WorldWideScience

Sample records for highly pathogenic influenza

  1. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  2. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    .... APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health... any subtype of highly pathogenic avian influenza is considered to exist. The interim rule also imposed... avian influenza, or that have moved through regions where any subtype of highly pathogenic avian...

  3. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... [Docket No. APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant... regions where any subtype of highly pathogenic avian influenza (HPAI) is considered to exist. The interim... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  4. Current situation on highly pathogenic avian influenza

    Science.gov (United States)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  5. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  6. USGS highly pathogenic avian influenza research strategy

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  7. The epizootiology of the highly pathogenic avian influenza prior to ...

    African Journals Online (AJOL)

    The epizootiology of the highly pathogenic avian influenza prior to the anticipated pandemic of the early twenty first century. ... Transmission of highly pathogenic H5N1 from domestic fowls back to migratory waterfowl in western China has increased the geographic spread. This has grave consequences for the poultry ...

  8. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  9. An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed ...

    African Journals Online (AJOL)

    An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed Farm By The Introduction Of A Water Fowl. ... C A Meseko, A T Oladokun, B Shehu. Abstract. Avian influenza (AI) is caused by a range of Influenza type A viruses of high and low pathogenicity (Fauci, 2005). H5N1 Highly Pathogenic Avian Influenza (HPAI) ...

  10. [Highly pathogenic avian influenza--monitoring of migratory waterfowl].

    Science.gov (United States)

    Otsuki, Koichi; Ito, Toshihiro

    2006-10-01

    Since 1979, the group belonging to Departments of Veterinary Microbiology, Veterinary Public Health and the Avian Zoonoses Research Centre, Faculty of Agriculture, Tottori University is continuing isolation of avian influenza virus from such migratory waterfowls as whistling swan, pintail and tufted dugs flying from Siberia and/or northern China. They have already isolated many interesting influenza viruses. Serotype of the isolates is various; some H5 and H7 and human types of viruses were also isolated; and its pathogenicity for chickens is not high. It was interested that low pathogenic H5N3 virus isolated from whistling swan acquired severe pathogenicity during passage in chicks.

  11. (Highly pathogenic) avian influenza as a zoonotic agent.

    Science.gov (United States)

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Free-grazing ducks and highly pathogenic avian influenza, Thailand

    NARCIS (Netherlands)

    Gilbert, Marius; Chaitaweesup, P.; Parakamawongsa, T.; Premashthira, S.; Tiensin, T.; Kalpravidh, W.; Wagner, H.; Slingenbergh, J.

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI

  13. Review of highly pathogenic avian influenza outbreaks in poultry in ...

    African Journals Online (AJOL)

    All the confirmed highly pathogenic avian influenza cases that were diagnosed in Zaria at the Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria, were reviewed in this study. The outbreaks occurred between the months of December, 2006 and March, 2007. The clinical signs and postmortem lesions ...

  14. Transmission of highly pathogenic avian influenza H7 virus

    NARCIS (Netherlands)

    Bos, M.E.H.

    2009-01-01

    Knowledge of the transmission of highly pathogenic avian influenza (HPAI) virus still has gaps, complicating epidemic control. A model was developed to back-calculate the day HPAI virus was introduced into a flock, based on within-flock mortality data of the Dutch HPAI H7N7 epidemic (2003). The

  15. (Highly pathogenic) Avian Influenza as a zoonotic agent

    OpenAIRE

    Kalthoff , Donata; Globig , Anja; Beer , Martin

    2010-01-01

    Summary Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence b...

  16. USGS role and response to highly pathogenic avian influenza

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  17. Highly Pathogenic Avian Influenza Virus among Wild Birds in Mongolia

    Science.gov (United States)

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B.; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J.; Leung, Connie Y. H.; Peiris, J. S. Malik; Spackman, Erica; Swayne, David E.; Joly, Damien O.

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study. PMID:22984464

  18. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia

    OpenAIRE

    Mangiri, Amalya; Iuliano, A. Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y.; Lafond, Kathryn E.; Storms, Aaron D.; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M.; Storey, J. Douglas; Uyeki, Timothy M.

    2016-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 vir...

  19. Outbreak of highly pathogenic avian influenza in Minnesota in 2015.

    Science.gov (United States)

    Fitzpatrick, Ann; Mor, Sunil K; Thurn, Mary; Wiedenman, Elizabeth; Otterson, Tracy; Porter, Robert E; Patnayak, Devi P; Lauer, Dale C; Voss, Shauna; Rossow, Stephanie; Collins, James E; Goyal, Sagar M

    2017-03-01

    The incursion of highly pathogenic avian influenza (HPAI) into the United States during 2014 resulted in an unprecedented foreign animal disease (FAD) event; 232 outbreaks were reported from 21 states. The disease affected 49.6 million birds and resulted in economic losses of $950 million. Minnesota is the largest turkey-producing state, accounting for 18% of U.S. turkey production. Areas with concentrated numbers of turkeys in Minnesota were the epicenter of the outbreak. The first case was presumptively diagnosed in the last week of February 2015 at the Minnesota Veterinary Diagnostic Laboratory (MVDL) and confirmed as HPAI H5N2 at the National Veterinary Services Laboratories on March 4, 2015. A total of 110 farms were affected in Minnesota, and the MVDL tested >17,000 samples from March to July 2015. Normal service was maintained to other clients of the laboratory during this major FAD event, but challenges were encountered with communications, staff burnout and fatigue, training requirements of volunteer technical staff, test kit validation, and management of specific pathogen-free egg requirements.

  20. Genetic Data Provide Evidence for Wind-Mediated Transmission of Highly Pathogenic Avian Influenza

    NARCIS (Netherlands)

    Ypma, R.J.F.; Jonges, M.; Bataille, A.M.A.; Stegeman, J.A.; Koch, G.; van Boven, R.M.; Koopmans, M.; van Ballegooijen, W.M.; Wallinga, J.

    2013-01-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of

  1. Serosurvey of antibody to highly pathogenic avian influenza (H5N1 ...

    African Journals Online (AJOL)

    Avian influenza is a disease of economic and public health importance that has been described in most domestic animals and humans. Highly pathogenic avian influenza H5N1 epidemic in Nigeria was observed in agro-ecological zones where pigs and chickens are raised in shared environment with chances of ...

  2. 75 FR 69046 - Notice of Determination of the High Pathogenic Avian Influenza Subtype H5N1 Status of Czech...

    Science.gov (United States)

    2010-11-10

    ... Avian Influenza Subtype H5N1 Status of Czech Republic and Sweden AGENCY: Animal and Plant Health... the highly pathogenic avian influenza (HPAI) subtype H5N1 status of the Czech Republic and Sweden... status of the Czech Republic and Sweden relative to highly pathogenic avian influenza (HPAI) subtype H5N1...

  3. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    Science.gov (United States)

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  4. Human infection with highly pathogenic H5N1 influenza virus

    NARCIS (Netherlands)

    Gambotto, Andrea; Barratt-Boyes, Simon M.; de Jong, Menno D.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-01-01

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of

  5. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    Science.gov (United States)

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.

  6. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    Science.gov (United States)

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  7. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase gene...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  8. Novel Eurasian Highly Pathogenic Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014

    Centers for Disease Control (CDC) Podcasts

    2015-03-24

    Sarah Gregory reads an abridged version of the article, Novel Eurasian Highly Pathogenic Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014.  Created: 3/24/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/13/2015.

  9. Use of Epidemiologic Models in the Control of Highly Pathogenic Avian Influenza

    NARCIS (Netherlands)

    Stegeman, J.A.; Bouma, A.; Jong, de M.C.M.

    2010-01-01

    In the past decades, mathematical models have become more and more accepted as a tool to develop surveillance programs and to evaluate the efficacy of intervention measures for the control of infectious diseases such as highly pathogenic avian influenza. Predictive models are used to simulate the

  10. Epidemiological models to assist the management of highly pathogenic avian influenza

    NARCIS (Netherlands)

    Stegeman, J.A.; Bouma, A.; Jong, de M.C.M.

    2011-01-01

    In recent decades, epidemiological models have been used more and more frequently as a tool for the design of programmes for the management of infectious diseases such as highly pathogenic avian influenza. Predictive models are used to simulate the effects of various control measures on the spread

  11. Highly pathogenic avian influenza H5N1 in Mainland China

    NARCIS (Netherlands)

    X.-L. Li (Xin-Lou); K. Liu (Kun); H.-W. Yao (Hong-Wu); Y. Sun (Ye); W.-J. Chen (Wan-Jun); R.-X. Sun (Ruo-Xi); S.J. de Vlas (Sake); L.Q. Fang (Lily); W.-C. Cao (Wu-Chun)

    2015-01-01

    textabstractHighly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of

  12. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    Science.gov (United States)

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  13. Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan.

    Science.gov (United States)

    Uchida, Yuko; Mase, Masaji; Yoneda, Kumiko; Kimura, Atsumu; Obara, Tsuyoshi; Kumagai, Seikou; Saito, Takehiko; Yamamoto, Yu; Nakamura, Kikuyasu; Tsukamoto, Kenji; Yamaguchi, Shigeo

    2008-09-01

    On April 21, 2008, four whooper swans were found dead at Lake Towada, Akita prefecture, Japan. Highly pathogenic avian influenza virus of the H5N1 subtype was isolated from specimens of the affected birds. The hemagglutinin (HA) gene of the isolate belongs to clade 2.3.2 in the HA phylogenetic tree.

  14. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    Science.gov (United States)

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  15. Silent spread of highly pathogenic Avian Influenza H5N1 virus amongst vaccinated commercial layers

    NARCIS (Netherlands)

    Poetri, O.N.; Boven, M.; Claassen, I.J.T.M.; Koch, G.; Wibawan, I.W.; Stegeman, A.; Broek, van den J.; Bouma, A.

    2014-01-01

    The aim of this study was to determine whether a single vaccination of commercial layer type chickens with an inactivated vaccine containing highly pathogenic avian influenza virus strain H5N1 A/chicken/Legok/2003, carried out on the farm, was sufficient to protect against infection with the

  16. Controlling highly pathogenic avian influenza outbreaks : An epidemiological and economic model analysis

    NARCIS (Netherlands)

    Backer, J. A.; van Roermund, H. J W; Fischer, Egil; van Asseldonk, M. A P M; Bergevoet, R. H M

    2015-01-01

    Outbreaks of highly pathogenic avian influenza (HPAI) can cause large losses for the poultry sector and for animal disease controlling authorities, as well as risks for animal and human welfare. In the current simulation approach epidemiological and economic models are combined to compare different

  17. Towards an improved vaccination programme against highly pathogenic avian influenza in Indonesia

    NARCIS (Netherlands)

    Poetri, O.N.

    2014-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 are considered to be a major threat for both the poultry industry and public health, and Indonesia is one of the HPAI H5N1 endemic country with the highest incidence of human cases worldwide. The control measures of HPAI, like stamping-out were

  18. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    DEFF Research Database (Denmark)

    Haider, Najmul; Sturm-Ramirez, K.; Khan, S. U.

    2017-01-01

    a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize...... and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5......Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify...

  19. Isolation of a highly pathogenic influenza virus from turkeys.

    Science.gov (United States)

    McNulty, M S; Allan, G M; McCracken, R M; McParland, P J

    1985-01-01

    An influenza virus was isolated from turkeys with an acute disease causing 30% mortality. The virus was subtyped as H5 N8. The nomenclature A/turkey/Ireland/83 (H5 N8) is proposed for this isolate. The virus had an ICPI of 1.80 to 1.85 for 1-day-old chicks and an IVPI of 2.74 for 6-week-old chickens. Following oronasal inoculation of juvenile and adult turkeys, chickens and ducks with the isolate, 100% mortality occurred in turkeys and chickens. No clinical signs were observed in inoculated ducks, but all developed serum antibody titres against the virus.

  20. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza.

    Science.gov (United States)

    Ypma, Rolf J F; Jonges, Marcel; Bataille, Arnaud; Stegeman, Arjan; Koch, Guus; van Boven, Michiel; Koopmans, Marion; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-03-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.

  1. Wild bird surveillance for highly pathogenic avian influenza H5 in North America

    Science.gov (United States)

    Flint, Paul L.; Pearce, John M.; Franson, J. Christian; Derksen, Dirk V.

    2015-01-01

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  2. Risk maps for the spread of highly pathogenic avian influenza in poultry.

    Directory of Open Access Journals (Sweden)

    Gert Jan Boender

    2007-04-01

    Full Text Available Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spread of highly transmissible animal diseases between farms based on outbreak data. The method allows for the identification of high-risk areas for propagating spread in an epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of farms.

  3. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    Science.gov (United States)

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  4. Deaths among wild birds during highly pathogenic avian influenza A(H5N8) virus outbreak, the Netherlands

    NARCIS (Netherlands)

    Kleyheeg, Erik; Slaterus, Roy; Bodewes, Rogier; Rijks, Jolianne M.; Spierenburg, Marcel A.H.; Beerens, Nancy; Kelder, Leon; Poen, Marjolein J.; Stegeman, Jan A.; Fouchier, Ron A.M.; Kuiken, Thijs; Jeugd, van der Henk P.

    2017-01-01

    During autumn–winter 2016–2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks

  5. Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands

    NARCIS (Netherlands)

    Kleyheeg, Erik; Slaterus, Roy; Bodewes, Rogier; Rijks, Jolianne M.; Spierenburg, Marcel A.H.; Beerens, Nancy; Kelder, Leon; Poen, Marjolein J.; Stegeman, Jan A.; Fouchier, Ron A. M.; Kuiken, Thijs; Jeugd, Henk P. van der

    2017-01-01

    During autumn–winter 2016–2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks

  6. Features of pathology in mice experimentally infected with highly pathogenic H5N1 influenza virus

    International Nuclear Information System (INIS)

    Ryabchikova, E. I.; Taranov, O. S.; Malkova, E. M.; Gritsyk, O. B.; Demina, O. K.

    2009-01-01

    Avian influenza became a new threat and has set people thinking about possibility of new influenza pandemic which may be caused by highly pathogenic H5N1 influenza virus. The virus could acquire ability of fast spreading between the humans and new pandemics could kill millions. Influenza virus H5N1 exhibited its deadly essence by taking out many millions of birds in nature and aviculture; other millions of chicks and ducks were killed to prevent spread of the epizootic. The strains isolated in Russia belong to Qinghai group of H5N1 influenza virus, and were imported to Russia by migratory birds. We examined time-course changes in mice blood and lungs after intranasal infection with strains A /Chicken/ Kurgan/ 05/2005, A/ Duck/ Kurgan/08/ 2005 and A/ Chicken/ Suzdalka/ Nov-11/2005 differing in virulence for this animal species. Development of leucopenia and severe damage of hemopoiesis were found in mice infected with all H5N1 influenza virus strains. Pathological changes in mice lungs during the infection with above mentioned strains, and strain-specific features have been examined. Main characteristics of lung pathology in all mice were focal nature of the alterations, severe damage of bronchial epithelium and pronounced alteration of lung vasculature. Strain A/Chicken/Suzdalka/Nov-11/2005 induced massive apoptosis of infected bronchial cells which may be a part of mechanism responsible for avirulent properties of this strain. The most interesting finding was absence of serious direct virus damage of the lung evidencing for principal role of the host humoral mechanisms in pathogenesis of H5N1 influenza in mice.(author)

  7. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus

    OpenAIRE

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A. Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5Nx viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines ha...

  8. Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017.

    Science.gov (United States)

    Zhou, Lei; Tan, Yi; Kang, Min; Liu, Fuqiang; Ren, Ruiqi; Wang, Yali; Chen, Tao; Yang, Yiping; Li, Chao; Wu, Jie; Zhang, Hengjiao; Li, Dan; Greene, Carolyn M; Zhou, Suizan; Iuliano, A Danielle; Havers, Fiona; Ni, Daxin; Wang, Dayan; Feng, Zijian; Uyeki, Timothy M; Li, Qun

    2017-08-01

    We compared the characteristics of cases of highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) A(H7N9) virus infections in China. HPAI A(H7N9) case-patients were more likely to have had exposure to sick and dead poultry in rural areas and were hospitalized earlier than were LPAI A(H7N9) case-patients.

  9. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

    Science.gov (United States)

    Zhang, Kun; Xu, Wei Wei; Zhang, Zhaowei; Liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-05-02

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.

  10. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    Science.gov (United States)

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  11. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    Directory of Open Access Journals (Sweden)

    Abdel-Ghany Ahmad E

    2010-04-01

    Full Text Available Abstract Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE. Reverse transcriptase polymerase chain reaction (RT-PCR and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas.

  12. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.

    Science.gov (United States)

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik

    2017-07-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.

  13. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    Science.gov (United States)

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  14. Experimental infection of macaques with a wild water bird-derived highly pathogenic avian influenza virus (H5N1.

    Directory of Open Access Journals (Sweden)

    Tomoko Fujiyuki

    Full Text Available Highly pathogenic avian influenza virus (HPAIV continues to threaten human health. Non-human primate infection models of human influenza are desired. To establish an animal infection model with more natural transmission and to determine the pathogenicity of HPAIV isolated from a wild water bird in primates, we administered a Japanese isolate of HPAIV (A/whooper swan/Hokkaido/1/2008, H5N1 clade 2.3.2.1 to rhesus and cynomolgus monkeys, in droplet form, via the intratracheal route. Infection of the lower and upper respiratory tracts and viral shedding were observed in both macaques. Inoculation of rhesus monkeys with higher doses of the isolate resulted in stronger clinical symptoms of influenza. Our results demonstrate that HPAIV isolated from a water bird in Japan is pathogenic in monkeys by experimental inoculation, and provide a new method for HPAIV infection of non-human primate hosts, a good animal model for investigation of HPAIV pathogenicity.

  15. Using extreme value theory approaches to forecast the probability of outbreak of highly pathogenic influenza in Zhejiang, China.

    Directory of Open Access Journals (Sweden)

    Jiangpeng Chen

    Full Text Available Influenza is a contagious disease with high transmissibility to spread around the world with considerable morbidity and mortality and presents an enormous burden on worldwide public health. Few mathematical models can be used because influenza incidence data are generally not normally distributed. We developed a mathematical model using Extreme Value Theory (EVT to forecast the probability of outbreak of highly pathogenic influenza.The incidence data of highly pathogenic influenza in Zhejiang province from April 2009 to November 2013 were retrieved from the website of Health and Family Planning Commission of Zhejiang Province. MATLAB "VIEM" toolbox was used to analyze data and modelling. In the present work, we used the Peak Over Threshold (POT model, assuming the frequency as a Poisson process and the intensity to be Pareto distributed, to characterize the temporal variability of the long-term extreme incidence of highly pathogenic influenza in Zhejiang, China.The skewness and kurtosis of the incidence of highly pathogenic influenza in Zhejiang between April 2009 and November 2013 were 4.49 and 21.12, which indicated a "fat tail" distribution. A QQ plot and a mean excess plot were used to further validate the features of the distribution. After determining the threshold, we modeled the extremes and estimated the shape parameter and scale parameter by the maximum likelihood method. The results showed that months in which the incidence of highly pathogenic influenza is about 4462/2286/1311/487 are predicted to occur once every five/three/two/one year, respectively.Despite the simplicity, the present study successfully offers the sound modeling strategy and a methodological avenue to implement forecasting of an epidemic in the midst of its course.

  16. Incorporating risk communication into highly pathogenic avian influenza preparedness and response efforts.

    Science.gov (United States)

    Voss, Shauna J; Malladi, Sasidhar; Sampedro, Fernando; Snider, Tim; Goldsmith, Timothy; Hueston, William D; Lauer, Dale C; Halvorson, David A

    2012-12-01

    A highly pathogenic avian influenza (HPAI) outbreak in the United States will initiate a federal emergency response effort that will consist of disease control and eradication efforts, including quarantine and movement control measures. These movement control measures will not only apply to live animals but also to animal products. However, with current egg industry "just-in-time" production practices, limited storage is available to hold eggs. As a result, stop movement orders can have significant unintended negative consequences, including severe disruptions to the food supply chain. Because stakeholders' perceptions of risk vary, waiting to initiate communication efforts until an HPAI event occurs can hinder disease control efforts, including the willingness of producers to comply with the response, and also can affect consumers' demand for the product. A public-private-academic partnership was formed to assess actual risks involved in the movement of egg industry products during an HPAI event through product specific, proactive risk assessments. The risk analysis process engaged a broad representation of stakeholders and promoted effective risk management and communication strategies before an HPAI outbreak event. This multidisciplinary team used the risk assessments in the development of the United States Department of Agriculture, Highly Pathogenic Avian Influenza Secure Egg Supply Plan, a comprehensive response plan that strives to maintain continuity of business. The collaborative approach that was used demonstrates how a proactive risk communication strategy that involves many different stakeholders can be valuable in the development of a foreign animal disease response plan and build working relationships, trust, and understanding.

  17. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS in the hemagglutinin protein (HA. Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  18. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms.

    Directory of Open Access Journals (Sweden)

    Amos Ssematimba

    Full Text Available A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km.

  19. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  20. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam

    Science.gov (United States)

    Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael

    2013-01-01

    Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419

  1. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    Science.gov (United States)

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  2. Comparative pathology of chickens experimentally inoculated with avian influenza viruses of low and high pathogenicity.

    Science.gov (United States)

    Mo, I P; Brugh, M; Fletcher, O J; Rowland, G N; Swayne, D E

    1997-01-01

    Pathologic changes and distribution of viral antigen as determined by immunohistochemistry were compared among 4-wk-old specific-pathogen-free chickens inoculated intratracheally with avian influenza virus (AIV) isolates of either low or high pathogenicity. Viruses of low pathogenicity, previously characterized as mildly pathogenic (MP), included A/chicken/Pennsylvania/21525/83 (H5N2) (MP-Penn) and A/chicken/Alabama/7395/75 (H4N8) (MP-Alab). Viruses of high pathogenicity included A/chicken/Pennsylvania/1370/83 (H5N2), A/chicken/Victoria/A185/85 (H7N7), and A/turkey/Ontario/7732/66 (H5N9). Extremely variable clinical signs ranging from mild respiratory distress to high mortality were present among chickens inoculated with these viruses. Chickens inoculated with highly pathogenic (HP) virus had histologic lesions of necrosis and inflammation in cloacal bursa, thymus, spleen, heart, pancreas, kidney, brain, trachea, lung, and skeletal muscle, whereas chickens inoculated with MP virus had histologic lesions most frequently in lung and trachea or lacked histologic lesions. Immunospecific staining for avian influenza viral proteins was most common in cells within heart, lung, kidney, brain, and pancreas of chicken inoculated with HP viruses, but immunospecific staining was present only and infrequently in trachea and lung of chickens inoculated with MP-Penn AIV. MP-Alab did not produce lesions nor have viral antigen in inoculated chickens but did produce serologic evidence of infection. The pattern of organ involvement and viral antigen distribution in chickens intratracheally inoculated with HP AIV isolates indicates a common capability to spread beyond the respiratory tract and confirms the pantrophic replicative, pathobiologic, and lethal nature of the viruses. However, variability in severity and lesion distribution exists between different HP AIVs. By contrast, MP viruses had the ability to replicate in respiratory or enteric tracts or both and produce lesions

  3. A low pathogenic H5N2 influenza virus isolated in Taiwan acquired high pathogenicity by consecutive passages in chickens.

    OpenAIRE

    Soda, Kosuke; Cheng, Ming-Chu; Yoshida, Hiromi; Endo, Mayumi; Lee, Shu-Hwae; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Wang, Ching-Ho; Kida, Hiroshi

    2011-01-01

    H5N2 viruses were isolated from cloacal swab samples of apparently healthy chickens in Taiwan in 2003 and 2008 during surveillance of avian influenza. Each of the viruses was eradicated by stamping out. The official diagnosis report indicated that the Intravenous Pathogenicity Indexes (IVPIs) of the isolates were 0.00 and 0.89, respectively, indicating that these were low pathogenic strains, although the hemagglutinin of the strain isolated in 2008 (Taiwan08) had multibasic amino acid residue...

  4. The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses.

    Science.gov (United States)

    Spickler, Anna R; Trampel, Darrell W; Roth, James A

    2008-12-01

    Some avian influenza viruses may be transmissible to mammals by ingestion. Cats and dogs have been infected by H5N1 avian influenza viruses when they ate raw poultry, and two human H5N1 infections were linked to the ingestion of uncooked duck blood. The possibility of zoonotic influenza from exposure to raw poultry products raises concerns about flocks with unrecognized infections. The present review examines the onset of virus shedding and the development of clinical signs for a variety of avian influenza viruses in chickens. In experimentally infected birds, some high-pathogenicity avian influenza (HPAI) and low-pathogenicity avian influenza (LPAI) viruses can occur in faeces and respiratory secretions as early as 1 to 2 days after inoculation. Some HPAI viruses have also been found in meat 1 day after inoculation and in eggs after 3 days. There is no evidence that LPAI viruses can be found in meat, and the risk of their occurrence in eggs is poorly understood. Studies in experimentally infected birds suggest that clinical signs usually develop within a few days of virus shedding; however, some models and outbreak descriptions suggest that clinical signs may not become evident for a week or more in some H5 or H7 HPAI-infected flocks. During this time, avian influenza viruses might be found in poultry products. LPAI viruses can be shed in asymptomatically infected or minimally affected flocks, but these viruses are unlikely to cause significant human disease.

  5. Highly pathogenic avian influenza A (H5N1) virus in wildlife: diagnostics, epidemiology and molecular characteristics

    NARCIS (Netherlands)

    Keawcharoen, J.

    2010-01-01

    Since 2003, highly pathogenic avian influenza virus subtype H5N1 outbreaks have been reported in Southeast Asia causing high mortality in poultry and have also been found to cross the species barrier infecting human and other mammalian species. Thailand is one of the countries severely affected by

  6. A High Diversity of Eurasian Lineage Low Pathogenicity Avian Influenza A Viruses Circulate among Wild Birds Sampled in Egypt

    Science.gov (United States)

    Gerloff, Nancy A.; Jones, Joyce; Simpson, Natosha; Balish, Amanda; ElBadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C.; de Mattos, Carlos A.; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C. Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O.

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring. PMID:23874653

  7. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    Science.gov (United States)

    Haider, N.; Sturm-Ramirez, K.; Khan, S. U.; Rahman, M. Z.; Sarkar, S.; Poh, M. K.; Shivaprasad, H. L.; Kalam, M. A.; Paul, S. K.; Karmakar, P. C.; Balish, A.; Chakraborty, A.; Mamun, A. A.; Mikolon, A. B.; Davis, C. T.; Rahman, M.; Donis, R. O.; Heffelfinger, J. D.; Luby, S. P.; Zeidner, N.

    2015-01-01

    Summary Mortality in ducks and geese caused by highly pathogenic avian influenza A (H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide

  8. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh.

    Science.gov (United States)

    Haider, N; Sturm-Ramirez, K; Khan, S U; Rahman, M Z; Sarkar, S; Poh, M K; Shivaprasad, H L; Kalam, M A; Paul, S K; Karmakar, P C; Balish, A; Chakraborty, A; Mamun, A A; Mikolon, A B; Davis, C T; Rahman, M; Donis, R O; Heffelfinger, J D; Luby, S P; Zeidner, N

    2017-02-01

    Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate

  9. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    Science.gov (United States)

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  10. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds

    NARCIS (Netherlands)

    Si, Y.; Boer, de W.F.; Gong, P.

    2013-01-01

    A large number of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry and wild birds have been reported in Europe since 2005. Distinct spatial patterns in poultry and wild birds suggest that different environmental drivers and potentially different spread mechanisms are operating.

  11. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States.

    Science.gov (United States)

    Bevins, S N; Dusek, R J; White, C L; Gidlewski, T; Bodenstein, B; Mansfield, K G; DeBruyn, P; Kraege, D; Rowan, E; Gillin, C; Thomas, B; Chandler, S; Baroch, J; Schmit, B; Grady, M J; Miller, R S; Drew, M L; Stopak, S; Zscheile, B; Bennett, J; Sengl, J; Brady, Caroline; Ip, H S; Spackman, E; Killian, M L; Torchetti, M K; Sleeman, J M; Deliberto, T J

    2016-07-06

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  12. Immunity to current H5 highly pathogenic avian influenza viruses: From vaccines to adaptive immunity in wild birds

    Science.gov (United States)

    Following the 2014-2015 outbreaks of H5N2 and H5N8 highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to assess the immunity required for protection against future outbreaks should they occur. We assessed the ability of vaccines to induce protection of chickens and turkeys...

  13. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    NARCIS (Netherlands)

    A. Ramis (Antonio); G. van Amerongen (Geert); M.W.G. van de Bildt (Marco); L.M.E. Leijten (Lonneke); R. Vanderstichel (R.); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractHistorically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental

  14. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017.

    Science.gov (United States)

    Beerens, Nancy; Koch, Guus; Heutink, Rene; Harders, Frank; Vries, D P Edwin; Ho, Cynthia; Bossers, Alex; Elbers, Armin

    2018-04-17

    A novel highly pathogenic avian influenza A(H5N6) virus affecting wild birds and commercial poultry was detected in the Netherlands in December 2017. Phylogenetic analysis demonstrated that the virus is a reassortant of H5N8 clade 2.3.4.4 viruses and not related to the Asian H5N6 viruses that caused human infections.

  15. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    Science.gov (United States)

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel A.; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  16. Variable epidemiology of the three outbreaks of unrelated highly pathogenic avian influenza viruses in the United States, 2014-2017

    Science.gov (United States)

    Three unrelated highly pathogenic avian influenza (HPAI) outbreaks have occurred in the United States (US) during 2014-2017. Late in 2014, Canada reported the first outbreak of an H5N2 reassortment virus between the A/goose/Guangdong/1/1996 (Gs/GD)-lineage H5Nx clade 2.3.4.4A HPAI and North American...

  17. Outdoor ranging of poultry: a major risk factor for the introduction and development of high pathogenicity Avian Influenza

    NARCIS (Netherlands)

    Koch, G.; Elbers, A.R.W.

    2006-01-01

    High-Pathogenicity Avian Influenza (HPAI) is an extremely infectious viral disease of poultry. Public health concerns were raised when six persons died in Hong Kong in 1997 after exposure to HPAI-infected poultry. Its danger became imminent in the recent HPAI epidemic in South-East Asia when the

  18. The transmissibility of highly pathogenic avian influenza in commercial poultry in industrialised countries.

    Directory of Open Access Journals (Sweden)

    Tini Garske

    2007-04-01

    Full Text Available With the increased occurrence of outbreaks of H5N1 worldwide there is concern that the virus could enter commercial poultry farms with severe economic consequences.We analyse data from four recent outbreaks of highly pathogenic avian influenza (HPAI in commercial poultry to estimate the farm-to-farm reproductive number for HPAI. The reproductive number is a key measure of the transmissibility of HPAI at the farm level because it can be used to evaluate the effectiveness of the control measures. In these outbreaks the mean farm-to-farm reproductive number prior to controls ranged from 1.1 to 2.4, with the maximum farm-based reproductive number in the range 2.2 to 3.2. Enhanced bio-security, movement restrictions and prompt isolation of the infected farms in all four outbreaks substantially reduced the reproductive number, but it remained close to the threshold value 1 necessary to ensure the disease will be eradicated.Our results show that depending on the particular situation in which an outbreak of avian influenza occurs, current controls might not be enough to eradicate the disease, and therefore a close monitoring of the outbreak is required. The method we used for estimating the reproductive number is straightforward to implement and can be used in real-time. It therefore can be a useful tool to inform policy decisions.

  19. [A case of human highly pathogenic avian influenza in Shenzhen, China: application of field epidemiological study].

    Science.gov (United States)

    Zhang, Shun-Xiang; Cheng, Jin-Quan; Ma, Han-Wu; He, Jian-Fan; Cheng, Xiao-Wen; Jiang, Li-Juan; Mou, Jin; Wu, Chun-Li; Lv, Xing; Zhang, Shao-Hua; Zhang, Ya-De; Wu, Yong-Sheng; Wang, Xin

    2008-03-01

    Based on analyzing the characteristics of a case with human avian influenza and the effects of field epidemiological study. An emergency-response-system was started up to follow the probable human Highly Pathogenic Avian Influenza case initially detected by the "Undefined Pneumonia Surveillance System of Shenzhen". Public health professionals administered several epidemiologic investigations and giving all the contacts of the patient with a 7-day-long medical observation for temporally related influenza-like illness. Reverse transcriptase-polymerase chain reaction (RT-PCR) with primers for H5 and N1 was applied to test respiratory tract samples and/or throat swabs of the patient and all his contacts specific for the hemagglutinin gene of influenza A H5N1. Activities and strategies such as media response,notification in the public, communications with multiple related sectors, social participation and information exchange with Hong Kong were involved in field control and management. The patient was a male, 31 years old,with an occupation as a truck driver in a factory,and had been residing in Shenzhen for 7 years. Started with an influenza-like syndrome, the patient received treatment on the 4th day of the onset, from a clinic and on the 6th day from a regular hospital. On the 8th day of the disease course, he was confirmed by Shenzhen Center for Disease Control and Prevention as human avian flu case and was then transferred to Intensive Care Unit (ICU). On the 83rd day of commence, the patients was healed and released from the hospital. The patient had no significant exposure to sick poultry or poultry that died from the illness before the onset of the disease. The patient and five family members lived together, but no family member was affected and no contact showed positive results for H5N1. A small food market with live poultry, which was under formal supervision and before illness the patient once visited, located near his apartment. Totally, 35 swabs from live

  20. Protection of mice against lethal infection with highly pathogenic H7N7 influenza A virus by using a recombinant low-pathogenicity vaccine strain.

    NARCIS (Netherlands)

    V.J. Munster (Vincent); M.I. Spronken (Monique); T.M. Bestebroer (Theo); C. Baas (Chantal); W.E.Ph. Beyer (Walter); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); E. de Wit (Emmie)

    2005-01-01

    textabstractIn 2003, an outbreak of highly pathogenic avian influenza occurred in The Netherlands. The avian H7N7 virus causing the outbreak was also detected in 88 humans suffering from conjunctivitis or mild respiratory symptoms and one person who died of pneumonia and acute respiratory distress

  1. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1 in experimentally infected chickens

    Directory of Open Access Journals (Sweden)

    Chaves Aida J

    2011-10-01

    Full Text Available Abstract In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV into the central nervous system (CNS of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF, nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  2. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens.

    Science.gov (United States)

    Chaves, Aida J; Busquets, Núria; Valle, Rosa; Rivas, Raquel; Vergara-Alert, Júlia; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2011-10-07

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  3. Pathobiology of highly pathogenic avian influenza virus (H5N1) infection in mute swans (Cygnus olor).

    Science.gov (United States)

    Pálmai, Nimród; Erdélyi, Károly; Bálint, Adám; Márton, Lázár; Dán, Adám; Deim, Zoltán; Ursu, Krisztina; Löndt, Brandon Z; Brown, Ian H; Glávits, Róbert

    2007-06-01

    The results of pathological, virological and polymerase chain reaction examinations carried out on 35 mute swans (Cygnus olor) that succumbed to a highly pathogenic avian influenza virus (H5N1) infection during an outbreak in Southern Hungary are reported. The most frequently observed macroscopic lesions included: haemorrhages under the epicardium, in the proventricular and duodenal mucosa and pancreas; focal necrosis in the pancreas; myocardial degeneration; acute mucous enteritis; congestion of the spleen and lung, and the accumulation of sero-mucinous exudate in the body cavity. Histopathological lesions comprised: lymphocytic meningo-encephalomyelitis accompanied by gliosis and occasional perivascular haemorrhages; multi-focal myocardial necrosis with lympho-histiocytic infiltration; pancreatitis with focal necrosis; acute desquamative mucous enteritis; lung congestion and oedema; oedema of the tracheal mucosa and, in young birds, the atrophy of the bursa of Fabricius as a result of lymphocyte depletion and apoptosis. The observed lesions and the moderate to good body conditions were compatible with findings in acute highly pathogenic avian influenza infections of other bird species reported in the literature. Skin lesions and lesions typical for infections caused by strains of lower pathogenicity (low pathogenic avian influenza virus) such as emaciation or fibrinous changes in the reproductive and respiratory organs, sinuses and airsacs were not observed. The H5N1 subtype avian influenza virus was isolated in embryonated fowl eggs from all cases and it was identified by classical and molecular virological methods.

  4. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1

    Directory of Open Access Journals (Sweden)

    Sosna William A

    2010-09-01

    Full Text Available Abstract Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1 virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1 through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1. The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1 is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.

  5. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012–2016

    Science.gov (United States)

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the “gene pool” circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic. PMID:28293218

  6. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012-2016.

    Science.gov (United States)

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/ Pavo Cristatus /Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~10 4.3 TCID 50 . A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the "gene pool" circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic.

  7. Highly pathogenic influenza A(H5N1 virus survival in complex artificial aquatic biotopes.

    Directory of Open Access Journals (Sweden)

    Viseth Srey Horm

    Full Text Available BACKGROUND: Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. METHODOLOGY/PRINCIPAL FINDINGS: The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. CONCLUSIONS/SIGNIFICANCE: Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs.

  8. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds.

    Directory of Open Access Journals (Sweden)

    Viviane Hénaux

    Full Text Available There is growing interest in avian influenza (AI epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates, considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1-2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50-60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  9. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds

    Science.gov (United States)

    Hénaux, Viviane; Samuel, Michael D.; Bunck, Christine M.

    2010-01-01

    There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  10. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    Directory of Open Access Journals (Sweden)

    Ibrahim Thabet Hagag

    Full Text Available Highly pathogenic avian influenza virus (HPAIV H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA and nonstructural proteins (NS among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF in the cleavage site in HA and glutamate at position 92 (D92E in NS1. This is the first report of the pathogenicity

  11. Isolation and characterization of virus of highly pathogenic avian influenza H5 subtype of chicken from outbreaks in Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Wiyono

    2004-03-01

    Full Text Available A study on the isolation and characterization of Highly Pathogenic Avian Influenza of chicken from outbreaks in Indonesia was conducted at Indonesian Research Institute for Veterinary Science. Outbreaks of avian disease had been reported in Indonesia since August 2003 affecting commercial layer, broiler, quail, and ostrich and also native chicken with showing clinical signs such as cyanosis of wattle and comb, nasal discharges and hypersalivation, subcutaneous ptechiae on foot and leg, diarre and sudden high mortality. The aim of this study is to isolate and characterize the causal agent of the disease. Samples of serum, feather follicle, tracheal swab, as well as organs of proventriculus, intestine, caecal tonsil, trachea and lungs were collected from infected animals. Serum samples were tested haemaglutination/haemaglutination inhibition to Newcastle Disease and Egg Drop Syndrome viruses. Isolation of virus of the causal agent of the outbreak was conducted from samples of feather follicle, tracheal swab, and organs using 11 days old specific pathogen free (SPF embryonated eggs. The isolated viruses were then characterised by agar gel precipitation test using swine influenza reference antisera, by haemaglutination inhibition using H1 to H15 reference antisera, and by electron microscope examination. The pathogenicity of the viruses was confirmed by intravenous pathogenicity index test and its culture in Chicken Embryo Fibroblast primary cell culture without addition of trypsin. The study revealed that the causative agent of the outbreaks of avian disease in Indonesia was avian influenza H5 subtype virus based upon serological tests, virus isolation and characterization using swine influenza reference antisera, and electron microscope examination. While subtyping of the viruses using H1 to H15 reference antisera suggested that the virus is very likely to be an avian influenza H5N1 subtype virus. The pathogenicity test confirmed that the viruses

  12. Highly pathogenic avian influenza virus subtype H5N1 in mute swans (Cygnus olor) in Central Bosnia.

    Science.gov (United States)

    Goletić, Teufik; Gagić, Abdulah; Residbegović, Emina; Kustura, Aida; Kavazović, Aida; Savić, Vladimir; Harder, Timm; Starick, Elke; Prasović, Senad

    2010-03-01

    In order to determine the actual prevalence of avian influenza viruses (AIVs) in wild birds in Bosnia and Herzegovina, extensive surveillance was carried out between October 2005 and April 2006. A total of 394 samples representing 41 bird species were examined for the presence of influenza A virus using virus isolation in embryonated chicken eggs, PCR, and nucleotide sequencing. AIV subtype H5N1 was detected in two mute swans (Cygnus olor). The isolates were determined to be highly pathogenic avian influenza (HPAI) virus and the hemagglutinin sequence was closely similar to A/Cygnus olor/Astrakhan/ Ast05-2-10/2005 (H5N1). This is the first report of HPAI subtype H5N1 in Bosnia and Herzegovina.

  13. Risk factors and clusters of Highly Pathogenic Avian Influenza H5N1 outbreaks in Bangladesh

    Science.gov (United States)

    Loth, Leo; Gilbert, Marius; Osmani, Mozaffar G.; Kalam, Abul M.; Xiao, Xiangming

    2016-01-01

    Between March 2007 and July 2009, 325 Highly Pathogenic Avian Influenza (HPAI, subtype H5N1) outbreaks in poultry were reported in 154 out of a total of 486 sub-districts in Bangladesh. This study analyzed the temporal and spatial patterns of HPAI H5N1 outbreaks and quantified the relationship between several spatial risk factors and HPAI outbreaks in sub-districts in Bangladesh. We assessed spatial autocorrelation and spatial dependence, and identified clustering sub-districts with disease statistically similar to or dissimilar from their neighbors. Three significant risk factors associated to HPAI H5N1 virus outbreaks were identified; the quadratic log-transformation of human population density [humans per square kilometer, P = 0.01, OR 1.15 (95% CI: 1.03–1.28)], the log-transformation of the total commercial poultry population [number of commercial poultry per sub-district, P Bangladesh to target surveillance and to concentrate response efforts in areas where disease is likely to occur. Concentrating response efforts may help to combat HPAI more effectively, reducing the environmental viral load and so reducing the number of disease incidents. PMID:20554337

  14. Identifying risk factors of highly pathogenic avian influenza (H5N1 subtype) in Indonesia.

    Science.gov (United States)

    Loth, Leo; Gilbert, Marius; Wu, Jianmei; Czarnecki, Christina; Hidayat, Muhammad; Xiao, Xiangming

    2011-10-01

    Highly pathogenic avian influenza (HPAI), subtype H5N1, was first officially reported in Indonesia in 2004. Since then the disease has spread and is now endemic in large parts of the country. This study investigated the statistical relationship between a set of risk factors and the presence or absence of HPAI in Indonesia during 2006 and 2007. HPAI was evaluated through participatory disease surveillance (PDS) in backyard village chickens (the study population), and risk factors included descriptors of people and poultry distribution (separating chickens, ducks and production sectors), poultry movement patterns and agro-ecological conditions. The study showed that the risk factors "elevation", "human population density" and "rice cropping" were significant in accounting for the spatial variation of the PDS-defined HPAI cases. These findings were consistent with earlier studies in Thailand and Vietnam. In addition "commercial poultry population", and two indicators of market locations and transport; "human settlements" and "road length", were identified as significant risk factors in the models. In contrast to several previous studies carried out in Southeast Asia, domestic backyard ducks were not found to be a significant risk factor in Indonesia. The study used surrogate estimates of market locations and marketing chains and further work should focus on the actual location of the live bird markets, and on the flow of live poultry and poultry products between them, so that patterns of possible transmission, and regions of particular risk could be better inferred. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    OpenAIRE

    Ramis , Antonio; van Amerongen , Geert; van de Bildt , Marco; Leijten , Loneke; Vanderstichel , Raphael; Osterhaus , Albert; Kuiken , Thijs

    2014-01-01

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes a...

  16. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis.

    Directory of Open Access Journals (Sweden)

    Christina M Carlson

    2010-10-01

    Full Text Available Transforming growth factor-beta (TGF-β, a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β. We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3 except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus-infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis.

  17. Community preparedness for highly pathogenic Avian influenza on Bali and Lombok, Indonesia.

    Science.gov (United States)

    Hunter, C; Birden, H H; Toribio, J-A; Booy, R; Abdurrahman, M; Ambarawati, A I G A A; Adiputra, N

    2014-01-01

    The Asia-Pacific region is the likeliest location for the next significant outbreak of highly pathogenic avian influenza (HPAI). Indonesia has experienced HPAI H5N1 outbreaks in poultry and humans each year since 2003 and has had the highest case fatality rate for human cases. The purposes of this study were to capture the knowledge of avian influenza and of poultry-raising practices in two regions of Indonesia and to evaluate the impact and extent of activities undertaken to 2010 through the National Strategic Plan for Avian Influenza Control at the village level. A combination of quantitative and qualitative methods was used to investigate the multiple influences on behaviours, decisions and actions taken by poultry-raising households, and by villages and communities, regarding the threat of HPAI. Between June 2010 and May 2011 a structured survey of 400 households was conducted on Lombok and of 402 on Bali, inviting Sector 3 (small-scale independent commercial poultry farms) and Sector 4 (village household) poultry raisers to participate. Focus groups and in-depth interviews were convened with key stakeholders, including livestock and animal health and public health officials, community leaders and villagers. From the focus group and in-depth interviews, it appears that the flow of information through the national HPAI control program has been efficient at the top levels (from national to provincial, then to districts and subdistricts). However, these findings show that effective transmission of information from subdistrict to rural village level and from village leaders to community members has been limited. The degree of community preparedness for HPAI on Bali and Lombok appears minimal. Knowledge of government activities was more extensive at Bali sites, while only limited government programs and activities occurred at the village level on Lombok. Activities conducted by government agencies from provincial to village level were limited in scope and need to be

  18. Public health concerns of highly pathogenic avian influenza H5N1 endemicity in Africa

    Directory of Open Access Journals (Sweden)

    Olubunmi Gabriel Fasanmi

    2017-10-01

    Full Text Available Highly pathogenic avian influenza virus (HPAIV H5N1 was first officially reported in Africa in 2006; thereafter this virus has spread rapidly from Nigeria to 11 other African countries. This study was aimed at utilizing data from confirmed laboratory reports to carry out a qualitative evaluation of the factors responsible for HPAI H5N1 persistence in Africa and the public health implications; and to suggest appropriate control measures. Relevant publications were sought from data banks and repositories of FAO, OIE, WHO, and Google scholars. Substantiated data on HPAI H5N1 outbreaks in poultry in Africa and in humans across the world were mined. HPAI H5N1 affects poultry and human populations, with Egypt having highest human cases (346 globally. Nigeria had a reinfection from 2014 to 2015, with outbreaks in Cote d'Ivoire, Ghana, Niger, Nigeria, and Burkina Faso throughout 2016 unabated. The persistence of this virus in Africa is attributed to the survivability of HPAIV, ability to evolve other subtypes through genetic reassortment, poor biosecurity compliance at the live bird markets and poultry farms, husbandry methods and multispecies livestock farming, poultry vaccinations, and continuous shedding of HPAIV, transboundary transmission of HPAIV through poultry trades; and transcontinental migratory birds. There is, therefore, the need for African nations to realistically reassess their status, through regular surveillance and be transparent with HPAI H5N1 outbreak data. Also, it is important to have an understanding of HPAIV migration dynamics which will be helpful in epidemiological modeling, disease prevention, control and eradication measures.

  19. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents.

    Science.gov (United States)

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-09-01

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  20. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt.

    Science.gov (United States)

    Kandeil, Ahmed; Kayed, Ahmed; Moatasim, Yassmin; Webby, Richard J; McKenzie, Pamela P; Kayali, Ghazi; Ali, Mohamed A

    2017-07-01

    A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.

  1. Neuraminidase and hemagglutinin matching patterns of a highly pathogenic avian and two pandemic H1N1 influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available BACKGROUND: Influenza A virus displays strong reassortment characteristics, which enable it to achieve adaptation in human infection. Surveying the reassortment and virulence of novel viruses is important in the prevention and control of an influenza pandemic. Meanwhile, studying the mechanism of reassortment may accelerate the development of anti-influenza strategies. METHODOLOGY/PRINCIPAL FINDINGS: The hemagglutinin (HA and neuraminidase (NA matching patterns of two pandemic H1N1 viruses (the 1918 and current 2009 strains and a highly pathogenic avian influenza A virus (H5N1 were studied using a pseudotyped particle (pp system. Our data showed that four of the six chimeric HA/NA combinations could produce infectious pps, and that some of the chimeric pps had greater infectivity than did their ancestors, raising the possibility of reassortment among these viruses. The NA of H5N1 (A/Anhui/1/2005 could hardly reassort with the HAs of the two H1N1 viruses. Many biological characteristics of HA and NA, including infectivity, hemagglutinating ability, and NA activity, are dependent on their matching pattern. CONCLUSIONS/SIGNIFICANCE: Our data suggest the existence of an interaction between HA and NA, and the HA NA matching pattern is critical for valid viral reassortment.

  2. Control of highly pathogenic avian influenza in Quang Tri province, Vietnam: voices from the human-animal interface.

    Science.gov (United States)

    Farrell, Penny C; Hunter, Cynthia; Truong, Bui; Bunning, Michel

    2015-01-01

    Highly pathogenic avian influenza (HPAI) is caused by the haemagglutinin 5, neuraminidase 1 (H5N1) influenza A virus. Around 80% of households in rural Vietnam raise poultry, which provides food security and nutrition to their households and beyond. Of these, around 15-20% are semi-commercial producers, producing at least 28% of the country's chicken. Through learning the experiences of these semi-commercial farmers, this study aimed to explore the local understandings and sociocultural aspects of HPAI's impact, particularly the aetiology, diagnosis, and the prevention and control methods in one Vietnamese rural province. This study was conducted in Quang Tri province, Vietnam. Quang Tri province has eight districts. Five of these districts were at high risk of HPAI during the study period, of which three were selected for the present study. Within these three districts, six communes were randomly selected for the study from the list of intervention communes in Quang Tri province. Six out of the 26 intervention communes in Quang Tri were therefore selected. Participants were randomly selected and recruited from lists of semi-commercial farmers, village animal health workers, village human health workers and local authorities so that the study population (representative population) included an amount of variability similar to that of the wider population. A key benefit of this village-level control program was the residential proximity of animal and human health professionals. Participants were well aware of the typical clinical signs for avian influenza and of the reporting process for suspect cases. However there was extensive room for improvement in Quang Tri province regarding access to the HPAI vaccine, essential medical equipment for animal use, and available financial support. This qualitative research study provided an important insight for in-country policy makers and international stakeholders. It is vital that there are continued efforts to prevent and

  3. Evolution of highly pathogenic avian H5N1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Catherine A [Los Alamos National Laboratory; Green, Margaret A [Los Alamos National Laboratory

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging

  4. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus.

    Science.gov (United States)

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5N x viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines have been demonstrated to be efficacious and safe in poultry. Herein, we developed an NDV-based H5 vaccine (NDV-H5) that expresses a codon-optimized ectodomain of the hemagglutinin from the A/chicken/Iowa/04-20/2015 (H5N2) virus and evaluated its efficacy in chickens. Results showed that both live and inactivated NDV-H5 vaccines induced hemagglutinin inhibition antibody titers against the H5N2 virus in immunized chickens after prime and booster, and both NDV-H5 vaccines completely protected chickens from lethal challenge with the highly pathogenic H5N2 A/turkey/Minnesota/9845-4/2015 virus. No clinical signs and only minimal virus shedding was observed in both vaccinated groups. In contrast, all mock-vaccinated, H5N2-infected chickens shed virus and died within 5 days post challenge. Furthermore, one dose of the live NDV-H5 vaccine also provided protection of 90% chickens immunized by coarse spraying; after exposure to H5N2 challenge, sera from vaccinated surviving chickens neutralized both highly pathogenic H5N1 and H5N8 viruses. Taken together, our results suggest that the NDV-based H5 vaccine is able to protect chickens against intercontinental highly pathogenic H5N x viruses and can be used by mass application to protect the poultry industry.

  5. Low pathogenic avian influenza viruses in wild migratory waterfowl in a region of high poultry production, Delmarva, Maryland

    Science.gov (United States)

    Prosser, Diann J.; Densmore, Christine L.; Hindman, Larry J.; Iwanowicz, Deborah; Ottinger, Christopher A.; Iwanowicz, Luke R.; Driscoll, Cindy P.; Nagel, Jessica L.

    2017-01-01

    Migratory waterfowl are natural reservoirs for low pathogenic avian influenza viruses (AIVs) and may contribute to the long-distance dispersal of these pathogens as well as spillover into domestic bird populations. Surveillance for AIVs is critical to assessing risks for potential spread of these viruses among wild and domestic bird populations. The Delmarva Peninsula on the east coast of the United States is both a key convergence point for migratory Atlantic waterfowl populations and a region with high poultry production (>4,700 poultry meat facilities). Sampling of key migratory waterfowl species occurred at 20 locations throughout the Delmarva Peninsula in fall and winter of 2013–14. Samples were collected from 400 hunter-harvested or live-caught birds via cloacal and oropharyngeal swabs. Fourteen of the 400 (3.5%) birds sampled tested positive for the AIV matrix gene using real-time reverse transcriptase PCR, all from five dabbling duck species. Further characterization of the 14 viral isolates identified two hemagglutinin (H3 and H4) and four neuraminidase (N2, N6, N8, and N9) subtypes, which were consistent with isolates reported in the Influenza Research Database for this region. Three of 14 isolates contained multiple HA or NA subtypes. This study adds to the limited baseline information available for AIVs in migratory waterfowl populations on the Delmarva Peninsula, particularly prior to the highly pathogenic AIV A(H5N8) and A(H5N2) introductions to the United States in late 2014.

  6. Low Pathogenic Avian Influenza Viruses in Wild Migratory Waterfowl in a Region of High Poultry Production, Delmarva, Maryland.

    Science.gov (United States)

    Prosser, Diann J; Densmore, Christine L; Hindman, Larry J; Iwanowicz, Deborah D; Ottinger, Chris A; Iwanowicz, Luke R; Driscoll, Cindy P; Nagel, Jessica L

    2017-03-01

    Migratory waterfowl are natural reservoirs for low pathogenic avian influenza viruses (AIVs) and may contribute to the long-distance dispersal of these pathogens as well as spillover into domestic bird populations. Surveillance for AIVs is critical to assessing risks for potential spread of these viruses among wild and domestic bird populations. The Delmarva Peninsula on the east coast of the United States is both a key convergence point for migratory Atlantic waterfowl populations and a region with high poultry production (>4,700 poultry meat facilities). Sampling of key migratory waterfowl species occurred at 20 locations throughout the Delmarva Peninsula in fall and winter of 2013-14. Samples were collected from 400 hunter-harvested or live-caught birds via cloacal and oropharyngeal swabs. Fourteen of the 400 (3.5%) birds sampled tested positive for the AIV matrix gene using real-time reverse transcriptase PCR, all from five dabbling duck species. Further characterization of the 14 viral isolates identified two hemagglutinin (H3 and H4) and four neuraminidase (N2, N6, N8, and N9) subtypes, which were consistent with isolates reported in the Influenza Research Database for this region. Three of 14 isolates contained multiple HA or NA subtypes. This study adds to the limited baseline information available for AIVs in migratory waterfowl populations on the Delmarva Peninsula, particularly prior to the highly pathogenic AIV A(H5N8) and A(H5N2) introductions to the United States in late 2014.

  7. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    Science.gov (United States)

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  8. Spatiotemporal Structure of Molecular Evolution of H5N1 Highly Pathogenic Avian Influenza Viruses in Vietnam

    OpenAIRE

    Carrel, Margaret A.; Emch, Michael; Jobe, R. Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-01

    Background Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and...

  9. Identifying antigenicity associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning

    OpenAIRE

    Cai, Zhipeng; Ducatez, Mariette F.; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C.; Webby, Richard J.; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1’s antigenic profiles would help resolve these problems. In this study, a novel sparse learning method wa...

  10. Identifying antigenicity-associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning.

    OpenAIRE

    Cai, Zhipeng; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C; Webby, Richard J; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin (HA) gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1's antigenic profiles would help resolve these problems. In this study, a novel sparse learning meth...

  11. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    Science.gov (United States)

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed

  12. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    Science.gov (United States)

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  13. Distinct Pathogenesis of Hong Kong-Origin H5N1 Viruses in Mice Compared to That of Other Highly Pathogenic H5 Avian Influenza Viruses

    OpenAIRE

    Dybing, Jody K.; Schultz-Cherry, Stacey; Swayne, David E.; Suarez, David L.; Perdue, Michael L.

    2000-01-01

    In 1997, an outbreak of virulent H5N1 avian influenza virus occurred in poultry in Hong Kong (HK) and was linked to a direct transmission to humans. The factors associated with transmission of avian influenza virus to mammals are not fully understood, and the potential risk of other highly virulent avian influenza A viruses infecting and causing disease in mammals is not known. In this study, two avian and one human HK-origin H5N1 virus along with four additional highly pathogenic H5 avian in...

  14. The ecology and age structure of a highly pathogenic avian influenza virus outbreak in wild mute swans.

    Science.gov (United States)

    Pybus, O G; Perrins, C M; Choudhury, B; Manvell, R J; Nunez, A; Schulenburg, B; Sheldon, B C; Brown, I H

    2012-12-01

    The first UK epizootic of highly pathogenic (HP) H5N1 influenza in wild birds occurred in 2008, in a population of mute swans that had been the subject of ornithological study for decades. Here we use an innovative combination of ornithological, phylogenetic and immunological approaches to investigate the ecology and age structure of HP H5N1 in nature. We screened samples from swans and waterbirds using PCR and sequenced HP H5N1-positive samples. The outbreak's origin was investigated by linking bird count data with a molecular clock analysis of sampled virus sequences. We used ringing records to reconstruct the age-structure of outbreak mortality, and we estimated the age distribution of prior exposure to avian influenza. Outbreak mortality was low and all HP H5N1-positive mute swans in the affected population were <3 years old. Only the youngest age classes contained an appreciable number of individuals with no detectable antibody responses to viral nucleoprotein. Phylogenetic analysis indicated that the outbreak strain circulated locally for ~1 month before detection and arrived when the immigration rate of migrant waterbirds was highest. Our data are consistent with the hypothesis that HP H5N1 epizootics in wild swans exhibit limited mortality due to immune protection arising from previous exposure. Our study population may represent a valuable resource for investigating the natural ecology and epidemiology of avian influenza.

  15. Practices associated with Highly Pathogenic Avian Influenza spread in traditional poultry marketing chains: Social and economic perspectives.

    Science.gov (United States)

    Paul, Mathilde; Baritaux, Virginie; Wongnarkpet, Sirichai; Poolkhet, Chaithep; Thanapongtharm, Weerapong; Roger, François; Bonnet, Pascal; Ducrot, Christian

    2013-04-01

    In developing countries, smallholder poultry production contributes to food security and poverty alleviation in rural areas. However, traditional poultry marketing chains have been threatened by the epidemics caused by the Highly Pathogenic Avian Influenza (H5N1) virus. The article presents a value chain analysis conducted on the traditional poultry marketing chain in the rural province of Phitsanulok, Thailand. The analysis is based on quantitative data collected on 470 backyard chicken farms, and on qualitative data collected on 28 poultry collectors, slaughterhouses and market retailers, using semi-structured interviews. The article examines the organization of poultry marketing chains in time and space, and shows how this may contribute to the spread of Highly Pathogenic Avian Influenza H5N1 in the small-scale poultry sector. The article also discusses the practices and strategies developed by value chain actors facing poultry mortality, with their economic and social determinants. More broadly, this study also illustrates how value chain analysis can contribute to a better understanding of the complex mechanisms associated with the spread of epidemics in rural communities. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  17. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1 Virus Infection on Migrating Whooper Swans Fecal Microbiota

    Directory of Open Access Journals (Sweden)

    Na Zhao

    2018-02-01

    Full Text Available The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus. We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.

  18. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1) Virus Infection on Migrating Whooper Swans Fecal Microbiota.

    Science.gov (United States)

    Zhao, Na; Wang, Supen; Li, Hongyi; Liu, Shelan; Li, Meng; Luo, Jing; Su, Wen; He, Hongxuan

    2018-01-01

    The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI) virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus . We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.

  19. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    Science.gov (United States)

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08.

  20. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    Directory of Open Access Journals (Sweden)

    Paritosh K Biswas

    Full Text Available The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1 is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA and multiplicative seasonal autoregressive integrated moving average (SARIMA to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s as inputs did not improve the performance of any multivariable models, but relative humidity (RH was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA order at lag 1 month is considered.

  1. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    Science.gov (United States)

    Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.

    2015-01-01

    Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906

  2. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  3. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    Science.gov (United States)

    Carrel, Margaret A; Emch, Michael; Jobe, R Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-08

    Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by

  4. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    Directory of Open Access Journals (Sweden)

    Margaret A Carrel

    2010-01-01

    Full Text Available Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10: e3462 demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear.In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City.The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic

  5. H5N2 Highly Pathogenic Avian Influenza Viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys

    OpenAIRE

    Spackman, Erica; Pantin-Jackwood, Mary J.; Kapczynski, Darrell R.; Swayne, David E.; Suarez, David L.

    2016-01-01

    Background From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lineage hemagglutinin, and 3 genes from North American wild waterfowl low pathogenicity avian influenza viruses. The outbreak primarily affected turkeys and table-egg layer type chickens. T...

  6. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa)

    OpenAIRE

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antoni; Abad, Francesc Xavier; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-01-01

    Abstract An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in bot...

  7. Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice

    NARCIS (Netherlands)

    Cornelissen, A.H.M.; Leeuw, de O.S.; Tacken, M.G.J.; Klos, H.C.; Vries, de R.P.; Boer-Luijtze, de E.A.; Zoelen-Bos, van D.J.; Rigter, A.; Rottier, P.J.M.; Moormann, R.J.M.; Haan, de C.A.M.

    2012-01-01

    Background: Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to

  8. Psychosocial effects assocPsychosocial effects associated with highly pathogenic avian influenza (H5N1 in Nigeriaiated with highly pathogenic avian influenza (H5N1 in Nigeria

    Directory of Open Access Journals (Sweden)

    Chiara Rafanelli

    2010-12-01

    Full Text Available Highly pathogenic avian influenza H5N1 (HPAI H5N1 infected poultry in Nigeria in 2006. The outbreaks caused significant economic losses and had serious zoonotic repercussions. The outbreaks have also had psychosocial effects on Nigerian farmers. To date, empirical data on the effect of outbreaks on humans are scarce. In this study, field data on HPAI H5N1 in Nigeria were analysed. Although only one human case leading to death was reported in Nigeria, the fact that HPAI H5N1 caused a human death created a disruption in social order and in the well-being of farmers (stress, altered livelihood and trauma and affected the rural economy. The implication of the above on health communication, the importance of successful control measures in poultry and policy implementation are stressed. Further studies are encouraged.

  9. Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems

    Directory of Open Access Journals (Sweden)

    McDermott Jason E

    2011-11-01

    Full Text Available Abstract Background Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. Results In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. Conclusions This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.

  10. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage.

    Science.gov (United States)

    Brown, Justin D; Stallknecht, David E; Swayne, David E

    2008-01-01

    The role of wild birds in the epidemiology of the Asian lineage highly pathogenic avian influenza (HPAI) virus subtype H5N1 epizootic and their contribution to the spread of the responsible viruses in Eurasia and Africa are unclear. To better understand the potential role of swans and geese in the epidemiology of this virus, we infected 4 species of swans and 2 species of geese with an HPAI virus of Asian lineage recovered from a whooper swan in Mongolia in 2005, A/whooper swan/Mongolia/244/2005 (H5N1). The highest mortality rates were observed in swans, and species-related differences in clinical illness and viral shedding were evident. These results suggest that the potential for HPAI (H5N1) viral shedding and the movement of infected birds may be species-dependent and can help explain observed deaths associated with HPAI (H5N1) infection in anseriforms in Eurasia.

  11. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    Directory of Open Access Journals (Sweden)

    Hafez M. Hafez

    2012-11-01

    Full Text Available Highly pathogenic avian influenza virus (HPAIV of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry.

  12. Molecular epidemiology of circulating highly pathogenic avian influenza (H5N1) virus in chickens, in Bangladesh, 2007-2010

    DEFF Research Database (Denmark)

    Ahmed, Syed Sayeem Uddin; Themudo, Goncalo Espregueira Cruz; Christensen, Jens Peter

    2012-01-01

    Bangladesh has been severely hit by highly pathogenic avian influenza H5N1 (HPAI-H5N1). However, little is known about the genetic diversity and the evolution of the circulating viruses in Bangladesh. In the present study, we analyzed the hemagglutinin gene of 30 Bangladeshi chicken isolates from...... several amino acid substitutions, but they are not indicative of adaptation toward human infection. The Mantel correlation test confirmed significant correlation between genetic distances and temporal distances between the viruses. The Bayesian tree shows that isolates from waves 3 and 4 derived from...... virus in Bangladesh. Furthermore, the formation of a subclade capable of transmission to humans cannot be ruled out. The findings of this study might provide valuable information for future surveillance, prevention and control programme....

  13. Estimating the between-farm transmission rates for highly pathogenic avian influenza subtype H5N1 epidemics in Bangladesh between 2007 and 2013

    NARCIS (Netherlands)

    Ssematimba, A.; Okike, I.; Ahmed, G.M.; Yamage, M.; Boender, G.J.; Hagenaars, T.J.; Bett, B.

    2018-01-01

    Highly Pathogenic Avian Influenza (HPAI) is classified by the World Organization for Animal Health as one of the notifiable diseases. Its occurrence is associated with severe socio-economic impacts and is also zoonotic. Bangladesh HPAI epidemic data for the period between 2007 and 2013 were obtained

  14. Pulmonary immunization of chickens using non-adjuvanted spray-freeze dried whole inactivated virus vaccine completely protects against highly pathogenic H5N1 avian influenza virus

    NARCIS (Netherlands)

    Peeters, Ben; Tonnis, Wouter F.; Murugappan, Senthil; Rottier, Peter; Koch, Guus; Frijlink, Henderik W.; Huckriede, Anke; Hinrichs, Wouter L. J.

    2014-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus is a major threat to public health as well as to the global poultry industry. Most fatal human infections are caused by contact with infected poultry. Therefore, preventing the virus from entering the poultry population is a priority. This is,

  15. Adaption of wild-bird origin H5Nx highly pathogenic avian influenza virus Clade 2.3.4.4 in vaccinated poultry

    Science.gov (United States)

    The 2014-2015 incursion of H5Nx clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in U.S. history and renewed interest in developing vaccines against these newly emergent viruses. Our previous research demonstrated several H5 vaccines with varyi...

  16. Reoccurrence of H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses in wild birds during 2016

    Science.gov (United States)

    The Asian-origin H5N1 A/goose/Guangdong/1/1996 (Gs/GD) lineage of high pathogenicity avian influenza viruses (HPAIV) has become widespread across four continents, affecting poultry, wild birds and humans. H5N1 HPAIV has evolved into multiple hemagglutinin (HA) genetic clades and reassorting with dif...

  17. The highly pathogenic avian influenza A (H7N7) virus epidemic in the Netherlands in 2003 - lessons learned from the first five outbreaks

    NARCIS (Netherlands)

    Elbers, A.R.W.; Fabri, T.; Vries, T.S.; Wit, de J.J.; Pijpers, A.; Koch, G.

    2004-01-01

    Clinical signs and gross lesions observed in poultry submitted for postmortem examination (PME) from the first five infected poultry flocks preceding the detection of the primary outbreak of highly pathogenic avian influenza (HPAI) of subtype H7N7 during the 2003 epidemic in the Netherlands are

  18. Risk reduction modeling of high pathogenicity avian influenza virus titers in non-pasteurized liquid egg obtained from infected but undetected chicken flocks

    Science.gov (United States)

    Control of highly pathogenic avian influenza (HPAI) has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a containment area under permit. Non-pasteurized liquid egg (NPLE) is one such commodity for which movements ma...

  19. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany

    NARCIS (Netherlands)

    J.M.A. van den Brand (Judith); O. Krone (Oliver); P.U. Wolf (Peter U.); M.W.G. van de Bildt (Marco); G. van Amerongen (Geert); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2015-01-01

    textabstractRaptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania,

  20. Airborne transmission of a highly pathogenic avian influenza strain H5N1 between groups of chickens quantified in an experimental setting.

    NARCIS (Netherlands)

    Spekreijse, D.; Bouma, A.; Koch, G.; Stegeman, J.A.

    2011-01-01

    Highly pathogenic avian influenza (HPAI) is a devastating viral disease of poultry and quick control of outbreaks is vital. Airborne transmission has often been suggested as a route of transmission between flocks, but knowledge of the rate of transmission via this route is sparse. In the current

  1. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

    NARCIS (Netherlands)

    Poen, Marjolein J.; Bestebroer, Theo M.; Vuong, Oanh; Scheuer, Rachel D.; Jeugd, van der Henk P.; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; Brand, van den Judith M.A.; Begeman, Lineke; Vliet, van der Stefan; Müskens, Gerhard J.D.M.; Majoor, Frank A.; Koopmans, Marion P.G.; Kuiken, Thijs; Fouchier, Ron A.M.

    2018-01-01

    Introduction: Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in southeast Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild

  2. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NARCIS (Netherlands)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration

  3. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

    NARCIS (Netherlands)

    Poen, Marjolein J; Bestebroer, Theo M; Vuong, Oanh; Scheuer, Rachel D; van der Jeugd, Henk P; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; van den Brand, Judith M A; Begeman, Lineke; van der Vliet, Stefan; Müskens, Gerhard J D M; Majoor, Frank A; Koopmans, Marion P G; Kuiken, Thijs; Fouchier, Ron A M

    IntroductionHighly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild

  4. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005

    NARCIS (Netherlands)

    Adlhoch, C.; Gossner, C.; Koch, G.; Brown, I.; Bouwstra, R.J.; Verdonck, F.; Penttinen, P.; Harder, T.

    2014-01-01

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are

  5. Multiple reassorted viruses as cause of highly pathogenic avian influenza A(H5N8) virus epidemic, the Netherlands, 2016

    NARCIS (Netherlands)

    Beerens, Nancy; Heutink, Rene; Bergervoet, Saskia A.; Harders, Frank; Bossers, Alex; Koch, Guus

    2017-01-01

    In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird

  6. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico.

    Science.gov (United States)

    Lu, Lu; Lycett, Samantha J; Leigh Brown, Andrew J

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter.

  7. Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017.

    Science.gov (United States)

    Kang, Min; Lau, Eric H Y; Guan, Wenda; Yang, Yuwei; Song, Tie; Cowling, Benjamin J; Wu, Jie; Peiris, Malik; He, Jianfeng; Mok, Chris Ka Pun

    2017-07-06

    We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics. This article is copyright of The Authors, 2017.

  8. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species

    Science.gov (United States)

    Hall, Jeffrey S.; Franson, J. Christian; Gill, Robert E.; Meteyer, Carol U.; TeSlaa, Joshua L.; Nashold, Sean W.; Dusek, Robert J.; Ip, Hon S.

    2011-01-01

    Background Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds.

  9. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus.

    Science.gov (United States)

    Yamamoto, Y; Nakamura, K; Yamada, M; Mase, M

    2016-01-01

    Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field. © The Author(s) 2015.

  10. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France.

    Science.gov (United States)

    Scoizec, Axelle; Niqueux, Eric; Thomas, Rodolphe; Daniel, Patrick; Schmitz, Audrey; Le Bouquin, Sophie

    2018-01-01

    In southwestern France, during the winter of 2016-2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50-110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log 10 RNA copies per m 3 , and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.

  11. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France

    Directory of Open Access Journals (Sweden)

    Axelle Scoizec

    2018-02-01

    Full Text Available In southwestern France, during the winter of 2016–2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50–110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log10 RNA copies per m3, and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.

  12. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.

    Science.gov (United States)

    Xu, Wen; Li, Hong; Jiang, Li

    2016-01-01

    Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases.

  13. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds

    Science.gov (United States)

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV. PMID:27078641

  14. Antigenic, genetic, and pathogenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from dead whooper swans (Cygnus cygnus) found in northern Japan in 2008.

    Science.gov (United States)

    Okamatsu, Masatoshi; Tanaka, Tomohisa; Yamamoto, Naoki; Sakoda, Yoshihiro; Sasaki, Takashi; Tsuda, Yoshimi; Isoda, Norikazu; Kokumai, Norihide; Takada, Ayato; Umemura, Takashi; Kida, Hiroshi

    2010-12-01

    In April and May 2008, whooper swans (Cygnus cygnus) were found dead in Hokkaido in Japan. In this study, an adult whooper swan found dead beside Lake Saroma was pathologically examined and the identified H5N1 influenza virus isolates were genetically and antigenically analyzed. Pathological findings indicate that the swan died of severe congestive edema in the lungs. Phylogenetic analysis of the HA genes of the isolates revealed that they are the progeny viruses of isolates from poultry and wild birds in China, Russia, Korea, and Hong Kong. Antigenic analyses indicated that the viruses are distinguished from the H5N1 viruses isolated from wild birds and poultry before 2007. The chickens vaccinated with A/duck/Hokkaido/Vac-1/2004 (H5N1) survived for 14 days after challenge with A/whooper swan/Hokkaido/1/2008 (H5N1), although a small amount of the challenge virus was recovered from the tissues of the birds. These findings indicate that H5N1 highly pathogenic avian influenza viruses are circulating in wild birds in addition to domestic poultry in Asia and exhibit antigenic variation that may be due to vaccination.

  15. An expost economic assessment of the intervention against highly pathogenic avian influenza in Nigeria

    Directory of Open Access Journals (Sweden)

    Mohamadou L. Fadiga

    2014-05-01

    Full Text Available This study assesses the intervention against avian influenza in Nigeria. It applied a simple compartmental model to define endemic and burn-out scenarios for the risk of spread of HPAI in Nigeria. It followed with the derivation of low and high mortality risks associated to each scenario. The estimated risk parameters were subsequently used to stochastically simulate the trajectory of the disease, had no intervention been carried out. Overall, the intervention costs US$ 41 million, which was yearly dis- bursed in various amounts over the 2006-2010 period. The key output variables (incremental net benefit, disease cost, and benefit cost ratio were estimated for each randomly drawn risk parameter. With a 12% annual discount rate, the results show that the intervention was economically justified under the endemic scenario with high mortality risk. On average, incremental benefit under this scenario amounted to US$ 63.7 million, incremental net benefit to US$27.2 million, and benefit cost ratio estimated to 1.75.

  16. Pathogenesis, Transmissibility, and Tropism of a Highly Pathogenic Avian Influenza A(H7N7) Virus Associated With Human Conjunctivitis in Italy, 2013.

    Science.gov (United States)

    Belser, Jessica A; Creager, Hannah M; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M

    2017-09-15

    H7 subtype influenza viruses represent a persistent public health threat because of their continued detection in poultry and ability to cause human infection. An outbreak of highly pathogenic avian influenza H7N7 virus in Italy during 2013 resulted in 3 cases of human conjunctivitis. We determined the pathogenicity and transmissibility of influenza A/Italy/3/2013 virus in mouse and ferret models and examined the replication kinetics of this virus in several human epithelial cell types. The moderate virulence observed in mammalian models and the capacity for transmission in a direct contact model underscore the need for continued study of H7 subtype viruses. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds

    Science.gov (United States)

    Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.; Muzaffar, Sabir Bin; Hill, Nichola J.; Yan, Baoping; Xiao, Xiangming; Lei, Fumin; Li, Tianxian; Schwarzbach, Steven E.; Howell, Judd A.

    2010-01-01

    The emergence of highly pathogenic avian influenza (HPAI) viruses has raised concerns about the role of wild birds in the spread and persistence of the disease. In 2005, an outbreak of the highly pathogenic subtype H5N1 killed more than 6,000 wild waterbirds at Qinghai Lake, China. Outbreaks have continued to periodically occur in wild birds at Qinghai Lake and elsewhere in Central China and Mongolia. This region has few poultry but is a major migration and breeding area for waterbirds in the Central Asian Flyway, although relatively little is known about migratory movements of different species and connectivity of their wetland habitats. The scientific debate has focused on the role of waterbirds in the epidemiology, maintenance and spread of HPAI H5N1: to what extent are they victims affected by the disease, or vectors that have a role in disease transmission? In this review, we summarise the current knowledge of wild bird involvement in the ecology of HPAI H5N1. Specifically, we present details on: (1) origin of HPAI H5N1; (2) waterbirds as LPAI reservoirs and evolution into HPAI; (3) the role of waterbirds in virus spread and persistence; (4) key biogeographic regions of outbreak; and (5) applying an ecological research perspective to studying AIVs in wild waterbirds and their ecosystems.

  18. Non-Attenuation Of Highly Pathogenic Avian Influenza H5N1 By ...

    African Journals Online (AJOL)

    Avian influenza H5N1 represents one of the most researched viruses in laboratories world-wide in recent times with regards to its epidemiology, ecology, biology and geography. The virus has caused 409 human cases and 256 human fatalities to date. Some laboratory activities and other lab related works predispose ...

  19. Pathobiology and transmission of highly and low pathogenic avian influenza viruses in European quail (Coturnix c. coturnix).

    Science.gov (United States)

    Bertran, Kateri; Dolz, Roser; Busquets, Núria; Gamino, Virginia; Vergara-Alert, Júlia; Chaves, Aida J; Ramis, Antonio; Abad, F Xavier; Höfle, Ursula; Majó, Natàlia

    2013-03-28

    European quail (Coturnix c. coturnix) may share with Japanese quail (Coturnix c. japonica) its potential as an intermediate host and reservoir of avian influenza viruses (AIV). To elucidate this question, European quail were experimentally challenged with two highly pathogenic AIV (HPAIV) (H7N1/HP and H5N1/HP) and one low pathogenic AIV (LPAIV) (H7N2/LP). Contact animals were also used to assess the viral transmission among birds. Severe neurological signs and mortality rates of 67% (H7N1/HP) and 92% (H5N1/HP) were observed. Although histopathological findings were present in both HPAIV-infected groups, H5N1/HP-quail displayed a broader viral antigen distribution and extent of microscopic lesions. Neither clinical nor pathological involvement was observed in LPAIV-infected quail. Consistent long-term viral shedding and effective transmission to naive quail was demonstrated for the three studied AIV. Drinking water arose as a possible transmission route and feathers as a potential origin of HPAIV dissemination. The present study demonstrates that European quail may play a major role in AI epidemiology, highlighting the need to further understand its putative role as an intermediate host for avian/mammalian reassortant viruses.

  20. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    Directory of Open Access Journals (Sweden)

    Alex J Mann

    Full Text Available We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments or intranasally (CSN adjuvanted and placebo treatments only with clade 1 HPAI A/Vietnam/1194/2004 (H5N1 virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant

  1. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    Science.gov (United States)

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  2. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza.

    Directory of Open Access Journals (Sweden)

    Nicholas J Negovetich

    2011-04-01

    Full Text Available Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94% were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%, and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.

  3. Evidence for the Convergence Model: The Emergence of Highly Pathogenic Avian Influenza (H5N1 in Viet Nam.

    Directory of Open Access Journals (Sweden)

    Sumeet Saksena

    Full Text Available Building on a series of ground breaking reviews that first defined and drew attention to emerging infectious diseases (EID, the 'convergence model' was proposed to explain the multifactorial causality of disease emergence. The model broadly hypothesizes disease emergence is driven by the co-incidence of genetic, physical environmental, ecological, and social factors. We developed and tested a model of the emergence of highly pathogenic avian influenza (HPAI H5N1 based on suspected convergence factors that are mainly associated with land-use change. Building on previous geospatial statistical studies that identified natural and human risk factors associated with urbanization, we added new factors to test whether causal mechanisms and pathogenic landscapes could be more specifically identified. Our findings suggest that urbanization spatially combines risk factors to produce particular types of peri-urban landscapes with significantly higher HPAI H5N1 emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of chicken densities, duck and geese flock size diversities, and fraction of land under rice or aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate measure for potential mixing of host populations and other factors that likely influence viral transmission, significantly improves the model's predictability. Similarly, landscapes where intensive and extensive forms of poultry production overlap were found at greater risk. These results support the convergence hypothesis in general and demonstrate the potential to improve EID prevention and control by combing geospatial monitoring of these factors along with pathogen surveillance programs.

  4. U.S. Geological Survey science strategy for highly pathogenic avian influenza in wildlife and the environment (2016–2020)

    Science.gov (United States)

    Harris, M. Camille; Pearce, John M.; Prosser, Diann J.; White, C. LeAnn; Miles, A. Keith; Sleeman, Jonathan M.; Brand, Christopher J.; Cronin, James P.; De La Cruz, Susan; Densmore, Christine L.; Doyle, Thomas W.; Dusek, Robert J.; Fleskes, Joseph P.; Flint, Paul L.; Guala, Gerald F.; Hall, Jeffrey S.; Hubbard, Laura E.; Hunt, Randall J.; Ip, Hon S.; Katz, Rachel A.; Laurent, Kevin W.; Miller, Mark P.; Munn, Mark D.; Ramey, Andy M.; Richards, Kevin D.; Russell, Robin E.; Stokdyk, Joel P.; Takekawa, John Y.; Walsh, Daniel P.

    2016-08-18

    IntroductionThrough the Science Strategy for Highly Pathogenic Avian Influenza (HPAI) in Wildlife and the Environment, the USGS will assess avian influenza (AI) dynamics in an ecological context to inform decisions made by resource managers and policymakers from the local to national level. Through collection of unbiased scientific information on the ecology of AI viruses and wildlife hosts in a changing world, the U.S. Geological Survey (USGS) will enhance the development of AI forecasting tools and ensure this information is integrated with a quality decision process for managing HPAI.The overall goal of this USGS Science Strategy for HPAI in Wildlife and the Environment goes beyond document­ing the occurrence and distribution of AI viruses in wild birds. The USGS aims to understand the epidemiological processes and environmental factors that influence HPAI distribution and describe the mechanisms of transmission between wild birds and poultry. USGS scientists developed a conceptual model describing the process linking HPAI dispersal in wild waterfowl to the outbreaks in poul­try. This strategy focuses on five long-term science goals, which include:Science Goal 1—Augment the National HPAI Surveillance Plan;Science Goal 2—Determine mechanisms of HPAI disease spread in wildlife and the environment;Science Goal 3—Characterize HPAI viruses circulating in wildlife;Science Goal 4—Understand implications of avian ecol­ogy on HPAI spread; andScience Goal 5—Develop HPAI forecasting and decision-making tools.These goals will help define and describe the processes outlined in the conceptual model with the ultimate goal of facilitating biosecurity and minimizing transfer of diseases across the wildlife-poultry interface. The first four science goals are focused on scientific discovery and the fifth goal is application-based. Decision analyses in the fifth goal will guide prioritization of proposed actions in the first four goals.

  5. Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007.

    Directory of Open Access Journals (Sweden)

    Xiu-Feng Wan

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA, continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.

  6. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks.

    Science.gov (United States)

    Pantin-Jackwood, Mary; Swayne, David E; Smith, Diane; Shepherd, Eric

    2013-07-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.

  7. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-01-01

    Highlights: ► Vero cell-based HPAI H5N1 vaccine with stable high yield. ► Stable high yield derived from the YNVa H3N2 backbone. ► H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  8. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  9. Use of M2e ELISAs for longitudinal surveillance of commercial poultry in Indonesia vaccinated against highly pathogenic avian influenza.

    Science.gov (United States)

    Wibowo, Michael Haryadi; Tarigan, Simson; Sumarningsih; Artanto, Sidna; Indriani, Risa; Anggoro, Dito; Putra, Cahyaditya Pratama; Idris, Syafrison; Untari, Tri; Asmara, Widya; Tabbu, Charles Rangga; Ignjatovic, Jagoda

    2017-11-01

    In countries where highly pathogenic avian influenza virus (HPAIV) H5N1 is endemic and controlled by vaccination, post-vaccination serological monitoring is essential to differentiate vaccinated poultry from those that are infected. The objectives of this study were to validate two experimental ELISAs that detect antibodies raised against the M2e protein of avian influenza virus that can be used for DIVA purposes. Results from the sM2e and tM2e ELISAs were compared with other conventional tests for the detection of H5N1influenza virus (virus isolation and RT-PCR) using samples collected from 16 commercial flocks in Indonesia. These comprised vaccinated layers aged between 18 and 68 weeks old that were sampled at ten-weekly intervals. A small number of sera were positive in sM2e and tM2e ELISA, 14 (0.6%) and 17 (0.7%) respectively, with low OD 420 (0.1-0.3), but only 4 sera were positive in both tests. At the flock level, the incidence of M2e positive sera was low (4%), well below previously established minimum of 40% for an HPAIV H5N1-infected flock. Conventional M and H5 gene RT-PCRs indicated that none of 16 flocks were infected at any time during the study. No virus was isolated from any of the 480 pooled swab samples, except from one, for which the combined data analysis suggest to be the result of a laboratory cross-contamination. Clinical disease, mortalities or reduction in production performance, indicative of field H5N1 challenge, were not observed either in any of the flocks. Birds from two surveyed flocks, challenged in the laboratory with an Indonesian HPAIV H5N1 developed M2e antibodies in 50% and 55% of surviving birds with OD 420 in the range of 0.35-1.47 in tM2e ELISA, confirming the validity of the criteria established for use of M2e ELISA for DIVA purposes. Overall these results showed that the tM2e ELISA could be a useful monitoring tool to ascertain freedom from H5N1 infections in vaccinated commercial poultry. Copyright © 2017 Elsevier B

  10. Cost Analysis of Various Low Pathogenic Avian Influenza Surveillance Systems in the Dutch Egg Layer Sector

    NARCIS (Netherlands)

    Rutten, N.; Gonzales, J.L.; Elbers, A.R.; Velthuis, A.G.J.

    2012-01-01

    Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood

  11. TEST KIT FOR THE DETECTION AND GENOTYPING OF HIGHLY PATHOGENIC INFLUENZA VIRUS A H5N1 BY REAL-TIME POLYMERASE CHAIN REACTION

    Directory of Open Access Journals (Sweden)

    S. V. Stepaniuk

    2014-06-01

    Full Text Available Results of the annual monitoring of epizooties indicate that highly pathogenic HPAI/H5N1 avian influenza widely circulated in Eurasian region. Over a period of 2010–2013 years more than 165 cases of outbreaks in 14 countries were found out. Ukraine became one of the first countries in Europe where in Autonomous Republic of Crimea in October 2005 outbreak of avian epizootic with HPAI/H5N1 was documented and until February 2008 more than 236,000 poultry were killed. Since then the question of monitoring of infected both migrating birds and poultry in places of cross contact in Ukraine remains of high priority. The test system is developed for identification and genotyping A H5N1 on three genes (M, H5 and N1 HPAI/H5N1 in real-time mode for polymerase chain reaction. Test kit capacity to detect HPAI/h5n1avian influenza virus and differentiate it from the other viral infection agents of birds and animals were studied by testing of HPAI/H5N1 virus isolated during mass infection outbreak in Crimea in 2005 and cultural specimens of other viral pathogens. It was established that the «DIA Real Avian Influenza» test kit was capable to detect RNA influenza A virus of high pathogenic H5N1 strains having high sensitivity (100% while RNA of the Crimean HPAI/H5N1 isolate studying and specificity (100% while RNA viruses of Newcastle birds disease, fowl powershift, syndrome of drop in egg production and horse influenza studying.

  12. Assessing the risk of highly pathogenic avian influenza H5N1 transmission through poultry movements in Bali, Indonesia.

    Science.gov (United States)

    Roche, Sharon E; Cogger, Naomi; Garner, M Graeme; Putra, Anak Agung Gde; Toribio, Jenny-Ann L M L

    2014-03-01

    Indonesia continues to report the highest number of human and poultry cases of highly pathogenic avian influenza H5N1. The disease is considered to be endemic on the island of Bali. Live bird markets are integral in the poultry supply chain on Bali and are important, nutritionally and culturally, for the rural and urban human populations. Due to the lack of biosecurity practiced along the supply chain from producer to live bird markets, there is a need to understand the risks associated with the spread of H5N1 through live bird movements for effective control. Resources to control H5N1 in Indonesia are very limited and cost effective strategies are needed. We assessed the probability a live bird market is infected through live poultry movements and assessed the effects of implementing two simple and low cost control measures on this risk. Results suggest there is a high risk a live bird market is infected (0.78), and risk mitigation strategies such as detecting and removing infected poultry from markets reduce this risk somewhat (range 0.67-0.76). The study demonstrates the key role live poultry movements play in transmitting H5N1 and the need to implement a variety of control measures to reduce disease spread. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry.

    Science.gov (United States)

    Bertran, Kateri; Balzli, Charles; Kwon, Yong-Kuk; Tumpey, Terrence M; Clark, Andrew; Swayne, David E

    2017-11-01

    Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus-naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry.

  14. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    Science.gov (United States)

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  16. Surveillance plan for the early detection of H5N1 highly pathogenic avian influenza virus in migratory birds in the United States: surveillance year 2009

    Science.gov (United States)

    Brand, Christopher J.

    2009-01-01

    Executive Summary: This Surveillance Plan (Plan) describes plans for conducting surveillance of wild birds in the United States and its Territories and Freely-Associated States to provide for early detection of the introduction of the H5N1 Highly Pathogenic Avian Influenza (HPAI) subtype of the influenza A virus by migratory birds during the 2009 surveillance year, spanning the period of April 1, 2009 - March 31, 2010. The Plan represents a continuation of surveillance efforts begun in 2006 under the Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (U.S. Department of Agriculture and U.S. Department of the Interior, 2006). The Plan sets forth sampling plans by: region, target species or species groups to be sampled, locations of sampling, sample sizes, and sampling approaches and methods. This Plan will be reviewed annually and modified as appropriate for subsequent surveillance years based on evaluation of information from previous years of surveillance, changing patterns and threats of H5N1 HPAI, and changes in funding availability for avian influenza surveillance. Specific sampling strategies will be developed accordingly within each of six regions, defined here as Alaska, Hawaiian/Pacific Islands, Lower Pacific Flyway (Washington, Oregon, California, Idaho, Nevada, Arizona), Central Flyway, Mississippi Flyway, and Atlantic Flyway.

  17. A review of highly pathogenic avian influenza in birds, with an emphasis on Asian H5N1 and recommendations for prevention and control.

    Science.gov (United States)

    Kelly, Terra R; Hawkins, Michelle G; Sandrock, Christian E; Boyce, Walter M

    2008-03-01

    Avian influenza is a disease of both veterinary and public health importance. Influenza A viruses infect a range of hosts, including humans, and can cause significant morbidity and mortality. These viruses have high genetic variability, and new strains develop through both mutation and reassortment. Modes of transmission as well as the location of viral shedding may differ both by host species and by viral strain. Clinical signs of influenza A virus infection in birds vary considerably depending on the viral subtype, environmental factors, and age, health status, and species of the bird and range from decreased egg production and gastrointestinal manifestations to nervous system disorders and respiratory signs. Most commonly, peracute death with minimal clinical disease is observed in poultry infected with a highly pathogenic avian influenza virus. There are various prevention and control strategies for avian influenza, including education, biosecurity, surveillance, culling of infected animals, and vaccination. These strategies will differ by institution and current federal regulations. Each institution should have an established biosecurity protocol that can be properly instituted. Lastly, human health precautions, such as proper hand hygiene, personal protective equipment, and employee health monitoring, are imperative for at-risk individuals.

  18. The potential spread of highly pathogenic avian influenza virus via dynamic contacts between poultry premises in Great Britain

    Directory of Open Access Journals (Sweden)

    Kao Rowland R

    2011-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI viruses have had devastating effects on poultry industries worldwide, and there is concern about the potential for HPAI outbreaks in the poultry industry in Great Britain (GB. Critical to the potential for HPAI to spread between poultry premises are the connections made between farms by movements related to human activity. Movement records of catching teams and slaughterhouse vehicles were obtained from a large catching company, and these data were used in a simulation model of HPAI spread between farms serviced by the catching company, and surrounding (geographic areas. The spread of HPAI through real-time movements was modelled, with the addition of spread via company personnel and local transmission. Results The model predicted that although large outbreaks are rare, they may occur, with long distances between infected premises. Final outbreak size was most sensitive to the probability of spread via slaughterhouse-linked movements whereas the probability of onward spread beyond an index premises was most sensitive to the frequency of company personnel movements. Conclusions Results obtained from this study show that, whilst there is the possibility that HPAI virus will jump from one cluster of farms to another, movements made by catching teams connected fewer poultry premises in an outbreak situation than slaughterhouses and company personnel. The potential connection of a large number of infected farms, however, highlights the importance of retaining up-to-date data on poultry premises so that control measures can be effectively prioritised in an outbreak situation.

  19. Seroprevalence of antibodies against highly pathogenic avian influenza A (H5N1 virus among poultry workers in Bangladesh, 2009.

    Directory of Open Access Journals (Sweden)

    Sharifa Nasreen

    Full Text Available We conducted a cross-sectional study in 2009 to determine the seroprevalence and risk factors for highly pathogenic avian influenza A (H5N1 [HPAI H5N1] virus antibodies among poultry workers at farms and live bird markets with confirmed/suspected poultry outbreaks during 2009 in Bangladesh. We tested sera by microneutralization assay using A/Bangladesh/207095/2008 (H5N1; clade 2.2.2 virus with confirmation by horse red blood cell hemagglutination inhibition and H5-specific Western blot assays. We enrolled 212 workers from 87 farms and 210 workers from three live bird markets. One hundred and two farm workers (48% culled poultry. One hundred and ninety-three farm workers (91% and 178 market workers (85% reported direct contact with poultry that died during a laboratory confirmed HPAI H5N1 poultry farm outbreak or market poultry die-offs from suspected HPAI H5N1. Despite exposure to sick poultry, no farm or market poultry workers were seropositive for HPAI H5N1 virus antibodies (95% confidence interval 0-1%.

  20. Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America

    Science.gov (United States)

    Ramey, Andy M.; DeLiberto, Thomas J.; Berhane, Yohannes; Swayne, David E.; Stallknecht, David E.

    2018-01-01

    Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We review empirical support derived from research and surveillance efforts for each lesson learned and, furthermore, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild birds in North America are likely to lead to other important lessons learned in the years ahead.

  1. Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America.

    Science.gov (United States)

    Ramey, Andrew M; DeLiberto, Thomas J; Berhane, Yohannes; Swayne, David E; Stallknecht, David E

    2018-05-01

    Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We review empirical support derived from research and surveillance efforts for each lesson learned and, furthermore, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild birds in North America are likely to lead to other important lessons learned in the years ahead. Published by Elsevier Inc.

  2. Novel H5N8 clade 2.3.4.4 highly pathogenic avian influenza virus in wild awuatic birds, Russia, 2016

    Science.gov (United States)

    H5N1 high pathogenicity avian influenza virus (HPAIV) emerged in 1996 in Guangdong China (Gs/GD) and has evolved into multiple genetic clades. Since 2008, HPAIV H5 clade 2.3.4 with N2, N5 and N8 neuraminidase subtypes have been identified in mainland China and outbreak of HPAIV H5N8 clade 2.3.4.4 ou...

  3. Trade patterns facilitating highly pathogenic avian influenza virus dissemination in the free-grazing layer duck system in Vietnam.

    Science.gov (United States)

    Meyer, A; Dinh, T X; Han, T A; Do, D V; Nhu, T V; Pham, L T; Nguyen, T T T; Newman, S; Häsler, B; Pfeiffer, D U; Vergne, T

    2018-04-01

    Highly pathogenic avian influenza (HPAI) viruses continue to threaten smallholder poultry producers in several South-east Asian countries, including Vietnam. In particular, the free-grazing duck system has been repeatedly highlighted as a major risk factor for HPAI outbreaks. Free-grazing ducks, which scavenge on rice paddies after the harvest, account for a large proportion of the duck population in Vietnam and the wider South-east Asian region. However, the structure and dynamics of the free-grazing duck production from farm to consumption has not been described for Vietnam. In this study, we used a value chain approach to provide a complete picture of the actors involved in the production and marketing of free-grazing duck eggs and spent layer ducks, as well as to investigate the governance structure of this food system. Group interviews and key informant interviews were conducted in two provinces located in the Mekong River Delta (MRD) and the Red River Delta (RRD). The results presented here highlight similarities and differences in farming and trade practices between the two provinces. The trade of spent layer ducks involved large volumes of live ducks being sent to China and Cambodia for consumption, generating a substantial risk of transboundary spread of pathogens, including HPAI viruses. We describe the major role of "duck yards", which act as hubs in the northbound trade of spent layer ducks. These yards should be considered as essential links in the value chain of spent layer ducks when considering HPAI surveillance and control. The veterinary authorities are only marginally involved in the value chain activities, and their influence could be strengthened by increasing surveillance activities for instance in duck yards. Last, we discuss the dynamics of the duck value chain and further implications for future HPAI management policies. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  4. Pathogenesis of highly pathogenic avian influenza A virus (H7N1) infection in chickens inoculated with three different doses.

    Science.gov (United States)

    Chaves, Aida J; Busquets, Nuria; Campos, Naiana; Ramis, Antonio; Dolz, Roser; Rivas, Raquel; Valle, Rosa; Abad, F Xavier; Darji, Ayub; Majo, Natalia

    2011-04-01

    To study the pathogenesis of a H7N1 highly pathogenic avian influenza virus strain, specific pathogen free chickens were inoculated with decreasing concentrations of virus: 10(5.5) median embryo lethal dose (ELD(50)) (G1), 10(3.5) ELD(50) (G2) and 10(1.5) ELD(50) (G3). Disease progression was monitored over a period of 16 days and sequential necropsies and tissue samples were collected for histological and immunohistochemical examination. Viral RNA loads were also quantified in different tissues, blood, oropharyngeal swabs, and cloacal swabs using quantitative real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). Clinical signs of depression, apathy, listlessness, huddling and ruffled feathers were recorded in G1 and a few G2 birds, whilst neurological signs were only observed in chickens inoculated with the highest dose. Gross lesions of haemorrhages were observed in the unfeathered skin of the comb and legs, and skeletal muscle, lung, pancreas and kidneys of birds inoculated with 10(5.5) ELD(50) and 10(3.5) ELD(50) doses. Microscopic lesions and viral antigen were demonstrated in cells of the nasal cavity, lung, heart, skeletal muscle, brain, spinal cord, gastrointestinal tract, pancreas, liver, bone marrow, thymus, bursa of Fabricius, spleen, kidney, adrenal gland and skin. Viral RNA was detected by RT-qPCR in kidney, lung, intestine, and brain samples of G1 and G2 birds. However, in birds infected with the lowest dose, viral RNA was detected only in brain and lung samples in low amounts at 5 and 7 days post infection. Interestingly, viral shedding was observed in oropharyngeal and cloacal swabs with proportionate decrease with the inoculation dose. We conclude that although an adequate infectious dose is critical in reproducing the clinical infection, chickens exposed to lower doses can be infected and shed virus representing a risk for the dissemination of the viral agent.

  5. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1 are responsible for pathogenicity in ducks

    Directory of Open Access Journals (Sweden)

    Kajihara Masahiro

    2013-02-01

    Full Text Available Abstract Background Wild ducks are the natural hosts of influenza A viruses. Duck influenza, therefore, has been believed inapparent infection with influenza A viruses, including highly pathogenic avian influenza viruses (HPAIVs in chickens. In fact, ducks experimentally infected with an HPAIV strain, A/Hong Kong/483/1997 (H5N1 (HK483, did not show any clinical signs. Another HPAIV strain, A/whooper swan/Mongolia/3/2005 (H5N1 (MON3 isolated from a dead swan, however, caused neurological dysfunction and death in ducks. Method To understand the mechanism whereby MON3 shows high pathogenicity in ducks, HK483, MON3, and twenty-four reassortants generated between these two H5N1 viruses were compared for their pathogenicity in domestic ducks. Results None of the ducks infected with MON3-based single-gene reassortants bearing the PB2, NP, or NS gene segment of HK483 died, and HK483-based single-gene reassortants bearing PB2, NP, or NS genes of MON3 were not pathogenic in ducks, suggesting that multiple gene segments contribute to the pathogenicity of MON3 in ducks. All the ducks infected with the reassortant bearing PB2, PA, HA, NP, and NS gene segments of MON3 died within five days post-inoculation, as did those infected with MON3. Each of the viruses was assessed for replication in ducks three days post-inoculation. MON3 and multi-gene reassortants pathogenic in ducks were recovered from all of the tissues examined and replicated with high titers in the brains and lungs. Conclusion The present results indicate that multigenic factors are responsible for efficient replication of MON3 in ducks. In particular, virus growth in the brain might correlate with neurological dysfunction and the disease severity.

  6. Clinical and Pathologic Characterization of an Outbreak of Highly Pathogenic Avian Influenza H7N8 in Commercial Turkeys in Southern Indiana.

    Science.gov (United States)

    Burcham, Grant N; Ramos-Vara, José A; Murphy, Duane A

    2017-09-01

    Highly pathogenic avian influenza (HPAI) is a systemic lethal disease of poultry caused by several subtypes of influenza A virus and classified on the basis of serologic reactions to hemagglutinin and neuraminidase surface glycoproteins. In January 2016, a novel subtype of HPAI-H7N8-was diagnosed in a commercial turkey (Meleagris gallopavo) flock in southern Indiana. Clinical signs and history included increased mortality, dyspnea, head tremors, recumbency, and somnolent or unaware birds. Postmortem examination of six recently dead birds showed red-tinged mucous in the choana and trachea and marked pulmonary edema. Histologic lesions in the brain included severe, multifocal lymphohistiocytic meningoencephalitis with foci of malacia, neuronal necrosis, and neuronophagia. All anatomic locations of the brain were affected, although histologic changes in the cerebellum were considered mild. Other histologic lesions included pulmonary congestion and edema, splenic congestion and lymphoid depletion, fibrinoid necrosis of vessels within the spleen, and multifocal pancreatic acinar necrosis. Immunohistochemistry (IHC) was weakly positive for influenza A in the brain; IHC was negative in other tissues tested. The clinical and pathologic characteristics of this case matched previously published material concerning HPAI and add to instances of known or suspected mutation of a low pathogenic virus to a highly pathogenic virus.

  7. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus).

    Science.gov (United States)

    Ramis, Antonio; van Amerongen, Geert; van de Bildt, Marco; Leijten, Loneke; Vanderstichel, Raphael; Osterhaus, Albert; Kuiken, Thijs

    2014-08-19

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 10(4) median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

  8. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    Science.gov (United States)

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  9. Principles for vaccine protection in chickens and domestic waterfowl against avian influenza: emphasis on Asian H5N1 high pathogenicity avian influenza.

    Science.gov (United States)

    Swayne, David E

    2006-10-01

    The H5N1 highly pathogenic (HP) avian influenza (AI) epizootic began with reports of mortality from China in 1996 and, by June 2005, caused outbreaks of disease in nine additional Asian countries, affecting or resulting in culling of over 200 million birds. Vaccines can be used in programs to prevent, manage, or eradicate AI. However, vaccines should only be used as part of a comprehensive control strategy that also includes biosecurity, quarantine, surveillance and diagnostics, education, and elimination of infected poultry. Potent AI vaccines, when properly used, can prevent disease and death, increase resistance to infection, reduce field virus replication and shedding, and reduce virus transmission, but do not provide "sterilizing immunity" in the field; i.e., vaccination does not completely prevent AI virus replication. Inactivated AI vaccines and a recombinant fowlpox-H5-AI vaccine are licensed and used in various countries. Vaccines have been shown to protect chickens, geese, and ducks from H5 HPAI. The inactivated vaccines prevented disease and mortality in chickens and geese, and reduced the ability of the field virus to replicate in gastrointestinal and respiratory tracts. Although the Asian H5N1 HPAI virus did not cause disease or mortality in ducks, the use of inactivated vaccine did reduce field virus replication in the respiratory and intestinal tracts. The inactivated vaccine protected geese from morbidity and mortality, and reduced challenge virus replication. The recombinant fowlpox-H5-AI vaccine has provided similar protection, but the vaccine is used only in chickens and with the advantage of application at 1 day of age in the hatchery.

  10. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    Directory of Open Access Journals (Sweden)

    Scott H Newman

    Full Text Available Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1 requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp. has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer and in habitats (areas of natural vegetation where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks at or near their breeding grounds.

  11. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    Science.gov (United States)

    Newman, Scott H; Iverson, Samuel A; Takekawa, John Y; Gilbert, Martin; Prosser, Diann J; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C

    2009-05-28

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  12. The effectiveness of preventative mass vaccination regimes against the incidence of highly pathogenic avian influenza on Java Island, Indonesia.

    Science.gov (United States)

    Bett, B; McLaws, M; Jost, C; Schoonman, L; Unger, F; Poole, J; Lapar, M L; Siregar, E S; Azhar, M; Hidayat, M M; Dunkle, S E; Mariner, J

    2015-04-01

    We conducted an operational research study involving backyard and semicommercial farms on Java Island, Indonesia, between April 2008 and September 2009 to evaluate the effectiveness of two preventive mass vaccination strategies against highly pathogenic avian influenza (HPAI). One regimen used Legok 2003 H5N1 vaccine, while the other used both Legok 2003 H5N1 and HB1 Newcastle disease (ND) vaccine. A total of 16 districts were involved in the study. The sample size was estimated using a formal power calculation technique that assumed a detectable effect of treatment as a 50% reduction in the baseline number of HPAI-compatible outbreaks. Within each district, candidate treatment blocks with village poultry populations ranging from 80 000 to 120 000 were created along subdistrict boundary lines. Subsequently, four of these blocks were randomly selected and assigned one treatment from a list that comprised control, vaccination against HPAI, vaccination against HPAI + ND. Four rounds of vaccination were administered at quarterly intervals beginning in July 2008. A vaccination campaign involved vaccinating 100 000 birds in a treatment block, followed by another 100 000 vaccinations 3 weeks later as a booster dose. Data on disease incidence and vaccination coverage were also collected at quarterly intervals using participatory epidemiological techniques. Compared with the unvaccinated (control) group, the incidence of HPAI-compatible events declined by 32% (P = 0.24) in the HPAI-vaccinated group and by 73% (P = 0.00) in the HPAI- and ND-vaccinated group. The effect of treatment did not vary with time or district. Similarly, an analysis of secondary data from the participatory disease and response (PDSR) database revealed that the incidence of HPAI declined by 12% in the HPAI-vaccinated group and by 24% in the HPAI + ND-vaccinated group. The results suggest that the HPAI + ND vaccination significantly reduced the incidence of HPAI-compatible events in mixed populations of

  13. The Perceived Value of Passive Animal Health Surveillance: The Case of Highly Pathogenic Avian Influenza in Vietnam.

    Science.gov (United States)

    Delabouglise, A; Antoine-Moussiaux, N; Phan, T D; Dao, D C; Nguyen, T T; Truong, B D; Nguyen, X N T; Vu, T D; Nguyen, K V; Le, H T; Salem, G; Peyre, M

    2016-03-01

    Economic evaluations are critical for the assessment of the efficiency and sustainability of animal health surveillance systems and the improvement of their efficiency. Methods identifying and quantifying costs and benefits incurred by public and private actors of passive surveillance systems (i.e. actors of veterinary authorities and private actors who may report clinical signs) are needed. This study presents the evaluation of perceived costs and benefits of highly pathogenic avian influenza (HPAI) passive surveillance in Vietnam. Surveys based on participatory epidemiology methods were conducted in three provinces in Vietnam to collect data on costs and benefits resulting from the reporting of HPAI suspicions to veterinary authorities. A quantitative tool based on stated preference methods and participatory techniques was developed and applied to assess the non-monetary costs and benefits. The study showed that poultry farmers are facing several options regarding the management of HPAI suspicions, besides reporting the following: treatment, sale or destruction of animals. The option of reporting was associated with uncertain outcome and transaction costs. Besides, actors anticipated the release of health information to cause a drop of markets prices. This cost was relevant at all levels, including farmers, veterinary authorities and private actors of the upstream sector (feed, chicks and medicine supply). One benefit associated with passive surveillance was the intervention of public services to clean farms and the environment to limit the disease spread. Private actors of the poultry sector valued information on HPAI suspicions (perceived as a non-monetary benefit) which was mainly obtained from other private actors and media. © 2015 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  14. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    Science.gov (United States)

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  15. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    Science.gov (United States)

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  16. Characterisation of a highly pathogenic H5N1 clade 2.3.2 influenza virus isolated from swans in Shanghai, China.

    Science.gov (United States)

    Zhao, Guo; Zhong, Lei; Lu, Xinlun; Hu, Jiao; Gu, Xiaobing; Kai, Yan; Song, Qingqing; Sun, Qing; Liu, Jinbao; Peng, Daxin; Wang, Xiaoquan; Liu, Xiaowen; Liu, Xiufan

    2012-02-01

    In spring 2009, one strain of H5N1 clade 2.3.2 virus was isolated from wild swans in Shanghai, indicating the importance of the wild swan in the ecology of this highly pathogenic avian influenza virus (HPAIV) in Eastern China. Pathogenicity experiments conducted in this study indicated that the virus was highly pathogenic for chickens but lowly pathogenic for mammalian hosts, as evidenced by reduced infection of mice. The analysis of complete genome sequences and genetic evolution showed that A/Swan/Shanghai/10/09 (SW/SH/09) may be derived from the strain A/silky chicken/Shantou/475/2004 (CK/ST/04), which is homologous to the influenza viruses isolated from chicken, duck, pika, little egret, swan, mandarin duck and bar-headed goose in China Hunan, China Qinghai, Mongolia, Russia, Japan, Korea, Laos and Hong Kong during 2007-2011, indicating that the virus has retro-infected diverse wild birds from chicken, and significant spread of the virus is still ongoing through overlapping migratory flyways. On the basis of the molecular analysis, we also found that there was a deletion of the glycosylation site (NSS) in amino acid 156 of the hemagglutinin (HA) protein when compared with that of the other Clade 2.3.2 viruses isolated between 2007 and 2011. More importantly, the sequence analysis of SW/SH/09 virus displayed the drug-resistant mutations on the matrix protein (M2) and neuraminidase (NA) genes.

  17. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses

    Science.gov (United States)

    Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.

    2016-01-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

  18. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    Science.gov (United States)

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  19. Surveillance of low pathogenic avian influenza in layer chickens: risk factors, transmission and early detection

    NARCIS (Netherlands)

    Gonzales Rojas, J.L.

    2012-01-01

    Low pathogenic avian influenza virus (LPAIv) of H5 and H7 subtypes are able to mutate to highly pathogenic avian influenza virus (HPAIv), which are lethal for most poultry species, can cause large epidemics and are a serious threat to public health. Thus, circulation of these LPAIv in poultry is

  20. Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh.

    Science.gov (United States)

    Barman, Subrata; Marinova-Petkova, Atanaska; Hasan, M Kamrul; Akhtar, Sharmin; El-Shesheny, Rabeh; Turner, Jasmine Cm; Franks, John; Walker, David; Seiler, Jon; Friedman, Kimberly; Kercher, Lisa; Jeevan, Trushar; Darnell, Daniel; Kayali, Ghazi; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G; Feeroz, Mohammed M

    2017-08-09

    Highly pathogenic avian influenza H5N1 viruses were first isolated in Bangladesh in February 2007. Subsequently, clades 2.2.2, 2.3.4.2 and 2.3.2.1a were identified in Bangladesh, and our previous surveillance data revealed that by the end of 2014, the circulating viruses exclusively comprised clade 2.3.2.1a. We recently determined the status of circulating avian influenza viruses in Bangladesh by conducting surveillance of live poultry markets and waterfowl in wetland areas from February 2015 through February 2016. Until April 2015, clade 2.3.2.1a persisted without any change in genotype. However, in June 2015, we identified a new genotype of H5N1 viruses, clade 2.3.2.1a, which quickly became predominant. These newly emerged H5N1 viruses contained the hemagglutinin, neuraminidase and matrix genes of circulating 2.3.2.1a Bangladeshi H5N1 viruses and five other genes of low pathogenic Eurasian-lineage avian influenza A viruses. Some of these internal genes were closely related to those of low pathogenic viruses isolated from ducks in free-range farms and wild birds in a wetland region of northeastern Bangladesh, where commercially raised domestic ducks have frequent contact with migratory birds. These findings indicate that migratory birds of the Central Asian flyway and domestic ducks in the free-range farms in Tanguar haor-like wetlands played an important role in the emergence of this novel genotype of highly pathogenic H5N1 viruses.

  1. Isolation of an H5N8 Highly Pathogenic Avian Influenza Virus Strain from Wild Birds in Seoul, a Highly Urbanized Area in South Korea.

    Science.gov (United States)

    Kwon, Jung-Hoon; Lee, Dong-Hun; Jeong, Jei-Hyun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Sol; Gwon, Gyeong-Bin; Lee, Sang-Won; Choi, In-Soo; Song, Chang-Seon

    2017-07-01

    Asian-lineage H5 highly pathogenic avian influenza viruses (HPAIV) have caused recurrent outbreaks in poultry and wild birds. In January 2014, H5N8 HPAIV caused outbreaks in South Korea and subsequently spread to East Asia, Europe, and North America. We report the isolation of an H5N8 HPAIV strain from wild birds in Seoul, the most-developed city in South Korea. We analyzed the complete genome sequence of this isolate and estimated its origin using a phylogenetic analysis. The Seoul H5N8 isolate clustered phylogenetically with strains isolated from migratory wild birds but was distinct from Korean poultry isolates. This H5N8 virus was likely introduced into the urbanized city by migratory wild birds. Therefore, wild bird habitats in urbanized areas should be carefully monitored for HPAIV.

  2. Pathology of natural infections by H5N1 highly pathogenic avian influenza virus in mute (Cygnus olor) and whooper (Cygnus cygnus) swans.

    Science.gov (United States)

    Teifke, J P; Klopfleisch, R; Globig, A; Starick, E; Hoffmann, B; Wolf, P U; Beer, M; Mettenleiter, T C; Harder, T C

    2007-03-01

    Mortality in wild aquatic birds due to infection with highly pathogenic avian influenza viruses (HPAIV) is a rare event. During the recent outbreak of highly pathogenic avian influenza in Germany, mortality due to H5N1 HPAIV was observed among mute and whooper swans as part of a rapid spread of this virus. In contrast to earlier reports, swans appeared to be highly susceptible and represented the mainly affected species. We report gross and histopathology and distribution of influenza virus antigen in mute and whooper swans that died after natural infection with H5N1 HPAIV. At necropsy, the most reliable lesions were multifocal hemorrhagic necrosis in the pancreas, pulmonary congestion and edema, and subepicardial hemorrhages. Major histologic lesions were acute pancreatic necrosis, multifocal necrotizing hepatitis, and lymphoplasmacytic encephalitis with neuronal necrosis. Adrenals displayed consistently scattered cortical and medullary necrosis. In spleen and Peyer's patches, mild lymphocyte necrosis was present. Immunohistochemical demonstration of HPAIV nucleoprotein in pancreas, adrenals, liver, and brain was strongly consistent with histologic lesions. In the brain, a large number of neurons and glial cells, especially Purkinje cells, showed immunostaining. Occasionally, ependymal cells of the spinal cord were also positive. In the lungs, influenza virus antigen was identified in a few endothelial cells but not within pneumocytes. The infection of the central nervous system supports the view that the neurotropism of H5N1 HPAIV leads to nervous disturbances with loss of orientation. More investigations are necessary to clarify the mechanisms of the final circulatory failure, lung edema, and rapid death of the swans.

  3. Highly pathogenic avian influenza (H5N1: pathways of exposure at the animal-human interface, a systematic review.

    Directory of Open Access Journals (Sweden)

    Maria D Van Kerkhove

    Full Text Available BACKGROUND: The threat posed by highly pathogenic avian influenza A H5N1 viruses to humans remains significant, given the continued occurrence of sporadic human cases (499 human cases in 15 countries with a high case fatality rate (approximately 60%, the endemicity in poultry populations in several countries, and the potential for reassortment with the newly emerging 2009 H1N1 pandemic strain. Therefore, we review risk factors for H5N1 infection in humans. METHODS AND FINDINGS: Several epidemiologic studies have evaluated the risk factors associated with increased risk of H5N1 infection among humans who were exposed to H5N1 viruses. Our review shows that most H5N1 cases are attributed to exposure to sick poultry. Most cases are sporadic, while occasional limited human-to-human transmission occurs. The most commonly identified factors associated with H5N1 virus infection included exposure through contact with infected blood or bodily fluids of infected poultry via food preparation practices; touching and caring for infected poultry; [corrected] exposure to H5N1 via swimming or bathing in potentially virus laden ponds; and exposure to H5N1 at live bird markets. CONCLUSIONS: Research has demonstrated that despite frequent and widespread contact with poultry, transmission of the H5N1 virus from poultry to humans is rare. Available research has identified several risk factors that may be associated with infection including close direct contact with poultry and transmission via the environment. However, several important data gaps remain that limit our understanding of the epidemiology of H5N1 in humans. Although infection in humans with H5N1 remains rare, human cases continue to be reported and H5N1 is now considered endemic among poultry in parts of Asia and in Egypt, providing opportunities for additional human infections and for the acquisition of virus mutations that may lead to more efficient spread among humans and other mammalian species

  4. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    Science.gov (United States)

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  5. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI H5N1 in China.

    Directory of Open Access Journals (Sweden)

    Vincent Martin

    2011-03-01

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 was first encountered in 1996 in Guangdong province (China and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967. The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds and found that provinces with either outbreaks or HPAIV H5N1

  6. Could Changes in the Agricultural Landscape of Northeastern China Have Influenced the Long-Distance Transmission of Highly Pathogenic Avian Influenza H5Nx Viruses?

    Directory of Open Access Journals (Sweden)

    Marius Gilbert

    2017-12-01

    Full Text Available In the last few years, several reassortant subtypes of highly pathogenic avian influenza viruses (HPAI H5Nx have emerged in East Asia. These new viruses, mostly of subtype H5N1, H5N2, H5N6, and H5N8 belonging to clade 2.3.4.4, have been found in several Asian countries and have caused outbreaks in poultry in China, South Korea, and Vietnam. HPAI H5Nx also have spread over considerable distances with the introduction of viruses belonging to the same 2.3.4.4 clade in the U.S. (2014–2015 and in Europe (2014–2015 and 2016–2017. In this paper, we examine the emergence and spread of these new viruses in Asia in relation to published datasets on HPAI H5Nx distribution, movement of migratory waterfowl, avian influenza risk models, and land-use change analyses. More specifically, we show that between 2000 and 2015, vast areas of northeast China have been newly planted with rice paddy fields (3.21 million ha in Heilongjiang, Jilin, and Liaoning in areas connected to other parts of Asia through migratory pathways of wild waterfowl. We hypothesize that recent land use changes in northeast China have affected the spatial distribution of wild waterfowl, their stopover areas, and the wild-domestic interface, thereby altering transmission dynamics of avian influenza viruses across flyways. Detailed studies of the habitat use by wild migratory birds, of the extent of the wild–domestic interface, and of the circulation of avian influenza viruses in those new planted areas may help to shed more light on this hypothesis, and on the possible impact of those changes on the long-distance patterns of avian influenza transmission.

  7. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally

    OpenAIRE

    L?ndt, Brandon Z.; N??ez, Alejandro.; Banks, Jill; Alexander, Dennis J.; Russell, Christine; Richard? L?ndt, Angela C.; Brown, Ian H.

    2009-01-01

    Background? Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. Objectives? To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Methods? Pekin ducks in two age?matched groups (n?=?18), 8 and 12?weeks old (wo) were each infected with 106 EID50/0?1?ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2?2). Each day for 5?days, birds were monitored clinically, and cloacal ...

  8. Poultry movement networks in Cambodia: implications for surveillance and control of highly pathogenic avian influenza (HPAI/H5N1).

    Science.gov (United States)

    Van Kerkhove, Maria D; Vong, Sirenda; Guitian, Javier; Holl, Davun; Mangtani, Punam; San, Sorn; Ghani, Azra C

    2009-10-23

    Movement of poultry through markets is potentially important in the circulation and spread of highly pathogenic avian influenza. However little is understood about poultry market chains in Cambodia. We conducted a cross-sectional survey of 715 rural villagers, 123 rural, peri-urban and urban market sellers and 139 middlemen from six provinces and Phnom Penh, to evaluate live poultry movement and trading practices. Direct trade links with Thailand and Vietnam were identified via middlemen and market sellers. Most poultry movement occurs via middlemen into Phnom Penh making live bird wet markets in Phnom Penh a potential hub for the spread of H5N1 and ideal for surveillance and control.

  9. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    Science.gov (United States)

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  10. Study on Efficacy of Gamma Radiation on the Inactivation of Highly Pathogenic Avian Influenza Virus H5N1 (Thai isolate) in Chicken Meat and Chicken Feces

    International Nuclear Information System (INIS)

    Pinyochon, Wasana; Piadang, Nattayana; Mulika, Ladda; Parchariyanon, Sujira; Vitittheeranon, Arag; Damrongwatapokin, Sudarat

    2006-09-01

    A study on the efficacy of gamma radiation on the inactivation of a highly pathogenic avian influenza virus H5N1 subtype, Thai isolate was carried out. The virus was in the form frozen infected allantoic fluid frozen chicken meat and frozen chicken feces. The result indicated that 9 kilo grey of gamma radiation could completely inactivated 106.0 EID50/ml of AIV infected allantoic fluid and 22 kiel grey and 15 kilo grey of gamma radiation completely inactivate 106.0 EID50/10/ grams of chicken meat and 106.0 EID50/5 grams of chicken feces respectively.

  11. Equine H7N7 influenza A viruses are highly pathogenic in mice without adaptation: potential use as an animal model.

    OpenAIRE

    Kawaoka, Y

    1991-01-01

    Equine H7N7 influenza A viruses, representing a broad range of isolates, were lethal in mice without adaptation. After repeated passages, A/Equine/London/1416/73 acquired neurotropism upon intranasal infection. Thus, mice infected with equine influenza A viruses provide a model system for the study of highly virulent mammalian influenza viruses.

  12. Standardization of an inactivated H17N1 avian influenza vaccine and efficacy against A/Chicken/Italy/13474/99 high-pathogenicity virus infection.

    Science.gov (United States)

    Di Trani, L; Cordioli, P; Falcone, E; Lombardi, G; Moreno, A; Sala, G; Tollis, M

    2003-01-01

    The minimum requirements for assessing the immunogenicity of an experimental avian influenza (AI) vaccine prepared from inactivated A/Turkey/Italy/2676/99 (H7N1) low-pathogenicity (LP) AI (LPAI) virus were determined in chickens of different ages. A correlation between the amount of hemagglutinin (HA) per dose of vaccine and the protection against clinical signs of disease and infection by A/Chicken/Italy/13474/99 highly pathogenic (HP) AI (HPAI) virus was established. Depending on the vaccination schedule, one or two administrations of 0.5 microg of hemagglutinin protected chickens against clinical signs and death and completely prevented virus shedding from birds challenged at different times after vaccination.

  13. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species.

    Science.gov (United States)

    Hall, Jeffrey S; Franson, J Christian; Gill, Robert E; Meteyer, Carol U; TeSlaa, Joshua L; Nashold, Sean; Dusek, Robert J; Ip, Hon S

    2011-09-01

    Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. The infectious dose of HPAIV H5N1 in dunlin was determined to be 10(1.7) EID(50)/100 μl and that the lethal dose was 10(1.83) EID(50)/100 μl. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (10(4) EID(50)) and smaller amounts cloacally. Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3-5 days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North America by this species and raises questions for further investigation. Published 2011. This article is a US Government work and is in the public domain in the USA.

  14. Pathogenesis and transmissibility of highly (H7N1 and low (H7N9 pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa

    Directory of Open Access Journals (Sweden)

    Bertran Kateri

    2011-02-01

    Full Text Available Abstract An experimental infection with highly pathogenic avian influenza virus (HPAIV and low pathogenic avian influenza virus (LPAIV was carried out in red-legged partridges (Alectoris rufa in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999 and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008. Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR, respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  15. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa).

    Science.gov (United States)

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Abad, Francesc Xavier; Valle, Rosa; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-02-07

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  16. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    Science.gov (United States)

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  17. Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1

    Directory of Open Access Journals (Sweden)

    Scott H. Newman

    2013-09-01

    Full Text Available Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea, a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  18. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    Science.gov (United States)

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  19. Spatial modeling of wild bird risk factors to investigate highly pathogenic A(H5N1) avian influenza virus transmission

    Science.gov (United States)

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.

    2016-01-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  20. Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus.

    Science.gov (United States)

    Kapczynski, Darrell R; Esaki, Motoyuki; Dorsey, Kristi M; Jiang, Haijun; Jackwood, Mark; Moraes, Mauro; Gardin, Yannick

    2015-02-25

    Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines are gaining use for their ability to induce protection against heterologous isolates and ability to overcome maternal antibody interference. In these studies, we compared protection of chickens provided by a turkey herpesvirus (HVT) vector vaccine expressing the hemagglutinin (HA) gene from a clade 2.2 H5N1 strain (A/swan/Hungary/4999/2006) against homologous H5N1 as well as heterologous H5N1 and H5N2 highly pathogenic (HP) AI challenge. The results demonstrated all vaccinated birds were protected from clinical signs of disease and mortality following homologous challenge. In addition, oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared to sham-vaccinated birds. Following heterologous H5N1 or H5N2 HPAI challenge, 80-95% of birds receiving the HVT vector AI vaccine at day of age survived challenge with fewer birds shedding virus after challenge than sham vaccinated birds. In vitro cytotoxicity analysis demonstrated that splenic T lymphocytes from HVT-vector-AI vaccinated chickens recognized MHC-matched target cells infected with H5, as well as H6, H7, or H9 AI virus. Taken together, these studies provide support for the use of HVT vector vaccines expressing HA to protect poultry against multiple lineages of HPAI, and that both humoral and cellular immunity induced by live vaccines likely contributes to protection. Published by Elsevier Ltd.

  1. Deep sequencing of H7N8 avian influenza viruses from surveillance zone supports H7N8 high pathogenicity avian influenza was limited to a single outbreak farm in Indiana during 2016.

    Science.gov (United States)

    Lee, Dong-Hun; Torchetti, Mia Kim; Killian, Mary Lea; Swayne, David E

    2017-07-01

    In mid-January 2016, an outbreak of H7N8 high-pathogenicity avian influenza virus (HPAIV) in commercial turkeys occurred in Indiana. Surveillance within the 10km control zone identified H7N8 low-pathogenicity avian influenza virus (LPAIV) in nine surrounding turkey flocks but no other HPAIV-affected premises. We sequenced four of the H7N8 HPAIV isolated from the single farm and nine LPAIV identified during control zone surveillance. Evaluation included phylogenetic network analysis indicating close relatedness across the HPAIV and LPAIV, and that the progenitor H7N8 LPAIV spread among the affected turkey farms in Indiana, followed by spontaneous mutation to HPAIV on a single premise through acquisition of three basic amino acids at the hemagglutinin cleavage site. Deep sequencing of the available viruses failed to identify subpopulations in either the HPAIV or LPAIV suggesting mutation to HPAIV likely occurred on a single farm and the HPAIV did not spread to epidemiologically linked LPAIV-affected farms. Published by Elsevier Inc.

  2. The pathogenesis of H7N8 low and highly pathogenic avian influenza viruses from the United States 2016 outbreak in chickens, turkeys and mallards.

    Directory of Open Access Journals (Sweden)

    Mary J Pantin-Jackwood

    Full Text Available In January 2016, a combined outbreak of highly pathogenic (HP avian influenza virus (AIV and low pathogenicity (LP AIV occurred in commercial turkeys in the state of Indiana, United States. Genetically, the viruses were highly similar, belonged to the North American wild bird lineage, and had not been previously detected in poultry. In order to understand the pathobiology of the H7N8 LPAIV and HPAIV, infectivity, transmission and pathogenicity studies were conducted in chickens, turkeys, and mallards. Among the three species the lowest mean infectious dose for both the LP and HP phenotype was for turkeys, and also disease from the LPAIV was only observed with turkeys. Furthermore, although the HPAIV was lethal for both chickens and turkeys, clinical signs caused by the HPAIV isolate differed between the two species; neurological signs were only observed in turkeys. Mallards could be infected with and transmit both viruses to contacts, but neither caused clinical disease. Interestingly, with all three species, the mean infectious dose of the HP isolate was at least ten times lower than that of the LP isolate. This study corroborates the high susceptibility of turkeys to AIV as well as a pathobiology that is different from chickens. Further, this study demonstrates that mallards can be asymptomatically infected with HP and LP AIV from gallinaceous poultry and may not just be involved in transmitting AIV to them.

  3. The pathogenesis of H7N8 low and highly pathogenic avian influenza viruses from the United States 2016 outbreak in chickens, turkeys and mallards

    Science.gov (United States)

    Pantin-Jackwood, Mary J.; Stephens, Christopher B.; Bertran, Kateri; Swayne, David E.

    2017-01-01

    In January 2016, a combined outbreak of highly pathogenic (HP) avian influenza virus (AIV) and low pathogenicity (LP) AIV occurred in commercial turkeys in the state of Indiana, United States. Genetically, the viruses were highly similar, belonged to the North American wild bird lineage, and had not been previously detected in poultry. In order to understand the pathobiology of the H7N8 LPAIV and HPAIV, infectivity, transmission and pathogenicity studies were conducted in chickens, turkeys, and mallards. Among the three species the lowest mean infectious dose for both the LP and HP phenotype was for turkeys, and also disease from the LPAIV was only observed with turkeys. Furthermore, although the HPAIV was lethal for both chickens and turkeys, clinical signs caused by the HPAIV isolate differed between the two species; neurological signs were only observed in turkeys. Mallards could be infected with and transmit both viruses to contacts, but neither caused clinical disease. Interestingly, with all three species, the mean infectious dose of the HP isolate was at least ten times lower than that of the LP isolate. This study corroborates the high susceptibility of turkeys to AIV as well as a pathobiology that is different from chickens. Further, this study demonstrates that mallards can be asymptomatically infected with HP and LP AIV from gallinaceous poultry and may not just be involved in transmitting AIV to them. PMID:28481948

  4. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Science.gov (United States)

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  5. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Directory of Open Access Journals (Sweden)

    Charles Nfon

    Full Text Available There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI. In addition, heterologous cell mediated immunity (CMI was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  6. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential.

    Science.gov (United States)

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-03-02

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein - with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses - or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. This article is copyright of The Authors, 2017.

  7. Military and Military Medical Support in Highly Pathogenic Avian Influenza (HPAI/H5N1) Pandemic Scenario

    International Nuclear Information System (INIS)

    Taleski, V.

    2007-01-01

    Avian influenza (Bird flu) is a highly contagious viral disease affecting mainly chickens, turkeys, ducks, other birds and mammals. Reservoirs for HPAI /H5N1 virus are shore birds and waterfowl (asymptomatic, excrete virus in feces for a long periods of time), live bird markets and commercial swine facilities. Virus tends to cycle between pigs and birds. HPAI (H5N1) virus is on every 'top ten' list available for potential agricultural bio-weapon agents. The threat of a HPAI/H5N1 pandemic is a definitively global phenomenon and the response must be global. A number of National plans led to various measures of preventing and dealing with epidemics/pandemics. Lessons learned form the pandemic history indicated essential role of military and military medical support to civil authorities in a crisis situation. Based on International Military Medical Avian Influenza Pandemic workshop (Vienna 2006), an expected scenario would involve 30-50% outpatients, 20-30% hospital admission, 2-3% deaths, 10-20% complicated cases. Activities of civil hospital may be reduced by 50%. Benefits of military support could be in: Transportation of patients (primarily by air); Mass vaccination and provision of all other preventive measures (masks, Tamiflu); Restriction of movements; Infection control of health care facilities; Field hospitals for triage and quarantine, military barracks to treat milder cases and military hospitals for severe cases; Deal with corpses; Stockpiling (vaccines, antiviral, antibiotics, protective equipment, supplies); Training; Laboratories; Ensure public safety, etc. With the aim of minimizing the risk of a pandemic spread by means of rapid and uncomplicated cooperation, an early warning system has to be established to improve surveillance, improve international contacts (WHO, ECDC, CDC), establish Platform for sharing information, close contacts of national and international military and civilian surveillance networks and databases, cooperation between military

  8. Highly (H5N1 and low (H7N2 pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    Directory of Open Access Journals (Sweden)

    Kateri Bertran

    Full Text Available An experimental infection with highly pathogenic avian influenza (HPAI and low pathogenic avian influenza (LPAI viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006 or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009, both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR, which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds

  9. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    Science.gov (United States)

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  10. H5N2 Highly Pathogenic Avian Influenza Viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys.

    Science.gov (United States)

    Spackman, Erica; Pantin-Jackwood, Mary J; Kapczynski, Darrell R; Swayne, David E; Suarez, David L

    2016-11-22

    From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lineage hemagglutinin, and 3 genes from North American wild waterfowl low pathogenicity avian influenza viruses. The outbreak primarily affected turkeys and table-egg layer type chickens. Three isolates were selected for characterization in turkeys: the US index isolate from December 2014 (A/northern pintail/WA/40964/2014), and two poultry isolates from April 2015 (A/chicken/IA/13388/2015 and A/turkey/MN/12528/2015). Four week old broad-breasted white turkeys were inoculated with one of three doses (10 2 , 10 4 or 10 6 50% egg infectious doses [EID 50 ] per bird) of each of the isolates to evaluate infectious dose and pathogenesis. The mean bird infectious dose of A/northern pintail/WA/40964/2014 and A/turkey/MN/12528/2015 was 10 5 EID 50 per bird, but was 10 3 EID 50 per bird for A/chicken/IA/13388/2015, suggesting the latter had greater adaptation to gallinaceous birds. All three isolates had unusually long mean death time of 5.3-5.9 days post challenge, and the primary clinical signs were severe lethargy and neurological signs which started no more than 24 h before death (the average pre-clinical period was 4 days). Infected turkeys also shed high levels of virus by both the oropharyngeal and cloacal routes. The unusually long mean death times, high levels of virus in feces, and increased adaptation of the later viruses may have contributed to the rapid spread of the virus during the peak of the outbreak.

  11. Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea.

    Science.gov (United States)

    Kim, Young-Il; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Si, Young-Jae; Jeong, Ju-Hwan; Lee, In-Won; Nguyen, Hiep Dinh; Kwon, Jin-Jung; Choi, Won Suk; Song, Min-Suk; Kim, Chul-Joong; Choi, Young-Ki

    2017-09-01

    During the outbreaks of highly pathogenic avian influenza (HPAI) H5N6 viruses in 2016 in South Korea, novel H5N8 viruses were also isolated from migratory birds. Phylogenetic analysis revealed that the HA gene of these H5N8 viruses belonged to clade 2.3.4.4, similarly to recent H5Nx viruses, and originated from A/Brk/Korea/Gochang1/14(H5N8), a minor lineage of H5N8 that appeared in 2014 and then disappeared. At least four reassortment events occurred with different subtypes (H5N8, H7N7, H3N8 and H10N7) and a chicken challenge study revealed that they were classified as HPAI viruses according to OIE criteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. No evidence of transmission of H5N1 highly pathogenic avian influenza to humans after unprotected contact with infected wild swans.

    Science.gov (United States)

    Wallensten, A; Salter, M; Bennett, S; Brown, I; Hoschler, K; Oliver, I

    2010-02-01

    Highly pathogenic avian influenza (HPAI) subtype H5N1 remains a public health threat as long as it circulates in wild and domestic birds. Information on the transmissibility of H5N1 HPAI from wild birds is needed for evidence-based public health advice. We investigated if transmission of H5N1 HPAI had taken place in people that had unprotected contact with infected wild mute swans during an incident at the Abbotsbury Swannery in Dorset, England. Thirteen people who had been exposed to infected swans were contacted and actively followed up for symptoms. Serology was taken after 30 days. We did not find evidence of transmission of H5N1 HPAI to humans during the incident. The incident provided a rare opportunity to study the transmissibility of the virus from wild birds to humans.

  13. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    Science.gov (United States)

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  14. Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia

    Science.gov (United States)

    Beginning with Hong Kong in 2002, vaccines have been used as part of an integrated control strategy in 14 countries/regions to protect poultry against H5N1 high pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003 and vaccination was initiated the following year. ...

  15. Evaluation of the U.S. Department of Agriculture's egg pasteurization processes on the inactivation of high pathogenicity avian influenza virus and velogenic Newcastle disease virus in processed egg products

    Science.gov (United States)

    High pathogenicity avian influenza virus (HPAIV) A/chicken/Pennsylvania/1370/1983 (H5N2), and velogenic Newcastle disease virus (vNDV) AMPV-1/California/212676/2002 were inoculated into various egg products then heat treated at various temperatures for 0 to 30 min to determine thermal inactivation p...

  16. Protection from pulmonary tissue damage associated with infection of cynomolgus macaques by highly pathogenic avian influenza virus (H5N1) by low dose natural human IFN-α administered to the buccal mucosa.

    Science.gov (United States)

    Strayer, David R; Carter, William A; Stouch, Bruce C; Stittelaar, Koert J; Thoolen, Robert J M M; Osterhaus, Albert D M E; Mitchell, William M

    2014-10-01

    Using an established nonhuman primate model for H5N1 highly pathogenic influenza virus infection in humans, we have been able to demonstrate the prophylactic mitigation of the pulmonary damage characteristic of human fatal cases from primary influenza virus pneumonia with a low dose oral formulation of a commercially available parenteral natural human interferon alpha (Alferon N Injection®). At the highest oral dose (62.5IU/kg body weight) used there was a marked reduction in the alveolar inflammatory response with minor evidence of alveolar and interstitial edema in contrast to the hemorrhage and inflammatory response observed in the alveoli of control animals. The mitigation of severe damage to the lower pulmonary airway was observed without a parallel reduction in viral titers. Clinical trial data will be necessary to establish its prophylactic human efficacy for highly pathogenic influenza viruses. Copyright © 2014. Published by Elsevier B.V.

  17. Immunomodulatory Activity and Protective Effects of Polysaccharide from Eupatorium adenophorum Leaf Extract on Highly Pathogenic H5N1 Influenza Infection

    Directory of Open Access Journals (Sweden)

    Yi Jin

    2013-01-01

    Full Text Available The development of novel broad-spectrum, antiviral agents against H5N1 infection is urgently needed. In this study, we evaluated the immunomodulatory activities and protective effect of Eupatorium adenophorum polysaccharide (EAP against the highly pathogenic H5N1 subtype influenza virus. EAP treatment significantly increased the production of IL-6, TNF-α, and IFN-γ both in vivo and in vitro as measured by qPCR and ELISA. In a mouse infection model, intranasal administration of EAP at a dose of 25 mg/kg body weight prior to H5N1 viral challenge efficiently inhibited viral replication, decreased lung lesions, and increased survival rate. We further evaluated the innate immune recognition of EAP, as this process is regulated primarily Dectin-1 and mannose receptor (MR. These results indicate that EAP may have immunomodulatory properties and a potential prophylactic effect against H5N1 influenza infection. Our investigation suggests an alternative strategy for the development of novel antiinfluenza agents and benefits of E. adenophorum products.

  18. Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein.

    Directory of Open Access Journals (Sweden)

    Ioannis Sitaras

    Full Text Available Evolution of Avian Influenza (AI viruses--especially of the Highly Pathogenic Avian Influenza (HPAI H5N1 subtype--is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1, using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number.

  19. Geographical and Historical Patterns in the Emergences of Novel Highly Pathogenic Avian Influenza (HPAI H5 and H7 Viruses in Poultry

    Directory of Open Access Journals (Sweden)

    Madhur S. Dhingra

    2018-06-01

    Full Text Available Over the years, the emergence of novel H5 and H7 highly pathogenic avian influenza viruses (HPAI has been taking place through two main mechanisms: first, the conversion of a low pathogenic into a highly pathogenic virus, and second, the reassortment between different genetic segments of low and highly pathogenic viruses already in circulation. We investigated and summarized the literature on emerging HPAI H5 and H7 viruses with the aim of building a spatio-temporal database of all these recorded conversions and reassortments events. We subsequently mapped the spatio-temporal distribution of known emergence events, as well as the species and production systems that they were associated with, the aim being to establish their main characteristics. From 1959 onwards, we identified a total of 39 independent H7 and H5 LPAI to HPAI conversion events. All but two of these events were reported in commercial poultry production systems, and a majority of these events took place in high-income countries. In contrast, a total of 127 reassortments have been reported from 1983 to 2015, which predominantly took place in countries with poultry production systems transitioning from backyard to intensive production systems. Those systems are characterized by several co-circulating viruses, multiple host species, regular contact points in live bird markets, limited biosecurity within value chains, and frequent vaccination campaigns that impose selection pressures for emergence of novel reassortants. We conclude that novel HPAI emergences by these two mechanisms occur in different ecological niches, with different viral, environmental and host associated factors, which has implications in early detection and management and mitigation of the risk of emergence of novel HPAI viruses.

  20. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses.

    Science.gov (United States)

    Kim, Shin-Hee; Samal, Siba K

    2017-07-24

    Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Protective efficacy of Newcastle disease virus expressing soluble trimeric hemagglutinin against highly pathogenic H5N1 influenza in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Lisette A H M Cornelissen

    Full Text Available BACKGROUND: Highly pathogenic avian influenza virus (HPAIV causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV that express influenza hemagglutinin (HA have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5 or a soluble trimeric form thereof (NDV-sH5(3. A single intramuscular immunization with NDV-sH5(3 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH5(3 was less protective than NDV-H5 (50% vs 80% protection when administered via the respiratory tract. The NDV-sH5(3 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. CONCLUSIONS/SIGNIFICANCE: Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant

  2. Characterization of H5N6 highly pathogenic avian influenza viruses isolated from wild and captive birds in the winter season of 2016-2017 in Northern Japan.

    Science.gov (United States)

    Hiono, Takahiro; Okamatsu, Masatoshi; Matsuno, Keita; Haga, Atsushi; Iwata, Ritsuko; Nguyen, Lam Thanh; Suzuki, Mizuho; Kikutani, Yuto; Kida, Hiroshi; Onuma, Manabu; Sakoda, Yoshihiro

    2017-09-01

    On 15 November 2016, a black swan that had died in a zoo in Akita prefecture, northern Japan, was strongly suspected to have highly pathogenic avian influenza (HPAI); an HPAI virus (HPAIV) belonging to the H5N6 subtype was isolated from specimens taken from the bird. After the initial report, 230 cases of HPAI caused by H5N6 viruses from wild birds, captive birds, and domestic poultry farms were reported throughout the country during the winter season. In the present study, 66 H5N6 HPAIVs isolated from northern Japan were further characterized. Phylogenetic analysis of the hemagglutinin gene showed that the H5N6 viruses isolated in northern Japan clustered into Group C of Clade 2.3.4.4 together with other isolates collected in Japan, Korea and Taiwan during the winter season of 2016-2017. The antigenicity of the Japanese H5N6 isolate differed slightly from that of HPAIVs isolated previously in Japan and China. The virus exhibited high pathogenicity and a high replication capacity in chickens, whereas virus growth was slightly lower in ducks compared with that of an H5N8 HPAIV isolate collected in Japan in 2014. Comprehensive analyses of Japanese isolates, including those from central, western, and southern Japan, as well as rapid publication of this information are essential for facilitating greater control of HPAIVs. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  3. A Stakeholder Survey on Live Bird Market Closures Policy for Controlling Highly Pathogenic Avian Influenza in Vietnam

    Directory of Open Access Journals (Sweden)

    Thi Thanh Thuy Nguyen

    2017-08-01

    Full Text Available Extensive research in Vietnam and elsewhere has shown that live bird markets (LBMs play a significant role in the ecology and zoonotic transmission of avian influenzas (AIs including H5N1 and H7N9. Vietnam has a large number of LBMs reflecting the consumer preferences for live poultry. Under pressure to mitigate risks for H7N9 and other zoonotic AIs, Vietnam is considering, among other mitigation measures, temporary closures of LBMs as a policy to reduce risk of AI outbreaks. However, the efficacy of market closure is debated, particularly because little is known about how poultry traders may react, and whether trading may emerge outside formal marketplaces. Combining efforts of anthropologists, economists, sociologists, and veterinarians can be useful to elucidate the drivers behind poultry traders’ reactions and better understanding the barriers to implementing risk mitigation measures. In this paper, we present results from a stakeholder survey of LBM stakeholders in Vietnam. Our qualitative data show that trading outside formal markets is very likely to occur in the event of a temporary LBM market closure. Our data show that the poultry value chain in Vietnam remains highly flexible, with traders willing and able to trade poultry in many possible locations. Our results indicate that simplification of the poultry value chain along with strict enforcement, engagement of stakeholders, and adequate communication would be a necessary prerequisite before market closure could be an effective policy.

  4. A Stakeholder Survey on Live Bird Market Closures Policy for Controlling Highly Pathogenic Avian Influenza in Vietnam.

    Science.gov (United States)

    Nguyen, Thi Thanh Thuy; Fearnley, Lyle; Dinh, Xuan Tung; Tran, Thi Tram Anh; Tran, Trong Tung; Nguyen, Van Trong; Tago, Damian; Padungtod, Pawin; Newman, Scott H; Tripodi, Astrid

    2017-01-01

    Extensive research in Vietnam and elsewhere has shown that live bird markets (LBMs) play a significant role in the ecology and zoonotic transmission of avian influenzas (AIs) including H5N1 and H7N9. Vietnam has a large number of LBMs reflecting the consumer preferences for live poultry. Under pressure to mitigate risks for H7N9 and other zoonotic AIs, Vietnam is considering, among other mitigation measures, temporary closures of LBMs as a policy to reduce risk of AI outbreaks. However, the efficacy of market closure is debated, particularly because little is known about how poultry traders may react, and whether trading may emerge outside formal marketplaces. Combining efforts of anthropologists, economists, sociologists, and veterinarians can be useful to elucidate the drivers behind poultry traders' reactions and better understanding the barriers to implementing risk mitigation measures. In this paper, we present results from a stakeholder survey of LBM stakeholders in Vietnam. Our qualitative data show that trading outside formal markets is very likely to occur in the event of a temporary LBM market closure. Our data show that the poultry value chain in Vietnam remains highly flexible, with traders willing and able to trade poultry in many possible locations. Our results indicate that simplification of the poultry value chain along with strict enforcement, engagement of stakeholders, and adequate communication would be a necessary prerequisite before market closure could be an effective policy.

  5. Low- and High-Pathogenic Avian Influenza H5 and H7 Spread Risk Assessment Within and Between Australian Commercial Chicken Farms.

    Science.gov (United States)

    Scott, Angela Bullanday; Toribio, Jenny-Ann L M L; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study quantified and compared the probability of avian influenza (AI) spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW) and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI) in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms). If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI) infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively) than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively) due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5-95%, 0.0058-0.036) and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10 -5 ; 5-95%, 1.47 × 10 -6 -0.00034). As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices to limit spread of

  6. Low- and High-Pathogenic Avian Influenza H5 and H7 Spread Risk Assessment Within and Between Australian Commercial Chicken Farms

    Science.gov (United States)

    Scott, Angela Bullanday; Toribio, Jenny-Ann L. M. L.; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study quantified and compared the probability of avian influenza (AI) spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW) and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI) in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms). If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI) infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively) than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively) due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5–95%, 0.0058–0.036) and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10−5; 5–95%, 1.47 × 10−6–0.00034). As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices to limit

  7. Low- and High-Pathogenic Avian Influenza H5 and H7 Spread Risk Assessment Within and Between Australian Commercial Chicken Farms

    Directory of Open Access Journals (Sweden)

    Angela Bullanday Scott

    2018-04-01

    Full Text Available This study quantified and compared the probability of avian influenza (AI spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms. If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5–95%, 0.0058–0.036 and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10−5; 5–95%, 1.47 × 10−6–0.00034. As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices

  8. Experimental infection with highly pathogenic H5N8 avian influenza viruses in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica).

    Science.gov (United States)

    Kwon, Jung-Hoon; Noh, Yun Kyung; Lee, Dong-Hun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Song, Chang-Seon; Nahm, Sang-Soep

    2017-05-01

    Wild birds play a major role in the evolution, maintenance, and dissemination of highly pathogenic avian influenza viruses (HPAIV). Sub-clinical infection with HPAI in resident wild birds could be a source of dissemination of HPAIV and continuous outbreaks. In this study, the pathogenicity and infectivity of two strains of H5N8 clade 2.3.4.4 virus were evaluated in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica). None of the birds experimentally infected with H5N8 viruses showed clinical signs or mortality. The H5N8 viruses efficiently replicated in the virus-inoculated Mandarin ducks and transmitted to co-housed Mandarin ducks. Although relatively high levels of viral shedding were noted in pigeons, viral shedding was not detected in some of the pigeons and the shedding period was relatively short. Furthermore, the infection was not transmitted to co-housed pigeons. Immunohistochemical examination revealed the presence of HPAIV in multiple organs of the infected birds. Histopathological evaluation showed the presence of inflammatory responses primarily in HPAIV-positive organs. Our results indicate that Mandarin ducks and pigeons can be infected with H5N8 HPAIV without exhibiting clinical signs; thus, they may be potential healthy reservoirs of the H5N8 HPAIV. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    Directory of Open Access Journals (Sweden)

    C. Steglich

    2014-01-01

    Full Text Available Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV H5 expressing Newcastle disease virus (NDV-based vector vaccine (chNDVFHNPMV8H5 in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8. This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+. However, due to the absence of the major NDV immunogens it failed to induce protection against Newcastle disease (ND. Here, we report on protection of MDA+ chickens against HPAI H5N1 and ND, by vaccination with chNDVFHNPMV8H5 either on day 1 or day seven after hatch, and subsequent immunization with live attenuated NDV seven days later. Vaccination was well tolerated and three weeks after immunization, challenge infections with highly pathogenic NDV as well as HPAIV H5N1 were carried out. All animals remained healthy without exhibiting any clinical signs, whereas non-vaccinated animals showed morbidity and mortality. Therefore, vaccination with chNDVFHNPMV8H5 can be followed by NDV vaccination to protect chickens from HPAIV as well as NDV, indicating that the antibody response against chNDVFHNPMV8H5 does not interfere with live ND vaccination.

  10. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus.

    Directory of Open Access Journals (Sweden)

    Subaschandrabose Rajesh Kumar

    Full Text Available BACKGROUND: Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA. The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n. or subcutaneously (s.c. with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. CONCLUSION: Our results indicated that protection from high pathogenic H7N7 (NL/219/03 virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.

  11. Epidemiologic and Economic Analyses on Highly Pathogenic Avian Influenza H5N1 in Nigeria and Egypt

    NARCIS (Netherlands)

    Fasina, F.O.

    2015-01-01

    Influenza A viruses have caused several devastating outbreaks in poultry with some zoonotic infections and deaths in humans. To control the viruses and their continuous circulation in poultry population, an understanding of the epidemiology of the viruses is needed. An evaluation of the situation of

  12. Efficacy of two H5N9-inactivated vaccines against challenge with a recent H5N1 highly pathogenic avian influenza isolate from a chicken in Thailand.

    Science.gov (United States)

    Bublot, Michel; Le Gros, François-Xavier; Nieddu, Daniela; Pritchard, Nikki; Mickle, Thomas R; Swayne, David E

    2007-03-01

    The objective of this study was to compare the efficacy of two avian influenza (AI) H5-inactivated vaccines containing either an American (A/turkey/Wisconsin/68 H5N9; H5N9-WI) or a Eurasian isolate (A/chicken/Italy/22A/98 H5N9; H5N9-It). Three-week-old specific pathogen-free chickens were vaccinated once and challenged 3 wk later with a H5N1 highly pathogenic AI (HPAI) virus isolated from a chicken in Thailand in 2004. All unvaccinated challenged birds died within 2 days, whereas 90% and 100% of chickens vaccinated with H5N9-WI and H5N9-It, respectively, were protected against morbidity and mortality. Both vaccines prevented cloacal shedding and significantly reduced oral shedding of the challenge HPAI virus. Additional chickens (vaccinated or unvaccinated) were placed in contact with the directly challenged birds 18 hr after challenge. All unvaccinated chickens in contact with unvaccinated challenged birds died within 3 days after contact, whereas unvaccinated chickens in contact with vaccinated challenged birds either showed a significantly delayed mortality or did not become infected. All vaccinated contacts were protected against clinical signs, and most chickens did not shed detectable amount of HPAI virus. Altogether, these data indicate that both vaccines protected very well against morbidity and mortality and reduced or prevented shedding induced by direct or contact exposure to Asian H5N1 HPAI virus.

  13. Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001

    Science.gov (United States)

    Nguyen, Doan C.; Uyeki, Timothy M.; Jadhao, Samadhan; Maines, Taronna; Shaw, Michael; Matsuoka, Yumiko; Smith, Catherine; Rowe, Thomas; Lu, Xiuhua; Hall, Henrietta; Xu, Xiyan; Balish, Amanda; Klimov, Alexander; Tumpey, Terrence M.; Swayne, David E.; Huynh, Lien P. T.; Nghiem, Ha K.; Nguyen, Hanh H. T.; Hoang, Long T.; Cox, Nancy J.; Katz, Jacqueline M.

    2005-01-01

    Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia. PMID:15767421

  14. Targeted surveillance for highly pathogenic avian influenza in migratory waterfowl across the conterminous United States: chapter 12

    Science.gov (United States)

    Farnsworth, Matthew L.; Kendall, William L.; Doherty, Paul F.; Miller, Ryan S.; White, Gary C.; Nichols, James D.; Burnham, Kenneth P.; Franklin, Alan B.; Majumdar, S.; Brenner, F.J.; Huffman, J.E.; McLean, R.G.; Panah, A.I.; Pietrobon, P.J.; Keeler, S.P.; Shive, S.

    2011-01-01

    Introduction of Asian strain H5N1 Highly Pathogenic avian influenca via waterfowl migration is one potential route of entry into the United States. In conjunction with state, tribe, and laboratory partners, the United States Department of Agriculture collected and tested 124,603 wild bird samples in 2006 as part of a national surveillance effort. A sampling plan was devised to increase the probability fo detecting Asian strain H5N1 at a national scale. Band recovery data were used to identify and prioritize sampling for wild migratory waterfowl, resulting in spatially targeted sampling recommendations focused on reads with high numbers of recoveries. We also compared the spatial and temporal distribution of the 2006 cloacal and fecal waterfowl sampling effort to the bird banding recovery data and found concordance between the two .Finally, we present improvements made to the 2007 fecal sampling component of the surveillance plan and suggest further improvements for future sampling.

  15. Detection of H5N1 high-pathogenicity avian influenza virus in meat and tracheal samples from experimentally infected chickens.

    Science.gov (United States)

    Das, Amaresh; Spackman, Erica; Thomas, Colleen; Swayne, David E; Suarez, David L

    2008-03-01

    The Asian H5N1 highly pathogenic avian influenza (HPAI) virus causes a systemic disease with high mortality of poultry and is potentially zoonotic. In both chickens and ducks, the virus has been demonstrated to replicate in both cardiac and skeletal muscle cells. Experimentally, H5N1 HPAI virus has been transmitted to chickens through the consumption of raw infected meat. In this study, we investigated virus replication in cardiac and skeletal muscle and in the trachea of chickens after experimental intranasal inoculation with the H5N1 HPAI virus. The virus was detected in tissues by real-time reverse transcription-polymerase chain reaction (RRT-PCR) and virus isolation, and in the trachea by RRT-PCR and a commercial avian influenza (AI) viral antigen detection test. A modified RNA extraction protocol was developed for rapid detection of the virus in tissues by RRT-PCR. The H5N1 HPAI virus was sporadically detected in meat and the tracheas of infected birds without any clinical sign of disease as early as 6 hr postinfection (PI), and was detected in all samples tested at 24 hr PI and later. No differences in sensitivity were seen between virus isolation and RRT-PCR in meat samples. The AI viral antigen detection test on tracheal swabs was a useful method for identifying infected chickens when they were sick or dead, but was less sensitive in detecting infected birds when they were preclinical. This study provides data indicating that preslaughter tracheal swab testing can identify birds infected with HPAI among the daily mortality and prevent infected flocks from being sent to processing plants. In addition, the modified RNA extraction and RRT-PCR test on meat samples provide a rapid and sensitive method of identifying HPAI virus in illegal contraband or domestic meat samples.

  16. Surveillance for early detection of low pathogenicity avian influenza in poultry

    NARCIS (Netherlands)

    Comin, A.

    2012-01-01

    Infection with low pathogenicity avian influenza (LPAI) virus is widespread and has led to outbreaks in domestic birds in many countries. Although infection does not pose a serious concern for animal heath, LPAI virus subtypes H5 and H7 can mutate into the highly pathogenic form (HPAI), which can

  17. Neuroinvasion of the highly pathogenic influenza virus H7N1 is caused by disruption of the blood brain barrier in an avian model.

    Directory of Open Access Journals (Sweden)

    Aida J Chaves

    Full Text Available Influenza A virus (IAV causes central nervous system (CNS lesions in avian and mammalian species, including humans. However, the mechanism used by IAV to invade the brain has not been determined. In the current work, we used chickens infected with a highly pathogenic avian influenza (HPAI virus as a model to elucidate the mechanism of entry of IAV into the brain. The permeability of the BBB was evaluated in fifteen-day-old H7N1-infected and non-infected chickens using three different methods: (i detecting Evans blue (EB extravasation into the brain, (ii determining the leakage of the serum protein immunoglobulin Y (IgY into the brain and (iii assessing the stability of the tight-junction (TJ proteins zonula occludens-1 and claudin-1 in the chicken brain at 6, 12, 18, 24, 36 and 48 hours post-inoculation (hpi. The onset of the induced viremia was evaluated by quantitative real time RT-PCR (RT-qPCR at the same time points. Viral RNA was detected from 18 hpi onward in blood samples, whereas IAV antigen was detected at 24 hpi in brain tissue samples. EB and IgY extravasation and loss of integrity of the TJs associated with the presence of viral antigen was first observed at 36 and 48 hpi in the telencephalic pallium and cerebellum. Our data suggest that the mechanism of entry of the H7N1 HPAI into the brain includes infection of the endothelial cells at early stages (24 hpi with subsequent disruption of the TJs of the BBB and leakage of virus and serum proteins into the adjacent neuroparenchyma.

  18. Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterization of isolates.

    Directory of Open Access Journals (Sweden)

    Giovanni Cattoli

    Full Text Available Highly pathogenic avian influenza virus A/H5N1 was first officially reported in Africa in early 2006. Since the first outbreak in Nigeria, this virus spread rapidly to other African countries. From its emergence to early 2008, 11 African countries experienced A/H5N1 outbreaks in poultry and human cases were also reported in three of these countries. At present, little is known of the epidemiology and molecular evolution of A/H5N1 viruses in Africa. We have generated 494 full gene sequences from 67 African isolates and applied molecular analysis tools to a total of 1,152 A/H5N1 sequences obtained from viruses isolated in Africa, Europe and the Middle East between 2006 and early 2008. Detailed phylogenetic analyses of the 8 gene viral segments confirmed that 3 distinct sublineages were introduced, which have persisted and spread across the continent over this 2-year period. Additionally, our molecular epidemiological studies highlighted the association between genetic clustering and area of origin in a majority of cases. Molecular signatures unique to strains isolated in selected areas also gave us a clearer picture of the spread of A/H5N1 viruses across the continent. Mutations described as typical of human influenza viruses in the genes coding for internal proteins or associated with host adaptation and increased resistance to antiviral drugs have also been detected in the genes coding for transmembrane proteins. These findings raise concern for the possible human health risk presented by viruses with these genetic properties and highlight the need for increased efforts to monitor the evolution of A/H5N1 viruses across the African continent. They further stress how imperative it is to implement sustainable control strategies to improve animal and public health at a global level.

  19. Persistence of highly pathogenic avian influenza virus (H7N1) in infected chickens: feather as a suitable sample for diagnosis.

    Science.gov (United States)

    Busquets, Núria; Abad, F Xavier; Alba, Anna; Dolz, Roser; Allepuz, Alberto; Rivas, Raquel; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2010-09-01

    Selection of an ideal sample is a vital element in early detection of influenza infection. Rapid identification of infectious individuals or animals is crucial not only for avian influenza virus (AIV) surveillance programmes, but also for treatment and containment strategies. This study used a combination of quantitative real-time RT-PCR with an internal positive control and a cell-titration system to examine the presence of virus in different samples during active experimental AIV infection and its persistence in the infected carcasses. Oropharyngeal/cloacal swabs as well as feather pulp and blood samples were collected from 15-day-old chicks infected with H7N1 highly pathogenic AIV (HPAIV) and the kinetics of virus shedding during active infection were evaluated. Additionally, several samples (muscle, skin, brain, feather pulp and oropharyngeal and cloacal swabs) were examined to assess the persistence of virus in the HPAIV-infected carcasses. Based on the results, feather pulp was found to be the best sample to detect and isolate HPAIV from infected chicks from 24 h after inoculation onwards. Kinetic studies on the persistence of virus in infected carcasses revealed that tissues such as muscle could potentially transmit infectious virus for 3 days post-mortem (p.m.), whilst other tissues such as skin, feather pulp and brain retained their infectivity for as long as 5-6 days p.m. at environmental temperature (22-23 degrees C). These results strongly favour feather as a useful sample for HPAIV diagnosis in infected chickens as well as in carcasses.

  20. Gas-permeable ethylene bags for the small scale cultivation of highly pathogenic avian influenza H5N1 and other viruses in embryonated chicken eggs

    Directory of Open Access Journals (Sweden)

    McCurdy Kimberly S

    2010-01-01

    Full Text Available Abstract Background Embryonated chicken eggs (ECE are sometimes used for the primary isolation or passage of influenza viruses, other viruses, and certain bacteria. For small-scale experiments with pathogens that must be studied in biosafety level three (BSL3 facilities, inoculated ECE are sometimes manipulated and maintained in small egg incubators within a biosafety cabinet (BSC. To simplify the clean up and decontamination of an egg incubator in case of egg breakage, we explored whether ethylene breather bags could be used to encase ECE inoculated with pathogens. This concept was tested by determining embryo survival and examining virus yields in bagged ECE. Results Virus yields acceptable for many applications were attained when influenza-, alpha-, flavi-, canine distemper-, and mousepox viruses were propagated in ECE sealed within ethylene breather bags. Conclusions For many small-scale applications, ethylene breather bags can be used to encase ECE inoculated with various viruses.

  1. First introduction of highly pathogenic H5NI avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2007-01-01

    Background: Since 2005 highly pathogenic ( HP) avian influenza A H5N1 viruses have spread from Asia to Africa and Europe infecting poultry, humans and wild birds. HP H5N1 virus was isolated in Denmark for the first time in March 2006. A total of 44 wild birds were found positive for the HP H5N1...... infection. In addition, one case was reported in a backyard poultry flock. Results: Full-genome characterisation of nine isolates revealed that the Danish H5N1 viruses were highly similar to German H5N1 isolates in all genes from the same time period. The haemagglutinin gene grouped phylogenetically in H5...... clade 2 subclade 2 and closest relatives besides the German isolates were isolates from Croatia in 2005, Nigeria and Niger in 2006 and isolates from Astrakhan in Russia 2006. The German and Danish isolates shared unique substitutions in the NA, PB1 and NS2 proteins. Conclusion: The first case of HP H5N1...

  2. Thermal inactivation of H5N2 high-pathogenicity avian influenza virus in dried egg white with 7.5% moisture.

    Science.gov (United States)

    Thomas, Colleen; Swayne, David E

    2009-09-01

    High-pathogenicity avian influenza viruses (HPAIV) cause severe systemic disease with high mortality in chickens. Isolation of HPAIV from the internal contents of chicken eggs has been reported, and this is cause for concern because HPAIV can be spread by movement of poultry products during marketing and trade activity. This study presents thermal inactivation data for the HPAIV strain A/chicken/PA/1370/83 (H5N2) (PA/83) in dried egg white with a moisture content (7.5%) similar to that found in commercially available spray-dried egg white products. The 95% upper confidence limits for D-values calculated from linear regression of the survival curves at 54.4, 60.0, 65.5, and 71.1 degrees C were 475.4, 192.2, 141.0, and 50.1 min, respectively. The line equation y = [0.05494 x degrees C] + 5.5693 (root mean square error = 0.0711) was obtained by linear regression of experimental D-values versus temperature. Conservative predictions based on the thermal inactivation data suggest that standard industry pasteurization protocols would be very effective for HPAIV inactivation in dried egg white. For example, these calculations predict that a 7-log reduction would take only 2.6 days at 54.4 degrees C.

  3. Risk factors for the introduction of high pathogenicity Avian Influenza virus into poultry farms during the epidemic in the Netherlands in 2003.

    Science.gov (United States)

    Thomas, M E; Bouma, A; Ekker, H M; Fonken, A J M; Stegeman, J A; Nielen, M

    2005-06-10

    An epidemic of high pathogenicity Avian Influenza (HPAI) occurred in the Netherlands in 2003. A census survey of 173 infected and 401 uninfected commercial poultry farms was carried out to identify factors associated with the introduction of the HPAI virus into poultry farms. Data on farm size, production characteristics, type of housing, presence of cattle and pigs were gathered by the National Inspection Service for Livestock and Meat from all farms included in this study. For each risk factor (RF) available for analysis, the Mantel-Haenszel odds ratio was calculated (stratified on farm size and housing type). We found an increased risk of HPAI virus introduction in layer finisher type poultry: OR = 2.05 (95% confidence interval, CI = 1.29-3.27). An explanation for this increased risk is the high number of contacts between these farms, especially via cardboard egg trays used for removal of eggs during the epidemic. Our analysis did not indicate significant differences between the infected and uninfected farms with regard to housing type, presence of cattle or pigs. Since layer finisher type farms are assumed to be at higher risk for HPAI virus introduction, more specific control measures might be applied in future outbreaks.

  4. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia

    Science.gov (United States)

    Paul, Mathilde C.; Goutard, Flavie L.; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L.; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers’ livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  5. Experimental infection of a North American raptor, American Kestrel (Falco sparverius, with highly pathogenic avian influenza virus (H5N1.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Hall

    2009-10-01

    Full Text Available Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV subtype H5N1. Should HPAIV (H5N1 reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1 infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1. All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1 is introduced into North America.

  6. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    Science.gov (United States)

    Hall, Jeffrey S.; Ip, Hon S.; Franson, J.C.; Meteyer, C.; Nashold, Sean W.; Teslaa, Joshua L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  7. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    Science.gov (United States)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-08-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.

  8. The chest X-ray manifestations of children with highly pathogenic H5N1 avian influenza virus infection (a report of 1 final diagnosis case and 1 borderline case)

    International Nuclear Information System (INIS)

    Jin Ke; Chen Hua; Tan Lihua; Yuan Youhong; Xiao Enhua; Luo Ruping; Li Wanging; Xu Heping

    2006-01-01

    Objective: To describe the chest X-ray manifestations of children with highly pathogenic H5N1 avian influenza virus infection. Methods: The pulmonary X-ray findings in 1 patient was confirmed by the World Health Organization infected H5N1 avian influenza vires and 1 borderline patient was retrospectively analyzed. Results: Both sides of lung field showed the cloudy and massive infiltration in chest X-ray film. The lesions of lung distributed extensively and symmetrically. Radiological dynamic changes showed the variation of the lesions of lung was quick in a short time. It had a characteristic of roving around. The lesions of lung appeared fibrosis at the period of the end. Conclusion: There are some radiographic characteristics in children with H5N1 avian influenza vires infection. It will be helpful for its diagnosis when getting familiar with its X-ray manifestations, but the final diagnosis is dependent on the epidemiology history and laboratory results. (authors)

  9. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Miller, Patti J; Afonso, Claudio L; Spackman, Erica; Kapczynski, Darrell R; Shepherd, Eric; Smith, Diane; Swayne, David E

    2015-05-15

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it is not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (Pducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (Pducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. Published by Elsevier B.V.

  10. Evolutionary genetics of highly pathogenic H5N1 avian influenza viruses isolated from whooper swans in northern Japan in 2008.

    Science.gov (United States)

    Usui, Tatsufumi; Yamaguchi, Tsuyoshi; Ito, Hiroshi; Ozaki, Hiroichi; Murase, Toshiyuki; Ito, Toshihiro

    2009-12-01

    In April and May 2008, highly pathogenic avian influenza viruses subtype H5N1 were isolated from dead or moribund whooper swans in Aomori, Akita and Hokkaido prefectures in northern Japan. To trace the genetic lineage of the isolates, the nucleotide sequences of all eight genes were determined and phylogenetically analyzed. The Japanese strains were nearly identical to chicken viruses isolated in Russia in April 2008 and closely related to viruses isolated from dead wild birds in Hong Kong in 2007-2008. Their HA genes clustered in clade 2.3.2. On the other hand, NA and the other internal genes were closely related to those of clade 2.3.4 viruses (genotype V) whose NP genes originated from an HA clade 2.3.2 virus. In conclusion, the H5N1 viruses isolated in Japan, Russia and Hong Kong were derived from a common ancestor virus belonging to genotype V that was generated from genetic reassortment events between viruses of HA clades 2.3.2 and 2.3.4.

  11. Overview of incursions of Asian H5N1 subtype highly pathogenic avian influenza virus into Great Britain, 2005-2008.

    Science.gov (United States)

    Alexander, Dennis J; Manvell, Ruth J; Irvine, Richard; Londt, Brandon Z; Cox, Bill; Ceeraz, Vanessa; Banks, Jill; Browna, Ian H

    2010-03-01

    Since 2005 there have been five incursions into Great Britain of highly pathogenic avian influenza (HPAI) viruses of subtype H5N1 related to the ongoing global epizootic. The first incursion occurred in October 2005 in birds held in quarantine after importation from Taiwan. Two incursions related to wild birds: one involved a single dead whooper swan found in March 2006 in the sea off the east coast of Scotland, and the other involved 10 mute swans and a Canada goose found dead over the period extending from late December 2007 to late February 2008 on or close to a swannery on the south coast of England. The other two outbreaks occurred in commercial poultry in January 2007 and November 2007, both in the county of Suffolk. The first of these poultry outbreaks occurred on a large turkey farm, and there was no further spread. The second outbreak occurred on a free-range farm rearing turkeys, ducks, and geese and spread to birds on a second turkey farm that was culled as a dangerous contact. Viruses isolated from these five outbreaks were confirmed to be Asian H5N1 HPAI viruses; the quarantine outbreak was attributed to a clade 2.3 virus and the other four to clade 2.2 viruses. This article describes the outbreaks, their control, and the possible origins of the responsible viruses.

  12. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010.

    Science.gov (United States)

    Creanga, Adrian; Hang, Nguyen Le Khanh; Cuong, Vuong Duc; Nguyen, Ha T; Phuong, Hoang Vu Mai; Thanh, Le Thi; Thach, Nguyen Co; Hien, Pham Thi; Tung, Nguyen; Jang, Yunho; Balish, Amanda; Dang, Nguyen Hoang; Duong, Mai Thuy; Huong, Ngo Thu; Hoa, Do Ngoc; Tho, Nguyen Dang; Klimov, Alexander; Kapella, Bryan K; Gubareva, Larisa; Kile, James C; Hien, Nguyen Tran; Mai, Le Quynh; Davis, C Todd

    2017-09-15

    Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza.

    Science.gov (United States)

    Fournié, G; Guitian, F J; Mangtani, P; Ghani, A C

    2011-08-07

    Live bird markets (LBMs) act as a network 'hub' and potential reservoir of infection for domestic poultry. They may therefore be responsible for sustaining H5N1 highly pathogenic avian influenza (HPAI) virus circulation within the poultry sector, and thus a suitable target for implementing control strategies. We developed a stochastic transmission model to understand how market functioning impacts on the transmission dynamics. We then investigated the potential for rest days-periods during which markets are emptied and disinfected-to modulate the dynamics of H5N1 HPAI within the poultry sector using a stochastic meta-population model. Our results suggest that under plausible parameter scenarios, HPAI H5N1 could be sustained silently within LBMs with the time spent by poultry in markets and the frequency of introduction of new susceptible birds' dominant factors determining sustained silent spread. Compared with interventions applied in farms (i.e. stamping out, vaccination), our model shows that frequent rest days are an effective means to reduce HPAI transmission. Furthermore, our model predicts that full market closure would be only slightly more effective than rest days to reduce transmission. Strategies applied within markets could thus help to control transmission of the disease.

  14. Mitigation strategies to reduce the generation and transmission of airborne highly pathogenic avian influenza virus particles during processing of infected poultry.

    Science.gov (United States)

    Bertran, Kateri; Clark, Andrew; Swayne, David E

    2018-06-08

    Airborne transmission of H5N1 highly pathogenic avian influenza (HPAI) viruses has occurred among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry, and such transmission has been experimentally reproduced. In this study, we investigated simple, practical changes in the processing of H5N1 virus-infected chickens to reduce infectious airborne particles and their transmission. Our findings suggest that containing the birds during the killing and bleeding first step by using a disposable plastic bag, a commonly available cooking pot widely used in Egypt (halla), or a bucket significantly reduces generation of infectious airborne particles and transmission to ferrets. Similarly, lack of infectious airborne particles was observed when processing vaccinated chickens that had been challenged with HPAI virus. Moreover, the use of a mechanical defeatherer significantly increased total number of particles in the air compared to manual defeathering. This study confirms that simple changes in poultry processing can efficiently mitigate generation of infectious airborne particles and their transmission to humans. Published by Elsevier GmbH.

  15. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus.

    Science.gov (United States)

    Li, Sumei; Jia, Xiuhua; Shen, Xintian; Wei, Zhuwen; Jiang, Zhiyan; Liao, Yixian; Guo, Yiming; Zheng, Xiaojun; Zhong, Guohua; Song, Gaopeng

    2017-08-15

    Highly pathogenic H5N1 virus (H5N1) entry is a key target for the development of novel anti-influenza agents with new mechanisms of action. In our continuing efforts to identify novel potential anti-H5N1 entry inhibitors, a series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on two small molecule inhibitors 1 and 2 previously discovered by us. The anti-H5N1 entry activities were determined based on HA/HIV and VSVG/HIV entry assays. Compound 15 displayed the most promising anti-H5N1 entry activities with average IC 50 values of 4.05μM and good selective index (22.9). Detailed structure-activity relationships (SARs) studies suggested that either the introduction of an additional oxo group to position 11 at OA or alteration of the C-3 configuration of OA from 3β- to 3α-forms can significantly enhance the selective index while maintaining their antiviral activities in vitro. Molecular simulation analysis confirmed that the compounds exert their inhibitory activity through binding tightly to hemagglutinin (HA2) protein near the fusion peptide and prevent virus entry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed H. Salaheldin

    2018-03-01

    Full Text Available Highly pathogenic H5N1 avian influenza virus (A/H5N1 of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed, biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered.

  17. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    Science.gov (United States)

    Salaheldin, Ahmed H.; Kasbohm, Elisa; El-Naggar, Heba; Ulrich, Reiner; Scheibner, David; Gischke, Marcel; Hassan, Mohamed K.; Arafa, Abdel-Satar A.; Hassan, Wafaa M.; Abd El-Hamid, Hatem S.; Hafez, Hafez M.; Veits, Jutta; Mettenleiter, Thomas C.; Abdelwhab, Elsayed M.

    2018-01-01

    Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered. PMID:29636730

  18. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Science.gov (United States)

    2010-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  19. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand

    Directory of Open Access Journals (Sweden)

    Weerapong Thanapongtharm

    2013-11-01

    Full Text Available Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7- Enhanced Thematic Mapper Plus scenes covering 174,610 km2 were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3 geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1.

  20. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016-2017.

    Science.gov (United States)

    Tsunekuni, Ryota; Yaguchi, Yuji; Kashima, Yuki; Yamashita, Kaoru; Takemae, Nobuhiro; Mine, Junki; Tanikawa, Taichiro; Uchida, Yuko; Saito, Takehiko

    2018-05-01

    From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.

  1. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

    Science.gov (United States)

    Abdelwhab, El-Sayed M; Veits, Jutta; Mettenleiter, Thomas C

    2013-01-01

    Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV. PMID:23863606

  2. Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model.

    Science.gov (United States)

    Paul, Mathilde; Tavornpanich, Saraya; Abrial, David; Gasqui, Patrick; Charras-Garrido, Myriam; Thanapongtharm, Weerapong; Xiao, Xiangming; Gilbert, Marius; Roger, Francois; Ducrot, Christian

    2010-01-01

    Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the "second wave" of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained. INRA, EDP Sciences, 2010.

  3. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4b in Germany in 2016/2017

    Directory of Open Access Journals (Sweden)

    Anja Globig

    2018-01-01

    Full Text Available Here, we report on the occurrence of highly pathogenic avian influenza (HPAI H5Nx clade 2.3.4.4b in Germany. Between November 8, 2016, and September 30, 2017, more than 1,150 cases of HPAI H5Nx clade 2.3.4.4b in wild birds and 107 outbreaks in birds kept in captivity (92 poultry holdings and 15 zoos/animal parks were reported in Germany. This HPAI epidemic is the most severe recorded in Germany so far. The viruses were apparently introduced by migratory birds, sparking an epidemic among wild birds across Germany with occasional incursions into poultry holdings, zoos and animal parks, which were usually rapidly detected and controlled by stamping out. HPAI viruses (mainly subtype H5N8, in a few cases also H5N5 were found in dead wild birds of at least 53 species. The affected wild birds were water birds (including gulls, storks, herons, and cormorants and scavenging birds (birds of prey, owls, and crows. In a number of cases, substantial gaps in farm biosecurity may have eased virus entry into the holdings. In a second wave of the epidemic starting from February 2017, there was epidemiological and molecular evidence for virus transmission of the infections between commercial turkey holdings in an area of high poultry density, which caused approximately 25% of the total number of outbreaks in poultry. Biosecurity measures in poultry holdings should be adapted. This includes, inter alia, wearing of stable-specific protective clothing and footwear, cleaning, and disinfection of equipment that has been in contact with birds and prevention of contacts between poultry and wild water birds.

  4. Demographic and clinical predictors of mortality from highly pathogenic avian influenza A (H5N1 virus infection: CART analysis of international cases.

    Directory of Open Access Journals (Sweden)

    Rita B Patel

    Full Text Available Human infections with highly pathogenic avian influenza (HPAI A (H5N1 viruses have occurred in 15 countries, with high mortality to date. Determining risk factors for morbidity and mortality from HPAI H5N1 can inform preventive and therapeutic interventions.We included all cases of human HPAI H5N1 reported in World Health Organization Global Alert and Response updates and those identified through a systematic search of multiple databases (PubMed, Scopus, and Google Scholar, including articles in all languages. We abstracted predefined clinical and demographic predictors and mortality and used bivariate logistic regression analyses to examine the relationship of each candidate predictor with mortality. We developed and pruned a decision tree using nonparametric Classification and Regression Tree methods to create risk strata for mortality.We identified 617 human cases of HPAI H5N1 occurring between December 1997 and April 2013. The median age of subjects was 18 years (interquartile range 6-29 years and 54% were female. HPAI H5N1 case-fatality proportion was 59%. The final decision tree for mortality included age, country, per capita government health expenditure, and delay from symptom onset to hospitalization, with an area under the receiver operator characteristic (ROC curve of 0.81 (95% CI: 0.76-0.86.A model defined by four clinical and demographic predictors successfully estimated the probability of mortality from HPAI H5N1 illness. These parameters highlight the importance of early diagnosis and treatment and may enable early, targeted pharmaceutical therapy and supportive care for symptomatic patients with HPAI H5N1 virus infection.

  5. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    Science.gov (United States)

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  6. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells.

    Directory of Open Access Journals (Sweden)

    Markus Matthaei

    Full Text Available The fatal transmissions of highly pathogenic avian influenza A viruses (IAV of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to

  7. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4 Virus: Equivocal Pathogenicity and Implications for Surveillance Following Natural Infection in Breeder Ducks in the United Kingdom.

    Science.gov (United States)

    Núñez, A; Brookes, S M; Reid, S M; Garcia-Rueda, C; Hicks, D J; Seekings, J M; Spencer, Y I; Brown, I H

    2016-02-01

    Since early 2014, several outbreaks involving novel reassortant highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been detected in poultry and wild bird species in Asia, Europe and North America. These viruses have been detected in apparently healthy and dead wild migratory birds, as well as in domestic chickens, turkeys, geese and ducks. In this study, we describe the pathology of an outbreak of H5N8 HPAIV in breeder ducks in the UK. A holding with approximately 6000 breeder ducks, aged approximately 60 weeks, showed a gradual reduction in egg production and increased mortality over a 7-day period. Post-mortem examination revealed frequent fibrinous peritonitis, with severely haemorrhagic ovarian follicles and occasional splenic and pancreatic necrosis and high incidence of mycotic granulomas in the air sacs and lung. Low-to-moderate levels of HPAI H5N8 virus were detected mainly in respiratory and digestive tract, with minor involvement of other organs. Although histopathological examination confirmed the gross pathology findings, intralesional viral antigen detection by immunohistochemistry was not observed. Immunolabelled cells were rarely only present in inflamed air sacs and serosa, usually superficial to granulomatous inflammation. Abundant bacterial microcolonies were observed in haemorrhagic ovaries and oviduct. The limited viral tissue distribution and presence of inter-current fungal and bacterial infections suggest a minor role for HPAIV H5N8 in clinical disease in layer ducks. © 2015 Crown copyright.

  8. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam.

    Science.gov (United States)

    Cagle, Caran; Wasilenko, Jamie; Adams, Sean C; Cardona, Carol J; To, Thanh Long; Nguyen, Tung; Spackman, Erica; Suarez, David L; Smith, Diane; Shepherd, Eric; Roth, Jason; Pantin-Jackwood, Mary J

    2012-09-01

    In a previous study, we found clear differences in pathogenicity and response to vaccination against H5N1 highly pathogenic avian influenza (HPAI; HA dade 2.3.4) between Pekin (Anas platyrhynchos var. domestica) and Muscovy (Cairina moschata) ducks vaccinated using a commercial inactivated vaccine (Re-1). The objective of the present study was to further investigate the pathogenicity of H5N1 HPAI viruses in different species of ducks by examining clinical signs and innate immune responses to infection with a different strain of H5N1 HPAI virus (HA clade 1) in two domestic ducks, Pekin and Muscovy, and one wild-type duck, mallard (Anas platyrhynchos). Protection conferred by vaccination using the Re-1 vaccine against infection with this virus was also compared between Pekin and Muscovy ducks. Differences in pathogenicity were observed among the virus-infected ducks, as the Muscovy ducks died 2 days earlier than did the Pekin and mallard ducks, and they presented more-severe neurologic signs. Conversely, the Pekin and mallard ducks had significantly higher body temperatures at 2 days postinfection (dpi) than did the Muscovy ducks, indicating possible differences in innate immune responses. However, similar expression of innate immune-related genes was found in the spleens of virus-infected ducks at this time point. In all three duck species, there was up-regulation of IFN-alpha, IFN-gamma, IL-6, CCL19, RIG-I, and MHC class I and down-regulation of MHC class II, but variable expression of IL-18 and TLR7. As in our previous study, vaccinated Muscovy ducks showed less protection against virus infection than did Pekin ducks, as evidenced by the higher mortality and higher number of Muscovy ducks shedding virus when compared to Pekin ducks. In conclusion, infection with an H5N1 HPAI virus produced a systemic infection with high mortality in all three duck species; however, the disease was more severe in Muscovy ducks, which also had a poor response to vaccination. The

  9. Transmission of highly pathogenic avian influenza H5N1 virus in Pekin ducks is significantly reduced by a genetically distant H5N2 vaccine

    NARCIS (Netherlands)

    Goot, van der J.A.; Boven, van M.; Stegeman, A.; Water, van de S.G.P.; Jong, de M.C.M.; Koch, G.

    2008-01-01

    Domestic ducks play an important role in the epidemiology of H5N1 avian influenza. Although it is known that vaccines that have a high homology with the challenge virus are able to prevent infection in ducks, little is yet known about the ability of genetically more distant vaccines in preventing

  10. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008

    Directory of Open Access Journals (Sweden)

    Junaidi Akhmad

    2011-09-01

    Full Text Available Abstract Background Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. Results All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1, clade 2.1.3 (80, and IDN/6/05-like viruses (3 that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA and neuraminidase (NA sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. Conclusions The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to

  11. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008.

    Science.gov (United States)

    Wibawa, Hendra; Henning, Joerg; Wong, Frank; Selleck, Paul; Junaidi, Akhmad; Bingham, John; Daniels, Peter; Meers, Joanne

    2011-09-07

    Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI) virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1), clade 2.1.3 (80), and IDN/6/05-like viruses (3) that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA) and neuraminidase (NA) sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to chickens over the study period suggests that ducks are

  12. Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1.

    Science.gov (United States)

    Abdelwhab, E M; Grund, Christian; Aly, Mona M; Beer, Martin; Harder, Timm C; Hafez, Hafez M

    2012-02-24

    In Egypt, continuous circulation of highly pathogenic avian influenza (HPAI) H5N1 viruses of clade 2.2.1 in vaccinated commercial poultry challenges strenuous control efforts. Here, vaccine-derived maternal AIV H5 specific immunity in one-day old chicks was investigated as a factor of vaccine failure in long-term blanket vaccination campaigns in broiler chickens. H5 seropositive one-day old chicks were derived from breeders repeatedly immunized with a commercial inactivated vaccine based on the Potsdam/H5N2 strain. When challenged using the antigenically related HPAIV strain Italy/98 (H5N2) clinical protection was achieved until at least 10 days post-hatch although virus replication was not fully suppressed. No protection at all was observed against the Egyptian HPAIV strain EGYvar/H5N1 representing a vaccine escape lineage. Other groups of chicks with maternal immunity were vaccinated once at 3 or 14 days of age using either the Potsdam/H5N2 vaccine or a vaccine based on EGYvar/H5N1. At day 35 of age these chicks were challenged with the Egyptian HPAIV strain EGYcls/H5N1 which co-circulates with EGYvar/H5N1 but does not represent an antigenic drift variant. The Potsdam/H5N2 vaccinated groups were not protected against EGYcls/H5N1 infection while, in contrast, the EGYvar/H5N1 vaccinated chicks withstand challenge with EGYvar/H5N1 infection. In addition, the results showed that maternal antibodies could interfere with the immune response when a homologous vaccine strain was used. Copyright © 2011. Published by Elsevier B.V.

  13. Diagnostic sensitivity and specificity of a participatory disease surveillance method for highly pathogenic avian influenza in household chicken flocks in Indonesia.

    Science.gov (United States)

    Robyn, M; Priyono, W B; Kim, L M; Brum, E

    2012-06-01

    A study was conducted to assess the diagnostic sensitivity and specificity of a disease surveillance method for diagnosis of highly pathogenic avian influenza (HPAI) outbreaks in household chicken flocks used by participatory disease surveillance (PDS) teams in Yogyakarta Province, Indonesia. The Government of Indonesia, in partnership with the Food and Agriculture Organization of the United Nations, has implemented a PDS method for the detection of HPAI outbreaks in poultry since 2006. The PDS method in Indonesia utilizes both a clinical case definition (CD) and the result of a commercial rapid antigen test kit Yogyakarta 55611, to diagnose HPAI outbreaks, primarily in backyard chicken flocks. The following diagnostic sensitivities and specificities were obtained relative to real-time reverse transcription-PCR as the gold standard diagnostic test: 1) 89% sensitivity (CI95: 75%-97%) and 96% specificity (CI95: 89%-99%) for the PDS CD alone; 2) 86% sensitivity (CI95: 71%-95%) and 99% specificity (CI95: 94%-100%) for the rapid antigen test alone; and 3) 84% sensitivity (CI95: 68%-94%) and 100% specificity (CI95: 96%-100%) for the PDS CD result combined with the rapid antigen test result. Based on these results, HPAI outbreaks in extensively raised household chickens can be diagnosed with sufficient sensitivity and specificity using the PDS method as implemented in Indonesia. Subject to further field evaluation, data from this study suggest that the diagnostic sensitivity of the PDS method may be improved by expanding the PDS CD to include more possible clinical presentations of HPAI and by increasing the number of rapid antigen tests to three different birds with HPAI-compatible signs of same flock.

  14. Pathogenesis of highly pathogenic avian influenza A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally.

    Science.gov (United States)

    Löndt, Brandon Z; Nunez, Alejandro; Banks, Jill; Nili, Hassan; Johnson, Linda K; Alexander, Dennis J

    2008-12-01

    Asian H5N1 (hereafter referred to as panzootic H5N1) highly pathogenic avian influenza (HPAI) virus has caused large numbers of deaths in both poultry and wild-bird populations. Recent isolates of this virus have been reported to cause disease and death in commercial ducks, which has not been seen with other HPAI viruses. However, little is known about either the dissemination of this H5N1 within the organs or the cause of death in infected ducks. Nineteen 4-week-old Pekin ducks were infected with 10(6.7) median egg infectious doses of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2.2) in 0.1ml via the intranasal and intraocular routes. Cloacal and oropharyngeal swabs were taken daily before three animals were selected randomly and killed humanely for postmortem examination, when samples of tissues were taken for real-time reverse transcriptase-polymerase chain reaction, histopathological examination and immunohistochemistry. Clinical signs were first observed 4 days post infection (d.p.i.) and included depression, reluctance to feed, in-coordination and torticollis resulting in the death of all the birds remaining on 5d.p.i. Higher levels of virus shedding were detected from oropharyngeal swabs than from cloacal swabs. Real-time reverse transcriptase-polymerase chain reaction and immunohistochemistry identified peak levels of virus at 2d.p.i. in several organs. In the spleen, lung, kidney, caecal tonsils, breast muscle and thigh muscle the levels were greatly reduced at 3d.p.i. However, the highest viral loads were detected in the heart and brain from 3d.p.i. and coincided with the appearance of clinical signs and death. Our experimental results demonstrate the systemic spread of this HPAI H5N1 virus in Pekin ducks, and the localization of virus in the brain and heart tissue preceding death.

  15. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally.

    Science.gov (United States)

    Löndt, Brandon Z; Núñez, Alejandro; Banks, Jill; Alexander, Dennis J; Russell, Christine; Richard-Löndt, Angela C; Brown, Ian H

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Pekin ducks in two age-matched groups (n = 18), 8 and 12 weeks old (wo) were each infected with 10(6) EID(50)/0.1 ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2.2). Each day for 5 days, birds were monitored clinically, and cloacal and oropharyngeal swabs collected, before three birds from each group were selected randomly for post-mortem examination. Tissue samples were collected for examination by real-time RT-PCR, histopathology and immunohistochemistry (IHC). Severe clinical signs, including incoordination and torticollis were observed in the 8 wo group resulting in 100% mortality by 4 dpi. Mild clinical signs were observed in the 12 wo group with no mortality. Real-time RT-PCR and IHC results demonstrated the systemic spread of H5N1 virus in birds of both age groups. Higher levels of virus shedding were detected in oropharyngeal swabs than in cloacal swabs, with similar levels of shedding detected in both age groups. Variations in level and temporal dissemination of virus within tissues of older ducks, and the presence of the virus in brain and heart were observed, which coincided with the appearance of clinical signs preceding death in younger birds. These results are consistent with reports of natural infections of wild waterfowl and poultry possibly indicating an age-related association with dissemination and clinical outcome in ducks following infection with H5N1 HPAI virus.

  16. Infection studies with two highly pathogenic avian influenza strains (Vietnamese and Indonesian) in Pekin ducks (Anas platyrhynchos), with particular reference to clinical disease, tissue tropism and viral shedding.

    Science.gov (United States)

    Bingham, John; Green, Diane J; Lowther, Sue; Klippel, Jessica; Burggraaf, Simon; Anderson, Danielle E; Wibawa, Hendra; Hoa, Dong Manh; Long, Ngo Thanh; Vu, Pham Phong; Middleton, Deborah J; Daniels, Peter W

    2009-08-01

    Pekin ducks were infected by the mucosal route (oral, nasal, ocular) with one of two strains of Eurasian lineage H5N1 highly pathogenic avian influenza virus: A/Muscovy duck/Vietnam/453/2004 and A/duck/Indramayu/BBVW/109/2006 (from Indonesia). Ducks were killed humanely on days 1, 2, 3, 5 and 7 after challenge, or whenever morbidity was severe enough to justify euthanasia. Morbidity was recorded by observation of clinical signs and cloacal temperatures; the disease was characterized by histopathology; tissue tropism was studied by immunohistochemistry and virus titration on tissue samples; and viral shedding patterns were determined by virus isolation and titration of oral and cloacal swabs. The Vietnamese strain caused severe morbidity with fever and depression; the Indonesian strain caused only transient fever. Both viruses had a predilection for a similar range of tissue types, but the quantity of tissue antigen and tissue virus titres were considerably higher with the Vietnamese strain. The Vietnamese strain caused severe myocarditis and skeletal myositis; both strains caused non-suppurative encephalitis and a range of other inflammatory reactions of varying severity. The principal epithelial tissue infected was that of the air sacs, but antigen was not abundant. Epithelium of the turbinates, trachea and bronchi had only rare infection with virus. Virus was shed from both the oral and cloacal routes; it was first detected 24 h after challenge and persisted until day 5 after challenge. The higher prevalence of virus from swabs from ducks infected with the Vietnamese strain indicates that this strain may be more adapted to ducks than the Indonesia strain.

  17. The application of GIS and RS for epidemics: a case study of the spread of highly pathogenic avian influenza in China in 2004-2005

    Science.gov (United States)

    Zhong, Shaobo; Lan, Guiwen; Zhu, Haiguo; Wen, Renqiang; Zhao, Qiansheng; Huang, Quanyi

    2008-12-01

    Because of their inherent advantages, Geographic Information System (GIS) and Remote Sensing (RS) are extremely useful for dealing with geographically referenced information. In the study of epidemics, most data are geographically referenced, which makes GIS and RS the perfect even necessary tools for processing, analysis, representation of epidemic data. Comprehensively considering the data requirements in the study of highly pathogenic avian influenza (HPAI) coupled with the quality of the existing remotely sensed data in terms of the resolution of space, time and spectra, the data sensed by MODIS are chosen and the relevant methods and procedures of data processing from RS and GIS for some environmental factors are proposed. Through using spatial analysis functions and Exploratory Spatial Data Analysis (ESDA) of GIS, some results of relationship between HPAI occurrences and these potential factors are presented. The role played by bird migration is also preliminarily illustrated with some operations such as visualization, overlapping etc. provided by GIS. Through the work of this paper, we conclude: Firstly, the migration of birds causes the spread of HPAI all over the country in 2004-2005. Secondly, the migration of birds is the reason why the spread of HPAI is perturbed. That is, for some classic communicable diseases, their spread exhibits obvious spatial diffusion process. However, the spread of HPAI breaks this general rule. We think leap diffusion and time lag are the probable reasons for this kind of phenomena. Potential distribution of HPAI viruses (corresponding to the distribution of flyways and putative risk sources) is not completely consistent with the occurrences of HPAI. For this phenomenon, we think, in addition to the flyways of birds, all kinds of geographical, climatic factors also have important effect on the occurrences of HPAI. Through the case study of HPAI, we can see that GIS and RS can play very important roles in the study of epidemics.

  18. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    Science.gov (United States)

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-03-05

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.

  19. Factors Associated with the Emergence of Highly Pathogenic Avian Influenza A (H5N1) Poultry Outbreaks in China: Evidence from an Epidemiological Investigation in Ningxia, 2012.

    Science.gov (United States)

    Liu, H; Zhou, X; Zhao, Y; Zheng, D; Wang, J; Wang, X; Castellan, D; Huang, B; Wang, Z; Soares Magalhães, R J

    2017-06-01

    In April 2012, highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) emerged in poultry layers in Ningxia. A retrospective case-control study was conducted to identify possible risk factors associated with the emergence of H5N1 infection and describe and quantify the spatial variation in H5N1 infection. A multivariable logistic regression model was used to identify risk factors significantly associated with the presence of infection; residual spatial variation in H5N1 risk unaccounted by the factors included in the multivariable model was investigated using a semivariogram. Our results indicate that HPAIV H5N1-infected farms were three times more likely to improperly dispose farm waste [adjusted OR = 0.37; 95% CI: 0.12-0.82] and five times more likely to have had visitors in their farm within the past month [adjusted OR = 5.47; 95% CI: 1.97-15.64] compared to H5N1-non-infected farms. The variables included in the final multivariable model accounted only 20% for the spatial clustering of H5N1 infection. The average size of a H5N1 cluster was 660 m. Bio-exclusion practices should be strengthened on poultry farms to prevent further emergence of H5N1 infection. For future poultry depopulation, operations should consider H5N1 disease clusters to be as large as 700 m. © 2015 Blackwell Verlag GmbH.

  20. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    Science.gov (United States)

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  1. Characterization of Clade 2.3.2.1 H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Wild Birds (Mandarin Duck and Eurasian Eagle Owl in 2010 in Korea

    Directory of Open Access Journals (Sweden)

    Youn-Jeong Lee

    2013-04-01

    Full Text Available Starting in late November 2010, the H5N1 highly pathogenic avian influenza (HPAI virus was isolated from many types of wild ducks and raptors and was subsequently isolated from poultry in Korea. We assessed the genetic and pathogenic properties of the HPAI viruses isolated from a fecal sample from a mandarin duck and a dead Eurasian eagle owl, the most affected wild bird species during the 2010/2011 HPAI outbreak in Korea. These viruses have similar genetic backgrounds and exhibited the highest genetic similarity with recent Eurasian clade 2.3.2.1 HPAI viruses. In animal inoculation experiments, regardless of their originating hosts, the two Korean isolates produced highly pathogenic characteristics in chickens, ducks and mice without pre-adaptation. These results raise concerns about veterinary and public health. Surveillance of wild birds could provide a good early warning signal for possible HPAI infection in poultry as well as in humans.

  2. 2 original article non-attenuation of highly pathogenic avian

    African Journals Online (AJOL)

    Dr Oboro VO

    AFRICAN JOURNAL OF CLINICAL AND EXPERIMENTAL MICROBIOLOGY JANUARY 2010. ISBN 1595-689X ... NON-ATTENUATION OF HIGHLY PATHOGENIC AVIAN INFLUENZA. H5N1 BY .... Diagnostic PCR was conducted to determine ...

  3. The Landscape Epidemiology of Seasonal Clustering of Highly Pathogenic Avian Influenza (H5N1) in Domestic Poultry in Africa, Europe and Asia.

    Science.gov (United States)

    Walsh, M G; Amstislavski, P; Greene, A; Haseeb, M A

    2017-10-01

    Highly pathogenic avian influenza subtype H5N1 (H5N1) has contributed to substantial economic loss for backyard and large-scale poultry farmers each year since 1997. While the distribution of domestic H5N1 outbreaks across Africa, Europe and Asia is extensive, those features of the landscape conferring greatest risk remain uncertain. Furthermore, the extent to which influential landscape features may vary by season has been inadequately described. The current investigation used World Organization for Animal Health surveillance data to (i) delineate areas at greatest risk of H5N1 epizootics among domestic poultry, (ii) identify those abiotic and biotic features of the landscape associated with outbreak risk and (iii) examine patterns of epizootic clustering by season. Inhomogeneous point process models were used to predict the intensity of H5N1 outbreaks and describe the spatial dependencies between them. During October through March, decreasing precipitation, increasing isothermality and the presence of H5N1 in wild birds were significantly associated with the increased risk of domestic H5N1 epizootics. Conversely, increasing precipitation and decreasing isothermality were associated with the increased risk during April through September. Increasing temperature during the coldest quarter, domestic poultry density and proximity to surface water were associated with the increased risk of domestic outbreaks throughout the year. Spatial dependencies between outbreaks appeared to vary seasonally, with substantial clustering at small and large scales identified during October through March even after accounting for inhomogeneity due to landscape factors. In contrast, during April to September, H5N1 outbreaks exhibited no clustering at small scale once accounting for landscape factors. This investigation has identified seasonal differences in risk and clustering patterns of H5N1 outbreaks in domestic poultry and may suggest strategies in high-risk areas with features

  4. The Roles of Hemagglutinin Phe-95 in Receptor Binding and Pathogenicity of Influenza B Virus

    Science.gov (United States)

    Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua

    2014-01-01

    Diverged ~4,000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1~H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H3 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus. PMID:24503069

  5. Cultural Practices Shaping Zoonotic Diseases Surveillance: The Case of Highly Pathogenic Avian Influenza and Thailand Native Chicken Farmers.

    Science.gov (United States)

    Delabouglise, A; Antoine-Moussiaux, N; Tatong, D; Chumkaeo, A; Binot, A; Fournié, G; Pilot, E; Phimpraphi, W; Kasemsuwan, S; Paul, M C; Duboz, R; Salem, G; Peyre, M

    2017-08-01

    Effectiveness of current passive zoonotic disease surveillance systems is limited by the under-reporting of disease outbreaks in the domestic animal population. Evaluating the acceptability of passive surveillance and its economic, social and cultural determinants appears a critical step for improving it. A participatory rural appraisal was implemented in a rural subdistrict of Thailand. Focus group interviews were used to identify sanitary risks perceived by native chicken farmers and describe the structure of their value chain. Qualitative individual interviews with a large diversity of actors enabled to identify perceived costs and benefits associated with the reporting of HPAI suspicions to sanitary authorities. Besides, flows of information on HPAI suspected cases were assessed using network analysis, based on data collected through individual questionnaires. Results show that the presence of cockfighting activities in the area negatively affected the willingness of all chicken farmers and other actors to report suspected HPAI cases. The high financial and affective value of fighting cocks contradicted the HPAI control policy based on mass culling. However, the importance of product quality in the native chicken meat value chain and the free veterinary services and products delivered by veterinary officers had a positive impact on suspected case reporting. Besides, cockfighting practitioners had a significantly higher centrality than other actors in the information network and they facilitated the spatial diffusion of information. Social ties built in cockfighting activities and the shared purpose of protecting valuable cocks were at the basis of the diffusion of information and the informal collective management of diseases. Building bridges with this informal network would greatly improve the effectiveness of passive surveillance. © 2016 Blackwell Verlag GmbH.

  6. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines.

    Science.gov (United States)

    Cha, Ra Mi; Smith, Diane; Shepherd, Eric; Davis, C Todd; Donis, Ruben; Nguyen, Tung; Nguyen, Hoang Dang; Do, Hoa Thi; Inui, Ken; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary

    2013-10-09

    Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90-100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks. Published by Elsevier Ltd.

  7. Knowledge and Perceptions of Highly Pathogenic Avian Influenza (HPAI) among Poultry Traders in Live Bird Markets in Bali and Lombok, Indonesia.

    Science.gov (United States)

    Kurscheid, Johanna; Millar, Joanne; Abdurrahman, Muktasam; Ambarawati, I Gusti Agung Ayu; Suadnya, Wayan; Yusuf, Ria Puspa; Fenwick, Stanley; Toribio, Jenny-Ann L M L

    2015-01-01

    Highly Pathogenic Avian Influenza (HPAI) has been prevalent in Indonesia since 2003 causing major losses to poultry production and human deaths. Live bird markets are considered high risk areas due to the density of large numbers of mixed poultry species of unknown disease status. Understanding trader knowledge and perceptions of HPAI and biosecurity is critical to reducing transmission risk and controlling the disease. An interview-administered survey was conducted at 17 live bird markets on the islands of Bali and Lombok in 2008 and 2009. A total of 413 live poultry traders were interviewed. Respondents were mostly male (89%) with a mean age of 45 years (range: 19-81). The main source of AI information was TV (78%), although personal communication was also identified to be an important source, particularly among female traders (60%) and respondents from Bali (43%). More than half (58%) of live poultry traders interviewed knew that infected birds can transmit HPAI viruses but were generally unaware that viruses can be introduced to markets by fomites. Cleaning cages and disposing of sick and dead birds were recognized as the most important steps to prevent the spread of disease by respondents. Two thirds (n = 277) of respondents were unwilling to report sudden or suspicious bird deaths to authorities. Bali vendors perceive biosecurity to be of higher importance than Lombok vendors and are more willing to improve biosecurity within markets than traders in Lombok. Collectors and traders selling large numbers (>214) of poultry, or selling both chickens and ducks, have better knowledge of HPAI transmission and prevention than vendors or traders selling smaller quantities or only one species of poultry. Education was strongly associated with better knowledge but did not influence positive reporting behavior. Our study reveals that most live poultry traders have limited knowledge of HPAI transmission and prevention and are generally reluctant to report bird deaths

  8. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    Science.gov (United States)

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-09

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  9. Risk factors associated with highly pathogenic avian influenza subtype H5N8 outbreaks on broiler duck farms in South Korea.

    Science.gov (United States)

    Kim, W-H; An, J-U; Kim, J; Moon, O-K; Bae, S H; Bender, J B; Cho, S

    2018-04-19

    Highly Pathogenic Avian Influenza (HPAI) subtype H5N8 outbreaks occurred in poultry farms in South Korea in 2014 resulting in significant damage to the poultry industry. Between 2014 and 2016, the pandemic disease caused significant economic loss and social disruption. To evaluate the risk factors for HPAI infection in broiler duck farms, we conducted a retrospective case-control study on broiler duck farms. Forty-three farms with confirmed laboratories on premises were selected as the case group, and 43 HPAI-negative farms were designated as the control group. Control farms were matched based on farm location and were within a 3-km radius from the case premises. Spatial and environmental factors were characterized by site visit and plotted through a geographic information system (GIS). Univariable and multivariable logistic regression models were developed to assess possible risk factors associated with HPAI broiler duck farm infection. Four final variables were identified as risk factors in a final multivariable logistic model: "Farms with ≥7 flocks" (odds ratio [OR] = 6.99, 95% confidence interval [CI] 1.34-37.04), "Farm owner with ≥15 years of raising poultry career" (OR = 7.91, 95% CI 1.69-37.14), "Presence of any poultry farms located within 500 m of the farm" (OR = 6.30, 95% CI 1.08-36.93) and "Not using a faecal removal service" (OR = 27.78, 95% CI 3.89-198.80). This highlights that the HPAI H5N8 outbreaks in South Korea were associated with farm owner education, number of flocks and facilities and farm biosecurity. Awareness of these factors may help to reduce the spread of HPAI H5N8 across broiler duck farms in Korea during epidemics. Greater understanding of the risk factors for H5N8 may improve farm vulnerability to HPAI and other subtypes and help to establish policies to prevent re-occurrence. These findings are relevant to global prevention recommendations and intervention protocols. © 2018 Blackwell Verlag GmbH.

  10. Host cytokine responses of pigeons infected with highly pathogenic Thai avian influenza viruses of subtype H5N1 isolated from wild birds.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Highly pathogenic avian influenza virus (HPAIV of the H5N1 subtype has been reported to infect pigeons asymptomatically or induce mild symptoms. However, host immune responses of pigeons inoculated with HPAIVs have not been well documented. To assess host responses of pigeons against HPAIV infection, we compared lethality, viral distribution and mRNA expression of immune related genes of pigeons infected with two HPAIVs (A/Pigeon/Thailand/VSMU-7-NPT/2004; Pigeon04 and A/Tree sparrow/Ratchaburi/VSMU-16-RBR/2005; T.sparrow05 isolated from wild birds in Thailand. The survival experiment showed that 25% of pigeons died within 2 weeks after the inoculation of two HPAIVs or medium only, suggesting that these viruses did not cause lethal infection in pigeons. Pigeon04 replicated in the lungs more efficiently than T.sparrow05 and spread to multiple extrapulmonary organs such as the brain, spleen, liver, kidney and rectum on days 2, 5 and 9 post infection. No severe lesion was observed in the lungs infected with Pigeon04 as well as T.sparrow05 throughout the collection periods. Encephalitis was occasionally observed in Pigeon04- or T.sparrow05-infected brain, the severity, however was mostly mild. To analyze the expression of immune-related genes in the infected pigeons, we established a quantitative real-time PCR analysis for 14 genes of pigeons. On day 2 post infection, Pigeon04 induced mRNA expression of Mx1, PKR and OAS to a greater extent than T.sparrow05 in the lungs, however their expressions were not up-regulated concomitantly on day 5 post infection when the peak viral replication was observed. Expressions of TLR3, IFNα, IL6, IL8 and CCL5 in the lungs following infection with the two HPAIVs were low. In sum, Pigeon04 exhibited efficient replication in the lungs compared to T.sparrow05, but did not induce excessive host cytokine expressions. Our study has provided the first insight into host immune responses of pigeons against HPAIV infection.

  11. Pathogenesis of Highly Pathogenic Avian Influenza (HPAI) A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally

    OpenAIRE

    Löndt , Brandon Z.; Nunez , Alejandro; Banks , Jill; Nili , Hassan; Johnson , Linda K; Alexander , Dennis

    2008-01-01

    Abstract Asian H5N1 (hereafter referred to as panzootic H5N1) highly pathogenic avian influenza (HPAI) virus has caused large numbers of deaths in both poultry and wild bird populations. Recent isolates of this virus have been reported to cause disease and death in commercial ducks, which has not been seen with other HPAI viruses. However, little is known about the dissemination of this H5N1 within the organs and the cause of death in infected ducks. Nineteen 4-week-old Pekin ducks...

  12. PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection

    Directory of Open Access Journals (Sweden)

    Wang Qiang

    2012-06-01

    Full Text Available Abstract Background Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity. Methods The replicon activities of PR8 and WSN strains (H1N1 of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1 and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells. Results The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells. Conclusions Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus.

  13. Presence of serum antibodies to influenza A subtypes H5 and N1 in swans and ibises in French wetlands, irrespective of highly pathogenic H5N1 natural infection.

    Science.gov (United States)

    Niqueux, Eric; Guionie, Olivier; Schmitz, Audrey; Hars, Jean; Jestin, Véronique

    2010-03-01

    Highly pathogenic (HP) avian influenza A viruses (AIVs) subtype H5N1 (subclade 2.2) were detected in wild birds during outbreaks in France during winter 2006 and summer 2007 in la Dombes wetlands (eastern France) and in Moselle wetlands (northeastern France), respectively. Blood samples from apparently healthy wild birds were collected in 2006 and 2007 from the end of the outbreak to several weeks after the influenza A outbreak inside and outside the contaminated areas, and in 2008 outside the contaminated areas. The samples were tested for the presence and/or quantitation of serum antibodies to influenza A subtypes H5 and N1 using hemagglutination inhibition tests (HITs), a commercial N1-specific enzyme-linked immunosorbent assay kit, and virus neutralization assay. In the HIT, low pathogenicity (LP) and HP H5 AIVs (belonging to H5N1, H5N2, and H5N3 subtypes) were used as antigens. One hundred mute swans were bled in the la Dombes outbreak area in 2006. During 2007, 46 mallards, 69 common pochards, and 59 mute swans were sampled in the Moselle outbreak area. For comparison, blood samples were also collected in 2007 from 60 mute swans from the Marne department where no HP H5N1 influenza A cases have been reported, and in 2008 from 111 sacred ibises in western France where no HP H5N1 influenza A infections in wild birds have been reported either. Mute swans (irrespective of their origin and time of sampling) and sacred ibises (from an area with no known outbreaks) had the highest prevalence of positive sera in the H5 HIT (49-69% and 64%, respectively). The prevalence of anti-H5 antibodies in mallards and common pochards was lower (28% and 27%, respectively). Positive H5- and N1-antibody responses were also significantly associated in swans (irrespective of their origin and time of sampling) and in sacred ibises. However, in swans from the area without outbreaks, the HIT titer against an H5N1 LPAIV was significantly higher than against an H5N1 2.2.1 HPAIV, whereas no

  14. Pathogen dynamics in a partial migrant : Interactions between mallards (Anas platyrhynchos) and avian influenza viruses

    NARCIS (Netherlands)

    Dijk, J.G.B. van

    2014-01-01

    Zoonotic pathogens may pose a serious threat for humans, requiring a better understanding of the ecology and transmission of these pathogens in their natural (wildlife) hosts. The zoonotic pathogen studied in this thesis is low pathogenic avian influenza virus (LPAIV). This pathogen circulates

  15. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Science.gov (United States)

    2010-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  16. Emerging influenza

    NARCIS (Netherlands)

    E. de Wit (Emmie); R.A.M. Fouchier (Ron)

    2008-01-01

    textabstractIn 1918 the Spanish influenza pandemic, caused by an avian H1N1 virus, resulted in over 50 million deaths worldwide. Several outbreaks of H7 influenza A viruses have resulted in human cases, including one fatal case. Since 1997, the outbreaks of highly pathogenic avian influenza (HPAI)

  17. High rates of detection of Clade 2.3.4.4 Highly Pathogenic Avian Influenza H5 viruses in wild birds in the Pacific Northwest during the winter of 2014-2015

    Science.gov (United States)

    Ip, Hon S.; Dusek, Robert J.; Bodenstein, Barbara L.; Kim Torchetti, Mia; DeBruyn, Paul; Mansfield, Kristin G.; DeLiberto, Thomas; Sleeman, Jonathan M.

    2016-01-01

    In 2014, Clade 2.3.4.4 H5N8 highly pathogenic avian influenza (HPAI) viruses spread across the Republic of Korea and ultimately were reported in China, Japan, Russia and Europe. Mortality associated with a reassortant HPAI H5N2 virus was detected in poultry farms in Western Canada at the end of November. The same strain (with identical genetic structure) was then detected in free-living wild birds that had died prior to December 8 of unrelated causes in Whatcom County, Washington, USA in an area contiguous with the index Canadian location. A gyrfalcon (Falco rusticolus) that had hunted and fed on an American wigeon (Anas americana) on December 6 in the same area and died two days later, tested positive for the Eurasian origin HPAI H5N8. Subsequently, an Active Surveillance Program using hunter-harvest waterfowl in Washington and Oregon detected ten HPAI H5 viruses, of three different subtypes (four H5N2, three H5N8 and three H5N1) with 4 segments in common (HA, PB2, NP and MA). In addition, a mortality-based Passive Surveillance Program detected 18 HPAI (14 H5N2 and four H5N8) cases from Idaho, Kansas, Oregon, Minnesota, Montana, Washington and Wisconsin. Comparatively, mortality-based passive surveillance appears to be detecting these HPAI infections at a higher rate than active surveillance during the period following initial introduction into the US.

  18. Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets.

    Directory of Open Access Journals (Sweden)

    Judith M A van den Brand

    Full Text Available Humans may be infected by different influenza A viruses--seasonal, pandemic, and zoonotic--which differ in presentation from mild upper respiratory tract disease to severe and sometimes fatal pneumonia with extra-respiratory spread. Differences in spatial and temporal dynamics of these infections are poorly understood. Therefore, we inoculated ferrets with seasonal H3N2, pandemic H1N1 (pH1N1, and highly pathogenic avian H5N1 influenza virus and performed detailed virological and pathological analyses at time points from 0.5 to 14 days post inoculation (dpi, as well as describing clinical signs and hematological parameters. H3N2 infection was restricted to the nose and peaked at 1 dpi. pH1N1 infection also peaked at 1 dpi, but occurred at similar levels throughout the respiratory tract. H5N1 infection occurred predominantly in the alveoli, where it peaked for a longer period, from 1 to 3 dpi. The associated lesions followed the same spatial distribution as virus infection, but their severity peaked between 1 and 6 days later. Neutrophil and monocyte counts in peripheral blood correlated with inflammatory cell influx in the alveoli. Of the different parameters used to measure lower respiratory tract disease, relative lung weight and affected lung tissue allowed the best quantitative distinction between the virus groups. There was extra-respiratory spread to more tissues--including the central nervous system--for H5N1 infection than for pH1N1 infection, and to none for H3N2 infection. This study shows that seasonal, pandemic, and zoonotic influenza viruses differ strongly in the spatial and temporal dynamics of infection in the respiratory tract and extra-respiratory tissues of ferrets.

  19. Modeling the Association of Space, Time, and Host Species with Variation of the HA, NA, and NS Genes of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Birds in Romania in 2005–2007

    Science.gov (United States)

    Alkhamis, Mohammad; Perez, Andres; Batey, Nicole; Howard, Wendy; Baillie, Greg; Watson, Simon; Franz, Stephanie; Focosi-Snyman, Raffaella; Onita, Iuliana; Cioranu, Raluca; Turcitu, Mihai; Kellam, Paul; Brown, Ian H.; Breed, Andrew C.

    2014-01-01

    SUMMARY Molecular characterization studies of a diverse collection of avian influenza viruses (AIVs) have demonstrated that AIVs’ greatest genetic variability lies in the HA, NA, and NS genes. The objective here was to quantify the association between geographical locations, periods of time, and host species and pairwise nucleotide variation in the HA, NA, and NS genes of 70 isolates of H5N1 highly pathogenic avian influenza virus (HPAIV) collected from October 2005 to December 2007 from birds in Romania. A mixed-binomial Bayesian regression model was used to quantify the probability of nucleotide variation between isolates and its association with space, time, and host species. As expected for the three target genes, a higher probability of nucleotide differences (odds ratios [ORs] > 1) was found between viruses sampled from places at greater geographical distances from each other, viruses sampled over greater periods of time, and viruses derived from different species. The modeling approach in the present study maybe useful in further understanding the molecular epidemiology of H5N1 HPAI virus in bird populations. The methodology presented here will be useful in predicting the most likely genetic distance for any of the three gene segments of viruses that have not yet been isolated or sequenced based on space, time, and host species during the course of an epidemic. PMID:24283126

  20. Inferring epidemiologic dynamics from viral evolution: 2014–2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America

    Science.gov (United States)

    Grear, Daniel R.; Hall, Jeffrey S.; Dusek, Robert; Ip, Hon S.

    2018-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  1. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  2. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J. (Tennessee-HSC); (SJCH)

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  3. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    Directory of Open Access Journals (Sweden)

    Dong-Hun Lee

    Full Text Available Highly pathogenic avian influenza (HPAI and Newcastle disease (ND are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1 virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  4. Immune response in domestic ducks following intradermal delivery of inactivated vaccine against H5N1 highly pathogenic avian influenza virus adjuvanted with oligodeoxynucleotides containing CpG motifs.

    Science.gov (United States)

    Yuk, Seong-Su; Lee, Dong-Hun; Park, Jae-Keun; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Gomis, Susantha; Song, Chang-Seon

    2015-08-01

    Ducks are a natural reservoir for H5N1 highly pathogenic avian influenza (HPAI) viruses, which produces a range of clinical outcomes from asymptomatic infections to severe disease with mortality. Vaccination against HPAI is one of the few methods available for controlling avian influenza virus (AIV) infection in domestic ducks; therefore, it is necessary to improve vaccine efficacy against HPAI in domestic ducks. However, few studies have focused on enhancing the immune response by testing alternative administration routes and adjuvants. While attempting to maximize the efficacy of a vaccine, it is important to select an appropriate vaccine delivery route and adjuvant to elicit an enhanced immune response. Although several studies have indicated that the vaccination of ducks against HPAI viruses has offered protection against lethal virus challenge, the immunogenicity of the vaccine still requires improvement. In this study, we characterized the immune response following a novel vaccination strategy against H5N1 HPAI virus in domestic ducks. Our novel intradermal delivery system and the application of the cytosine-phosphodiester-guanine (CpG) oligodeoxynucleotide (ODN) adjuvant allowed us to obtain information regarding the sustained vaccine immunity. Compared with the intramuscular route of vaccination, the intradermal route resulted in higher antibody titer as well as lower antibody deviation following secondary vaccination. In addition, the use of a CpG-ODN adjuvant had a dose-sparing effect on antibody titer. Furthermore, when a high dose of antigen was used, the CpG-ODN-adjuvanted vaccine maintained a high mean antibody titer. This data demonstrates that intradermal immunization combined with administration of CpG-ODN as an adjuvant may be a promising strategy for improving vaccine efficacy in domestic ducks. © 2015 Poultry Science Association Inc.

  5. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    Science.gov (United States)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  6. Cost analysis of various low pathogenic avian influenza surveillance systems in the Dutch egg layer sector.

    Directory of Open Access Journals (Sweden)

    Niels Rutten

    Full Text Available BACKGROUND: As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. METHODOLOGY/PRINCIPAL FINDINGS: The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood, sampling location (farm or packing station and location of sample preparation (laboratory or packing station. It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. € 273,393 a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6% and 39% higher costs respectively. CONCLUSIONS/SIGNIFICANCE: This study shows that surveillance for avian influenza on egg yolk samples can be done at lower costs than surveillance based on blood samples. The model can be used in future comparison of surveillance systems for different pathogens and hazards.

  7. 75 FR 10645 - Low Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity

    Science.gov (United States)

    2010-03-09

    ... pathogenic avian influenza outbreaks, provides that consistency with humane euthanasia guidelines will be... markets. In the commenter's view, this action would not only provide for disease control but would benefit...

  8. A comparative evaluation of feathers, oropharyngeal swabs, and cloacal swabs for the detection of H5N1 highly pathogenic avian influenza virus infection in experimentally infected chickens and ducks.

    Science.gov (United States)

    Nuradji, Harimurti; Bingham, John; Lowther, Sue; Wibawa, Hendra; Colling, Axel; Long, Ngo Thanh; Meers, Joanne

    2015-11-01

    Oropharyngeal and cloacal swabs have been widely used for the detection of H5N1 highly pathogenic avian Influenza A virus (HPAI virus) in birds. Previous studies have shown that the feather calamus is a site of H5N1 virus replication and therefore has potential for diagnosis of avian influenza. However, studies characterizing the value of feathers for this purpose are not available, to our knowledge; herein we present a study investigating feathers for detection of H5N1 virus. Ducks and chickens were experimentally infected with H5N1 HPAI virus belonging to 1 of 3 clades (Indonesian clades 2.1.1 and 2.1.3, Vietnamese clade 1). Different types of feathers and oropharyngeal and cloacal swab samples were compared by virus isolation. In chickens, virus was detected from all sample types: oral and cloacal swabs, and immature pectorosternal, flight, and tail feathers. During clinical disease, the viral titers were higher in feathers than swabs. In ducks, the proportion of virus-positive samples was variable depending on viral strain and time from challenge; cloacal swabs and mature pectorosternal feathers were clearly inferior to oral swabs and immature pectorosternal, tail, and flight feathers. In ducks infected with Indonesian strains, in which most birds did not develop clinical signs, all sampling methods gave intermittent positive results; 3-23% of immature pectorosternal feathers were positive during the acute infection period; oropharyngeal swabs had slightly higher positivity during early infection, while feathers performed better during late infection. Our results indicate that immature feathers are an alternative sample for the diagnosis of HPAI in chickens and ducks. © 2015 The Author(s).

  9. A Simulation-Based Evaluation of Premovement Active Surveillance Protocol Options for the Managed Movement of Turkeys to Slaughter During an Outbreak of Highly Pathogenic Avian Influenza in the United States.

    Science.gov (United States)

    Todd Weaver, J; Malladi, Sasidhar; Bonney, Peter J; Patyk, Kelly A; Bergeron, Justin G; Middleton, Jamie L; Alexander, Catherine Y; Goldsmith, Timothy J; Halvorson, David A

    2016-05-01

    Risk management decisions associated with live poultry movement during a highly pathogenic avian influenza (HPAI) outbreak should be carefully considered. Live turkey movements may pose a risk for disease spread. On the other hand, interruptions in scheduled movements can disrupt business continuity. The Secure Turkey Supply (STS) Plan was developed through an industry-government-academic collaboration to address business continuity concerns that might arise during a HPAI outbreak. STS stakeholders proposed outbreak response measure options that were evaluated through risk assessment. The developed approach relies on 1) diagnostic testing of two pooled samples of swabs taken from dead turkeys immediately before movement via the influenza A matrix gene real-time reverse transcriptase polymerase chain reaction (rRT-PCR) test; 2) enhanced biosecurity measures in combination with a premovement isolation period (PMIP), restricting movement onto the premises for a few days before movement to slaughter; and 3) incorporation of a distance factor from known infected flocks such that exposure via local area spread is unlikely. Daily exposure likelihood estimates from spatial kernels from past HPAI outbreaks were coupled with simulation models of disease spread and active surveillance to evaluate active surveillance protocol options that differ with respect to the number of swabs per pooled sample and the timing of the tests in relation to movement. Simulation model results indicate that active surveillance testing, in combination with strict biosecurity, substantially increased HPAI virus detection probability. When distance from a known infected flock was considered, the overall combined likelihood of moving an infected, undetected turkey flock to slaughter was predicted to be lower at 3 and 5 km. The analysis of different active surveillance protocol options is designed to incorporate flexibility into HPAI emergency response plans.

  10. The Intersection of Care Seeking and Clinical Capacity for Patients With Highly Pathogenic Avian Influenza A (H5N1) Virus in Indonesia: Knowledge and Treatment Practices of the Public and Physicians.

    Science.gov (United States)

    Kreslake, Jennifer M; Wahyuningrum, Yunita; Iuliano, Angela D; Storms, Aaron D; Lafond, Kathryn E; Mangiri, Amalya; Praptiningsih, Catharina Y; Safi, Basil; Uyeki, Timothy M; Storey, J Douglas

    2016-12-01

    Indonesia has the highest human mortality from highly pathogenic avian influenza (HPAI) A (H5N1) virus infection in the world. A survey of households (N=2520) measured treatment sources and beliefs among symptomatic household members. A survey of physicians (N=554) in various types of health care facilities measured knowledge, assessment and testing behaviors, and perceived clinical capacity. Households reported confidence in health care system capacity but infrequently sought treatment for potential HPAI H5N1 signs/symptoms. More clinicians were confident in their knowledge of diagnosis and treatment than in the adequacy of related equipment and resources at their facilities. Physicians expressed awareness of the HPAI H5N1 suspect case definition, yet expressed only moderate knowledge in questioning symptomatic patients about exposures. Self-reported likelihood of testing for HPAI H5N1 virus was high after learning of certain exposures. Knowledge of antiviral treatment was moderate, but it was higher among clinicians in puskesmas. Physicians in private outpatient clinics, the most heavily used facilities, reported the lowest confidence in their diagnostic and treatment capabilities. Educational campaigns can encourage recall of possible poultry exposure when patients are experiencing signs/symptoms and can raise awareness of the effectiveness of antivirals to drive people to seek health care. Clinicians may benefit from training regarding exposure assessment and referral procedures, particularly in private clinics. (Disaster Med Public Health Preparedness. 2016;10:838-847).

  11. Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses.

    Science.gov (United States)

    Zhou, S Steve; Lukula, Salimatu; Chiossone, Cory; Nims, Raymond W; Suchmann, Donna B; Ijaz, M Khalid

    2018-03-01

    Prevention of infection with airborne pathogens and exposure to airborne particulates and aerosols (environmental pollutants and allergens) can be facilitated through use of disposable face masks. The effectiveness of such masks for excluding pathogens and pollutants is dependent on the intrinsic ability of the masks to resist penetration by airborne contaminants. This study evaluated the relative contributions of a mask, valve, and Micro Ventilator on aerosol filtration efficiency of a new N95 respiratory face mask. The test mask was challenged, using standardized methods, with influenza A and rhinovirus type 14, bacteriophage ΦΧ174, Staphylococcus aureus ( S . aureus ), and model pollutants. The statistical significance of results obtained for different challenge microbial agents and for different mask configurations (masks with operational or nonoperational ventilation fans and masks with sealed Smart Valves) was assessed. The results demonstrate >99.7% efficiency of each test mask configuration for exclusion of influenza A virus, rhinovirus 14, and S . aureus and >99.3% efficiency for paraffin oil and sodium chloride (surrogates for PM 2.5 ). Statistically significant differences in effectiveness of the different mask configurations were not identified. The efficiencies of the masks for excluding smaller-size (i.e., rhinovirus and bacteriophage ΦΧ174) vs. larger-size microbial agents (influenza virus, S . aureus ) were not significantly different. The masks, with or without features intended for enhancing comfort, provide protection against both small- and large-size pathogens. Importantly, the mask appears to be highly efficient for filtration of pathogens, including influenza and rhinoviruses, as well as the fine particulates (PM 2.5 ) present in aerosols that represent a greater challenge for many types of dental and surgical masks. This renders this individual-use N95 respiratory mask an improvement over the former types of masks for protection against

  12. A cross-sectional serological survey of the Dutch commercial poultry population for the presence of Low Pathogenic Avian Influenza virus infection

    NARCIS (Netherlands)

    Wit, de J.J.; Koch, G.; Fabri, T.H.F.; Elbers, A.R.W.

    2004-01-01

    After the discovery of poultry infected with highly pathogenic avian influenza (HPAI) virus of subtype H7N7 in the central area of the Netherlands on 28 February 2003, the hypothesis was put forward that an outbreak of the low pathogenic (LP) variant of H7N7 had preceded, unnoticed, the occurrence

  13. Spatio-Temporal Occurrence Modeling of Highly Pathogenic Avian Influenza Subtype H5N1: A Case Study in the Red River Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Chinh C. Tran

    2013-11-01

    Full Text Available Highly Pathogenic Avian Influenza (HPAI subtype H5N1 poses severe threats to both animals and humans. Investigating where, when and why the disease occurs is important to help animal health authorities develop effective control policies. This study takes into account spatial and temporal occurrence of HPAI H5N1 in the Red River Delta of Vietnam. A two-stage procedure was used: (1 logistic regression modeling to identify and quantify factors influencing the occurrence of HPAI H5N1; and (2 a geostatistical approach to develop monthly predictive maps. The results demonstrated that higher average monthly temperatures and poultry density in combination with lower average monthly precipitation, humidity in low elevation areas, roughly from November to January and April to June, contribute to the higher occurrence of HPAI H5N1. Provinces near the Gulf of Tonkin, including Hai Phong, Hai Duong, Thai Binh, Nam Dinh and Ninh Binh are areas with higher probability of occurrence of HPAI H5N1.

  14. Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects.

    Science.gov (United States)

    Noisumdaeng, Pirom; Pooruk, Phisanu; Prasertsopon, Jarunee; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2014-04-01

    Six recombinant vaccinia viruses containing HA, NA, NP, M or NS gene insert derived from a highly pathogenic avian influenza H5N1 virus, and the recombinant vaccinia virus harboring plasmid backbone as the virus control were constructed. The recombinant proteins were characterized for their expression and subcellular locations in TK(-) cells. Antibodies to the five recombinant proteins were detected in all 13 sequential serum samples collected from four H5N1 survivors during four years of follow-up; and those directed to rVac-H5 HA and rVac-NA proteins were found in higher titers than those directed to the internal proteins as revealed by indirect immunofluorescence assay. Although all 28 non-H5N1 subjects had no neutralizing antibodies against H5N1 virus, they did have cross-reactive antibodies to those five recombinant proteins. A significant increase in cross-reactive antibody titer to rVac-H5 HA and rVac-NA was found in paired blood samples from patients infected with the 2009 pandemic virus. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Protection against H5N1 Highly Pathogenic Avian and Pandemic (H1N1) 2009 Influenza Virus Infection in Cynomolgus Monkeys by an Inactivated H5N1 Whole Particle Vaccine

    Science.gov (United States)

    Nakayama, Misako; Shichinohe, Shintaro; Itoh, Yasushi; Ishigaki, Hirohito; Kitano, Mitsutaka; Arikata, Masahiko; Pham, Van Loi; Ishida, Hideaki; Kitagawa, Naoko; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Ichikawa, Takaya; Tsuchiya, Hideaki; Nakamura, Shinichiro; Le, Quynh Mai; Ito, Mutsumi; Kawaoka, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2013-01-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3), in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1) 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3. PMID:24376571

  16. Protection against H5N1 highly pathogenic avian and pandemic (H1N1 2009 influenza virus infection in cynomolgus monkeys by an inactivated H5N1 whole particle vaccine.

    Directory of Open Access Journals (Sweden)

    Misako Nakayama

    Full Text Available H5N1 highly pathogenic avian influenza virus (HPAIV infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3, in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3.

  17. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks.

    Science.gov (United States)

    Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon

    2017-09-01

    Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.

  18. Tissue tropism of highly pathogenic avian influenza virus subtype H5N1 in naturally infected mute swans (Cygnus Olor ), domestic geese (Aser Anser var. domestica), pekin ducks (Anas platyrhynchos) and mulard ducks ( Cairina moschata x anas platyrhynchos).

    Science.gov (United States)

    Szeredi, Levente; Dán, Adám; Pálmai, Nimród; Ursu, Krisztina; Bálint, Adám; Szeleczky, Zsófia; Ivanics, Eva; Erdélyi, Károly; Rigó, Dóra; Tekes, Lajos; Glávits, Róbert

    2010-03-01

    The 2006 epidemic due to highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in Hungary caused the most severe losses in waterfowl which were, according to the literature at the time, supposed to be the most resistant to this pathogen. The presence of pathological lesions and the amount of viral antigen were quantified by gross pathology, histopathology and immunohistochemistry (IHC) in the organs of four waterfowl species [mute swans (n = 10), domestic geese (n = 6), mulard ducks (n = 6) and Pekin ducks (n = 5)] collected during the epidemic. H5N1 subtype HPAIV was isolated from all birds examined. Quantitative real-time reverse transcriptase-polymerase chain reaction (qRRT-PCR) was also applied on a subset of samples [domestic geese (n = 3), mulard (n = 4) and Pekin duck (n = 4)] in order to compare its sensitivity with IHC. Viral antigen was detected by IHC in all cases. However, the overall presence of viral antigen in tissue samples was quite variable: virus antigen was present in 56/81 (69%) swan, 22/38 (58%) goose, 28/46 (61%) mulard duck and 5/43 (12%) Pekin duck tissue samples. HPAIV subtype H5N1 was detected by qRRT-PCR in all birds examined, in 19/19 (100%) goose, 7/28 (25%) mulard duck and 12/28 (43%) Pekin duck tissue samples. As compared to qRRTPCR, the IHC was less sensitive in geese and Pekin ducks but more sensitive in mulard ducks. The IHC was consistently positive above 4.31 log10 copies/reaction but it gave very variable results below that level. Neurotropism of the isolated virus strains was demonstrated by finding the largest amount of viral antigen and the highest average RNA load in the brain in all four waterfowl species examined.

  19. Genetic and pathogenic characteristics of H1 avian and swine influenza A viruses.

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Kim, Hye-Ryoung; Choi, Eun-Jin; Shin, Yeun-Kyung; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-01

    This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5-10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission. © 2014 The Authors.

  20. A novel eight amino acid insertion contributes to the hemagglutinin cleavability and the virulence of a highly pathogenic avian influenza A (H7N3) virus in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiangjie; Belser, Jessica A.; Tumpey, Terrence M., E-mail: tft9@cdc.gov

    2016-01-15

    In 2012, an avian influenza A H7N3 (A/Mexico/InDRE7218/2012; Mx/7218) virus was responsible for two confirmed cases of human infection and led to the death or culling of more than 22 million chickens in Jalisco, Mexico. Interestingly, this virus acquired an 8-amino acid (aa)-insertion (..PENPK-DRKSRHRR-TR/GLF) near the hemagglutinin (HA) cleavage site by nonhomologous recombination with host rRNA. It remains unclear which specific residues at the cleavage site contribute to the virulence of H7N3 viruses in mammals. Using loss-of-function approaches, we generated a series of cleavage site mutant viruses by reverse genetics and characterized the viruses in vitro and in vivo. We found that the 8-aa insertion and the arginine at position P4 of the Mx/7218 HA cleavage site are essential for intracellular HA cleavage in 293T cells, but have no effect on the pH of membrane fusion. However, we identified a role for the histidine residue at P5 position in viral fusion pH. In mice, the 8-aa insertion is required for Mx/7218 virus virulence; however, the basic residues upstream of the P4 position are dispensable for virulence. Overall, our study provides the first line of evidence that the insertion in the Mx/7218 virus HA cleavage site confers its intracellular cleavability, and consequently contributes to enhanced virulence in mice. - Highlights: • An avian influenza H7N3 virus acquired a unique 8-amino acid (aa) insertion. • The role of specific basic residues in the HA insertion in viral pathogenesis was determined. • In mice, the 8-aa insertion is required for H7N3 virus virulence. • The R residue at position P4 is essential for HA intracellular cleavage and virus virulence.

  1. A novel eight amino acid insertion contributes to the hemagglutinin cleavability and the virulence of a highly pathogenic avian influenza A (H7N3) virus in mice

    International Nuclear Information System (INIS)

    Sun, Xiangjie; Belser, Jessica A.; Tumpey, Terrence M.

    2016-01-01

    In 2012, an avian influenza A H7N3 (A/Mexico/InDRE7218/2012; Mx/7218) virus was responsible for two confirmed cases of human infection and led to the death or culling of more than 22 million chickens in Jalisco, Mexico. Interestingly, this virus acquired an 8-amino acid (aa)-insertion (..PENPK-DRKSRHRR-TR/GLF) near the hemagglutinin (HA) cleavage site by nonhomologous recombination with host rRNA. It remains unclear which specific residues at the cleavage site contribute to the virulence of H7N3 viruses in mammals. Using loss-of-function approaches, we generated a series of cleavage site mutant viruses by reverse genetics and characterized the viruses in vitro and in vivo. We found that the 8-aa insertion and the arginine at position P4 of the Mx/7218 HA cleavage site are essential for intracellular HA cleavage in 293T cells, but have no effect on the pH of membrane fusion. However, we identified a role for the histidine residue at P5 position in viral fusion pH. In mice, the 8-aa insertion is required for Mx/7218 virus virulence; however, the basic residues upstream of the P4 position are dispensable for virulence. Overall, our study provides the first line of evidence that the insertion in the Mx/7218 virus HA cleavage site confers its intracellular cleavability, and consequently contributes to enhanced virulence in mice. - Highlights: • An avian influenza H7N3 virus acquired a unique 8-amino acid (aa) insertion. • The role of specific basic residues in the HA insertion in viral pathogenesis was determined. • In mice, the 8-aa insertion is required for H7N3 virus virulence. • The R residue at position P4 is essential for HA intracellular cleavage and virus virulence.

  2. Highly pathogenic avian influenza virus H5N1 controls type I IFN induction in chicken macrophage HD-11 cells: a polygenic trait that involves NS1 and the polymerase complex

    Science.gov (United States)

    2012-01-01

    Background Influenza A viruses are well characterized to antagonize type I IFN induction in infected mammalian cells. However, limited information is available for avian cells. It was hypothesised that avian influenza viruses (AIV) with distinct virulence may interact differently with the avian innate immune system. Therefore, the type I IFN responses induced by highly virulent and low virulent H5N1 AIV and reassortants thereof were analysed in chicken cells. Results The highly pathogenic (HP) AIV A/chicken/Yamaguchi/7/04 (H5N1) (Yama) did not induce type I IFN in infected chicken HD-11 macrophage-like cells. This contrasted with an NS1 mutant Yama virus (Yama-NS1A144V) and with the attenuated H5N1 AIV A/duck/Hokkaido/Vac-1/04 (Vac) carrying the haemagglutinin (HA) of the Yama virus (Vac-Yama/HA), that both induced type I IFN in these cells. The substitution of the NS segment from Yama with that from Vac in the Yama backbone resulted in induction of type I IFN secretion in HD-11 cells. However, vice versa, the Yama NS segment did not prevent type I IFN induction by the Vac-Yama/HA virus. This was different with the PB1/PB2/PA segment reassortant Yama and Vac-Yama/HA viruses. Whereas the Yama virus with the Vac PB1/PB2/PA segments induced type I IFN in HD-11 cells, the Vac-Yama/HA virus with the Yama PB1/PB2/PA segments did not. As reported for mammalian cells, the expression of H5N1 PB2 inhibited the activation of the IFN-β promoter in chicken DF-1 fibroblast cells. Importantly, the Yama PB2 was more potent at inhibiting the IFN-β promoter than the Vac PB2. Conclusions The present study demonstrates that the NS1 protein and the polymerase complex of the HPAIV Yama act in concert to antagonize chicken type I IFN secretion in HD-11 cells. PB2 alone can also exert a partial inhibitory effect on type I IFN induction. In conclusion, the control of type I IFN induction by H5N1 HPAIV represents a complex phenotype that involves a particular viral gene constellation

  3. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    Science.gov (United States)

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  4. Influenza type A virus: an outstandingly protean pathogen and a potent modular weapon.

    Science.gov (United States)

    Shoham, Dany

    2013-05-01

    A remarkable debate recently arose on a global scale, about bioethics, biohazard, bioweaponry and bioterrorism issues related to scientific research concerning the induced transition of the highly lethal H5N1 avian flu virus from a non-pandemic to a tentatively pandemic strain, which might fall into malevolent hands. Appreciable ecogenetic complexity marks the main attributes of influenza type A viruses, namely infectivity, virulence, antigenicity, transmissibility, host range, endemicity, and epidemicity. They all shape, conjunctively, the outstanding protean nature of this pathogen, hence the modularity of the latter as a potent weapon. The present analysis inquires into those attributes, so as to profile and gauge threat, usability, impact and coping, particularly that the dimension of genetic engineering of this virus largely amplifies its potential. Within that context, various human interventions and misuses, including human experimental infections, undesirable vaccinations, as well as unauthorized and unskillful operations, led to bad corollaries and are also discussed in the present study. Altogether, a variety of interrelated properties underlying the complicatedness of and menaces posed by influenza A virus as a grave medical challenge, a dually explorable pathogen, and a modular biological warfare agent, are thereby illuminated, alongside with their scientific, strategic and practical implications.

  5. Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice

    Directory of Open Access Journals (Sweden)

    Bi Yuhai

    2011-11-01

    Full Text Available Abstract Background H9N2 influenza A viruses have undergone extensive reassortments in different host species, and could lead to the epidemics or pandemics with the potential emergence of novel viruses. Methods To understand the genetic and pathogenic features of early and current circulating H9N2 viruses, 15 representative H9N2 viruses isolated from diseased chickens in northern China between 1998 and 2010 were characterized and compared with all Chinese H9N2 viruses available in the NCBI database. Then, the representative viruses of different genotypes were selected to study the pathogenicity in mice with the aim to investigate the adaptation and the potential pathogenicity of the novel H9N2 reassortants to mammals. Results Our results demonstrated that most of the 15 isolates were reassortants and generated four novel genotypes (B62-B65, which incorporated the gene segments from Eurasian H9N2 lineage, North American H9N2 branch, and H5N1 viruses. It was noteworthy that the newly identified genotype B65 has been prevalent in China since 2007, and more importantly, different H9N2 influenza viruses displayed a diverse pathogenicity to mice. The isolates of the 2008-2010 epidemic (genotypes B55 and B65 were lowly infectious, while two representative viruses of genotypes B0 and G2 isolated from the late 1990s were highly pathogenic to mice. In addition, Ck/SD/LY-1/08 (genotype 63, containing H5N1-like NP and PA genes was able to replicate well in mouse lungs with high virus titers but caused mild clinical signs. Conclusion Several lines of evidence indicated that the H9N2 influenza viruses constantly change their genetics and pathogenicity. Thus, the genetic evolution of H9N2 viruses and their pathogenicity to mammals should be closely monitored to prevent the emergence of novel pandemic viruses.

  6. Protection of White Leghorn chickens by U.S. emergency H5 vaccination against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus.

    Science.gov (United States)

    Bertran, Kateri; Balzli, Charles; Lee, Dong-Hun; Suarez, David L; Kapczynski, Darrell R; Swayne, David E

    2017-11-01

    During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses with devastating consequences for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or currently licensed technologies, were evaluated for possible use: an inactivated reverse genetics H5N1 vaccine (rgH5N1) and an RNA particle vaccine (RP-H5), both containing the hemagglutinin gene of clade 2.3.4.4 strain, and a recombinant herpesvirus turkey vectored vaccine (rHVT-H5) containing the hemagglutinin gene of clade 2.2 strain. The efficacy of the three vaccines, alone or in combination, was assessed in White Leghorn chickens against clade 2.3.4.4 H5N2 HPAI virus challenge. In Study 1, single (rHVT-H5) and prime-boost (rHVT-H5+rgH5N1 or rHVT-H5+RP-H5) vaccination strategies protected chickens with high levels of protective immunity and significantly reduced virus shedding. In Study 2, single vaccination with either rgH5N1 or RP-H5 vaccines provided clinical protection in adult chickens and significantly reduced virus shedding. In Study 3, double rgH5N1 vaccination protected adult chickens from clinical signs and mortality when challenged 20weeks post-boost, with high levels of long-lasting protective immunity and significantly reduced virus shedding. These studies support the use of genetically related vaccines, possibly in combination with a broad protective priming vaccine, for emergency vaccination programs against clade 2.3.4.4 H5Nx HPAI virus in young and adult layer chickens. Published by Elsevier Ltd.

  7. Experimental and Field Results Regarding Immunity Induced by a Recombinant Turkey Herpesvirus H5 Vector Vaccine Against H5N1 and Other H5 Highly Pathogenic Avian Influenza Virus Challenges.

    Science.gov (United States)

    Gardin, Yannick; Palya, Vilmos; Dorsey, Kristi Moore; El-Attrache, John; Bonfante, Francesco; Wit, Sjaak de; Kapczynski, Darrell; Kilany, Walid Hamdy; Rauw, Fabienne; Steensels, Mieke; Soejoedono, Retno D

    2016-05-01

    Vaccination against H5N1 highly pathogenic avian influenza (AI) virus (HPAIV) is one of the possible complementary means available for affected countries to control AI when the disease has become, or with a high risk of becoming, endemic. Efficacy of the vaccination against AI relies essentially, but not exclusively, on the capacity of the vaccine to induce immunity against the targeted virus (which is prone to undergo antigenic variations), as well as its capacity to overcome interference with maternal immunity transmitted by immunized breeding hens to their progeny. This property of the vaccine is a prerequisite for its administration at the hatchery, which assures higher and more reliable vaccine coverage of the populations than vaccination at the farm. A recombinant vector vaccine (Vectormune® AI), based on turkey herpesvirus expressing the hemagglutinin gene of an H5N1 HPAIV as an insert, has been used in several experiments conducted in different research laboratories, as well as in controlled field trials. The results have demonstrated a high degree of homologous and cross protection against different genetic clades of the H5N1 HPAIV. Furthermore, vaccine-induced immunity was not impaired by the presence of passive immunity, but on the contrary, cumulated with it for improved early protection. The demonstrated levels of protection against the different challenge viruses exhibited variations in terms of postchallenge mortality, as well as challenge virus shedding. The data presented here highlight the advantages of this vaccine as a useful and reliable tool to complement biosecurity and sanitary policies for better controlling the disease due to HPAIV of H5 subtypes, when the vaccination is applied as a control measure.

  8. National surveillance and control costs for highly pathogenic avian influenza H5N1 in poultry: A benefit-cost assessment for a developing economy, Nigeria.

    Science.gov (United States)

    Fasanmi, Olubunmi G; Kehinde, Olugbenga O; Laleye, Agnes T; Ekong, Bassey; Ahmed, Syed S U; Fasina, Folorunso O

    2018-06-13

    We conducted benefit-cost analysis of outbreak and surveillance costs for HPAI H5N1in poultry in Nigeria. Poultry's death directly cost US$ 939,734.0 due to outbreaks. The integrated disease surveillance and response originally created for comprehensive surveillance and laboratory investigation of human diseases was adapted for HPAI H5N1 in poultry. Input data were obtained from the field, government documents and repositories and peer-reviewed publications. Actual/forecasted bird numbers lost were integrated into a financial model and estimates of losses were calculated. Costs of surveillance as alternative intervention were determined based on previous outbreak control costs and outputs were generated in SurvCost® with sensitivity analyses for different scenarios. Uncontrolled outbreaks will lead to loss of over US$ 2.2 billion annually in Nigeria with 47.8% of the losses coming from eggs. The annual cost of all animal related health activities was cost was 96.2% of the total surveillance and response costs, and 31.0% of the HPAI surveillance cost was spent on personnel with 3.8% as capital cost. Cost-wisely, routine monitoring and surveillance for HPAI are 68 times more cost effective than to do nothing. Assuming that successful control and eradication of HPAI H5N1 is partially attributable to H5N1 surveillance and response, a quarter or half of the success will result in 17 or 34 times more benefits. Although animal surveillance and response activities for avian influenza appeared expensive, their implementation are economically cost beneficial for developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene.

    Directory of Open Access Journals (Sweden)

    Antoinette J Piaggio

    Full Text Available A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV. We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event, as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.

  10. Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model

    Science.gov (United States)

    Zanin, Mark; Koçer, Zeynep A.; Poulson, Rebecca L.; Gabbard, Jon D.; Howerth, Elizabeth W.; Jones, Cheryl A.; Friedman, Kimberly; Seiler, Jon; Danner, Angela; Kercher, Lisa; McBride, Ryan; Paulson, James C.; Wentworth, David E.; Krauss, Scott; Tompkins, Stephen M.; Stallknecht, David E.

    2016-01-01

    ABSTRACT H7 subtype influenza A viruses are widely distributed and have been responsible for human infections and numerous outbreaks in poultry with significant impact. Despite this, the disease-causing potential of the precursor low-pathogenic (LP) H7 viruses from the wild bird reservoir has not been investigated. Our objective was to assess the disease-causing potential of 30 LP H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Without prior mammalian adaptation, the majority of viruses, 27 (90%), caused mortality in mice. Of these, 17 (56.7%) caused 100% mortality and 24 were of pathogenicity similar to that of A/Anhui/1/2013 (H7N9), which is highly pathogenic in mice. Viruses of duck origin were more pathogenic than those of shorebird origin, as 13 of 18 (72.2%) duck origin viruses caused 100% mortality while 4 of 12 (33.3%) shorebird origin viruses caused 100% mortality, despite there being no difference in mean lung viral titers between the groups. Replication beyond the respiratory tract was also evident, particularly in the heart and brain. Of the 16 viruses studied for fecal shedding, 11 were detected in fecal samples. These viruses exhibited a strong preference for avian-type α2,3-linked sialic acids; however, binding to mammalian-type α2,6-linked sialic acids was also detected. These findings indicate that LP avian H7 influenza A viruses are able to infect and cause disease in mammals without prior adaptation and therefore pose a potential public health risk. IMPORTANCE Low-pathogenic (LP) avian H7 influenza A viruses are widely distributed in the avian reservoir and are the precursors of numerous outbreaks of highly pathogenic avian influenza viruses in commercial poultry farms. However, unlike highly pathogenic H7 viruses, the disease-causing potential of LP H7 viruses from the wild bird reservoir has not been investigated. To address this, we studied 30 LP avian H7 viruses isolated from wild

  11. Tenacity of low-pathogenic avian influenza viruses in different types of poultry litter.

    Science.gov (United States)

    Reis, A; Stallknecht, D; Ritz, C; García, M

    2012-08-01

    To determine the risk of infection associated with exposure to low-pathogenic avian influenza (AI) virus-contaminated poultry litter, the tenacity of low pathogenic A/Ck/CA/431/00(H6N2), A/Mallard/MN/355779/00(H5N2), and A/turkey/Ohio/313053/04(H3N2) was evaluated. Viral stocks were incubated with poultry litter from commercial flocks at 25°C. Three types of poultry litter, wood shavings, shavings plus gypsum, and shavings plus peanut hulls, from commercial broiler flocks were used. The 3 low-pathogenic avian influenza viruses retained infectivity for one day in wood shavings and shavings plus peanut hulls litter types, whereas in wood shavings plus gypsum, litter viruses remained infective for up to 3 d. In contrast to the survivability in litter, all the viruses maintained infectivity in water for 4 d at titers of log(10)4.5. The infectivity of A/Ck/CA/431/00(H6N2) shed by experimentally infected layers, broilers, and turkeys was retained for one day, independently of the type of litter. In commercial production where a high density of birds are housed, the viral load shed by an infected flock will be significantly higher than the viral load shed 3 d postinfection obtained under the experimental conditions used in this study. Therefore proper management and disposal of poultry by products, such as windrow composting of litter and the composting of carcasses during an AI outbreak should be implemented.

  12. On the role of vaccine dose and antigenic distance in the transmission dynamics of Highly Pathogenic Avian Influenza (HPAI) H5N1 virus and its selected mutants in vaccinated animals

    NARCIS (Netherlands)

    Sitaras, Ioannis

    2017-01-01

    Influenza virus infections can cause high morbidity and mortality rates among animals and humans, and result in staggering direct and indirect financial losses amounting to billions of US dollars. Ever since it emerged in 1996 in Guangdong province, People’s Republic of China, one particular

  13. The pathogenecity of H5N1 highly pathogenic Avian Influenza (HPAI virus clade 2.3.2. in Indonesian indigenous chicken by contact tranmission with infected duck

    Directory of Open Access Journals (Sweden)

    R. Damayanti

    2017-05-01

    Full Text Available An experimental transmission study was conducted using nine healthy Indonesian indigenous chickens placed together with two 30 days old ducks which were experimentally infected with H5N1 HPAI clade 2.3.2 virus in the Biosafety Laboratory Level 3 (BSL-3 facilities. The aim of the study was to find out the pathogenicity of H5N1 HPAI virus clade 2.3.2 in Indonesian indigenous chickens. The study showed that within twenty four hours rearing, the chickens were exhibited mild clinical signs and by 48 hours, all of the chickens died, whereas the ducks survived but with severe clinical signs. The H5N1 HPAI virus has been successfully isolated from chickens and ducks swabs, confirming that those animals were infected by the virus. Histologically, the infected chicken encountered with severe inflammation reaction namely non suppuratives encephalitis, tracheitis, myocarditis, interstitial pneumonia, hepatitis, proventriculitis, enteritis, pancreatitis, nephritis and bursitis. Necrotizing spleen and pancreas were also prominent. Viral antigen was detected by immunohistochemistry staining in various affected visceral organs. This suggests that Indonesian indigenous chickens were susceptible to H5N1 HPAI virus clade 2.3.2 and it can be transmitted easily to Indonesian indigenous chickens by contact transmission with infected ducks.

  14. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    Science.gov (United States)

    Reeves, Andrew B.; Pearce, John M.; Ramey, Andy M.; Meixell, Brandt; Runstadler, Jonathan A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99% identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0–10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0–9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.

  15. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    Science.gov (United States)

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors. IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent

  16. Risk for low pathogenicity avian influenza virus on poultry farms, The Netherlands, 2007–2013

    NARCIS (Netherlands)

    Bouwstra, Ruth; Gonzales Rojas, Jose; Wit, de Sjaak; Stahl, Julia; Fouchier, Ron A.M.; Elbers, Armin R.W.

    2017-01-01

    Using annual serologic surveillance data from all poultry farms in the Netherlands during 2007–2013, we quantified the risk for the introduction of low pathogenicity avian influenza virus (LPAIV) in different types of poultry production farms and putative spatial-environmental risk factors:

  17. Infectivity, transmission and pathogenicity of avian influenza viruses for domestic and wild birds

    Science.gov (United States)

    Individual avian influenza (AI) virus strains vary in their ability to infect, transmit and cause disease and death in different bird species. Low pathogenicity AI (LPAI) viruses are maintained in wild birds, and must be adapted to pass to domestic poultry, where they replicate in respiratory and in...

  18. Low Pathogenic Avian Influenza (H7N1) Transmission Between Wild Ducks and Domestic Ducks

    DEFF Research Database (Denmark)

    Therkildsen, O. R.; Jensen, Trine Hammer; Handberg, Kurt

    2011-01-01

    This article describes a virological investigation in a mixed flock of ducks and geese following detection of avian influenza virus antibodies in domestic geese. Low pathogenic H7N1 was found in both domestic and wild birds, indicating that transmission of virus was likely to have taken place...

  19. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    Science.gov (United States)

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  20. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    Directory of Open Access Journals (Sweden)

    Marcel Jonges

    Full Text Available Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4 genome copies/m(3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

  1. 76 FR 4046 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-01-24

    ...), Japan, Jordan, Kazakhstan, Kuwait, Laos, Malaysia, Myanmar, Nepal, Niger, Nigeria, Pakistan, Palestinian... products in accordance with regulations of USDA's Food Safety and Inspection Service (FSIS). To avoid...

  2. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7 and swine-origin H1N1 (S-OIV

    Directory of Open Access Journals (Sweden)

    Schoop Roland

    2009-11-01

    Full Text Available Abstract Background Influenza virus (IV infections are a major threat to human welfare and animal health worldwide. Anti-viral therapy includes vaccines and a few anti-viral drugs. However vaccines are not always available in time, as demonstrated by the emergence of the new 2009 H1N1-type pandemic strain of swine origin (S-OIV in April 2009, and the acquisition of resistance to neuraminidase inhibitors such as Tamiflu® (oseltamivir is a potential problem. Therefore the prospects for the control of IV by existing anti-viral drugs are limited. As an alternative approach to the common anti-virals we studied in more detail a commercial standardized extract of the widely used herb Echinacea purpurea (Echinaforce®, EF in order to elucidate the nature of its anti-IV activity. Results Human H1N1-type IV, highly pathogenic avian IV (HPAIV of the H5- and H7-types, as well as swine origin IV (S-OIV, H1N1, were all inactivated in cell culture assays by the EF preparation at concentrations ranging from the recommended dose for oral consumption to several orders of magnitude lower. Detailed studies with the H5N1 HPAIV strain indicated that direct contact between EF and virus was required, prior to infection, in order to obtain maximum inhibition in virus replication. Hemagglutination assays showed that the extract inhibited the receptor binding activity of the virus, suggesting that the extract interferes with the viral entry into cells. In sequential passage studies under treatment in cell culture with the H5N1 virus no EF-resistant variants emerged, in contrast to Tamiflu®, which produced resistant viruses upon passaging. Furthermore, the Tamiflu®-resistant virus was just as susceptible to EF as the wild type virus. Conclusion As a result of these investigations, we believe that this standard Echinacea preparation, used at the recommended dose for oral consumption, could be a useful, readily available and affordable addition to existing control options

  3. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus).

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E

    2016-03-01

    Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P study demonstrates the suboptimal protection with the rHVT-H5/2.2 vaccine given alone in Pekin ducks against H5N1 HPAI viruses and only a minor additive effect on virus shedding reduction when used with an inactivated vaccine in a

  4. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities.

    Science.gov (United States)

    Wang, Jianlin; Cao, Zhiwei; Guo, Xuejin; Zhang, Yi; Wang, Dongdong; Xu, Shouzheng; Yin, Yanbo

    2016-12-01

    SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.

  5. Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza A virus.

    Directory of Open Access Journals (Sweden)

    Jan A van Gils

    Full Text Available It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell naturally infected with low-pathogenic avian influenza (LPAI A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised.

  6. Accumulation of a low pathogenic avian influenza virus in zebra mussels (Dreissena polymorpha).

    Science.gov (United States)

    Stumpf, Petra; Failing, Klaus; Papp, Tibor; Nazir, Jawad; Böhm, Reinhard; Marschang, Rachel E

    2010-12-01

    In order to investigate the potential role of mussels as a vector of influenza A viruses, we exposed zebra mussels (Dreissena polymorpha) to natural lake water containing a low pathogenic H5N1 avian influenza virus. Mussels were kept in water containing virus for 48 hr, then transferred into fresh water for another 14 days. Virus detection in mussels and water samples was performed by quantitative real-time reverse transcriptase-PCR (qRRT-PCR) and egg culture methods. Virus uptake was detected in all of the mussel groups that were exposed to virus. Even after 14 days in fresh water, virus could still be detected in shellfish material by both qRRT-PCR and egg culture methods. The present study demonstrates that zebra mussels are capable of accumulating influenza A viruses from the surrounding water and that these viruses remain in the mussels over an extended period of time.

  7. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice

    Directory of Open Access Journals (Sweden)

    Qingtao Liu

    2016-11-01

    Full Text Available H9N2 Avian influenza virus has repeatedly infected humans and other mammals, which highlights the need to determine the pathogenicity and the corresponding mechanism of this virus for mammals. In this study, we found two H9N2 viruses with similar genetic background but with different pathogenicity in mice. The A/duck/Nanjing/06/2003 (NJ06 virus was highly pathogenic for mice, with a 50% mouse lethal dose of 102.83 50% egg infectious dose, whereas the A/duck/Nanjing/01/1999 (NJ01 virus was low pathogenic for mice, with a 50% mouse lethal dose of >106.81 50% egg infectious dose. Further studies showed that the NJ06 virus grew faster and reached significantly higher titers than NJ01 in vivo and in vitro. Moreover, the NJ06 virus induced more severe lung lesions, and higher levels of inflammatory cellular infiltration and cytokine response in lungs than NJ01 did. However, only twelve different amino acid residues (HA-K157E, NA-A9T, NA-R435K, PB2-T149P, PB2-K627E, PB1-R187K, PA-L548M, PA-M550L, NP-G127E, NP-P277H, NP-D340N, NS1-D171N were found between the two viruses, and all these residues except for NA-R435K were located in the known functional regions involved in interaction of viral proteins or between the virus and host factors. Summary, our results suggest that multiple amino acid differences may be responsible for the higher pathogenicity of the NJ06 virus for mice, resulting in lethal infection, enhanced viral replication, severe lung lesions, and excessive inflammatory cellular infiltration and cytokine response in lungs. These observations will be helpful for better understanding the pathogenic potential and the corresponding molecular basis of H9N2 viruses that might pose threats to human health in the future.

  8. Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian influenza virus A(H7N7) infection as determined by Illumina ultra-deep sequencing

    NARCIS (Netherlands)

    Jonges, Marcel; Welkers, Matthijs R. A.; Jeeninga, Rienk E.; Meijer, Adam; Schneeberger, Peter; Fouchier, Ron A. M.; de Jong, Menno D.; Koopmans, Marion

    2014-01-01

    Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus

  9. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    Science.gov (United States)

    Gerloff, Nancy A; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S; Luby, Stephen P; Wentworth, David E; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  10. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    Science.gov (United States)

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S.; Luby, Stephen P.; Wentworth, David E.; Donis, Ruben O.; Sturm-Ramirez, Katharine; Davis, C. Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  11. Implementing hospital-based surveillance for severe acute respiratory infections caused by influenza and other respiratory pathogens in New Zealand

    Directory of Open Access Journals (Sweden)

    Q Sue Huang

    2014-05-01

    Full Text Available Background: Recent experience with pandemic influenza A(H1N1pdm09 highlighted the importance of global surveillance for severe respiratory disease to support pandemic preparedness and seasonal influenza control. Improved surveillance in the southern hemisphere is needed to provide critical data on influenza epidemiology, disease burden, circulating strains and effectiveness of influenza prevention and control measures. Hospital-based surveillance for severe acute respiratory infection (SARI cases was established in New Zealand on 30 April 2012. The aims were to measure incidence, prevalence, risk factors, clinical spectrum and outcomes for SARI and associated influenza and other respiratory pathogen cases as well as to understand influenza contribution to patients not meeting SARI case definition. Methods/Design: All inpatients with suspected respiratory infections who were admitted overnight to the study hospitals were screened daily. If a patient met the World Health Organization’s SARI case definition, a respiratory specimen was tested for influenza and other respiratory pathogens. A case report form captured demographics, history of presenting illness, co-morbidities, disease course and outcome and risk factors. These data were supplemented from electronic clinical records and other linked data sources. Discussion: Hospital-based SARI surveillance has been implemented and is fully functioning in New Zealand. Active, prospective, continuous, hospital-based SARI surveillance is useful in supporting pandemic preparedness for emerging influenza A(H7N9 virus infections and seasonal influenza prevention and control.

  12. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: A key role for mathematical modelling.

    Directory of Open Access Journals (Sweden)

    Lulla Opatowski

    2018-02-01

    Full Text Available Evidence is mounting that influenza virus interacts with other pathogens colonising or infecting the human respiratory tract. Taking into account interactions with other pathogens may be critical to determining the real influenza burden and the full impact of public health policies targeting influenza. This is particularly true for mathematical modelling studies, which have become critical in public health decision-making. Yet models usually focus on influenza virus acquisition and infection alone, thereby making broad oversimplifications of pathogen ecology. Herein, we report evidence of influenza virus interactions with bacteria and viruses and systematically review the modelling studies that have incorporated interactions. Despite the many studies examining possible associations between influenza and Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Neisseria meningitidis, respiratory syncytial virus (RSV, human rhinoviruses, human parainfluenza viruses, etc., very few mathematical models have integrated other pathogens alongside influenza. The notable exception is the pneumococcus-influenza interaction, for which several recent modelling studies demonstrate the power of dynamic modelling as an approach to test biological hypotheses on interaction mechanisms and estimate the strength of those interactions. We explore how different interference mechanisms may lead to unexpected incidence trends and possible misinterpretation, and we illustrate the impact of interactions on public health surveillance using simple transmission models. We demonstrate that the development of multipathogen models is essential to assessing the true public health burden of influenza and that it is needed to help improve planning and evaluation of control measures. Finally, we identify the public health, surveillance, modelling, and biological challenges and propose avenues of research for the coming years.

  13. Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets

    OpenAIRE

    Ilyushina, Natalia A.; Seiler, Jon P.; Rehg, Jerold E.; Webster, Robert G.; Govorkova, Elena A.

    2010-01-01

    The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N...

  14. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    Science.gov (United States)

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-02

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. D701N mutation in the PB2 protein contributes to the pathogenicity of H5N1 avian influenza viruses but not transmissibility in guinea pigs

    Directory of Open Access Journals (Sweden)

    Peirong eJiao

    2014-11-01

    Full Text Available H5N1 highly pathogenic avian influenza virus (HPAIV of clade 2.3.2 has been circulating in waterfowl in Southern China since 2003. Our previous studies showed that certain H5N1 HPAIV isolates within clade 2.3.2 from Southern China had high pathogenicity in different birds. Guinea pigs have been successfully used as models to evaluate the transmissibility of AIVs and other species of influenza viruses in mammalian hosts. However, few studies have reported pathogenicity and transmissibility of H5N1 HPAIVs of this clade in guinea pigs. In this study, we selected an H5N1 HPAIV isolate, A/duck/Guangdong/357/2008, to investigate the pathogenicity and transmissibility of the virus in guinea pigs. The virus had high pathogenicity in mice; additionally, it only replicated in some tissues of the guinea pigs without production of clinical signs, but was transmissible among guinea pigs. Interestingly, virus isolates from co-caged guinea pigs had the D701N mutation in the PB2 protein. These mutant viruses showed higher pathogenicity in mice and higher replication capability in guinea pigs but did not demonstrate enhanced the transmissibility among guinea pigs. These findings indicate the transmission of the H5N1 virus between mammals could induce virus mutations, and the mutant viruses might have higher pathogenicity in mammals without higher transmissibility. Therefore, the continued evaluation of the pathogenicity and transmissibility of avian influenza virus (AIVs in mammals is critical to the understanding of the evolutionary characteristics of AIVs and the emergence of potential pandemic strains.

  16. Risk for Low Pathogenicity Avian Influenza Virus on Poultry Farms, the Netherlands, 2007-2013.

    Science.gov (United States)

    Bouwstra, Ruth; Gonzales, Jose L; de Wit, Sjaak; Stahl, Julia; Fouchier, Ron A M; Elbers, Armin R W

    2017-09-01

    Using annual serologic surveillance data from all poultry farms in the Netherlands during 2007-2013, we quantified the risk for the introduction of low pathogenicity avian influenza virus (LPAIV) in different types of poultry production farms and putative spatial-environmental risk factors: distance from poultry farms to clay soil, waterways, and wild waterfowl areas. Outdoor-layer, turkey (meat and breeder), and duck (meat and breeder) farms had a significantly higher risk for LPAIV introduction than did indoor-layer farms. Except for outdoor-layer, all poultry types (i.e., broilers, chicken breeders, ducks, and turkeys) are kept indoors. For all production types, LPAIV risk decreased significantly with increasing distance to medium-sized waterways and with increasing distance to areas with defined wild waterfowl, but only for outdoor-layer and turkey farms. Future research should focus not only on production types but also on distance to waterways and wild bird areas. In addition, settlement of new poultry farms in high-risk areas should be discouraged.

  17. The control of H5 or H7 mildly pathogenic avian influenza: a role for inactivated vaccine.

    Science.gov (United States)

    Halvorson, David A

    2002-02-01

    Biosecurity is the first line of defence in the prevention and control of mildly pathogenic avian influenza (MPAI). Its use has been highly successful in keeping avian influenza (AI) out of commercial poultry worldwide. However, sometimes AI becomes introduced into poultry populations and, when that occurs, biosecurity again is the primary means of controlling the disease. There is agreement that routine serological monitoring, disease reporting, isolation or quarantine of affected flocks, application of strict measures to prevent the contamination of and movement of people and equipment, and changing flock schedules are necessities for controlling AI. There is disagreement as to the disposition of MPAI-infected flocks: some advocate their destruction and others advocate controlled marketing. Sometimes biosecurity is not enough to stop the spread of MPAI. In general, influenza virus requires a dense population of susceptible hosts to maintain itself. When there is a large population of susceptible poultry in an area, use of an inactivated AI vaccine can contribute to AI control by reducing the susceptibility of the population. Does use of inactivated vaccine assist, complicate or interfere with AI control and eradication? Yes, it assists MPAI control (which may reduce the risk of highly pathogenic AI (HPAI)) but, unless steps are taken to prevent it, vaccination may interfere with sero-epidemiology in the case of an HPAI outbreak. Does lack of vaccine assist, complicate or interfere with AI control and eradication? Yes, it assists in identification of sero-positive (convalescent) flocks in a HPAI eradication program, but it interferes with MPAI control (which in turn may increase the risk of emergence of HPAI).A number of hypothetical concerns have been raised about the use of inactivated AI vaccines. Infection of vaccinated flocks, serology complications and spreading of virus by vaccine crews are some of the hypothetical concerns. The discussion of these concerns

  18. Evaluating surveillance strategies for the early detection of low pathogenicity avian influenza infections.

    Science.gov (United States)

    Comin, Arianna; Stegeman, Arjan; Marangon, Stefano; Klinkenberg, Don

    2012-01-01

    In recent years, the early detection of low pathogenicity avian influenza (LPAI) viruses in poultry has become increasingly important, given their potential to mutate into highly pathogenic viruses. However, evaluations of LPAI surveillance have mainly focused on prevalence and not on the ability to act as an early warning system. We used a simulation model based on data from Italian LPAI epidemics in turkeys to evaluate different surveillance strategies in terms of their performance as early warning systems. The strategies differed in terms of sample size, sampling frequency, diagnostic tests, and whether or not active surveillance (i.e., routine laboratory testing of farms) was performed, and were also tested under different epidemiological scenarios. We compared surveillance strategies by simulating within-farm outbreaks. The output measures were the proportion of infected farms that are detected and the farm reproduction number (R(h)). The first one provides an indication of the sensitivity of the surveillance system to detect within-farm infections, whereas R(h) reflects the effectiveness of outbreak detection (i.e., if detection occurs soon enough to bring an epidemic under control). Increasing the sampling frequency was the most effective means of improving the timeliness of detection (i.e., it occurs earlier), whereas increasing the sample size increased the likelihood of detection. Surveillance was only effective in preventing an epidemic if actions were taken within two days of sampling. The strategies were not affected by the quality of the diagnostic test, although performing both serological and virological assays increased the sensitivity of active surveillance. Early detection of LPAI outbreaks in turkeys can be achieved by increasing the sampling frequency for active surveillance, though very frequent sampling may not be sustainable in the long term. We suggest that, when no LPAI virus is circulating yet and there is a low risk of virus introduction

  19. Evaluating surveillance strategies for the early detection of low pathogenicity avian influenza infections.

    Directory of Open Access Journals (Sweden)

    Arianna Comin

    Full Text Available In recent years, the early detection of low pathogenicity avian influenza (LPAI viruses in poultry has become increasingly important, given their potential to mutate into highly pathogenic viruses. However, evaluations of LPAI surveillance have mainly focused on prevalence and not on the ability to act as an early warning system. We used a simulation model based on data from Italian LPAI epidemics in turkeys to evaluate different surveillance strategies in terms of their performance as early warning systems. The strategies differed in terms of sample size, sampling frequency, diagnostic tests, and whether or not active surveillance (i.e., routine laboratory testing of farms was performed, and were also tested under different epidemiological scenarios. We compared surveillance strategies by simulating within-farm outbreaks. The output measures were the proportion of infected farms that are detected and the farm reproduction number (R(h. The first one provides an indication of the sensitivity of the surveillance system to detect within-farm infections, whereas R(h reflects the effectiveness of outbreak detection (i.e., if detection occurs soon enough to bring an epidemic under control. Increasing the sampling frequency was the most effective means of improving the timeliness of detection (i.e., it occurs earlier, whereas increasing the sample size increased the likelihood of detection. Surveillance was only effective in preventing an epidemic if actions were taken within two days of sampling. The strategies were not affected by the quality of the diagnostic test, although performing both serological and virological assays increased the sensitivity of active surveillance. Early detection of LPAI outbreaks in turkeys can be achieved by increasing the sampling frequency for active surveillance, though very frequent sampling may not be sustainable in the long term. We suggest that, when no LPAI virus is circulating yet and there is a low risk of virus

  20. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens.

    Directory of Open Access Journals (Sweden)

    Dominick J Laddy

    Full Text Available BACKGROUND: The persistent evolution of highly pathogenic avian influenza (HPAI highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. METHODS AND FINDINGS: Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA, N1 neuraminidase (pN1NA, and nucleoprotein antigen (pNP. Dramatic IFN-gamma-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40 were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. CONCLUSIONS: By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the

  1. Epidemiological surveillance of low pathogenic avian influenza virus (LPAIV from poultry in Guangxi Province, Southern China.

    Directory of Open Access Journals (Sweden)

    Yi Peng

    Full Text Available Low pathogenic avian influenza virus (LPAIV usually causes mild disease or asymptomatic infection in poultry. However, some LPAIV strains can be transmitted to humans and cause severe infection. Genetic rearrangement and recombination of even low pathogenic influenza may generate a novel virus with increased virulence, posing a substantial risk to public health. Southern China is regarded as the world "influenza epicenter", due to a rash of outbreaks of influenza in recent years. In this study, we conducted an epidemiological survey of LPAIV at different live bird markets (LBMs in Guangxi province, Southern China. From January 2009 to December 2011, we collected 3,121 cotton swab samples of larynx, trachea and cloaca from the poultry at LBMs in Guangxi. Virus isolation, hemagglutination inhibition (HI assay, and RT-PCR were used to detect and subtype LPAIV in the collected samples. Of the 3,121 samples, 336 samples (10.8% were LPAIV positive, including 54 (1.7% in chicken and 282 (9.1% in duck. The identified LPAIV were H3N1, H3N2, H6N1, H6N2, H6N5, H6N6, H6N8, and H9N2, which are combinations of seven HA subtypes (H1, H3, H4, H6, H9, H10 and H11 and five NA subtypes (N1, N2, N5, N6 and N8. The H3 and H9 subtypes are predominant in the identified LPAIVs. Among the 336 cases, 29 types of mixed infection of different HA subtypes were identified in 87 of the cases (25.9%. The mixed infections may provide opportunities for genetic recombination. Our results suggest that the LPAIV epidemiology in poultry in the Guangxi province in southern China is complicated and highlights the need for further epidemiological and genetic studies of LPAIV in this area.

  2. Extended viral shedding of a low pathogenic avian influenza virus by striped skunks (Mephitis mephitis.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Root

    Full Text Available BACKGROUND: Striped skunks (Mephitis mephitis are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined. METHODOLOGY/PRINCIPAL FINDINGS: Striped skunks were experimentally infected with a low pathogenic (LP H4N6 avian influenza virus (AIV and monitored for 20 days post infection (DPI. All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum ≤ 10(6.02 PCR EID50 equivalent/mL and ≤ 10(5.19 PCR EID50 equivalent/mL, respectively. Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI. CONCLUSIONS/SIGNIFICANCE: These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations.

  3. The pathogenicity of four avian influenza viruses for fowls, turkeys and ducks.

    Science.gov (United States)

    Alexander, D J; Allan, W H; Parsons, D G; Parsons, G

    1978-03-01

    Groups of 10 two-week-old chicks, turkey poults and ducklings were each infected by the intranasal route with one of four avian influenza viruses: a/fowl/Germany/34 (Hav 1N))--Rostock, A/FPV/Dutch/27 (Hav 1 Neq 1)--Dutch, A/fowl/Victoria/75 (Hav 1 Neq 1)--Australian, and A/parrot/Ulster/73 (Hav 1 N1)--Ulster. Eight hours after infection 10 birds of the same age and species were placed in contact with each group and allowed to mix. The clinical signs of disease and onset of sickness and death were recorded. Ulster virus was completely avirulent for all birds. Rostock, Dutch and Australian viruses were virulent for fowls and turkeys causing death in all birds with the exception of 3/10 in contact fowls from the Rostock virus group and 2/10 in contact fowls from the Australian virus group. Only Rostock virus caused sicked sickness or death in ducks, 9/10 intranasally infected and 6/7 in contact birds showed clinical signs and 2/10 intranasally infected and 3/7 in contact ducks died. Intranasal and in contact pathogenicity indices were calculated for each virus in each bird species and indicated quantitatively the differences in virulence of the four virus strains. Virus isolation and immune response studies indicated that surviving in contact fowls in the Rostock virus group had never been infected but that surviving Australian virus in contact fowls had recovered from infection. Infection was not established in Ulster virus in contact fowls and Australian virus intranasally infected and in contact ducks. The birds in all other groups showed positive virus isolations and a high incidence of positive immune response. The last virus isolation was made at 22 days after intranasal infection of ducks with Ulster virus.

  4. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Munir Iqbal

    2009-06-01

    Full Text Available The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked alpha2-6 to galactose. The neuraminidase (NA of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84, a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP, and matrix (M genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.

  5. Rapid and highly informative diagnostic assay for H5N1 influenza viruses.

    Directory of Open Access Journals (Sweden)

    Nader Pourmand

    Full Text Available A highly discriminative and information-rich diagnostic assay for H5N1 avian influenza would meet immediate patient care needs and provide valuable information for public health interventions, e.g., tracking of new and more dangerous variants by geographic area as well as avian-to-human or human-to-human transmission. In the present study, we have designed a rapid assay based on multilocus nucleic acid sequencing that focuses on the biologically significant regions of the H5N1 hemagglutinin gene. This allows the prediction of viral strain, clade, receptor binding properties, low- or high-pathogenicity cleavage site and glycosylation status. H5 HA genes were selected from nine known high-pathogenicity avian influenza subtype H5N1 viruses, based on their diversity in biologically significant regions of hemagglutinin and/or their ability to cause infection in humans. We devised a consensus pre-programmed pyrosequencing strategy, which may be used as a faster, more accurate alternative to de novo sequencing. The available data suggest that the assay described here is a reliable, rapid, information-rich and cost-effective approach for definitive diagnosis of H5N1 avian influenza. Knowledge of the predicted functional sequences of the HA will enhance H5N1 avian influenza surveillance efforts.

  6. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells.

    Science.gov (United States)

    Hussain, Althaf I; Cordeiro, Melissa; Sevilla, Elizabeth; Liu, Jonathan

    2010-05-14

    Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006-2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced

  7. Characterization of low pathogenicity avian influenza viruses isolated from wild birds in Mongolia 2005 through 2007

    Directory of Open Access Journals (Sweden)

    Sodnomdarjaa Ruuragchaa

    2009-11-01

    Full Text Available Abstract Background Since the emergence of H5N1 high pathogenicity (HP avian influenza virus (AIV in Asia, numerous efforts worldwide have focused on elucidating the relative roles of wild birds and domestic poultry movement in virus dissemination. In accordance with this a surveillance program for AIV in wild birds was conducted in Mongolia from 2005-2007. An important feature of Mongolia is that there is little domestic poultry production in the country, therefore AIV detection in wild birds would not likely be from spill-over from domestic poultry. Results During 2005-2007 2,139 specimens representing 4,077 individual birds of 45 species were tested for AIV by real time RT-PCR (rRT-PCR and/or virus isolation. Bird age and health status were recorded. Ninety rRT-PCR AIV positive samples representing 89 individual birds of 19 species including 9 low pathogenicity (LP AIVs were isolated from 6 species. A Bar-headed goose (Anser indicus, a Whooper swan (Cygnus cygnus and 2 Ruddy shelducks (Tadorna ferruginea were positive for H12N3 LP AIV. H16N3 and H13N6 viruses were isolated from Black-headed gulls (Larus ridibundus. A Red-crested pochard (Rhodonessa rufina and 2 Mongolian gulls (Larus vagae mongolicus were positive for H3N6 and H16N6 LP AIV, respectively. Full genomes of each virus isolate were sequenced and analyzed phylogenetically and were most closely related to recent European and Asian wild bird lineage AIVs and individual genes loosely grouped by year. Reassortment occurred within and among different years and subtypes. Conclusion Detection and/or isolation of AIV infection in numerous wild bird species, including 2 which have not been previously described as hosts, reinforces the wide host range of AIV within avian species. Reassortment complexity within the genomes indicate the introduction of new AIV strains into wild bird populations annually, however there is enough over-lap of infection for reassortment to occur. Further work is

  8. Haemophilus influenzae Isolated From Men With Acute Urethritis: Its Pathogenic Roles, Responses to Antimicrobial Chemotherapies, and Antimicrobial Susceptibilities.

    Science.gov (United States)

    Ito, Shin; Hatazaki, Kyoko; Shimuta, Ken; Kondo, Hiromi; Mizutani, Kosuke; Yasuda, Mitsuru; Nakane, Keita; Tsuchiya, Tomohiro; Yokoi, Shigeaki; Nakano, Masahiro; Ohinishi, Makoto; Deguchi, Takashi

    2017-04-01

    There have been few comprehensive studies on Haemophilus influenza-positive urethritis. In this retrospective study, we enrolled 68 men with H. influenzae-positive urethritis, including coinfections with Neisseria gonorrhoeae, Chlamydia trachomatis, and/or genital mycoplasmas: 2, 3, 20, and 43 treated with ceftriaxone, levofloxacin, sitafloxacin, and extended-release azithromycin (azithromycin-SR), respectively. We assessed microbiological outcomes in 54 men and clinical outcomes in 46 with H. influenzae-positive monomicrobial nongonococcal urethritis. We determined minimum inhibitory concentrations (MICs) of 6 antimicrobial agents for 59 pretreatment isolates. H. influenzae was eradicated from the men treated with ceftriaxone, levofloxacin, or sitafloxacin. The eradication rate with azithromycin-SR was 85.3%. The disappearance or alleviation of urethritis symptoms and the decreases in leukocyte counts in first-voided urine were significantly associated with the eradication of H. influenzae after treatment. For the isolates, ceftriaxone, levofloxacin, sitafloxacin, azithromycin, tetracycline, and doxycycline MICs were ≤0.008-0.25, 0.008-0.5, 0.001-0.008, 0.12-1, 0.25-16, and 0.25-2 μg/mL, respectively. The azithromycin MICs for 3 of 4 strains persisting after azithromycin-SR administration were 1 μg/mL. H. influenzae with an azithromycin MIC of 1 μg/mL increased chronologically. H. influenzae showed good responses to the chemotherapies for urethritis. The significant associations of the clinical outcomes of the chemotherapies with their microbiological outcomes suggested that H. influenzae could play pathogenic roles in urethritis. All isolates, except for one with decreased susceptibility to tetracyclines, were susceptible to the examined agents. However, the increase in H. influenzae with an azithromycin MIC of 1 μg/mL might threaten efficacies of azithromycin regimens on H. influenzae-positive urethritis.

  9. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes

    Science.gov (United States)

    Monsalvo, Ana Clara; Batalle, Juan P.; Lopez, M. Florencia; Krause, Jens C.; Klemenc, Jennifer; Zea, Johanna; Maskin, Bernardo; Bugna, Jimena; Rubinstein, Carlos; Aguilar, Leandro; Dalurzo, Liliana; Libster, Romina; Savy, Vilma; Baumeister, Elsa; Aguilar, Liliana; Cabral, Graciela; Font, Julia; Solari, Liliana; Weller, Kevin P.; Johnson, Joyce; Echavarria, Marcela; Edwards, Kathryn M.; Chappell, James D.; Crowe, James E.; Williams, John V.; Melendi, Guillermina A.; Polack, Fernando P.

    2010-01-01

    Pandemic influenza viruses often cause severe disease in middle-aged adults without preexistent co-morbidities. The mechanism of illness associated with severe disease in this age group is not well understood1–10. Here, we demonstrate preexisting serum antibody that cross-reacts with, but does not protect against 2009 H1N1 influenza virus in middle-aged adults. Non-protective antibody is associated with immune complex(IC)-mediated disease after infection. High titers of serum antibody of low avidity for H1-2009 antigen, and low avidity pulmonary ICs against the same protein were detected in severely ill patients. Moreover, C4d deposition - a sensitive marker of complement activation mediated by ICs- was present in lung sections of fatal cases. Archived lung sections from adults with confirmed fatal influenza 1957 H2N2 infection revealed a similar mechanism of illness. These observations provide a novel biological mechanism for the unusual age distribution of severe cases during influenza pandemics. PMID:21131958

  10. Unexpected infection outcomes of China-origin H7N9 low pathogenicity avian influenza virus in turkeys.

    Science.gov (United States)

    Slomka, Marek J; Seekings, Amanda H; Mahmood, Sahar; Thomas, Saumya; Puranik, Anita; Watson, Samantha; Byrne, Alexander M P; Hicks, Daniel; Nunez, Alejandro; Brown, Ian H; Brookes, Sharon M

    2018-05-09

    The China-origin H7N9 low pathogenicity avian influenza virus (LPAIV) emerged as a zoonotic threat in 2013 where it continues to circulate in live poultry markets. Absence of overt clinical signs in poultry is a typical LPAIV infection outcome, and has contributed to its insidious maintenance in China. This study is the first description of H7N9 LPAIV (A/Anhui/1/13) infection in turkeys, with efficient transmission to two additional rounds of introduced contact turkeys which all became infected during cohousing. Surprisingly, mortality was observed in six of eight (75%) second-round contact turkeys which is unusual for LPAIV infection, with unexpected systemic dissemination to many organs beyond the respiratory and enteric tracts, but interestingly no accompanying mutation to highly pathogenic AIV. The intravenous pathogenicity index score for a turkey-derived isolate (0.39) affirmed the LPAIV phenotype. However, the amino acid change L235Q in the haemagglutinin gene occurred in directly-infected turkeys and transmitted to the contacts, including those that died and the two which resolved infection to survive to the end of the study. This polymorphism was indicative of a reversion from mammalian to avian adaptation for the H7N9 virus. This study underlined a new risk to poultry in the event of H7N9 spread beyond China.

  11. Shedding of a low pathogenic avian influenza virus in a common synanthropic mammal--the cottontail rabbit.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Root

    Full Text Available BACKGROUND: Cottontails (Sylvilagus spp. are common mammals throughout much of the U.S. and are often found in peridomestic settings, potentially interacting with livestock and poultry operations. If these animals are susceptible to avian influenza virus (AIV infections and shed the virus in sufficient quantities they may pose a risk for movement of avian influenza viruses between wildlife and domestic animals in certain situations. METHODOLOGY/PRINCIPAL FINDINGS: To assess the viral shedding potential of AIV in cottontails, we nasally inoculated fourteen cottontails with a low pathogenic AIV (H4N6. All inoculated cottontails shed relatively large quantities of viral RNA both nasally (≤ 10(6.94 PCR EID50 equivalents/mL and orally (≤ 10(5.09 PCR EID50 equivalents/mL. However, oral shedding tended to decline more quickly than did nasal shedding. No animals showed any obvious signs of disease throughout the study. Evidence of a serological response was found in all infected rabbits at 22 days post infection in convalescent sera. CONCLUSIONS/SIGNIFICANCE: To our knowledge, cottontails have not been previously assessed for AIV shedding. However, it was obvious that they shed AIV RNA extensively via the nasal and oral routes. This is significant, as cottontails are widely distributed throughout the U.S. and elsewhere. These mammals are often found in highly peridomestic situations, such as farms, parks, and suburban neighborhoods, often becoming habituated to human activities. Thus, if infected these mammals could easily transport AIVs short distances.

  12. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals.

    Science.gov (United States)

    El-Shesheny, Rabeh; Feeroz, Mohammed M; Krauss, Scott; Vogel, Peter; McKenzie, Pamela; Webby, Richard J; Webster, Robert G

    2018-04-25

    Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.

  13. Using egg production data to quantify within-flock transmission of low pathogenic avian influenza virus in commercial layer chickens

    NARCIS (Netherlands)

    Gonzales, J.L.; Elbers, A.R.W.; Goot, van der J.A.; Bontje, D.M.; Koch, G.; Wit, de J.J.; Stegeman, J.A.

    2012-01-01

    Even though low pathogenic avian influenza viruses (LPAIv) affect the poultry industry of several countries in the world, information about their transmission characteristics in poultry is sparse. Outbreak reports of LPAIv in layer chickens have described drops in egg production that appear to be

  14. Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets

    NARCIS (Netherlands)

    J.M.A. van den Brand (Judith); K.J. Stittelaar (Koert); G. van Amerongen (Geert); L.A. Reperant (Leslie); L. de Waal (Leon); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2012-01-01

    textabstractHumans may be infected by different influenza A viruses-seasonal, pandemic, and zoonotic-which differ in presentation from mild upper respiratory tract disease to severe and sometimes fatal pneumonia with extra-respiratory spread. Differences in spatial and temporal dynamics of these

  15. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses.

    Science.gov (United States)

    Balzli, Charles; Lager, Kelly; Vincent, Amy; Gauger, Phillip; Brockmeier, Susan; Miller, Laura; Richt, Juergen A; Ma, Wenjun; Suarez, David; Swayne, David E

    2016-07-01

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses and then generate mammalian adaptable influenza A viruses is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and possible epidemics among swine and/or humans. Assess susceptibility of pigs to LPAI viruses found within the United States and their direct contact transmission potential. Pigs were inoculated with one of ten H5 or H7 LPAI viruses selected from seven different bird species to test infectivity, virulence, pathogenesis, and potential to transmit virus to contact pigs through histological, RRT-PCR and seroconversion data. Although pigs were susceptible to infection with each of the LPAI viruses, no clinical disease was recognized in any pig. During the acute phase of the infection, minor pulmonary lesions were found in some pigs and one or more pigs in each group were RRT-PCR-positive in the lower respiratory tract, but no virus was detected in upper respiratory tract (negative nasal swabs). Except for one group, one or more pigs in each LPAI group developed antibody. No LPAI viruses transmitted to contact pigs. LPAI strains from various bird populations within the United States are capable of infecting pigs. Although adaptability and transmission of individual strains seem unlikely, the subclinical nature of the infections demonstrates the need to improve sampling and testing methods to more accurately measure incidence of LPAI virus infection in pigs, and their potential role in human-zoonotic LPAI virus dynamics. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  16. Two avian H10 influenza A virus strains with different pathogenicity for mink (Mustela vison).

    Science.gov (United States)

    Englund, L; Hård af Segerstad, C

    1998-01-01

    We compared two strains of avian influenza A viruses of subtype H10 by exposing mink to aerosols of A/mink/Sweden/3,900/84 (H10N4) naturally pathogenic for mink, or A/chicken/Germany/N/49, (H10N7). Lesions in the respiratory tract during the first week after infection were studied and described. Both virus strains caused inflammatory reactions in the lungs and antibody production in exposed mink but only mink/84 virus was reisolated. The lesions caused by mink/84 virus were more severe with higher area density of pneumonia, lower daily weight gain, and more virus in the tissues detected by immunohistochemistry. The results indicate that mink/84 (H10N4), but not chicken/49 virus (H10N7), established multiple cycle replication in infected cells in the mink.

  17. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae.

    Science.gov (United States)

    Gawthorne, Jayde A; Beatson, Scott A; Srikhanta, Yogitha N; Fox, Kate L; Jennings, Michael P

    2012-01-01

    Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles. 18 distinct modA alleles have been identified in H. influenzae and the pathogenic Neisseria. To determine the origin of DRD variability, the 18 modA DRDs were used to search the available databases for similar sequences. Significant matches were identified between several modA alleles and mod gene from distinct bacterial species, indicating one source of the DRD variability was via horizontal gene transfer. Comparison of DRD sequences revealed significant mosaicism, indicating exchange between the Neisseria and H. influenzae modA alleles. Regions of high inter- and intra-allele similarity indicate that some modA alleles had undergone recombination more frequently than others, generating further diversity. Furthermore, the DRD from some modA alleles, such as modA12, have been transferred en bloc to replace the DRD from different modA alleles.

  18. Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7 in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Selvaraju Kanagarajan

    Full Text Available The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His tag, and an endoplasmic retention signal (SEKDEL. The construct was cloned into a Cowpea mosaic virus (CPMV-based vector (pEAQ-HT and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19 containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0, as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi. Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of

  19. Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation.

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Smith, Diane M; Wasilenko, Jamie L; Spackman, Erica

    2012-06-01

    In order to develop better control measures against avian influenza, it is necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1 influenza virus was examined in different poultry species, we found that no or minimal infection occurred in chicken and turkeys intranasally (IN) inoculated with the virus. However, we demonstrated that the virus can infect laying turkey hens by the intracloacal (IC) and intraoviduct (IO) routes, possibly explaining the drops in egg production observed in turkey breeder farms affected by the virus. Such novel routes of exposure have not been previously examined in chickens and could also explain outbreaks of low pathogenicity avian influenza (LPAI) that cause a decrease in egg production in chicken layers and breeders. In the present study, 46-wk-old specific-pathogen-free chicken layers were infected by the IN, IC, or IO routes with one of two LPAI viruses: a poultry origin virus, A/chicken/CA/1255/02 (H6N2), and a live bird market isolate, A/chicken/NJ/12220/97 (H9N2). Only hens IN inoculated with the H6N2 virus presented mild clinical signs consisting of depression and anorexia. However, a decrease in number of eggs laid was observed in all virus-inoculated groups when compared to control hens. Evidence of infection was found in all chickens inoculated with the H6N2 virus by any of the three routes and the virus transmitted to contact hens. On the other hand, only one or two hens from each of the groups inoculated with the H9N2 virus shed detectable levels of virus, or seroconverted and did not transmit the virus to contacts, regardless of the route of inoculation. In conclusion, LPAI viruses can also infect chickens through other routes besides the IN route, which is considered the natural route of exposure. However, as seen with the H9N2 virus, the infectivity of the virus did not increase when given by these alternate routes.

  20. Methods for molecular surveillance of influenza

    OpenAIRE

    Wang, Ruixue; Taubenberger, Jeffery K

    2010-01-01

    Molecular-based techniques for detecting influenza viruses have become an integral component of human and animal surveillance programs in the last two decades. The recent pandemic of the swine-origin influenza A virus (H1N1) and the continuing circulation of highly pathogenic avian influenza A virus (H5N1) further stress the need for rapid and accurate identification and subtyping of influenza viruses for surveillance, outbreak management, diagnosis and treatment. There has been remarkable pr...

  1. Global spread and control of avian influenza

    Science.gov (United States)

    H5 and H7 high pathogenicity avian influenza (HPAI) viruses emerge from the mutation of H5 and H7 low pathogenicity avian influenza viruses (LPAI) after circulation in terrestrial poultry for a few weeks to years. There have been 42 distinct HPAI epizootics since 1959. The largest being the H5N1 A/G...

  2. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses

    OpenAIRE

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflect...

  3. Experimental assessment of the pathogenicity of two avian influenza A H5 viruses in ostrich chicks (Struthio camelus) and chickens.

    Science.gov (United States)

    Manvell, R J; Jørgensen, P H; Nielsen, O L; Alexander, D J

    1998-01-01

    Virus excretion, immune response, and, for chickens, deaths were recorded in 3-week-old ostriches and chickens inoculated by either the intramuscular or intranasal route with one of two influenza A viruses of subtype H5. One of the viruses, A/turkey/England/50-92/91 (H5N1) (50/92), was highly pathogenic for chickens causing 5/5 deaths by each route of inoculation. The other virus, A/ostrich/Denmark-Q/72420/96 (H5N2) (72420/96), isolated from ostriches in quarantine in Denmark during 1996, was of low pathogenicity for chickens, causing no clinical signs by either route of inoculation. No significant clinical signs were seen in any of the ostriches infected with either of the viruses by either route of infection. Both viruses were recoverable from both species up to 12 days post-infection, and low serological responses were detected in surviving infected ostriches and chickens at 21 days after inoculation.

  4. Persistence of Low-Pathogenic Avian Influenza H5N7 and H7N1 Subtypes in House Flies (Diptera: Muscidae)

    DEFF Research Database (Denmark)

    Nielsen, Anne Ahlmann; Skovgård, Henrik; Stockmarr, Anders

    2011-01-01

    Avian influenza caused by avian influenza virus (AIV) has a negative impact on poultry production. Low-pathogenic AIV (LPAIV) is naturally present in wild birds, and the introduction of the virus into domestic poultry is assumed to occur through contact with wild birds and by human activity...

  5. Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV). To gain a better under...

  6. Persistence of low-pathogenic avian influenza H5N7 and H7N1 subtypes in house flies (Diptera

    DEFF Research Database (Denmark)

    Nielsen, Anne Ahlmann; Skovgård, Henrik; Stockmarr, Anders

    2011-01-01

    Avian influenza caused by avian influenza virus (AIV) has a negative impact on poultry production. Low-pathogenic AIV (LPAIV) is naturally present in wild birds, and the introduction of the virus into domestic poultry is assumed to occur through contact with wild birds and by human activity...

  7. Identification of Molecular Markers Associated with Alteration of Receptor-Binding Specificity in a Novel Genotype of Highly Pathogenic Avian Influenza A(H5N1) Viruses Detected in Cambodia in 2013

    Science.gov (United States)

    Rith, Sareth; Davis, C. Todd; Duong, Veasna; Sar, Borann; Horm, Srey Viseth; Chin, Savuth; Ly, Sovann; Laurent, Denis; Richner, Beat; Oboho, Ikwo; Jang, Yunho; Davis, William; Thor, Sharmi; Balish, Amanda; Iuliano, A. Danielle; Sorn, San; Holl, Davun; Sok, Touch; Seng, Heng; Tarantola, Arnaud; Tsuyuoka, Reiko; Parry, Amy; Chea, Nora; Allal, Lotfi; Kitsutani, Paul; Warren, Dora; Prouty, Michael; Horwood, Paul; Widdowson, Marc-Alain; Lindstrom, Stephen; Villanueva, Julie; Donis, Ruben; Cox, Nancy

    2014-01-01

    Human infections with influenza A(H5N1) virus in Cambodia increased sharply during 2013. Molecular characterization of viruses detected in clinical specimens from human cases revealed the presence of mutations associated with the alteration of receptor-binding specificity (K189R, Q222L) and respiratory droplet transmission in ferrets (N220K with Q222L). Discovery of quasispecies at position 222 (Q/L), in addition to the absence of the mutations in poultry/environmental samples, suggested that the mutations occurred during human infection and did not transmit further. PMID:25210193

  8. Adaptation of high-growth influenza H5N1 vaccine virus in Vero cells: implications for pandemic preparedness.

    Directory of Open Access Journals (Sweden)

    Yu-Fen Tseng

    Full Text Available Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14, a reassortant virus between A/Vietnam/1194/2004 (H5N1 virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15 was generated and can grow over 10(8 TCID(50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes.

  9. Experimental Assessment of the Pathogenicity of Avian Influenza Virus H9N2 Subtype in Japanese Quail (Coturnix Coturnix Japanica

    Directory of Open Access Journals (Sweden)

    Asasi, K.

    2010-07-01

    Full Text Available H9N2 avian influenza A viruses are endemic in poultry of many Eurasian countries and have caused repeated human infections in Asia since 1998. It has been also reported that H9N2 can cause high mortality in commercial broiler farms in Iran previously. However there was no report of H9N2 outbreak in any other species. In order to evaluate the pathogenicity of H9N2 virus in Japanese quail, 145 Japanese quail were randomly divided into 5 separate groups (116 quails in the treatment and 29 quails in the control groups. The experimental groups infected via oral rout, eye drop, intramuscular injection and spray method at the age of 32 days with 106.5 EID50/bird. The virus A/chicken/Iran/ZMT-101/98(H9N2 was kindly provided obtained from Razi vaccine& serum institute with EID50=108. The blood samples were experimented the day before use to show freedom from antibodies to influenza A and more specifically, the H9 subtype. The clinical signs and antibody titer of the infected chicks were also monitored. Five birds of each group were bled at 10 and 20 days post infection (DPI, and 20 birds of each group at 30 DPI were bled. The immune response to infection was measured by Haemmaglutination Inhibition (HI test using the H9N2 virus as antigen. Feed & water consumption were recorded on daily bases before and after inoculation. Body weight of each group was also recorded on weekly bases before and after inoculation. During the current study clinical signs such as sneezing, gasping, depression observed in challenged groups followed by decreasing in laying (1-17%. High HI antibody titers of AIV subtype H9 was seen in 10 DPI. The quails exhibited no decrease in food and water consumption and all quails were growing well and did not show any abnormality.

  10. The high vaginal swab in general practice: clinical correlates of possible pathogens.

    Science.gov (United States)

    Dykhuizen, R S; Harvey, G; Gould, I M

    1995-06-01

    Clinical features, diagnosis and treatment of 286 women whose high vaginal swabs (HVS) submitted by their general practitioners showed pure, heavy growth of Staphylococcus aureus, beta haemolytic streptococci groups A, C or G, Streptococcus milleri, Streptococcus pneumoniae or Haemophilus influenzae were analysed. Women with group A, C and G streptococci frequently had clinical vulvovaginitis and although the numbers were too small for statistical confirmation, S. pneumoniae and H. influenzae appeared to cause clinical disease as well. The association of S. aureus or S. milleri with clinical vulvovaginitis was much less convincing. It seems relevant for laboratories to report sensitivities for group A, C and G streptococci. Further research is needed to determine the pathogenicity of S. pneumoniae and H. influenzae.

  11. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Nguyen, Phi Hung; Lee, Hong Sik

    2011-01-01

    The emergence of highly pathogenic influenza A virus strains, such as the new H1N1 swine influenza (novel influenza), represents a serious threat to global human health. During our course of an anti-influenza screening program on natural products, one new licochalcone G (1) and seven known (2-8) ...

  12. Avian influenza surveillance and diagnosis

    Science.gov (United States)

    Rapid detection and accurate identification of low (LPAI) and high pathogenicity avian influenza (HPAI) is critical to controlling infections and disease in poultry. Test selection and algorithms for the detection and diagnosis of avian influenza virus (AIV) in poultry may vary somewhat among differ...

  13. Identification of high risk areas for avian influenza outbreaks in California using disease distribution models.

    Directory of Open Access Journals (Sweden)

    Jaber Belkhiria

    Full Text Available The coexistence of different types of poultry operations such as free range and backyard flocks, large commercial indoor farms and live bird markets, as well as the presence of many areas where wild and domestic birds co-exist, make California susceptible to avian influenza outbreaks. The 2014-2015 highly pathogenic Avian Influenza (HPAI outbreaks affecting California and other states in the United States have underscored the need for solutions to protect the US poultry industry against this devastating disease. We applied disease distribution models to predict where Avian influenza is likely to occur and the risk for HPAI outbreaks is highest. We used observations on the presence of Low Pathogenic Avian influenza virus (LPAI in waterfowl or water samples at 355 locations throughout the state and environmental variables relevant to the disease epidemiology. We used two algorithms, Random Forest and MaxEnt, and two data-sets Presence-Background and Presence-Absence data. The models performed well (AUCc > 0.7 for testing data, particularly those using Presence-Background data (AUCc > 0.85. Spatial predictions were similar between algorithms, but there were large differences between the predictions with Presence-Absence and Presence-Background data. Overall, predictors that contributed most to the models included land cover, distance to coast, and broiler farm density. Models successfully identified several counties as high-to-intermediate risk out of the 8 counties with observed outbreaks during the 2014-2015 HPAI epizootics. This study provides further insights into the spatial epidemiology of AI in California, and the high spatial resolution maps may be useful to guide risk-based surveillance and outreach efforts.

  14. Rapid detection of the avian influenza virus H5N1 subtype in Egypt

    African Journals Online (AJOL)

    Dr

    highly pathogenic avian influenza virus subtype H5N1 in Egypt is threatening poultry and ... Key words: Avian influenza virus, H5N1, fluorescent antibody enzyme-linked immunosorbent assay (ELISA) ..... poultry and is potentially zoonotic.

  15. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  16. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  17. Bestrijding van aviaire influenza onder pluimvee: vaccinatie als aanvullende mogelijkheid

    NARCIS (Netherlands)

    Aarle, P van; Breytenbach, J; Schueller, S

    2006-01-01

    Since mid-December 2003, highly pathogenic avian influenza (HPAI) has caused an epidemic in the Asian poultry sector and avian influenza cases have been reported in Europe, the Middle East and Africa. Human fatalities catapulted avian influenza into the public arena with fears of a possible global

  18. Low-Incidence, High-Consequence Pathogens

    Centers for Disease Control (CDC) Podcasts

    2014-02-21

    Dr. Stephan Monroe, a deputy director at CDC, discusses the impact of low-incidence, high-consequence pathogens globally.  Created: 2/21/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/26/2014.

  19. Avian influenza

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon; Bicout, Dominique

    2017-01-01

    Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become ...... of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures....

  20. Protection patterns in duck and chicken after homo- or hetero-subtypic reinfections with H5 and H7 low pathogenicity avian influenza viruses: a comparative study.

    Directory of Open Access Journals (Sweden)

    Coralie Chaise

    Full Text Available Avian influenza viruses are circulating continuously in ducks, inducing a mostly asymptomatic infection, while chickens are accidental hosts highly susceptible to respiratory disease. This discrepancy might be due to a different host response to the virus between these two bird species and in particular to a different susceptibility to reinfection. In an attempt to address this question, we analyzed, in ducks and in chickens, the viral load in infected tissues and the humoral immune response after experimental primary and secondary challenge infections with either homologous or heterologous low pathogenicity avian influenza viruses (LPAIV. Following homologous reinfection, ducks were only partially protected against viral shedding in the lower intestine in conjunction with a moderate antibody response, whereas chickens were totally protected against viral shedding in the upper respiratory airways and developed a stronger antibody response. On the contrary, heterologous reinfection was not followed by a reduced viral excretion in the upper airways of chickens, while ducks were still partially protected from intestinal excretion of the virus, with no correlation to the antibody response. Our comparative study provides a comprehensive demonstration of the variation of viral tropism and control of the host humoral response to LPAIV between two different bird species with different degrees of susceptibility to avian influenza.

  1. Replication and adaptive mutations of low pathogenic avian influenza viruses in tracheal organ cultures of different avian species.

    Directory of Open Access Journals (Sweden)

    Henning Petersen

    Full Text Available Transmission of avian influenza viruses (AIV between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants.

  2. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms

    Directory of Open Access Journals (Sweden)

    Angela Bullanday Scott

    2018-04-01

    Full Text Available This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms, free-range layer farms had the highest probability of exposure (7.5 × 10−4; 5% and 95%, 5.7 × 10−4—0.001. The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10−4 and 1.6 × 10−4 for free-range layer and free-range meat chicken farms, respectively and indirect exposure was highest in non-free-range farm types (2.7 × 10−4, 2.0 × 10−4, and 1.9 × 10−4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively. The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI virus

  3. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms

    Science.gov (United States)

    Scott, Angela Bullanday; Toribio, Jenny-Ann; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10−4; 5% and 95%, 5.7 × 10−4—0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10−4 and 1.6 × 10−4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10−4, 2.0 × 10−4, and 1.9 × 10−4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results

  4. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms.

    Science.gov (United States)

    Scott, Angela Bullanday; Toribio, Jenny-Ann; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10 -4 ; 5% and 95%, 5.7 × 10 -4 -0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10 -4 and 1.6 × 10 -4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10 -4 , 2.0 × 10 -4 , and 1.9 × 10 -4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results

  5. Influenza

    OpenAIRE

    Solórzano-Santos, Fortino; Miranda-Novales, Ma. Guadalupe

    2009-01-01

    La influenza es una infección viral aguda de las vías respiratorias, altamente contagiosa. Es causada por el virus de la influenza A, B y C. Puede afectar a todos los grupos etarios durante epidemias, aunque tiene mayor morbilidad en los extremos de la vida. La enfermedad frecuentemente requiere de atención médica y hospitalización, contribuyendo sustancialmente a pérdidas económicas, exceso en el número de días/cama-hospital y muertes. Considerando la epidemia reciente en México del virus de...

  6. Influenza

    Directory of Open Access Journals (Sweden)

    Forleo-Neto Eduardo

    2003-01-01

    Full Text Available A influenza (gripe é doença infecciosa aguda de origem viral que acomete o trato respiratório e a cada inverno atinge mais de 100 milhões de pessoas na Europa, Japão e Estados Unidos, causando anualmente a morte de cerca de 20 a 40 mil pessoas somente neste último país. O agente etiológico é o Myxovirus influenzae, ou vírus da gripe. Este subdivide-se nos tipos A, B e C, sendo que apenas os do tipo A e B apresentam relevância clínica em humanos. O vírus influenza apresenta altas taxas de mutação, o que resulta freqüentemente na inserção de novas variantes virais na comunidade, para as quais a população não apresenta imunidade. São poucas as opções disponíveis para o controle da influenza. Dentre essas, a vacinação constitui a forma mais eficaz para o controle da doença e de suas complicações. Em função das mutações que ocorrem naturalmente no vírus influenza, recomenda-se que a vacinação seja realizada anualmente. No Brasil, segundo dados obtidos pelo Projeto VigiGripe - ligado à Universidade Federal de São Paulo -, verifica-se que a influenza apresenta pico de atividade entre os meses de maio e setembro. Assim, a época mais indicada para a vacinação corresponde aos meses de março e abril. Para o tratamento específico da influenza estão disponíveis quatro medicamentos antivirais: os fármacos clássicos amantadina e rimantidina e os antivirais de segunda geração oseltamivir e zanamivir. Os últimos, acrescentam alternativas para o tratamento da influenza e ampliam as opções disponíveis para o seu controle.

  7. Virus pathotype and deep sequencing of the HA gene of a low pathogenicity H7N1 avian influenza virus causing mortality in Turkeys.

    Directory of Open Access Journals (Sweden)

    Munir Iqbal

    Full Text Available Low pathogenicity avian influenza (LPAI viruses of the H7 subtype generally cause mild disease in poultry. However the evolution of a LPAI virus into highly pathogenic avian influenza (HPAI virus results in the generation of a virus that can cause severe disease and death. The classification of these two pathotypes is based, in part, on disease signs and death in chickens, as assessed in an intravenous pathogenicity test, but the effect of LPAI viruses in turkeys is less well understood. During an investigation of LPAI virus infection of turkeys, groups of three-week-old birds inoculated with A/chicken/Italy/1279/99 (H7N1 showed severe disease signs and died or were euthanised within seven days of infection. Virus was detected in many internal tissues and organs from culled birds. To examine the possible evolution of the infecting virus to a highly pathogenic form in these turkeys, sequence analysis of the haemagglutinin (HA gene cleavage site was carried out by analysing multiple cDNA amplicons made from swabs and tissue sample extracts employing Sanger and Next Generation Sequencing. In addition, a RT-PCR assay to detect HPAI virus was developed. There was no evidence of the presence of HPAI virus in either the virus used as inoculum or from swabs taken from infected birds. However, a small proportion (<0.5% of virus carried in individual tracheal or liver samples did contain a molecular signature typical of a HPAI virus at the HA cleavage site. All the signature sequences were identical and were similar to HPAI viruses collected during the Italian epizootic in 1999/2000. We assume that the detection of HPAI virus in tissue samples following infection with A/chicken/Italy/1279/99 reflected amplification of a virus present at very low levels within the mixed inoculum but, strikingly, we observed no new HPAI virus signatures in the amplified DNA analysed by deep-sequencing.

  8. High burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v epidemic in France.

    Directory of Open Access Journals (Sweden)

    Nathalie Schnepf

    Full Text Available BACKGROUND: Influenza-like illness (ILI may be caused by a variety of pathogens. Clinical observations are of little help to recognise myxovirus infection and implement appropriate prevention measures. The limited use of molecular tools underestimates the role of other common pathogens. OBJECTIVES: During the early weeks of the 2009-2010 flu pandemic, a clinical and virological survey was conducted in adult and paediatric patients with ILI referred to two French University hospitals in Paris and Tours. Aims were to investigate the different pathogens involved in ILI and describe the associated symptoms. METHODS: H1N1v pandemic influenza diagnosis was performed with real time RT-PCR assay. Other viral aetiologies were investigated by the molecular multiplex assay RespiFinder19®. Clinical data were collected prospectively by physicians using a standard questionnaire. RESULTS: From week 35 to 44, endonasal swabs were collected in 413 patients. Overall, 68 samples (16.5% were positive for H1N1v. In 13 of them, other respiratory pathogens were also detected. Among H1N1v negative samples, 213 (61.9% were positive for various respiratory agents, 190 in single infections and 23 in mixed infections. The most prevalent viruses in H1N1v negative single infections were rhinovirus (62.6%, followed by parainfluenza viruses (24.2% and adenovirus (5.3%. 70.6% of H1N1v cases were identified in patients under 40 years and none after 65 years. There was no difference between clinical symptoms observed in patients infected with H1N1v or with other pathogens. CONCLUSION: Our results highlight the high frequency of non-influenza viruses involved in ILI during the pre-epidemic period of a flu alert and the lack of specific clinical signs associated with influenza infections. Rapid diagnostic screening of a large panel of respiratory pathogens may be critical to define and survey the epidemic situation and to provide critical information for patient management.

  9. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    Science.gov (United States)

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge.

  10. Combination Chemotherapy for Influenza

    Directory of Open Access Journals (Sweden)

    Robert G. Webster

    2010-07-01

    Full Text Available The emergence of pandemic H1N1 influenza viruses in April 2009 and the continuous evolution of highly pathogenic H5N1 influenza viruses underscore the urgency of novel approaches to chemotherapy for human influenza infection. Anti-influenza drugs are currently limited to the neuraminidase inhibitors (oseltamivir and zanamivir and to M2 ion channel blockers (amantadine and rimantadine, although resistance to the latter class develops rapidly. Potential targets for the development of new anti-influenza agents include the viral polymerase (and endonuclease, the hemagglutinin, and the non-structural protein NS1. The limitations of monotherapy and the emergence of drug-resistant variants make combination chemotherapy the logical therapeutic option. Here we review the experimental data on combination chemotherapy with currently available agents and the development of new agents and therapy targets.

  11. Cross talk between animal and human influenza viruses.

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2013-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the past decade, the first pandemic of the twenty-first century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assess the pandemic potential of H5N1 highly pathogenic avian influenza viruses.

  12. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation.

    Science.gov (United States)

    Driskell, Elizabeth A; Pickens, Jennifer A; Humberd-Smith, Jennifer; Gordy, James T; Bradley, Konrad C; Steinhauer, David A; Berghaus, Roy D; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, Stephen Mark

    2012-01-01

    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.

  13. Quantitative transmission characteristics of different H5 low pathogenic avian influenza viruses in Muscovy ducks.

    Science.gov (United States)

    Niqueux, Éric; Picault, Jean-Paul; Amelot, Michel; Allée, Chantal; Lamandé, Josiane; Guillemoto, Carole; Pierre, Isabelle; Massin, Pascale; Blot, Guillaume; Briand, François-Xavier; Rose, Nicolas; Jestin, Véronique

    2014-01-10

    EU annual serosurveillance programs show that domestic duck flocks have the highest seroprevalence of H5 antibodies, demonstrating the circulation of notifiable avian influenza virus (AIV) according to OIE, likely low pathogenic (LP). Therefore, transmission characteristics of LPAIV within these flocks can help to understand virus circulation and possible risk of propagation. This study aimed at estimating transmission parameters of four H5 LPAIV (three field strains from French poultry and decoy ducks, and one clonal reverse-genetics strain derived from one of the former), using a SIR model to analyze data from experimental infections in SPF Muscovy ducks. The design was set up to accommodate rearing on wood shavings with a low density of 1.6 ducks/m(2): 10 inoculated ducks were housed together with 15 contact-exposed ducks. Infection was monitored by RNA detection on oropharyngeal and cloacal swabs using real-time RT-PCR with a cutoff corresponding to 2-7 EID50. Depending on the strain, the basic reproduction number (R0) varied from 5.5 to 42.7, confirming LPAIV could easily be transmitted to susceptible Muscovy ducks. The lowest R0 estimate was obtained for a H5N3 field strain, due to lower values of transmission rate and duration of infectious period, whereas reverse-genetics derived H5N1 strain had the highest R0. Frequency and intensity of clinical signs were also variable between strains, but apparently not associated with longer infectious periods. Further comparisons of quantitative transmission parameters may help to identify relevant viral genetic markers for early detection of potentially more virulent strains during surveillance of LPAIV. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Characterization of a non-pathogenic H5N1 influenza virus isolated from a migratory duck flying from Siberia in Hokkaido, Japan, in October 2009

    Directory of Open Access Journals (Sweden)

    Okamatsu Masatoshi

    2011-02-01

    Full Text Available Abstract Background Infection with H5N1 highly pathogenic avian influenza viruses (HPAIVs of domestic poultry and wild birds has spread to more than 60 countries in Eurasia and Africa. It is concerned that HPAIVs may be perpetuated in the lakes in Siberia where migratory water birds nest in summer. To monitor whether HPAIVs circulate in migratory water birds, intensive surveillance of avian influenza has been performed in Mongolia and Japan in autumn each year. Until 2008, there had not been any H5N1 viruses isolated from migratory water birds that flew from their nesting lakes in Siberia. In autumn 2009, A/mallard/Hokkaido/24/09 (H5N1 (Mal/Hok/24/09 was isolated from a fecal sample of a mallard (Anas platyrhynchos that flew from Siberia to Hokkaido, Japan. The isolate was assessed for pathogenicity in chickens, domestic ducks, and quails and analyzed antigenically and phylogenetically. Results No clinical signs were observed in chickens inoculated intravenously with Mal/Hok/24/09 (H5N1. There was no viral replication in chickens inoculated intranasally with the isolate. None of the domestic ducks and quails inoculated intranasally with the isolate showed any clinical signs. There were no multiple basic amino acid residues at the cleavage site of the hemagglutinin (HA of the isolate. Each gene of Mal/Hok/24/09 (H5N1 is phylogenetically closely related to that of influenza viruses isolated from migratory water birds that flew from their nesting lakes in autumn. Additionally, the antigenicity of the HA of the isolate was similar to that of the viruses isolated from migratory water birds in Hokkaido that flew from their northern territory in autumn and different from those of HPAIVs isolated from birds found dead in China, Mongolia, and Japan on the way back to their northern territory in spring. Conclusion Mal/Hok/24/09 (H5N1 is a non-pathogenic avian influenza virus for chickens, domestic ducks, and quails, and is antigenically and genetically

  15. Development and Validation of a Multiplex PCR-Based Assay for the Upper Respiratory Tract Bacterial Pathogens Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis.

    Science.gov (United States)

    Post; White; Aul; Zavoral; Wadowsky; Zhang; Preston; Ehrlich

    1996-06-01

    Background: Conventional simplex polymerase chain reaction (PCR)-based assays are limited in that they only provide for the detection of a single infectious agent. Many clinical diseases, however, present in a nonspecific, or syndromic, fashion, thereby necessitating the simultaneous assessment of multiple pathogens. Panel-based molecular diagnostic testing can be accomplished by the development of multiplex PCR-based assays, which can detect, individually or severally, different pathogens that are associated with syndromic illness. As part of a larger program of panel development, an assay that can simultaneously detect Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis was developed. These organisms were chosen as they are the most common bacterial pathogens associated with both the acute and chronic forms of otitis media; they are also responsible for a high percentage of sinus infections in both children and adults. In addition, H. influenzae and S. pneumoniae are commonly associated with septic meningitits. Methods and Results: Multiple individual PCR-based assays were developed for each of the three target organisms which were then evaluated for sensitivity and specificity. Utilizing the simplex assays that met our designated performance criteria, a matrix style approach was used to develop a duplex H. influenzae-S. pneumoniae assay. The duplex assay was then used as a single component in the development of a triplex assay, wherein the various M. catarrhalis primer-probe sets were tested for compatibility with the existing assay. A single-step PCR protocol, with species-specific primers for each of the three target organisms and a liquid hybridization-gel retardation amplimer detection system, was developed, which amplifies and then discriminates among each of the amplification products according to size. This assay is able to detect all three organisms in a specific manner, either individually or severally. Dilutional experiments

  16. Do recommended high-risk adults benefit from a first influenza vaccination?

    NARCIS (Netherlands)

    Hak, E; Buskens, E; Nichol, K L; Verheij, T J M

    2006-01-01

    It is unknown whether a first influenza vaccination protects high-risk adults from severe morbidity and mortality during influenza epidemics. As part of the PRISMA nested case-control study, we aimed to evaluate the effectiveness of first-time and repeat influenza vaccinations in adult persons

  17. Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens

    NARCIS (Netherlands)

    Goot, van der A.J.; Koch, G.; Jong, de M.C.M.; Boven, van R.M.

    2005-01-01

    Recent outbreaks of highly pathogenic avian influenza (HPAI) viruses in poultry and their threatening zoonotic consequences emphasize the need for effective control measures. Although vaccination of poultry against avian influenza provides a potentially attractive control measure, little is known

  18. Characteristics of diagnostic tests used in the 2002 low-pathogenicity avian influenza H7N2 outbreak in Virginia.

    Science.gov (United States)

    Elvinger, François; Akey, Bruce L; Senne, Dennis A; Pierson, F William; Porter-Spalding, Barbara A; Spackman, Erica; Suarez, David L

    2007-07-01

    An outbreak of low-pathogenicity avian influenza (LPAI) H7N2 occurred in 2002 in the Shenandoah Valley, a high-density poultry production region in Virginia. Infected flocks were identified through a combination of observation of clinical signs and laboratory diagnostic tests designed to detect avian influenza (AI) antibodies, virus, or H7-specific RNA. In this report, fitness for purpose of 3 virus/RNA detection assays used during the outbreak was examined: 1) antigen capture enzyme immunoassay (AC-EIA), 2) real-time reverse transcription polymerase chain reaction (RRT-PCR), and 3) virus isolation (VI). Results from testing 762 turkey and 2,216 chicken tracheal swab pooled specimens were analyzed to determine diagnostic sensitivities and specificities of these tests under field conditions using Bayesian techniques for validation of diagnostic tests in the absence of a "gold standard." Diagnostic sensitivities (with 95% probability intervals) in turkeys of AC-EIA and RRT-PCR, in reference to VI, were 65.9 (50.6; 81.3)% and 85.1 (71.9; 95.7)% and of VI 92.9 (78.0; 98.8)% in reference to AC-EIA or 88.7 (76.0; 97.2)% in reference to RRT-PCR; in chickens, diagnostic sensitivities were 75.1 (45.6; 94.2)%, 86.3 (65.9; 97.1)%, and 86.2 (65.8; 97.1)% or 86.3 (66.4; 97.2)%, respectively. Specificities were 99.1 (97.9; 99.8)%, 98.9 (98.0; 99.5)%, and 98.6 (97.4; 99.4)% or 98.8 (97.8; 99.5)% in turkeys and between 99.25% and 99.27% with probability intervals of approximately +/-0.4% for all tests in chickens. Simultaneous use of AC-EIA and RRT-PCR contributed significantly to the rapid control of the outbreak, but the AI RRT-PCR assay with >85% sensitivity and approximately 99% specificity, combined with relatively low cost and fast turnaround, could be used as the sole diagnostic test in outbreaks of LPAI.

  19. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground

    NARCIS (Netherlands)

    Yin, Shenglai; Kleijn, David; Müskens, Gerard J.D.M.; Fouchier, Ron A.M.; Verhagen, Josanne H.; Glazov, Petr M.; Si, Yali; Prins, Herbert H.T.; Boer, de Fred

    2017-01-01

    Low pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus over

  20. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground

    NARCIS (Netherlands)

    Yin, S. (Shenglai); D. Kleijn (David); Müskens, G.J.D.M. (Gerard J. D. M.); R.A.M. Fouchier (Ron); J.H. Verhagen (Josanne); Glazov, P.M. (Petr M.); Si, Y. (Yali); Prins, H.H.T. (Herbert H. T.); De Boer, W.F. (Willem Frederik)

    2017-01-01

    textabstractLow pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus

  1. Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1 influenza virus in ferrets.

    Directory of Open Access Journals (Sweden)

    Natalia A Ilyushina

    2010-05-01

    Full Text Available The acquisition of neuraminidase (NA inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N1 influenza viruses carrying NA mutations located either in the framework residues (E119A, H274Y, N294S or in close proximity to the NA enzyme active site (V116A, I117V, K150N, Y252H. NA enzyme inhibition assays showed that NA mutations at positions 116, 117, 274, and 294 reduced susceptibility to oseltamivir carboxylate (IC(50s increased 5- to 940-fold. Importantly, the E119A NA mutation (previously reported to confer resistance in the N2 NA subtype was stable in the clade 2.2 H5N1 virus background and induced cross-resistance to oseltamivir carboxylate and zanamivir. We demonstrated that Y252H NA mutation contributed for decreased susceptibility of clade 2.2 H5N1 viruses to oseltamivir carboxylate as compared to clade 1 viruses. The enzyme kinetic parameters (V(max, K(m and K(i of the avian-like N1 NA glycoproteins were highly consistent with their IC(50 values. None of the recombinant H5N1 viruses had attenuated virulence in ferrets inoculated with 10(6 EID(50 dose. Most infected ferrets showed mild clinical disease signs that differed in duration. However, H5N1 viruses carrying the E119A or the N294S NA mutation were lethal to 1 of 3 inoculated animals and were associated with significantly higher virus titers (P<0.01 and inflammation in the lungs compared to the wild-type virus. Our results suggest that highly pathogenic H5N1 variants carrying mutations within the NA active site that decrease susceptibility to NA inhibitors may possess increased

  2. Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens, turkeys, ducks and quail.

    Science.gov (United States)

    Alexander, D J; Parsons, G; Manvell, R J

    1986-01-01

    Clinical signs, death, virus excretion and immune response were measured in 2-week-old chickens, turkeys, quail and ducks infected by intramuscular, intranasal and contact routes with eight influenza viruses of H5 subtype. Six of the viruses: A/chicken/Scotland/59 (H5N1), ck/Scot; A/tern/South Africa/61 (H5N3), tern/SA; A/turkey/Ontario/ 7732/66 (H5N9); ty/Ont; A/chicken/Pennsylvania/1370/83 (H5N2); Pa/1370; A/turkey/Ireland/83 (H5N8); ty/Ireland, and A/duck/Ireland/ 113/84 (HSN8); dk/Ireland, were highly pathogenic for chickens and turkeys. Two viruses, A/chicken/Pennsylvania/1/83 (H5N2), Pa/1 and A/turkey/Italy/ZA/80 (H5N2), ty/Italy, were of low pathogenicity. Ck/Scot was more pathogenic for chickens than turkeys while ty/Ont was more pathogenic for turkeys than chickens. Other viruses showed little difference in their pathogenicity for these two hosts. No clinical signs or deaths were seen in any of the infected ducks. Only two viruses, dk/Ireland and ty/Ireland, produced consistent serological responses in ducks, although intramuscular infection with tern/SA and ty/Italy resulted in some ducks with positive HI titres. These four were the only viruses reisolated from ducks. Quail showed some resistance to viruses which were highly pathogenic for chickens and turkeys, most notably to ck/Scot and ty/Ont and to a lesser extent tern/SA and Pa/1370. Transmission of virus from intranasally infected birds to birds placed in contact varied considerably with both host and infecting virus and the various combinations of these.

  3. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Anwar M. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada); Van Domselaar, Gary [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Li, Changgui; Wang, Junzhi [National Institute for the Control of Pharmaceutical and Biological Products, Beijing (China); She, Yi-Min; Cyr, Terry D. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Sui, Jianhua [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); He, Runtao [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Marasco, Wayne A. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Li, Xuguang, E-mail: Sean.Li@hc-sc.gc.ca [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada)

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  4. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    International Nuclear Information System (INIS)

    Hashem, Anwar M.; Van Domselaar, Gary; Li, Changgui; Wang, Junzhi; She, Yi-Min; Cyr, Terry D.; Sui, Jianhua; He, Runtao; Marasco, Wayne A.; Li, Xuguang

    2010-01-01

    Research highlights: → The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. → Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. → The universal antibodies cross-neutralize different influenza A subtypes. → The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  5. Avian influenza viruses in humans.

    Science.gov (United States)

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  6. Experimental assessment of the pathogenicity of two avian influenza A H5 viruses in ostrich chicks (Struthio camelus) and chickens

    DEFF Research Database (Denmark)

    Manvell, R.J.; Jørgensen, Poul Henrik; Nielsen, O.L.

    1998-01-01

    Virus excretion, immune response, and, for chickens, deaths were recorded in 3-week-old ostriches and chickens inoculated by either the intramuscular or intranasal route with one of two influenza A viruses of subtype H5, One of the viruses, A/turkey/England/50-92/91 (H5N1) (50/92), was highly...

  7. Human Sentinel Surveillance of Influenza and Other Respiratory Viral Pathogens in Border Areas of Western Cambodia.

    Directory of Open Access Journals (Sweden)

    Ans Timmermans

    Full Text Available Little is known about circulation of influenza and other respiratory viruses in remote populations along the Thai-Cambodia border in western Cambodia. We screened 586 outpatients (median age 5, range 1-77 presenting with influenza-like-illness (ILI at 4 sentinel sites in western Cambodia between May 2010 and December 2012. Real-time reverse transcriptase (rRT PCR for influenza was performed on combined nasal and throat specimens followed by viral culture, antigenic analysis, antiviral susceptibility testing and full genome sequencing for phylogenetic analysis. ILI-specimens negative for influenza were cultured, followed by rRT-PCR for enterovirus and rhinovirus (EV/RV and EV71. Influenza was found in 168 cases (29% and occurred almost exclusively in the rainy season from June to November. Isolated influenza strains had close antigenic and phylogenetic relationships, matching vaccine and circulating strains found elsewhere in Cambodia. Influenza vaccination coverage was low (<20%. Western Cambodian H1N1(2009 isolate genomes were more closely related to 10 earlier Cambodia isolates (94.4% genome conservation than to 13 Thai isolates (75.9% genome conservation, despite sharing the majority of the amino acid changes with the Thai references. Most genes showed signatures of purifying selection. Viral culture detected only adenovirus (5.7% and parainfluenza virus (3.8%, while non-polio enteroviruses (10.3% were detected among 164 culture-negative samples including coxsackievirus A4, A6, A8, A9, A12, B3, B4 and echovirus E6 and E9 using nested RT-PCR methods. A single specimen of EV71 was found. Despite proximity to Thailand, influenza epidemiology of these western Cambodian isolates followed patterns observed elsewhere in Cambodia, continuing to support current vaccine and treatment recommendations from the Cambodian National Influenza Center. Amino acid mutations at non-epitope sites, particularly hemagglutinin genes, require further investigation in

  8. Human Sentinel Surveillance of Influenza and Other Respiratory Viral Pathogens in Border Areas of Western Cambodia.

    Science.gov (United States)

    Timmermans, Ans; Melendrez, Melanie C; Se, Youry; Chuang, Ilin; Samon, Nou; Uthaimongkol, Nichapat; Klungthong, Chonticha; Manasatienkij, Wudtichai; Thaisomboonsuk, Butsaya; Tyner, Stuart D; Rith, Sareth; Horm, Viseth Srey; Jarman, Richard G; Bethell, Delia; Chanarat, Nitima; Pavlin, Julie; Wongstitwilairoong, Tippa; Saingam, Piyaporn; El, But Sam; Fukuda, Mark M; Touch, Sok; Sovann, Ly; Fernandez, Stefan; Buchy, Philippe; Chanthap, Lon; Saunders, David

    2016-01-01

    Little is known about circulation of influenza and other respiratory viruses in remote populations along the Thai-Cambodia border in western Cambodia. We screened 586 outpatients (median age 5, range 1-77) presenting with influenza-like-illness (ILI) at 4 sentinel sites in western Cambodia between May 2010 and December 2012. Real-time reverse transcriptase (rRT) PCR for influenza was performed on combined nasal and throat specimens followed by viral culture, antigenic analysis, antiviral susceptibility testing and full genome sequencing for phylogenetic analysis. ILI-specimens negative for influenza were cultured, followed by rRT-PCR for enterovirus and rhinovirus (EV/RV) and EV71. Influenza was found in 168 cases (29%) and occurred almost exclusively in the rainy season from June to November. Isolated influenza strains had close antigenic and phylogenetic relationships, matching vaccine and circulating strains found elsewhere in Cambodia. Influenza vaccination coverage was low (Cambodia isolates (94.4% genome conservation) than to 13 Thai isolates (75.9% genome conservation), despite sharing the majority of the amino acid changes with the Thai references. Most genes showed signatures of purifying selection. Viral culture detected only adenovirus (5.7%) and parainfluenza virus (3.8%), while non-polio enteroviruses (10.3%) were detected among 164 culture-negative samples including coxsackievirus A4, A6, A8, A9, A12, B3, B4 and echovirus E6 and E9 using nested RT-PCR methods. A single specimen of EV71 was found. Despite proximity to Thailand, influenza epidemiology of these western Cambodian isolates followed patterns observed elsewhere in Cambodia, continuing to support current vaccine and treatment recommendations from the Cambodian National Influenza Center. Amino acid mutations at non-epitope sites, particularly hemagglutinin genes, require further investigation in light of an increasingly important role of permissive mutations in influenza virus evolution

  9. A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hugh D.; Eisfeld, Amie J.; Sims, Amy; McDermott, Jason E.; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Tilton, Susan C.; Tchitchek, Nicholas; Josset, Laurence; Li, Chengjun; Ellis, Amy L.; Chang, Jean H.; Heegel, Robert A.; Luna, Maria L.; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Neumann, Gabriele; Benecke, Arndt; Smith, Richard D.; Baric, Ralph; Kawaoka, Yoshihiro; Katze, Michael G.; Waters, Katrina M.

    2013-07-25

    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.

  10. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness

    Directory of Open Access Journals (Sweden)

    Uyeki Timothy M

    2010-01-01

    Full Text Available Abstract Background Influenza is a major cause of morbidity and hospitalization among children. While less often reported in adults, gastrointestinal symptoms have been associated with influenza in children, including abdominal pain, nausea, vomiting, and diarrhea. Methods From September 2005 and April 2008, pediatric patients in Indonesia presenting with concurrent diarrhea and influenza-like illness were enrolled in a study to determine the frequency of influenza virus infection in young patients presenting with symptoms less commonly associated with an upper respiratory tract infection (URTI. Stool specimens and upper respiratory swabs were assayed for the presence of influenza virus. Results Seasonal influenza A or influenza B viral RNA was detected in 85 (11.6% upper respiratory specimens and 21 (2.9% of stool specimens. Viable influenza B virus was isolated from the stool specimen of one case. During the time of this study, human infections with highly pathogenic avian influenza A (H5N1 virus were common in the survey area. However, among 733 enrolled subjects, none had evidence of H5N1 virus infection. Conclusions The detection of influenza viral RNA and viable influenza virus from stool suggests that influenza virus may be localized in the gastrointestinal tract of children, may be associated with pediatric diarrhea and may serve as a potential mode of transmission during seasonal and epidemic influenza outbreaks.

  12. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Domann Eugen

    2011-02-01

    Full Text Available Abstract Background Black elderberries (Sambucus nigra L. are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product.

  13. RT-PCR-ELISA as a tool for diagnosis of low-pathogenicity avian influenza

    DEFF Research Database (Denmark)

    Dybkaer, Karen; Munch, Mette; Handberg, Kurt Jensen

    2003-01-01

    A one-tube reverse transcriptase/polymerase chain reaction coupled with an enzyme-linked immunosorbent assay (RT-PCR-ELISA) was developed for the rapid detection of avian influenza virus (AIV) in clinical specimens. A total of 419 swab pools were analyzed from chickens experimentally infected...

  14. Detection of American lineage low pathogenic avian influenza viruses in Uria lomvia in Greenland

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Hartby, Christina Marie; Krog, Jesper Schak

    of Denmark. Five birds were randomly selected for diagnostic investigation and samples were taken from the cadavers (pooled oropharyngeal swabs, cloacal swabs, lung/trachea/heart tissues and liver/spleen/kidney tissues, and separate preparation of stomach from a single bird). Avian influenza virus (AIV...

  15. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  16. Surveillance of low pathogenic novel H7N9 avian influenza in commercial poultry barns: detection of outbreaks and estimation of virus introduction time.

    Science.gov (United States)

    Pinsent, Amy; Blake, Isobel M; White, Michael T; Riley, Steven

    2014-08-01

    Both high and low pathogenic subtype A avian influenza remain ongoing threats to the commercial poultry industry globally. The emergence of a novel low pathogenic H7N9 lineage in China presents itself as a new concern to both human and animal health and may necessitate additional surveillance in commercial poultry operations in affected regions. Sampling data was simulated using a mechanistic model of H7N9 influenza transmission within commercial poultry barns together with a stochastic observation process. Parameters were estimated using maximum likelihood. We assessed the probability of detecting an outbreak at time of slaughter using both real-time polymerase chain reaction (rt-PCR) and a hemagglutinin inhibition assay (HI assay) before considering more intense sampling prior to slaughter. The day of virus introduction and R0 were estimated jointly from weekly flock sampling data. For scenarios where R0 was known, we estimated the day of virus introduction into a barn under different sampling frequencies. If birds were tested at time of slaughter, there was a higher probability of detecting evidence of an outbreak using an HI assay compared to rt-PCR, except when the virus was introduced <2 weeks before time of slaughter. Prior to the initial detection of infection N sample = 50 (1%) of birds were sampled on a weekly basis once, but after infection was detected, N sample = 2000 birds (40%) were sampled to estimate both parameters. We accurately estimated the day of virus introduction in isolation with weekly and 2-weekly sampling. A strong sampling effort would be required to infer both the day of virus introduction and R0. Such a sampling effort would not be required to estimate the day of virus introduction alone once R0 was known, and sampling N sample = 50 of birds in the flock on a weekly or 2 weekly basis would be sufficient.

  17. FLOCK-BASED SURVEILLANCE FOR LOW PATHOGENIC AVIAN INFLUENZA VIRUS IN COMMERCIAL BREEDERS AND LAYERS, SOUTHWEST NIGERIA.

    Science.gov (United States)

    Oluwayelu, Daniel Oladimeji; Omolanwa, Ayoyimika; Adebiyi, Adebowale Idris; Aiki-Raji, Oluladun Comfort

    2017-01-01

    Flock surveillance systems for avian influenza (AI) virus play a critical role in countries where vaccination is not practiced so as to establish the epidemiological characteristics of AI needed for the development of prevention and control strategies in such countries. As part of routine AI monitoring in southwest Nigeria, a competitive ELISA was used for detecting influenza A virus antibodies in the sera of 461 commercial breeder and layer birds obtained from different flocks in Oyo State, Nigeria while haemagglutination inhibiting antibodies against low pathogenic AI viruses (LPAIVs) were detected using H5N2, H7N7 and H9N2 subtype-specific antigens. Suspensions prepared from cloacal swabs were tested for AI virus RNA using reverse transcriptase-polymerase chain reaction. Results showed that influenza A virus antibody prevalence was 12.8% and 9.3% for breeders and layers, respectively while HI assay revealed 22.0%, 2.0% and 78.0% prevalence of LPAIV H5N2, H7N7 and H9N2 antibodies respectively. All cloacal swab suspensions were negative for AIV RNA. Since LPAI infections result in decreased or complete cessation of egg production in breeder and layer birds, increased infection severity due to co-infection with other poultry viruses have occasionally been transmitted to humans, the detection of LPAIV H5N2, H7N7 and H9N2 antibodies in these birds is of both economic and public health significance. These findings underscore the need for continuous flock monitoring as part of early warning measure to facilitate rapid detection and sustainable control of AI in Nigerian poultry.

  18. Persistence of Low Pathogenic Influenza A Virus in Water: A Systematic Review and Quantitative Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Antonia E Dalziel

    Full Text Available Avian influenza viruses are able to persist in the environment, in-between the transmission of the virus among its natural hosts. Quantifying the environmental factors that affect the persistence of avian influenza virus is important for influencing our ability to predict future outbreaks and target surveillance and control methods. We conducted a systematic review and quantitative meta-analysis of the environmental factors that affect the decay of low pathogenic avian influenza virus (LPAIV in water. Abiotic factors affecting the persistence of LPAIV have been investigated for nearly 40 years, yet published data was produced by only 26 quantitative studies. These studies have been conducted by a small number of principal authors (n = 17 and have investigated a narrow range of environmental conditions, all of which were based in laboratories with limited reflection of natural conditions. The use of quantitative meta-analytic techniques provided the opportunity to assess persistence across a greater range of conditions than each individual study can achieve, through the estimation of mean effect-sizes and relationships among multiple variables. Temperature was the most influential variable, for both the strength and magnitude of the effect-size. Moderator variables explained a large proportion of the heterogeneity among effect-sizes. Salinity and pH were important factors, although future work is required to broaden the range of abiotic factors examined, as well as including further diurnal variation and greater environmental realism generally. We were unable to extract a quantitative effect-size estimate for approximately half (50.4% of the reported experimental outcomes and we strongly recommend a minimum set of quantitative reporting to be included in all studies, which will allow robust assimilation and analysis of future findings. In addition we suggest possible means of increasing the applicability of future studies to the natural

  19. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  20. Prolonged excretion of a low-pathogenicity H5N2 avian influenza virus strain in the Pekin duck

    Science.gov (United States)

    Carranza-Flores, José Manuel; Padilla-Noriega, Luis; Loza-Rubio, Elizabeth

    2013-01-01

    H5N2 strains of low-pathogenicity avian influenza virus (LPAIV) have been circulating for at least 17 years in some Mexican chicken farms. We measured the rate and duration of viral excretion from Pekin ducks that were experimentally inoculated with an H5N2 LPAIV that causes death in embryonated chicken eggs (A/chicken/Mexico/2007). Leghorn chickens were used as susceptible host controls. The degree of viral excretion was evaluated with real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) using samples from oropharyngeal and cloacal swabs. We observed prolonged excretion from both species of birds lasting for at least 21 days. Prolonged excretion of LPAIV A/chicken/Mexico/2007 is atypical. PMID:23820212

  1. The Detection of a Low Pathogenicity Avian Influenza Virus Subtype H9 Infection in a Turkey Breeder Flock in the United Kingdom.

    Science.gov (United States)

    Reid, Scott M; Banks, Jill; Ceeraz, Vanessa; Seekings, Amanda; Howard, Wendy A; Puranik, Anita; Collins, Susan; Manvell, Ruth; Irvine, Richard M; Brown, Ian H

    2016-05-01

    In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subtyping of hemagglutinating agents in embryonated specific-pathogen-free fowls' eggs, which were shown to be viruses of H9N2 subtype using neuraminidase inhibition tests and a suite of real-time reverse transcription PCR assays. LPAI virus pathotype was suggested by cleavage site sequencing, and an intravenous pathogenicity index of 0.00 confirmed that the virus was of low pathogenicity. Therefore, no official disease control measures were required, and despite the high morbidity, birds recovered and were kept in production. Neuraminidase sequence analysis revealed a deletion of 78 nucleotides in the stalk region, suggesting an adaptation of the virus to poultry. Hemagglutinin gene sequences of two of the isolates clustered with a group of H9 viruses containing other contemporary European H9 strains in the Y439/Korean-like group. The closest matches to the two isolates were A/turkey/Netherlands/11015452/11 (H9N2; 97.9-98% nucleotide identity) and A/mallard/Finland/Li13384/10 (H9N2; 97

  2. Characterisation and Identification of Avian Influenza Virus (AI

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  3. Influenza or not influenza: Analysis of a case of high fever that happened 2000 years ago in Biblical time

    Directory of Open Access Journals (Sweden)

    Leung Ting F

    2010-07-01

    Full Text Available Abstract The Bible describes the case of a woman with high fever cured by our Lord Jesus Christ. Based on the information provided by the gospels of Mark, Matthew and Luke, the diagnosis and the possible etiology of the febrile illness is discussed. Infectious diseases continue to be a threat to humanity, and influenza has been with us since the dawn of human history. If the postulation is indeed correct, the woman with fev