosed teeth, denoting fluoride disturbance during the secretory stage of amelogenesis. A corresponding enhancement of the incremental pattern was also seen in the dentine. The enamel along the more pronounced hypoplasias consisted of stacked, thin layers of crystals arranged in parallel, indicating that the ameloblasts in these locations had lost the distal (prism-forming) portions of their Tomes processes. The findings of the present study indicate that red deer are highly sensitive bioindicators of environmental pollution by fluorides

  8. A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005-2014)

    Science.gov (United States)

    Duncan, Bryan N.; Lamsal, Lok N.; Thompson, Anne M.; Yoshida, Yasuko; Lu, Zifeng; Streets, David G.; Hurwitz, Margaret M.; Pickering, Kenneth E.

    2016-01-01

    Nitrogen oxides (NOx = NO + NO2) are produced during combustion processes and, thus may serve as a proxy for fossil fuel-based energy usage and coemitted greenhouse gases and other pollutants. We use high-resolution nitrogen dioxide (NO2) data from the Ozone Monitoring Instrument (OMI) to analyze changes in urban NO2 levels around the world from 2005 to 2014, finding complex heterogeneity in the changes. We discuss several potential factors that seem to determine these NOx changes. First, environmental regulations resulted in large decreases. The only large increases in the United States may be associated with three areas of intensive energy activity. Second, elevated NO2 levels were observed over many Asian, tropical, and subtropical cities that experienced rapid economic growth. Two of the largest increases occurred over recently expanded petrochemical complexes in Jamnagar (India) and Daesan (Korea). Third, pollution transport from China possibly influenced the Republic of Korea and Japan, diminishing the impact of local pollution controls. However, in China, there were large decreases over Beijing, Shanghai, and the Pearl River Delta, which were likely associated with local emission control efforts. Fourth, civil unrest and its effect on energy usage may have resulted in lower NO2 levels in Libya, Iraq, and Syria. Fifth, spatial heterogeneity within several megacities may reflect mixed efforts to cope with air quality degradation. We also show the potential of high-resolution data for identifying NOx emission sources in regions with a complex mix of sources. Intensive monitoring of the world's tropical/subtropical megacities will remain a priority, as their populations and emissions of pollutants and greenhouse gases are expected to increase significantly.

  9. A Space-based, High-resolution View of Notable Changes in Urban Nox Pollution Around the World (2005 - 2014)

    Science.gov (United States)

    Duncan, Bryan N.; Lamsal, Lok N.; Thompson, Anne M.; Yoshida, Yasuko; Lu, Zifeng; Streets, David G.; Hurwitz, Margaret M.; Pickering, Kenneth E.

    2016-01-01

    Nitrogen oxides (NOxNO+NO2) are produced during combustion processes and, thus may serve as a proxy for fossil fuel-based energy usage and committed greenhouse gases and other pollutants. We use high-resolution nitrogen dioxide (NO2) data from the Ozone Monitoring Instrument (OMI) to analyze changes in urban NO2 levels around the world from 2005 to 2014, finding complex heterogeneity in the changes. We discuss several potential factors that seem to determine these NOx changes. First, environmental regulations resulted in large decreases. The only large increases in the United States may be associated with three areas of intensive energy activity. Second, elevated NO2 levels were observed over many Asian, tropical, and subtropical cities that experienced rapid economic growth. Two of the largest increases occurred over recently expanded petrochemical complexes in Jamnagar (India) and Daesan (Korea). Third, pollution transport from China possibly influenced the Republic of Korea and Japan, diminishing the impact of local pollution controls. However, in China, there were large decreases over Beijing, Shanghai, and the Pearl River Delta, which were likely associated with local emission control efforts. Fourth, civil unrest and its effect on energy usage may have resulted in lower NO2 levels in Libya, Iraq, and Syria. Fifth, spatial heterogeneity within several megacities may reflect mixed efforts to cope with air quality degradation. We also show the potential of high-resolution data for identifying NOx emission sources in regions with a complex mix of sources. Intensive monitoring of the world's tropical subtropical megacities will remain a priority, as their populations and emissions of pollutants and greenhouse gases are expected to increase significantly.

  10. Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China

    International Nuclear Information System (INIS)

    Bai Junhong; Xiao Rong; Cui Baoshan; Zhang Kejiang; Wang Qinggai; Liu Xinhui; Gao Haifeng; Huang Laibin

    2011-01-01

    Soils were sampled in three types of wetlands from the young (A) and old (B) reclaimed regions of the Pearl River Estuary. They were analyzed for total concentrations of heavy metals to investigate their distributions and pollution levels in both regions. Results showed that most heavy metals in ditch and riparian wetlands did not significantly differ from those in reclaimed wetlands in A region, while significantly lower for Cd, Cu, Pb, and Zn in reclaimed wetlands in B region, suggesting higher effects of long-term reclamation. Iron, Cr and Cu were identified as metal pollutants of primary concern and had higher contributions to the total toxic units compared to other metals. Almost all metals exceeded their lowest effect levels and Fe and Cr even exceeded the severe effect levels. Multivariate analysis shows that Fe and Mn are controlled by parent rocks and other metals mainly originate from anthropogenic source. - Research highlights: → Fe, Cr and Cu have higher contributions to the sum of toxic units. → More than 75.4% soil samples have moderate toxicity in PRE. → Heavy metals in typical soil profiles exceed the LEL thresholds. → Heavy metals (except Fe and Mn) mainly originate from anthropogenic source. → Long reclamation history can lead to greater heavy metal loss in wetland soils. - The findings of this study reveal higher effects of long-term reclamation on heavy metal pollution of wetland soils and contribute to coastal wetland management in subtropical regions.

  11. Health effects of particulate air pollution and airborne desert dust

    Science.gov (United States)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  12. Thallium pollution in China: A geo-environmental perspective.

    Science.gov (United States)

    Xiao, Tangfu; Yang, Fei; Li, Shehong; Zheng, Baoshan; Ning, Zengping

    2012-04-01

    It is well known that thallium (Tl) is a non-essential and toxic metal to human health, but less is known about the geo-environmentally-induced Tl pollution and its associated health impacts. High concentrations of Tl that are primarily associated with the epithermal metallogenesis of sulfide minerals have the potential of producing Tl pollution in the environment, which has been recognized as an emerging pollutant in China. This paper aims to review the research progress in China on Tl pollution in terms of the source, mobility, transportation pathway, and health exposure of Tl and to address the environmental concerns on Tl pollution in a geo-environmental perspective. Tl associated with the epithermal metallogenesis of sulfide minerals has been documented to disperse readily and accumulate through the geo-environmental processes of soil enrichment, water transportation and food crop growth beyond a mineralized zone. The enrichments of Tl in local soil, water, and crops may result in Tl pollution and consequent adverse health effects, e.g. chronic Tl poisoning. Investigation of the baseline Tl in the geo-environment, proper land use and health-related environmental planning and regulation are critical to prevent the Tl pollution. Examination of the human urinary Tl concentration is a quick approach to identify exposure of Tl pollution to humans. The experiences of Tl pollution in China can provide important lessons for many other regions in the world with similar geo-environmental contexts because of the high mobility and toxicity of Tl. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. An integrated assessment of regional air pollution and climate change in Europe: findings of the AIR-CLIM project

    NARCIS (Netherlands)

    Alcamo, J.; Mayerhofer, P.; Guardans, R.; Harmelen, T. van; Minnen, J. van; Onigkeit, J.; Posch, M.; Vries, B. de

    2002-01-01

    This paper presents results of an assessment of the linkages between regional air pollution and climate change in Europe (the AIR-CLIM Project). The main research tool was an integrated modeling framework and the main product was a consistent set of long-term scenarios covering Europe between 1995

  14. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2015-05-01

    Full Text Available Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA, the cluster analysis (CA and the discriminant analysis (DA were used to assess the water pollution status and analyze its spatio-temporal variation. Ten sites were classified by the high pollution (HP region and the low pollution (LP region, while 12 months were divided into the wet season and the dry season. It was found that the HP region was mainly in the small tributaries with small drainage areas and low average annual discharges, and it was also found that most of these rivers went through urban areas with industrial and domestic sewages input into the water body. Principal component analysis/factor analysis (PCA/FA was applied to reveal potential pollution sources, whereas absolute principal component score-multiple linear regression (APCS-MLR was used to identify their contributions to each water quality variable. The study area was found as being generally affected by industrial and domestic sewage. Furthermore, the HP region was polluted by chemical industries, and the LP region was influenced by agricultural and livestock sewage.

  15. Centralized versus Decentralized Taxation of Mobile Polluting Firms

    OpenAIRE

    Georges A. Tanguay; Nicolas Marceau

    2000-01-01

    We consider a world in which a mobile polluting firm must locate in one of two regions. The regions differ in two dimensions: their marginal cost of pollution and the production cost of the firm. It is shown that under incomplete information on regional marginal costs of pollution, fiscal competition may lead to the sub-optimal location of the firm. We also show that under incomplete information, a sub-optimal location is less likely under centralized than under decentralized taxation. Nous é...

  16. Centralized versus decentralized taxation of mobile polluting firms

    International Nuclear Information System (INIS)

    Tanguay, Georges A.; Marceau, Nicolas

    2001-01-01

    We consider a world in which a mobile polluting firm must locate in one of two regions. The regions differ in two dimensions: their marginal cost of pollution and the production cost of the firm. It is shown that under incomplete information on regional marginal costs of pollution, fiscal competition may lead to the sub-optimal location of the firm. We also show that under incomplete information, a sub-optimal location is less likely under centralized than under decentralized taxation

  17. Behaviour of arsenic in forested catchments following a high-pollution period

    International Nuclear Information System (INIS)

    Novak, Martin; Erbanova, Lucie; Fottova, Daniela; Cudlin, Pavel; Kubena, Ales

    2011-01-01

    Due to high availability of adsorption sites, forested catchments could be net sinks for pollutant arsenic both during the period of increasing and decreasing pollution. We tested this hypothesis along a north-south pollution gradient in spruce die-back affected areas of Central Europe. For two water years (2007-2008), we monitored As fluxes via spruce-canopy throughfall, open-area precipitation, and runoff in four headwater catchments (Czech Republic). Since 1980, atmospheric As inputs decreased 26 times in the north, and 13 times in the south. Arsenic export by runoff was similar to atmospheric inputs at three sites, resulting in a near-zero As mass balance. One site exhibited a net export of As (2.2 g ha -1 yr -1 ). In contrast, the preceding period (1995-2006) showed much higher As fluxes, and higher As export. Czech catchments do not serve as net sinks of atmospheric As. A considerable proportion of old industrial arsenic is flushed out of the soil. - Following a period of high atmospheric As deposition, a considerable proportion of old industrial arsenic is flushed out of soil and exported from forested catchments.

  18. Situation of regional plans for air quality. Acknowledgement of sanitary aspects. Situation of realised impact studies of urban air pollution

    International Nuclear Information System (INIS)

    D'Helf, M.; Cassadou, S.

    2005-01-01

    The law on air and use of energy recommended in 1996 the implementation of regional plans for air quality (P.Q.R.A.) that have to rely on an evaluation of air pollution effects on health. 21 P.Q.R.A. have been published and the report gives the situation, their sanitary orientations and their applications. An inquiry lead in the 21 regions, near the different regional actors in the air and health field completes the report. (N.C.)

  19. Metabolic impacts of high dietary exposure to persistent organic pollutants in mice

    DEFF Research Database (Denmark)

    Ibrahim, Mohammad Madani; Fjære, Even; Lock, Erik-Jan

    2012-01-01

    Persistent organic pollutants (POPs) have been linked to metabolic diseases. Yet, the effects of high exposure to dietary POPs remain unclear. We therefore investigated whether elevated exposure to POPs provided by whale meat supplementation could contribute to insulin resistance. C57BL/6J mice...... were fed control (C) or very high-fat diet (VHF) containing low or high levels of POPs (VHF+POPs) for eight weeks. To elevate the dietary concentrations of POPs, casein was replaced by whale meat containing high levels of pollutants. Feeding VHF+POPs induced high POP accumulation in the adipose tissue...... of mice. However, compared with VHF-fed mice, animals fed VHF+POPs had improved insulin sensitivity and glucose tolerance, and reduced body weight. Levels of ectopic fat in skeletal muscles and liver were reduced in mice fed VHF+POPs. These mice also gained less adipose tissue and had a tendency...

  20. Effect of heavy haze and aerosol pollution on rice and wheat productions in China

    Science.gov (United States)

    Tie, Xuexi; Huang, Ru-Jin; Dai, Wenting; Cao, Junji; Long, Xin; Su, Xiaoli; Zhao, Shuyu; Wang, Qiyuan; Li, Guohui

    2016-07-01

    In China, regional haze pollution is a serious environmental problem. The impact on ecosystem, however, is not clearly understood. This study investigates the effect of regional haze pollution on the yields of rice and wheat in China. The spatial and temporal distributions of aerosol optical depth (AOD) show high particulate pollution in the North China Plain region, Yangtze River Delta region, the central eastern China, and the Si Chuan Basin, coexisted largely with crop growth in time and space. The solar irradiance reaching these regions is estimated to reduce by up to 28-49%, calculated using the AOD distributions and tropospheric ultraviolet-visible (TUV) model. Reduction of solar irradiance in these regions can depress optimal yields of about 45% of rice and 75% of wheat growth in China, leading to 2% reduction in total rice production and 8% reduction in total wheat production in China. However, there are large uncertainties of the estimate related to the diffuse solar radiation. For high diffuse radiation case, the estimate reductions of rice and wheat decrease to 1% and 4.5%, respectively. A further detailed study is needed to clearly understand this effect to meet the growing food demand in the nation in the coming decades.

  1. Effects of pollution from oil shale mining in Estonia

    International Nuclear Information System (INIS)

    Vallner, L.; Sepp, K.

    1993-01-01

    The largest commercially exploited oil shale deposit in the world is in northeast Estonia. The accumulation of solid residues by oil shale mines and processing plants has resulted in numerous dumps and ash hills, which are polluting the environment. The groundwater and streams are highly polluted by sulphates, phenols and oil products. A dump hill of radioactive wastes poses a serious threat to the Baltic Sea. Local people suffer from diseases more often than in other regions of Estonia. (author)

  2. Anomalous scales of Tillandsia usneoides (L.) L. (Bromeliaceae) exposed in the Metropolitan Region of Campinas, SP, Brazil as air pollution markers

    OpenAIRE

    Giampaoli, Patrícia; Capelli, Natalie do Valle; Tavares, Armando Reis; Fernandes, Francine Faia; Domingos, Marisa; Alves, Edenise Segala

    2015-01-01

    Tillandsia usneoides is an epiphytic bromeliad that has been used as a universal bioindicator. The species accumulates metals and presents foliar scale variations when exposed to air pollutants. This study aimed to use the variations in foliar scales as microscopic markers of pollutant effects in the Metropolitan Region of Campinas (MRC), São Paulo State, Brazil. T. usneoides plants were exposed for 12 weeks during dry and wet seasons, totaling four exposures, at five sites in the MRC. Sample...

  3. Transboundary health impacts of transported global air pollution and international trade

    Science.gov (United States)

    Tong, D.; Zhang, Q.; Jiang, X.

    2017-12-01

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  4. Transboundary health impacts of transported global air pollution and international trade.

    Science.gov (United States)

    Zhang, Qiang; Jiang, Xujia; Tong, Dan; Davis, Steven J; Zhao, Hongyan; Geng, Guannan; Feng, Tong; Zheng, Bo; Lu, Zifeng; Streets, David G; Ni, Ruijing; Brauer, Michael; van Donkelaar, Aaron; Martin, Randall V; Huo, Hong; Liu, Zhu; Pan, Da; Kan, Haidong; Yan, Yingying; Lin, Jintai; He, Kebin; Guan, Dabo

    2017-03-29

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM 2.5 ) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM 2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM 2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM 2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  5. Air pollution in the Slovak Republic, 2004

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2006-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2004 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of precipitation; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases

  6. Air pollution in the Slovak Republic, 2003

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2005-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2003 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of of precipitation; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases

  7. Bacterial Pollution in River Waters and Gastrointestinal Diseases

    Directory of Open Access Journals (Sweden)

    Lilia Rodríguez-Tapia

    2017-05-01

    Full Text Available Currently, one of Mexico’s most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk.

  8. Bacterial Pollution in River Waters and Gastrointestinal Diseases.

    Science.gov (United States)

    Rodríguez-Tapia, Lilia; Morales-Novelo, Jorge A

    2017-05-04

    Currently, one of Mexico's most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk.

  9. Urban Air Pollution by Nanoparticles in Ostrava Region

    International Nuclear Information System (INIS)

    Zdenka, Kalicáková; Pavel, Danihelka; Vladimír, Mícka; Karel, Lach

    2013-01-01

    Air pollution harms human health and the environment. Ostrava's agglomeration and its immediate vicinity suffer regular exceeding of air pollution limits due to its geomorphologic location and present heavy industry. Maximum exceedances of air quality standards and especially PM10 which 24 hour limit value is in EU 50μg.m-3, must not be exceeded more than 35 days per year. This limit is being still often exceeded. In the year 2011 such as situation occurred 126 times. It is very important then for identify sources of air pollution to find out maximum information about air borne dust, like size distribution, chemical composition of individual size fractions, morphology of particulate matter together with other parameters like meteorological conditions, year season etc. Our measurement started two years ago. We focus on the critical situation when there are values of PM10 over a long period above the limit. In winter season it is so called inversion. By default, during the campaign it is measured size distribution of air born dust in range 5.6 nm −560nm by FMPS and using the sampler NanoId are collected samples in range 1nm – 35μm in 12 size fractions for chemical analysis and morphological observations. This contribution deals with results of size distributions only.

  10. High secondary aerosol contribution to particulate pollution during haze events in China

    Science.gov (United States)

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R.; Slowik, Jay G.; Platt, Stephen M.; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M.; Bruns, Emily A.; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Gülcin; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Sönke; Baltensperger, Urs; Haddad, Imad El; Prévôt, André S. H.

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

  11. Heavy metal (Pb, Cu, Zn and Cd content in wine produced from grape cultivar Mavrud, grown in an industrially polluted region

    Directory of Open Access Journals (Sweden)

    Violina Angelova

    1999-09-01

    Full Text Available The investigation was carried out in the period 1991-1993 with cv. Mavrud, grown in the region with a major industrial pollutant the Non-Ferrous-Metal Works (NFMW and a region with no industrial pollutants (as a control. The heavy metal content in soil, grapes and wine was determined. Most of the heavy metals in the grapes precipitate during fermentation into the sediments, which is the reason for their significantly lower content in the wine. Water washing of grape before processing leads to about 2 time decrease in the Pb, Cu, Zn and Cd contents of wine. The pre-washing of grapes does not lead to any quality deterioration in the wine produced. The amounts of Cu, Zn and Cd in the wine from cv. Mavrud, grown in the region of the NFMW-Plovdiv, are lower than the maximum admissible levels, while the Pb content exceeds them about two times.

  12. Measuring environmental quality. An index of pollution

    International Nuclear Information System (INIS)

    Khanna, N.

    2000-01-01

    This paper develops an index of pollution based on the epidemiological dose-response function associated with each pollutant, and the welfare losses due to exposure to pollution. The probability of damage is translated into welfare losses, which provides the common metric required for aggregation. Isopollution surfaces may then be used to compare environmental quality over time and space. An Air Pollution Index (API) is computed using 1997 data for the criteria pollutants under the Clean Air Act (CAA). The results are compared with the EPA's Pollutant Standards Index (PSI). Two significant differences emerge: unlike the PSI, the API facilitates a detailed ranking of regions by air quality and API values may contradict PSI results. Some regions with PSI values of 100-200 are considered less polluted under the proposed methodology than those with PSI values between 50 and 100. The key reason for the difference is that PSI values are determined entirely by the gas with the highest relative concentration whereas the API value is based on the ambient concentrations of all pollutants. 14 refs

  13. Pollution by animal production in The Netherlands: solutions.

    Science.gov (United States)

    Voorburg, J H

    1991-09-01

    Provided that the application rates of manure do not exceed the crop uptake of nutrients, pollution by animal production is mainly caused by nitrogenous substances. Applying manure outside the growing season causes pollution of groundwater and surface water due to leaching and runoff. In regions with a high livestock density, the evaporation of ammonia has a serious impact on the environment. It contributes to acidification and causes a nutrient imbalance in natural vegetation. The prevention of nutrient losses from manure is unprofitable. The environmental impact is not caused by the individual farmer but is a result of the sum of activities in a region. This means that legislation is necessary to impose limits in order to arrive at production without pollution. Within this framework, the farmer should optimise the utilisation of minerals from manure by more efficient animal nutrition and better handling of the manure. One of the most difficult problems is the prevention of ammonia evaporation. A reduction of these losses generally also has a favourable effect on odour emissions. A new development is the processing of manure surpluses into a dried manure of sufficient quality to compete on the fertiliser market. As is usually the case with pollution control, these measures raise the costs of livestock production.

  14. Heavy metal pollution and forest health in the Ukrainian Carpathians

    International Nuclear Information System (INIS)

    Shparyk, Y.S.; Parpan, V.I.

    2004-01-01

    The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils. - Local industrial emissions of heavy metal pollution and the condition of Ukrainian Carpathians forests are examined

  15. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    Science.gov (United States)

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  16. Considering a point-source in a regional air pollution model; Prise en compte d`une source ponctuelle dans un modele regional de pollution atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lipphardt, M.

    1997-06-19

    This thesis deals with the development and validation of a point-source plume model, with the aim to refine the representation of intensive point-source emissions in regional-scale air quality models. The plume is modelled at four levels of increasing complexity, from a modified Gaussian plume model to the Freiberg and Lusis ring model. Plume elevation is determined by Netterville`s plume rise model, using turbulence and atmospheric stability parameters. A model for the effect of a fine-scale turbulence on the mean concentrations in the plume is developed and integrated in the ring model. A comparison between results with and without considering micro-mixing shows the importance of this effect in a chemically reactive plume. The plume model is integrated into the Eulerian transport/chemistry model AIRQUAL, using an interface between Airqual and the sub-model, and interactions between the two scales are described. A simulation of an air pollution episode over Paris is carried out, showing that the utilization of such a sub-scale model improves the accuracy of the air quality model

  17. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Manaila, E.; Craciun, G.; Calinescu, I.

    2009-01-01

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO 2 , NOx and VOCs

  18. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China

    Science.gov (United States)

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  19. Noise, air pollutants and traffic: continuous measurement and correlation at a high-traffic location in New York City.

    Science.gov (United States)

    Ross, Zev; Kheirbek, Iyad; Clougherty, Jane E; Ito, Kazuhiko; Matte, Thomas; Markowitz, Steven; Eisl, Holger

    2011-11-01

    Epidemiological studies have linked both noise and air pollution to common adverse health outcomes such as increased blood pressure and myocardial infarction. In urban settings, noise and air pollution share important sources, notably traffic, and several recent studies have shown spatial correlations between noise and air pollution. The temporal association between these exposures, however, has yet to be thoroughly investigated despite the importance of time series studies in air pollution epidemiology and the potential that correlations between these exposures could at least partly confound statistical associations identified in these studies. An aethelometer, for continuous elemental carbon measurement, was co-located with a continuous noise monitor near a major urban highway in New York City for six days in August 2009. Hourly elemental carbon measurements and hourly data on overall noise levels and low, medium and high frequency noise levels were collected. Hourly average concentrations of fine particles and nitrogen oxides, wind speed and direction and car, truck and bus traffic were obtained from nearby regulatory monitors. Overall temporal patterns, as well as day-night and weekday-weekend patterns, were characterized and compared for all variables. Noise levels were correlated with car, truck, and bus traffic and with air pollutants. We observed strong day-night and weekday-weekend variation in noise and air pollutants and correlations between pollutants varied by noise frequency. Medium and high frequency noise were generally more strongly correlated with traffic and traffic-related pollutants than low frequency noise and the correlation with medium and high frequency noise was generally stronger at night. Correlations with nighttime high frequency noise were particularly high for car traffic (Spearman rho=0.84), nitric oxide (0.73) and nitrogen dioxide (0.83). Wind speed and direction mediated relationships between pollutants and noise. Noise levels are

  20. Response of SO2 and Particulate Air Pollution to Local and Regional Emission Controls: A Case Study in Maryland

    Science.gov (United States)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay Anatoly; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer; Dickerson, RUssell R.

    2016-01-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a 40 decrease of column SO2, and a 20 decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (90 reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (60 decrease) and AOD (20 decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by 20, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 20092010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  1. Health impact of urban air pollution: the case of the metropolitan Paris area; Impact de la pollution urbaine sur la sante: le cas de la region parisienne

    Energy Technology Data Exchange (ETDEWEB)

    Myrto, V.; Menut, L. [Institut Pierre Simon Laplace, Lab. de Meteorologie Dynamique, CNRS UMR 8539, Ecole Polytechnique, 91 - Palaiseau (France); Chatignoux, E. [Observatoire Regional de la Sante d' Ile de France, 75 - Paris (France)

    2011-05-15

    Urban meteorology and atmospheric composition has become an issue of great public concern. Mega-cities are areas of great population density and also of high rates of gaseous and particulate matter emission. The health of the residents of such large agglomerations will potentially be influenced by the local air-pollution, its formation and dispersion. Efforts are made to link air-pollution and health. Several questions are open: what is the relative contribution of the ambient air-pollution compared to all other exposure factors? What is the 'real' level of exposure reaching the individuals of a population? Can we distinguish the health effects of multiple- pollutants? To answer to these questions we have developed a modeling framework that maps the exposure of the Parisian population to ozone, nitrogen dioxide and fine particles at hourly resolution. This integrated model incorporates a meteorological model, a three-dimensional Eulerian air-quality model and a human exposure module. The first results of this modeling effort suggest new epidemiological evidence of the relationship between ambient air pollution levels and mortality over the city of Paris. (authors)

  2. Foreign and Domestic Contributions to Springtime Ozone Pollution over China

    Science.gov (United States)

    Ni, R.; Lin, J.; Yan, Y.; Lin, W.; Chen, H.

    2017-12-01

    Ozone is a critical air pollutant that damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China. Here, we use a global-regional two-way coupled model system based on GEOS-Chem to quantify the contributions to springtime ozone over China from anthropogenic emissions in major source regions across the globe. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone pollution. Together, foreign anthropogenic emissions enhance springtime surface ozone over China by 3 12 ppb. Of all ozone over China produced by global anthropogenic emissions, foreign emissions contribute 40% near the surface, and the contribution increases with altitude until a value of 80% in the upper troposphere. Impact from Japan and Korea is 1 2 ppb over east coastal regions, and negligible in inland. Anthropogenic emissions of South and South-East Asia increase ozone over Tibet and the Yunnan-Guizhou Plateau by up to 5 ppb, and their contribution increases with height due to strong vertical transport. Pollution from North America and Europe mainly accompanies strong westerly winds and frequent cyclonic activities that are favorable to long-range transport. European anthropogenic pollution enhances surface ozone by 1 3 ppb over West and North China. Despite a much longer transport distance, the contribution from North America is greater than European contribution due to the nearly doubled amount of anthropogenic NMVOC emissions. The high percentage contribution of foreign anthropogenic emissions to China's ozone pollution can be partly explained by excessive domestic NOx emissions that suppress ozone production efficiency and even destroy ozone. Our study is relevant to Chinese ozone pollution control and global environmental protection collaboration.

  3. APPLICATION OF FUZZY C-MEANS CLUSTERING TECHNIQUE IN VEHICULAR POLLUTION

    Directory of Open Access Journals (Sweden)

    Samarjit Das

    2013-07-01

    Full Text Available Presently in most of the urban areas all over the world, due to the exponential increase in traffic, vehicular pollution has become one of the key contributors to air pollution. As uncertainty prevails in the process of designating the level of pollution of a particular region, a fuzzy method can be applied to see the membership values of that region to a number of predefined clusters. Also, due to the existence of different pollutants in vehicular pollution, the data used to represent it are in the form of numerical vectors. In our work, we shall apply the fuzzy c-means technique of Bezdek on a dataset representing vehicular pollution to obtain the membership values of pollution due to vehicular emission of a city to one or more of some predefined clusters. We shall try also to see the benefits of adopting a fuzzy approach over the traditional way of determining the level of pollution of the particular region

  4. Development of a passive doas system to retrieve atmospheric pollution columns in the 200 to 355 nm region.

    Science.gov (United States)

    Mejía, Rubén Galicia; Vázquez, Josémanueldelarosa; Isakina, Suren Stolik; García, Edgard Moreno; Iglesias, Gustavo Sosa

    2013-01-08

    In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant) or natural sources (volcano), reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed.

  5. Development of a passive doas system to retrieve atmospheric pollution columns in the 200 to 355 nm region

    Directory of Open Access Journals (Sweden)

    Mejía Rubén Galicia

    2013-01-01

    Full Text Available Abstract In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant or natural sources (volcano, reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed.

  6. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China

    Directory of Open Access Journals (Sweden)

    T. Sun

    2018-03-01

    Full Text Available The climatological variation of aerosol properties and the planetary boundary layer (PBL during 2013–2015 over the Yangtze River Delta (YRD region were investigated by employing ground-based Micro Pulse Lidar (MPL and CE-318 sun-photometer observations. Combining Moderate Resolution Imaging Spectroradiometer (MODIS and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO satellite products, enhanced haze pollution events affected by different types of aerosol over the YRD region were analyzed through vertical structures, spatial distributions, backward trajectories, and the potential source contribution function (PSCF model. The results show that aerosols in the YRD are dominated by fine-mode particles, except in March. The aerosol optical depth (AOD in June and September is higher due to high single scattering albedo (SSA from hygroscopic growth, but it is lower in July and August due to wet deposition from precipitation. The PBL height (PBLH is greater (means ranging from 1.23 to 1.84 km and more variable in the warmer months of March to August, due to the stronger diurnal cycle and exchange of heat. Northern fine-mode pollutants are brought to the YRD at a height of 1.5 km. The SSA increases, blocking the radiation to the surface, and cooling the surface, thereby weakening turbulence, lowering the PBL, and in turn accelerating the accumulation of pollutants, creating a feedback to the cooling effect. Originated from the deserts in Xinjiang and Inner Mongolia, long-range transported dust masses are seen at heights of about 2 km over the YRD region with an SSA440 nm below 0.84, which heat air and raise the PBL, accelerating the diffusion of dust particles. Regional transport from biomass-burning spots to the south of the YRD region bring mixed aerosol particles at a height below 1.5 km, resulting in an SSA440 nm below 0.89. During the winter, the accumulation of the local emission layer is facilitated by

  7. Neighborhood walkability and particulate air pollution in a nationwide cohort of women.

    Science.gov (United States)

    James, Peter; Hart, Jaime E; Laden, Francine

    2015-10-01

    Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Using data from the Nurses' Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) µg/m(3) higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary from region to region that allow for walkable neighborhoods with low levels of air pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Verification of a prognostic meteorological and air pollution model for year-long predictions in the Kwinana industrial region of Western Australia

    International Nuclear Information System (INIS)

    Hurley, P.J.; Blockley, A.; Rayner, K.

    2001-01-01

    A prognostic air pollution model (TAPM) has been used to predict meteorology and sulphur dioxide concentration in the Kwinana industrial region of Western Australia for 1997, with a view to verifying TAPM for use in environmental impact assessments and associated air pollution studies. The regulatory plume model, DISPMOD, developed for the Kwinana region has also been run using both an observationally based meteorological file (denoted DISPMOD-O) and using a TAPM-based meteorological file (denoted DISPMOD-T). TAPM predictions of the meteorology for 1997 compare well with the observed values at each of the five monitoring sites. Root mean square error and index of agreement values for temperature and winds indicate that TAPM performs well at predicting the meteorology, compared to the performance of similar models from other studies. The yearly average, 99.9 percentile, maximum and mean of the top 10 ground-level sulphur dioxide concentrations for 1997 were predicted well by all of the model runs, although DISPMOD-O and DISPMOD-T tended to overpredict extreme statistics at sites furthest from the sources. Overall, TAPM performed better than DISPMOD-O, which in turn performed better than DISPMOD-T, for all statistics considered, but we consider that all three sets of results are sufficiently accurate for regulatory applications. The mean of the top ten concentrations is generally considered to be a robust performance statistic for air pollution applications, and we show that compared to the site-averaged observed value of 95μgm -3 , TAPM predicted 94μgm -3 , DISPMOD-O predicted 111μgm -3 and DISPMOD-T predicted 125μgm -3 . The results indicate that the prognostic meteorological and air pollution approach to regulatory modelling used by TAPM, gives comparable or better results than the current regulatory approach used in the Kwinana region (DISPMOD), and also indicates that the approach of using a currently accepted regulatory model with a prognostically

  9. Ecological assessment of oil-gas producing area in Kazakhstan zone of Caspian sea and using the bioremediation technology for cleaning of high level oil polluted sites

    International Nuclear Information System (INIS)

    Bigaliev, A.A.; Ishanova, N.E.; Bijazheva, S.M.; Novikova, A.; Bigaliev, A.B.

    2008-01-01

    A significant part of mineral raw material resources of Kazakhstan placed in the depth of the Caspian region, where more than 90% extracting of oil and natural gas, 100% balance store rare ground, 3.2% uranium, ore 0.3%, 90.5% sawn store concentrated. Last years, it takes intensive works by extraction of carbon raw materials in Kazakhstan sector of the Caspian sea. It brought to exceeding of coastal pollution at the North and middle the Caspian coastal pollution with oil products in average till 0.282 mg/l. Maximum meaning oil product pollution reaches 0.56 mg/l (which means exceeding of limited concentration on 11 times). How much money need to cover cost of remediation in real sites? Develop of assessment and monitoring procedures based on fate mechanisms for most of representative hydrocarbons in polluted soils. Step 1 - Collection of heavily polluted portions of soils, separation of hydrocarbons by cost efficient mechanical procedures and send HC rich material (HC>95%) to prepare of alternative fuel. Return of low HC content sand to project area (HC<5.0%). Step 2 - Development of low cost bioremediation procedures in areas transformed to moderately polluted site (HC<5% after removing of heavily polluted portions) with uniform HC content. We are needed to develop of coast efficiency approach for cleaning of high level oily polluted sites around urban areas in Kazakhstan new methodology to estimate polluted area and recover of pollution history, low cost bioremediation

  10. Climatic effects of air pollutants over china: A review

    Science.gov (United States)

    Liao, Hong; Chang, Wenyuan; Yang, Yang

    2015-01-01

    Tropospheric ozone (O3) and aerosols are major air pollutants in the atmosphere. They have also made significant contributions to radiative forcing of climate since preindustrial times. With its rapid economic development, concentrations of air pollutants are relatively high in China; hence, quantifying the role of air pollutants in China in regional climate change is especially important. This review summarizes existing knowledge with regard to impacts of air pollutants on climate change in China and defines critical gaps needed to reduce the associated uncertainties. Measured monthly, seasonal, and annual mean surface-layer concentrations of O3 and aerosols over China are compiled in this work, with the aim to show the magnitude of concentrations of O3 and aerosols over China and to provide datasets for evaluation of model results in future studies. Ground-based and satellite measurements of O3 column burden and aerosol optical properties, as well as model estimates of radiative forcing by tropospheric O3 and aerosols are summarized. We also review regional and global modeling studies that have investigated climate change driven by tropospheric O3 and/or aerosols in China; the predicted sign and magnitude of the responses in temperature and precipitation to O3/aerosol forcings are presented. Based on this review, key priorities for future research on the climatic effects of air pollutants in China are highlighted.

  11. Spatiotemporal Characterization of Chromophoric Dissolved Organic Matter (CDOM and CDOM-DOC Relationships for Highly Polluted Rivers

    Directory of Open Access Journals (Sweden)

    Sijia Li

    2016-09-01

    .01, and 0.58 in the autumn (two-tailed, p < 0.05. Spatial distribution of the CDOM parameters exhibited that the downstream regions focused on dry land have high CDOM molecular weight and aromatic hydrocarbon. Partial sampling locations around the cities or countries generally showed abnormal values due to terrigenous inputs. As a bio-optical model parameter, the spectral characteristic of CDOM is helpful in adjusting the derived algorithms in highly polluted environments. The study on organic carbon and pollutants in highly polluted waters had an important contribution to global carbon balance estimation and water environment protection.

  12. Climate change impacts on human exposures to air pollution ...

    Science.gov (United States)

    This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium. As we consider the potential health impacts of a warming planet, the relationships between climate change and air pollutants become increasingly important to understand. These relationships are complex and highly variable, causing a variety of environmental impacts at local, regional and global scales. Human exposures and health impacts for air pollutants have the potential to be altered by changes in climate through multiple factors that drive population exposures to these pollutants. Research on this topic will provide both state and local governments with the tools and scientific knowledge base to undertake any necessary adaptation of the air pollution regulations and/or public health management systems in the face of climate change.

  13. DEVELOPMENT OF AN INTEGRATED AIR POLLUTION MAPS ON KEY PLOT OF KRASNOYARSK REGION

    Directory of Open Access Journals (Sweden)

    E. A. Bozhilina

    2016-01-01

    Full Text Available The paper suggested the construction of a comprehensive air pollution map as an example of the key area of the Krasnoyarsk Territory. To create a map developed an original technique for limiting emissions spread zones in the atmosphere from industrial plants near the cities on the basis of climatic data. The proposed method is based on taking into account the repeatability wind speed and direction and length of time of pollutants in the atmosphere. The used methods of cartographic representation – quantitative background (emissions per unit area within the zones of the potential spread of contaminants, localized diagrams (emissions and air pollution index for the city, contour lines (the value of air pollution potential. Using an integrated map allows you to specify the impact of the transfer of pollutants in the formation of the level of pollution in the city, together with the volumes and values of emissions of air pollution potential.

  14. Transboundary health impacts of transported global air pollution and international trade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang; Jiang, Xujia; Tong, Dan; Davis, Steven J.; Zhao, Hongyan; Geng, Guannan; Feng, Tong; Zheng, Bo; Lu, Zifeng; Streets, David G.; Ni, Ruijing; Brauer, Michael; van Donkelaar, Aaron; Martin, Randall V.; Huo, Hong; Liu, Zhu; Pan, Da; Kan, Haidong; Yan, Yingying; Lin, Jintai; He, Kebin; Guan, Dabo

    2017-03-29

    Millions of people die every year from diseases caused by exposure to outdoor air pollution1, 2, 3, 4, 5. Some studies have estimated premature mortality related to local sources of air pollution6, 7, but local air quality can also be affected by atmospheric transport of pollution from distant sources8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region14, 19, 20, 21, 22. The effects of international trade on air pollutant emissions23, air quality14 and health24 have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  15. Environmental geochemistry of a highly polluted area: the Mazarambroz Pb-Zn mine (Castilla-La Mancha region, Spain)

    Science.gov (United States)

    González-Corrochano, Beatriz; Higueras, Pablo; Jurado, Verónica; María Esbrí, José; Martínez-Coronado, Alba; Alonso-Azcárate, Jacinto

    2013-04-01

    analyses of the samples were carried out using a Field Portable X-Ray Fluorescence Spectroscopy analyser (EDXRF). Results were statistically processed with Minitab 15.0 and mapped with Surfer 9. The mean concentrations of the studied heavy metals are significantly higher than the world average, the Castilla-La Mancha region mean and the local reference value for soils, so the studied area can be considered a polluted area as consequence of the mining process carried out in the Mazarambroz Pb-Zn mine. The total affected area by high concentrations of heavy metals differs depending on the studied element, reaching the maximum extension and importance for lead and zinc. In the studied area, soil and sediments are also affected by very low pH and high conductivity, which indicates the presence of soluble salts, likely sulfates, products of the sulfide oxidation. These results would imply an increase in the heavy metal mobility and transference to the plants and, as a consequence, an increase in the environmental damage since the area close to the mine is used for the cultivation of cereals and rabbit hutting. The results of the extractions show that the highest extracted concentrations are obtained from the sediment samples due to the influence of the stream in the weathering of this type of materials. References - Chao, T.T., 1984. Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration, 20, 101-135. - Moreno Grau, M.D., 2003. Environmental Toxicology: Risk Assessment to Human Health. Mc Graw Hill, Madrid. - Novozamsky, I., Lexmond, T.M., Houba, V.J.G., 1993. A single extraction procedure of soil for evaluation of uptake f some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51, 47-58. - Quevauviller, P., Lachica, M., Barahona, E., Rauret, G., Ure, A., Gomez, A., Muntau, H., 1996. Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in

  16. Global air pollution crossroads over the Mediterranean

    NARCIS (Netherlands)

    Lelieveld, J; Berresheim, H; Borrmann, S; Crutzen, P J; Dentener, F J; Fischer, H; Feichter, J; Flatau, P J; Heland, J; Holzinger, R; Korrmann, R; Lawrence, M G; Levin, Z; Markowicz, K M; Mihalopoulos, N; Minikin, A; Ramanathan, V; De Reus, M; Roelofs, G J; Scheeren, H A; Sciare, J; Schlager, H; Schultz, M; Siegmund, P; Steil, B; Stephanou, E G; Stier, P; Traub, M; Warneke, C; Williams, J; Ziereis, H

    2002-01-01

    The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north.

  17. Overview on the Air Pollution Issues of the City Clusters in China and its Control Strategies

    Science.gov (United States)

    Tang, X.

    2007-12-01

    Mega-cities in China, such as Beijing, Guangzhou, Shenzhen, and Shanghai are located in three large city clusters, Bo-Hai Bay surrounding area, Pearl River Delta (PRD) and Yangtze River Delta. Like the rest of the coastal regions in China, these mega-cities have been experiencing fast economic developments and consequently serious environmental pollution. Air pollution in those areas is characterized by concurrent occurrence of high concentrations of multiple primary pollutants and secondary pollutants, which lead to the development of "air pollution complex" (perhaps typically Chinese) problem. Several campaigns of field experiments covering the regions such as PRD and Beijing City with surrounding areas have been conducted critically to understand the chemical and physical processes leading to the formation of regional scale air pollution since 2004. Some policy-relevant suggestions for air quality attainment have been made after these campaigns, specially the attainment of air quality during 2008 Beijing Olympic game, which has been attracted as an important concern worldwide. A scientific field campaign was conducted during August of 2007 for testing the control strategies suggested for air quality attainment in 2008-Olympic. An overview of the results of PRD and Beijing Campaigns will be presented.

  18. The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution

    International Nuclear Information System (INIS)

    Eatough Jones, Michele; Paine, Timothy D.; Fenn, Mark E.

    2008-01-01

    To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study. - Nitrogen additions at sites impacted by air pollution were associated with altered foliar herbivore communities and increased densities of a catkin-feeding beetle on Quercus kellogii

  19. Measurements and Analysis of Chemical Composition of Particulate Matter during High Pollution Events at Guanzhong Plain, China

    Science.gov (United States)

    Junji, C.

    2017-12-01

    Particulate matter pollution is a serious environmental problem which influencing air quality, regional and global climates, and human health. PM2.5 samples were collected at Guanzhong Plain with six sampling sites atdifferent cities in the year scale from 2012 to 2014. All of the six sites exhibited highest organic carbon (OC)and elemental carbon (EC) values in winter and lowest values in summer. OC correlates well with EC indicating similar emission sources. The contributions of secondary species SO42-, NO3- and NH4+ in total ions were greatest, and the high concentrations in winter were mainly due to emissions from coal combustion and biomass burning.During autumn the haze days were severest in Xi'an city with similar tendency of PM2.5 variations, and it was proved that biomass burning may be the main emission source of the regional pollution. In winter pollution episodes, the pollution patterns in Guanzhong Plain were similar which was resulted from strong secondary reactions and coal burning.Source apportionment using a positive matrix factorizationreceptor model indicates that on average secondary aerosol was the main source of PM2.5 (39.3%), followed by coal burning (17.3%), motor vehicle/industrial emissions (15.7%), fugitive dust (14.9%), and biomass burning (12.8%). The online, in situ measurement airborne species, especially the chemical composition of non-refectory submicron aerosol, during a heavyhaze-fog event, was analyzed in detailed.The formation of secondary sulfate and organic aerosol were observed during the event. The sulfur oxidation ratio (SOR), defined as sulfate/(SO2+sulfate) were mostly over 0.10, with a maximum of 0.30, when relative humidity > 80%. The aging product of organic aerosol (OA) were also observed in the event. The wet scattering coefficient was influenced by secondary sulfate, in the form of (NH4)2SO4, with contribution of 48.9% of wet particulate phase scattering. Thus decreased the visibility dramatically with a minimum of

  20. Western forests and air pollution

    International Nuclear Information System (INIS)

    Olson, R.K.; Binkley, D.; Boehm, M.

    1992-01-01

    The book addresses the relationships between air pollution in the western United States and trends in the growth and condition of Western coniferous forests. The major atmospheric pollutants to which forest in the region are exposed are sulfur and nitrogen compounds and ozone. The potential effects of atmospheric pollution on these forests include foliar injury, alteration of growth rates and patterns, soil acidification, shifts in species composition, and modification of the effects of natural stresses

  1. Radiation pollution of the environment

    International Nuclear Information System (INIS)

    Benalashhar, Hanan Ali

    2006-01-01

    This paper interested in the topic of environmental pollution by radioactive materials due to several human activities. The meaning of human activities are nuclear tests and extraction of raw uranium, waste and reactor accidents, nuclear fuel and radon gas, and the peaceful uses of radiation. This paper points out the effects of environmental pollution by radiation and the means of reduction, and also illustrate the radiation pollution in the Arab region. (author)

  2. Research on numerical simulation technology about regional important pollutant diffusion of haze

    Science.gov (United States)

    Du, Boying; Ma, Yunfeng; Li, Qiangqiang; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In order to analyze the formation of haze in Shenyang and the factors that affect the diffusion of pollutants, the simulation experiment adopted in this paper is based on the numerical model of WRF/CALPUFF coupling. Simulation experiment was conducted to select PM10 of Shenyang City in the period from March 1 to 8, and the PM10 in the regional important haze was simulated. The survey was conducted with more than 120 enterprises section the point of the emission source of this experiment. The contrastive data were analyzed with 11 air quality monitoring points, and the simulation results were compared. Analyze the contribution rate of each typical enterprise to the air quality, verify the correctness of the simulation results, and then use the model to establish the prediction model.

  3. Zoning Of Pollutant Dispersion Came From IJEN Crater In The Downstream Region Of BANYUPUTIH River Using Oxygen-18 (18O) Natural Isotope Technique

    International Nuclear Information System (INIS)

    Susiati, Heni; Yarianto, S.B.S.; Sjarmufni, A.; Suprijadi; Wibagyo

    2002-01-01

    The research should be arranged for natural isotope composition of Oxygen-18 ( 18 O) in the water catchments of Banyupahit -Banyuputih river. Aim of the research are determine zoning of pollutant dispersion and be clarified that the pollution really come from lien crater as more surely above mentioned by the result of investigation previously. Research method be used field survey and characteristic analysis of Oksigen-18 isotope. Zoning of pollutant dispersion in the downstream side covers settlement. agricultural, plantation, and sugar factory area have conducted by analyzing Oksigen-18 isotope characteristic. Based on the result of the research pollutant dispersion area in the downstream region. the Eastern side of water catchments area were categorized as pollution level l was more dominant rather than in the Western side and pollution level II came from water pound area of Banyuputih. This phenomena caused of an irrigation system using by Liwung Water Pound of Banyuputih river which should be polluted by Sulfur. Geological factor in the Eastern (lithology) were most of sand rock also induce the dispersion of Sulfur rather than in the Western area. Present research has clarified previous investigation that Banyupahit river were polluted by Sulfur as a result of ijen crater leakage

  4. Wildfire air pollution hazard during the 21st century

    Science.gov (United States)

    Knorr, Wolfgang; Dentener, Frank; Lamarque, Jean-François; Jiang, Leiwen; Arneth, Almut

    2017-07-01

    Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  5. Pollution concentration estimates in ecologically important zones

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, Y.N. [Mexico City Univ. (Mexico). Center for Atmospheric Sciences

    1995-12-31

    Method based on using the pollutant transport equation and the adjoint technique is described here for estimating the pollutant concentration level in ecologically important zones. The method directly relates the pollution level in such zones with the power of the pollution sources and the initial pollution field. Assuming that the wind or current velocities are known (from climatic data or dynamic model), the main and adjoint pollutant transport equations can be considered in a limited area to solve such theoretically and practically important problems as: (1) optimal location of new industries in a given region with the aim to minimize the pollution concentration in certain ecologically important zones, (2) optimization of emissions from operating industries, (3) detection of the plants violating sanitary regulations, (4) analysis of the emissions coming from the vehicle traffic (such emissions can be included in the model by means of the linear pollution sources located along the main roadways), (5) estimation of the oil pollution in various ecologically important oceanic (sea) zones in case of accident with the oil tanker, (6) evaluation of the sea water desalination level in estuary regions, and others. These equations considered in a spherical shell domain can also be applied to the problems of transporting the pollutants from a huge industrial complex, or from the zone of an ecological catastrophe similar to the Chernobyl one

  6. Pollution concentration estimates in ecologically important zones

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, Y N [Mexico City Univ. (Mexico). Center for Atmospheric Sciences

    1996-12-31

    Method based on using the pollutant transport equation and the adjoint technique is described here for estimating the pollutant concentration level in ecologically important zones. The method directly relates the pollution level in such zones with the power of the pollution sources and the initial pollution field. Assuming that the wind or current velocities are known (from climatic data or dynamic model), the main and adjoint pollutant transport equations can be considered in a limited area to solve such theoretically and practically important problems as: (1) optimal location of new industries in a given region with the aim to minimize the pollution concentration in certain ecologically important zones, (2) optimization of emissions from operating industries, (3) detection of the plants violating sanitary regulations, (4) analysis of the emissions coming from the vehicle traffic (such emissions can be included in the model by means of the linear pollution sources located along the main roadways), (5) estimation of the oil pollution in various ecologically important oceanic (sea) zones in case of accident with the oil tanker, (6) evaluation of the sea water desalination level in estuary regions, and others. These equations considered in a spherical shell domain can also be applied to the problems of transporting the pollutants from a huge industrial complex, or from the zone of an ecological catastrophe similar to the Chernobyl one

  7. Study of Chinese pollution with the 3D regional chemistry transport CHIMERE model and remote sensing observations, with a focus on mineral dust impacts

    Science.gov (United States)

    Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan

    2017-04-01

    Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants

  8. Numerical simulation of pollutant dispersion in urban roadway tunnels

    Directory of Open Access Journals (Sweden)

    Jingliang Dong

    2017-03-01

    Full Text Available Vehicular toxic emissions can easily contaminate the air quality of the enclosed tunnel environment, especially during rush hours with traffic jam events or low vehicle speeds, which poses serious health hazards to road utilizers. The piston effect generated by moving vehicles was normally considered adequate to discharge vitiated air out of short tunnel based on a typical driving speed. However, complex traffic conditions may yield unexpected consequences on in-tunnel air quality levels. This study numerically investigated the CO2 concentration to identify the in-tunnel pollutant dispersion under three traffic conditions including severe traffic congestion and traffic flow with low vehicle speeds. Fan conditions were considered to model the influence of mechanical winds on pollutant dispersion and comparison with vehicular piston effect was also performed. The results revealed elevated pollutant concentration regions were found at the vicinity of near-ground region and tunnel downstream. The vehicular piston effect can sufficiently remove the in-tunnel vehicular emissions when vehicles travel at relatively higher speed. However, pollutant accumulation occurs when vehicles are idling or moving at slow speed. Compared with traffic piston effect at high travelling speed, the mechanical ventilation of ceiling mounted fans only generate a limited contribution to the removal of emissions.

  9. Observable Effects of Atmospheric Pollution on Outpatient and Inpatient Morbidity in Bulgaria.

    Science.gov (United States)

    Platikanova, Magdalena; Penkova-Radicheva, Mariana

    2016-04-01

    One of Europe's most well-developed industrial regions is found in the Republic of Bulgaria. The industrialization of the region has a big impact on air pollution. Thermal power plant "Maritza East" (the largest of its kind in southeastern Europe), the army training range, machine manufacturers, household heating and high volume of automobile traffic are all major sources of pollution in the region. A five year study (2009-2013) followed yearly concentrations of principal atmospheric pollutants such as sulfur dioxide, dust, nitrogen dioxide, lead aerosols and hydrogen sulfide, and the way in which those levels had an effect on morbidity (outpatient and inpatient medical care) in the area. Statistical processing of data has been completed to represent and analyze the collected data in nonparametric and alternative format. Atmospheric pollution affects human health directly through pathological changes in the human organism. The registered outpatient care provided for the period 2009-2013 is highest for diseases of the cardiovascular system (11.85%), the respiratory system (17.34%) and the genitourinary system (9.76%). The registered rate of hospitalization for the same period is for diseases of the digestive system (11.90%), the cardiovascular system (11.85%), respiratory system (10.86%) and the genitourinary system (8.88%). The observed period shows a decrease in average yearly concentrations of the principal atmospheric pollutants in the industrial region (Bulgaria) and reflects a decrease in morbidity based on outpatient care and an increase in morbidity by inpatient care (hospitalization). Our findings should be corroborated in future longitudinal studies.

  10. Air pollution and economics: Alternate use of fuels in small scale industries

    International Nuclear Information System (INIS)

    Rao, B.P.S.; Pandit, V.I.

    1999-01-01

    In developing countries the problem of air pollution was recognized earlier, however, it has acquired a greater dimension due to the conventional use of low grade fuels like coal, baggase, rice husk, etc. having high sulphur and ash content. The industrial sources contribute about 30--40% of the total emissions. In India, the small scale industries (low investment group) contribute about 60--80% of the total industrial emissions. These industries are characterized with various environmental pollution problems due to cluster of small scale industries located in sensitive area; use of low grade fuel, primitive processing techniques without emission abatement facilities etc., thus leading to enormous pollution in an confined region. Acute need was felt to reduce the pollution problem associated with small scale industries by use of cleaner fuel so as to reduce the localized problem. The paper presents the emissions associated with use of coal/coke, natural gas, LPG, and propane along with the fuel cost for small scale industrial sector of Agra, Firozabad and Mathura region. The studies carried out would find applicability to meet the air pollution standards based on shift in fuel and associated cost

  11. Electrodialytic remediation of air pollution control residues in bench scale

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ferreira, Celia; Hansen, Henrik K.

    2008-01-01

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) is considered a hazardous waste due to its alkalinity and high content of salts and mobile heavy metals. Various solutions for the handling of APC-residue exist in different regions; however, most commercial soluti...

  12. the effect of industrial air – borne pollutants on the durability of ...

    African Journals Online (AJOL)

    Ada

    material, the galvanized iron roofing sheets, in the highly polluted region of Niger Delta of Nigeria. The study involved the .... environmental monitoring station manufactured ... included a wooden frame and plastic strings. There were three ...

  13. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A S.H.; Dommen, J; Furger, M; Graber, W K [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  14. Air pollution in the Slovak Republic, 2001

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Mareckova, K.; Pukancikova, K.

    2003-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2001 is presented. This report consists of two parts: (1) Ambient air and (2) Emission. Ambient air part is divided into the following chapters: Regional air pollution and quality of precipitation; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Emission and air pollution source inventory, Greenhouse gas emissions

  15. Regional inverse modeling for high reactive species with PYVAR-CHIMERE

    Science.gov (United States)

    Fortems-Cheiney, A.; Pison, I.; Dufour, G.; Broquet, G.; Costantino, L.

    2017-12-01

    The degradation of air quality is a worldwide environmental problem: according to the World Health Organization WHO, 92% of the world's population breathe polluted air in 2016. A number of air pollutants associated with respiratory disease and shortened life expectancy play a particularly important role in global outdoor air pollution. In addition to threatening both human health and ecosystems, these gaseous air pollutants including nitrogen oxides (NOx=NO+NO2), sulfur dioxide (SO2), ammonia (NH3), and volatile organic compounds (VOCs) could be precursors of ozone (O3) and Particulate Matter (PM). Without a strong scientific back-up to determine their different sources, the necessary regulations to improve air quality will not be efficient. To date, only chemistry-transport models (CTM) are able to describe pollutant concentrations at any location in the world and their evolution in the atmosphere. Consequently, they have become essential tools for studying air quality. However, CTM are hampered by incomplete information on gaseous precursors and one of the large shortcoming for simulating the gaseous pollutants budgets is the lack of high spatio-temporal variability for the emission estimations provided as inputs for chemistry-transport models. For all these reasons, an inverse system called PYVAR-CHIMERE has been developed, operating in synergy between a CTM and atmospheric observations, and being adjust for the highly reactive species of interest here, as NO2. We present here the first results of this Bayesian variational inverse method for the quantification of NO2 emissions both over Europe (in March 2011) and over China (in January 2015), with a spatial resolution of 0.5°x0.5° and at a weekly temporal resolution, constrained by surface measurements and OMI NO2 satellite observations.

  16. Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study

    Directory of Open Access Journals (Sweden)

    Yu Shun-Zhang

    2003-11-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS has claimed 349 lives with 5,327 probable cases reported in mainland China since November 2002. SARS case fatality has varied across geographical areas, which might be partially explained by air pollution level. Methods Publicly accessible data on SARS morbidity and mortality were utilized in the data analysis. Air pollution was evaluated by air pollution index (API derived from the concentrations of particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide and ground-level ozone. Ecologic analysis was conducted to explore the association and correlation between air pollution and SARS case fatality via model fitting. Partially ecologic studies were performed to assess the effects of long-term and short-term exposures on the risk of dying from SARS. Results Ecologic analysis conducted among 5 regions with 100 or more SARS cases showed that case fatality rate increased with the increment of API (case fatality = - 0.063 + 0.001 * API. Partially ecologic study based on short-term exposure demonstrated that SARS patients from regions with moderate APIs had an 84% increased risk of dying from SARS compared to those from regions with low APIs (RR = 1.84, 95% CI: 1.41–2.40. Similarly, SARS patients from regions with high APIs were twice as likely to die from SARS compared to those from regions with low APIs. (RR = 2.18, 95% CI: 1.31–3.65. Partially ecologic analysis based on long-term exposure to ambient air pollution showed the similar association. Conclusion Our studies demonstrated a positive association between air pollution and SARS case fatality in Chinese population by utilizing publicly accessible data on SARS statistics and air pollution indices. Although ecologic fallacy and uncontrolled confounding effect might have biased the results, the possibility of a detrimental effect of air pollution on the prognosis of SARS patients deserves further investigation.

  17. PHOTOCHEMICAL AIR POLLUTION IN THE NORTH OF PORTUGAL: A HIGH TROPOSHERIC OZONE EPISODE

    Science.gov (United States)

    Monteiro, A.; Carvalho, A.; Tchepel, O.; Ferreira, J.; Martins, H.; Miranda, A.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J. A.

    2009-12-01

    Very high concentrations of ozone are continuously measured at the monitoring station at Lamas d’Olo, located at the North of Portugal,. A particular high photochemical episode occurred between 11 and 13 of July 2005, registering ozone hourly maximum values above 350 µg.m-3. This ozone-rich episode is investigated in this paper, in order to identify its origin and formation. Besides the analysis of both meteorological and air quality monitoring datasets, a numerical modelling approach, based on MM5-CAMx system, was used to simulate the dispersion and transport (horizontal and vertical) of the photochemical pollutants and its precursors. A cross spectrum analysis of the meteorological and air quality time series was performed, in the frequency domain, to establish the relationships between ozone data measured at Lamas d’Olo with air quality data from neighbourhood stations and meteorological parameters. Results point out different behaviour/contribution between the analysed sites. Moreover, different contributions of the u and v wind component on the ozone concentration fluctuations were found suggesting the presence a mountain breeze circulation and a north synoptic transport. The preliminary modelling results pointed out that the vertical transport of pollutants are responsible for the measured high concentrations, combined with particular meteorological conditions, related to the planetary boundary layer (PBL) development. The pollutants transported and existent at high vertical levels are captured/trapped when the PBL height reaches its daily maximum, and extremely high ozone ground level concentrations are consequently measured.

  18. Air pollution

    International Nuclear Information System (INIS)

    Nelson, P.

    2000-01-01

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO 2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO 2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  19. Trees as bioindicators of industrial air pollution during implementation of pro-environmental policy in Silesia region (Poland).

    Science.gov (United States)

    Sensuła, Barbara; Wilczyński, Slawomir; Opała, Magdalena; Pawełczyk, Sławomira; Piotrowska, Natalia

    2015-04-01

    The aim of research conducted within the project entitled "Trees as bioindicators of industrial air pollutants during the implementation of pro-environmental policies in the area of Silesia" (acronym BIOPOL) is the reconstruction of climate changes and anthropogenic effects and monitoring of the influence of human activities related to industrial development and the introduction of pro-environmental policy. The analysis will concern the climatic and anthropogenic signals recorded in annual tree rings width of Scots pine and in the isotopic composition of wood and its compenents (such as alpha-cellulose and glucose). Only a few studies made a complex multiproxies analysis of the influence of industrial air pollutants on changes in the tree rings width and their isotopic composition in any selected region. In addition, research is usually for a period of industrial development, is a lack of analysis for the period of implementation of EU law and standards on air quality to Polish law. The research area are the forests close to 3 different industrial plants (chemical- nitrogen plants, steel mills, power plants), in Silesia, where operating companies have strategic importance for the region and country. By analyzing the structure of land in Silesia noted a significant advantage of forest land and agricultural land. A large percentage of forest land providing protection for residents in case of failure in any of the plants. A cloud of noxious fumes is possible in large part retained in the trees. Waste generated by the chemical industry, metallurgy and energy represent the largest proportion of waste generated in the region. Already in the beginning of 21stcentury, the Waste Management Plans for various cities in Silesia are set out various strategic objectives to 2015, including in the economic sector: the implementation of non-waste technology and less and the best available techniques (BAT), the introduction of the principles of "cleaner production". The BIOPOL

  20. Study on embodied CO2 transfer between the Jing-Jin-Ji region and other regions in China: a quantification using an interregional input-output model.

    Science.gov (United States)

    Chen, Mengmeng; Wu, Sanmang; Lei, Yalin; Li, Shantong

    2018-03-08

    Jing-Jin-Ji region (i.e., Beijing, Tianjin, and Hebei) is China's key development region, but it is also the leading and most serious air pollution region in China. High fossil fuel consumption is the major source of both carbon dioxide (CO 2 ) emissions and air pollutants. Therefore, it is important to reveal the source of CO 2 emissions to control the air pollution in the Jing-Jin-Ji region. In this study, an interregional input-output model was applied to quantitatively estimate the embodied CO 2 transfer between Jing-Jin-Ji region and other region in China using China's interregional input-output data in 2010. The results indicated that there was a significant difference in the production-based CO 2 emissions in China, and furthermore, the Jing-Jin-Ji region and its surrounding regions were the main regions of the production-based CO 2 emissions in China. Hebei Province exported a large amount of embodied CO 2 to meet the investment, consumption, and export demands of Beijing and Tianjin. The Jing-Jin-Ji regions exported a great deal of embodied CO 2 to the coastal provinces of southeast China and imported it from neighboring provinces.

  1. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    Science.gov (United States)

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source

  2. Impacts of Air Pollution on Health in Eastern China: Implications for future air pollution and energy policies

    Science.gov (United States)

    Wang, X.; Mauzerall, D.

    2004-12-01

    Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new

  3. Environmental Pollution: Causing High Morbidity and Mortality

    OpenAIRE

    , E. Laho; , G. Koduzi; , D. Osmanlli; , F. Aliu

    2016-01-01

    The environmental pollution which is increasing, it is a concerning issue for the community, and when it comes to big cities like Elbasan this is a hot spot. The relevant experience has shown that the more industrial and urban pollution an area has, the higher the pulmonary morbidity is and more cases of mortality from tumoral diseases are. To investigate and show the morbidity and mortality rate from respiratory diseases, cancer etc In our investigation which is a retrospective statistical r...

  4. Diurnal variations of wildfire emissions in Europe: analysis of the MODIS and SEVIRI measurements in the framework of the regional scale air pollution modelling

    Science.gov (United States)

    Konovalov, Igor B.; Beekmann, Matthias; Kaiser, Johannes W.; Shudyaev, Anton A.; Yurova, Alla; Kuznetsova, Irina N.

    2013-04-01

    Wildfires episodically provide a major contribution to air pollution in many regions of the world. For example, the extreme air pollution level and strongly reduced visibility were observed in the Central European region of Russia during the intensive wildfire events in summer of 2010. Such episodes provide a strong impetus for further developments in air pollution modeling, aimed at improving the ability of chemistry transport models to simulate and predict evolution of atmospheric composition affected by wildfires. The main goals of our study are (1) to investigate the diurnal cycles of air pollutant emissions from wildfires in several European regions, taking into account the fire radiative power (FRP) satellite measurements for different vegetation land cover types and (2) to examine the possibilities of improving air pollution simulations by assimilating the diurnal variability of the FRP measurements performed by the polar orbiting (MODIS) and geostationary (SEVIRI) satellite instruments into a chemistry transport model. These goals are addressed for the case of wildfires occurred in summer 2010. The analysis of both the MODIS and SEVIRI data indicate that air pollutant emissions from wildfires in Europe in summer 2010 were typically much larger during daytime than during nighttime. The important exception is intensive fires around Moscow, featuring an almost "flat" diurnal cycle. These findings confirm the similar results reported earlier [1] but also extend them by attributing the flat diurnal cycle only to forest fires and by examining a hypothetical association of the "abnormal" diurnal cycle of FRP with peat fires. The derived diurnal variations of wildfire emissions have been used in the framework of the modeling system employed in our previous studies of the atmospheric effects of the 2010 Russian wildfires [2, 3]. The numerical experiments reveal that while the character of the diurnal variation of wildfire emissions has a rather small impact on the

  5. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.

    Science.gov (United States)

    Duc, Hiep Nguyen; Bang, Ho Quoc; Quang, Ngo Xuan

    2016-02-01

    During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located.

  6. Eurasian continental background and regionally polluted levels of ozone and CO observed in northeast Asia

    Science.gov (United States)

    Pochanart, Pakpong; Kato, Shungo; Katsuno, Takao; Akimoto, Hajime

    The roles of Eurasian/Siberian continental air masses transport and the impact of large-scale East Asian anthropogenic emissions on tropospheric ozone and carbon monoxide levels in northeast Asia were investigated. Seasonal behaviors of O 3 and CO mixing ratios in background continental (BC) air masses and regionally polluted continental (RPC) air masses were identified using trajectory analyses of Eurasian continental air masses and multi-year O 3 and CO data observed at Happo, a mountain site in Japan. RPC air masses show significantly higher O 3 and CO mixing ratios (annual average of 53.9±6.0 and 200±41 ppb, respectively) than BC air masses (44.4±3.6 and 167±17 ppb, respectively). Large scale anthropogenic emissions in East Asia are suggested to contribute about 10 ppb of photochemical O 3 and 32 ppb of CO at Happo. A comparative study of O 3 and CO observed at other sites, i.e., Oki Islands and Mondy in northeast Asia, showed similarities suggesting that O 3 mixing ratios in BC air masses at Happo could be representative for remote northeast Asia. However, CO mixing ratios in BC air masses at Happo are higher than the background level in Siberia. The overestimate is probably related to an increase in the CO baseline gradient between Siberia and the East Asia Pacific rim, and perturbations by sub-grid scale pollution transport and regional-scale boreal forest fires in Siberia when the background continental air masses are transported to Japan.

  7. China's water pollution by persistent organic pollutants

    International Nuclear Information System (INIS)

    Bao Lianjun; Maruya, Keith A.; Snyder, Shane A.; Zeng, Eddy Y.

    2012-01-01

    Available data were reviewed to assess the status of contamination by persistent organic pollutants (POPs), including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), in drinking water sources and coastal waters of China. The levels of POPs in China's waters were generally at the high end of the global range. A comparison of China's regulatory limits indicated that PCBs in rivers and coastal water may pose potential human health risk. Occurrence of DDTs in some rivers of China may also pose health risk to humans using the regulatory limits of DDTs recommended by the European Union. Future monitoring of POPs in China's waters should be directed towards analytes of concern (e.g. PCBs and PCDD/Fs) and to fill data gaps for analytes (e.g. PBDEs, PCDD/Fs, and chlordane) and in watersheds/regions (e.g. West China) where data are scarce. - Highlights: ► Levels of POPs in China's aquatic systems were generally at the high end of the global range. ► New inputs of DDTs, likely related to the use of dicofol and anti-fouling paints, were found. ► Occurrence of PCBs and DDTs in some water bodies pay pose potential human health risk. ► Long-term monitoring of POPs in China's waters is needed to fill data gaps. - Occurrence, potential sources and ecological and human health risk of persistent organic pollutants in China's waters are reviewed.

  8. Methods for Online Monitoring of Air Pollution Concentration

    OpenAIRE

    Ionel, Ioana; Popescu, Francisc

    2010-01-01

    Air pollution is a global environmental problem that represents a measure of the potential of the climate change rate influenced by local pollution sources, although its scale has a strong regional or local orientation. Improvements in technology supported by policy measures have lead to reduced pollution levels, but still, especially in new member states, more activity is needed. In developed countries advanced low pollution technique is applied in order to reduce the pollution levels Howeve...

  9. Inverse modeling for the optimization of primary sources of atmospheric pollution at a regional scale; Modelisation inverse pour l'optimisation des sources primaires de pollution atmospherique a l'echelle regionale

    Energy Technology Data Exchange (ETDEWEB)

    Pison, I

    2005-12-15

    Atmospheric pollution at a regional scale is the result of various interacting processes: emissions, chemistry, transport, mixing and deposition of gaseous species. The forecast of air quality is then performed by models, in which the emissions are taken into account through inventories. The simulated pollutant concentrations depend highly on the emissions that are used. Now inventories that represent them have large uncertainties. Since it would be difficult today to improve their building methodologies, there remains the possibility of adding information to existing inventories. The optimization of emissions uses the information that is available in measurements to get the inventory that minimizes the difference between simulated and measured concentrations. A method for the inversion of anthropogenic emissions at a regional scale, using network measurements and based on the CHIMERE model and its adjoint, was developed and validated. A kriging technique allows us to optimize the use of the information available in the concentration space. Repeated kriging-optimization cycles increase the quality of the results. A dynamical spatial aggregation technique makes it possible to further reduce the size of the problem. The NO{sub x} emissions from the inventory elaborated by AIRPARIF for the Paris area were inverted during the summers of 1998 and 1999, the events of the ESQUIF campaign being studied in detail. The optimization reduces large differences between simulated and measured concentrations. Generally, however, the confidence level of the results decreases with the density of the measurement network. Therefore, the results with the higher confidence level correspond to the most intense emission fluxes of the Paris area. On the whole domain, the corrections to the average emitted mass and to the matching time profiles are consistent with the estimate of 15% obtained during the ESQUIF campaign. (author)

  10. Fireworks induced particle pollution: A spatio-temporal analysis

    Science.gov (United States)

    Kumar, M.; Singh, R. K.; Murari, V.; Singh, A. K.; Singh, R. S.; Banerjee, T.

    2016-11-01

    Diwali-specific firework induced particle pollution was measured in terms of aerosol mass loading, type, optical properties and vertical distribution. Entire nation exhibited an increase in particulate concentrations specifically in Indo-Gangetic Plain (IGP). Aerosol surface mass loading at middle IGP revealed an increase of 56-121% during festival days in comparison to their background concentrations. Space-borne measurements (Aqua and Terra-MODIS) typically identified IGP with moderate to high AOD (0.3-0.8) during pre-festive days which transmutes to very high AOD (0.4-1.8) during Diwali-day with accumulation of aerosol fine mode fractions (0.3-1.0). Most of the aerosol surface monitoring stations exhibited increase in PM2.5 especially on Diwali-day while PM10 exhibited increase on subsequent days. Elemental compositions strongly support K, Ba, Sr, Cd, S and P to be considered as firework tracers. The upper and middle IGP revealed dominance of absorbing aerosols (OMI-AI: 0.80-1.40) while CALIPSO altitude-orbit-cross-section profiles established the presence of polluted dust which eventually modified with association of smoke and polluted continental during extreme fireworks. Diwali-specific these observations have implications on associating fireworks induced particle pollution and human health while inclusion of these observations should improve regional air quality model.

  11. Genome Instability of Chironomus riparius Mg. (Diptera, Chironomidae from Polluted Water Basins in Bulgaria

    Directory of Open Access Journals (Sweden)

    Julia Ilkova

    2014-04-01

    Full Text Available Larvae of Chironomus riparius Mg. (Chironomidae, Diptera collected from two polluted water basins in Bulgaria, the Maritsa and Chaya Rivers (adjacent to Plovdiv and Asenovgrad respectively, a small pool (near Plovdiv plus controls reared in the laboratory were studied. High concentrations of the heavy metals Pb, Cu and Cd were recorded in the sediments of the polluted stations. Marked somatic structural chromosome aberrations were found in C. riparius salivary polytene chromosomes from the field stations and their frequency was significantly higher (p<0.01 compared to the control. The observed somatic chromosome changes are discussed as a response of the chironomid genome to aquatic pollution. A new cytogenetic index based on the number of aberrations found in larvae from polluted regions in comparison with the control was applied to the data to more easily evaluate the degree of heavy metal pollution in aquatic ecosystems. Our study of a polluted site near the River Chaya showed that the somatic index was very high at 3.35 for 2010 and 11.66 for 2013 compared to 0.5 in the control. The cytogenetic index was effective in showing that all studied sites were highly polluted in comparison with the control. To determine the mechanism involved in the concentration of aberration breakpoints within specific regions of the chironomid polytene chromosome the FISH method was applied. The localization of a transposable element TFB1 along the polytene chromosomes of C. riparius was analyzed and the sites of localization were compared with breakpoints of chromosome aberrations. A significant correlation (p<0.05 was found which shows that most of the aberrations do not appear randomly but are concentrated in sites rich in transposable elements.

  12. Black carbon concentrations in the highly polluted Kathmandu Valley, Nepal: a three year monitoring with a dual-spot Aethalometer

    Science.gov (United States)

    Rupakheti, Maheswar; Drinovec, Luka; Puppala, SivaPraveen; Mahata, Khadak; Rupakheti, Dipesh; Kathayat, Bhogendra; Singdan, Pratik; Panday, Arnico; Lawrence, Mark

    2016-04-01

    Our knowledge about ambient black carbon (BC) in the vast Himalayan region, a region vulnerable to impacts of global warming, is very limited due to unavailability of a long-term ambient monitoring. Here we present results from a continuous monitoring of ambient BC concentrations, with a new generation Aethalometer (AE33), over a three year period (January 2013- January 2016) at a semi-urban site in the highly polluted Kathmandu Valley in the foothills of the central Himalaya, one of the most polluted cities in the world. This is the longest time series of BC concentrations that have been monitored with AE33 (which uses the dual-spot technique for a real-time filter loading compensation) in highly polluted ambient environment. The measurements were carried out under the framework of project SusKat (Sustainable Atmosphere for the Kathmandu Valley). BC concentrations were found to be extremely high, especially in winter and the pre-monsoon period, with the hourly-averaged values often exceeding 50 μg/m3. BC concentrations showed a clear diurnal cycle with a prominent peak around 8-9 am and a second peak around 8-9 pm local time in all four seasons. Night-time BC was also fairly high. The diurnal cycle was driven by a combination of increased emissions from traffic, cooking activities, garbage burning, and lower mixing heights (˜200 m) and reduced horizontal ventilation in the mornings and evenings. BC concentrations showed significant seasonal variations - a maximum in winter season and minimum during the monsoon (rainy) season, with monthly average values in the range 5-30 μg/m3. An increase in emissions from the operation of over 100 brick kilns in winter and spring, and an increase in the use of small but numerous diesel power generators during hours with power cuts contributed significantly to ambient BC concentrations in the valley. Fractional contributions of biomass burning and fossil fuel combustion to BC was estimated based on a real-time method for

  13. Particulate Matter Air Pollution in an Urban Area : a Case Study

    Directory of Open Access Journals (Sweden)

    Piotr Holnicki

    2016-01-01

    Full Text Available Many European agglomerations suffer from high concentrations of particulate matter (PM, which is now one of the most detrimental pollutants characterizing the urban atmospheric environment. This paper addresses the problem of PM10 pollution in the Warsaw metropolitan area, including very harmful fine fractions (PM2.5, and also some heavy metals. The analysis of air quality in the Warsaw agglomeration discussed in this study is based on results from computer modeling presented elsewhere, and refers to emission and meteorological data for the year 2012. The range of emissions considered in this analysis includes the main sectors of municipal activity: energy generation, industry, urban transport, residential sector. The trans-boundary inflow of the main pollutants coming from distant sources is also taken into account. The regional scale computer model CALPUFF was used to assess the annual mean concentrations of major pollutants in the urban area. The results show the regions where the air quality limits are exceeded and indicate the dominant sources of emission which are responsible for these violations (source apportionment. These are the key data required to implement efficient regulatory actions. (original abstract

  14. Heavy metal pollution in soil associated with a large-scale cyanidation gold mining region in southeast of Jilin, China.

    Science.gov (United States)

    Chen, Mo; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Jiang, Xue; Wu, Jichun

    2017-01-01

    Different gold mining and smelting processes can lead to distinctive heavy metal contamination patterns and results. This work examined heavy metal pollution from a large-scale cyanidation gold mining operation, which is distinguished from artisanal and small-scale amalgamation gold mining, in Jilin Province, China. A total of 20 samples including one background sample were collected from the surface of the mining area and the tailings pond in June 2013. These samples were analyzed for heavy metal concentrations and degree of pollution as well as sources of Cr, Cu, Zn, Pb, Ni, Cd, As, and Hg. The mean concentrations of Pb, Hg, and Cu (819.67, 0.12, and 46.92 mg kg -1 , respectively) in soil samples from the gold mine area exceeded local background values. The mean Hg content was less than the first-class standard of the Environmental Quality for Soils, which suggested that the cyanidation method is helpful for reducing Hg pollution. The geochemical accumulation index and enrichment factor results indicated clear signs that enrichment was present for Pb, Cu, and Hg, with the presence of serious Pb pollution and moderate presence to none of Hg and Cu pollution. Multivariate statistical analysis showed that there were three metal sources: (1) Pb, Cd, Cu, and As came from anthropogenic sources; (2) Cr and Zn were naturally occurring; whereas (3) Hg and Ni had a mix of anthropogenic and natural sources. Moreover, the tailings dam plays an important role in intercepting the tailings. Furthermore, the potential ecological risk assessment results showed that the study area poses a potentially strong risk to the ecological health. Furthermore, Pb and Hg (due to high concentration and high toxicity, respectively) are major pollutants on the risk index, and both Pb and Hg pollution should be of great concern at the Haigou gold mines in Jilin, China.

  15. International symposium on marine pollution. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of the Oceans. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for studies of transport and circulation processes in the world`s oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. This document contains extended synopses of 390 oral and poster presentations made at the symposium. Each synopsis was indexed separately. Refs, figs, tabs

  16. International symposium on marine pollution. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of the Oceans. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for studies of transport and circulation processes in the world's oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. This document contains extended synopses of 390 oral and poster presentations made at the symposium. Each synopsis was indexed separately

  17. Pasvik River Watercourse, Barents Region: Pollution Impacts and Ecological Responses. Investigations in 1993

    Energy Technology Data Exchange (ETDEWEB)

    Traaen, T; Moiseenko, T; Sandimirov, S and others

    1994-12-31

    The Pasvik River is one of the largest rivers in the Northern Fennoscandia and constitutes the border between Norway and Russia, with catchment area in Finland, Norway and Russia. Besides being strongly regulated for hydroelectric power production, the river is polluted by the smelter in Nikel and other industrial activities and by domestic sewage from the settlements on both sides of the border. This document discusses the pollution of the river and the ecological responses. The two main areas of concern are heavy metals and eutrophication. Very high content of heavy metals in water, lake sediments, macrophytes and fish was found in Kuetsyarvi. Extensive toxic effects were documented on the fish population in the lake. The toxic effects are less than expected from the concentration of heavy metals, which is due to high calcium content, organic matter and eutrophication. Eutrophication is due to the domestic sewage from settlements within the water catchment. Kuetsyarvi has eutrophic status, the lower parts of the Pasvik River have oligo-mesotrophic status according to phosphorus concentrations, and the composition of the planktonic and benthic communities. Because of increased and stabilized water level from hydroelectric power regulations, increased abundance of macrophytes and zoobenthos in shallow areas also have occurred. 77 refs., 32 figs., 28 tabs.

  18. High blood levels of persistent organic pollutants are statistically correlated with smoking

    DEFF Research Database (Denmark)

    Deutch, Bente; Hansen, Jens C.

    1999-01-01

    , smoking and intake of traditional Inuit food. Multiple linear regression analyses showed highly significant positive associations between the mothers' smoking status (never, previous, present) and plasma concentrations of all the studied organic pollutants both in maternal blood and umbilical cord blood...

  19. The Effects of Anthropogenic Heat Release on Urban Meteorology and Implication for Haze Pollution in the Beijing-Tianjin-Hebei Region

    Directory of Open Access Journals (Sweden)

    Ruiting Liu

    2016-01-01

    Full Text Available In this study, the effect of anthropogenic heat release (AHR on meteorological variables and atmospheric diffusion capability and implication for haze pollution in the Beijing-Tianjin-Hebei region in January 2013 were investigated by using Weather Research and Forecasting (WRF model with an urban canopy model (UCM and an AHR scheme. The comparison with observation demonstrated the WRF/UCM model taking AHR into account apparently improved meteorological prediction, especially for surface air temperature at 2 m (T2. The model also exhibited a better performance for planetary boundary layer (PBL height. This study revealed that AHR from cities exerted a significant impact on meteorology by generally increasing surface air temperature and wind speed, decreasing relative humidity, and elevating PBL height and near surface turbulent kinetic energy (TKE, which could consequently reduce surface pollutant concentration and mitigate haze pollution by enhancing atmospheric instability and turbulent mixing and reducing aerosol hygroscopic growth.

  20. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    Science.gov (United States)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  1. Air Pollutants Minimalization of Pollutant Absorber with Condensation System

    International Nuclear Information System (INIS)

    Ruhiat, Yayat; Wibowo, Firmanul Catur; Oktarisa, Yuvita

    2017-01-01

    Industrial development has implications for pollution, one of it is air pollution. The amount of air pollutants emitted from industrial depend on several factors which are capacity of its fuel, high chimneys and atmospheric stability. To minimize pollutants emitted from industries is created a tool called Pollutant Absorber (PA) with a condensing system. Research and Development with the approach of Design for Production was used as methodology in making PA. To test the function of PA, the simulation had been done by using the data on industrial emissions Cilegon industrial area. The simulation results in 15 years period showed that the PA was able to minimize the pollutant emissions of SO2 by 38% NOx by 37% and dust by 64%. Differences in the absorption of pollutants shows the weakness of particle separation process in the separator. This condition happen because the condensation process is less optimal during the absorption and separation in the separator. (paper)

  2. Groundwater nitrate pollution in Souss-Massa basin (south-west ...

    African Journals Online (AJOL)

    EJIRO

    Comté, 16 route de Gray, 25030 Besançon cedex, France. ... the study sites are the main cause of serious nitrate pollution given the superimposition of high nitrate ... development level. ... Location map of the irrigated areas and the sampling network. ... of clay, occur chiefly in the Chtouka-Massa region and in the Atlas.

  3. Study of soil pollution by cadmium in Qatina region

    International Nuclear Information System (INIS)

    Bargouth, G.; Johar, Y.; Ashkar, I.

    2005-01-01

    Heavy metals such as cadmium are specify to form complex compounds in soils make it difficulty to be absorbed from plants, but if prevailing circumstances changeability in soil and make these elements in absorbed actionable case to the plants, direct threatening upon of polluted soil with such elements will begin, and appears on plants, animals and humans. Holding comprehensive environmental evaluation on the agricultural soil field according to the prevailing circumstances in the transplanting zone, considered as important environmental practical stage in reducing environmental cadmium problems risk. Accordingly, we look to terming and controlling environment either to manage a soil pollution problem existed, or prophecy with circumstances lowers upon cadmium concentrations in the environment system (soil-plant) in order not to occurs environmental cadmium problems in the field soil futurity. (author)

  4. Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women

    Science.gov (United States)

    James, Peter; Hart, Jaime E.; Laden, Francine

    2015-01-01

    Background Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. Objectives We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Methods Using data from the Nurses’ Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. Results After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) μg/m3 higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. Conclusions This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary across region that allow for walkable neighborhoods with low levels of air pollution. PMID:26397775

  5. Water pollution control. High performances finishing processing; Lutte contre la pollution des eaux. Finitions a haute performance

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, P.

    1999-04-01

    The sewage recovery or recycling is an efficient way to control the water resources conservation. This paper characterizes in a first part the residual pollutants of an effluent rejected in the natural medium. It deals then the recycling and the water recovery objectives to present the possible processing. The author emphasizes some modern high performances engineering as, granular material filtration, membrane filtration, osmosis, UV disinfection, flocculation activated carbon or chemical oxidation. (A.L.B.)

  6. DNA damage in buccal mucosa cells of pre-school children exposed to high levels of urban air pollutants.

    Directory of Open Access Journals (Sweden)

    Elisabetta Ceretti

    Full Text Available Air pollution has been recognized as a human carcinogen. Children living in urban areas are a high-risk group, because genetic damage occurring early in life is considered able to increase the risk of carcinogenesis in adulthood. This study aimed to investigate micronuclei (MN frequency, as a biomarker of DNA damage, in exfoliated buccal cells of pre-school children living in a town with high levels of air pollution. A sample of healthy 3-6-year-old children living in Brescia, Northern Italy, was investigated. A sample of the children's buccal mucosa cells was collected during the winter months in 2012 and 2013. DNA damage was investigated using the MN test. Children's exposure to urban air pollution was evaluated by means of a questionnaire filled in by their parents that included items on various possible sources of indoor and outdoor pollution, and the concentration of fine particulate matter (PM10, PM2.5 and NO2 in the 1-3 weeks preceding biological sample collection. 181 children (mean age ± SD: 4.3 ± 0.9 years were investigated. The mean ± SD MN frequency was 0.29 ± 0.13%. A weak, though statistically significant, association of MN with concentration of air pollutants (PM10, PM2.5 and NO2 was found, whereas no association was apparent between MN frequency and the indoor and outdoor exposure variables investigated via the questionnaire. This study showed a high MN frequency in children living in a town with heavy air pollution in winter, higher than usually found among children living in areas with low or medium-high levels of air pollution.

  7. Effects of emissions change, climate change and long-range transport on regional modeling of future U.S. particulate matter pollution and speciation

    Science.gov (United States)

    He, Hao; Liang, Xin-Zhong; Wuebbles, Donald J.

    2018-04-01

    This study investigates the future U.S. PM2.5 pollution under multiple emissions scenarios, climate states, and long-range transport (LRT) effects using the regional Community Multi-scale Air Quality (CMAQ) model integrated with a regional climate model. CMAQ with fixed chemical lateral boundary conditions (LBCs) successfully reproduces the present-day PM2.5 pollution and its major species in rural and suburban areas, but has some discrepancies in urban areas such as the Los Angeles Basin, where detailed emissions and meteorology conditions cannot be resolved by the 30 km grid. Its performance is slightly worsened when using dynamic chemical LBCs from global chemical transport model (CTM) simulations, which provide cleaner conditions into the CMAQ lateral boundaries. Under future Intergovernmental Panel on Climate Change (IPCC) emission scenarios, CMAQ projects large PM2.5 reductions (∼40% for A1B and ∼20% for A1Fi scenario) in the eastern United States, but slight to moderate increases (∼5% for A1B and ∼10% for A1Fi) in the western United States. The projected increases are particularly large (up to 30%) near the Mexico-U.S. border, suggesting that Mexico is a major source for future U.S. PM2.5 pollution. The effect from climate change alone is estimated to increase PM2.5 levels ubiquitously (∼5% for both A1B and A1Fi) over the United States, except for a small decrease in the Houston, Texas area, where anthropogenic non-methane volatile organic compounds (NMVOCs) emissions dominate. This climate penalty, however, is substantially smaller than effects of emissions change, especially in the eastern United States. Future PM2.5 pollution is affected substantially (up to -20%) by changes in SO2 emissions and moderately (3-5%) by changes in NOx and NH3 emissions. The long-range transport (LRT) effects, which are estimated by comparing CMAQ simulations with fixed and dynamic LBCs, are regional dependent, causing up to 10-20% decrease over the western United

  8. Aerosol optical properties in the mega-cities Beijing and Guangzhou: Measurements and implications for regional air pollution, aerosol sources and remote sensing

    Science.gov (United States)

    Garland, R. M.; Yang, H.; Schmid, O.; Rose, D.; Gunthe, S. S.

    2009-04-01

    Aerosol optical properties were measured in two mega-city regions in China. The first site (Backgarden) was in a rural area approximately 60 km northwest of the mega-city Guangzhou in south China and was part of the "Program of Regional Integrated Experiments of Air Quality over the Pearl River Delta" intensive campaign in July 2006 (PRIDE-PRD2006). The second site (Yufa) was in a suburban area approximately 40 km south of Beijing and was part of "Campaigns of Air Quality Research in Beijing" (CAREBeijing-2006) in August 2006. Both sites were designed to measure the regional pollution of the mega-cities. The optical parameters determined with a nephelometer and photoacoustic spectrometer include absorption and scattering coefficients, single scattering albedos and Angstrom exponents at multiple wavelengths (450-700 nm). In both measurement campaigns, we observed pronounced diurnal cycles in absorption and scattering coefficients and single scattering albedo, which can be explained by boundary layer mixing effects and enhanced light absorbing carbon emissions from traffic activity during the nighttime and early morning, respectively (diesel soot from regulated truck traffic). In Beijing both the extensive and the intensive properties were highly dependent upon the origin of the air mass, which indicates that not only does the aerosol concentration change with air mass origin, but so do the chemical composition and sources. When the measured air masses originated in the north and passed over Beijing, the single scattering albedo was generally low (transported into the city from the south. The scattering and absorption coefficients measured in the outflow of the Guangzhou area during PRIDE-PRD2006 were ~2 times smaller than the southerly inflow into Beijing during CARBeijing-2006, which indicates that the sources of particulate pollution south of Beijing are even stronger than those in the Pearl River Delta. In both mega-city regions the Angstrom exponent exhibited a

  9. [Sleep quality and hormone levels in the morning and evening hours under chemical pollution].

    Science.gov (United States)

    Budkevich, R O; Budkevich, E V

    To evaluate self-assessment of sleep and the level of hormones in the morning and evening in chemical pollution conditions. Three hundred adolescent and adult men living in the regions with low and high levels of chemical pollution were examined using questionnaires for self-assessment of quality of sleep, sleep hygiene, daytime sleepiness. Levels of cortisol and testosterone in the saliva were determined in the morning and evening hours by ELISA. In areas with low pollution level, there were normal changes in hormone levels with an increase in the morning and decrease in the evening. In high pollution conditions, the average levels of hormones increased, the morning-evening gradient disappeared. These conditions were also associated with an increase in daytime sleepiness and disturbances in the sleep-wake cycle and the endocrine regulation system that indicate the possibility of the development of internal desynchronosis.

  10. Meteorological controls on atmospheric particulate pollution during hazard reduction burns

    Science.gov (United States)

    Di Virgilio, Giovanni; Hart, Melissa Anne; Jiang, Ningbo

    2018-05-01

    Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRBs) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depend upon prevailing atmospheric conditions, and can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates pollution, the PBLH between 00:00 and 07:00 LT (local time) was 100-200 m higher than days with high pollution. The PBLH was similar during 10:00-17:00 LT for both low and high pollution days, but higher after 18:00 LT for HRB days with low pollution. Cloud cover, temperature and wind speed reflected the above pattern, e.g. mean temperatures and wind speeds were 2 °C cooler and 0.5 m s-1 lower during mornings and evenings of HRB days when air quality was poor. These cooler, more stable morning and evening conditions coincide with nocturnal westerly cold air drainage flows in Sydney, which are associated with reduced mixing height and vertical dispersion, leading to the build-up of PM2.5. These findings indicate that air pollution impacts may be reduced by altering the timing of HRBs by conducting them later in the morning (by a matter of hours). Our findings support location-specific forecasts of the air quality impacts of HRBs in Sydney and similar regions elsewhere.

  11. Vegetation fires and air pollution in Vietnam.

    Science.gov (United States)

    Le, Thanh Ha; Thanh Nguyen, Thi Nhat; Lasko, Kristofer; Ilavajhala, Shriram; Vadrevu, Krishna Prasad; Justice, Chris

    2014-12-01

    Forest fires are a significant source of air pollution in Asia. In this study, we integrate satellite remote sensing data and ground-based measurements to infer fire-air pollution relationships in selected regions of Vietnam. We first characterized the active fires and burnt areas at a regional scale from MODIS satellite data. We then used satellite-derived active fire data to correlate the resulting atmospheric pollution. Further, we analyzed the relationship between satellite atmospheric variables and ground-based air pollutant parameters. Our results show peak fire activity during March in Vietnam, with hotspots in the Northwest and Central Highlands. Active fires were significantly correlated with UV Aerosol Index (UVAI), aerosol extinction absorption optical depth (AAOD), and Carbon Monoxide. The use of satellite aerosol optical thickness improved the prediction of Particulate Matter (PM) concentration significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Study of ants as bioindicators of industrial pollution in Kemerovo Region, Russia

    Science.gov (United States)

    Blinova, S. V.; Dobrydina, T. I.

    2018-01-01

    The myrmecocomplexes of five industrial cities in the territory of Kuzbass, Russia, were studied. The general trends in the reaction of ants to the pollution by gaseous (chemical industry) and solid (coal and cement dust, lead and zinc waste and metallurgical industry) emissions were revealed. It was found out that the proportion of species of subfamilies, species richness and density of the settlement can be used as bioindicators. The predominance of L. niger and M. rubra nests in myrmecocomplexes immediately indicates a high degree of man-made impact.

  13. Characterization of photochemical pollution at different elevations in mountainous areas in Hong Kong

    Directory of Open Access Journals (Sweden)

    H. Guo

    2013-04-01

    Full Text Available To advance our understanding on the factors that affect photochemical pollution at different elevations in mountainous areas, concurrent systematic field measurements (September to November 2010 were conducted at a mountain site and at an urban site at the foot of the mountain in Hong Kong. The mixing ratios of air pollutants were greater at the foot of the mountain (i.e., Tsuen Wan urban site, TW than near the summit (i.e., Tai Mao Shan mountain site, TMS, expect for ozone. In total, only one O3 episode day was observed at TW, whereas twenty-one (21 O3 episode days were observed at TMS. The discrepancy of O3 at the two sites was attributed to the mixed effects of NO titration, vertical meteorological conditions, regional transport and mesoscale circulations. The lower NO levels at TMS and the smaller differences of "oxidant" Ox (O3 + NO2 between the two sites suggested that variations of O3 at the two sites were partly attributed to different degree of NO titration. In addition, analysis of vertical structure of meteorological variables revealed that the inversion layer at the range of altitudes of 500–1000 m might be another factor that caused the high O3 levels at TMS. Furthermore, analyses of the wind fields, the levels of air pollutants in different air flows, ratios of different trace gases and the correlation between variability and the lifetime of VOCs (volatile organic compounds indicated that high O3 concentrations at TMS were somewhat influenced by regional air masses from the highly polluted Pearl River delta (PRD region. In particular, the diurnal profiles and correlations of gaseous pollutants suggested influence of mesoscale circulations, which is confirmed using the Master Chemical Mechanism moving box model (Mbox and the Weather Research and Forecasting (WRF model. By investigating the correlations of observed O3 and NOx* and the relationships of O3 and its precursors by an observation-based model (OBM, as well as the ratios

  14. Deposition and retention of air pollutants on vegetation and other atmospheric interfaces

    International Nuclear Information System (INIS)

    Jonas, R.

    1984-09-01

    The question of the deposition of aerosols and gases are applied to biological and ecological problems concerning the filtering aspect of atmospheric interfaces, especially vegetation, with respect to air pollution, and also the resulting pollutant effect. In order to determine the deposition of aerosols, numerous field experiments were carried out. The deposition of gases was treated on the basis of current literature data. The experiments indicate that the deposition of aerosols on grass largely depends on aerosol diameter, dry weight per unit area and the wind velocity or turbulence of the air layer near the ground. Of the interfaces studied, namely soil without vegetation, water, filter paper, smooth and structured metals, grass, clover and trees, the latter had the greatest dust collecting capability. It is recommended that in the afforestation of areas in the close proximity of industrial regions the common beech, silver birch and Japanese larch should be taken into particular consideration due to their great deposition effectiveness with respect to dusts and their comparatively high resistance to pollutant gases. Silver birch and moreover red horse chestnut should be considered for filtering the air in urban regions because of the high aerosol deposition. (orig./HP) [de

  15. Comparison of sediment pollution in the rivers of the Hungarian Upper Tisza Region using non-destructive analytical techniques

    International Nuclear Information System (INIS)

    Osan, Janos; Toeroek, Szabina; Alfoeldy, Balint; Alsecz, Anita; Falkenberg, Gerald; Baik, Soo Yeun; Van Grieken, Rene

    2007-01-01

    The rivers in the Hungarian Upper Tisza Region are frequently polluted mainly due to mining activities in the catchment area. At the beginning of 2000, two major mining accidents occurred in the Romanian part of the catchment area due to the failure of a tailings dam releasing huge amounts of cyanide and heavy metals to the rivers. Surface sediment as well as water samples were collected at six sites in the years 2000-2003, from the northeast-Hungarian section of the Tisza, Szamos and Tur rivers. The sediment pollution of the rivers was compared based on measurements of bulk material and selected single particles, in order to relate the observed compositions and chemical states of metals to the possible sources and weathering of pollution. Non-destructive X-ray analytical methods were applied in order to obtain different kinds of information from the same samples or particles. In order to identify the pollution sources, their magnitude and fate, complementary analyses were carried out. Heterogeneous particulate samples were analyzed from a large geographical territory and a 4-year time period. Individual particles were analyzed only from the 'hot' samples that showed elevated concentrations of heavy metals. Particles that were classified as anthropogenic were finally analyzed to identify trace concentrations and chemical states of heavy metals. Although the Tisza river was affected by water pollution due to the two major mining accidents at the beginning of 2000, the concentration of heavy metals in sediments decreased to the mineral background level 1 year after the pollution event. In the tributaries Szamos and Tur, however, no significant decrease of the heavy metal concentrations was observed in the recent years, indicating a continuous pollution. Among the water suspended particles collected from river Tur, fibers of unknown origin were observed by electron microscopy; these particles were aluminosilicates enriched in Zn and Mn. Cd was also concentrated in

  16. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    Science.gov (United States)

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-01-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale. PMID:26675587

  17. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale.

    Science.gov (United States)

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-12-17

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of "loading capacity" (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale.

  18. A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation

    International Nuclear Information System (INIS)

    Ma, Liang; Zhou, Minghua; Ren, Gengbo; Yang, Weilu; Liang, Liang

    2016-01-01

    Highlights: • A highly energy-efficient flow-through electro-Fenton reactor was designed. • It had high H 2 O 2 yield and low energy consumption for organic pollutants degradation. • The effect of operational parameters was optimized and possible process mechanism was studied. • The novel system performed wide practicability and potential for organic pollutants degradation. - Abstract: A highly energy-efficient flow-through Electro-Fenton (E-Fenton) reactor for oxidation of methylene blue (MB) from aqueous solution was designed using a perforated DSA as anode and the graphite felt modified by carbon black and polytetrafluoroethylene (PTFE) as cathode for the in situ generation of H 2 O 2 . The modified cathode had a high H 2 O 2 production with low energy consumption, which was characterized by scanning electron microscopy (SEM), nitrogen adsorption-desorption study and contact angle. The flow-through E-Fenton system was compared to the flow-by and regular one, and confirmed to be best on MB removal and TOC degradation. The operational parameters such as current density, pH, Fe 2+ concentration and flow rate were optimized. The MB and TOC removal efficiency of the effluents could keep above 90% and 50%, respectively, and the energy consumption was 23.0 kWh/kgTOC at the current density of 50 mA, pH 3, 0.3 mM Fe 2+ , and the flow rate of 7 mL/min. ·OH was proved to be the main oxidizing species in this system. After 5 times operation, the system, especially cathode, still showed good stability. Five more organic pollutants including orange II (OG), tartrazine, acetylsalicylic acid (ASA), tetracycline (TC) and 2,4-dichlorophen (2,4-DCP) were investigated and the electric energy consumption (EEC) was compared with literatures. All results demonstrated that this flow-through E-Fenton system was energy-efficient and potential for degradation of organic pollutants.

  19. CHEMICAL INTERACTIONS TO CLEANUP HIGHLY POLLUTED AUTOMOBILE SERVICE STATION WASTEWATER BY BIOADSORPTION-COAGULATION-FLOCCULATION

    Directory of Open Access Journals (Sweden)

    Carlos Banchon

    2017-01-01

    Full Text Available The present study addresses an ecofriendly solution to treat automobile service stations effluents with high concentrations of oily substances, surfactants, organic matter and heavy metals. Bioadsorption using sawdust from pine trees, sugar cane bagasse and coconut coir without any chemical modification removed colloidal contamination up to 70%. Polyaluminium chloride, ferric chloride and polyacrylamide were applied to remove dissolved and colloidal pollutants under saline conditions without change of initial pH. Both bioadsorption and coagulation-flocculation removed up to 97.8% of BOD, COD, surfactants and heavy metals at a saline concentration of 1.5% NaCl. The increase of ionic strength promoted a high sludge index and a representative cost saving in chemicals consumption of almost 70%. High levels of pollution removal with the minimal use of chemicals is herein presented.

  20. Climate change, extreme weather events, air pollution and respiratory health in Europe.

    Science.gov (United States)

    De Sario, M; Katsouyanni, K; Michelozzi, P

    2013-09-01

    Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.

  1. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties

    International Nuclear Information System (INIS)

    Zhang Changbo; Wu Longhua; Luo Yongming; Zhang Haibo; Christie, Peter

    2008-01-01

    Principal components analysis (PCA) and correlation analysis were used to estimate the contribution of four components related to pollutant sources on the total variation in concentrations of Cu, Zn, Pb, Cd, As, Se, Hg, Fe and Mn in surface soil samples from a valley in east China with numerous copper and zinc smelters. Results indicate that when carrying out source identification of inorganic pollutants their tendency to migrate in soils may result in differences between the pollutant composition of the source and the receptor soil, potentially leading to errors in the characterization of pollutants using multivariate statistics. The stability and potential migration or movement of pollutants in soils must therefore be taken into account. Soil physicochemical properties may offer additional useful information. Two different mechanisms have been hypothesized for correlations between soil heavy metal concentrations and soil organic matter content and these may be helpful in interpreting the statistical analysis. - Principal components analysis with Varimax rotation can help identify sources of soil inorganic pollutants but pollutant migration and soil properties can exert important effects

  2. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    Science.gov (United States)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant

  3. National Pollution Discharge Elimination System (NPDES) Facility Points, Region 9, 2007, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  4. National Pollution Discharge Elimination System (NPDES) Facility Points, Region 9, 2011, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  5. National Pollution Discharge Elimination System (NPDES) Facility Points, Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  6. Spatio-temporal modelling of atmospheric pollution based on observations provided by an air quality monitoring network at a regional scale

    International Nuclear Information System (INIS)

    Coman, A.

    2008-01-01

    This study is devoted to the spatio-temporal modelling of air pollution at a regional scale using a set of statistical methods in order to treat the measurements of pollutant concentrations (NO 2 , O 3 ) provided by an air quality monitoring network (AIRPARIF). The main objective is the improvement of the pollutant fields mapping using either interpolation methods based on the spatial or spatio-temporal structure of the data (spatial or spatio-temporal kriging) or some algorithms taking into account the observations, in order to correct the concentrations simulated by a deterministic model (Ensemble Kalman Filter). The results show that nitrogen dioxide mapping based only on spatial interpolation (kriging) gives the best results, while the spatial repartition of the monitoring sites is good. For the ozone mapping it is the sequential data assimilation that leads us to a better reconstruction of the plume's form and position for the analyzed cases. Complementary to the pollutant mapping, another objective was to perform a local prediction of ozone concentrations on a 24-hour horizon; this task was performed using Artificial Neural Networks. The performance indices obtained using two types of neural architectures indicate a fair accuracy especially for the first 8 hours of prediction horizon. (author)

  7. Isotopic Recorders of Pollution in Heterogeneous Urban Areas

    Science.gov (United States)

    Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.

    2017-12-01

    A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.

  8. Integrated environmental assessment and pollution prevention in Vietnam: the case of anthracite production

    Energy Technology Data Exchange (ETDEWEB)

    Chinh, L.D.; Gheewala, S.H.; Bonnet, S. [King Mongkuts University of Technology at Thonburi, Bangkok (Thailand)

    2007-07-01

    Abstract: Using the concept of life cycle analysis, the whole life cycle of anthracite production in Vietnam was assessed and the environmental 'hot-spots' were identified. These include (I) dust pollution at coal transfer points or piles in storage; (ii) noise pollution resulting from the usage of heavy equipment, and (iii) high volume of acid and turbid mine water discharged into the environment. Pollution prevention and treatment options were identified and discussed in this study which consists of wet treatment of dust, planning, collection and treatment of mine water, planting of trees for dust and noise reduction as well as minimization of erosion. Some recommendations are made for pollution abatement from coal production and improvement of anthracite production in the region.

  9. Dialogues on air pollution: an Asian example

    NARCIS (Netherlands)

    Kroeze, C.; Stalpers, S.I.P.

    2013-01-01

    The efficient reduction of transboundary air pollution requires dialogue on emission reduction at an international level. A model is under construction to facilitate such dialogues for Asia. This is the Regional Air pollution Information System (RAINS-Asia), developed at the International Institute

  10. High blood levels of persistent organic pollutants are statistically correlated with smoking

    DEFF Research Database (Denmark)

    Deutch, Bente; Hansen, Jens C.

    1999-01-01

    , smoking and intake of traditional Inuit food. Multiple linear regression analyses showed highly significant positive associations between the mothers' smoking status (never, previous, present) and plasma concentrations of all the studied organic pollutants both in maternal blood and umbilical cord blood......Persistent Organic Pollutants (11 pesticides and 14 PCB-congeners), and heavy metals (Cd, Cu, Hg, Pb, Se, and Zn) were determined in 175 pregnant women and 160 newborn infants (umbilical cord blood) from Disko Bay, Greenland, 1994-96. Among these, 135 women filled out questionnaires about drinking....... Traditional food and not the tobacco is known to be the source of the contaminants. But smoking may influence the enzymatic turnover of toxic substances....

  11. Spatio-temporal Variations of Nitrogen Dioxide Pollution in China, 2005-2015

    Science.gov (United States)

    Cui, Yuanzheng

    China has experienced rapid economic growth in recent decades, accompanied with intensive urbanization and industrialization. This economic growth has led to many significant environmental problems, including deteriorating nitrogen dioxide (NO2) pollution. NO2 is a key air pollutant, and it plays a major role in the tropospheric chemistry. This thesis investigates the extent to which the characteristics of NO2 pollution changes at different spatial and temporal scales reflects regional inequality in economic and environmental policies enforced by Chinese governments, which has important implications for future emission control. The objective of this thesis is to investigate the spatial and temporal variability and trends of tropospheric NO2 pollution over China, by analyzing the NO2 vertical column density (VCD) data over 2005 to 2015 retrieved from the space-borne Ozone Monitoring Instrument (OMI). It is found that over most polluted regions in China, the NO2 columns increased rapidly since 2005, reached their peaks around 2011, and started to decline afterwards. Over parts of Eastern China, the NO2 levels in 2015 were close to the levels in 2005. Furthermore, severe pollution has extended from the traditional highly developed regions in Eastern China to newly emerged cities clusters in the west. Further comparisons with GEOS-Chem model simulations for 2005-2012 confirm that the OMI observed NO2 trends were driven mainly by changes in anthropogenic emissions. Then the long-term trends of NO2 over 2005-2013 from other scales of temporal variability over provincial-level regions of Western China were further distinguished, by using a wavelet decomposition analysis. The anthropogenic NO2 grew rapidly over Western China at a regional average rate of 8.6 +/- 0.9% yr-1 between 2005 and 2013. The rate of NO2 growth during 2005-2013 reached 11.3 +/- 1.0% yr-1 over Northwestern China, exceeding the rates over Southwestern China (5.9 +/- 0.6 % yr-1) and the three well

  12. Wildfire air pollution hazard during the 21st century

    Directory of Open Access Journals (Sweden)

    W. Knorr

    2017-07-01

    Full Text Available Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5, combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  13. Landsat and water pollution

    Science.gov (United States)

    Castruccio, P.; Fowler, T.; Loats, H., Jr.

    1979-01-01

    Report presents data derived from satellite images predicting pollution loads after rainfall. It explains method for converting Landsat images of Eastern United States into cover maps for Baltimore/five county region.

  14. Facilitating the afforestation of Mediterranean polluted soils by nurse shrubs.

    Science.gov (United States)

    Domínguez, María T; Pérez-Ramos, Ignacio M; Murillo, José M; Marañón, Teodoro

    2015-09-15

    The revegetation of polluted sites and abandoned agricultural soils is critical to reduce soil losses and to control the spread of soil pollution in the Mediterranean region, which is currently exposed to the greatest soil erosion risk in Europe. However, events of massive plant mortality usually occur during the first years after planting, mainly due to the adverse conditions of high irradiance and drought stress. Here, we evaluated the usefulness of considering the positive plant-plant interactions (facilitation effect) in the afforestation of polluted agricultural sites, using pre-existing shrubs as nurse plants. We used nurse shrubs as planting microsites for acorns of Quercus ilex (Holm oak) along a gradient of soil pollution in southwestern Spain, and monitored seedling growth, survival, and chemical composition during three consecutive years. Seedling survival greatly increased (from 20% to more than 50%) when acorns were sown under shrub, in comparison to the open, unprotected matrix. Facilitation of seedling growth by shrubs increased along the gradient of soil pollution, in agreement with the stress gradient hypothesis that predicts higher intensity of the facilitation effects with increasing abiotic stress. Although the accumulation of trace elements in seedling leaves was higher underneath shrub, the shading conditions provided by the shrub canopy allowed seedlings to cope with the toxicity provoked by the concurrence of low pH and high trace element concentrations in the most polluted sites. Our results show that the use of shrubs as nurse plants is a promising tool for the cost-effective afforestation of polluted lands under Mediterranean conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Assessment and source identification of pollution risk for touristic ports: Heavy metals and polycyclic aromatic hydrocarbons in sediments of 4 marinas of the Apulia region (Italy).

    Science.gov (United States)

    Mali, Matilda; Dell'Anna, Maria Michela; Mastrorilli, Piero; Damiani, Leonardo; Piccinni, Alberto Ferruccio

    2017-01-30

    The Apulia region in Italy has the longest Adriatic coastline; thus, maritime tourism is the driving force for its economic development. Pollution risk for four representative touristic ports of the region was assessed by determining the concentrations of 10 metals, 16 polycyclic aromatic hydrocarbons (PAHs) congeners, and the main nutrients. The cumulative mean Effects Range-Median quotient (mERMq) was used to assess the hazard degree, while the distribution patterns and content ratios of different PAH sediment concentrations were investigated to identify the pollution sources. Principal component analyses indicated an anomalous pollution trend for one of the small touristic ports assessed; this trend emerged from contamination by heavy metals and PAHs to a larger extent than expected, considering the main activity in this port, especially in its inner basin. The reason of this anomaly is thought to be the hydrodynamic and/or other stress factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A space-based, high-resolution view of notable changes in urban NO x pollution around the world (2005-2014)

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Bryan N. [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Lamsal, Lok N. [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia Maryland USA; Thompson, Anne M. [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Yoshida, Yasuko [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Science Systems and Applications, Inc., Greenbelt Maryland USA; Lu, Zifeng [Argonne National Laboratory, Argonne Illinois USA; Streets, David G. [Argonne National Laboratory, Argonne Illinois USA; Hurwitz, Margaret M. [NASA Goddard Space Flight Center, Greenbelt Maryland USA; GESTAR, Morgan State University, Baltimore Maryland USA; Pickering, Kenneth E. [NASA Goddard Space Flight Center, Greenbelt Maryland USA

    2016-01-20

    Nitrogen oxides (NOx = NO + NO2) are produced during combustion processes and, thus may serve as a proxy for fossil fuel-based energy usage and coemitted greenhouse gases and other pollutants. We use high-resolution nitrogen dioxide (NO2) data from the Ozone Monitoring Instrument (OMI) to analyze changes in urban NO2 levels around the world from 2005 to 2014, finding complex heterogeneity in the changes. We discuss several potential factors that seem to determine these NOx changes. First, environmental regulations resulted in large decreases. The only large increases in the United States may be associated with three areas of intensive energy activity. Second, elevated NO2 levels were observed over many Asian, tropical, and subtropical cities that experienced rapid economic growth. Two of the largest increases occurred over recently expanded petrochemical complexes in Jamnagar (India) and Daesan (Korea). Third, pollution transport from China possibly influenced the Republic of Korea and Japan, diminishing the impact of local pollution controls. However, in China, there were large decreases over Beijing, Shanghai, and the Pearl River Delta, which were likely associated with local emission control efforts. Fourth, civil unrest and its effect on energy usage may have resulted in lower NO2 levels in Libya, Iraq, and Syria. Fifth, spatial heterogeneity within several megacities may reflect mixed efforts to cope with air quality degradation. We also show the potential of high-resolution data for identifying NOx emission sources in regions with a complex mix of sources. Finally, intensive monitoring of the world's tropical/subtropical megacities will remain a priority, as their populations and emissions of pollutants and greenhouse gases are expected to increase significantly.

  17. Assessing Light Pollution in China Based on Nighttime Light Imagery

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2017-02-01

    Full Text Available Rapid urbanization and economic development inevitably lead to light pollution, which has become a universal environmental issue. In order to reveal the spatiotemporal patterns and evolvement rules of light pollution in China, images from 1992 to 2012 were selected from the Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS and systematically corrected to ensure consistency. Furthermore, we employed a linear regression trend method and nighttime light index method to demonstrate China’s light pollution characteristics across national, regional, and provincial scales, respectively. We found that: (1 China’s light pollution expanded significantly in provincial capital cities over the past 21 years and hot-spots of light pollution were located in the eastern coastal region. The Yangtze River Delta, Pearl River Delta, and Beijing–Tianjin–Hebei regions have formed light pollution stretch areas; (2 China’s light pollution was mainly focused in areas of north China (NC and east China (EC, which, together, accounted for over 50% of the light pollution for the whole country. The fastest growth of light pollution was observed in northwest China (NWC, followed by southwest China (SWC. The growth rates of east China (EC, central China (CC, and northeast China (NEC were stable, while those of north China (NC and south China (SC declined; (3 Light pollution at the provincial scale was mainly located in the Shandong, Guangdong, and Hebei provinces, whereas the fastest growth of light pollution was in Tibet and Hainan. However, light pollution levels in the developed provinces (Hong Kong, Macao, Shanghai, and Tianjin were higher than those of the undeveloped provinces. Similarly, the light pollution heterogeneities of Taiwan, Beijing, and Shanghai were higher than those of undeveloped western provinces.

  18. Photochemical data assimilation and tropospheric pollution forecast; Assimilation de donnees photochimiques et prevision de la pollution tropospherique

    Energy Technology Data Exchange (ETDEWEB)

    Blond, N.

    2002-12-15

    The Chemistry-Transport Models (CTM) are now sufficiently efficient to simulate realistic photochemical pollutant concentrations. Nevertheless, the complexity of involved processes and the temporal and spatial variability of the emission sources make it impossible to perfectly reproduce pollutant concentrations. If an intrinsic parameter or an input is not well described, A huge error results. CHIMERE is a CTM which covers the major part of Europe with a resolution of about fifty kilometers. It offers the possibility to zoom and simulate pollutant concentrations in a more detailed way over some key regions, such as Ile-de-France and the Berre and Marseille regions. We present results of a comparison of the continental and regional simulations with surface observations and aircraft measurements from the ESQUIF campaign (Etude et Simulation de la QUalite de l'Air en Ile-de-France). This comparison allows us to quantify the total error made in ozone and nitrogen dioxide concentrations. We also present different methods (e.g. Statistical Interpolation and Kriging) we have tested and adapted to the pollution case in order to correct this error. We compare the methods and show in an objective way that it is possible to obtain more realistic three-dimensional maps of pollutants (e.g. analyses) by combining both simulations and surface observations. A series of real time experiments realized in the PIONEER project show that the forecast error may propagate from one region to another. The european scale ozone analyses are thus used to re-initialize the forecast model. The aim is then to answer the question of whether it possible to improve short time forecasts by using better initial values instead of the forecasts for the day before. (author)

  19. Photochemical data assimilation and tropospheric pollution forecast; Assimilation de donnees photochimiques et prevision de la pollution tropospherique

    Energy Technology Data Exchange (ETDEWEB)

    Blond, N

    2002-12-15

    The Chemistry-Transport Models (CTM) are now sufficiently efficient to simulate realistic photochemical pollutant concentrations. Nevertheless, the complexity of involved processes and the temporal and spatial variability of the emission sources make it impossible to perfectly reproduce pollutant concentrations. If an intrinsic parameter or an input is not well described, A huge error results. CHIMERE is a CTM which covers the major part of Europe with a resolution of about fifty kilometers. It offers the possibility to zoom and simulate pollutant concentrations in a more detailed way over some key regions, such as Ile-de-France and the Berre and Marseille regions. We present results of a comparison of the continental and regional simulations with surface observations and aircraft measurements from the ESQUIF campaign (Etude et Simulation de la QUalite de l'Air en Ile-de-France). This comparison allows us to quantify the total error made in ozone and nitrogen dioxide concentrations. We also present different methods (e.g. Statistical Interpolation and Kriging) we have tested and adapted to the pollution case in order to correct this error. We compare the methods and show in an objective way that it is possible to obtain more realistic three-dimensional maps of pollutants (e.g. analyses) by combining both simulations and surface observations. A series of real time experiments realized in the PIONEER project show that the forecast error may propagate from one region to another. The european scale ozone analyses are thus used to re-initialize the forecast model. The aim is then to answer the question of whether it possible to improve short time forecasts by using better initial values instead of the forecasts for the day before. (author)

  20. Oil Pollution in the Southeastern Baltic Sea in 2009-2011

    Directory of Open Access Journals (Sweden)

    Lavrova O. Yu.

    2014-12-01

    Full Text Available From January 2009 to April 2012 a satellite survey of the central and southeastern parts of the Baltic Sea was carried out by the Space Radar Laboratory at the Space Research Institute of Russian Academy of Sciences (RAS. The main attention was focused on the detection of oil pollution as well as biogenic and anthropogenic surfactant films. The basic data are high resolution radar images obtained by advanced synthetic aperture radar (ASAR on board of the Envisat satellite of the European Space Agency. Remotely sensed data in visual and infrared (IR bands acquired by sensors MERIS Envisat, MODIS-Terra and -Aqua, and AVHRR NOAA nearly simultaneously with the ASAR images, were processed and analysed in order to facilitate the discrimination between different types of surface pollutants, to understand a comprehensive features of meteorological and hydrodynamic processes in the sea area of investigation, and to reveal factors determining pollutants spread and drift. The regions of the most intense oil pollution are outlined.

  1. Identification of petroleum pollution sources

    International Nuclear Information System (INIS)

    Begak, O.Yu.; Syroezhko, A.M.

    2001-01-01

    A possibility of preliminary identification of petroleum pollution sources was investigated on specimens of the Khanty-Mansi autonomous district six deposits and specimens of soil and water polluted by these petroleums. Investigations were conducted using IR Fourier spectroscopy and gamma spectrometry, as well as methods of chromato-mass spectrometry and capillary gas liquid chromatography. Every of studied samples of petroleum from different deposits have an individual radiation impression. Insignificant total content of radionuclides in samples is specific to the Khanty-Mansi petroleum region. Gamma spectrometry admits to identify potential source of petroleum pollution using radionuclides of uranium and thorium series [ru

  2. Primary Teeth and Hair as Indicators of Environmental Pollution.

    Science.gov (United States)

    Shishniashvili, T E; Suladze, N N; Margvelashvili, V V

    2016-01-01

    To study the influence of environmental pollution on the mineralization of dental hard tissues by using biosubstrates: teeth and hair. : At the first stage epidemiological survey was conducted in polluted and less polluted areas of Tbilisi (Georgia). We studied 525 children aged 3 and 4 years. Caries prevalence and intensity was defined by the methodology of World Health Organization. At the second stage the chemical elements content was studied in hair and teeth hard tissues of 24 children by X-ray fluorescent spectroscopy method. The prevalence of dental caries in the polluted region was 46%, caries intensity--1.92 (± 2.842). In the less polluted region prevalence was 37%, caries intensity--1.47 (± 2.571). These data are statistically reliable (p < 0.05). The study of hair and tooth tissues showed that the toxic elements (Pb, Hg, Sn, Ti) content in these tissues was higher in environmentally unfavorable than in favorable conditions. Hair and dental tissues can be used as indicators of environmental pollution. Our survey showed that toxic elements content in dental hard tissues was higher and the level of essential elements was less in polluted than in less polluted areas of Tbilisi.

  3. High tech in the Öresund region

    DEFF Research Database (Denmark)

    Hansen, Povl Adler; Serin, Göran Folke

    This book discusses the development conditions in the high tech sector for both high tech manufacturing and services. A central issue in the book is the differences in externalities which exist between various industries in the high tech sector. In this connection the confusion of externalities...... related to different parts of the high tech sector will be addressed. The location of the high tech sector in the Öresund region will be analysed and the region will also be related to other high tech regions in Europe....

  4. Case study of the application of Fenton process to highly polluted wastewater from power plant.

    Science.gov (United States)

    Pliego, Gema; Zazo, Juan A; Casas, Jose A; Rodriguez, Juan J

    2013-05-15

    This work investigates the application of Fenton process to the treatment of a highly polluted industrial wastewater resulting from the pipeline cleaning in a power plant. This effluent is characterized by a high chemical oxygen demand (COD>40 g/L), low biodegradability and quite a high iron concentration (around 3g/L) this coming from pipeline corrosion. The effect of the initial reaction temperature (between 50 and 90 °C) and the way of feeding H2O2 on the mineralization percentage and the efficiency of H2O2 consumption has been analyzed. With the stoichiometric amount of H2O2 relative to initial COD, fed in continuous mode, more than 90% COD reduction was achieved at 90 °C. That was accompanied by a dramatic improvement of the biodegradability. Thus, a combined treatment based on semicontinuous high-temperature Fenton oxidation (SHTF) and conventional aerobic biological treatment would allow fulfilling the COD and ecotoxicity regional limits for industrial wastewaters into de municipal sewer system. For the sake of comparison, catalytic wet air oxidation was also tested with poor results (less than 30% COD removal at 140 °C and 8 atm oxygen pressure). Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Methodological Approaches for Estimating Gross Regional Product after Taking into Account Depletion of Natural Resources, Environmental Pollution and Human Capital Aspects

    Directory of Open Access Journals (Sweden)

    Boris Alengordovich Korobitsyn

    2015-09-01

    Full Text Available A key indicator of the System of National Accounts of Russia at a regional scale is Gross Regional Product characterizing the value of goods and services produced in all sectors of the economy in a country and intended for final consumption, capital formation and net exports (excluding imports. From a sustainability perspective, the most weakness of GRP is that it ignores depreciation of man-made assets, natural resource depletion, environmental pollution and degradation, and potential social costs such as poorer health due to exposure to occupational hazards. Several types of alternative approaches to measuring socio-economic progress are considering for six administrative units of the Ural Federal District for the period 2006–2014. Proposed alternatives to GRP as a measure of social progress are focused on natural resource depletion, environmental externalities and some human development aspects. The most promising is the use of corrected macroeconomic indicators similar to the “genuine savings” compiled by the World Bank. Genuine savings are defined in this paper as net savings (net gross savings minus consumption of fixed capital minus the consumption of natural non-renewable resources and the monetary evaluations of damages resulting from air pollution, water pollution and waste disposal. Two main groups of non renewable resources are considered: energy resources (uranium ore, oil and natural gas and mineral resources (iron ore, copper, and aluminum. In spite of various shortcomings, this indicator represents a considerable improvement over GRP information. For example, while GRP demonstrates steady growth between 2006 and 2014 for the main Russian oil- and gas-producing regions — Hanty-Mansi and Yamalo-Nenets Autonomous Okrugs, genuine savings for these regions decreased over all period. It means that their resource-based economy could not be considered as being on a sustainable path even in the framework of

  6. Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance.

    Science.gov (United States)

    Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun

    2017-05-02

    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH) x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.

  7. Urban Climate and Air Pollution in Ouagadougou, Burkina Faso

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Jenny

    2011-05-15

    . An intra-urban thermal breeze generating almost opposite wind directions within the city was found during all extremely stable nights. Air pollution situation in Ouagadougou were characterized by; important spatial variations, high pollution levels in general, and extreme levels of coarse particles, commonly exceeding WHO air quality guidelines in all areas. Important sources were re-suspension of road dust, transported dust, traffic and biomass burning. Documentation of meteorological stations show that observations were made by well trained staff following a strict set of procedures. However, many risk factors potentially affecting data quality were found, such as many manual steps in data handling and limited funding for maintenance of the instrument park. In contrast to the many studies identifying urban built structure as most important land cover parameter for the nocturnal urban climate, vegetation was the dominating parameter in Ouagadougou. The strong influence of vegetation shown in this study should be carefully considered in all urban climate studies, especially in (semi) arid regions. In urban-rural comparisons, this is particularly important for the location of the rural area where vegetation often is dominant. The high frequency of extremely stable atmospheric conditions and the intra-urban thermal wind system show a very restricted ventilation of the urban air and limited dispersion of urban-derived pollutants. Large spatial differences in pollution levels found in the city are likely to create important differences in exposure situation within the population. When using data from synoptic meteorological stations in Burkina Faso, the many risk factors found should be considered. Findings presented in this thesis could used in order to increase comfort and health in urban planning, as well as in development of strategies for air pollution mitigation in this region, especially when considering the ongoing extremely rapid urban growth. The information of

  8. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    Jirousek, Martin, E-mail: machozrut@mail.muni.c [Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Hajek, Michal [Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Bragazza, Luca [WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, Case Postale 96, CH-1015 Lausanne (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory of Ecological Systems - ECOS, Batiment GR, Station 2, CH-1015 Lausanne (Switzerland); Department of Biology and Evolution, University of Ferrara, Corso Ercole I d' Este 32, I-44100 Ferrara (Italy)

    2011-02-15

    We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m{sup -2} year{sup -1} in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient. - Research highlights: Despite high atmopsheric nitrogen deposition, Sphagnum mosses still have rather low N:P ratio. Regional climate and landscape management can enhance P and K availability in bogs. Sphagnum species of the Cuspidata section were characterised by lower N:P ratio. - Regional climate and local forestry practices are expected to alter nutrient stoichiometry in Sphagnum mosses at high atmospheric N deposition in Central-East Europe.

  9. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe

    International Nuclear Information System (INIS)

    Jirousek, Martin; Hajek, Michal; Bragazza, Luca

    2011-01-01

    We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m -2 year -1 in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient. - Research highlights: → Despite high atmopsheric nitrogen deposition, Sphagnum mosses still have rather low N:P ratio.→ Regional climate and landscape management can enhance P and K availability in bogs. → Sphagnum species of the Cuspidata section were characterised by lower N:P ratio. - Regional climate and local forestry practices are expected to alter nutrient stoichiometry in Sphagnum mosses at high atmospheric N deposition in Central-East Europe.

  10. Inverse modeling for the optimization of primary sources of atmospheric pollution at a regional scale; Modelisation inverse pour l'optimisation des sources primaires de pollution atmospherique a l'echelle regionale

    Energy Technology Data Exchange (ETDEWEB)

    Pison, I.

    2005-12-15

    Atmospheric pollution at a regional scale is the result of various interacting processes: emissions, chemistry, transport, mixing and deposition of gaseous species. The forecast of air quality is then performed by models, in which the emissions are taken into account through inventories. The simulated pollutant concentrations depend highly on the emissions that are used. Now inventories that represent them have large uncertainties. Since it would be difficult today to improve their building methodologies, there remains the possibility of adding information to existing inventories. The optimization of emissions uses the information that is available in measurements to get the inventory that minimizes the difference between simulated and measured concentrations. A method for the inversion of anthropogenic emissions at a regional scale, using network measurements and based on the CHIMERE model and its adjoint, was developed and validated. A kriging technique allows us to optimize the use of the information available in the concentration space. Repeated kriging-optimization cycles increase the quality of the results. A dynamical spatial aggregation technique makes it possible to further reduce the size of the problem. The NO{sub x} emissions from the inventory elaborated by AIRPARIF for the Paris area were inverted during the summers of 1998 and 1999, the events of the ESQUIF campaign being studied in detail. The optimization reduces large differences between simulated and measured concentrations. Generally, however, the confidence level of the results decreases with the density of the measurement network. Therefore, the results with the higher confidence level correspond to the most intense emission fluxes of the Paris area. On the whole domain, the corrections to the average emitted mass and to the matching time profiles are consistent with the estimate of 15% obtained during the ESQUIF campaign. (author)

  11. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    Science.gov (United States)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local

  12. Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens

    Energy Technology Data Exchange (ETDEWEB)

    Shahali, Y; Pourpak, Z; Moin, M; Zare, A [Immunology, Asthma and Allergy Research Institute, Medical Sciences/ University of Tehran (Iran, Islamic Republic of); Majd, A, E-mail: youcef.shahali@espci.f [Department of Biology, Faculty of Sciences, Islamic Azad University, North Tehran Branch (Iran, Islamic Republic of)

    2009-02-01

    Epidemiological studies have demonstrated that urbanization and high levels of vehicle emissions correlated with the increasing trend of pollen-induced respiratory allergies. Numerous works have investigated the role of pollutants in the pathogenesis of respiratory diseases but impacts of anthropogenic pollution on pollen allergenic properties are still poorly understood. The objective of this survey was to evaluate impacts of the traffic-related pollution on the structure and allergenic protein content of Arizona cypress (Cupressus arizonica, CA) pollens, recognized as a rising cause of seasonal allergy in various regions worldwide. According to our results, traffic-related air pollution by its direct effects on the elemental composition of pollens considerably increased the fragility of the pollen exine, causing numerous cracks in its surface and facilitating pollen content liberation. Pollen grains were also covered by numerous submicronic orbicules which may act as effective vectors for pollen-released components into the lower regions of respiratory organs. On the other hand, this study provides us reliable explications about the low efficiency of standard commercial allergens in the diagnosis of the Arizona cypress pollen allergy in Tehran. Although traffic related pollution affects the allergenic components of CA pollens, the repercussions on the respiratory health of urban populations have yet to be clarified and need further investigations.

  13. Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens

    International Nuclear Information System (INIS)

    Shahali, Y; Pourpak, Z; Moin, M; Zare, A; Majd, A

    2009-01-01

    Epidemiological studies have demonstrated that urbanization and high levels of vehicle emissions correlated with the increasing trend of pollen-induced respiratory allergies. Numerous works have investigated the role of pollutants in the pathogenesis of respiratory diseases but impacts of anthropogenic pollution on pollen allergenic properties are still poorly understood. The objective of this survey was to evaluate impacts of the traffic-related pollution on the structure and allergenic protein content of Arizona cypress (Cupressus arizonica, CA) pollens, recognized as a rising cause of seasonal allergy in various regions worldwide. According to our results, traffic-related air pollution by its direct effects on the elemental composition of pollens considerably increased the fragility of the pollen exine, causing numerous cracks in its surface and facilitating pollen content liberation. Pollen grains were also covered by numerous submicronic orbicules which may act as effective vectors for pollen-released components into the lower regions of respiratory organs. On the other hand, this study provides us reliable explications about the low efficiency of standard commercial allergens in the diagnosis of the Arizona cypress pollen allergy in Tehran. Although traffic related pollution affects the allergenic components of CA pollens, the repercussions on the respiratory health of urban populations have yet to be clarified and need further investigations.

  14. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan

    2014-10-15

    Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  16. Pollution exposure on marine protected areas: A global assessment.

    Science.gov (United States)

    Partelow, Stefan; von Wehrden, Henrik; Horn, Olga

    2015-11-15

    Marine protected areas (MPAs) face many challenges in their aim to effectively conserve marine ecosystems. In this study we analyze the extent of pollution exposure on the global fleet of MPAs. This includes indicators for current and future pollution and the implications for regionally clustered groups of MPAs with similar biophysical characteristics. To cluster MPAs into characteristic signature groups, their bathymetry, baseline biodiversity, distance from shore, mean sea surface temperature and mean sea surface salinity were used. We assess the extent at which each signature group is facing exposure from multiple pollution types. MPA groups experience similar pollution exposure on a regional level. We highlight how the challenges that MPAs face can be addressed through governance at the appropriate scale and design considerations for integrated terrestrial and marine management approaches within regional level networks. Furthermore, we present diagnostic social-ecological indicators for addressing the challenges facing unsuccessful MPAs with practical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Industrial Pollution in Ghana: Some Selected Case Studies of Industries in Tema

    International Nuclear Information System (INIS)

    Taylor, Nora Priscilla Ama Kuma

    1999-09-01

    Waste waters from eight selected industries namely Tema Oil Refinery, Tuyee Manufacturing Industries, Cocoa Processing Company, Tema Lube Oil Company Limited, Pioneer Food Cannery Limited, Bridal Trust Paints Company Limited, Ghana Textiles Manufacturing Company and Ghana Textiles Printing Company Limited were sampled and subjected to various physico-chemical and trace metal analysis to determine levels of pollutants, using standard methods of WHO, AO AC and APHA. Generally, the ROD values were found to be high for all the industries. Some other parameter levels were significantly high enough for the individual industries to deserve attention. Generally, the results seem to suggest that these industries sited in Tema, are likely contributors to the high degree of pollution of the Chemu and Gao Lagoons which have been reported by various workers as being highly polluted. Consequent to the results obtained, an attempt was made to treat the wastewaters. Thus wastewaters of three of these major industries Ghana Textiles Manufacturing Company. Pioneer Food Cannery Company Limited and Tema Lube Oil Company Limited, representing the textile, food and petroleum-based industries in the Tema industrial area of Ghana were subjected to various physical and chemical treatments using mainly local materials, to try and reduce the levels of pollutants detected in the earlier investigations. Sedimentation, filtration using paper and sea-sand and adsorption using charcoals prepared from dried coconut husks and palm kernel husks as well as industrially prepared activated charcoal as adsorbents, were some of the physical methods used whilst chemical precipitation and oxidation-reduction were the chemical methods used to bring about the desired results. Six different naturally occurring soil samples from Ankaful, Ekon and Elmina in the Central Region, Asokwa in the Ashanti Region, Bokazo in the Western Region and Somanya in the Eastern Region were also used to obtain some levels of

  18. Atmospheric pollutant outflow from southern Asia: a review

    Science.gov (United States)

    Lawrence, M. G.; Lelieveld, J.

    2010-11-01

    Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ), located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects. An outlook

  19. The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape.

    Science.gov (United States)

    Santos, Artur; Pinho, Pedro; Munzi, Silvana; Botelho, Maria João; Palma-Oliveira, José Manuel; Branquinho, Cristina

    2017-05-01

    Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.

  20. Evaluation of noise pollution in oil extracting region of Lavan and the effect of noise enclosure on noise abatement

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2007-09-01

    Full Text Available Background and aims   Overexposure to industrial noise pollution induce hearing loss workers. Occupational hearing loss may cause interference whit oral communication, so it may  increase the risk of occupational accidents in workplace as well as affects whit social activities.  This study was conducted on Lavan Island, are of oil extracting regions in the south of Iran. The  object of this study was to evaluate noise pollution and determining the effect of noise enclosure  on noise abatement.   Methods   The noise sources were recognized and noise pressure level was measured by CEL- 440. Noise dose of the exposed workers in high level noise area were measured by CEL 272.   Results   Major noise sources were gas turbines, diesel generators, compressors, fans and gas containing pips, noise contour map revealers that noise level were higher than the recommended national exposure limit. The results of workers noise dose show that their noise exposure were  higher than the recommended value, (p<0.001. Finally, by using the results of noise frequency  analysis of different noise sources, the noise pressure level of each sources was determined in   terms of enclosing them.   Conclusion   By enclosing the noise sources, noise pressure levels can be lowered douse to  acceptable levels but limitation of applying enclosure should be regarded.  

  1. Local scale air pollution forecasting by artificial intelligence techniques and assess the pollution-related social effects

    OpenAIRE

    Gong, Bing; Ordieres-Meré, Joaquín

    2016-01-01

    Since the air pollution can cause serious health problem, the concerns about forecasting air pollution timely and accurately arise by researchers in order to alert the public avoiding high level pollution and help the government make decisions. In our research, we take Hong Kong (finished research) and the cities in Mexico (finishing) and Mainland China (starting), especially the high pollutant areas such as Mexico City and Beijing, as study cases. Meanwhile, various types of arti...

  2. Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity

    International Nuclear Information System (INIS)

    Larsen, R.S.; Bell, J.N.B.; James, P.W.; Chimonides, P.J.; Rumsey, F.J.; Tremper, A.; Purvis, O.W.

    2007-01-01

    Epiphytic lichen and bryophyte distribution and frequency were investigated on the trunks of 145 young oak trees throughout London and surrounding counties, and compared with pollution levels and bark pH. Sixty-four lichen and four bryophyte species were recorded. Three major zones were identified: (i) two central regions with a few lichens, bryophytes absent; (ii) a surrounding region with a more diverse flora including a high cover of nitrophyte lichens; and (iii) an outer region, characterised by species absent from central London, including acidophytes. Nineteen species were correlated with nitrogen oxides and 16 with bark pH, suggesting that transport-related pollution and bark acidity influence lichen and bryophyte distribution in London today. Lichens and bryophytes are responding to factors that influence human and environmental health in London. Biomonitoring therefore has a practical role to assess the effects of measures to improve London's air quality. - Transport-related pollutants and bark acidity influence lichen and bryophyte distribution and abundance in London today

  3. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution

    Science.gov (United States)

    Pan, X.; Uno, I.; Wang, Z.; Nishizawa, T.; Sugimoto, N.; Yamamoto, S.; Kobayashi, H.; Sun, Y.; Fu, P.; Tang, X.; Wang, Z.

    2017-12-01

    Natural mineral dust and heavy anthropogenic pollution and its complex interactions cause significant environmental problems in East Asia. Due to restrictions of observing technique, real-time morphological change in Asian dust particles owing to coating process of anthropogenic pollutants is still statistically unclear. Here, we first used a newly developed, single-particle polarization detector and quantitatively investigate the evolution of the polarization property of backscattering light reflected from dust particle as they were mixing with anthropogenic pollutants in North China. The decrease in observed depolarization ratio is mainly attributed to the decrease of aspect ratio of the dust particles as a result of continuous coating processes. Hygroscopic growth of Calcium nitrate (Ca(NO3)2) on the surface of the dust particles played a vital role, particularly when they are stagnant in the polluted region with high RH conditions. Reliable statistics highlight the significant importance of internally mixed, `quasi-spherical' Asian dust particles, which markedly act as cloud condensation nuclei and exert regional climate change.

  4. Transboundary Air-Pollution Transport in the Czech-Polish Border Region between the Cities of Ostrava and Katowice.

    Science.gov (United States)

    Černikovský, Libor; Krejčí, Blanka; Blažek, Zdeněk; Volná, Vladimíra

    2016-12-01

    The Czech Hydrometeorological Institute (CHMI) estimated the transboundary transport of air pollution between the Czech Republic and Poland by assessing relationships between weather conditions and air pollution in the area as part of the "Air Quality Information System in the Polish-Czech border of the Silesian and Moravian-Silesian region" project (http://www.air-silesia.eu). Estimation of cross-border transport of pollutants is important for Czech-Polish negotiations and targeted measures for improving air quality. Direct measurement of PM 10 and sulphur dioxide (SO 2 ) concentrations and the direction and wind speed from measuring stations in the vicinity of the Czech-Polish state border in 2006-2012. Taking into account all the inaccuracies, simplifications and uncertainties, by which all of the measurements are affected, it is possible to state that the PM 10 transboundary transport was greater from the direction of Poland to the Czech Republic, rather than the other way around. Nevertheless, the highest share of the overall PM 10 concentration load was recorded on days with a vaguely estimated airflow direction. This usually included days with changing wind direction or days with a distinct wind change throughout the given day. A changeable wind is most common during low wind speeds. It can be assumed that during such days with an ambiguous daily airflow, the polluted air saturated with sources on both sides of the border moves from one country to the other. Therefore, we could roughly ascribe an equal level of these concentrations to both the Czech and Polish side. PM 10 transboundary transport was higher from Poland to the Czech Republic than from the opposite direction, despite the predominant air flow from the Czech Republic to Poland. Copyright© by the National Institute of Public Health, Prague 2016

  5. Regional development via high-speed rail : A study of the Stockholm-Mälaren region and possibilities for Melbourne-regional Victoria

    OpenAIRE

    Bayley, Michael

    2012-01-01

    The purpose of this thesis is to examine, based on a study of the regional high-speed corridors in the Stockholm-Mälaren Region, the possibilities for regional high-speed rail in Melbourne-regional Victoria (Australia) to improve accessibility, and achieve regional development and balanced growth between the capital and its surrounding regions. It deals with the concept of 'regional' high-speed rail, a variant of classic high-speed rail that serves centres along regional corridors stemming fr...

  6. Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia: Human impact on a regional to global scale

    Energy Technology Data Exchange (ETDEWEB)

    Vleeschouwer, Francois de [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium)]. E-mail: fdevleeschouwer@student.ulg.ac.be; Gerard, Laetitia [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium); Goormaghtigh, Catherine [Unite de recherche: ' Isotopes, Petrologie et Environnement' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Mattielli, Nadine [Unite de recherche: ' Isotopes, Petrologie et Environnement' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Le Roux, Gael [Institute of Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236 B-69120 Heidelberg (Germany); Fagel, Nathalie [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium)

    2007-05-15

    Europe has been continuously polluted throughout the last two millennia. During the Roman Empire, these pollutions were mainly from ore extraction and smelting across Europe. Then, during the Middle Ages and the Early times of Industrial revolution (i.e. 1750), these pollutions extended to coal burning and combustion engine. Belgian ombrotrophic peat bogs have proved an effective archive of these pollutants and provide the opportunity to reconstruct the history of atmospheric deposition in NW Europe. The results of recent and past trace metal accumulation and Pb isotopes from a one-meter peat core (in the Misten peat bog) have been derived using XRF and Nu-plasma MC-ICP-MS. Combined with {sup 14}C and {sup 210}Pb dates these data have enabled us to trace fluxes in anthropogenic pollution back to original Roman times. Several periods of well-known Pb pollution events are clearly recorded including the Early and Late Roman Empire, the Middle Ages and the second industrial revolution. Also recorded is the introduction of leaded gasoline, and more recently the introduction of unleaded gasoline. Lead isotopes in this site have also enabled us to fingerprint several regional and global sources of anthropogenic particles.

  7. Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia. Human impact on a regional to global scale

    Energy Technology Data Exchange (ETDEWEB)

    De Vleeschouwer, Francois; Gerard, Laetitia; Fagel, Nathalie [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium); Goormaghtigh, Catherine; Mattielli, Nadine [Unite de recherche: ' ' Isotopes, Petrologie et Environnement' ' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Le Roux, Gael [Institute of Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236 B-69120 Heidelberg (Germany)

    2007-05-15

    Europe has been continuously polluted throughout the last two millennia. During the Roman Empire, these pollutions were mainly from ore extraction and smelting across Europe. Then, during the Middle Ages and the Early times of Industrial revolution (i.e. 1750), these pollutions extended to coal burning and combustion engine. Belgian ombrotrophic peat bogs have proved an effective archive of these pollutants and provide the opportunity to reconstruct the history of atmospheric deposition in NW Europe. The results of recent and past trace metal accumulation and Pb isotopes from a one-meter peat core (in the Misten peat bog) have been derived using XRF and Nu-plasma MC-ICP-MS. Combined with {sup 14}C and {sup 210}Pb dates these data have enabled us to trace fluxes in anthropogenic pollution back to original Roman times. Several periods of well-known Pb pollution events are clearly recorded including the Early and Late Roman Empire, the Middle Ages and the second industrial revolution. Also recorded is the introduction of leaded gasoline, and more recently the introduction of unleaded gasoline. Lead isotopes in this site have also enabled us to fingerprint several regional and global sources of anthropogenic particles. (author)

  8. [Exploring the Severe Haze in Beijing During December, 2015: Pollution Process and Emissions Variation].

    Science.gov (United States)

    Xue, Yi-feng; Zhou, Zhen; Nie, Teng; Pan, Tao; Qi, Jun; Nie, Lei; Wang, Zhan-shan; Li, Yun-ting; Li, Xue-feng; Tian, He-zhong

    2016-05-15

    Severe haze episodes shrouded Beijing and its surrounding regions again during December, 2015, causing major environmental and health problems. Beijing authorities had launched two red alerts for atmospheric heavy pollution in this period, adopted a series of emergency control measures to reduce the emissions from major pollution sources. To better understand the pollution process and emissions variation during these extreme pollution events, we performed a model-assisted analysis of the hourly observation data of PM₂.₅, and meteorological parameters combined with the emissions variation of pollution sources. The synthetic analysis indicated that: (1) Compared with the same period of last year, the emissions of atmospheric pollution sources decreased in December 2015. However, the emission levels of primary pollutants were still rather high, which were the main intrinsic causes for haze episodes, and the unfavorable diffusion conditions represented the important external factor. High source emissions and meteorological factors together led to this heavy air pollution process. (2) Emergency control measures taken by the red alert for heavy air pollution could decrease the pollutants emission by about 36% and the PM₂.₅ concentrations by 11% to 21%. Though the implementation of red alert could not reverse the evolution trend of heavier pollution, it indeed played an active role in mitigation of PM₂.₅ pollution aggravating. (3) Under the heavy pollution weather conditions, air pollutants continued to accumulate in the atmosphere, and the maximum effect by taking emergency measures occurred 48-72 hours after starting the implementation; therefore, the best time for executing emergency measures should be 36-48 hours before the rapid rise of PM₂.₅ concentration, which requires a more powerful demand on the accuracy of air quality forecast.

  9. Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques.

    Science.gov (United States)

    Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Zain, Sharifuddin Md; Habir, Nur Liyana Abdul; Retnam, Ananthy; Kamaruddin, Mohd Khairul Amri; Umar, Roslan; Azid, Azman

    2016-05-15

    This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time. The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Measurements of ozone and nonmethane hydrocarbons at Chichi-jima island, a remote island in the western Pacific: long-range transport of polluted air from the Pacific rim region

    Science.gov (United States)

    Kato, Shungo; Pochanart, Pakpong; Kajii, Yoshizumi

    Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.

  11. Interpolating precipitation and its relation to runoff and non-point source pollution.

    Science.gov (United States)

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  12. Air pollutant characterization in Tula industrial corridor, Central Mexico, during the MILAGRO study.

    Science.gov (United States)

    Sosa, G; Vega, E; González-Avalos, E; Mora, V; López-Veneroni, D

    2013-01-01

    Pollutant emissions and their contribution to local and regional air quality at the industrial area of Tula were studied during a four-week period as part of the MILAGRO initiative. A recurrent shallow stable layer was observed in the morning favoring air pollutants accumulation in the lower 100 m atmospheric layer. In the afternoon the mixing layer height reached 3000 m, along with a featuring low level jet which was responsible of transporting air pollutants at regional scales. Average PM10 at Jasso (JAS) and Tepeji (TEP) was 75.1 and 36.8 μ g/m(3), respectively while average PM2.5 was 31.0 and 25.7 μ g/m(3). JAS was highly impacted by local limestone dust, while TEP was a receptor of major sources of combustion emissions with 70% of the PM10 constituted by PM2.5. Average hourly aerosol light absorption was 22 Mm(-1), while aerosol scattering (76 Mm(-1)) was higher compared to a rural site but much lower than at Mexico City. δ(13)C values in the epiphyte Tillandsia recurvata show that the emission plume directly affects the SW sector of Mezquital Valley and is then constrained by a mountain range preventing its dispersion. Air pollutants may exacerbate acute and chronic adverse health effects in this region.

  13. Air Pollutant Characterization in Tula Industrial Corridor, Central Mexico, during the MILAGRO Study

    Directory of Open Access Journals (Sweden)

    G. Sosa

    2013-01-01

    Full Text Available Pollutant emissions and their contribution to local and regional air quality at the industrial area of Tula were studied during a four-week period as part of the MILAGRO initiative. A recurrent shallow stable layer was observed in the morning favoring air pollutants accumulation in the lower 100 m atmospheric layer. In the afternoon the mixing layer height reached 3000 m, along with a featuring low level jet which was responsible of transporting air pollutants at regional scales. Average PM10 at Jasso (JAS and Tepeji (TEP was 75.1 and 36.8 μg/m3, respectively while average PM2.5 was 31.0 and 25.7 μg/m3. JAS was highly impacted by local limestone dust, while TEP was a receptor of major sources of combustion emissions with 70% of the PM10 constituted by PM2.5. Average hourly aerosol light absorption was 22 Mm−1, while aerosol scattering (76 Mm−1 was higher compared to a rural site but much lower than at Mexico City. δ13C values in the epiphyte Tillandsia recurvata show that the emission plume directly affects the SW sector of Mezquital Valley and is then constrained by a mountain range preventing its dispersion. Air pollutants may exacerbate acute and chronic adverse health effects in this region.

  14. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    Science.gov (United States)

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  15. Atmospheric Chemistry and Air Pollution

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Gaffney

    2003-01-01

    Full Text Available Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  16. Harvest season, high polluted season in East China

    International Nuclear Information System (INIS)

    Huang Xin; Song Yu; Li Mengmeng; Li Jianfeng; Zhu Tong

    2012-01-01

    East China, a major agricultural zone with a dense population, suffers from severe air pollution during June, the agricultural harvest season, every year. Crop burning emits tremendous amounts of combustion products into the atmosphere, not only rapidly degrading the local air quality but also affecting the tropospheric chemistry, threatening public health and affecting climate change. Recently, in mid-June 2012, crop fires left a thick pall of haze over East China. We evaluated the PM 10 , PM 2.5 (particulates less than 10 and 2.5 μm in aerodynamic diameter) and BC (black carbon) emissions by analyzing detailed census data and moderate resolution imaging spectroradiometer (MODIS) remote sensing images and then simulated the consequent pollution using meteorological and dispersion models. The results show that the crop fires sweeping from the south to the north are responsible for the intensive air pollution during harvest season. It is necessary for scientists and governments to pay more attention to this issue. (letter)

  17. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau.

    Science.gov (United States)

    Wu, Jun; Lu, Jian; Li, Leiming; Min, Xiuyun; Luo, Yongming

    2018-06-01

    The Qinghai-Tibet Plateau, especially the northeastern region, is not a pure land any more due to recently increasing anthropogenic activities. This study collected soil samples from 70 sites of the northeastern Qinghai-Tibet Plateau to evaluate pollution, ecological-health risks, and possible pollution sources of heavy metals. The concentrations of heavy metals in soil were relatively high. Values of geo-accumulation index exhibited that Hg pollution was the most serious meanwhile Hg possessed the strongest enrichment feature based on enrichment factor values. The modified degrees of contamination showed that about 54.3% and 17.1% of sampling sites were at moderate and high contamination degree while pollution load indexes illustrated that 72.9% and 27.1% of sampling sites possessed moderate and high contamination level, respectively. Ecological risk indexes of heavy metals in soil ranged from 234.6 to 3759.0, suggesting that most of sites were under considerable/very high risks. Cancer risks for adults and children were determined as high and high-very high levels while non-cancer risks for children were high although those for adults were low. Industrial source contributed to the main fraction of ecological and health risks. Summarily speaking, heavy metals in soil of the study area has caused significantly serious pollution and exerted high potential ecological and health risks, especially for children who are more susceptible to hurt from pollutants. Therefore, more efficient and strict pollution control and management in study area should be put out as soon as possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Outdoor air pollution and respiratory health: a bibliometric analysis of publications in peer-reviewed journals (1900 - 2017).

    Science.gov (United States)

    Sweileh, Waleed M; Al-Jabi, Samah W; Zyoud, Sa'ed H; Sawalha, Ansam F

    2018-01-01

    Outdoor air pollution is a major threat to global public health that needs responsible participation of researchers at all levels. Assessing research output is an important step in highlighting national and international contribution and collaboration in a certain field. Therefore, the aim of this study was to analyze globally-published literature in outdoor air pollution - related respiratory health. Outdoor air pollution documents related to respiratory health were retrieved from Scopus database. The study period was up to 2017. Mapping of author keywords was carried out using VOSviewer 1.6.6. Search query yielded 3635 documents with an h -index of 137. There was a dramatic increase in the number of publications in the last decade of the study period. The most frequently encountered author keywords were: air pollution (835 occurrences), asthma (502 occurrences), particulate matter (198 occurrences), and children (203 occurrences). The United States of America ranked first (1082; 29.8%) followed by the United Kingdom (279; 7.7%) and Italy (198; 5.4%). Annual research productivity stratified by income and population size indicated that China ranked first (22.2) followed by the USA (18.8). Analysis of regional distribution of publications indicated that the Mediterranean, African, and South-East Asia regions had the least contribution. Harvard University (92; 2.5%) was the most active institution/organization followed the US Environmental Protection Agency (89; 2.4%). International collaboration was restricted to three regions: Northern America, Europe, and Asia. The top ten preferred journals were in the field of environmental health and respiratory health. Environmental Health Perspective was the most preferred journal for publishing documents in outdoor pollution in relation to respiratory health. Research on the impact of outdoor air pollution on respiratory health had accelerated lately and is receiving a lot of interest. Global research networks that include

  19. Air pollution monitoring in Czech Republic by neutron activation analysis and other methods

    International Nuclear Information System (INIS)

    Kucear, J.; Faltejsek, J.; Starkova, B.

    1994-01-01

    High levels of air pollution occur in several areas of the Czech Republic due to both inland emissions sources (mainly coal-fired power plants) and those from other parts of Europe by local and long-range pollution processes, respectively. Therefore, regular air pollution monitoring is carried out both in the vicinity of large power plants in rural, locally unpolluted regions as well. Other emission sources (municipal waste incinerators, metallurgical plants, motor vehicles) are also examined to enable apportionment of individual emission sources types to the level of pollution in a particular area by receptor modelling. In this project, a study of elemental composition of airborne particulate matter in areas with high and low levels of pollution using instrumental neutron activation analysis (INAA) is proposed. Several elements, namely Cu, Cd, Ni, and Pb will be determined by atomic absorption spectrometry (AAS). Selected biological indicators of air pollution (mosses) will also be analyzed using INAA, radiochemical NAA (RNAA), and AAS. In addition, measurement of chemical composition of precipitation samples (selected elements, anions, cations, pH, and conductivity) will be carried out using AAS, INAA, RNAA, ion chromatography, and spectrophotometry. Quality assurance of the analyses will be pursued by concurrent analyses of suitable matrix-based reference materials and by participation in interlaboratory comparisons. (author). 17 refs, 1 tab

  20. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review

    International Nuclear Information System (INIS)

    Yang, Min; Zheng, Shaokui

    2014-01-01

    Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems. - Highlights: • Pollutant removal-oriented yeast SCP production processes offer more choices. • Highly adaptive yeast isolates replace commercial SCP producers. • Yeasts degrade

  1. Effects of Compact Urban Development on Air Pollution: Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Hee-Sun Cho

    2014-09-01

    Full Text Available This study investigates the effects of compact urban development on air pollution, taking into account both the spatial distribution of pollutants resulting from an increase in inner urban densities and the dispersion of pollutants associated with an increase in outer green open spaces. The empirical analysis is based upon a panel data model covering 17 cities in Korea from 1996–2009; this approach is used because urban air pollution is influenced by spatial and temporal changes. Measuring the air pollution level by distance from city centers demonstrates that the spatial concentration of emission sources does not necessarily increase air pollution levels. The two-way fixed effects model, which is employed to control both individual (regional and time effects, shows that SO2 decreases as the proportion of green area increases, while a rise in net density leads to an increase of NO2. Both effects are observed in the case of CO dispersion by green area as well as emission source concentration by high densities. Therefore, there is no clear impact of compact urban development on air quality, which is instead related to pollutant-specific characteristics and the emission source.

  2. Regional air pollution caused by a simultaneous destruction of major industrial sources during the 1999 air campaign in Yugoslavia

    International Nuclear Information System (INIS)

    Vukmirovic, Z.B.; Unkasevic, M.; Lazic, L.; Tosic, I.; Joksimovich, V.

    2002-01-01

    During NATO's 78 day Kosovo war, 24 March-10 June 1999, almost daily attacks on major industrial sources have caused numerous industrial accidents in Serbia. These accidents resulted in releases of many hazardous chemical substances including the persistent organic pollutants (POPs). Important detection of some POPs in fine aerosol form took place at Xanthi in Greece and reported to the scientific world. The paper focuses on two pollution episodes: (a) 6-8 April; and (b) 18-20 April. Using the Eta model trajectory analysis, the regional pollutant transport from industrial sites in northern Serbia (Novi Sad) and in the Belgrade vicinity (Pancevo), respectively, almost simultaneously bombed at midnight between 17 and 18 April, corroborated measurements at Xanthi. At the same time the pollutant puff was picked up at about 3000 m and transported to Bulgaria, Romania, Ukraine, Moldavia and the Black Sea. The low-level trajectories from Pancevo below 1000 m show pollutant transport towards Belgrade area in the first 12 hours. The POP washout in central and southern Serbia in the second episode was deemed to have constituted the principal removal mechanism. In this episode maximum POP wet deposition was found in central Serbia and along the 850 hPa trajectory towards south-eastern Serbia and the Bulgarian border. The most intensive bombing of major industrial sources was in April 1999 in which maximum number of days with precipitation (20-26 a month) was registered in central and south-western Serbia in comparison with the period of 1960-1990. Maximum monthly precipitation sums, higher than 100 mm, appeared in central and north-eastern Serbia, while a deficit, less than 50 mm, was registered in north-western and southern Serbia. (author)

  3. Air pollution: worldwide effects on mountain forests

    Science.gov (United States)

    Anne M. Rosenthal; Andrzej Featured: Bytnerowicz

    2004-01-01

    Widespread forest decline in remote areas of the Carpathian Mountains has been linked to air pollution from urban and industrial regions. Besides injuring plant tissues directly, pollutants may deposit to soils and water, drastically changing susceptible ecosystems. Researcher Andrzej Bytnerowicz has developed effective methods for assessing air quality over wildlands...

  4. Regional air pollution caused by a simultaneous destruction of major industrial sources in a war zone. The case of April Serbia in 1999

    Science.gov (United States)

    Vukmirović, Zorka B.; Unkašević, Miroslava; Lazić, Lazar; Tošić, Ivana

    During NATO's 78-day Kosovo war, 24 March-10 June 1999, almost daily attacks on major industrial sources have caused numerous industrial accidents in Serbia. These accidents resulted in releases of many hazardous chemical substances including the persistent organic pollutants (POPs). Detection of some important POPs in fine aerosol form took place at Xanthi in Greece and reported to the scientific world. The paper focuses on two pollution episodes: (a) 6-8 April; and (b) 18-20 April. Using the Eta model trajectory analysis, the regional pollutant transport from industrial sites in Northern Serbia (Novi Sad) and in the Belgrade vicinity (Pančevo), respectively, almost simultaneously bombed at midnight between 17 and 18 April, corroborated measurements at Xanthi. At the same time the pollutant puff was picked up at about 3000 m and transported to Bulgaria, Romania, Ukraine, Moldavia and the Black Sea. The low-level trajectories from Pančevo below 1000 m show pollutant transport towards Belgrade area in the first 12 h. The POP washout in central and southern Serbia in the second episode was deemed to have constituted the principal removal mechanism. Maximum POP wet deposition was found in central Serbia and along the 850 hPa trajectory towards south-eastern Serbia and the Bulgarian border.

  5. Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis

    International Nuclear Information System (INIS)

    Dong, Huijuan; Dai, Hancheng; Dong, Liang; Fujita, Tsuyoshi; Geng, Yong; Klimont, Zbigniew; Inoue, Tsuyoshi; Bunya, Shintaro; Fujii, Minoru; Masui, Toshihiko

    2015-01-01

    Highlights: • China’s future CO 2 reduction and its co-benefits on air pollutants were projected. • GAINS-China and AIM/CGE models were combined for emission and cost estimation. • High GDP regions tended to have higher emission, reduction potential and co-benefit. • Coal ratio and coal quality were also key factors to affect reduction and co-benefit. • Mitigation investment to less developed western regions was more effective. - Abstract: With fast economic development, industrialization and urbanization, China faces increasing pressures on carbon emission reduction, and especially on air pollutants (SO 2 , NOx, PM) reduction, particularly the notorious haze issue caused by air pollution in recent years. Pursuing co-benefits is an effective approach to simultaneously respond to both carbon and air pollutant problems. In this paper, the AIM/CGE (Asia–Pacific Integrated Assessment Model/Computational General Equilibrium) model and GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies)-China model are combined together to project future CO 2 and air pollutants emissions in China, as well as reduction costs and co-benefit effects. Considering implementation of carbon mitigation policy and air pollutant mitigation technologies, four scenarios (S1, S2, S3 and S4) are analyzed. Results indicate that by implementing both carbon and air pollutant mitigation (S4), CO 2 emission per GDP can be reduced by 41% by 2020, compared with the 2005 level, and SO 2 , NOx and PM2.5 emissions would change by a factor 0.8, 1.26 and 1.0 of the 2005 level, respectively in 2030. The real co-benefits of emission reductions (S2 minus S4) for SO 2 , NOx and PM2.5 are 2.4 Mt, 2.1 Mt and 0.3 Mt in 2020, and the corresponding cost reduction co-benefits are 4, 0.11, and 0.8 billion €, respectively. Provincial disparity analysis reveals that regions with higher co-benefits are those with higher GDP such as Guangdong, Shandong and Jiangsu, energy production bases such as

  6. Simultaneously Recovering High-Purity Chromium and Removing Organic Pollutants from Tannery Effluent

    Directory of Open Access Journals (Sweden)

    Jie Zong

    2016-01-01

    Full Text Available Chromium pollution is a serious issue because of carcinogenic toxicities of the pollutants and low recovery rate of chromium because of the presence of organic, such as protein and fat. In this work, high recovery rate and high purity of the chromium ion were successfully prepared by the way of acid enzyme, flocculant, and Fenton oxidation. The experiments were characterized by TG, TOC, UV-VIS, and SEM. In the work, the tannery waste chrome liquor was used as experimental material. The results showed that the percentage of reduction of TOC in the tannery waste chrome liquor by method of Fenton oxidation, acid enzyme, and the flocculant was 71.15%, 65.26%, and 22.05%, respectively. Therefore, the organism content of chrome tanning waste liquid was greatly reduced through the pretreatment. And the application experiment showed that the properties and grain surface and fibers of the tanned leather with commercial chromium powder and chrome tanning agent prepared from the chromium waste liquid treated with Fenton are nearly the same.

  7. Overview of Megacity Air Pollutant Emissions and Impacts

    Science.gov (United States)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  8. Using lichens as physiological indicators of sulfurous pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sundstroem, K R; Haellgren, J E

    1973-01-01

    Lichens are known to be extremely sensitive to sulfurous pollutants and have thus disappeared from the regions around urban areas. The authors give the physiological background to this sensitivity and an outline for a test system for sulfurous pollutants based on lichens.

  9. Vaal Triangle air pollution health study. Addressing South African problems

    Energy Technology Data Exchange (ETDEWEB)

    Terblanche, P.; Nel, R. [CSIR Environmental Services, Pretoria (South Africa); Surridge, T. [Dept. of Mineral and Energy Affairs (South Africa); Annegarn, H. [Annegarn Environmental Research, Johannesburg (South Africa); Tosen, G. [Eskom, Johannesburg (South Africa); Pols, A. [CSIR Informationtek, Pretoria (South Africa)

    1995-12-31

    Situated in the central region of South Africa, the Vaal Triangle is an area which plays a vital role in driving the economic dynamo of South Africa. Also, because of the concentration of heavy industry, it is an area which provides a challenge in effective air pollution control. The Vaal Triangle lies within the Vaal River Basin, at an altitude of 1 500 m above sea level. Meteorological conditions in the area are highly conducive to the formation of surface temperature inversions, resulting in a poor dispersion potential. Because of multiple sources of air pollution in the area, poor dispersion conditions increase the risk pollution build-up and subsequent adverse impacts. The situation is further exacerbated by the continued combustion of coal in households, even after the electrification of residences. This is particularly chronic in the developing communities and during winter. Vaal Triangle Air Pollution Health Study (VAPS) was initiated in 1990 by the Department of Health, the Medical Research Council and major industries in the area to determine effects of air pollution on the health of the community. The final results of that study summarised in this article, and options to ameliorate problems are addressed. (author)

  10. Vaal Triangle air pollution health study. Addressing South African problems

    Energy Technology Data Exchange (ETDEWEB)

    Terblanche, P; Nel, R [CSIR Environmental Services, Pretoria (South Africa); Surridge, T [Dept. of Mineral and Energy Affairs (South Africa); Annegarn, H [Annegarn Environmental Research, Johannesburg (South Africa); Tosen, G [Eskom, Johannesburg (South Africa); Pols, A [CSIR Informationtek, Pretoria (South Africa)

    1996-12-31

    Situated in the central region of South Africa, the Vaal Triangle is an area which plays a vital role in driving the economic dynamo of South Africa. Also, because of the concentration of heavy industry, it is an area which provides a challenge in effective air pollution control. The Vaal Triangle lies within the Vaal River Basin, at an altitude of 1 500 m above sea level. Meteorological conditions in the area are highly conducive to the formation of surface temperature inversions, resulting in a poor dispersion potential. Because of multiple sources of air pollution in the area, poor dispersion conditions increase the risk pollution build-up and subsequent adverse impacts. The situation is further exacerbated by the continued combustion of coal in households, even after the electrification of residences. This is particularly chronic in the developing communities and during winter. Vaal Triangle Air Pollution Health Study (VAPS) was initiated in 1990 by the Department of Health, the Medical Research Council and major industries in the area to determine effects of air pollution on the health of the community. The final results of that study summarised in this article, and options to ameliorate problems are addressed. (author)

  11. Water Pollution, Teachers' Edition.

    Science.gov (United States)

    Lavaroni, Charles W.; And Others

    One of three in a series about pollution, this teacher's guide for a unit on water pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of water pollution and involves students in processes of…

  12. Noise Pollution, Teachers' Edition.

    Science.gov (United States)

    O'Donnell, Patrick A.; Lavaroni, Charles W.

    One of three in a series about pollution, this teacher's guide for a unit on noise pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of noise pollution and involves students in processes of…

  13. Investigation of spatial and historical variations of air pollution around an industrial region using trace and macro elements in tree components

    Energy Technology Data Exchange (ETDEWEB)

    Odabasi, Mustafa, E-mail: mustafa.odabasi@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, 35160 Buca, Izmir (Turkey); Tolunay, Doganay [Department of Forestry Engineering, Faculty of Forestry, Istanbul University, 34470 Sariyer, Istanbul (Turkey); Kara, Melik; Ozgunerge Falay, Ezgi; Tuna, Gizem; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Elbir, Tolga [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, 35160 Buca, Izmir (Turkey)

    2016-04-15

    Several trace and macro elements (n = 48) were measured in pine needle, branch, bark, tree ring, litter, and soil samples collected at 27 sites (21 industrial, 6 background) to investigate their spatial and historical variation in Aliaga industrial region in Turkey. Concentrations generally decreased with distance from the sources and the lowest ones were measured at background sites far from major sources. Spatial distribution of anthropogenic trace elements indicated that their major sources in the region are the iron-steel plants, ship-breaking activities and the petroleum refinery. Patterns of 40 elements that were detected in most of the samples were also evaluated to assess their suitability for investigation of historical variations. Observed increasing trends of several trace and macro elements (As, Cr, Fe, Mo, Ni, V, Cu, Pb, Sb, Sn, and Hg) in the tree-ring samples were representative for the variations in anthropogenic emissions and resulting atmospheric concentrations in Aliaga region. It was shown that lanthanides (La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) could also be used for the investigation of historical variations due to specific industrial emissions (i.e., petroleum refining). Results of the present study showed that tree components, litter, and soil could be used to determine the spatial variations of atmospheric pollution in a region while tree rings could be used to assess the historical variations. - Highlights: • Iron-steel plants and refinery are the major trace element emitters in Aliaga region. • Tree components, litter and soil reflected the spatial variations of trace elements. • Elements in tree rings represented the historical variations in air pollution.

  14. The pollutants from livestock and poultry farming in China-geographic distribution and drivers.

    Science.gov (United States)

    Gan, Ling; Hu, Xisheng

    2016-05-01

    Livestock and poultry farming is a major source of agricultural pollution. However, our knowledge of the constraining factors of the geographic distribution of pollutants from livestock and poultry farming is still limited. In this study, using the optimized pollutant generation coefficients, we estimated the annual pollutant productions of eight livestock and poultry species at the provincial level in 2005 and 2013 and their growth rates during the study period in China; using canonical correlation analysis, we also explored the association between the eight pollutant measurements as dependent variables and 14 factors (including resource endowment, developmental level, and economic structure factors) as independent variables. Results indicate that there exist spatial disparity in the distribution of pollutants from livestock and poultry farming across regions, with provinces in the Huang-Huai-Hai region and the southwestern region accounting for approximately 50 % of the total productions in the nation. Cattle, pig, and poultry constitute the primary pollution sources in terms of livestock and poultry farming not only at the national level but also at the province level. While the species constitute and their respective growth rates of the pollutants can be also characterized by spatial disparity across regions, canonical correlation analysis shows that the observed regional patterns of the pollutants can be largely explained by the resource endowment factors (positive effects) and the developmental level factors (negative effects). In addition, we found that the development of livestock and poultry farming is negatively associated with the growing rate of both the resource endowment and the socioeconomic factors. This indicates that there exist different driving patterns in the gross and increment of the pollutant productions. Our research has significant implications for the appropriate environmental protection policy formulation and implementation in livestock

  15. Urban Mobility and Polluting Emissions: Impacts on Public Welfare

    Directory of Open Access Journals (Sweden)

    Romano Fistola

    2009-07-01

    Full Text Available This article introduces the problem of assessing urban effects of air pollution produced by road traffic and it is oriented to individualize the "critical" areas where it is necessary to intervene in order to optimize the security levels for public wellbeing. The research is targeted to assess the effects of pollutant emissions, particularly of PM10, on human health by testing methodology at three different territorial levels (regional, provincial, municipal. In this article we refer particularly to the city of Benevento and we propose to point out a methodology for identifying critical infrastructure where it is necessary to restrict vehicular traffic. The target of this study is the identification of urban ambit characterized by high levels of risk to public health arising from the mobility vehicle. Prerequisite is the consideration that the effects of pollutants are linked with urban morphology in particular the physical structure of the road network. In other word, within the city it is possible to identify "critical channels" where safety levels for human health are strongly compromise by their physical structure. The test has been referred to Benevento by using GIS to identify urban areas where high levels of risk due to pollutant emission concentrate. Gis has been projected to allow both the identification of “maximum risk areas” and the "critical channel" within the city.

  16. Hzard and risk assessment of pollution on the groundwater resources and residents’ health of Salfit District, Palestine

    Directory of Open Access Journals (Sweden)

    Amjad Aliewi

    2015-09-01

    New hydrological insights for the region: There are many pollutants in the Salfit's aquifer recharge area and thus percolating and polluting the groundwater aquifers. Using a Durov diagram, the sources of water proved to be polluted and, therefore, the health of the residents of Salfit District is directly threatened. A hazard map was developed to classify all polluting activities in the district. Microbiological analysis of the drinking water revealed higher levels of total and fecal Coliforms. The high incidence rate of water related diseases is an indication of the drinking water pollution. This paper contains research findings and policy recommendations to help Salfit District alleviate health and pollution problems associated with this vital resource of groundwater. In addition, Salfit governorate is encouraged to begin addressing the institutional issues and improving public awareness.

  17. Research on the sewage treatment in high altitude region based on Lhasa Sewage Treatment Plant

    Science.gov (United States)

    Xu, Jin; Li, Shuwen

    2017-12-01

    Sewage treatment is of great significance to enhance environmental quality, consolidate pollution prevention and ecological protection, and ensure sustainable economic and social development in high altitude region. However, there are numerous difficulties in sewage treatment due to the alpine climate, the relatively low economic development level, and the backward operation and management styles, etc. In this study, the characteristics of influent quality in the sewage treatment plant in Lhasa are investigated by analysing the influent BOD5/COD and BOD5/TN, comparing key indexes recorded from 2014 to 2016 with the hinterland. Results show that the concentration of influent COD, BOD5, NH3-N and SS in the Lhasa sewage treatment plant, in which the sewage belongs to low-concentration urban sewage, is smaller than that in the domestic sewage treatment plants in the mainland. The concentration ratio of BOD5/COD and BOD5/TN is below 0.4 and 4, which indicates that the biodegradation is poor and the carbon sources are in bad demand. The consequences obtained play a vital role in the design, operation and management of sewage treatment plants in high altitude region.

  18. Assessment of the risk of failure of high voltage substations due to environmental conditions and pollution on insulators.

    Science.gov (United States)

    Castillo Sierra, Rafael; Oviedo-Trespalacios, Oscar; Candelo, John E; Soto, Jose D

    2015-07-01

    Pollution on electrical insulators is one of the greatest causes of failure of substations subjected to high levels of salinity and environmental pollution. Considering leakage current as the main indicator of pollution on insulators, this paper focuses on establishing the effect of the environmental conditions on the risk of failure due to pollution on insulators and determining the significant change in the magnitude of the pollution on the insulators during dry and humid periods. Hierarchical segmentation analysis was used to establish the effect of environmental conditions on the risk of failure due to pollution on insulators. The Kruskal-Wallis test was utilized to determine the significant changes in the magnitude of the pollution due to climate periods. An important result was the discovery that leakage current was more common on insulators during dry periods than humid ones. There was also a higher risk of failure due to pollution during dry periods. During the humid period, various temperatures and wind directions produced a small change in the risk of failure. As a technical result, operators of electrical substations can now identify the cause of an increase in risk of failure due to pollution in the area. The research provides a contribution towards the behaviour of the leakage current under conditions similar to those of the Colombian Caribbean coast and how they affect the risk of failure of the substation due to pollution.

  19. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loids Pollution Based on Kriging Interpolation and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Zhenyi Jia

    2017-12-01

    Full Text Available Soil pollution by metal(loids resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As and cadmium (Cd pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loids in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid pollution.

  20. Research on Nonpoint Source Pollution Assessment Method in Data Sparse Regions: A Case Study of Xichong River Basin, China

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-01-01

    Full Text Available The NPS pollution is difficult to manage and control due to its complicated generation and formation mechanism, especially in the data sparse area. Thus the ECM and BTOPMC were, respectively, adopted to develop an easy and practical assessment method, and a comparison between the outputs of them is then conducted in this paper. The literature survey and field data were acquired to confirm the export coefficients of the ECM, and the loads of TN and TP were statistically analyzed in the study area. Based on hydrological similarity, runoff data from nearby gauged sites were pooled to compensate for the lack of at-site data and the water quality submodel of BTOPMC was then applied to simulate the monthly pollutant fluxes in the two sections from 2010 to 2012. The results showed agricultural fertilizer, rural sewage, and livestock and poultry sewage were the main pollution sources, and under the consideration of self-purification capacity of river, the outputs of the two models were almost identical. The proposed method with a main thought of combining and comparing an empirical model and a mechanistic model can assess the water quality conditions in the study area scientifically, which indicated it has a good potential for popularization in other regions.

  1. The impact of an urban-industrial region on the magnitude and variability of persistent organic pollutant deposition to Lake Michigan.

    Science.gov (United States)

    Hornbuckle, Keri C; Green, Mark L

    2003-09-01

    A predictive model for gas-phase PCBs and trans-nonachlor over Lake Michigan has been constructed and the resulting data examined for trends. In this paper, we describe the model results to show how the magnitude and variability of a plume of contaminants from the Chicago area contributes to a highly variable region of net contaminant deposition over the entire lake. For the whole lake, gross annual deposition of PCBs is approximately 3200 kg, although the net annual gas exchange is not significantly different from zero. The data-driven model illustrates that on a daily basis, the net exchange of persistent organic pollutants (POPs) can change from net deposition to net volatilization depending on the area of plume impact. These findings suggest that i) control of urban areas can accelerate the rate of volatilization from lakes; and ii) release of POPs from urban areas is largely a result of volatilization processes.

  2. Premature aging in bone of fish from a highly polluted marine area

    International Nuclear Information System (INIS)

    Scopelliti, Giovanna; Di Leonardo, Rossella; Tramati, Cecilia D.; Mazzola, Antonio; Vizzini, Salvatrice

    2015-01-01

    Highlights: • Crystalline structure of fishbone mineral was defined by XRD and FT-IR analyses. • Expected positive relationship between fish age and bone maturity was not found. • Mineralisation degree was positively related to high concentration of Hg and Cr. • S. porcus and D. annularis showed the highest bone maturity and Hg content. - Abstract: Fish species have attracted considerable interest in studies assessing biological responses to environmental contaminants. In this study, the attention has been focussed on fishbone of selected fish species from a highly polluted marine area, Augusta Bay (Italy, Central Mediterranean) to evaluate if toxicant elements had an effect on the mineralogical structure of bones, although macroscopic deformations were not evident. In particular, an attempt was made to evaluate if bone mineral features, such as crystallinity, mineral maturity and carbonate/phosphate mineral content, determined by XR-Diffraction and FT-IR Spectroscopy, suffered negative effects due to trace element levels in fishbone, detected by ICP-OES. Results confirmed the reliability of the use of diffractometric and spectroscopic techniques to assess the degree of crystallinity and the mineral maturity in fishbone. In addition, in highly polluted areas, Hg and Cr contamination induced a process of premature aging of fishbone, altering its biochemical and mineral contents

  3. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  4. Recognize PM2.5 sources and emission patterns via high-density sensor network: An application case in Beijing

    Science.gov (United States)

    Ba, Yu tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Zhang, Da wei; Yin, Wen jun

    2017-04-01

    Beijing suffered severe air pollution during wintertime, 2016, with the unprecedented high level pollutants monitored. As the most dominant pollutant, fine particulate matter (PM2.5) was measured via high-density sensor network (>1000 fixed monitors across 16000 km2 area). This campaign provided precise observations (spatial resolution ≈ 3 km, temporal resolution = 10 min, error of measure Chemistry) were analyzed to elucidate the effects of atmospheric transportations across regions, both horizontal and vertical, on emission patterns during this haze period. The results quantified the main cause of regional transport and local emission, and highlighted the importance of cross-region cooperation in anti-pollution campaigns.

  5. Atmospheric pollutant outflow from southern Asia: a review

    Directory of Open Access Journals (Sweden)

    M. G. Lawrence

    2010-11-01

    Full Text Available Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ, located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale

  6. Identification of hotspots and trends of fecal surface water pollution in developing countries

    Science.gov (United States)

    Reder, Klara; Flörke, Martina; Alcamo, Joseph

    2015-04-01

    Water is the essential resource ensuring human life on earth, which can only prosper when water is available and accessible. But of importance is not only the quantity of accessible water but also its quality, which in case of pollution may pose a risk to human health. The pollutants which pose a risk to human health are manifold, covering several groups such as pathogens, nutrients, human pharmaceuticals, heavy metals, and others. With regards to human health, pathogen contamination is of major interest as 4% of all death and 5.7% of disability or ill health in the world can be attributed to poor water supply, sanitation and personal and domestic hygiene. In developing countries, 2.6 billion people lacked access to improved sanitation in 2011. The lack of sanitation poses a risk to surface water pollution which is a threat to human health. A typical indicator for pathogen pollution is fecal coliform bacteria. The objective our study is to assess fecal pollution in the developing regions Africa, Asia and Latin America using the large-scale water quality model WorldQual. Model runs were carried-out to calculate in-stream concentrations and the respective loadings reaching rivers for the time period 1990 to 2010. We identified hotspots of fecal coliform loadings and in-stream concentrations which were further analyzed and ranked in terms of fecal surface water pollution. Main findings are that loadings mainly originate from the domestic sector, thus loadings are high in highly populated areas. In general, domestic loadings can be attributed to the two subsectors domestic sewered and domestic non sewered. The spatial distribution of both sectors varies across catchments. Hotspot pattern of in-stream concentrations are similar to the loadings pattern although they are different in seasonality. As the dilution varies with climate its dilution capacity is high during seasons with high precipitation, which in turn decreases the in-stream concentrations. The fecal

  7. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    Directory of Open Access Journals (Sweden)

    S. Dhungel

    2018-01-01

    Full Text Available Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo–Gangetic plains (IGP from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC, ozone (O3, and associated meteorological conditions within the Kali Gandaki Valley (KGV, Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s−1 dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September. Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m−3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2–3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of

  8. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    Science.gov (United States)

    Dhungel, Shradda; Kathayat, Bhogendra; Mahata, Khadak; Panday, Arnico

    2018-01-01

    Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo-Gangetic plains (IGP) from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC), ozone (O3), and associated meteorological conditions within the Kali Gandaki Valley (KGV), Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s-1) dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September). Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m-3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2-3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of pollutants from the IGP to the

  9. Study of atmospheric dispersion of pollutants in the industrial region of the Sado estuary using biomonitors

    International Nuclear Information System (INIS)

    Freitas, M.C.; Reis, M.A.; Marques, A.P.; Costa, C.; Wolterbeek, H.Th.

    2001-01-01

    The region of Lisbon and south of Lisbon (Sado estuary) is densely industrialised, and therefore air pollution should be studied in a more detailed scale there. Also the topography of the Sado estuary region and the predominant wind direction from the north-west contribute to the influence of the industries located in the north onto this region. The region selected in this work includes a oil-fired power station. Transplants of the lichen Parmelia sulcata were suspended in nylon bags in a region within a rectangle of 15 km wide and 25 km long on a grid 2.5 km x 2.5 km, centred in a oil powered station. In each of the 47 places two sets of four transplants each were hung. Care was taken i) in covering the sets with a polyethylene roof to prevent leaching of elements in the lichen, ii) in building a hanging system which could rotate according to the wind direction, iii) in orienting one set towards the wind and the other set against the wind. For a 9 month period and every three months, one transplant of each set was collected. We have no knowledge of any other study on differentiation elemental uptake of Parmelia sulcata where the component wind direction is taken into account. Some information on local and distant sources is expected to be accessible. The transplants were analysed by INAA. Contents on Cl, Na, Ca, V and Zn are mapped and discussed. (author)

  10. Uncertainties in emission estimates of greenhouse gases and air pollutants in China and India and their impacts on regional air quality

    Science.gov (United States)

    Saikawa, E.; Trail, M.; Young, C. L.; Zhong, M.; Avramov, A.; Kim, H.; Wu, Q.; Janssens-Maenhout, G. G. A.; Kurokawa, J. I.; Klimont, Z.; Wagner, F.; Naik, V.; Horowitz, L. W.; Zhao, Y.; Nagpure, A.; Gurjar, B.; Zhang, Q.

    2017-12-01

    Greenhouse gas and air pollutant precursor emissions have been increasing rapidly in both China and India, resulting in local to regional scale effects on air quality. Modelers use emission inventories to represent the temporal and spatial distribution of impacts of air pollutant emissions on regional and global air quality. However, large uncertainties exist in emission inventories. Quantification of uncertainties in emission estimates is essential to better understand the linkages among emissions, air quality, climate, and health. We use Monte Carlo methods to assess the uncertainties of the existing carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emission estimates for both China and India. We focus on the period between 2000 and 2008. In addition to national totals, we also analyze emissions from four source sectors, including industry, transport, power, and residential. We also assess differences in the existing emission estimates within each of the subnational regions. We find large disagreements among the existing inventories at disaggregated levels. We further assess the impact of these differences in emissions on air quality using a chemical transport model. More efforts are needed to constrain emissions, especially in the Indo-Gangetic Plains and in the East and Central regions of China, where large differences across emission inventories result in concomitant large differences in the simulated concentrations of PM and ozone. Our study also highlights the importance of constraining SO2, NOx, and NH3 emissions for secondary PM concentrations over China and India.

  11. Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China.

    Science.gov (United States)

    Tang, Kai; Gong, Chengzhu; Wang, Dong

    2016-01-15

    This paper analyses the reduction potential, shadow prices, and pollution costs of agricultural pollutants in China based on provincial panel data for 2001-2010. Using a parameterized quadratic form for the directional output distance function, we find that if agricultural sectors in all provinces were to produce on the production frontier, China could potentially reduce agricultural emissions of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) by 16.0%, 16.2%, and 20.4%, respectively. Additionally, our results show that the shadow price of TN increased rapidly and continuously, while that of COD and TP fluctuated for the whole period. For the whole country, the average shadow price of COD, TN, and TP are 8266 Yuan/tonne, 25,560 Yuan/tonne, and 10,160 Yuan/tonne, respectively. The regional shadow prices of agricultural pollutants are unbalanced. Furthermore, we show that the pollution costs from emissions of COD, TN, and TP are 6.09% of the annual gross output value of the agricultural sector and are highest in the Western and lowest in the Eastern provinces. Our estimates suggest that there is scope for further pollution abatement and simultaneous output expansion for China's agriculture if farmers promote greater efficiency in their production process. Policymakers are required to dynamically adjust the pollution tax rates and ascertain the initial permit price in an emission trading system. Policymakers should also consider the different pollution costs for each province when making the reduction allocations within the agricultural sector. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microbial processes in coastal pollution

    International Nuclear Information System (INIS)

    Capone, D.G.; Bauer, J.E.

    1992-01-01

    In this chapter, the authors describe the nature and range of some of the interactions that can occur between the microbiota and environmental contaminants in coastal areas. The implications of such interactions are also discussed. Pollutant types include inorganic nutrients, heavy metals, bulk organics, organic contaminants, pathogenic microorganisms and microbial pollutants. Both the effects of pollutants such as petroleum hydrocarbons on natural microbial populations and the mitigation of contaminant effects by complexation and biodegradation are considered. Finally, several areas of emerging concerns are presented that involve a confluence of biogeochemistry, microbial ecology and applied and public health microbiology. These concerns range in relevance from local/regional to oceanic/global scales. 308 ref

  13. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China.

    Science.gov (United States)

    Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang

    2018-03-07

    The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.

  14. Assessing the effects of transboundary ozone pollution between Ontario, Canada and New York, USA

    International Nuclear Information System (INIS)

    Brankov, Elvira; Henry, Robert F.; Civerolo, Kevin L.; Hao, Winston; Rao, S.T.; Misra, P.K.; Bloxam, Robert; Reid, Neville

    2003-01-01

    Observations and modeling results were used to examine spatial scales and transport patterns of ozone pollution in the Ontario-New York region. - We investigated the effects of transboundary pollution between Ontario and New York using both observations and modeling results. Analysis of the spatial scales associated with ozone pollution revealed the regional and international character of this pollutant. A back-trajectory-clustering methodology was used to evaluate the potential for transboundary pollution trading and to identify potential pollution source regions for two sites: CN tower in Toronto and the World Trade Center in New York City. Transboundary pollution transport was evident at both locations. The major pollution source areas for the period examined were the Ohio River Valley and Midwest. Finally, we examined the transboundary impact of emission reductions through photochemical models. We found that emissions from both New York and Ontario were transported across the border and that reductions in predicted O 3 levels can be substantial when emissions on both sides of the border are reduced

  15. Modelling of strong heterogeneities in aerosol single scattering albedos over a polluted region

    Science.gov (United States)

    Mallet, M.; Pont, V.; Liousse, C.

    2005-05-01

    To date, most models dedicated to the investigation of aerosol direct or semi-direct radiative forcings have assumed the various aerosol components to be either completely externally mixed or homogeneously internally mixed. Some recent works have shown that a core-shell treatment of particles should be more realistic, leading to significant differences in the radiative impact as compared to only externally or well-internally mixed states. To account for these studies, an optical module, ORISAM-RAD, has been developed for computing aerosol radiative properties under the hypothesis of internally mixed particles with a n-layer spherical concentric structure. Mesoscale simulations using ORISAM-RAD, coupled with the 3D mesoscale model Meso-NH-C, have been performed for one selected day (06/24/2001) during the ESCOMPTE experiment in the Marseilles-Fos/Berre region, which illustrate the ability of this new module to reproduce spatial heterogeneities of measured single scattering albedo (ωo), due to industrial and/or urban pollution plumes.

  16. Atmospheric Concentrations of Persistent Organic Pollutants in the Southern Ocean

    Science.gov (United States)

    Vlahos, P.; Edson, J.; Cifuentes, A.; McGillis, W. R.; Zappa, C.

    2008-12-01

    Long-range transport of persistent organic pollutant (POPs) is a global concern. Remote regions such as the Southern Ocean are greatly under-sampled though critical components in understanding POPs cycling. Over 20 high-volume air samples were collected in the Southern Ocean aboard the RV Brown during the GASEX III experiment between Mar 05 to April 9 2008. The relatively stationary platform (51S,38W) enabled the collection of a unique atmospheric time series at this open ocean station. Air sampling was also conducted across transects from Punto Arenas, Chile and to Montevideo, Uruguay. Samples were collected using glass sleeves packed with poly-urethane foam plugs and C-18 resin in order to collect target organic pollutants (per-fluorinated compounds, currently and historically used pesticides) in this under-sampled region. Here we present POPs concentrations and trends over the sampled period and compare variations with air parcel back trajectories to establish potential origins of their long-range transport.

  17. Managing Coastal Pollution

    International Nuclear Information System (INIS)

    Quevenco, R.

    2010-01-01

    Concern over the growing incidence of pollution in the Caribbean has been on the rise, as it has the potential to affect livelihoods dependent on fishing and tourism. The IAEA's Department of Technical Cooperation launched a regional project on the use of nuclear techniques to address coastal management issues in the Caribbean.

  18. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China

    International Nuclear Information System (INIS)

    Wang, Bo; Xia, Dunsheng; Yu, Ye; Jia, Jia; Xu, Shujing

    2014-01-01

    Increasing urbanization and industrialization over the world has caused many social and environmental problems, one of which drawing particular concern is the soil pollution and its ecological degradation. In this study, the efficiency of magnetic methods for detecting and discriminating contaminates in the arid and semi-arid regions of northwestern China was investigated. Topsoil samples from six typical cities (i.e. Karamay, Urumqi, Lanzhou, Yinchuan, Shizuishan and Wuhai) were collected and a systematic analysis of their magnetic properties was conducted. Results indicate that the topsoil samples from the six cities were all dominated by coarse low-coercivity magnetite. In addition, the average magnetite contents in the soils from Urumqi and Lanzhou were shown to be much higher than those from Karamay, Yinchuan, Shizuishan and Wuhai, and they also have relatively higher χ lf and χ fd % when compared with cities in eastern China. Moreover, specific and distinctive soil pollution signals were identified at each sampling site using the combined various magnetic data, reflecting distinct sources. Industrial and traffic-derived pollution was dominant in Urumqi and Lanzhou, in Yinchuan industrial progress was observed to be important with some places affected by vehicle emission, while Karamay, Shizuishan and Wuhai were relatively clean. The magnetic properties of these latter three cities are significantly affected by both anthropogenic pollution and local parent materials from the nearby Gobi desert. The differences in magnetic properties of topsoil samples affected by mixed industrial and simplex traffic emissions are not obvious, but significant differences exist in samples affected by simplex industrial/vehicle emissions and domestic pollution. The combined magnetic analyses thus provide a sensitive and powerful tool for classifying samples according to likely sources, and may even provide a valuable diagnostic tool for discriminating among different cities

  19. The effect of nitrogen additions on bracken fern and its insect herbivores at sites with high and low atmospheric pollution

    Science.gov (United States)

    M.E. Jones; M.E. Fenn; T.D. Paine

    2011-01-01

    The impact of atmospheric pollution, including nitrogen deposition, on bracken fern herbivores has never been studied. Bracken fern is globally distributed and has a high potential to accumulate nitrogen in plant tissue. We examined the response of bracken fern and its herbivores to N fertilization at a high and low pollution site in forests downwind of Los Angeles,...

  20. Reconstruction of metal pollution and recent sedimentation processes in Havana Bay (Cuba): A tool for coastal ecosystem management

    International Nuclear Information System (INIS)

    Díaz-Asencio, M.; Alvarado, J.A. Corcho; Alonso-Hernández, C.; Quejido-Cabezas, A.; Ruiz-Fernández, A.C.; Sanchez-Sanchez, M.; Gómez-Mancebo, M.B.; Froidevaux, P.; Sanchez-Cabeza, J.A.

    2011-01-01

    Highlights: ► Past metal pollution in the heavy polluted coastal ecosystem of Havana Bay. ► Effectiveness of pollution-reduction strategies. ► Dated environmental archives to reconstruct sedimentation and pollution trends. ► Impact of severe climatic events on sedimentation. - Abstract: Since 1998 the highly polluted Havana Bay ecosystem has been the subject of a mitigation program. In order to determine whether pollution-reduction strategies were effective, we have evaluated the historical trends of pollution recorded in sediments of the Bay. A sediment core was dated radiometrically using natural and artificial fallout radionuclides. An irregularity in the 210 Pb record was caused by an episode of accelerated sedimentation. This episode was dated to occur in 1982, a year coincident with the heaviest rains reported in Havana over the XX century. Peaks of mass accumulation rates (MAR) were associated with hurricanes and intensive rains. In the past 60 years, these maxima are related to strong El Niño periods, which are known to increase rainfall in the north Caribbean region. We observed a steady increase of pollution (mainly Pb, Zn, Sn, and Hg) since the beginning of the century to the mid 90s, with enrichment factors as high as 6. MAR and pollution decreased rapidly after the mid 90s, although some trace metal levels remain high. This reduction was due to the integrated coastal zone management program introduced in the late 90s, which dismissed catchment erosion and pollution.

  1. Influence of Social-economic Activities on Air Pollutants in Beijing, China

    Science.gov (United States)

    Li, Xiaolu; Zheng, Wenfeng; Yin, Lirong; Yin, Zhengtong; Song, Lihong; Tian, Xia

    2017-08-01

    With the rapid economic development, the serious air pollution in Beijing attracts increasing attention in the last decade. Seen as one whole complex and grey system, the causal relationship between the social development and the air pollution in Beijing has been quantitatively analyzed in this paper. By using the grey relational model, the aim of this study is to explore how the socio-economic and human activities affect on the air pollution in the city of Beijing, China. Four air pollutants, as the particulate matter with size 2.5 micrometers or less (PM2.5), particulate matter with size 10 micrometers or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NOx), are selected as the indicators of air pollution. Additionally, fifteen socio-economic indicators are selected to account for the regional socio-economic characteristics (economy variables, energy consumption variables, pollution emissions variables, environment and construction activity variables). The results highlight that all variables are associated with the concentrations of the four selected air pollutants, but with notable differences between the air pollutants. Most of the socio-economic indicators, such as industrial output, total energy consumption are highly correlated with PM2.5, while PM10, SO2, and NOx present in general moderate correlations with most of the socio-economic variables. Contrary to other studies and reports this study reveals that vehicles and life energy do not have the strongest effect on air pollution in Beijing. This study provides useful information to reduce air pollution and support decision-making for sustainable development.

  2. Influence of Social-economic Activities on Air Pollutants in Beijing, China

    Directory of Open Access Journals (Sweden)

    Li Xiaolu

    2017-08-01

    Full Text Available With the rapid economic development, the serious air pollution in Beijing attracts increasing attention in the last decade. Seen as one whole complex and grey system, the causal relationship between the social development and the air pollution in Beijing has been quantitatively analyzed in this paper. By using the grey relational model, the aim of this study is to explore how the socio-economic and human activities affect on the air pollution in the city of Beijing, China. Four air pollutants, as the particulate matter with size 2.5 micrometers or less (PM2.5, particulate matter with size 10 micrometers or less (PM10, sulfur dioxide (SO2 and nitrogen dioxide (NOx, are selected as the indicators of air pollution. Additionally, fifteen socio-economic indicators are selected to account for the regional socio-economic characteristics (economy variables, energy consumption variables, pollution emissions variables, environment and construction activity variables. The results highlight that all variables are associated with the concentrations of the four selected air pollutants, but with notable differences between the air pollutants. Most of the socio-economic indicators, such as industrial output, total energy consumption are highly correlated with PM2.5, while PM10, SO2, and NOx present in general moderate correlations with most of the socio-economic variables. Contrary to other studies and reports this study reveals that vehicles and life energy do not have the strongest effect on air pollution in Beijing. This study provides useful information to reduce air pollution and support decision-making for sustainable development.

  3. Heavy metal pollution in surface soils of Pearl River Delta, China.

    Science.gov (United States)

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  4. Effects of atmospheric transport and trade on air pollution mortality in China

    Science.gov (United States)

    Zhao, Hongyan; Li, Xin; Zhang, Qiang; Jiang, Xujia; Lin, Jintai; Peters, Glen P.; Li, Meng; Geng, Guannan; Zheng, Bo; Huo, Hong; Zhang, Lin; Wang, Haikun; Davis, Steven J.; He, Kebin

    2017-09-01

    Air quality is a major environmental concern in China, where premature deaths due to air pollution have exceeded 1 million people per year in recent years. Here, using a novel coupling of economic, physical and epidemiological models, we estimate the premature mortality related to anthropogenic outdoor PM2.5 air pollution in seven regions of China in 2010 and show for the first time how the distribution of these deaths in China is determined by a combination of economic activities and physical transport of pollution in the atmosphere. We find that 33 % (338 600 premature deaths) of China's PM2.5-related premature mortality in 2010 were caused by pollutants emitted in a different region of the country and transported in the atmosphere, especially from north to south and from east to west. Trade further extended the cross-regional impact; 56 % of (568 900 premature deaths) China's PM2.5-related premature mortality was related to consumption in another region, including 423 800 (42 % of total) and 145 100 (14 %) premature deaths from domestic consumption and international trade respectively. Our results indicate that multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts, and efforts to reduce the health impacts of air pollution in China should be prioritized according to the source and location of emissions, the type and economic value of the emitting activities, and the related patterns of consumption.

  5. Winter season air pollution in El Paso-Ciudad Juarez. A review of air pollution studies in an international airshed

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, W.; Church, H.W.

    1995-03-01

    This report summarizes a number of research efforts completed over the past 20 years in the El Paso del Norte region to characterize pollution sources and air quality trends. The El Paso del Norte region encompasses the cities of El Paso, Texas and Ciudad Juarez, Chihuahua and is representative of many US-Mexico border communities that are facing important air quality issues as population growth and industrialization of Mexican border communities continue. Special attention is given to a group of studies carried out under special US Congressional funding and administered by the US Environmental Protection Agency. Many of these studies were fielded within the last several years to develop a better understanding of air pollution sources and trends in this typical border community. Summary findings from a wide range of studies dealing with such issues as the temporal and spatial distribution of pollutants and pollution potential from both stationary and mobile sources in both cities are presented. Particular emphasis is given to a recent study in El Paso-Ciudad Juarez that focussed on winter season PM{sub 10} pollution in El Paso-Ciudad Juarez. Preliminary estimates from this short-term study reveal that biomass combustion products and crustal material are significant components of winter season PM{sub 10} in this international border community.

  6. Assessing water quality and pollution origin of the Bou-Areg aquifer (north east Morocco)

    OpenAIRE

    Alonso, A.; Sbaa, M.; Vanclooster, M.

    2011-01-01

    This study aims to evaluate the quality of the groundwater and the sources of pollution of the Bou-Areg aquifer, situated in the Oriental region, in the northeast part of Morocco. We first elaborated the aquifer pollution risk map by crossing a vulnerability map, principally based on the physical characteristics of the area, with a pressures map based on the soil occupation. The resulting map showed that the aquifer is subjected to a medium to high risk for at least half of the total aquifer ...

  7. Air Pollution Manual, Part 1--Evaluation. Second Edition.

    Science.gov (United States)

    Giever, Paul M., Ed.

    Due to the great increase in technical knowledge and improvement in procedures, this second edition has been prepared to update existing information. Air pollution legislation is reviewed. Sources of air pollution are examined extensively. They are treated in terms of natural sources, man-made sources, metropolitan regional emissions, emission…

  8. The impact of episodic coal mine drainage pollution on benthic macroinvertebrates in streams in the Anthracite region of Pennsylvania

    International Nuclear Information System (INIS)

    MacCausland, A.; McTammany, M.E.

    2007-01-01

    Episodic coal mine drainage, caused by fluctuations in mine discharges relative to stream flow, has devastating effects on aquatic macroinvertebrate communities. Seven stream reaches in the Anthracite region of Pennsylvania were identified as chronically, episodically or not impaired by mine drainage, and sampled seasonally for 1 year to determine the effect of episodic mine drainage on macroinvertebrates. Specific conductance fluctuated seasonally in episodic sites; it was lower in winter when discharge increased and higher in summer when discharges decreased and mine drainage made up a larger proportion of stream flow. Although we hypothesized that episodic streams would have higher macroinvertebrate richness than chronic streams, comparisons showed no differences in richness between treatments. Episodic pollution may result from undersized or poorly maintained passive treatment systems; therefore, intensive macroinvertebrate monitoring may be needed to identify streams being affected by episodic mine drainage because macroinvertebrate richness may be sensitive to water quality fluctuations. - Episodic coal mine pollution decreases benthic macroinvertebrate richness and density

  9. An Integrative Study of Photochemical Air Pollution in Hong Kong: an Overview

    Science.gov (United States)

    Wang, T.

    2014-12-01

    Hong Kong is situated in the Pearl River delta of Southern China. This region has experienced phenomenal economic growth in the past 30 years. Emissions of large amount of pollutants from urban areas and various industries coupled with subtropical climate have led to frequent occurrences of severe photochemical air pollution. Despite the long-term control efforts of the Hong Kong government, the atmospheric levels of ozone have been increasing in the past decade. To obtain an updated and more complete understanding of photochemical smog, an integrative study has been conducted during 2010-2014. Several intensive measurement campaigns were carried out at urban, suburban and rural sites in addition to the routine observations at fourteen air quality monitoring stations in Hong Kong. Meteorological, photochemical, and chemical-transport modeling studies were conducted to investigate the causes/processes of elevated photochemical pollution . The main activities of this study were to (1) examine the situation and trends of photochemical air pollution in Hong Kong, (2) understand some underlying chemical processes in particular the poorly-understood heterogeneous processes of reactive nitrogen oxides, (3) quantify the local, regional, and super-regional contributions to the ozone pollution in Hong Kong, and (4) review the control policy and make further recommendations based on the science. This paper will give an overview of this study and present some key results on the trends and chemistry of the photochemical pollution in this polluted subtropical region.

  10. The spread analysis of pollutants for zirconium cycle company

    International Nuclear Information System (INIS)

    Kozhevnikova, M.F.; Levenets, V.V.; Rolik, I.L.; Mets, K.A.

    2013-01-01

    The spread analysis of pollutants in the atmosphere above location area of the zirconium cycle company in Ukraine is presented. It is proposed the data processing method for the pollution source detection. An analysis of the air mass movement above the industrial area of Volnohirsk in Dnipropetrovsk region was performed. The air flow path maps and the distribution of major pollutants on the study area were obtained

  11. Urban air pollution in Sub-Saharan Africa: Time for action.

    Science.gov (United States)

    Amegah, A Kofi; Agyei-Mensah, Samuel

    2017-01-01

    Air quality in cities of Sub-Saharan African (SSA) countries has deteriorated with the situation driven by rapid population growth and its attendant increased vehicle ownership, increased use of solid fuels for cooking and heating, and poor waste management practices. Industrial expansion in these cities is also a major contributor to the worsening air pollution. Exposure to ambient air pollution is a major threat to human health in SSA with 176,000 deaths and 626,000 DALYs in the region attributable to ambient air pollution exposure. These estimates are however likely to be much higher than reported due to the limited data emanating from the region. Recently, the adoption of the World Health Assembly resolution on air pollution and health, and Sustainable Development Goals are a welcome boost for urban air pollution control efforts in SSA. In this article, we have outlined within the broad framework of these international policy instruments, measures for addressing urban air pollution and its associated health impacts in SSA sustainably. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring study on trace elements in blood and semen and their relationship with sperm quality and RedOx status.

    Science.gov (United States)

    Bergamo, Paolo; Volpe, Maria Grazia; Lorenzetti, Stefano; Mantovani, Alberto; Notari, Tiziana; Cocca, Ennio; Cerullo, Stefano; Di Stasio, Michele; Cerino, Pellegrino; Montano, Luigi

    2016-12-01

    The Campania region in Italy is facing an environmental crisis due to the illegal disposal of toxic waste. Herein, a pilot study (EcoFoodFertility initiative) was conducted to investigate the use of human semen as an early biomarker of pollution on 110 healthy males living in various areas of Campania with either high or low environmental impact. The semen from the "high impact" group showed higher zinc, copper, chromium and reduced iron levels, as well as reduced sperm motility and higher sperm DNA Fragmentation Index (DFI). Redox biomarkers (total antioxidant capacity, TAC, and glutathione, GSH) and the activity of antioxidant enzymes in semen were lower in the "high impact" group. The percentage of immotile spermatozoa showed a significant inverse correlation with TAC and GSH. Overall, several semen parameters (reduced sperm quality and antioxidant defenses, altered chemical element pattern), which were associated with residence in a high polluted environment, could be used in a further larger scale study, as early biomarkers of environmental pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Modeling Ballasted Tracks for Pollutants

    Science.gov (United States)

    2012-08-01

    In this study, the Regional Transportation Districts (RTDs) light rail operations were examined for pollutant production and runoff. To : accomplish this, a laboratory study utilizing a rainfall-runoff facility was conducted. Input to this labo...

  14. [Time series studies of air pollution by fires and the effects on human health].

    Science.gov (United States)

    do Carmo, Cleber Nascimento; Hacon, Sandra de Souza

    2013-11-01

    Burnoffs (intentional fires for agricultural purposes) and forest fires of large proportions have been observed in various regions of the planet. Exposure to high levels of air pollutants emitted by fires can be responsible for various harmful effects on human health. In this article, the literature on estimating acute effects of air pollution on human health by fires in the regions with the highest number of fires on the planet, using a time series approach is summarized. An attempt was made to identify gaps in knowledge. The study consisted of a narrative review, in which the characteristics of the selected studies were grouped by regions of the planet with a higher incidence of burnoffs: Amazon, America, Australia and Asia. The results revealed a large number of studies in Australia, few studies in the Amazon and great heterogeneity in the results on the significant effects on human health.

  15. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network.

    Science.gov (United States)

    Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao

    2017-12-26

    Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.

  16. A field study of pollutant deposition in radiation fog

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, J.M.; Jacob, D.J.; Munger, J.W.; Hoffman, M.R.

    1986-04-01

    Deposition during fog episodes can make a significant contribution to the overall flux of pollutants in certain ecosystems. Furthermore, when atmospheric stagnation prevents normal ventilation in a region, fog deposition may become the main route of pollutant removal. Fogs can consequently exert dominant control over pollutant levels in certain atmospheres. The southern San Joaquin Valley (SJV) of California is a region prone to wintertime episodes of atmospheric stagnation. These lead to elevated pollutant concentrations and/or dense, widespread fogs. Major oil-recovery operations plus widespread agricultural and livestock feeding activities are important sources of SO/sub 2/, NO/sub X/ and NH/sub 3/ in the valley. A multifaceted program of field monitoring was conducted in the SJV during the winter 1984-1985, focusing on aspects of pollutant scavenging and removal in the fog-laden atmosphere. Concentrations of major species were measured in gas, dry aerosol and fogwater phases. In addition, depositional fluxes were monitored by surrogate-surface methods. These measurements were employed to directly assess the magnitude of removal enhancement by fog.

  17. Atlantic and indian oceans pollution in africa

    Science.gov (United States)

    Abubakar, Babagana

    Africa is the second largest and most populated continent after Asia. Geographically it is located between the Atlantic and Indian Oceans. Most of the Africa's most populated and industrialized cities are located along the coast of the continent facing the Atlantic and Indian Oceans, example of such cities include Casablanca, Dakar, Accra, Lagos, Luanda and Cape town all facing the Atlantic Ocean and cities like East London, Durban, Maputo, Dar-es-salaam and Mogadishu are all facing the Indian Ocean. As a result of the geographical locations of African Coastal Cities plus increase in their population, industries, sea port operations, petroleum exploration activities, trafficking of toxic wastes and improper waste management culture lead to the incessant increase in the pollution of the two oceans. NATURE OF POLLUTION OF THE ATLANTIC OCEAN i. The petroleum exploration activities going on along the coast of "Gulf of Guinea" region and Angola continuously causes oil spillages in the process of drilling, bunkering and discharging of petroleum products in the Atlantic Ocean. ii. The incessant degreasing of the Sea Ports "Quay Aprons" along the Coastal cities of Lagos, Luanda, Cape Town etc are continuously polluting the Atlantic Ocean with chemicals. iii. Local wastes generated from the houses located in the coastal cities are always finding their ways into the Atlantic Ocean. NATURE OF POLLUTION OF THE INDIAN OCEAN i. Unlike the Atlantic ocean where petroleum is the major pollutant, the Indian Ocean is polluted by Toxic / Radioactive waste suspected to have been coming from the developed nations as reported by the United Nations Environmental Programme after the Tsunami disaster in December 2004 especially along the coast of Somalia. ii. The degreasing of the Quay Aprons at Port Elizabeth, Maputo, Dar-es-Salaam and Mongolism Sea Ports are also another major source polluting the Indian Ocean. PROBLEMS GENERATED AS A RESULT OF THE OCEANS POLLUTION i. Recent report

  18. Pollutant concentrations and pollution loads in stormwater runoff from different land uses in Chongqing.

    Science.gov (United States)

    Wang, Shumin; He, Qiang; Ai, Hainan; Wang, Zhentao; Zhang, Qianqian

    2013-03-01

    To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing, six typical land use types were selected and studied from August 2009 to September 2011. Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff, and the concentrations of the same pollutant also vary greatly in different rainfall events. In addition, it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR), commercial areas (CA), concrete roofs (CR), tile roofs (TRoof), and campus catchment areas (CCA); and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-II standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002). The EMCs of Fe, Pb and Cd are also much higher than the class-III standard values. The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS, COD and TP is UTR. The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR, while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA. The results of this study provide a reference for better management of non-point source pollution in urban regions.

  19. Atmospheric pollution assessment with mosses in Western Rhodopes, Bulgaria

    Directory of Open Access Journals (Sweden)

    Gana Gecheva

    2016-09-01

    Full Text Available The moss analysis technique was applied to monitor 10 heavy metals and toxic elements deposition. Our study was the first attempt to assess spatial patterns in a border mountain region (area 8732 km2 with a low population density and high proportion of protected territories. The obtained results did not correlate to the results from areas with low air pollution and could be linked to the impact of old and open mines.

  20. Genotoxicity detected in wild mice living in a highly polluted wetland area in south western Spain

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, Santiago; Daza, Paula; Dominguez, Inmaculada; Cardenas, Jose Antonio [University of Seville, Department of Cell Biology, Faculty of Biology, Avenida de la Reina Mercedes no 6, E-41012 Seville (Spain); Cortes, Felipe [University of Seville, Department of Cell Biology, Faculty of Biology, Avenida de la Reina Mercedes no 6, E-41012 Seville (Spain)], E-mail: cortes@us.es

    2008-06-15

    A field study was carried out in the south of the Iberian Peninsula in an industrial area in the neighbourhood of Huelva city, SW Spain, and in a natural area (Donana National Park) for comparison, to estimate the genetic risk induced by environmental pollution in wild mice. Genotoxic effects in a sentinel organism, the Algerian mice (Mus spretus) free living in the industrial area were compared with animals of the same species living in the natural protected area. The single cell gel electrophoresis, or Comet assay, was performed as a genotoxicity test in peripheral blood of mice. Our results clearly show that mice free living in the contaminated area bear a high burden of genetic damage as compared with control individuals. The results suggest that the assessing of genotoxicity levels by the Comet assay in wild mice can be used as a valuable test in pollution monitoring and environmental conservation. - We have found an increased genotoxic damage in wild mice in a highly polluted area from industry, mining and agriculture in SW Spain, as assessed by the Comet assay.