LABAN-PEL: a two-dimensional, multigroup diffusion, high-order response matrix code
International Nuclear Information System (INIS)
Mueller, E.Z.
1991-06-01
The capabilities of LABAN-PEL is described. LABAN-PEL is a modified version of the two-dimensional, high-order response matrix code, LABAN, written by Lindahl. The new version extends the capabilities of the original code with regard to the treatment of neutron migration by including an option to utilize full group-to-group diffusion coefficient matrices. In addition, the code has been converted from single to double precision and the necessary routines added to activate its multigroup capability. The coding has also been converted to standard FORTRAN-77 to enhance the portability of the code. Details regarding the input data requirements and calculational options of LABAN-PEL are provided. 13 refs
High-order harmonic generation from a two-dimensional band structure
Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You
2018-04-01
In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.
Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran
2016-01-08
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3 nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.
Dynamics of a two-dimensional order-disorder transition
International Nuclear Information System (INIS)
Sahni, P.S.; Dee, G.; Gunton, J.D.; Phani, M.; Lebowitz, J.L.; Kalos, M.
1981-01-01
We present results of a Monte Carlo study of the time development of a two-dimensional order-disorder model binary alloy following a quench to low temperature from a disordered, high-temperature state. The behavior is qualitatively quite similar to that seen in a recent study of a three-dimensional system. The structure function exhibits a scaling of the form K 2 (t)S(k,t) = G(k/K(t)) where the moment K(t) decreases with time approximately like t/sup -1/2/. If one interprets this moment as being inversely proportional to the domain size, the characteristic domain growth rate is proportional to t/sup -1/2/. Additional insight into this time evolution is obtained from studying the development of the short-range order, as well as from monitoring the growth of a compact ordered domain embedded in a region of opposite order. All these results are consistent with the picture of domain growth as proposed by Lifshitz and by Cahn and Allen
Charge ordering in two-dimensional ionic liquids
Perera, Aurélien; Urbic, Tomaz
2018-04-01
The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.
Orbital order and effective mass enhancement in t2 g two-dimensional electron gases
Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan
2015-03-01
It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.
A bond-order theory on the phonon scattering by vacancies in two-dimensional materials.
Xie, Guofeng; Shen, Yulu; Wei, Xiaolin; Yang, Liwen; Xiao, Huaping; Zhong, Jianxin; Zhang, Gang
2014-05-28
We theoretically investigate the phonon scattering by vacancies, including the impacts of missing mass and linkages (τ(V)(-1)) and the variation of the force constant of bonds associated with vacancies (τ(A)(-1)) by the bond-order-length-strength correlation mechanism. We find that in bulk crystals, the phonon scattering rate due to change of force constant τ(A)(-1) is about three orders of magnitude lower than that due to missing mass and linkages τ(V)(-1). In contrast to the negligible τ(A)(-1) in bulk materials, τ(A)(-1) in two-dimensional materials can be 3-10 folds larger than τ(V)(-1). Incorporating this phonon scattering mechanism to the Boltzmann transport equation derives that the thermal conductivity of vacancy defective graphene is severely reduced even for very low vacancy density. High-frequency phonon contribution to thermal conductivity reduces substantially. Our findings are helpful not only to understand the severe suppression of thermal conductivity by vacancies, but also to manipulate thermal conductivity in two-dimensional materials by phononic engineering.
Long range order in the ground state of two-dimensional antiferromagnets
International Nuclear Information System (INIS)
Neves, E.J.; Perez, J.F.
1985-01-01
The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt
Two dimensional simulation of high power laser-surface interaction
International Nuclear Information System (INIS)
Goldman, S.R.; Wilke, M.D.; Green, R.E.L.; Johnson, R.P.; Busch, G.E.
1998-01-01
For laser intensities in the range of 10 8 --10 9 W/cm 2 , and pulse lengths of order 10 microsec or longer, the authors have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of their treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. The authors will present an analysis of some relatively well diagnosed experiments which have been useful in developing their modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence their simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range. This work is useful in many technical areas such as materials processing
Second order phase transition in two dimensional sine-Gordon field theory - lattice model
International Nuclear Information System (INIS)
Babu Joseph, K.; Kuriakose, V.C.
1978-01-01
Two dimensional sine-Gordon (SG) field theory on a lattice is studied using the single-site basis variational method of Drell and others. The nature of the phase transition associated with the spontaneous symmetry breakdown in a SG field system is clarified to be of second order. A generalisation is offered for a SG-type field theory in two dimensions with a potential of the form [cossup(n)((square root of lambda)/m)phi-1].(author)
International Nuclear Information System (INIS)
Moura, A.R.; Pereira, A.R.; Moura-Melo, W.A.; Pires, A.S.T.
2008-01-01
We develop an effective theory to study the skyrmion dynamics in the presence of a hole (removed spins from the lattice) in Neel ordered two-dimensional antiferromagnets with arbitrary spin value S. The general equation of motion for the 'mass center' of this structure is obtained. The frequency of small amplitude oscillations of pinned skyrmions around the defect center is calculated. It is proportional to the hole size and inversely proportional to the square of the skyrmion size
Reduced-order prediction of rogue waves in two-dimensional deep-water waves
Sapsis, Themistoklis; Farazmand, Mohammad
2017-11-01
We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.
Two-dimensional computer simulation of high intensity proton beams
Lapostolle, Pierre M
1972-01-01
A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).
Complex Quasi-Two-Dimensional Crystalline Order Embedded in VO2 and Other Crystals
Lovorn, Timothy; Sarker, Sanjoy K.
2017-07-01
Metal oxides such as VO2 undergo structural transitions to low-symmetry phases characterized by intricate crystalline order, accompanied by rich electronic behavior. We derive a minimal ionic Hamiltonian based on symmetry and local energetics which describes structural transitions involving all four observed phases, in the correct order. An exact analysis shows that complexity results from the symmetry-induced constraints of the parent phase, which forces ionic displacements to form multiple interpenetrating groups using low-dimensional pathways and distant neighbors. Displacements within each group exhibit independent, quasi-two-dimensional order, which is frustrated and fragile. This selective ordering mechanism is not restricted to VO2 : it applies to other oxides that show similar complex order.
Oscillation of two-dimensional linear second-order differential systems
International Nuclear Information System (INIS)
Kwong, M.K.; Kaper, H.G.
1985-01-01
This article is concerned with the oscillatory behavior at infinity of the solution y: [a, ∞) → R 2 of a system of two second-order differential equations, y''(t) + Q(t) y(t) = 0, t epsilon[a, ∞); Q is a continuous matrix-valued function on [a, ∞) whose values are real symmetric matrices of order 2. It is shown that the solution is oscillatory at infinity if the largest eigenvalue of the matrix integral/sub a//sup t/ Q(s) ds tends to infinity as t → ∞. This proves a conjecture of D. Hinton and R.T. Lewis for the two-dimensional case. Furthermore, it is shown that considerably weaker forms of the condition still suffice for oscillatory behavior at infinity. 7 references
Basic problems solving for two-dimensional discrete 3 × 4 order hidden markov model
International Nuclear Information System (INIS)
Wang, Guo-gang; Gan, Zong-liang; Tang, Gui-jin; Cui, Zi-guan; Zhu, Xiu-chang
2016-01-01
A novel model is proposed to overcome the shortages of the classical hypothesis of the two-dimensional discrete hidden Markov model. In the proposed model, the state transition probability depends on not only immediate horizontal and vertical states but also on immediate diagonal state, and the observation symbol probability depends on not only current state but also on immediate horizontal, vertical and diagonal states. This paper defines the structure of the model, and studies the three basic problems of the model, including probability calculation, path backtracking and parameters estimation. By exploiting the idea that the sequences of states on rows or columns of the model can be seen as states of a one-dimensional discrete 1 × 2 order hidden Markov model, several algorithms solving the three questions are theoretically derived. Simulation results further demonstrate the performance of the algorithms. Compared with the two-dimensional discrete hidden Markov model, there are more statistical characteristics in the structure of the proposed model, therefore the proposed model theoretically can more accurately describe some practical problems.
Dodecagonal order in a two-dimensional Lennard-Jones system
International Nuclear Information System (INIS)
Leung, P.W.; Henley, C.L.; Chester, G.V.
1989-01-01
We investigate a two-dimensional Lennard-Jones mixture with the interaction parameters chosen so as to favor configurations where the large atoms form squares and equilateral triangles. Many such configurations are possible which by our choice of interactions are nearly degenerate in energy. It is hypothesized that a thermal equilibrium state with 12-fold orientational order exists. Several Monte Carlo simulations were performed to cool the system to a temperature approaching zero. The ordering process was studied by following the evolution of the configurations with temperature. The onset of ordering seemed to be very diffuse in space rather than nucleated at a point. The resulting configurations consist of squares and triangles, except for a few dislocations, and thus have perfect orientational order. We also characterized the deviation from ideal quasiperiodicity in terms of the ''phason strain''; this was analyzed both by fitting a linear relation between the physical space coordinates of the atoms and the corresponding ''perpendicular space'' coordinates, and also by calculating the diffraction peaks. The latter are shifted and broadened, relative to an ideal 12-fold diffraction pattern, as in real quasicrystals
Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.
2018-01-01
Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on
Moskvin, A. S.; Panov, Yu. D.; Rybakov, F. N.; Borisov, A. B.
2017-11-01
We have used high-performance parallel computations by NVIDIA graphics cards applying the method of nonlinear conjugate gradients and Monte Carlo method to observe directly the developing ground state configuration of a two-dimensional hard-core boson system with decrease in temperature, and its evolution with deviation from a half-filling. This has allowed us to explore unconventional features of a charge order—superfluidity phase transition, specifically, formation of an irregular domain structure, emergence of a filamentary superfluid structure that condenses within of the charge-ordered phase domain antiphase boundaries, and formation and evolution of various topological structures.
International Nuclear Information System (INIS)
Rojas T, J.; Instituto Peruano de Energia Nuclear, Lima; Manrique C, E.; Torres T, E.
2002-01-01
Using monte Carlo simulation have been carried out an atomistic description of the structure and ordering processes in the system Cu-Au in a two-dimensional model. The ABV model of the alloy is a system of N atoms A and B, located in rigid lattice with some vacant sites. In the model we assume pair wise interactions between nearest neighbors with constant ordering energy J = 0,03 eV. The dynamics was introduced by means of a vacancy that exchanges of place with any atom of its neighbors. The simulations were carried out in a square lattice with 1024 and 4096 particles, using periodic boundary conditions to avoid border effects. We calculate the first two parameters of short range order of Warren-Cowley as function of the concentration and temperature. It was also studied the probabilities of formation of different atomic clusters that consist of 9 atoms as function of the concentration of the alloy and temperatures in a wide range of values. In some regions of temperature and concentration it was observed compositional and thermal polymorphism
Two-dimensional impurity transport calculations for a high recycling divertor
International Nuclear Information System (INIS)
Brooks, J.N.
1986-04-01
Two dimensional analysis of impurity transport in a high recycling divertor shows asymmetric particle fluxes to the divertor plate, low helium pumping efficiency, and high scrapeoff zone shielding for sputtered impurities
Evidence for intertwined superfluid and density wave order in two dimensional 4He
Saunders, John
2015-03-01
We report the identification of a new state of quantum matter with intertwined superfluid and density wave order in a system of two dimensional bosons subject to a triangular lattice potential. Using a torsional oscillator we have measured the response of the second atomic layer of 4He adsorbed on the surface of graphite over a wide temperature range down to 2 mK. Superfluidity is observed over a narrow range of film densities, emerging suddenly and collapsing towards a quantum critical point, near to layer completion where a Mott insulating phase is predicted to form. The unusual temperature dependence of the superfluid density in the T --> 0 limit and the absence of a clear superfluid onset temperature are explained, self-consistently, by an ansatz for the excitation spectrum, reflecting density wave order, and a quasi-condensate wavefunction breaking both gauge and translational symmetry. In collaboration with Jan Nyeki, Anastasia Phillis, Andrew Ho, Derek Lee, Piers Coleman, Jeevak Parpia, Brian Cowan. Supported by EPSRC (U.K) EP/H048375/1.
Bassanese, Danielle N; Conlan, Xavier A; Barnett, Neil W; Stevenson, Paul G
2015-05-01
This paper explores the analytical figures of merit of two-dimensional high-performance liquid chromatography for the separation of antioxidant standards. The cumulative two-dimensional high-performance liquid chromatography peak area was calculated for 11 antioxidants by two different methods--the areas reported by the control software and by fitting the data with a Gaussian model; these methods were evaluated for precision and sensitivity. Both methods demonstrated excellent precision in regards to retention time in the second dimension (%RSD below 1.16%) and cumulative second dimension peak area (%RSD below 3.73% from the instrument software and 5.87% for the Gaussian method). Combining areas reported by the high-performance liquid chromatographic control software displayed superior limits of detection, in the order of 1 × 10(-6) M, almost an order of magnitude lower than the Gaussian method for some analytes. The introduction of the countergradient eliminated the strong solvent mismatch between dimensions, leading to a much improved peak shape and better detection limits for quantification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-speed fan-beam reconstruction using direct two-dimensional Fourier transform method
International Nuclear Information System (INIS)
Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.
1984-01-01
Since the first development of X-ray computer tomography (CT), various efforts have been made to obtain high quality of high-speed image. However, the development of high resolution CT and the ultra-high speed CT to be applied to hearts is still desired. The X-ray beam scanning method was already changed from the parallel beam system to the fan-beam system in order to greatly shorten the scanning time. Also, the filtered back projection (DFBP) method has been employed to directly processing fan-beam projection data as reconstruction method. Although the two-dimensional Fourier transform (TFT) method significantly faster than FBP method was proposed, it has not been sufficiently examined for fan-beam projection data. Thus, the ITFT method was investigated, which first executes rebinning algorithm to convert the fan-beam projection data to the parallel beam projection data, thereafter, uses two-dimensional Fourier transform. By this method, although high speed is expected, the reconstructed images might be degraded due to the adoption of rebinning algorithm. Therefore, the effect of the interpolation error of rebinning algorithm on the reconstructed images has been analyzed theoretically, and finally, the result of the employment of spline interpolation which allows the acquisition of high quality images with less errors has been shown by the numerical and visual evaluation based on simulation and actual data. Computation time was reduced to 1/15 for the image matrix of 512 and to 1/30 for doubled matrix. (Wakatsuki, Y.)
One- and two-dimensional sublattices as preconditions for high-Tc superconductivity
International Nuclear Information System (INIS)
Krueger, E.
1989-01-01
In an earlier paper it was proposed describing superconductivity in the framework of a nonadiabatic Heisenberg model in order to interprete the outstanding symmetry proper ties of the (spin-dependent) Wannier functions in the conduction bands of superconductors. This new group-theoretical model suggests that Cooper pair formation can only be mediated by boson excitations carrying crystal-spin-angular momentum. While in the three-dimensionally isotropic lattices of the standard superconductors phonons are able to transport crystal-spin-angular momentum, this is not true for phonons propagating through the one- or two-dimensional Cu-O sublattices of the high-T c compounds. Therefore, if such an anisotropic material is superconducting, it is necessarily higher-energetic excitations (of well-defined symmetry) which mediate pair formation. This fact is proposed being responsible for the high transition temperatures of these compounds. (author)
Local order and onset of chaos for a family of two-dimensional dissipative mappings
Energy Technology Data Exchange (ETDEWEB)
Brambilla, R [Dipt. di Fisica, Milano Univ. (Italy); Casartelli, M [Dipt. di Fision, Parma Univ. (Italy); Unita Risonanze Magnetiche, G.N.S.M.-C.N.R., Parma (Italy))
1985-08-11
We study the stochastic transition of a family of dissipative mappings of the two-dimensional tours, having a pure rotation and an Anosov hyperbolic automorphism as limit cases. Numerical experiments show that the onset of chaos is characterized by a sudden destruction of basins of previously conserved invariant sets and by the appearance of a strange attractor. The nature of these phenomena is clarified by analytical considerations.
Han, Xue; Hou, Jing; Xie, Jixun; Yin, Jian; Tong, Yi; Lu, Conghua; Möhwald, Helmuth
2016-06-29
Here we report a simple, novel, yet robust nonlithographic method for the controlled fabrication of two-dimensional (2-D) ordered arrays of polyethylene glycol (PEG) microspheres. It is based on the synergistic combination of two bottom-up processes enabling periodic structure formation for the first time: dewetting and the mechanical wrinkle formation. The deterministic dewetting results from the hydrophilic polymer PEG on an incompatible polystyrene (PS) film bound to a polydimethylsiloxane (PDMS) substrate, which is directed both by a wrinkled template and by the template-directed in-situ self-wrinkling PS/PDMS substrate. Two strategies have been introduced to achieve synergism to enhance the 2-D ordering, i.e., employing 2-D in-situ self-wrinkling substrates and boundary conditions. As a result, we achieve highly ordered 2-D arrays of PEG microspheres with desired self-organized microstructures, such as the array location (e.g., selectively on the crest/in the valley of the wrinkles), diameter, spacing of the microspheres, and array direction. Additionally, the coordination of PEG with HAuCl4 is utilized to fabricate 2-D ordered arrays of functional PEG-HAuCl4 composite microspheres, which are further converted into different Au nanoparticle arrays. This simple versatile combined strategy could be extended to fabricate highly ordered 2-D arrays of other functional materials and achieve desirable properties and functionalities.
Zhu, Shuze; Geng, Xiumei; Han, Yang; Benamara, Mourad; Chen, Liao; Li, Jingxiao; Bilgin, Ismail; Zhu, Hongli
2017-10-01
Element sulfur in nature is an insulating solid. While it has been tested that one-dimensional sulfur chain is metallic and conducting, the investigation on two-dimensional sulfur remains elusive. We report that molybdenum disulfide layers are able to serve as the nanotemplate to facilitate the formation of two-dimensional sulfur. Density functional theory calculations suggest that confined in-between layers of molybdenum disulfide, sulfur atoms are able to form two-dimensional triangular arrays that are highly metallic. As a result, these arrays contribute to the high conductivity and metallic phase of the hybrid structures of molybdenum disulfide layers and two-dimensional sulfur arrays. The experimentally measured conductivity of such hybrid structures reaches up to 223 S/m. Multiple experimental results, including X-ray photoelectron spectroscopy (XPS), transition electron microscope (TEM), selected area electron diffraction (SAED), agree with the computational insights. Due to the excellent conductivity, the current density is linearly proportional to the scan rate until 30,000 mV s-1 without the attendance of conductive additives. Using such hybrid structures as electrode, the two-electrode supercapacitor cells yield a power density of 106 Wh kg-1 and energy density 47.5 Wh kg-1 in ionic liquid electrolytes. Our findings offer new insights into using two-dimensional materials and their Van der Waals heterostructures as nanotemplates to pattern foreign atoms for unprecedented material properties.
Driessen, F. A. J. M.; Bauhuis, G. J.; Hageman, P. R.; van Geelen, A.; Giling, L. J.
1994-12-01
The modulation-doped ordered-GaInP2/disordered-GaInP2 homojunction is presented. Capacitance-voltage (CV) profiling techniques, temperature-dependent Hall and resistivity measurements, cross-sectional transverse electron micrographs (TEM), and high-field magnetotransport have been used to characterize this structure grown by metal-organic vapor-phase epitaxy. The CV measurements showed a narrow profile at the homointerface with an order of magnitude reduction in carrier density within 3 nm. Typical two-dimensional behavior was observed from Hall data showing sheet carrier densities as high as 3.6×1013 cm-2 without carrier freeze-out, and constant mobilities around 900 cm2 V-1 s-1 below T=100 K. The 300-K channel conductivity of this junction is 3.2×10-3 Ω-1, which is higher than reported for other two-dimensional electron gases. By proper choice of the substrate orientation, domains of only the (111¯) ordering variant were present. TEM showed elongated shapes of average thickness 3.5-6 nm and length 75 nm in the (011) plane. By using Hall bars with different current directions, an asymmetry is observed for the contributions to the scattering mechanisms which determine the mobility: ``mesoscopic'' interface-roughness scattering for T300 K indicates strong electron-phonon coupling. This asymmetry shows that the domain length in the (011) plane is larger than that in the (011¯) plane. The magnetoresistance ρxx and the Hall resistance ρxy show oscillations in reciprocal magnetic field involving an excited subband i with ni2D=7.6×1011 cm-2, where 2D denotes two dimensional. The ρxy versus B curve shows features of a slight parallel conduction.
Pseudo-particles picture in single-hole-doped two-dimensional Neel ordered antiferromagnet
International Nuclear Information System (INIS)
Pereira, A R; Ercolessi, E; Pires, A S T
2007-01-01
Using the nonlinear σ model on a non-simply connected manifold, we consider the interaction effects between the elementary excitations (magnons and skyrmions) and static spin vacancy (hole) in two-dimensional quantum antiferromagnetic systems. Holes scatter magnons and trap skyrmions. The phase-shifts of the scattered magnons are obtained and used to calculate the zero point energy of spin waves measured with respect to the vacuum. It is suggested that this zero point energy lowers the energy cost of removing spins from the lattice. We also study the problems of the skyrmion-hole interactions and the skyrmion-hole (half-skyrmion-hole) bound states in the presence of magnons. We argue that two adjacent non-magnetic impurities are attracted when they are placed at the centre of half-skyrmions
Two dimensional electron transport in disordered and ordered distributions of magnetic flux vortices
International Nuclear Information System (INIS)
Nielsen, M.; Hedegaard, P.
1994-04-01
We have considered the conductivity properties of a two dimensional electron gas (2DEG) in two different kinds of inhomogeneous magnetic fields, i.e. a disordered distribution of magnetic flux vortices, and a periodic array of magnetic flux vortices. The work falls in two parts. In the first part we show how the phase shifts for an electron scattering on an isolated vortex, can be calculated analytically, and related to the transport properties through the differential cross section. In the second part we present numerical results for the Hall conductivity of the 2DEG in a periodic array of flux vortices found by exact diagonalization. We find characteristic spikes in the Hall conductance, when it is plotted against the filling fraction. It is argued that the spikes can be interpreted in terms of ''topological charge'' piling up across local and global gaps in the energy spectrum. (au) (23 refs.)
High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors
Torres, Carlos M.
2015-12-09
The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.
High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors
Torres, Carlos M.; Lan, Yann Wen; Zeng, Caifu; Chen, Jyun Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R.; Lerner, Mitchell B.; Zhong, Yuan Liang; Li, Lain-Jong; Chen, Chii Dong; Wang, Kang L.
2015-01-01
The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.
Energy Technology Data Exchange (ETDEWEB)
Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)
2014-11-03
Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.
Dong, Liang
2016-12-30
Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless of the surface terminations (T = O, OH, and F), as well as in Hf2MnC2O2 and Hf2VC2O2 monolayers. The high magnetic moments (3–4 μB/unit cell) and high Curie temperatures (495–1133 K) of these MXenes are superior to those of existing 2D ferromagnetic materials. Furthermore, semimetal-to-semiconductor and ferromagnetic-to-antiferromagnetic phase transitions are predicted to occur in these materials in the presence of small or moderate tensile in-plane strains (0–3%), which can be externally applied mechanically or internally induced by the choice of transition metals.
Basic problems and solution methods for two-dimensional continuous 3 × 3 order hidden Markov model
International Nuclear Information System (INIS)
Wang, Guo-gang; Tang, Gui-jin; Gan, Zong-liang; Cui, Zi-guan; Zhu, Xiu-chang
2016-01-01
A novel model referred to as two-dimensional continuous 3 × 3 order hidden Markov model is put forward to avoid the disadvantages of the classical hypothesis of two-dimensional continuous hidden Markov model. This paper presents three equivalent definitions of the model, in which the state transition probability relies on not only immediate horizontal and vertical states but also immediate diagonal state, and in which the probability density of the observation relies on not only current state but also immediate horizontal and vertical states. The paper focuses on the three basic problems of the model, namely probability density calculation, parameters estimation and path backtracking. Some algorithms solving the questions are theoretically derived, by exploiting the idea that the sequences of states on rows or columns of the model can be viewed as states of a one-dimensional continuous 1 × 2 order hidden Markov model. Simulation results further demonstrate the performance of the algorithms. Because there are more statistical characteristics in the structure of the proposed new model, it can more accurately describe some practical problems, as compared to two-dimensional continuous hidden Markov model.
Two-dimensional charge transport in self-organized, high-mobility conjugated polymers
DEFF Research Database (Denmark)
Sirringhaus, H.; Brown, P.J.; Friend, R.H.
1999-01-01
Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix(I). This has important consequences for electrical properties of these materials: charge transport...... of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT, Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different...... of polymer transistors in logic circuits(5) and active-matrix displays(4,6)....
Two-dimensional orbital ordering in d{sup 1} Mott insulator Sr{sub 2}VO{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Viennois, R; Giannini, E; Teyssier, J; Elia, J; Van der Marel, D [DPMC, Universite de Geneve, 24 quai Ernest Ansermet, CH-1211 Geneve (Switzerland); Deisenhofer, J, E-mail: Romain.Viennois@unige.c [Institute of Physics, University of Augsburg, Augsburg (Germany)
2010-01-15
The Mott insulator Sr{sub 2}VO{sub 4} is a unique d{sup 1} two-dimensional compound exhibiting an orbital ordering transition. In addition to the orbital ordering transition at about 100 K, we discovered a ferromagnetic transition below 10 K, thus confirming the predictions of recent band structure calculations. The magnetic properties proved to be strongly sensitive to the material purity, the actual oxygen stoichiometry and the crystallographic parameters. An additional transition is observed at 125 K, which is believed to be due to structural modifications.
Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.
Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei
2018-03-01
Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.
Effects of dilution on the magnetic ordering of a two-dimensional lattice of dipolar magnets
International Nuclear Information System (INIS)
Patchedjiev, S M; Whitehead, J P; De'Bell, K
2005-01-01
Monte Carlo simulations are used to study the effects of dilution by random vacancies on the phenomenon of order arising from disorder in an ultrathin magnetic film. At very low concentrations of vacancies, both the collinear ordered phase observed in the undiluted system and the microvortex state are observed, and the boundary on which the reorientation transition between these states occurs is found to be consistent with the predictions of earlier work. However, even at vacancy densities as low as 0.5% there is evidence that the vacancies result in a energy landscape with a number of very nearly degenerate minima
Directory of Open Access Journals (Sweden)
Fukang Yin
2013-01-01
Full Text Available A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs. The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs. The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.
Buckling Transitions and Clock Order of Two-Dimensional Coulomb Crystals
Directory of Open Access Journals (Sweden)
Daniel Podolsky
2016-08-01
Full Text Available Crystals of repulsively interacting ions in planar traps form hexagonal lattices, which undergo a buckling instability towards a multilayer structure as the transverse trap frequency is reduced. Numerical and experimental results indicate that the new structure is composed of three planes, whose separation increases continuously from zero. We study the effects of thermal and quantum fluctuations by mapping this structural instability to the six-state clock model. A prominent implication of this mapping is that at finite temperature, fluctuations split the buckling instability into two thermal transitions, accompanied by the appearance of an intermediate critical phase. This phase is characterized by quasi-long-range order in the spatial tripartite pattern. It is manifested by broadened Bragg peaks at new wave vectors, whose line shape provides a direct measurement of the temperature-dependent exponent η(T characteristic of the power-law correlations in the critical phase. A quantum phase transition is found at the largest value of the critical transverse frequency: Here, the critical intermediate phase shrinks to zero. Moreover, within the ordered phase, we predict a crossover from classical to quantum behavior, signifying the emergence of an additional characteristic scale for clock order. We discuss experimental realizations with trapped ions and polarized dipolar gases, and propose that within accessible technology, such experiments can provide a direct probe of the rich phase diagram of the quantum clock model, not easily observable in condensed matter analogues. Therefore, this work highlights the potential for ionic and dipolar systems to serve as simulators for complex models in statistical mechanics and condensed matter physics.
Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field
International Nuclear Information System (INIS)
Hoang, Ngoc-Tram D.; Nguyen, Duy-Anh P.; Hoang, Van-Hung; Le, Van-Hoang
2016-01-01
Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.
Quasi-two-dimensional metallic hydrogen in diphosphide at a high pressure
International Nuclear Information System (INIS)
Degtyarenko, N. N.; Mazur, E. A.
2016-01-01
The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH k are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH 3 , a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.
Wang, Liang
2015-04-22
Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.
Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field
Energy Technology Data Exchange (ETDEWEB)
Hoang, Ngoc-Tram D. [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Nguyen, Duy-Anh P. [Department of Natural Science, Thu Dau Mot University, 6, Tran Van On Street, Thu Dau Mot City, Binh Duong Province (Viet Nam); Hoang, Van-Hung [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: levanhoang@tdt.edu.vn [Atomic Molecular and Optical Physics Research Group, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)
2016-08-15
Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.
Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou
2015-04-01
Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.
Quasi-two-dimensional metallic hydrogen in diphosphide at a high pressure
Energy Technology Data Exchange (ETDEWEB)
Degtyarenko, N. N.; Mazur, E. A., E-mail: eugen-mazur@mail.ru [National Research Nuclear University MEPhI (Russian Federation)
2016-08-15
The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH{sub k} are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH{sub 3}, a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.
International Nuclear Information System (INIS)
Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.
1983-01-01
The nescessity for developing real-time computerized tomography (CT) aiming at the dynamic observation of organs such as hearts has lately been advocated. It is necessary for its realization to reconstruct the images which are markedly faster than present CTs. Although various reconstructing methods have been proposed so far, the method practically employed at present is the filtered backprojection (FBP) method only, which can give high quality image reconstruction, but takes much computing time. In the past, the two-dimensional Fourier transform (TFT) method was regarded as unsuitable to practical use because the quality of images obtained was not good, in spite of the promising method for high speed reconstruction because of its less computing time. However, since it was revealed that the image quality by TFT method depended greatly on interpolation accuracy in two-dimensional Fourier space, the authors have developed a high-speed calculation algorithm that can obtain high quality images by pursuing the relationship between the image quality and the interpolation method. In this case, radial data sampling points in Fourier space are increased to β-th power of 2 times, and the linear or spline interpolation is used. Comparison of this method with the present FBP method resulted in the conclusion that the image quality is almost the same in practical image matrix, the computational time by TFT method becomes about 1/10 of FBP method, and the memory capacity also reduces by about 20 %. (Wakatsuki, Y.)
Growth and decay of a two-dimensional oxide quasicrystal: High-temperature in situ microscopy
Energy Technology Data Exchange (ETDEWEB)
Foerster, Stefan [Physik-Institut, Universitaet Zuerich (Switzerland); Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Flege, Jan Ingo; Falta, Jens [Institute of Solid State Physics, University of Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen (Germany); Zollner, Eva Maria; Schumann, Florian Otto; Hammer, Rene; Bayat, Alireza; Schindler, Karl-Michael [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Widdra, Wolf [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)
2017-01-15
The recently discovered two-dimensional oxide quasicrystal (OQC) derived from BaTiO{sub 3} on Pt(111) is the first material in which a spontaneous formation of an aperiodic structure at the interface to a periodic support has been observed. Herein, we report in situ low-energy electron microscopy (LEEM) studies on the fundamental processes involved in the OQC growth. The OQC formation proceeds in two steps via of an amorphous two-dimensional wetting layer. At 1170 K the long-range aperiodic order of the OQC develops. Annealing in O{sub 2} induces the reverse process, the conversion of the OQC into BaTiO{sub 3} islands and bare Pt(111), which has been monitored by in situ LEEM. A quantitative analysis of the temporal decay of the OQC shows that oxygen adsorption on bare Pt patches is the rate limiting step of this dewetting process. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Li Guowang; Cao Yu; Xing Huili Grace; Jena, Debdeep
2010-01-01
We report high-electron mobility nitride heterostructures with >70% Al composition AlGaN alloy barriers grown by molecular beam epitaxy. Direct growth of such AlGaN layers on GaN resulted in hexagonal trenches and a low mobility polarization-induced charge. By applying growth interruption at the heterojunction, the surface morphology improved dramatically and the room temperature two-dimensional electron gas (2DEG) mobility increased by an order of magnitude, exceeding 1300 cm 2 /V s. The 2DEG density was tunable at 0.4-3.7x10 13 /cm 2 by varying the total barrier thickness (t). Surface barrier heights of the heterostructures were extracted and exhibited dependence on t.
Zhu, Xiaoyu
2018-05-01
A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.
Settle, Sean O.
2013-01-01
The primary aim of this paper is to answer the question, What are the highest-order five- or nine-point compact finite difference schemes? To answer this question, we present several simple derivations of finite difference schemes for the one- and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make any initial assumptions on stencil symmetries or weights. For the one-dimensional problem, the derivation using the three-point stencil on both uniform and nonuniform grids yields a scheme with arbitrarily high-order local accuracy. However, for the two-dimensional problem, the derivation using the corresponding five-point stencil on uniform and quasi-uniform grids yields a scheme with at most second-order local accuracy, and on nonuniform grids yields at most first-order local accuracy. When expanding the five-point stencil to the nine-point stencil, the derivation using the nine-point stencil on uniform grids yields at most sixth-order local accuracy, but on quasi- and nonuniform grids yields at most fourth- and third-order local accuracy, respectively. © 2013 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Ju Jing; Zhou Yuqin; Dong Gangqiang
2014-01-01
We studied the infrared transmission properties of gold films on ordered two-dimensional non-close-packed polystyrene (PS) colloidal crystal. The gold films consist of gold half-shells on the PS spheres and gold film with 2D arrays of holes on the glass substrate. An extraordinary optical transmission phenomenon could be found in such a structure. Simulations with the finite-difference time-domain method were also employed to get the transmission spectra and electric field distribution. The transmission response of the samples can be adjusted by controlling the thickness of the gold films. Angle-resolved measurements were performed using polarized light to obtain more information about the surface plasmon polariton resonances of the gold films. As the angle changes, the transmission spectra change a lot. The transmission spectra of p-polarized light have quite different properties compared to those of s-polarized light. (semiconductor physics)
Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A
2003-09-10
A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.
High-velocity two-phase flow two-dimensional modeling
International Nuclear Information System (INIS)
Mathes, R.; Alemany, A.; Thilbault, J.P.
1995-01-01
The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field
Energy Technology Data Exchange (ETDEWEB)
Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)
2015-10-28
Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.
International Nuclear Information System (INIS)
Grekov, D.; Kasilov, S.; Kernbichler, W.
2016-01-01
A two dimensional numerical code for computation of the electromagnetic field of a fast magnetosonic wave in a tokamak at high harmonics of the ion cyclotron frequency has been developed. The code computes the finite difference solution of Maxwell equations for separate toroidal harmonics making use of the toroidal symmetry of tokamak plasmas. The proper boundary conditions are prescribed at the realistic tokamak vessel. The currents in the RF antenna are specified externally and then used in Ampere law. The main poloidal tokamak magnetic field and the ''kinetic'' part of the dielectric permeability tensor are treated iteratively. The code has been verified against known analytical solutions and first calculations of current drive in the spherical torus are presented.
Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures
Zhu, Tong; Yuan, Long; Zhao, Yan; Zhou, Mingwei; Wan, Yan; Mei, Jianguo; Huang, Libai
2018-01-01
Charge-transfer (CT) excitons at heterointerfaces play a critical role in light to electricity conversion using organic and nanostructured materials. However, how CT excitons migrate at these interfaces is poorly understood. We investigate the formation and transport of CT excitons in two-dimensional WS2/tetracene van der Waals heterostructures. Electron and hole transfer occurs on the time scale of a few picoseconds, and emission of interlayer CT excitons with a binding energy of ~0.3 eV has been observed. Transport of the CT excitons is directly measured by transient absorption microscopy, revealing coexistence of delocalized and localized states. Trapping-detrapping dynamics between the delocalized and localized states leads to stretched-exponential photoluminescence decay with an average lifetime of ~2 ns. The delocalized CT excitons are remarkably mobile with a diffusion constant of ~1 cm2 s−1. These highly mobile CT excitons could have important implications in achieving efficient charge separation. PMID:29340303
Tayebi, A.; Shekari, Y.; Heydari, M. H.
2017-07-01
Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.
Xu, Jiandong; Gao, Qiuming; Zhang, Yunlu; Tan, Yanli; Tian, Weiqian; Zhu, Lihua; Jiang, Lei
2014-07-01
Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m2 g-1 is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA+, diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm-2 and high energy density of 10/39 Wh kg-1 at power of 52/286 kW kg-1 in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively.
Liu, Wei; Ulaganathan, Mani; Abdelwahab, Ibrahim; Luo, Xin; Chen, Zhongxin; Rong Tan, Sherman Jun; Wang, Xiaowei; Liu, Yanpeng; Geng, Dechao; Bao, Yang; Chen, Jianyi; Loh, Kian Ping
2018-01-23
Two-dimensional (2-D) polymer has properties that are attractive for energy storage applications because of its combination of heteroatoms, porosities and layered structure, which provides redox chemistry and ion diffusion routes through the 2-D planes and 1-D channels. Here, conjugated aromatic polymers (CAPs) were synthesized in quantitative yield via solid-state polymerization of phenazine-based precursor crystals. By choosing flat molecules (2-TBTBP and 3-TBQP) with different positions of bromine substituents on a phenazine-derived scaffold, C-C cross coupling was induced following thermal debromination. CAP-2 is polymerized from monomers that have been prepacked into layered structure (3-TBQP). It can be mechanically exfoliated into micrometer-sized ultrathin sheets that show sharp Raman peaks which reflect conformational ordering. CAP-2 has a dominant pore size of ∼0.8 nm; when applied as an asymmetric supercapacitor, it delivers a specific capacitance of 233 F g -1 at a current density of 1.0 A g -1 , and shows outstanding cycle performance.
Stable high efficiency two-dimensional perovskite solar cells via cesium doping
Zhang, Xu
2017-08-15
Two-dimensional (2D) organic-inorganic perovskites have recently emerged as one of the most important thin-film solar cell materials owing to their excellent environmental stability. The remaining major pitfall is their relatively poor photovoltaic performance in contrast to 3D perovskites. In this work we demonstrate cesium cation (Cs) doped 2D (BA)(MA)PbI perovskite solar cells giving a power conversion efficiency (PCE) as high as 13.7%, the highest among the reported 2D devices, with excellent humidity resistance. The enhanced efficiency from 12.3% (without Cs) to 13.7% (with 5% Cs) is attributed to perfectly controlled crystal orientation, an increased grain size of the 2D planes, superior surface quality, reduced trap-state density, enhanced charge-carrier mobility and charge-transfer kinetics. Surprisingly, it is found that the Cs doping yields superior stability for the 2D perovskite solar cells when subjected to a high humidity environment without encapsulation. The device doped using 5% Cs degrades only ca. 10% after 1400 hours of exposure in 30% relative humidity (RH), and exhibits significantly improved stability under heating and high moisture environments. Our results provide an important step toward air-stable and fully printable low dimensional perovskites as a next-generation renewable energy source.
Ma, Biao; Zou, Yilin; Xie, Xuan; Zhao, Jinhua; Piao, Xiangfan; Piao, Jingyi; Yao, Zhongping; Quinto, Maurizio; Wang, Gang; Li, Donghao
2017-06-09
A novel high-throughput, solvent saving and versatile integrated two-dimensional microscale carbon fiber/active carbon fiber system (2DμCFs) that allows a simply and rapid separation of compounds in low-polar, medium-polar and high-polar fractions, has been coupled with ambient ionization-mass spectrometry (ESI-Q-TOF-MS and ESI-QqQ-MS) for screening and quantitative analyses of real samples. 2DμCFs led to a substantial interference reduction and minimization of ionization suppression effects, thus increasing the sensitivity and the screening capabilities of the subsequent MS analysis. The method has been applied to the analysis of Schisandra Chinensis extracts, obtaining with a single injection a simultaneous determination of 33 compounds presenting different polarities, such as organic acids, lignans, and flavonoids in less than 7min, at low pressures and using small solvent amounts. The method was also validated using 10 model compounds, giving limit of detections (LODs) ranging from 0.3 to 30ngmL -1 , satisfactory recoveries (from 75.8 to 93.2%) and reproducibilities (relative standard deviations, RSDs, from 1.40 to 8.06%). Copyright © 2017 Elsevier B.V. All rights reserved.
Doping of two-dimensional MoS2 by high energy ion implantation
Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang
2017-12-01
Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.
Potgieter, H; Bekker, R; Beigley, J; Rohwer, E
2017-08-04
Heavy petroleum fractions are produced during crude and synthetic crude oil refining processes and they need to be upgraded to useable products to increase their market value. Usually these fractions are upgraded to fuel products by hydrocracking, hydroisomerization and hydrogenation processes. These fractions are also upgraded to other high value commercial products like lubricant oils and waxes by distillation, hydrogenation, and oxidation and/or blending. Oxidation of hydrogenated heavy paraffinic fractions produces high value products that contain a variety of oxygenates and the characterization of these heavy oxygenates is very important for the control of oxidation processes. Traditionally titrimetric procedures are used to monitor oxygenate formation, however, these titrimetric procedures are tedious and lack selectivity toward specific oxygenate classes in complex matrices. Comprehensive two-dimensional gas chromatography (GC×GC) is a way of increasing peak capacity for the comprehensive analysis of complex samples. Other groups have used HT-GC×GC to extend the carbon number range attainable by GC×GC and have optimised HT-GC×GC parameters for the separation of aromatics, nitrogen-containing compounds as well as sulphur-containing compounds in heavy petroleum fractions. HT-GC×GC column combinations for the separation of oxygenates in oxidised heavy paraffinic fractions are optimised in this study. The advantages of the HT-GC×GC method in the monitoring of the oxidation reactions of heavy paraffinic fraction samples are illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Carbon doped GaAs/AlGaAs heterostructures with high mobility two dimensional hole gas
Energy Technology Data Exchange (ETDEWEB)
Hirmer, Marika; Bougeard, Dominique; Schuh, Dieter [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, D 93040 Regensburg (Germany); Wegscheider, Werner [Laboratorium fuer Festkoerperphysik, ETH Zuerich, 8093 Zuerich (Switzerland)
2011-07-01
Two dimensional hole gases (2DHG) with high carrier mobilities are required for both fundamental research and possible future ultrafast spintronic devices. Here, two different types of GaAs/AlGaAs heterostructures hosting a 2DHG were investigated. The first structure is a GaAs QW embedded in AlGaAs barrier grown by molecular beam epitaxy with carbon-doping only at one side of the quantum well (QW) (single side doped, ssd), while the second structure is similar but with symmetrically arranged doping layers on both sides of the QW (double side doped, dsd). The ssd-structure shows hole mobilities up to 1.2*10{sup 6} cm{sup 2}/Vs which are achieved after illumination. In contrast, the dsd-structure hosts a 2DHG with mobility up to 2.05*10{sup 6} cm{sup 2}/Vs. Here, carrier mobility and carrier density is not affected by illuminating the sample. Both samples showed distinct Shubnikov-de-Haas oscillations and fractional quantum-Hall-plateaus in magnetotransport experiments done at 20mK, indicating the high quality of the material. In addition, the influence of different temperature profiles during growth and the influence of the Al content of the barrier Al{sub x}Ga{sub 1-x}As on carrier concentration and mobility were investigated and are presented here.
Large angle and high linearity two-dimensional laser scanner based on voice coil actuators
Wu, Xin; Chen, Sihai; Chen, Wei; Yang, Minghui; Fu, Wen
2011-10-01
A large angle and high linearity two-dimensional laser scanner with an in-house ingenious deflection angle detecting system is developed based on voice coil actuators direct driving mechanism. The specially designed voice coil actuators make the steering mirror moving at a sufficiently large angle. Frequency sweep method based on virtual instruments is employed to achieve the natural frequency of the laser scanner. The response shows that the performance of the laser scanner is limited by the mechanical resonances. The closed-loop controller based on mathematical model is used to reduce the oscillation of the laser scanner at resonance frequency. To design a qualified controller, the model of the laser scanner is set up. The transfer function of the model is identified with MATLAB according to the tested data. After introducing of the controller, the nonlinearity decreases from 13.75% to 2.67% at 50 Hz. The laser scanner also has other advantages such as large deflection mirror, small mechanical structure, and high scanning speed.
Shao, Yuchuan; Liu, Ye; Chen, Xiaolong; Chen, Chen; Sarpkaya, Ibrahim; Chen, Zhaolai; Fang, Yanjun; Kong, Jaemin; Watanabe, Kenji; Taniguchi, Takashi; Taylor, André; Huang, Jinsong; Xia, Fengnian
2017-12-13
Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼10 5 A W -1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
Lukatskaya, Maria R.; Kota, Sankalp; Lin, Zifeng; Zhao, Meng-Qiang; Shpigel, Netanel; Levi, Mikhael D.; Halim, Joseph; Taberna, Pierre-Louis; Barsoum, Michel W.; Simon, Patrice; Gogotsi, Yury
2017-08-01
The use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g-1 at scan rates of 10 V s-1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ˜1,500 F cm-3 reaching the previously unmatched volumetric performance of RuO2.
Blind column selection protocol for two-dimensional high performance liquid chromatography.
Burns, Niki K; Andrighetto, Luke M; Conlan, Xavier A; Purcell, Stuart D; Barnett, Neil W; Denning, Jacquie; Francis, Paul S; Stevenson, Paul G
2016-07-01
The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
Energy Technology Data Exchange (ETDEWEB)
Lukatskaya, Maria R. [Drexel Univ., Philadelphia, PA (United States); Dept. of Chemical Engineering, Stanford, CA (United States); Kota, Sankalp [Drexel Univ., Philadelphia, PA (United States); Lin, Zifeng [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Zhao, Meng -Qiang [Drexel Univ., Philadelphia, PA (United States); Shpigel, Netanel [Bar-Ilan Univ., Ramat-Gan (Israel); Levi, Mikhael D. [Bar-Ilan Univ., Ramat-Gan (Israel); Halim, Joseph [Drexel Univ., Philadelphia, PA (United States); Taberna, Pierre -Louis [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Barsoum, Michel W. [Drexel Univ., Philadelphia, PA (United States); Simon, Patrice [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)
2017-07-10
In this study, the use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti_{3}C_{2}T_{x} MXene film delivered up to 210 F g^{–1} at scan rates of 10 V s^{–1}, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ~1,500 F cm^{–3} reaching the previously unmatched volumetric performance of RuO_{2}.
Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola
2018-02-01
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
Wang, Y.; Ramaswamy, V.; Saleh, F.
2017-12-01
Barnegat Bay located on the east coast of New Jersey, United States and is separated from the Atlantic Ocean by the narrow Barnegat Peninsula which acts as a barrier island. The bay is fed by several rivers which empty through small estuaries along the inner shore. In terms of vulnerability from flooding, the Barnegat Peninsula is under the influence of both coastal storm surge and riverine flooding. Barnegat Bay was hit by Hurricane Sandy causing flood damages with extensive cross-island flow at many streets perpendicular to the shoreline. The objective of this work is to identify and quantify the sources of flooding using a two dimensional inland hydrodynamic model. The hydrodynamic model was forced by three observed coastal boundary conditions, and one hydrologic boundary condition from United States Geological Survey (USGS). The model reliability was evaluated with both FEMA spatial flooding extend and USGS High water marks. Simulated flooding extent showed good agreement with the reanalysis spatial inundation extents. Results offered important perspectives on the flow of the water into the bay, the velocity and the depth of the inundated areas. Using such information can enable emergency managers and decision makers identify evacuation and deploy flood defenses.
High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins
Directory of Open Access Journals (Sweden)
M. Salewski
2017-08-01
Full Text Available Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n-type CdTe/(Cd,MgTe quantum-well structure detected by a heterodyne technique. The difference in the sub-μeV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.
Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou
2015-01-01
Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed
Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan
2018-01-01
In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.
Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui
2014-05-20
As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account
Nucleation of two-dimensional islands on Si (111) during high-temperature epitaxial growth
Energy Technology Data Exchange (ETDEWEB)
Sitnikov, S. V., E-mail: sitnikov@isp.nsc.ru; Kosolobov, S. S.; Latyshev, A. V. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2017-02-15
The process of two-dimensional island nucleation at the surface of ultra large Si (111) during hightemperature epitaxial growth is studied by in situ ultrahigh-vacuum reflection electron microscopy. The critical terrace size D{sub crit}, at which a two-dimensional island is nucleated in the center, is measured in the temperature range 900–1180°C at different silicon fluxes onto the surface. It is found that the parameter D{sub crit}{sup 2} is a power function of the frequency of island nucleation, with the exponent χ = 0.9 ± 0.05 in the entire temperature range under study. It is established that the kinetics of nucleus formation is defined by the diffusion of adsorbed silicon atoms at temperatures of up to 1180°C and the minimum critical nucleus size corresponds to 12 silicon atoms.
Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou
2015-01-01
Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals u...
Settle, Sean O.; Douglas, Craig C.; Kim, Imbunm; Sheen, Dongwoo
2013-01-01
- and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make
High-precision two-dimensional atom localization via quantum interference in a tripod-type system
International Nuclear Information System (INIS)
Wang, Zhiping; Yu, Benli
2014-01-01
A scheme is proposed for high-precision two-dimensional atom localization in a four-level tripod-type atomic system via measurement of the excited state population. It is found that because of the position-dependent atom–field interaction, the precision of 2D atom localization can be significantly improved by appropriately adjusting the system parameters. Our scheme may be helpful in laser cooling or atom nanolithography via high-precision and high-resolution atom localization. (letter)
Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.
2005-12-01
We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.
C4N3H monolayer: A two-dimensional organic Dirac material with high Fermi velocity
Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Li, Jianfu; Du, Youwei; Tang, Nujiang
2017-11-01
Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications compared with inorganic ones, is of great significance and has been ongoing. However, only two such materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C4N3H stoichiometry that possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than the largest velocity ever reported in 2D organic Dirac materials, and it is comparable to that in graphene. The Dirac states in this monolayer arise from the extended π -electron conjugation system formed by the overlapping 2 pz orbitals of carbon and nitrogen atoms. Our finding paves the way to a search for more 2D organic Dirac materials with high Fermi velocity.
Watanabe, A.; Furukawa, H.
2018-04-01
The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.
Imaginary time density-density correlations for two-dimensional electron gases at high density
Energy Technology Data Exchange (ETDEWEB)
Motta, M.; Galli, D. E. [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Moroni, S. [IOM-CNR DEMOCRITOS National Simulation Center and SISSA, Via Bonomea 265, 34136 Trieste (Italy); Vitali, E. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)
2015-10-28
We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Koshelev, Alexei E.; Song, Kok Wee
We investigate the superconducting instability in the magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to a small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature Tc 2 (H) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to full occupancy of the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level. As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the chemical potential matches the Landau levels. These regions may be disconnected from the main low-field superconducting region. The specific behavior depends on the relative strength of the intraband and interband coupling constants and the effect is most pronounced when the interband coupling dominates. The Zeeman spin splitting reduces sizes of the reentrant regions and changes their location in the parameter space. The predicted behavior may realize in the gate-tuned FeSe monolayer. This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Science, under Award No. DEAC0298CH1088.
Gan, Liyong
2014-10-21
A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo1−xWxS2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.
Gan, Liyong; Zhang, Qingyun; Zhao, Yu-Jun; Cheng, Yingchun; Schwingenschlö gl, Udo
2014-01-01
A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo1−xWxS2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.
International Nuclear Information System (INIS)
Gruzintsev, A.N.; Volkov, V.T.; Emelchenko, G.A.; Karpov, I.A.; Maslov, W.M.; Michailov, G.M.; Yakimov, E.E.
2004-01-01
The luminescence properties of ZnO films of different thickness obtained on a synthetic opal were investigated. Several narrow peaks in the exciton emission region related to the size quantum effect of the electron wave functions were detected. Two-dimensional ordered array of ZnO quantum dots formed inside the opal pores on the second sphere layer were found by the atomic force microscopy (AFM) and angle dependence of the luminescence spectra
Stock, Eduardo Velasco; da Silva, Roberto; Fernandes, H. A.
2017-07-01
In this paper, we propose a stochastic model which describes two species of particles moving in counterflow. The model generalizes the theoretical framework that describes the transport in random systems by taking into account two different scenarios: particles can work as mobile obstacles, whereas particles of one species move in the opposite direction to the particles of the other species, or particles of a given species work as fixed obstacles remaining in their places during the time evolution. We conduct a detailed study about the statistics concerning the crossing time of particles, as well as the effects of the lateral transitions on the time required to the system reaches a state of complete geographic separation of species. The spatial effects of jamming are also studied by looking into the deformation of the concentration of particles in the two-dimensional corridor. Finally, we observe in our study the formation of patterns of lanes which reach the steady state regardless of the initial conditions used for the evolution. A similar result is also observed in real experiments involving charged colloids motion and simulations of pedestrian dynamics based on Langevin equations, when periodic boundary conditions are considered (particles counterflow in a ring symmetry). The results obtained through Monte Carlo simulations and numerical integrations are in good agreement with each other. However, differently from previous studies, the dynamics considered in this work is not Newton-based, and therefore, even artificial situations of self-propelled objects should be studied in this first-principles modeling.
Langley, Robin S; Cotoni, Vincent
2010-04-01
Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.
Directory of Open Access Journals (Sweden)
Zhishuo Huang
2016-08-01
Full Text Available Neither of the two typical two-dimensional materials, graphene and single layer MoS 2 , are good enough for developing semiconductor logical devices. We calculated the electron mobility of 14 two-dimensional semiconductors with composition of MX 2 , where M (=Mo, W, Sn, Hf, Zr and Pt are transition metals, and Xs are S, Se and Te. We approximated the electron phonon scattering matrix by deformation potentials, within which long wave longitudinal acoustical and optical phonon scatterings were included. Piezoelectric scattering in the compounds without inversion symmetry is also taken into account. We found that out of the 14 compounds, WS 2 , PtS 2 and PtSe 2 are promising for logical devices regarding the possible high electron mobility and finite band gap. Especially, the phonon limited electron mobility in PtSe 2 reaches about 4000 cm 2 ·V - 1 ·s - 1 at room temperature, which is the highest among the compounds with an indirect bandgap of about 1.25 eV under the local density approximation. Our results can be the first guide for experiments to synthesize better two-dimensional materials for future semiconductor devices.
Directory of Open Access Journals (Sweden)
Zhijie Wang
2018-04-01
Full Text Available In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S doping of 0.9% and nitrogen (N doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g−1, it still delivers a high discharge capacity of 329 mA h g−1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.
DEFF Research Database (Denmark)
Castillo, John J.; Torres, Mary H.; Molina, Daniel R.
2012-01-01
A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate that was......A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate...... that was generated by the linkage between the carboxyl moiety of the folic acid and the amino group of the chitosan, which in turn was non-covalently bound to the single-walled carbon nanotubes. The obtained diffusion coefficient values demonstrated that free folic acid diffused more rapidly than the folic acid...... conjugated to single-walled carbon nanotubes-chitosan. The values of the proton signal of hydrogen-1 nuclear magnetic resonance spectroscopy and two-dimensional hydrogen-1 nuclear magnetic resonance spectroscopy further confirmed that the folic acid was conjugated to the chitosan, wrapping the single...
Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.
2017-07-01
We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.
Kagesawa, Koichi; Nishimura, Yuki; Yoshida, Hiroki; Breedlove, Brian K; Yamashita, Masahiro; Miyasaka, Hitoshi
2017-03-07
Two-dimensional layered compounds with different counteranions, [{Mn(salen)} 4 C6](BF 4 ) 2 ·2(CH 3 OH) (1) and [{Mn(salen)} 4 C6](PF 6 ) 2 ·2(CH 3 OH) (2) (salen 2- = N,N'-bis(salicylideneiminato), C6 2- = C 6 H 12 (COO) 2 2- ), were synthesized by assembling [Mn(salen)(H 2 O)]X (X - = BF 4 - and PF 6 - ) and C 6 H 12 (CO 2 - ) 2 (C6 2- ) in a methanol/2-propanol medium. The compounds have similar structures, which are composed of Mn(salen) out-of-plane dimers bridged by μ 4 -type C6 2- ions, forming a brick-wall-type network of [-{Mn 2 }-OCO-] chains alternately connected via C 6 H 12 linkers of C6 2- moieties. The counteranions for 1 and 2, i.e., BF 4 - and PF 6 - , respectively, are located between layers. Since the size of BF 4 - is smaller than that of PF 6 - , intra-layer inter-chain and inter-plane nearest-neighbor MnMn distances are shorter in 1 than in 2. The zigzag chain moiety of [-{Mn 2 }-OCO-] leads to a canted S = 2 spin arrangement with ferromagnetic coupling in the Mn III out-of-plane dimer moiety and antiferromagnetic coupling through -OCO- bridges. Due to strong uniaxial anisotropy of the Mn III ion, the [-{Mn 2 }-OCO-] chains could behave as a single-chain magnet (SCM), which exhibits slow relaxation of magnetization at low temperatures. Nevertheless, these compounds fall into an antiferromagnetic ground state at higher temperatures of T N = 4.6 and 3.8 K for 1 and 2, respectively, than active temperatures for SCM behavior. The spin flip field at 1.8 K is 2.7 and 1.8 kOe for 1 and 2, respectively, which is attributed to the inter-chain interactions tuned by the size of the counteranions. The relaxation times of magnetization become longer at the boundary between the antiferromagnetic phase and the paramagnetic phase.
Feng, Jun; Sun, Xu; Wu, Changzheng; Peng, Lele; Lin, Chenwen; Hu, Shuanglin; Yang, Jinlong; Xie, Yi
2011-11-09
With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS(2)) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S-V-S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS(2) flakes into ultrathin VS(2) nanosheets stacked with less than five S-V-S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS(2) thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm(2) was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.
Directory of Open Access Journals (Sweden)
M. P. Markakis
2010-01-01
Full Text Available Certain nonlinear autonomous ordinary differential equations of the second order are reduced to Abel equations of the first kind ((Ab-1 equations. Based on the results of a previous work, concerning a closed-form solution of a general (Ab-1 equation, and introducing an arbitrary function, exact one-parameter families of solutions are derived for the original autonomous equations, for the most of which only first integrals (in closed or parametric form have been obtained so far. Two-dimensional autonomous systems of differential equations of the first order, equivalent to the considered herein autonomous forms, are constructed and solved by means of the developed analysis.
Jeon, Seung-Woo; Han, Jin-Kyu; Song, Bong-Shik; Noda, Susumu
2010-08-30
To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG.
Tian, Hongzheng; Wang, Xudong; Zhu, Yuankun; Liao, Lei; Wang, Xianying; Wang, Jianlu; Hu, Weida
2017-01-01
High quality ultrathin two-dimensional zinc oxide (ZnO) nanosheets (NSs) are synthesized, and the ZnO NS ferroelectric field effect transistors (FeFETs) are demonstrated based on the P(VDF-TrFE) polymer film used as the top gate insulating layer. The ZnO NSs exhibit a maximum field effect mobility of 588.9 cm2/Vs and a large transconductance of 2.5 μS due to their high crystalline quality and ultrathin two-dimensional structure. The polarization property of the P(VDF-TrFE) film is studied, and a remnant polarization of >100 μC/cm2 is achieved with a P(VDF-TrFE) thickness of 300 nm. Because of the ultrahigh remnant polarization field generated in the P(VDF-TrFE) film, the FeFETs show a large memory window of 16.9 V and a high source-drain on/off current ratio of more than 107 at zero gate voltage and a source-drain bias of 0.1 V. Furthermore, a retention time of >3000 s of the polarization state is obtained, inspiring a promising candidate for applications in data storage with non-volatile features.
Venkatramani, C J; Huang, Shu Rong; Al-Sayah, Mohammad; Patel, Ila; Wigman, Larry
2017-10-27
In this manuscript, the application of high-resolution sampling (HRS) two-dimensional liquid chromatography (2D-LC) in the detailed analysis of key linker drug intermediate is presented. Using HRS, selected regions of the primary column eluent were transferred to a secondary column with fidelity enabling qualitative and quantitative analysis of linker drugs. The primary column purity of linker drug intermediate ranged from 88.9% to 94.5% and the secondary column purity ranged from 99.6% to 99.9%, showing lot-to-lot variability, significant differences between the three lots, and substantiating the synthetic and analytical challenges of ADCs. Over 15 impurities co-eluting with the linker drug intermediate in the primary dimension were resolved in the secondary dimension. The concentrations of most of these impurities were over three orders of magnitude lower than the linker drug. Effective peak focusing and high-speed secondary column analysis resulted in sharp peaks in the secondary dimension, improving the signal-to-noise ratios. The sensitivity of 2D-LC separation was over five fold better than conventional HPLC separation. The limit of quantitation (LOQ) was less than 0.01%. Many peaks originating from primary dimension were resolved into multiple components in the complementary secondary dimension, demonstrating the complexity of these samples. The 2D-LC was highly reproducible, showing good precision between runs with%RSD of peak areas less than 0.1 for the main component. The absolute difference in the peak areas of impurities less than 0.1% were within ±0.01% and for impurities in the range of 0.1%-0.3%, the absolute difference were ±0.02%, which are comparable to 1D-LC. The overall purity of the linker drug intermediate was determined from the product of primary and secondary column purity (HPLC Purity=%peak area of main component in the primary dimension×%peak area of main component in the secondary dimension). Additionally, the 2D-LC separation enables
Majumder, Arpi; Choudhury, Chirantan Roy; Mitra, Samiran; Rosair, Georgina M; El Fallah, M Salah; Ribas, Joan
2005-04-28
Atmospheric CO2 fixation by an aqueous solution containing Cu(ClO4)2.6H2O and 4-aminopyridine (4-apy) yields a novel example of a two-dimensional mu3-CO3 bridged copper(II) complex {[Cu(4-apy)2]3(mu3-CO3)2(ClO4)2.(1/2)CH3OH}n that has been characterized by IR, UV and X-ray crystallography; preliminary magnetic measurements show that complex exhibits long-range ordered ferromagnetic coupling.
International Nuclear Information System (INIS)
Mudry, Christopher; Wen Xiaogang
1999-01-01
Effective theories for random critical points are usually non-unitary, and thus may contain relevant operators with negative scaling dimensions. To study the consequences of the existence of negative-dimensional operators, we consider the random-bond XY model. It has been argued that the XY model on a square lattice, when weakly perturbed by random phases, has a quasi-long-range ordered phase (the random spin wave phase) at sufficiently low temperatures. We show that infinitely many relevant perturbations to the proposed critical action for the random spin wave phase were omitted in all previous treatments. The physical origin of these perturbations is intimately related to the existence of broadly distributed correlation functions. We find that those relevant perturbations do enter the Renormalization Group equations, and affect critical behavior. This raises the possibility that the random XY model has no quasi-long-range ordered phase and no Kosterlitz-Thouless (KT) phase transition
International Nuclear Information System (INIS)
Zhang, H.M.; Morita, S.; Ohishi, T.; Goto, M.; Huang, X.L.
2014-01-01
In the Large Helical Device (LHD), the performance of two-dimensional (2-D) extreme ultraviolet (EUV) spectroscopy with wavelength range of 30-650A has been improved by installing a high frame rate CCD and applying a signal intensity normalization method. With upgraded 2-D space-resolved EUV spectrometer, measurement of 2-D impurity emission profiles with high horizontal resolution is possible in high-density NBI discharges. The variation in intensities of EUV emission among a few discharges is significantly reduced by normalizing the signal to the spectral intensity from EUV_—Long spectrometer which works as an impurity monitor with high-time resolution. As a result, high resolution 2-D intensity distribution has been obtained from CIV (384.176A), CV(2x40.27A), CVI(2x33.73A) and HeII(303.78A). (author)
National Research Council Canada - National Science Library
Holmes, Kenneth
2002-01-01
Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...
Two-Dimensional, Porous Nickel-Cobalt Sulfide for High-Performance Asymmetric Supercapacitors.
Li, Xiaoming; Li, Qiguang; Wu, Ye; Rui, Muchen; Zeng, Haibo
2015-09-02
High specific surface area, high electrical conductivity, and abundant channels have been recognized to favor pseudocapacitors, but their realization at the same time is still a great challenge. Here, we report on nickel-cobalt sulfide nanosheets (NSs) with both ultrathin thickness and nanoscale pores for supercapacitors. The porous Ni-Co sulfide NSs were facilely synthesized through micelle-confined growth and subsequent sulfuration. The NSs are as thin as several nanometers and have a large number of pores with a mean size of ∼7 nm, resulting in ultrahigh atom ratio at surface with unique chemical and electronic structure. Therefore, fast diffusion of ions, facile transportation of electrons and high activity make great synergistic contributions to the surface-dependent reversible redox reactions. In the resulted supercapacitors, a specific capacitance of 1304 F g(-1) is achieved at a current density of 2 A g(-1) with excellent rate capability that 85.6% of the original capacitance is remained at 20 A g(-1). The effects of crystallinity and self-doping are optimized so that 93.5% of the original capacitance is obtained after 6000 cycles at a high current density of 8 A g(-1). Finally, asymmetric supercapacitors with a high energy density of 41.4 Wh/kg are achieved at a power density of 414 W/kg.
High thermoelectric power factor in two-dimensional crystals of Mo S2
Hippalgaonkar, Kedar; Wang, Ying; Ye, Yu; Qiu, Diana Y.; Zhu, Hanyu; Wang, Yuan; Moore, Joel; Louie, Steven G.; Zhang, Xiang
2017-03-01
The quest for high-efficiency heat-to-electricity conversion has been one of the major driving forces toward renewable energy production for the future. Efficient thermoelectric devices require high voltage generation from a temperature gradient and a large electrical conductivity while maintaining a low thermal conductivity. For a given thermal conductivity and temperature, the thermoelectric power factor is determined by the electronic structure of the material. Low dimensionality (1D and 2D) opens new routes to a high power factor due to the unique density of states (DOS) of confined electrons and holes. The 2D transition metal dichalcogenide (TMDC) semiconductors represent a new class of thermoelectric materials not only due to such confinement effects but especially due to their large effective masses and valley degeneracies. Here, we report a power factor of Mo S2 as large as 8.5 mW m-1K-2 at room temperature, which is among the highest measured in traditional, gapped thermoelectric materials. To obtain these high power factors, we perform thermoelectric measurements on few-layer Mo S2 in the metallic regime, which allows us to access the 2D DOS near the conduction band edge and exploit the effect of 2D confinement on electron scattering rates, resulting in a large Seebeck coefficient. The demonstrated high, electronically modulated power factor in 2D TMDCs holds promise for efficient thermoelectric energy conversion.
Two-dimensional Josephson junction arrays coupled through a high-Q cavity
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.
2001-01-01
the cavity. The highly resonant cavity induces synchronized behavior, which is qualitatively different than what is familiar from other studies on nonlinear oscillator arrays, for example the Kuramoto model. We also address the effects of disorder, as well as the role of detuning between the spontaneous...
Milchev, Andrey; Egorov, Sergei A; Binder, Kurt
2017-03-01
Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.
Directory of Open Access Journals (Sweden)
Wang Y
2013-10-01
Full Text Available Ying Wang, Qinfu Zhao, Yanchen Hu, Lizhang Sun, Ling Bai, Tongying Jiang, Siling WangDepartment of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning Province, People’s Republic of ChinaAbstract: The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15 with well-ordered two dimensional (2D cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC via the solvent deposition method. Scanning electron microscopy (SEM, N2 adsorption, differential scanning calorimetry (DSC, and X-ray diffraction (XRD were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41 has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and Cell Counting Kit (CCK-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous
Quasi-two-dimensional metallic hydrogen inside di-phosphide at high pressure
International Nuclear Information System (INIS)
Degtyarenko, N N; Mazur, E A
2016-01-01
The method of mathematical modelling was used for the calculation of the structural, electronic, phononic, and other characteristics of various normal phases of phosphorus hydrides with stoichiometry PH k . It was shown that the di-phosphine may form 2D lattice of the metallic hydrogen in it, stabilized by phosphorus atoms under high hydrostatic pressure. The resulting structure with the elements of H-P-H has a locally stable (or metastable) phonon spectrum. The properties of di-phosphine were compared with the properties of similar structures such as the sulphur hydrides. (paper)
Two dimensional localization of electrons and positrons under high counting rate
International Nuclear Information System (INIS)
Barbosa, A.F.; Anjos, J.C.; Sanchez-Hernandez, A.; Pepe, I.M.; Barros, N.
1997-12-01
The construction of two wire chambers for the experiment E831 at Fermilab is reported. Each chamber includes three wire planes - one anode and two orthogonal cathodes - in which the wires operate as independent proportional counters. One of the chambers is rotated with respect to the other, so that four position coordinates may be encoded for a charged particle crossing both chambers. Spatial resolution is determined by the wire pitch: 1 mm for cathodes, 2 mm for anodes. 320 electronic channels are involved in the detection system readout. Global counting rates in excess to 10 7 events per second have been measured, while the average electron-positron beam intensity may be as high as 3 x 10 7 events per second. (author)
International Nuclear Information System (INIS)
Li, H Harold; Yang, Deshan; Xiao, Zhiyan; Driewer, Joseph P; Han, Zhaohui; Low, Daniel A
2014-01-01
Recent research has shown that KCl:Eu 2+ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports the authors’ attempts to fabricate 2D KCl:Eu 2+ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. X-ray diffraction analysis showed that a 10 µm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had been completely incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl − ) centers were the electron storage centers post x-ray irradiation and that Eu 2+ cations acted as luminescence centers in the photostimulation process. The 150 µm thick casted KCl:Eu 2+ SPF showed sub-millimeter spatial-resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu 2+ and 80% low Z polymer binder exhibited almost no energy-dependence in a 6 MV beam. KCl:Eu 2+ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a result of KCl's intrinsic high radiation hardness. Taken together, this work provides strong evidence that KCl:Eu 2+ -based SPF with associated readout apparatus could result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of each detector. (paper)
International Nuclear Information System (INIS)
Yamagishi, Hideshi; Toh, Kentaro; Nakamura, Tatsuya; Sakasai, Kaoru; Soyama, Kazuhiko
2012-02-01
An ASD-ASIC (Amplifier-Shaper-Discriminator ASIC) with fast response and low noise performances has been designed for two-dimensional position sensitive neutron gas detectors (InSPaD). The InSPaD is a 2D neutron detector system with 3 He gas and provides a high spatial resolution by making distinction between proton and triton particles generated in the gas chamber. The new ASD-ASIC is required to have very low noise, a wide dynamic range, good output linearity and high counting rate. The new ASD-ASIC has been designed by using CMOS and consisted of 64-channel ASDs, a 16-channel multiplexer with LVTTL drivers and sum amplifier system for summing all analog signals. The performances were evaluated by the Spice simulation. It was confirmed that the new ASD-ASIC had very low noise performance, wide dynamic range and fast signal processing functions. (author)
International Nuclear Information System (INIS)
Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.
2005-01-01
In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300 s was demonstrated. Also, the system could track an object with a velocity of up to 35 000 μm/s (175 diameters/s), which is significantly faster than swimming micro-organisms
Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi
2018-06-01
The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.
Yang, Shuang; Niu, Wenxin; Wang, An-Liang; Fan, Zhanxi; Chen, Bo; Tan, Chaoliang; Lu, Qipeng; Zhang, Hua
2017-04-03
Two-dimensional (2D) organic-inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single- and few-layer free-standing phenylethylammonium lead halide perovskite NSs, that is, (PEA) 2 PbX 4 (PEA=C 8 H 9 NH 3 , X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Santaren, J.F.; Garcia-Bellido, A.
1990-01-01
An improved method of high-resolution two-dimensional gel electrophoresis has been used to study the patterns of protein synthesis in wing imaginal discs of late instar larvae of Drosophila melanogaster. A small number of discs were radiolabeled with a mixture of 14 C-labeled amino acids or with [ 35 S]methionine and the pattern of labeled proteins was analyzed. One thousand and twenty-five polypeptides (787 acidic (IEF) and 238 basic (NEPHGE)) from wing discs of several wild-type strains have so far been separated and cataloged. All these polypeptides have been numbered and presented in a reference map for further studies. When comparing patterns of label we have found small quantitative differences in rate of synthesis between individuals of the same strain, not due to sexual differences, and very few quantitative and qualitative differences between groups of individuals of different strains
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
International Nuclear Information System (INIS)
Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H
2014-01-01
Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably
Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan
2018-01-01
For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)
2012-08-20
Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.
Lv, Longfei; Xu, Yibing; Fang, Hehai; Luo, Wenjin; Xu, Fangjie; Liu, Limin; Wang, Biwei; Zhang, Xianfeng; Yang, Dong; Hu, Weida; Dong, Angang
2016-07-01
All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) are emerging as an important class of semiconductor materials with superior photophysical properties and wide potential applications in optoelectronic devices. So far, only a few studies have been conducted to control the shape and geometry of CsPbX3 NCs. Here we report a general approach to directly synthesize two-dimensional (2D) CsPbX3 perovskite and mixed perovskite nanosheets with uniform and ultrathin thicknesses down to a few monolayers. The key to the high-yield synthesis of perovskite nanosheets is the development of a new Cs-oleate precursor. The as-synthesized CsPbX3 nanosheets exhibit bright photoluminescence with broad wavelength tunability by composition modulation. The excellent optoelectronic properties of CsPbX3 nanosheets combined with their unique 2D geometry and large lateral dimensions make them ideal building blocks for building functional devices. To demonstrate their potential applications in optoelectronics, photodetectors based on CsPbBr3 nanosheets are fabricated, which exhibit high on/off ratios with a fast response time.All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) are emerging as an important class of semiconductor materials with superior photophysical properties and wide potential applications in optoelectronic devices. So far, only a few studies have been conducted to control the shape and geometry of CsPbX3 NCs. Here we report a general approach to directly synthesize two-dimensional (2D) CsPbX3 perovskite and mixed perovskite nanosheets with uniform and ultrathin thicknesses down to a few monolayers. The key to the high-yield synthesis of perovskite nanosheets is the development of a new Cs-oleate precursor. The as-synthesized CsPbX3 nanosheets exhibit bright photoluminescence with broad wavelength tunability by composition modulation. The excellent optoelectronic properties of CsPbX3 nanosheets
International Nuclear Information System (INIS)
Kosevich, Yu.A.; Syrkin, E.S.
1990-06-01
Low frequency collective oscillations in a superlattice consisting of alternating highly anisotropic layers are considered. Such superstructure may be formed in the ferroelastic near the structural phase transition by alternation of twins. For the surface waves, propagating along the layers, the conditions and the range of existence of those with the dispersion law ω∼K 1/2 , characteristics for two-dimensional plasmons, have been analyzed for a solid-state system with consideration for elastic anisotropy and retardation of acoustic waves. Such excitations ('dyadons') were used in an attempt to explain the anomalies of low temperature thermodynamic and kinetic characteristics of high-T c superconductors. We have shown that the similarity of the densities of the matching phases and the retardation of elastic waves in the crystal narrow the range of existence of dyadons, but high elastic anisotropy of the solid phases enlarges the range of existence of such excitations in solid-state systems. The example of possible crystalline geometry of the phase matching, for which there arise collective excitations of the type under consideration, is found. For transverse and longitudinal waves propagating across the layers, the existence is proved of low frequency acoustic branches separated by a wide gap from the nearest optical branches. (author). 18 refs
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua
2017-01-01
The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.
Vorobiev, Dmitry; Ninkov, Zoran
2017-11-01
Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.
Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua
2017-06-28
The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.
Peng, Yongwu
2017-06-03
The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.
Energy Technology Data Exchange (ETDEWEB)
Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)
2016-03-14
High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.
A Highly Sensitive Two-Dimensional Inclinometer Based on Two Etched Chirped-Fiber-Grating Arrays †
Chang, Hung-Ying; Chang, Yu-Chung; Liu, Wen-Fung
2017-01-01
We present a novel two-dimensional fiber-optic inclinometer with high sensitivity by crisscrossing two etched chirped fiber Bragg gratings (CFBG) arrays. Each array is composed of two symmetrically-arranged CFBGs. By etching away most of the claddings of the CFBGs to expose the evanescent wave, the reflection spectra are highly sensitive to the surrounding index change. When we immerse only part of the CFBG in liquid, the effective index difference induces a superposition peak in the refection spectrum. By interrogating the peak wavelengths of the CFBGs, we can deduce the tilt angle and direction simultaneously. The inclinometer has a resolution of 0.003° in tilt angle measurement and 0.00187 rad in tilt direction measurement. Due to the unique sensing mechanism, the sensor is temperature insensitive. This sensor can be useful in long term continuous monitoring of inclination or in real-time feedback control of tilt angles, especially in harsh environments with violent temperature variation. PMID:29244770
Bayer, Andreas; Unger, Andreas; Köhler, Bernd; Küster, Matthias; Dürsch, Sascha; Kissel, Heiko; Irwin, David A.; Bodem, Christian; Plappert, Nora; Kersten, Maik; Biesenbach, Jens
2016-03-01
The demand for high brightness fiber coupled diode laser devices in the multi kW power region is mainly driven by industrial applications for materials processing, like brazing, cladding and metal welding, which require a beam quality better than 30 mm x mrad and power levels above 3kW. Reliability, modularity, and cost effectiveness are key factors for success in the market. We have developed a scalable and modular diode laser architecture that fulfills these requirements through use of a simple beam shaping concept based on two dimensional stacking of tailored diode bars mounted on specially designed, tap water cooled heat sinks. The base element of the concept is a tailored diode laser bar with an epitaxial and lateral structure designed such that the desired beam quality in slow-axis direction can be realized without using sophisticated beam shaping optics. The optical design concept is based on fast-axis collimator (FAC) and slow-axis collimator (SAC) lenses followed by only one additional focusing optic for efficient coupling into a 400 μm fiber with a numerical aperture (NA) of 0.12. To fulfill the requirements of scalability and modularity, four tailored bars are populated on a reduced size, tap water cooled heat sink. The diodes on these building blocks are collimated simply via FAC and SAC. The building blocks can be stacked vertically resulting in a two-dimensional diode stack, which enables a compact design of the laser source with minimum beam path length. For a single wavelength, up to eight of these building blocks, implying a total of 32 tailored bars, can be stacked into a submodule, polarization multiplexed, and coupled into a 400 μm, 0.12NA fiber. Scalability into the multi kW region is realized by wavelength combining of replaceable submodules in the spectral range from 900 - 1100 nm. We present results of a laser source based on this architecture with an output power of more than 4 kW and a beam quality of 25 mm x mrad.
Korsholm, Ulrik; Petersen, Claus; Hansen Sass, Bent; Woetman, Niels; Getreuer Jensen, David; Olsen, Bjarke Tobias; GIll, Rasphal; Vedel, Henrik
2014-05-01
The DMI nowcasting system has been running in a pre-operational state for the past year. The system consists of hourly simulations with the High Resolution Limited Area weather model combined with surface and three-dimensional variational assimilation at each restart and nudging of satellite cloud products and radar precipitation. Nudging of a two-dimensional radar reflectivity CAPPI product is achieved using a new method where low level horizontal divergence is nudged towards pseudo observations. Pseudo observations are calculated based on an assumed relation between divergence and precipitation rate and the strength of the nudging is proportional to the offset between observed and modelled precipitation leading to increased moisture convergence below cloud base if there is an under-production of precipitation relative to the CAPPI product. If the model over-predicts precipitation, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values. In this talk results will be discussed based on calculation of the fractions skill score in cases with heavy precipitation over Denmark. Furthermore, results from simulations combining reflectivity nudging and extrapolation of reflectivity will be shown. Results indicate that the new method leads to fast adjustment of the dynamical state of the model to facilitate precipitation release when the model precipitation intensity is too low. Removal of precipitation is also shown to be of importance and strong improvements were found in the position of the precipitation systems. Bias is reduced for low and extreme precipitation rates.
Two-dimensional MoS2-graphene hybrid nanosheets for high gravimetric and volumetric lithium storage
Deng, Yakai; Ding, Lixin; Liu, Qixing; Zhan, Liang; Wang, Yanli; Yang, Shubin
2018-04-01
Two-dimensional (2D) MoS2-graphene (MoS2-G) hybrid is fabricated simultaneously and scalablely with an efficient electrochemical exfoliation approach from the combined bulk MoS2-graphite wafer. The as-prepared 2D MoS2-G hybrid is tightly covered with each other with lateral sizes of 600 nm to few micrometers and can be directly assembled to flexible films for lithium storage. When used as anode material for lithium ion battery, the resultant MoS2-G hybrid film exhibits both high gravimetric (750 mA h g-1 at 50 mA g-1) and volumetric capacities (1200 mA h cm-3 at 0.1 mA cm-2). Such excellent electrochemical performance should attributed to the unique 2D structure and good conductive graphene network, which not only facilitates the diffusion of lithium ions, but also improves the fast transfer of electrons, satisfying the kinetics requirements for rapid lithium storage.
Malmir, Narges; Fasihi, Kiazand
2017-11-01
In this work, we present a novel high-sensitive optical label-free biosensor based on a two-dimensional photonic crystal (2D PC). The suggested structure is composed of a negative refraction structure in a hexagonal lattice PC, along with a positive refraction structure which is arranged in a square lattice PC. The frequency shift of the transmission peak is measured respect to the changes of refractive indices of the studied materials (the blood plasma, water, dry air and normal air). The studied materials are filled into a W1 line-defect waveguide which is located in the PC structure with positive refraction (the microfluidic nanochannel). Our numerical simulations, which are based on finite-difference time-domain (FDTD) method, show that in the proposed structure, a sensitivity about 1100 nm/RIU and a transmission efficiency more than 75% can be achieved. With this design, to the best of our knowledge, the obtained sensitivity and the transmission efficiency are one of the highest values in the reported PC label-free biosensors.
Huang, Yuan; Sutter, Eli; Shi, Norman N; Zheng, Jiabao; Yang, Tianzhong; Englund, Dirk; Gao, Hong-Jun; Sutter, Peter
2015-11-24
Mechanical exfoliation has been a key enabler of the exploration of the properties of two-dimensional materials, such as graphene, by providing routine access to high-quality material. The original exfoliation method, which remained largely unchanged during the past decade, provides relatively small flakes with moderate yield. Here, we report a modified approach for exfoliating thin monolayer and few-layer flakes from layered crystals. Our method introduces two process steps that enhance and homogenize the adhesion force between the outermost sheet in contact with a substrate: Prior to exfoliation, ambient adsorbates are effectively removed from the substrate by oxygen plasma cleaning, and an additional heat treatment maximizes the uniform contact area at the interface between the source crystal and the substrate. For graphene exfoliation, these simple process steps increased the yield and the area of the transferred flakes by more than 50 times compared to the established exfoliation methods. Raman and AFM characterization shows that the graphene flakes are of similar high quality as those obtained in previous reports. Graphene field-effect devices were fabricated and measured with back-gating and solution top-gating, yielding mobilities of ∼4000 and 12,000 cm(2)/(V s), respectively, and thus demonstrating excellent electrical properties. Experiments with other layered crystals, e.g., a bismuth strontium calcium copper oxide (BSCCO) superconductor, show enhancements in exfoliation yield and flake area similar to those for graphene, suggesting that our modified exfoliation method provides an effective way for producing large area, high-quality flakes of a wide range of 2D materials.
International Nuclear Information System (INIS)
Yanagisawa, Kazuaki; Ishiguro, Misako; Yamazaki, Takashi; Tokunaga, Yasuo.
1985-02-01
Though the two-dimensional fuel behaviour analysis code FEMAXI-III has been developed by JAERI in form of optimized scalar computer code, the call for more efficient code usage generally arized from the recent trends like high burn-up and load follow operation asks the code into further modification stage. A principal aim of the modification is to transform the already implemented scalar type subroutines into vectorized forms to make the programme structure efficiently run on high-speed vector computers. The effort of such structural modification has been finished on a fair way to success. The benchmarking two tests subsequently performed to examine the effect of the modification led us the following concluding remarks: (1) In the first benchmark test, comparatively high-burned three fuel rods that have been irradiated in HBWR, BWR, and PWR condition are prepared. With respect to all cases, a net computing time consumed in the vectorized FEMAXI is approximately 50 % less than that consumed in the original one. (2) In the second benchmark test, a total of 26 PWR fuel rods that have been irradiated in the burn-up ranges of 13-30 MWd/kgU and subsequently power ramped in R2 reactor, Sweden is prepared. In this case the code is purposed to be used for making an envelop of PCI-failure threshold through 26 times code runs. Before coming to the same conclusion, the vectorized FEMAXI-III consumed a net computing time 18 min., while the original FEMAXI-III consumed a computing time 36 min. respectively. (3) The effects obtained from such structural modification are found to be significantly attributed to saving a net computing time in a mechanical calculation in the vectorized FEMAXI-III code. (author)
Ghosh, A.; Yarlagadda, S.
2017-09-01
Understanding the microscopic mechanism of coexisting long-range orders (such as lattice supersolidity) in strongly correlated systems is a subject of immense interest. We study the possible manifestations of long-range orders, including lattice-supersolid phases with differently broken symmetry, in a two-dimensional square lattice system of hard-core bosons (HCBs) coupled to archetypal cooperative/coherent normal-mode distortions such as those in perovskites. At strong HCB-phonon coupling, using a duality transformation to map the strong-coupling problem to a weak-coupling one, we obtain an effective Hamiltonian involving nearest-neighbor, next-nearest-neighbor, and next-to-next-nearest-neighbor hoppings and repulsions. Using stochastic series expansion quantum Monte Carlo, we construct the phase diagram of the system. As coupling strength is increased, we find that the system undergoes a first-order quantum phase transition from a superfluid to a checkerboard solid at half-filling and from a superfluid to a diagonal striped solid [with crystalline ordering wave vector Q ⃗=(2 π /3 ,2 π /3 ) or (2 π /3 ,4 π /3 )] at one-third filling without showing any evidence of supersolidity. On tuning the system away from these commensurate fillings, checkerboard supersolid is generated near half-filling whereas a rare diagonal striped supersolid is realized near one-third filling. Interestingly, there is an asymmetry in the extent of supersolidity about one-third filling. Within our framework, we also provide an explanation for the observed checkerboard and stripe formations in La2 -xSrxNiO4 at x =1 /2 and x =1 /3 .
International Nuclear Information System (INIS)
Schunert, Sebastian; Azmy, Yousry Y.
2011-01-01
The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally ne mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite rst eliminates the aforementioned limitation of ne mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme. (author)
DEFF Research Database (Denmark)
Chen, Yunzhong; Trier, Felix; Kasama, Takeshi
2015-01-01
The discovery of two-dimensional electron gases (2DEGs) in SrTiO3-based heterostructures provides new opportunities for nanoelectronics. Herein, we create a new type of oxide 2DEG by the epitaxial-strain-induced polarization at an otherwise nonpolar perovskite-type interface of CaZrO3/SrTiO3. Rem...
Otsuki, Michio; Hayakawa, Hisao; Luding, Stefan
2010-01-01
The pressure and the viscosity in two-dimensional sheared granular assemblies are investigated numerically. The behavior of both pressure and viscosity is smoothly changing qualitatively when starting from a mono-disperse hard-disk system without dissipation and moving towards a system of (i)
Directory of Open Access Journals (Sweden)
Panpan Li
2017-03-01
Full Text Available Expanded multilayered vermiculite (VMT was successfully used as catalyst support and Ni/VMT synthesized by microwave irradiation assisted synthesis (MIAS exhibited excellent performance in our previous work. We also developed a two-dimensional porous SiO2 nanomesh (2D VMT-SiO2 by mixed-acid etching of VMT. Compared with three-dimensional (3D MCM-41, 2D VMT-SiO2 as a catalyst support provided a superior position for implantation of NiO species and the as-obtained catalyst exhibited excellent performance. In this paper, we successfully synthesized a layered double hydroxide (LDH using the spent liquor after mixed-acid etching of VMT, which mainly contained Mg2+ and Al3+. The as-calcined layered double oxide (LDO was used as a catalyst support for CO methanation. Compared with Ni/MgAl-LDO, Ni/VMT-LDO had smaller active component particles; therefore, in this study, it exhibited excellent catalytic performance over the whole temperature range of 250–500 °C. Ni/VMT-LDO achieved the best activity with 87.88% CO conversion, 89.97% CH4 selectivity, and 12.47 × 10−2·s−1 turn over frequency (TOF at 400 °C under a gas hourly space velocity of 20,000 mL/g/h. This study demonstrated that VMT-LDO as a catalyst support provided an efficient way to develop high-performance catalysts for synthetic natural gas (SNG from syngas.
International Nuclear Information System (INIS)
Primeaux, Philip A; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W J; KC, Pratik; Moore, Arden L
2017-01-01
Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µ m were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications. (paper)
Barai, Hasi Rani; Rahman, Md. Mahbubur; Joo, Sang Woo
2017-12-01
Template-free two-dimensional (2D) titania/titanate nanosheets on Ti metal foil (TiNS/Ti) is prepared by a hydrothermal method at 150 °C assisted by KOH(aq.),followed by sintering at 500 °C. A single thin layer of TiNS is grown with 2D morphology when using low concentrations of KOH(aq.) (0.25 and 0.5 M). However, the morphology is transformed to 1D when using a high concentration of KOH(aq.). The TiNS is a mixture of rutile TiO2 and K-titanate (K2Ti3O7 and K2Ti2O5) with the formation of Ti3+ interstitials. The optimized TiNS/Ti electrode exhibits quasi-rectangular cyclic voltammograms (CVs) in a wide potential range. The specific capacitance (Cs) are 6.8 × 103 and 4.7 × 103 μF/cm2 according to the CV (scan rate, 5 mV/s) and charge-discharge measurements (CD, current density, 50 μA/cm2), respectively. These values are much higher than those reported for pure 0D and 1D TiO2 nanostructures.The higher Cs for the TiNS/Ti electrode can be ascribed to the increased rate of K+ intercalation and de-intercalation during charging and discharging, as well as enhanced conductivity enable by the K in the crystal lattice (10.30%) and Ti3+ interstitials (5.2%), respectively. The TiNS/Ti electrode shows excellent stability with the Cs retention of 89% even after 5000 CD cycles.
International Nuclear Information System (INIS)
Bezotosnyi, V V; Kumykov, Kh Kh
1998-01-01
A two-dimensional transient thermal model of an injection laser is developed. This model makes it possible to analyse the temperature profiles in pulsed and cw stripe lasers with an arbitrary width of the stripe contact, and also in linear laser-diode arrays. This can be done for any durations and repetition rates of the pump pulses. The model can also be applied to two-dimensional laser-diode arrays operating quasicontinuously. An analysis is reported of the influence of various structural parameters of a diode array on the thermal regime of a single laser. The temperature distributions along the cavity axis are investigated for different variants of mounting a crystal on a heat sink. It is found that the temperature drop along the cavity length in cw and quasi-cw laser diodes may exceed 20%. (lasers)
Ouyang, X.; Leonards, P.E.G.; Legler, J.; van der Oost, R.; de Boer, J.; Lamoree, M.H.
2015-01-01
For the first time a comprehensive two-dimensional liquid chromatography (LC. ×. LC) system coupled with a high resolution time-of-flight mass spectrometer (HR-ToF MS) was developed and applied for analysis of emerging toxicants in wastewater effluent. The system was optimized and validated using
Kinoshita, Hidefumi; Nakagawa, Ken; Usui, Yukio; Iwamura, Masatsugu; Ito, Akihiro; Miyajima, Akira; Hoshi, Akio; Arai, Yoichi; Baba, Shiro; Matsuda, Tadashi
2015-08-01
Three-dimensional (3D) imaging systems have been introduced worldwide for surgical instrumentation. A difficulty of laparoscopic surgery involves converting two-dimensional (2D) images into 3D images and depth perception rearrangement. 3D imaging may remove the need for depth perception rearrangement and therefore have clinical benefits. We conducted a multicenter, open-label, randomized trial to compare the surgical outcome of 3D-high-definition (HD) resolution and 2D-HD imaging in laparoscopic radical prostatectomy (LRP), in order to determine whether an LRP under HD resolution 3D imaging is superior to that under HD resolution 2D imaging in perioperative outcome, feasibility, and fatigue. One-hundred twenty-two patients were randomly assigned to a 2D or 3D group. The primary outcome was time to perform vesicourethral anastomosis (VUA), which is technically demanding and may include a number of technical difficulties considered in laparoscopic surgeries. VUA time was not significantly shorter in the 3D group (26.7 min, mean) compared with the 2D group (30.1 min, mean) (p = 0.11, Student's t test). However, experienced surgeons and 3D-HD imaging were independent predictors for shorter VUA times (p = 0.000, p = 0.014, multivariate logistic regression analysis). Total pneumoperitoneum time was not different. No conversion case from 3D to 2D or LRP to open RP was observed. Fatigue was evaluated by a simulation sickness questionnaire and critical flicker frequency. Results were not different between the two groups. Subjective feasibility and satisfaction scores were significantly higher in the 3D group. Using a 3D imaging system in LRP may have only limited advantages in decreasing operation times over 2D imaging systems. However, the 3D system increased surgical feasibility and decreased surgeons' effort levels without inducing significant fatigue.
DEFF Research Database (Denmark)
Niu, Wei; Gan, Yulin; Christensen, Dennis Valbjørn
2017-01-01
The two-dimensional electron gas (2DEG) at the non-isostructural interface between spinel γ-Al2O3 and perovskite SrTiO3 is featured by a record electron mobility among complex oxide interfaces in addition to a high carrier density up to the order of 1015 cm-2. Herein, we report on the patterning...... is found to be approximately 3×1013 cm-2, much lower than that of the unpatterned sample (~1015 cm-2). Remarkably, a high electron mobility of approximately 3,600 cm2V-1s-1 was obtained at low temperatures for the patterned 2DEG at a carrier density of ~ 7×1012 cm-2, which exhibits clear Shubnikov-de Hass...... quantum oscillations. The patterned high-mobility 2DEG at the γ-Al2O3/SrTiO3 interface paves the way for the design and application of spinel/perovskite interfaces for high-mobility all-oxide electronic devic...
Energy Technology Data Exchange (ETDEWEB)
Dasgupta, Shivaji
2009-02-15
In this work two-dimensional electron systems (2DESs) based on AlAs/AlGaAs heterostructures doped with Si are investigated. The electrons are confined in AlAs quantum wells (QWs) sandwiched between AlGaAs buffers. Analytical calculations and simulations for AlAs QWs are presented in the first chapter. The results show a cross-over width, above which the wide (001)-oriented QWs show double valley occupancy and wide (110)-oriented QWs show single valley occupancy. We solve the Schroedinger equation analytically for anisotropic masses. The solution shows the orientation dependence of the elliptical cyclotron orbit due to the anisotropic mass. We also present an introduction to the Landau level crossings based on g{sup *}m{sup *} product. In the next chapter, we present experimental results for the double-valley (001)-oriented AlAs QWs. We present the different structures of the deep AlAs QWs along with the low temperature magnetotransport data for these QWs. Thereafter, we present the results on shallow AlAs QWs. We achieved a mobility of 4.2 x 10{sup 5} cm{sup 2}/Vs at 330 mK for the deep backside doped AlAs QW. For the shallow QWs, we achieved a mobility of2.3 x 10{sup 5} cm{sup 2}/Vs at 330 mK, for a density of 2.9 x 10{sup 11} cm{sup -2}. From the magneto-transport data, we see evidence of the double-valley occupation for the (001)-oriented AlAs wide QWs. In the next chapter, we present experimental results for the single-valley (110)-oriented AlAs QWs. We deduced the donor binding energy and the doping efficiency for this facet from a doping series of double-sided doped QWs. Thereafter, we designed different structures for the (110)-oriented AlAs QWs, which we present along with their respective low temperature magneto-transport data. We measured one of the double-sided doped AlAs QWs at very high magnetic fields and low temperatures, down to 60 mK. At the end of the chapter, we present a spike feature observed in the magneto-transport data of these QWs. This
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2005-02-01
It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Noda, Naoki; Kamimura, Shinji
2008-02-01
With conventional light microscopy, precision in the measurement of the displacement of a specimen depends on the signal-to-noise ratio when we measure the light intensity of magnified images. This implies that, for the improvement of precision, getting brighter images and reducing background light noise are both inevitably required. For this purpose, we developed a new optics for laser dark-field illumination. For the microscopy, we used a laser beam and a pair of axicons (conical lenses) to get an optimal condition for dark-field observations. The optics was applied to measuring two dimensional microbead displacements with subnanometer precision. The bandwidth of our detection system overall was 10 kHz. Over most of this bandwidth, the observed noise level was as small as 0.1 nm/radicalHz.
Directory of Open Access Journals (Sweden)
Xinran Tan
2017-11-01
Full Text Available This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec and positioning repeatability of 120 nrad (0.024 arcsec over a large angular range of ±4363 μrad (±900 arcsec for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.
Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin
2017-11-19
This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.
Gwarda, Radosław Łukasz; Dzido, Tadeusz Henryk
2013-10-18
Among many advantages of planar techniques, two-dimensional (2D) separation seems to be the most important for analysis of complex samples. Here we present quick, simple and efficient two-dimensional high-performance thin-layer chromatography (2D HPTLC) of bovine albumin digest using commercial HPTLC RP-18W plates (silica based stationary phase with chemically bonded octadecyl ligands of coverage density 0.5μmol/m(2) from Merck, Darmstadt). We show, that at low or high concentration of water in the mobile phase comprised methanol and some additives the chromatographic systems with the plates mentioned demonstrate normal- or reversed-phase liquid chromatography properties, respectively, for separation of peptides obtained. These two systems show quite different separation selectivity and their combination into 2D HPTLC process provides excellent separation of peptides of the bovine albumin digest. Copyright © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Wu, S.T.; Han, S.M.; Dryer, M.
1979-01-01
A two-dimensional, time-dependent, magnetohydrodynamic, numerical model is used to investigate multiple, transient solar wind flows which start close to the Sun and then extend into interplanetary space. The initial conditions are assumed to be appropriate for steady, homogeneous solar wind conditions with an average, spiral magnetic field configuration. Because both radial and azimuthal dimensions are included, it is possible to place two or more temporally-developing streams side-by-side at the same time. Thus, the evolution of the ensuing stream interaction is simulated by this numerical code. Advantages of the present method are as follows: (1) the development and decay of asymmetric MHD shocks and their interactions are clearly indicated; and (2) the model allows flexibility in the specification of evolutionary initial conditions in the azimuthal direction, thereby making it possible to gain insight concerning the interplanetary consequences of real physical situations more accurately than by use of the one-dimensional approach. Examples of such situations are the occurrence of near-simultaneous solar flares in adjacent active regions and the sudden appearance of enlargement of coronal holes as a result of a transient re-arrangement from a closed to an open magnetic field topology. (author)
Energy Technology Data Exchange (ETDEWEB)
Faral, B.; Fabbro, R. (Laboratoire d' Utilisation des Lasers Intenses, Ecole Polytechnique, 91128 Palaiseau Cedex, (France)); Virmont, J. (Laboratoire de Physique des Milieux Ionises, Ecole Polytechnique, 91128 Palaiseau Cedex, (France)); Cottet, F.; Romain, J.P. (Laboratoire d' Energetique et de Detonique, Ecole Nationale Superieure de Mecanique et d' Aerotechnique, 86034 Poitiers, (France)); Pepin, H. (Institut National de la Recherche Scientifique Energie, Montreal, (Canada))
1990-02-01
A 12 {mu}m polyester foil is accelerated by a 0.26 {mu}m wavelength laser and collides with a 15 {mu}m thick molybdenum foil. The accelerating pressure is 45 Mbar (laser intensity{approx}3-- 4{times}10{sup 14} W/cm{sup 2}) and gives to the polyester foil a velocity of about 160 km/sec. The measurement of the shock pressure induced in the impacted foil is made with an improved step technique. When the initial spacing between the two foils is too large compared to the focal spot radius, i.e., larger than 20--30 {mu}m, the different experimental results cannot be reproduced with one-dimensional simulations; this is only possible by using a two-dimensional Lagrangian code that has been developed and that takes into account the strong deformation of the accelerated foil. Finally, even with the low level of x-ray heating due to the ablation plasma, multihundred megabar pressures can be obtained within a very short time.
International Nuclear Information System (INIS)
Faral, B.; Fabbro, R.; Virmont, J.; Cottet, F.; Romain, J.P.; Pepin, H.
1990-01-01
A 12 μm polyester foil is accelerated by a 0.26 μm wavelength laser and collides with a 15 μm thick molybdenum foil. The accelerating pressure is 45 Mbar (laser intensity∼3-- 4x10 14 W/cm 2 ) and gives to the polyester foil a velocity of about 160 km/sec. The measurement of the shock pressure induced in the impacted foil is made with an improved step technique. When the initial spacing between the two foils is too large compared to the focal spot radius, i.e., larger than 20--30 μm, the different experimental results cannot be reproduced with one-dimensional simulations; this is only possible by using a two-dimensional Lagrangian code that has been developed and that takes into account the strong deformation of the accelerated foil. Finally, even with the low level of x-ray heating due to the ablation plasma, multihundred megabar pressures can be obtained within a very short time
Kapp, Thomas; Vetter, Walter
2009-11-20
High-speed counter-current chromatography (HSCCC), a separation technique based solely on the partitioning of solutes between two immiscible liquid phases, was applied for the fractionation of technical toxaphene, an organochlorine pesticide which consists of a complex mixture of structurally closely related compounds. A solvent system (n-hexane/methanol/water 34:24:1, v/v/v) was developed which allowed to separate compounds of technical toxaphene (CTTs) with excellent retention of the stationary phase (S(f) = 88%). Subsequent analysis of all HSCCC fractions by gas chromatography coupled to electron-capture negative ion mass spectrometry (GC/ECNI-MS) provided a wealth of information regarding separation characteristics of HSCCC and the composition of technical toxaphene. The visualization of the large amount of data obtained from the offline two-dimensional HSCCC-GC/ECNI-MS experiment was facilitated by the creation of a two-dimensional (2D) contour plot. The contour plot not only provided an excellent overview of the HSCCC separation progress, it also illustrated the differences in selectivity between HSCCC and GC. The results of this proof-of-concept study showed that the 2D chromatographic approach involving HSCCC facilitated the separation of CTTs that coelute in unidimensional GC. Furthermore, the creation of 2D contour plots may provide a useful means of enhancing data visualization for other offline two-dimensional separations.
Trobo, Marta L; Albano, Ezequiel V; Binder, Kurt
2014-08-01
We present a study of the critical behavior of the Blume-Capel model with three spin states (S=±1,0) confined between parallel walls separated by a distance L where competitive surface magnetic fields act. By properly choosing the crystal field (D), which regulates the density of nonmagnetic species (S=0), such that those impurities are excluded from the bulk (where D=-∞) except in the middle of the sample [where D(M)(L/2)≠-∞], we are able to control the presence of a defect line in the middle of the sample and study its influence on the interface between domains of different spin orientations. So essentially we study an Ising model with a defect line but, unlike previous work where defect lines in Ising models were defined via weakened bonds, in the present case the defect line is due to mobile vacancies and hence involves additional entropy. In this way, by drawing phase diagrams, i.e., plots of the wetting critical temperature (T(w)) versus the magnitude of the crystal field at the middle of the sample (D(M)), we observe curves of (first-) second-order wetting transitions for (small) high values of D(M). Theses lines meet in tricritical wetting points, i.e., (T(w)(tc),D(M)(tc)), which also depend on the magnitude of the surface magnetic fields. It is found that second-order wetting transitions satisfy the scaling theory for short-range interactions, while first-order ones do not exhibit hysteresis, provided that small samples are used, since fluctuations wash out hysteretic effects. Since hysteresis is observed in large samples, we performed extensive thermodynamic integrations in order to accurately locate the first-order transition points, and a rather good agreement is found by comparing such results with those obtained just by observing the jump of the order parameter in small samples.
Study of the weak localization in high quality two dimensional p-GaAs/AIGaAs systems
International Nuclear Information System (INIS)
Yasin, C.E.; Simmons, M.Y.; Hamilton, A.R.; Pepper, M.; Ritchie, D.A.
2002-01-01
Full text: Despite numerous experimental and theoretical work over the past ∼ 30 years, the nature of the ground state in 2D semiconductor systems remains a subject of controversy. Does the anomalous 'metallic' behavior observed at B = 0 imply the existence of a new 2D 'metallic' ground state or can it be explained within the conventional Fermi liquid theory? To address this question, we have investigated the single particle phase coherent 'weak localization' effect in high quality 2D p-GaAs systems that shows an apparent ' metallic' behavior at B = 0. We have performed detailed temperature dependent magnetoresistance measurements at different carrier densities and fit the experimental data to various models of weak localization in order to extract the phase coherence time, τ φ . We find that as the sample quality increases the mean free path increases, and weak localization must be treated beyond the diffusion approximation, making the data analysis more complex. Our result shows that when these more complex models are applied to the experimental data the systems are well described by Fermi liquid theory despite the strong interactions (r s ∼ 20), indicating that there is no 'metallic' phase in 2D at B = 0
International Nuclear Information System (INIS)
Fan, Ren; Zhi-Biao, Hao; Lei, Wang; Lai, Wang; Hong-Tao, Li; Yi, Luo
2010-01-01
SiN x is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiN x films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Bae, Jinho; Kim, Hyoung Woo; Kang, In Ho; Yang, Gwangseok; Kim, Jihyun
2018-03-01
We have demonstrated a β-Ga2O3 metal-semiconductor field-effect transistor (MESFET) with a high off-state breakdown voltage (344 V), based on a quasi-two-dimensional β-Ga2O3 field-plated with hexagonal boron nitride (h-BN). Both the β-Ga2O3 and h-BN were mechanically exfoliated from their respective crystal substrates, followed by dry-transfer onto a SiO2/Si substrate for integration into a high breakdown voltage quasi-two-dimensional β-Ga2O3 MESFETs. N-type conducting behavior was observed in the fabricated β-Ga2O3 MESFETs, along with a high on/off current ratio (>106) and excellent current saturation. A three-terminal off-state breakdown voltage of 344 V was obtained, with a threshold voltage of -7.3 V and a subthreshold swing of 84.6 mV/dec. The distribution of electric fields in the quasi-two-dimensional β-Ga2O3 MESFETs was simulated to analyze the role of the dielectric h-BN field plate in improving the off-state breakdown voltage. The stability of the field-plated β-Ga2O3 MESFET in air was confirmed after storing the MESFET in ambient air for one month. Our results pave the way for unlocking the full potential of β-Ga2O3 for use in a high-power nano-device with an ultrahigh breakdown voltage.
Dumas, Jean; Guyot, Hervé; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire
2004-04-01
Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.
Energy Technology Data Exchange (ETDEWEB)
Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire
2004-04-30
Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo{sub 6}O{sub 17} . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.
International Nuclear Information System (INIS)
Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire
2004-01-01
Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6 O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations
Energy Technology Data Exchange (ETDEWEB)
Ikeda, H; Suzuki, M [Ochanomizu Univ., Tokyo (Japan). Dept. of Physics; Hutchings, M T [UKAEA Atomic Energy Research Establishment, Harwell. Materials Physics Div.
1979-01-01
The spin correlation between two-dimensionally (2D) ordered antiferromagnetic layers in the random antiferromagnets Rb/sub 2/Cosub(c)Mgsub(1-c)F/sub 4/ depends strongly on the rate at which the sample is cooled through the Neel point Tsub(N) and decreases markedly with decreasing Co/sup 2 +/ ion concentration c. Preliminary data are presented which indicate that the order below sub(N) is metastable and relaxes to a fully correlated 3D ordered state on a finite, measurable, time-scale.
Directory of Open Access Journals (Sweden)
Chuan Du
2012-06-01
Full Text Available New approach is presented for growth of pentacene crystalline thin film with large grain size. Modification of dielectric surfaces using a monolayer of small molecule results in the formation of pentacene thin films with well ordered large crystalline domain structures. This suggests that pentacene molecules may have significantly large diffusion constant on the modified surface. An average hole mobility about 1.52 cm2/Vs of pentacene based organic thin film transistors (OTFTs is achieved with good reproducibility.
Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan
2017-10-27
The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Liu, Zhiting; Ma, Peng; Ulstrup, Jens
2017-01-01
Currently, the application of supercapacitors (SCs) in portable electronic devices and vehicles is limited by their low energy density. Developing high-energy density SCs without sacrificing their advantages, such as their long-term stability and high power density, has thus become an increasing...... and a 96.1% retention of the initial capacitance over 5,000 cycles. We exploited the novel 2D nanoplatelets as cathode materials to assemble a hybrid SC for full-cell tests. The resulting SCs operated in a wide potential window of 0 - 1.7 V, exhibited a high energy density over 50 Wh·kg-1, and sustained...
Wang, Cunjing; Wu, Dapeng; Wang, Hongju; Gao, Zhiyong; Xu, Fang; Jiang, Kai
2017-09-01
Highly porous carbon sheets were prepared from fresh clover stems under air atmosphere via a facile potassium chloride salt-sealing technique, which not only avoids using the high cost inert gas protection but also spontaneously introduce multi-level porosity into the carbon structure taking advantage of the trace of oxygen in the molten salt system. The as-obtained porous carbon sheets possess high specific surface area of 2244 m2 g-1 and interconnected hierarchical pore structures from micro-to macro-scale, which provide abundant storage active sites and fast ion diffusion channels. In addition, the spontaneously formed N (2.55 at%) and O (6.94 at%) doping sites not only improve the electron conductivity of the electrode but also enhance the specific capacitance by introducing pseudocapacitance. When employed as supercapacitor electrodes, a high specific capacitance of 436 F g-1 at 1 A g-1 and an excellent rate capacity with capacitance remaining 290 F g-1 at 50 A g-1 are demonstrated. Furthermore, the assembled symmetric supercapacitor delivers a high specific capacitance of 420 F g-1 at 0.5 A g-1, excellent energy density of 58.4 Wh kg-1 and good cycling stability which retains 99.4% of the initial capacitance at 5 A g-1 after 30,000 cycles.
Peng, Lele; Peng, Xu; Liu, Borui; Wu, Changzheng; Xie, Yi; Yu, Guihua
2013-05-08
Planar supercapacitors have recently attracted much attention owing to their unique and advantageous design for 2D nanomaterials based energy storage devices. However, improving the electrochemical performance of planar supercapacitors still remains a great challenge. Here we report for the first time a novel, high-performance in-plane supercapacitor based on hybrid nanostructures of quasi-2D ultrathin MnO2/graphene nanosheets. Specifically, the planar structures based on the δ-MnO2 nanosheets integrated on graphene sheets not only introduce more electrochemically active surfaces for absorption/desorption of electrolyte ions, but also bring additional interfaces at the hybridized interlayer areas to facilitate charge transport during charging/discharging processes. The unique structural design for planar supercapacitors enables great performance enhancements compared to graphene-only devices, exhibiting high specific capacitances of 267 F/g at current density of 0.2 A/g and 208 F/g at 10 A/g and excellent rate capability and cycling stability with capacitance retention of 92% after 7000 charge/discharge cycles. Moreover, the high planar malleability of planar supercapacitors makes possible superior flexibility and robust cyclability, yielding capacitance retention over 90% after 1000 times of folding/unfolding. Ultrathin 2D nanomaterials represent a promising material platform to realize highly flexible planar energy storage devices as the power back-ups for stretchable/flexible electronic devices.
International Nuclear Information System (INIS)
1988-01-01
The major accomplishment of this project was the development of a gamma camera for detection of very weak flux from the Crab Nebula. In addition, the detection of a pulsed flux from Hercules X-1 and the installation of a new high resolution camera are reported. 6 figs
Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor
Energy Technology Data Exchange (ETDEWEB)
Ilas, Germina [ORNL; Primm, Trent [ORNL
2011-05-01
An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.
Nguyen, Duc Minh; Yuan, H.; Houwman, Evert Pieter; Dekkers, Jan M.; Koster, Gertjan; ten Elshof, Johan E.; Rijnders, Augustinus J.H.M.
2016-01-01
Ca2Nb3O10 (CNOns) and Ti0.87O2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO2/Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr0.52Ti0.48)O3 (PZT) films are achieved by utilizing CNOns and TiOns,
International Nuclear Information System (INIS)
Kraak, W.; Herrmann, R.; Nachtwei, G.
1985-01-01
Magnetotransport properties of n-inversion layers in grain boundaries of p-InSb bicrystals are investigated under high hydrostatic pressure up to 10 3 MPa. A rapid decrease of the carrier concentration in the inversion layer is observed when hydrostatic pressure is applied. A simple model taking into account the pressure dependence of the energy band structure of pure InSb is proposed to describe this behaviour. (author)
International Nuclear Information System (INIS)
Yamamoto, Daisuke; Uchihashi, Takayuki; Kodera, Noriyuki; Ando, Toshio
2008-01-01
The diffusion of individual point defects in a two-dimensional streptavidin crystal formed on biotin-containing supported lipid bilayers was observed by high-speed atomic force microscopy. The two-dimensional diffusion of monovacancy defects exhibited anisotropy correlated with the two crystallographic axes in the orthorhombic C 222 crystal; in the 2D plane, one axis (the a-axis) is comprised of contiguous biotin-bound subunit pairs whereas the other axis (the b-axis) is comprised of contiguous biotin-unbound subunit pairs. The diffusivity along the b-axis is approximately 2.4 times larger than that along the a-axis. This anisotropy is ascribed to the difference in the association free energy between the biotin-bound subunit-subunit interaction and the biotin-unbound subunit-subunit interaction. The preferred intermolecular contact occurs between the biotin-unbound subunits. The difference in the intermolecular binding energy between the two types of subunit pair is estimated to be approximately 0.52 kcal mol -1 . Another observed dynamic behavior of point defects was fusion of two point defects into a larger defect, which occurred much more frequently than the fission of a point defect into smaller defects. The diffusivity of point defects increased with increasing defect size. The fusion and the higher diffusivity of larger defects are suggested to be involved in the mechanism for the formation of defect-free crystals
Akimitsu, Moe; Qinghong, Cao; Sawada, Asuka; Hatano, Hironori; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team
2017-10-01
We have developed a new-types of high-resolution magnetic probe array for our new magnetic reconnection experiments: TS-3U (ST, FRC: R =0.2m, 2017-) and TS-4U (ST, FRC: R =0.5m, 2018-), using the advanced printed-circuit technology. They are equipped with all three-components of magnetic pick-up coils whose size is 1-5mm x 3mm. Each coil is composed of two-sided coil pattern with line width of 0.05mm. We can install two or three printed arrays in a single glass (ceramic) tube for two or three component measurements. Based on this new probe technique, we started high-resolution and high-accuracy measurement of the current sheet thickness and studied its plasma parameter dependence. We found that the thickness of current sheet increases inversely with the guide toroidal field. It is probably determined by the ion gyroradius in agreement with the particle simulation by Horiuchi etc. While the reconnection speed is steady under low guide field condition, it is observed to oscillate in the specific range of guide field, suggesting transition from the quasi-steady reconnection to the intermittent reconnection. Cause and mechanism for intermittent reconnection will be discussed using the current sheet dissipation and dynamic balance between plasma inflow and outflow. This work supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.
International Nuclear Information System (INIS)
Xu, Haitao; Zhang, Huijuan; Ouyang, Ya; Liu, Li; Wang, Yu
2016-01-01
Highlights: • Novel 2D porous carbon sheets from cornstalks are obtained for the first time. • The hierarchical porous carbon nansheets are gained by chemical activation. • The porous structure facilitates ion transfer and Li-ion absorption. • The strategy are applied to both cathode and anode electrode materials. • The porous nanocomposites exhibit excellent electrochemical performance. - Abstract: Herein, we propose a novel and green strategy to convert crop stalks waste into hierarchical porous carbon composites for electrode materials of lithium-ion batteries. In the method, the sustainable crop stalks, an abundant agricultural byproduct, is recycled and treated by a simple and clean chemical activation process. Afterwards, the obtained porous template is adopted for large-scale production of high-performance anode and cathode materials for lithium-ion batteries. Due to the large surface area, hierarchical porous structures and subsize of the functional particles, the electrode materials manifest excellent electrochemical performance. In particular, the prepared TiO 2 /C composite presents a reversible specific capacity of 203 mAh g −1 after 200 cycles. Our results demonstrate that the sheetlike composites show remarkable cycling stability, high specific capacity and excellent rate ability, and thus hold promise for commercializing the high-performance electrode materials as the advanced lithium-ion batteries.
Yu, Junting; Jiang, Zhou; Hao, Yifan; Zhu, Qianhong; Zhao, Mingliang; Jiang, Xue; Zhao, Jijun
2018-06-01
Compared to inorganic solar cells, the power conversion efficiencies (PCEs) of organic solar cells are much lower, but they are compensated by many merits such as lower cost, less weight, and tunable structures, making them prospective for further applications. Porphyrin and phthalocyanine are the two most significant materials for organic solar cells due to their strong light-absorbing properties and semiconductor characteristics. However, there is little research on the 2D heterojunction solar cells based on these two materials, meanwhile the PCEs of them are still low. Here we have self-assembled several 2D zinc porphyrins (ZnPors) and performed first-principles simulation to demonstrate their good stability, suitable light harvesting, and high charge carrier mobility. By perfectly matching lattice constants and molecular energy levels between those 2D ZnPors and our previous proposed zinc phthalocyanines (ZnPcs), 11 type-II organic heterojunctions are constructed to further improve their charge separation capability. Those advantages endow 2D ZnPors and ZnPcs appreciable PCEs for solar cells. Among them, the theoretical PCE of 2D ZnPors/ZnPcs heterojunctions achieves as high as 19.84%, which exceeds all reported organic solar cells, and even approaches the PCEs of inorganic solar cells. These results indicate that our 2D ZnPors and 2D ZnPcs are good candidate materials for future organic solar cells.
Nguyen, Minh D; Yuan, Huiyu; Houwman, Evert P; Dekkers, Matthijn; Koster, Gertjan; Ten Elshof, Johan E; Rijnders, Guus
2016-11-16
Ca 2 Nb 3 O 10 (CNOns) and Ti 0.87 O 2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO 2 /Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films are achieved by utilizing CNOns and TiOns, respectively. The piezoelectric capacitors are characterized by polarization and piezoelectric hysteresis loops and by fatigue measurements. The devices fabricated with SrRuO 3 top and bottom electrodes directly on nanosheets/Si have ferroelectric and piezoelectric properties well comparable with devices that use more conventional oxide buffer layers (stacks) such as YSZ, CeO 2 /YSZ, or SrTiO 3 on Si. The devices grown on nanosheets/Pt/Si with Pt top electrodes show significantly improved polarization fatigue properties over those of similar devices grown directly on Pt/Si. The differences in properties are ascribed to differences in the crystalline structures and the density of the films. These results show a route toward the fabrication of single crystal piezoelectric thin films and devices with high quality, long-lifetime piezoelectric capacitor structures on nonperovskite and even noncrystalline substrates such as glass or polished metal surfaces.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Filatrella, G
2002-01-01
The technology to build reproducible and accurately defined structures consisting of many lumped junctions has become available only recently, therefore extended investigations are relatively new. However, beside the interest of such discrete structures per se, it has been suggested soon after the discovery of high-T sub c superconductivity that granular superconductors might be modelled as superconducting islands surrounded by non-superconducting material and weakly coupled to each other. This program has been vigorously carried on, and models of planar Josephson junction arrays (JJAs) have been successfully used to mimic the magnetic behaviour of granular superconductors. The JJA model has been compared to continuous models of non-granular superconductors. We will show how to derive the height of pinning barriers in the JJA model and compare the results with the continuous model. In particular, the existence of current dependent activation energy has been proved to be a key characteristic to understand flux...
Rampinelli, Vittorio; Doglietto, Francesco; Mattavelli, Davide; Qiu, Jimmy; Raffetti, Elena; Schreiber, Alberto; Villaret, Andrea Bolzoni; Kucharczyk, Walter; Donato, Francesco; Fontanella, Marco Maria; Nicolai, Piero
2017-09-01
Three-dimensional (3D) endoscopy has been recently introduced in endonasal skull base surgery. Only a relatively limited number of studies have compared it to 2-dimensional, high definition technology. The objective was to compare, in a preclinical setting for endonasal endoscopic surgery, the surgical maneuverability of 2-dimensional, high definition and 3D endoscopy. A group of 68 volunteers, novice and experienced surgeons, were asked to perform 2 tasks, namely simulating grasping and dissection surgical maneuvers, in a model of the nasal cavities. Time to complete the tasks was recorded. A questionnaire to investigate subjective feelings during tasks was filled by each participant. In 25 subjects, the surgeons' movements were continuously tracked by a magnetic-based neuronavigator coupled with dedicated software (ApproachViewer, part of GTx-UHN) and the recorded trajectories were analyzed by comparing jitter, sum of square differences, and funnel index. Total execution time was significantly lower with 3D technology (P < 0.05) in beginners and experts. Questionnaires showed that beginners preferred 3D endoscopy more frequently than experts. A minority (14%) of beginners experienced discomfort with 3D endoscopy. Analysis of jitter showed a trend toward increased effectiveness of surgical maneuvers with 3D endoscopy. Sum of square differences and funnel index analyses documented better values with 3D endoscopy in experts. In a preclinical setting for endonasal skull base surgery, 3D technology appears to confer an advantage in terms of time of execution and precision of surgical maneuvers. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Li, H; Yang, D; Xiao, Z; Driewer, J; Han, Z; Low, D
2014-01-01
Purpose: Recent research has shown that KCl:Eu2+ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports our attempts to fabricate 2D KCl:Eu2+ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. Methods: A thin layer of KCl:Eu2+ was deposited on a substrate of borosilicate glass (e.g., laboratory slides) with a PVD system. For tape casting, a homogenous suspension containing storage phosphor particles, liquid vehicle and polymer binder was formed and subsequently cast by doctor-blade onto a polyethylene terephthalate substrate to form a 150 μm thick SPF. Results: X ray diffraction analysis showed that a 10 μm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had completed been incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl−) centers were the electron storage centers post x ray irradiation and that Eu2+ cations acted as luminescence centers in the photostimulation process. The 150 μm thick casted KCl:Eu2+ SPF showed sub-millimeter spatial resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu2+ and 80% low Z polymer binder exhibited almost no energy dependence in a 6 MV beam. KCl:Eu2+ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a Result of its intrinsic high radiation hardness. Conclusions: This discovery research provides strong evidence that KCl:Eu2+ based SPF with associated readout apparatus could Result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of
Energy Technology Data Exchange (ETDEWEB)
Li, H; Yang, D; Xiao, Z [Washington University School of Medicine, St. Louis, MO (United States); Driewer, J [University of Nebraska Medical Center, Omaha, NE (United States); Han, Z [Brigham and Womens Hospital and Harvard Medical School, Boston, MA (United States); Low, D [UCLA, Los Angeles, CA (United States)
2014-06-15
Purpose: Recent research has shown that KCl:Eu2+ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports our attempts to fabricate 2D KCl:Eu2+ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. Methods: A thin layer of KCl:Eu2+ was deposited on a substrate of borosilicate glass (e.g., laboratory slides) with a PVD system. For tape casting, a homogenous suspension containing storage phosphor particles, liquid vehicle and polymer binder was formed and subsequently cast by doctor-blade onto a polyethylene terephthalate substrate to form a 150 μm thick SPF. Results: X ray diffraction analysis showed that a 10 μm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had completed been incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl−) centers were the electron storage centers post x ray irradiation and that Eu2+ cations acted as luminescence centers in the photostimulation process. The 150 μm thick casted KCl:Eu2+ SPF showed sub-millimeter spatial resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu2+ and 80% low Z polymer binder exhibited almost no energy dependence in a 6 MV beam. KCl:Eu2+ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a Result of its intrinsic high radiation hardness. Conclusions: This discovery research provides strong evidence that KCl:Eu2+ based SPF with associated readout apparatus could Result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of
Energy Technology Data Exchange (ETDEWEB)
Karelina, Anna
2004-02-18
In this work the anisotropy of the pinning forces of vortices in a-b plane of high temperature-supraconductors was examined. For this purpose vibrating reed with two degrees of freedom of the oscillation was constructed. The pinning forces were examined in single crystals of YBa{sub 2}Cu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. The experiments with YBa{sub 2}Cu{sub 3}O{sub 7} show that at temperatures lower than 78 K the vortices are in a nonequilibrium state. This leads to a flux creep and to a drift of the resonance frequency with time. This prevents the comparison of resonance curves in different directions of oscillations. In Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals the vortices are in more stable state, but the measurements of the resonance curves in different directions show no indication of the four-fold symmetry. At temperatures below 60 K a strong hysteresis of the resonance frequency and the resonance-oscillation amplitude was found in YBa{sub 2}Cu{sub 3}O{sub 7} crystals as a function of the magnetic field. (orig.)
Directory of Open Access Journals (Sweden)
Flor-Henry Michel
2004-11-01
Full Text Available Abstract Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. Conclusions The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves.
Energy Technology Data Exchange (ETDEWEB)
Curtis, Jeremy A. [Univ. of Alabama, Birmingham, AL (United States); Tokumoto, Takahisa [Univ. of Alabama, Birmingham, AL (United States); Cherian, Judy G. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Kuno, J. [Rice Univ., Houston, TX (United States); Reno, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McGill, Stephen A. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Karaiskaj, Denis [Univ. of South Florida, Tampa, FL (United States); Hilton, David J. [Univ. of Alabama, Birmingham, AL (United States)
2015-10-01
We have studied the cyclotron mobility of a Landau-quantized two-dimensional electron gas as a function of temperature (0.4 --100 K) at a fixed magnetic field (1.25 T) using terahertz time-domain spectroscopy in a sample with a low frequency mobility of μ_{dc} = 3.6 x 10^{6} cm^{2} V^{-1} s^{-1} and a carrier concentration of ns = 2 x 10_{6} cm^{-2}. The low temperature mobility in this sample results from both impurity scattering and acoustic deformation potential scattering, with μ$-1\\atop{CR}$ ≈ (2.1 x 10^{5} cm^{2} V^{-1} s^{-1})^{-1} + (3.8 x 10^{-8} V sK^{-1} cm^{-2} x T)^{-1} at low temperatures. Above 50 K, the cyclotron oscillations show a strong reduction in both the oscillation amplitude and lifetime that is dominated by the contribution due to polar optical phonons. These results suggest that electron dephasing times as long as ~ 300 ps are possible even at this high lling factor (v = 6:6) in higher mobility samples (> 10^{7} cm^{2} V^{-1} s^{-1}) that have lower impurity concentrations and where the cyclotron mobility at this carrier concentration would be limited by acoustic deformation potential scattering.
Ishikawa, Kyohei; Hirata, Michihiro; Liu, Dong; Miyagawa, Kazuya; Tamura, Masafumi; Kanoda, Kazushi
2016-08-01
The spin excitations from the nonmagnetic charge-ordered insulating state of α -(BEDT-TTF ) 2I3 at ambient pressure have been investigated by probing the static and low-frequency dynamic spin susceptibilities via site-selective nuclear magnetic resonance at 13C sites. The site-dependent values of the shift and the spin-lattice relaxation rate 1 /T1 below the charge-ordering transition temperature (TCO≈135 K ) demonstrate a spin density imbalance in the unit cell, in accord with the charge-density ratio reported earlier. The shift and 1 /T1 show activated temperature dependence with a static (shift) gap ΔS≈47 -52 meV and a dynamic (1 /T1 ) gap ΔR≈40 meV . The sizes of the gaps are well described in terms of a localized spin model, where spin-1/2 antiferromagnetic dimer chains are weakly coupled with each other.
High order Poisson Solver for unbounded flows
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2015-01-01
This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional nuclear magnetic resonance spectroscopy
International Nuclear Information System (INIS)
Bax, A.; Lerner, L.
1986-01-01
Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures
DEFF Research Database (Denmark)
Deng, Qingming; Wu, Tiantian; Chen, Guibin
2018-01-01
catalyzed by Sc-TCNQ (CO + O2* → OOCO*) can follow the LH mechanism with free energy barriers as low as 0.73 eV at 300 K. The second step of CO + O* → CO2 can occur with rather small energy barriers via either LH or ER mechanisms. The high activity of Sc-TCNQ can be attributed to its unique structural...... and thermodynamics of all the ten candidates (Sc-Zn), Sc-TCNQ is found to display the lowest activation energies and yield the highest catalytic activity for room temperature CO oxidation. Exploring the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms, we find that the rate-limiting step of CO oxidation...... and electronic features by possessing high stability, optimum adsorption energies with adsorbates, and fast reaction kinetics. These results have significant implications for the synthesis of two-dimensional single atom catalysis for CO oxidation with low-cost and high activity at low temperature....
Directory of Open Access Journals (Sweden)
Kunming Qin
2013-01-01
Full Text Available Pericarpium Citri Reticulatae (Chenpi in Chinese has been widely used as an herbal medicine in Korea, China, and Japan. Chenpi extracts are used to treat indigestion and inflammatory syndromes of the respiratory tract such as bronchitis and asthma. This thesis will analyze chemical compositions of Chenpi volatile oil, which was performed by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HR-TOFMS. One hundred and sixty-seven components were tentatively identified, and terpene compounds are the main components of Chenpi volatile oil, a significant larger number than in previous studies. The majority of the eluted compounds, which were identified, were well separated as a result of high-resolution capability of the GC × GC method, which significantly reduces, the coelution. β-Elemene is tentatively qualified by means of GC × GC in tandem with high-resolution TOFMS detection, which plays an important role in enhancing the effects of many anticancer drugs and in reducing the side effects of chemotherapy. This study suggests that GC × GC-HR-TOFMS is suitable for routine characterization of chemical composition of volatile oil in herbal medicines.
Cleary, Justin W.; Peale, Robert E.; Saxena, Himanshu; Buchwald, Walter R.
2011-05-01
The observation of THz regime transmission resonances in an InGaAs/InP high electron mobility transistor (HEMT) can be attributed to excitation of plasmons in its two-dimensional electron gas (2DEG). Properties of grating-based, gate-voltage tunable resonances are shown to be adequately modeled using commercial finite element method (FEM) software when the HEMT layer structure, gate geometry and sheet charge concentration are taken into account. The FEM results are shown to produce results consistent with standard analytical theories in the 10-100 cm-1 wavenumber range. An original analytic formula presented here describes how the plasmonic resonance may change in the presence of a virtual gate, or region of relatively high free charge carriers that lies in the HEMT between the physical grating gate and the 2DEG. The virtual gate and corresponding analytic formulation are able to account for the red-shifting experimentally observed in plasmonic resonances. The calculation methods demonstrated here have the potential to greatly aid in the design of future detection devices that require specifically tuned plasmonic modes in the 2DEG of a HEMT, as well as giving new insights to aid in the development of more complete analytic theories.
Energy Technology Data Exchange (ETDEWEB)
Griesbeck, Michael
2012-11-22
Since many years there has been great effort to explore the spin dynamics in low-dimensional electron systems embedded in GaAs/AlGaAs based heterostructures for the purpose of quantum computation and spintronics applications. Advances in technology allow for the design of high quality and well-defined two-dimensional electron systems (2DES), which are perfectly suited for the study of the underlying physics that govern the dynamics of the electron spin system. In this work, spin dynamics in high-mobility 2DES is studied by means of the all-optical time-resolved Kerr/Faraday rotation technique. In (001)-grown 2DES, a strong in-plane spin dephasing anisotropy is studied, resulting from the interference of comparable Rashba and Dresselhaus contributions to the spin-orbit field (SOF). The dependence of this anisotropy on parameters like the confinement length of the 2DES, the sample temperature, as well as the electron density is demonstrated. Furthermore, coherent spin dynamics of an ensemble of ballistically moving electrons is studied without and within an applied weak magnetic field perpendicular to the sample plane, which forces the electrons to move on cyclotron orbits. Finally, strongly anisotropic spin dynamics is investigated in symmetric (110)-grown 2DES, using the resonant spin amplification method. Here, extremely long out-of-plane spin dephasing times can be achieved, in consequence of the special symmetry of the Dresselhaus SOF.
Two-dimensional NMR spectrometry
International Nuclear Information System (INIS)
Farrar, T.C.
1987-01-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Rosso, Marta Cialiè; Liberto, Erica; Spigolon, Nicola; Fontana, Mauro; Somenzi, Marco; Bicchi, Carlo; Cordero, Chiara
2018-01-09
Within the pattern of volatiles released by food products (volatilome), potent odorants are bio-active compounds that trigger aroma perception by activating a complex array of odor receptors (ORs) in the regio olfactoria. Their informative role is fundamental to select optimal post-harvest and storage conditions and preserve food sensory quality. This study addresses the volatile metabolome from high-quality hazelnuts (Corylus avellana L.) from the Ordu region (Turkey) and Tonda Romana from Italy, and investigates its evolution throughout the production chain (post-harvest, industrial storage, roasting) to find functional correlations between technological strategies and product quality. The volatile metabolome is analyzed by headspace solid-phase microextration combined with comprehensive two-dimensional gas chromatography and mass spectrometry. Dedicated pattern recognition, based on 2D data (targeted fingerprinting), is used to mine analytical outputs, while principal component analysis (PCA), Fisher ratio, hierarchical clustering, and analysis of variance are used to find decision makers among the most informative chemicals. Low-temperature drying (18-20 °C) has a decisive effect on quality; it correlates negatively with bacteria and mold metabolic activity, nut viability, and lipid oxidation products (2-methyl-1-propanol, 3-methyl-1-butanol, 2-ethyl-1-hexanol, 2-octanol, 1-octen-3-ol, hexanal, octanal and (E)-2-heptanal). Protective atmosphere storage (99% N 2 -1% O 2 ) effectively limits lipid oxidation for 9-12 months after nut harvest. The combination of optimal drying and storage preserves the aroma potential; after roasting at different shelf-lives, key odorants responsible for malty and buttery (2- and 3-methylbutanal, 2,3-butanedione and 2,3-pentanedione), earthy (methylpyrazine, 2-ethyl-5-methyl pyrazine and 3-ethyl-2,5-dimethyl pyrazine) and caramel-like and musty notes (2,5-dimethyl-4-hydroxy-3(2H)-furanone - furaneol and acetyl pyrrole) show no
Directory of Open Access Journals (Sweden)
Yan-Long Jia
2016-01-01
Full Text Available Abstract Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE was used to investigate the expression of halotolerant proteins under high (3 M NaCl and low (0.75 M NaCl salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress.
International Nuclear Information System (INIS)
Kim, Doosik; Economou, Demetre J.
2004-01-01
A combined fluid/Monte Carlo (MC) simulation was developed to study the two-dimensional (2D) sheath over a flat insulator/conductor interface on a radio-frequency (rf) biased electrode in a high-density plasma. The insulator capacitance increased the local impedance between the plasma and the bias voltage source. Thus, for uniform ion density and electron temperature far away from the wall, the sheath potential over the insulator was only a fraction of that over the conductor, resulting in a thinner sheath over the insulator. The fluid model provided the spatiotemporal profiles of the 2D sheath electric field. These were used as input to the MC simulation to compute the ion energy distribution (IED) and ion angular distribution (IAD) at different locations on the surface. The ion flux, IED, and IAD changed drastically across the insulator/conductor interface due to the diverging rf electric field in the distorted sheath. The ion flux was larger on the conductor at the expense of that on the insulator. Both the ion impact angle and angular spread increased progressively as the material interface was approached. The ion impact energy and energy spread were smaller on the insulator as compared to the conductor. For given plasma parameters, as the insulator thickness was increased, the sheath potential and thickness over the insulator decreased, and sheath distortion became more pronounced
Energy Technology Data Exchange (ETDEWEB)
Ramanayaka, A.N.; Ye, Tianyu; Liu, H.-C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Wegscheider, W. [Laboratorium fuer Festkoerperphysik, ETH Zurich, 8093 Zurich (Switzerland); Mani, R.G., E-mail: rmani@gsu.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)
2014-11-15
The influence of microwave excitation on the magnetotransport properties of the high mobility two-dimensional electron system (2DES) in the GaAs/AlGaAs heterostructure system is investigated by exploring (a) the dependence of the amplitude of the microwave-induced magnetoresistance-oscillations on the polarization direction of the linearly polarized microwaves and (b) the microwave reflection from the 2DES. The polarization study indicates that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwaves and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance R{sub xx} vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. The reflection study indicates strong correlations between the microwave induced magnetoresistance oscillations and oscillatory features in the microwave reflection in a concurrent measurement of the magnetoresistance and the microwave magnetoreflection from the 2DES. The correlations are followed as a function of the microwave frequency and the microwave power, and the results are reported.
International Nuclear Information System (INIS)
Ramanayaka, A.N.; Ye, Tianyu; Liu, H.-C.; Wegscheider, W.; Mani, R.G.
2014-01-01
The influence of microwave excitation on the magnetotransport properties of the high mobility two-dimensional electron system (2DES) in the GaAs/AlGaAs heterostructure system is investigated by exploring (a) the dependence of the amplitude of the microwave-induced magnetoresistance-oscillations on the polarization direction of the linearly polarized microwaves and (b) the microwave reflection from the 2DES. The polarization study indicates that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwaves and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance R xx vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. The reflection study indicates strong correlations between the microwave induced magnetoresistance oscillations and oscillatory features in the microwave reflection in a concurrent measurement of the magnetoresistance and the microwave magnetoreflection from the 2DES. The correlations are followed as a function of the microwave frequency and the microwave power, and the results are reported
Wei, Ying-Jie; Jing, Li-Jun; Zhan, Yang; Sun, E; Jia, Xiao-Bin
2014-05-01
To break through the restrictions of the evaluation model and the quantity of compounds by using the two-dimensional zebrafish model combined with chromatographic techniques, and establish a new method for the high-throughput screening of active anti-osteoporosis components. According to the research group-related studies and relevant foreign literatures, on the basis of the fact that the zebrafish osteoporosis model could efficiently evaluate the activity, the zebrafish metabolism model could efficiently enrich metabolites and the chromatographic techniques could efficiently separate and analyze components of traditional Chinese medicines, we proposed that the inherent combination of the three methods is expected to efficiently decode in vivo and in vitro efficacious anti-osteoporosis materials of traditional Chinese medicines. The method makes it simple and efficient in the enrichment, separation and analysis on components of traditional Chinese medicines, particularly micro-components and metabolites and the screening anti-osteoporosis activity, fully reflects that efficacious materials of traditional Chinese medicines contain original components and metabolites, with characteristic of "multi-components, multi-targets and integral effect", which provides new ideas and methods for the early and rapid discovery of active anti-osteoporosis components of traditional Chinese medicines.
Xia, Cong-xin; Du, Juan; Huang, Xiao-wei; Xiao, Wen-bo; Xiong, Wen-qi; Wang, Tian-xing; Wei, Zhong-ming; Jia, Yu; Shi, Jun-jie; Li, Jing-bo
2018-03-01
Recently, constructing van der Waals (vdW) heterojunctions by stacking different two-dimensional (2D) materials has been considered to be effective strategy to obtain the desired properties. Here, through first-principles calculations, we find theoretically that the 2D n -InSe/p -GeSe(SnS) vdW heterojunctions are the direct-band-gap semiconductor with typical type-II band alignment, facilitating the effective separation of photogenerated electron and hole pairs. Moreover, they possess the high optical absorption strength (˜105 ), broad spectrum width, and excellent carrier mobility (˜103c m2V-1s-1 ). Interestingly, under the influences of the interlayer coupling and external electric field, the characteristics of type-II band alignment is robust, while the band-gap values and band offset are tunable. These results indicate that 2D n -InSe/p -GeSe(SnS) heterojunctions possess excellent optoelectronic and transport properties, and thus can become good candidates for next-generation optoelectronic nanodevices.
Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen
2015-01-01
Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
Kohnehpoushi, Saman; Nazari, Pariya; Abdollahi Nejand, Bahram; Eskandari, Mehdi
2018-05-01
In this work MoS2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.
Sheng, Yanghao; Zhou, Boting
2017-05-26
Therapeutic drug monitoring (TDM) is one of the most important services of clinical laboratories. Two main techniques are commonly used: the immunoassay and chromatography method. We have developed a cost-effective system of two-dimensional liquid chromatography with ultraviolet detection (2D-LC-UV) for high-throughput determination of vancomycin in human plasma that combines the automation and low start-up costs of the immunoassay with the high selectivity and sensitivity of the liquid chromatography coupled with mass spectrometric detection without incurring their disadvantages, achieving high cost-effectiveness. This 2D-LC system offers a large volume injection to provide sufficient sensitivity and uses simulated gradient peak compression technology to control peak broadening and to improve peak shape. A middle column was added to reduce the analysis cycle time and make it suitable for high-throughput routine clinical assays. The analysis cycle time was 4min and the peak width was 0.8min. Compared with other chromatographic methods that have been developed, the analysis cycle time and peak width for vancomycin was reduced significantly. The lower limit of quantification was 0.20μg/mL for vancomycin, which is the same as certain LC-MS/MS methods that have been recently developed and validated. The method is rapid, automated, and low-cost and has high selectivity and sensitivity for the quantification of vancomycin in human plasma, thus making it well-suited for use in hospital clinical laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
Berggren, K; Chernokalskaya, E; Steinberg, T H; Kemper, C; Lopez, M F; Diwu, Z; Haugland, R P; Patton, W F
2000-07-01
SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.
Toward two-dimensional search engines
International Nuclear Information System (INIS)
Ermann, L; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)
Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua
2016-01-01
. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
Directory of Open Access Journals (Sweden)
Dabić-Stanković Kata
2017-01-01
Full Text Available Background/Aim. Prostate delineation, pre-planning and catheter implantation procedures, in high-dose rate brachytherapy (HDR-BT, are commonly based on the prostate manually segmented transrectal ultrasound (TRUS images. The aim of this study was to quantitatively analyze the consistency of prostate capsule delineation, done by a single therapist, prior to each HDR-BT fraction and the changes in the shape of the prostate capsule during HDR-BT, using two dimensional (2D TRUS axial image. Methods. A group of 16 patients were treated at the Medical System Belgrade Brachytherapy Department with definitive HDRBT. The total applied median dose of 52 Gy was divided into four individual fractions, each fraction being delivered 2– 3 weeks apart. Real time prostate axial visualization and the manual segmentation prior to each fraction were performed using B-K Medical ultrasound. Quantitative analyses, analysis of an area and shape were applied on 2D-TRUS axial images of the prostate. Area analyses were used to calculate the average value of the cross-sectional area of the prostate image. The parameters of the prostate shape, the fractal dimension and the circularity ratio of the prostate capsule contour were estimated at the maximum axial cross section of the prostate image. Results. The sample group consisted of four phases, each phase being performed prior to the first, second, third and fourth HDR-BT fraction, respectively. Statistical analysis showed that during HDR-BT fractions there were no significant differences in the average value of area, as well as in the maximum shape of prostate capsule. Conclusions. Quantitative analysis of TRUS axial prostate segmented images shows a successful capsule delineation in the series of manually segmented TRUS images, and the prostate maximum shape remaining unchanged during HDR-BT fractions.
Mroczek, Tomasz
2016-09-10
Recently launched thin-layer chromatography-mass spectrometry (TLC-MS) interface enabling extraction of compounds directly from TLC plates into MS ion source was unusually extended into two-dimensional thin-layer chromatography/high performance liquid chromatography (2D, TLC/HPLC) system by its a direct connection to a rapid resolution 50×2.1mm, I.D. C18 column compartment followed by detection by diode array (DAD) and electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). In this way, even not separated bands of complicated mixtures of natural compounds could be analysed structurally, only within 1-2min after development of TLC plates. In comparison to typically applied TLC-MS interface, no ion suppression for acidic mobile phases was observed. Also, substantial increase in ESI-TOF-MS sensitivities and quality of spectra, were noticed. It has been utilised in combination with TLC- based bioautographic approaches of acetylcholinesterase (AChE) inhibitors, However, it can be also applied in any other procedures related to bioactivity (e.g. 2,2-Diphenyl-1-picryl-hydrazyl-DPPH screen test for radicals). This system has been also used for determination of half maximal inhibitory concentration (IC50 values) of the active inhibitor-galanthamine, as an example. Moreover, AChE inhibitory potencies of some of purified plant extracts, never studied before, have been quantitatively measured. This is first report of usage such the 2D TLC/HPLC/MS system both for qualitative and quantitative evaluation of cholinesterase inhibitors in biological matrices. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Muthukumaran, M [Apollo Speciality Hospitals, Chennai, Tamil Nadu (India); Manigandan, D [Fortis Cancer Institute, Mohali, Punjab (India); Murali, V; Chitra, S; Ganapathy, K [Apollo Speciality Hospital, Chennai, Tamil Nadu (India); Vikraman, S [Jaypee Hospital – Radiation Onology, Noida, UTTAR PRADESH (India)
2016-06-15
Purpose: The aim of the study is to characterize a two dimensional liquid filled detector array SRS 1000 for routine QA in Cyberknife Robotic Radiosurgery system. Methods: SRS 1000 consists of 977 liquid filled ionization chambers and is designed to be used in small field SRS/SBRT techniques. The detector array has got two different spacial resolutions. Till field size of 5.5×5.5 cm the spacial resolution is 2.5mm (center to center) and after that till field size of 11 × 11 cm the spacial resolution is 5mm. The size of the detector is 2.3 × 2.3 0.5 mm with a volume of .003 cc. The CyberKnife Robotic Radiosurgery System is a frameless stereotactic radiosurgery system in which a LINAC is mounted on a robotic manipulator to deliver beams with a high sub millimeter accuracy. The SRS 1000’s MU linearity, stability, reproducibility in Cyberknife Robotic Radiosurgery system was measured and investigated. The output factors for fixed and IRIS collimators for all available collimators (5mm till 60 mm) was measured and compared with the measurement done with PTW pin-point ionization chamber. Results: The MU linearity was measured from 2 MU till 1000 MU for doserates in the range of 700cGy/min – 780 cGy/min and compared with the measurement done with pin point chamber The MU linearity was with in 3%. The detector arrays stability and reproducibility was excellent and was withinin 0.5% The measured output factors showed an agreement of better than 2% when compared with the measurements with pinpoint chamber for both fixed and IRIS collimators with all available field sizes. Conclusion: We have characterised PTW 1000 SRS as a precise and accurate measurement tool for routine QA of Cyberknife Robotic radiosurgery system.
International Nuclear Information System (INIS)
Muthukumaran, M; Manigandan, D; Murali, V; Chitra, S; Ganapathy, K; Vikraman, S
2016-01-01
Purpose: The aim of the study is to characterize a two dimensional liquid filled detector array SRS 1000 for routine QA in Cyberknife Robotic Radiosurgery system. Methods: SRS 1000 consists of 977 liquid filled ionization chambers and is designed to be used in small field SRS/SBRT techniques. The detector array has got two different spacial resolutions. Till field size of 5.5×5.5 cm the spacial resolution is 2.5mm (center to center) and after that till field size of 11 × 11 cm the spacial resolution is 5mm. The size of the detector is 2.3 × 2.3 0.5 mm with a volume of .003 cc. The CyberKnife Robotic Radiosurgery System is a frameless stereotactic radiosurgery system in which a LINAC is mounted on a robotic manipulator to deliver beams with a high sub millimeter accuracy. The SRS 1000’s MU linearity, stability, reproducibility in Cyberknife Robotic Radiosurgery system was measured and investigated. The output factors for fixed and IRIS collimators for all available collimators (5mm till 60 mm) was measured and compared with the measurement done with PTW pin-point ionization chamber. Results: The MU linearity was measured from 2 MU till 1000 MU for doserates in the range of 700cGy/min – 780 cGy/min and compared with the measurement done with pin point chamber The MU linearity was with in 3%. The detector arrays stability and reproducibility was excellent and was withinin 0.5% The measured output factors showed an agreement of better than 2% when compared with the measurements with pinpoint chamber for both fixed and IRIS collimators with all available field sizes. Conclusion: We have characterised PTW 1000 SRS as a precise and accurate measurement tool for routine QA of Cyberknife Robotic radiosurgery system.
Energy Technology Data Exchange (ETDEWEB)
Gerl, Christian
2009-10-14
This thesis outlines the fabrication of high mobility two-dimensional hole-gases (2DHG) in GaAs/AlGaAs heterostructures with molecular beam epitaxy (MBE) and their characterization with magnetotransport measurements at low temperatures between 4 K and 30 mK. Here the optimization of the carrier mobility is focused. This will be achieved by introducing a novel carbon-filament doping source, with which contaminations of the MBE system and therefore in the grown layers can be reduced and by vary the band structure design to minimize scattering processes. With the help of these actions, hole mobilities above 1 E6 cm{sup 2}/Vs are achievable, what reflects an increase of factor 3 in the (001)- and factor 6.5 in the (110)- oriented transport plane compared to common 2DHGs. Furthermore states of the fractional Quantum Hall Effect can be observed in these 2DHGs, only visible in n-doped 2D systems so fare. Magnetotransport measurements on 2DHGs with aluminum gates reveal a hysteretic behavior of the carrier density with respect to the gate potential which can be attributed to the incorporation mechanisms of carbon atoms as acceptor. Temperature dependent magnetotransport measurements allow the evaluation of effective mass and quantum scattering time as well as the dependence of these parameters from the band structure design. In these experiments an aperiodic behavior of the Shubnikov-de Haas oscillations can be observed in the inverse magnetic field, which is attributed to the position of the fermi energy in the immediate vicinity of crossing regions of the complex Landau fan of 2DHGs. (orig.)
Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas
International Nuclear Information System (INIS)
Valeo, E.J.; Kramer, G.J.; Nazikian, R.
2001-01-01
A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
International Nuclear Information System (INIS)
Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut
2014-01-01
To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.
Energy Technology Data Exchange (ETDEWEB)
Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut [School of Medicine, Gazi University, Ankara (Turkey)
2014-12-15
To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.
Two-dimensional black holes and non-commutative spaces
International Nuclear Information System (INIS)
Sadeghi, J.
2008-01-01
We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon
International Nuclear Information System (INIS)
Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.
2011-01-01
A new approach is proposed to simulate intermittent, non-diffusive plasma transport (via blobs and filaments of edge localized modes (ELMs)) observed in the tokamak edge region within the framework of two-dimensional transport codes. This approach combines the inherently three-dimensional filamentary structures associated with an ensemble of blobs into a macro-blob in the two-dimensional poloidal cross-section and advects the macro-blob ballistically across the magnetic field, B. Intermittent transport is represented as a sequence of macro-blobs appropriately seeded in the edge plasma according to experimental statistics. In this case, the code is capable of reproducing both the long-scale temporal evolution of the background plasma and the fast spatiotemporal dynamics of blobs. We report the results from a two-dimensional edge plasma code modeling of a single macro-blob dynamics, and its interaction with initially stationary background plasma as well as with material surfaces. The mechanisms of edge plasma particle and energy losses from macro-blobs are analyzed. The effects of macro-blob sizes and advection velocity on edge plasma profiles are studied. The macro-blob impact on power loading and sputtering rates on the chamber wall and on inner and outer divertor plates is discussed. Temporal evolution of particle inventory of the edge plasma perturbed by macro-blobs is analyzed. Application of macro-blobs to ELM modeling is highlighted.
International Nuclear Information System (INIS)
Angerand, Francois
1987-01-01
Two-dimensional phase transitions within films physi-sorbed upon the basal face of graphite have been investigated using two experimental methods: volumetric measurements of adsorption isotherms and neutron diffraction. Our main objective was to study the role played by orientational order in these films, its influence on their thermodynamic and structural properties, and its significance in wetting and roughening phenomena, which are indirectly accessible from adsorption studies. A comparative study of the adsorption isotherms of two molecules having comparable dipole moments, NH 3 and C 2 H 3 F, discloses very dissimilar behaviours, due to the fact that hydrogen bonding is involved in the interaction between NH 3 , but not C 2 H 3 F, molecules. The impossibility of such a bond for the interaction of the adsorbate with the substrate results in a poor cohesion energy of the NH 3 ad-film in comparison with those of its bulk condensed phases. The situation is opposite for the film of C 2 H 3 F which behaves almost as a rare gas film. From multilayer adsorption isotherms of CO it is shown that graphite (0001) is perfectly wet by the plastic (orientationally disordered) crystal phase, β-CO, whereas it is incompletely wet by the low-temperature crystal phase α-CO, in which the molecules are orientationally ordered. The critical temperatures of two-dimensional condensation have been measured for the successive ad-layers, up to the fifth. They seem to converge towards a value of 65 K, which we consider as representing the temperature of the roughening transition of the (0001) face of β-CO. A neutron diffraction study of the monolayers of N 2 O and C(CD 3 ) 4 adsorbed on graphite has been carried out. For N 2 O our results suggest a structure more involved than conjectured. For C(CD 3 ) 4 we have evidence for a triple point at 178 K. The crystal monolayer has a compact hexagonal structure. (author) [fr
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
-dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...
International Nuclear Information System (INIS)
Kellar, S.A.; Lawrence Berkeley National Lab., CA
1997-05-01
This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f 7/5 core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 ± 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 ± 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 ± 0.02 A and 0.30 ± 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed
Wang, W; Kang, Y; Shu, X H; Shen, X D; He, B
2017-11-23
Objective: To investigate the clinical value of two-dimensional speckle tracking echocardiography(2D-STE) combined with high-sensitive cardiac troponin T (hs-cTnT) in early detection of the cardiotoxicity induced by chemotherapy drug. Methods: Seventy-five non-Hodgkin's lymphoma patients who received the CHOP regimen were recruited in this study. Conventional echocardiography and 2D-STE were performed on these patients before chemotherapy, the second day after the third course of chemotherapy (during chemotherapy) and the second day after the last course of chemotherapy (after chemotherapy). The parameters included left ventricular ejection fraction (LVEF), global longitudinal strain (LS), global circumferential strain (CS) and global radial strain (RS). The serum hs-cTNT levels were tested simultaneously. Results: Three cycles of CHOP were completed in 30 patients and 6-8 cycles of CHOP were completed in 45 patients. The LVEF of 75 patients before, during and after chemotherapy was (63.8±2.6)%, (63.8±2.8)% and (64.0±3.3)%, respectively, without significant difference ( P =0.91). However, the LS of 75 patients before, during and after chemotherapy was (-18.5±1.7)%, (-16.5±1.9)% and (-16.0±1.6)%, respectively. The CS was (-20.9±2.9)%, (-19.3±3.5)% and (-19.2±3.2)%, respectively. The RS was (39.2±6.4)%, (35.3±5.2)% and (35.0±6.2)%, respectively. The hs-cTnT was (0.001 0±0.002 0)ng/ml, (0.006 3±0.008 9)ng/ml and (0.007 3±0.003 8)ng/ml, respectively. The LS, CS and RS were significantly decreased while hs-cTnT was significantly increased during chemotherapy when compared to those before chemotherapy (all of P chemotherapy were marginally different from those during chemotherapy (all of P >0.05). Moreover, T(LS-SD), T(CS-SD) and T(RS-SD) showed no significant difference before, during and after chemotherapy (all of P >0.05). The reduction of LS was positively associated with the enhancement of hs-cTnT after chemotherapy ( r =0.60, P effectively and
Energy Technology Data Exchange (ETDEWEB)
Kellar, S.A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.
1997-05-01
This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional solid state NMR
International Nuclear Information System (INIS)
Kentgens, A.P.M.
1987-01-01
This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Acoustic phonon emission by two dimensional plasmons
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-06-01
Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig
International Nuclear Information System (INIS)
Terlain, Anne
1984-01-01
The 2D (two-dimensional) phase transitions and orientational order in N 2 O, CO 2 , C 2 N 2 and C 2 D 2 films physi-sorbed on the (0001) face of graphite or lamellar halides, were studied experimentally by adsorption isotherm measurements and neutron diffraction. The thermodynamic functions derived from sets of isotherms suggest that crystal monolayers of N 2 O, CO 2 , and C 2 N 2 adsorbed on graphite are orientationally ordered and that the quadrupolar interaction stabilizes the 2D crystal with respect to the 2D liquid. This stabilization leads to an increase in the 2D triple point temperature, T 2t as compared with the 2D critical temperature T 2c . For C 2 N 2 this stabilization is so pronounced that T 2t becomes virtually higher than T 2c , and the phase diagram qualitatively different, having no gas-liquid coexistence domain. From a neutron diffraction experiment we have determined the crystal structure of the C 2 N 2 monolayer. It supports our interpretation of the monolayer phase diagram. In N 2 O, CO 2 , C 2 N 2 films adsorbed on graphite the molecules lie flat on the surface and their orientational order hence differs from that in the bulk crystals resulting in a loss of adsorbate-adsorbate interaction energy. Beyond a given film thickness this loss will not be compensated by the adsorbate-substrate interaction and the film will stop growing. For most of the films studied a partial wetting transition is observed at which the film thickness increases discontinuously with temperature. Although C 2 N 2 and C 2 D 2 monolayers on graphite have comparable adsorption energies, only C 2 D 2 is adsorbed on lamellar halides. This adsorption is possible only because the monolayer has a large entropy due to orientational disorder. For C 2 N 2 , which has a higher moment of inertia, such an orientational disorder cannot exist. (author) [fr
Pattern formation in two-dimensional square-shoulder systems
International Nuclear Information System (INIS)
Fornleitner, Julia; Kahl, Gerhard
2010-01-01
Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.
Pattern formation in two-dimensional square-shoulder systems
Energy Technology Data Exchange (ETDEWEB)
Fornleitner, Julia [Institut fuer Festkoerperforschung, Forschungsszentrum Juelich, D-52425 Juelich (Germany); Kahl, Gerhard, E-mail: fornleitner@cmt.tuwien.ac.a [Institut fuer Theoretische Physik and Centre for Computational Materials Science (CMS), Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria)
2010-03-17
Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.
International Nuclear Information System (INIS)
Carrasco, L.; Bravo, R.
1986-01-01
The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various time postinfection were also analyzed. At least 13 proteins labeled with [ 3 H]glucosamine were detected in vaccinia-infected HeLa cells
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
International Nuclear Information System (INIS)
Xia, Dan; Gao, Lirong; Zheng, Minghui; Wang, Shasha; Liu, Guorui
2016-01-01
Polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) are listed as persistent organic pollutants (POPs) under the Stockholm Convention. Because they have similar physical and chemical properties, they are coeluted and are usually analyzed separately by different gas chromatography high-resolution mass spectrometry (GC-HRMS) methods. In this study, a novel method was developed for simultaneous analysis of six indicator PCBs, 12 dioxin-like PCBs, and 16 PCNs using isotope dilution comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HRTOF-MS). The method parameters, including the type of GC column, oven temperature program, and modulation period, were systematically optimized. Complete separation of all target analytes and the matrix was achieved with a DB-XLB column in the first dimension and a BPX-70 column in the second dimension. The isotope dilution method was used for quantification of the PCBs and PCNs by GC × GC-HRTOF-MS. The method showed good linearity from 5 to 500 pg μL"−"1 for all the target compounds. The instrumental limit of detection ranged from 0.03 to 0.3 pg μL"−"1 for the 18 PCB congeners and from 0.09 to 0.6 pg μL"−"1 for the 16 PCN congeners. Repeatability for triplicate injections was always lower than 20%. The method was successfully applied to the determination of 18 PCBs present at 0.9–2054 pg g"−"1 and 16 PCNs present at 0.2–15.7 pg g"−"1 in three species of fish. The GC × GC-HRTOF-MS results agreed with those obtained by GC-HRMS. The GC × GC-HRTOF-MS method proved to be a sensitive and accurate technique for simultaneous analysis of the selected PCBs and PCNs. With the excellent chromatographic separation offered by GC × GC and accurate mass measurements offered by HRTOF-MS, this method allowed identification of non-target contaminants in the fish samples, including organochlorine pesticides and polycyclic aromatic
Energy Technology Data Exchange (ETDEWEB)
Xia, Dan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100085 (China); Gao, Lirong, E-mail: gaolr@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zheng, Minghui; Wang, Shasha; Liu, Guorui [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)
2016-09-21
Polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) are listed as persistent organic pollutants (POPs) under the Stockholm Convention. Because they have similar physical and chemical properties, they are coeluted and are usually analyzed separately by different gas chromatography high-resolution mass spectrometry (GC-HRMS) methods. In this study, a novel method was developed for simultaneous analysis of six indicator PCBs, 12 dioxin-like PCBs, and 16 PCNs using isotope dilution comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HRTOF-MS). The method parameters, including the type of GC column, oven temperature program, and modulation period, were systematically optimized. Complete separation of all target analytes and the matrix was achieved with a DB-XLB column in the first dimension and a BPX-70 column in the second dimension. The isotope dilution method was used for quantification of the PCBs and PCNs by GC × GC-HRTOF-MS. The method showed good linearity from 5 to 500 pg μL{sup −1} for all the target compounds. The instrumental limit of detection ranged from 0.03 to 0.3 pg μL{sup −1} for the 18 PCB congeners and from 0.09 to 0.6 pg μL{sup −1} for the 16 PCN congeners. Repeatability for triplicate injections was always lower than 20%. The method was successfully applied to the determination of 18 PCBs present at 0.9–2054 pg g{sup −1} and 16 PCNs present at 0.2–15.7 pg g{sup −1} in three species of fish. The GC × GC-HRTOF-MS results agreed with those obtained by GC-HRMS. The GC × GC-HRTOF-MS method proved to be a sensitive and accurate technique for simultaneous analysis of the selected PCBs and PCNs. With the excellent chromatographic separation offered by GC × GC and accurate mass measurements offered by HRTOF-MS, this method allowed identification of non-target contaminants in the fish samples, including organochlorine pesticides and
International Nuclear Information System (INIS)
Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B.; Corde, S.; Jackson, M.
2013-01-01
Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly 192 Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 μGy m 2 /h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the 192 Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a 192 Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of
Mechanical exfoliation of two-dimensional materials
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
Energy Technology Data Exchange (ETDEWEB)
Wu, Yimin [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Korolkov, Ilia [Laboratory of Glasses and Ceramics, Institute of Chemistry, CNRS-Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex (France); Qiao, Xvsheng [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Xianghua [Laboratory of Glasses and Ceramics, Institute of Chemistry, CNRS-Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex (France); Wan, Jun; Fan, Xianping [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)
2016-06-15
A rapid injection approach is used to synthesize the copper selenide nanoparticles and two-dimensional single crystal nanoplates. This technique excludes the use of toxic or expensive materials, increasing the availability of two-dimensional binary chalcogenide semiconductors. The structure of the nanocrystals has been studied and the possible formation mechanism of the nanoplates has been proposed. The optical absorption showed that the nanoplates demonstrated wide and tuneable absorption band in the visible and near infrared region. These nanoplates could be interesting for converting solar energy and for nanophotonic devices operating in the near infrared. - Graphical abstract: TEM images of the copper selenides nanoparticles and nanoplates synthesized at 180 °C for 0 min, 10 min, 60 min. And the growth mechanism of the copper selenide nanoplates via the “oriented attachment”. Display Omitted - Highlights: • CuSe nanoparticles and nanoplates are synthesized by a rapid injection approach. • CuSe band gap can be widely tuned simply by modifying the synthesized time. • Al{sup 3+} ions have a significant impact on the growth rate of the nanoplates. • Growth mechanism of the CuSe nanoplates is based on the “oriented attachment”.
Optimized two-dimensional Sn transport (BISTRO)
International Nuclear Information System (INIS)
Palmiotti, G.; Salvatores, M.; Gho, C.
1990-01-01
This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Two-dimensional Semiconductor-Superconductor Hybrids
DEFF Research Database (Denmark)
Suominen, Henri Juhani
This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...
Nagaraju, Doddahalli H.
2014-08-27
In this article, we report the synthesis of electrode materials based on two-dimensional (2D) heterostructures of V2O5 nanosheets (V2O5 NS) and reduced graphene oxide (rGO) electrodes for asymmetric supercapacitor applications. Specifically, the 2D V2O5 and rGO/V2O5 nanosheet electrodes showed a specific capacitance of 253 F g-1 and 635 F g-1, respectively at a current density of 1 A g-1. The capacitance of the heterostructures is almost 2.5 times higher than the 2D V2O5 nanosheets alone. The corresponding energy density of 39 Wh kg-1 and 79.5 Wh kg-1 were achieved for the two electrodes at a power density of 900 W kg-1 in an asymmetric supercapacitor configuration. The energy and power density using the nanosheet heterostructure are, to our knowledge, higher than any of those that were previously reported for asymmetric supercapacitors using V2O5 electrodes. This journal is
International Nuclear Information System (INIS)
Mishra, Manna Kumari; Sharma, Rajesh K.; Manchanda, Rachna; Bag, Rajesh K.; Muralidharan, Rangarajan; Thakur, Om Prakash
2014-01-01
Magnetotransport in two distinct AlGaN/GaN HEMT structures grown by Molecular Beam Epitaxy (MBE) on Fe-doped templates is investigated using Shubnikov de-Haas Oscillations in the temperature range of 1.8–6 K and multicarrier fitting in the temperature range of 1.8–300 K. The temperature dependence of the two dimensional electron gas mobility is extracted from simultaneous multicarrier fitting of transverse and longitudinal resistivity as a function of magnetic field and the data is utilized to estimate contribution of interface roughness to the mobility and the corresponding transport lifetime. The quantum scattering time obtained from the analysis of Shubnikov de Haas Oscillations in transverse magnetoresistance along with the transport lifetime time were used to estimate interface roughness amplitude and lateral correlation length. The results indicate that the insertion of AlN over layer deposited prior to the growth of GaN base layer on Fe doped GaN templates for forming HEMT structures reduced the parallel conduction but resulted in an increase in interface roughness
Energy Technology Data Exchange (ETDEWEB)
Mishra, Manna Kumari [Solid State Physics Laboratory, Lucknow Road, Timarpur, Delhi-110054 (India); Netaji Subhas Institute of Technology, Dwarka, New Delhi-110078 (India); Sharma, Rajesh K., E-mail: rksharma@sspl.drdo.in; Manchanda, Rachna; Bag, Rajesh K.; Muralidharan, Rangarajan [Solid State Physics Laboratory, Lucknow Road, Timarpur, Delhi-110054 (India); Thakur, Om Prakash [Netaji Subhas Institute of Technology, Dwarka, New Delhi-110078 (India)
2014-09-15
Magnetotransport in two distinct AlGaN/GaN HEMT structures grown by Molecular Beam Epitaxy (MBE) on Fe-doped templates is investigated using Shubnikov de-Haas Oscillations in the temperature range of 1.8–6 K and multicarrier fitting in the temperature range of 1.8–300 K. The temperature dependence of the two dimensional electron gas mobility is extracted from simultaneous multicarrier fitting of transverse and longitudinal resistivity as a function of magnetic field and the data is utilized to estimate contribution of interface roughness to the mobility and the corresponding transport lifetime. The quantum scattering time obtained from the analysis of Shubnikov de Haas Oscillations in transverse magnetoresistance along with the transport lifetime time were used to estimate interface roughness amplitude and lateral correlation length. The results indicate that the insertion of AlN over layer deposited prior to the growth of GaN base layer on Fe doped GaN templates for forming HEMT structures reduced the parallel conduction but resulted in an increase in interface roughness.
International Nuclear Information System (INIS)
Nikulin, A.Y.; Gureyev, T.E.; Stevenson, A.W.; Wilkins, S.W.; Hashizume, H.; Cookson, D.
1996-01-01
The triple-crystal synchrotron X-ray diffractometry data described in Nikulin, Stevenson, Hashizume, Wilkins, Foran, Cookson and Garrett (J. Appl. Cryst. 28, 57-60 (1995)) has been analyzed to map out two-dimensional (2D) lattice distortions in silicon (111) crystals implanted with B + ions of 100 keV energy through a periodic SiO 2 strip pattern. The lateral periodic structure produced a series of satellite reflections associated with the 111 Bragg peak. The 2D reconstruction incorporates the use of the Petrashen-Chukhovskii method, which retrieves the phases of the Bragg waves for these satellite reflections, together with that for the fundamental. The finite Fourier series is then synthesized with the relative phases determined. Localized distortions perpendicular to the surface arising from deposited B + ions in near-surface layers of the crystal are clearly displayed with spatial resolutions of 0.016 and 0.265 μm in the depth and lateral directions respectively. For a sample with the oxide layer removed from the surface, two equally plausible strain maps have been obtained by assigning relative phases to eleven satellites using a sequential trial method and a minimum-energy method. Failed map reconstructions for the oxide-covered sample are discussed in terms of the non-unique solutions of the Petrashen-Chukhovskii phase-recovery algorithm and the ambiguous phases determined for the satellites. 16 refs., 8 figs
Wu, Xue-Jun
2016-03-14
The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. © 2016 Macmillan Publishers Limited. All rights reserved.
Study on two-dimensional induced signal readout of MRPC
International Nuclear Information System (INIS)
Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin
2012-01-01
A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.
Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.
2013-11-01
The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional vibrational-electronic spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a
Functional inks and printing of two-dimensional materials.
Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique
2018-05-08
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Study of two-dimensional interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1990-04-01
An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)
Generation of high order modes
CSIR Research Space (South Africa)
Ngcobo, S
2012-07-01
Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
International Nuclear Information System (INIS)
Stathaki, P.T.; Constantinides, A.G.
1994-01-01
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
Energy Technology Data Exchange (ETDEWEB)
Stathaki, P T; Constantinides, A G [Signal Processing Section, Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road, London SW7 2BT, UK (United Kingdom)
1994-12-31
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging. 7 refs, 2 figs.
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Two dimensional nanomaterials for flexible supercapacitors.
Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi
2014-05-21
Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.
Two-dimensional heterostructures for energy storage
Energy Technology Data Exchange (ETDEWEB)
Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)
2017-06-12
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
High order depletion sensitivity analysis
International Nuclear Information System (INIS)
Naguib, K.; Adib, M.; Morcos, H.N.
2002-01-01
A high order depletion sensitivity method was applied to calculate the sensitivities of build-up of actinides in the irradiated fuel due to cross-section uncertainties. An iteration method based on Taylor series expansion was applied to construct stationary principle, from which all orders of perturbations were calculated. The irradiated EK-10 and MTR-20 fuels at their maximum burn-up of 25% and 65% respectively were considered for sensitivity analysis. The results of calculation show that, in case of EK-10 fuel (low burn-up), the first order sensitivity was found to be enough to perform an accuracy of 1%. While in case of MTR-20 (high burn-up) the fifth order was found to provide 3% accuracy. A computer code SENS was developed to provide the required calculations
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run-l...
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
Analysis and Design of High-Order Parallel Resonant Converters
Batarseh, Issa Eid
1990-01-01
In this thesis, a special state variable transformation technique has been derived for the analysis of high order dc-to-dc resonant converters. Converters comprised of high order resonant tanks have the advantage of utilizing the parasitic elements by making them part of the resonant tank. A new set of state variables is defined in order to make use of two-dimensional state-plane diagrams in the analysis of high order converters. Such a method has been successfully used for the analysis of the conventional Parallel Resonant Converters (PRC). Consequently, two -dimensional state-plane diagrams are used to analyze the steady state response for third and fourth order PRC's when these converters are operated in the continuous conduction mode. Based on this analysis, a set of control characteristic curves for the LCC-, LLC- and LLCC-type PRC are presented from which various converter design parameters are obtained. Various design curves for component value selections and device ratings are given. This analysis of high order resonant converters shows that the addition of the reactive components to the resonant tank results in converters with better performance characteristics when compared with the conventional second order PRC. Complete design procedure along with design examples for 2nd, 3rd and 4th order converters are presented. Practical power supply units, normally used for computer applications, were built and tested by using the LCC-, LLC- and LLCC-type commutation schemes. In addition, computer simulation results are presented for these converters in order to verify the theoretical results.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing
2015-05-01
An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salivo, Simona; Beccaria, Marco; Sullini, Giuseppe; Tranchida, Peter Q; Dugo, Paola; Mondello, Luigi
2015-01-01
The main focus of the present research is the analysis of the unsaponifiable lipid fraction of human plasma by using data derived from comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection. This approach enabled us to attain both mass spectral information and analyte percentage data. Furthermore, gas chromatography coupled with high-resolution time-of-flight mass spectrometry was used to increase the reliability of identification of several unsaponifiable lipid constituents. The synergism between both the high-resolution gas chromatography and mass spectrometry processes enabled us to attain a more in-depth knowledge of the unsaponifiable fraction of human plasma. Additionally, information was attained on the fatty acid and triacylglycerol composition of the plasma samples, subjected to investigation by using comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection and high-performance liquid chromatography with atmospheric pressure chemical ionization quadrupole mass spectrometry, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Zhe; Jia, Da-Shuang; Zhou, Yue; Hao, Jiang; Liang, Yu; Cui, Zhi-Min; Song, Wei-Guo
2018-03-01
Metal nanoparticles such as Ag, Cu and Fe are effective catalysts for many reactions, whereas a facile method to prepare metal nanoparticles with high uniformed dispersion is still desirable. Herein, the topotactic structure conversion of layered silicate, RUB-15, was utilized to support metal nanoparticles. Through simple ion-exchange and following calcination step, metal nanoparticles were generated in situ inside the interlayer space of layered silica, and the topotactic structure conversion process assured nano-sized and highly uniformed dispersion of metal nanoparticles. The obtained Ag/SiO2 composite showed superior catalytic activity for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with a rate constant as high as 0.0607 s-1 and 0.0778 s-1. The simple and universal synthesis method as well as high activity of the product composite endow the strategy good application prospect.
Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy
Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.
2013-01-01
Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separat...
Two dimensional neutral transport analysis in tokamak plasma
International Nuclear Information System (INIS)
Shimizu, Katsuhiro; Azumi, Masafumi
1987-02-01
Neutral particle influences the particle and energy balance, and play an important role on sputtering impurity and the charge exchange loss of neutral beam injection. In order to study neutral particle behaviour including the effects of asymmetric source and divertor configuration, the two dimensional neutral transport code has been developed using the Monte-Carlo techniques. This code includes the calculation of the H α radiation intensity based on the collisional-radiation model. The particle confinement time of the joule heated plasma in JT-60 tokamak is evaluated by comparing the calculated H α radiation intensity with the experimental data. The effect of the equilibrium on the neutral density profile in high-β plasma is also investigated. (author)
Two dimensional radiated power diagnostics on Alcator C-Mod
International Nuclear Information System (INIS)
Reinke, M. L.; Hutchinson, I. H.
2008-01-01
The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of P rad of nearly 50% by the diodes compared to P rad determined using resistive bolometers.
Two dimensional radiated power diagnostics on Alcator C-Moda)
Reinke, M. L.; Hutchinson, I. H.
2008-10-01
The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of Prad of nearly 50% by the diodes compared to Prad determined using resistive bolometers.
Energy Technology Data Exchange (ETDEWEB)
Hinrichsen, B [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Dinnebier, R E [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Rajiv, P [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Hanfland, M [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP220, 38043 Grenoble Cedex (France); Grzechnik, A [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Technologia, Universidad del Pais Vasco, Apartado 644, E-48080 Bilbao (Spain); Jansen, M [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)
2006-06-28
Methods have been developed to facilitate the data analysis of multiple two-dimensional powder diffraction images. These include, among others, automatic detection and calibration of Debye-Scherrer ellipses using pattern recognition techniques, and signal filtering employing established statistical procedures like fractile statistics. All algorithms are implemented in the freely available program package Powder3D developed for the evaluation and graphical presentation of large powder diffraction data sets. As a case study, we report the pressure dependence of the crystal structure of iron antimony oxide FeSb{sub 2}O{sub 4} (p{<=}21 GPa, T = 298 K) using high-resolution angle dispersive x-ray powder diffraction. FeSb{sub 2}O{sub 4} shows two phase transitions in the measured pressure range. The crystal structures of all modifications consist of frameworks of Fe{sup 2+}O{sub 6} octahedra and irregular Sb{sup 3+}O{sub 4} polyhedra. At ambient conditions, FeSb{sub 2}O{sub 4} crystallizes in space group P4{sub 2}/mbc (phase I). Between p = 3.2 GPa and 4.1 GPa it exhibits a displacive second order phase transition to a structure of space group P 2{sub 1}/c (phase II, a = 5.7792(4) A, b = 8.3134(9) A, c = 8.4545(11) A, {beta} = 91.879(10){sup 0}, at p = 4.2 GPa). A second phase transition occurs between p = 6.4 GPa and 7.4 GPa to a structure of space group P4{sub 2}/m (phase III, a = 7.8498(4) A, c = 5.7452(5) A, at p = 10.5 GPa). A nonlinear compression behaviour over the entire pressure range is observed, which can be described by three Vinet equations in the ranges from p = 0.52 GPa to p 3.12 GPa, p = 4.2 GPa to p = 6.3 GPa and from p = 7.5 GPa to p = 19.8 GPa. The extrapolated bulk moduli of the high-pressure phases were determined to K{sub 0} = 49(2) GPa for phase I, K{sub 0} = 27(3) GPa for phase II and K{sub 0} = 45(2) GPa for phase III. The crystal structures of all phases are refined against x-ray powder data measured at several pressures between p = 0.52 GPa
International Nuclear Information System (INIS)
Weber, H.; Jensen, H.J.
1992-01-01
We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature regime. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)
International Nuclear Information System (INIS)
Weber, H.; Tekniska Hoegskolan, Luleaa; Jeldtoft Jensen, H.
1991-01-01
We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high T c superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature region. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High T c superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)
Piezoelectricity in Two-Dimensional Materials
Wu, Tao; Zhang, Hua
2015-01-01
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...
Phase transitions in two-dimensional systems
International Nuclear Information System (INIS)
Salinas, S.R.A.
1983-01-01
Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt
Turbulent equipartitions in two dimensional drift convection
International Nuclear Information System (INIS)
Isichenko, M.B.; Yankov, V.V.
1995-01-01
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits
Chava, Rama Krishna; Do, Jeong Yeon; Kang, Misook
2018-03-01
The visible photocatalytic H2 production from water splitting considered as a clean and renewable energy source could solve the problem of greenhouse gas emission from fossil fuels. Despite tremendous efforts, the development of cost effective, highly efficient and more stable visible photocatalysts for splitting of water remains a great challenge. Here, we report the heteronanostructures consisting of hierarchical MoS2 nanospheres grown on 1D CdS nanorods referred to as CdS-MoS2 HNSs as a high performance visible photocatalyst for H2 evolution. The as-synthesized CdS-MoS2 HNSs exhibited ∼11 fold increment of H2 evolution rate when compared to pure CdS nanorods. This remarkable enhanced hydrogen evolution performance can be assigned to the positive synergetic effect from heteronanostructures formed between the CdS and MoS2 components which assist as an electron sink and source for abundant active edge sites and in turn increases the charge separation. This study presents a low-cost visible photocatalyst for solar energy conversion to achieve efficient H2.
Two-dimensional analytic weighting functions for limb scattering
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
International Nuclear Information System (INIS)
Wu, T.; Cowan, C.L.; Lauer, A.; Schwiegk, H.J.
1982-03-01
The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analysis from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution. (orig.)
Two-dimensional position sensitive Si(Li) detector
International Nuclear Information System (INIS)
Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated
A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR
Energy Technology Data Exchange (ETDEWEB)
Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.
Energy Technology Data Exchange (ETDEWEB)
Ma, Yandong; Kuc, Agnieszka; Jing, Yu; Heine, Thomas [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Universitaet Leipzig (Germany); Philipsen, Pier [Scientific Computing and Modelling NV, Amsterdam (Netherlands)
2017-08-14
In all known Group 5 transition-metal dichalcogenide monolayers (MLs), the metal centers carry a spin, and their ground-state phases are either metallic or semiconducting with indirect band gaps. Here, on grounds of first-principles calculations, we report that the Haeckelite polytypes 1S-NbX{sub 2} (X=S, Se, Te) are diamagnetic direct-band-gap semiconductors even though the Nb atoms are in the 4+ oxidation state. In contrast, 1S-VX{sub 2} MLs are antiferromagnetically coupled indirect-band-gap semiconductors. The 1S phases are thermodynamically and dynamically stable but of slightly higher energy than their 1H and 1T ML counterparts. 1S-NbX{sub 2} MLs are excellent candidates for optoelectronic applications owing to their small band gaps (between 0.5 and 1 eV). Moreover, 1S-NbS{sub 2} shows a particularly high hole mobility of 2.68 x 10{sup 3} cm{sup 2} V{sup -1} s{sup -1}, which is significantly higher than that of MoS{sub 2} and comparable to that of WSe{sub 2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Pu, Chenchen; Wan, Jun; Liu, Enzhou; Yin, Yunchao; Li, Juan; Ma, Yongning [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun, E-mail: hxy3275@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China)
2017-03-31
Highlights: • The protonated GCN (pGCN) is prepared by acidic cutting and hydrothermal process. • The pGCN coupled with rGO are synthesized via electrostatic self-assembly strategy. • The pGCN-5 wt% rGO is obtained with a high specific surface area of 115.64 m{sup 2}g{sup −1}. • The pGCN-5 wt% rGO photocatalysts exhibit superb photocatalytic reduction capacity. - Abstract: Herein, porous protonated graphitic carbon nitride (pGCN) is prepared from bulk g-C{sub 3}N{sub 4} (GCN) directly by acidic cutting and hydrothermal process. The holey structure not only provides a lot of bounds on the accelerated and photo induced charge transfer and thus reduce the aggregation, but also endows the GCN with more exposure to the active site. The pGCN is obtained with an increased band gap of 2.91 eV together with a higher specific surface area of 82.76 m{sup 2}g{sup −1}. Meanwhile, the positively charged GCN resulted from the protonation pretreatment is beneficial for improving the interaction with negatively charged GO sheets. Compared with GCN, pGCN-rGO displays a significant decrease of PL intensities and an apparently enhancement of visible-light absorption, resulting a lower charge recombination rate and a better light absorption. Besides, the enhanced charge separation is demonstrated by photoluminescence emission spectroscopy and the transient photocurrent measurement. The photocatalytic performance studies for the degradation of MB indicate that pGCN-rGO exhibits the highest adsorption ability towards dye molecules. In addition, the pGCN-5 wt% rGO composite shows the optimal photocatalytic activity, the photodegradation rate of MB is 99.4% after 80 min of irradiation and the H{sub 2} evolution performance up to 557 μmol g{sup −1}h{sup −1} under visible light, which is much higher than the other control samples.
International Nuclear Information System (INIS)
Mao Wei; She Wei-Bo; Zhang Chao; Zhang Jin-Cheng; Zhang Jin-Feng; Liu Hong-Xia; Yang Lin-An; Zhang Kai; Zhao Sheng-Lei; Chen Yong-He; Zheng Xue-Feng; Hao Yue; Yang Cui; Ma Xiao-Hua
2014-01-01
In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, AlGaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco—Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Wang, Yuzhe; Zhang, Tong; Ren, Jiawen; Qin, Xiang; Liu, Yushuo; Sun, Weijun; Chen, Jizu; Ding, Minghu; Du, Wentao; Qin, Dahe
2018-03-01
By combining in situ measurements and a two-dimensional thermomechanically coupled ice flow model, we investigate the thermomechanical features of the largest valley glacier (Laohugou Glacier No. 12; LHG12) on Qilian Shan located in the arid region of western China. Our model results suggest that LHG12, previously considered as fully cold, is probably polythermal, with a lower temperate ice layer overlain by an upper layer of cold ice over a large region of the ablation area. Modelled ice surface velocities match well with the in situ observations in the east branch (main branch) but clearly underestimate those near the glacier terminus, possibly because the convergent flow is ignored and the basal sliding beneath the confluence area is underestimated. The modelled ice temperatures are in very good agreement with the in situ measurements from a deep borehole (110 m deep) in the upper ablation area. The model results are sensitive to surface thermal boundary conditions, for example surface air temperature and near-surface ice temperature. In this study, we use a Dirichlet surface thermal condition constrained by 20 m borehole temperatures and annual surface air temperatures. Like many other alpine glaciers, strain heating is important in controlling the englacial thermal structure of LHG12. Our transient simulations indicate that the accumulation zone becomes colder during the last two decades as a response to the elevated equilibrium line altitude and the rising summer air temperatures. We suggest that the extent of accumulation basin (the amount of refreezing latent heat from meltwater) of LHG12 has a considerable impact on the englacial thermal status.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Heo, Cheon; Jang, Jongjin; Lee, Kyngjae; So, Byungchan; Lee, Kyungbae; Ko, Kwangse; Nam, Okhyun
2017-01-01
We investigated the correlation between the crystal quality and two-dimensional electron gas (2DEG) mobility of an AlGaN/GaN high-electron-mobility transistor (HEMT) structure grown by metal-organic chemical vapor deposition. For the structure with an AlN nucleation layer grown at 1100 °C, the 2DEG mobility and sheet carrier density were 1627 cm²/V·s and 3.23 × 10¹³ cm⁻², respectively, at room temperature. Further, it was confirmed that the edge dislocation density of the GaN buffer layer was related to the 2DEG mobility and sheet carrier density in the AlGaN/GaN HEMT.
International Nuclear Information System (INIS)
Lin, J.; Millis, A.J.
2011-01-01
We calculate the frequency-dependent longitudinal (σ xx ) and Hall (σ xy ) conductivities for two-dimensional metals with thermally disordered antiferromagnetism using a generalization of a theoretical model, involving a one-loop quasistatic fluctuation approximation, which was previously used to calculate the electron self-energy. The conductivities are calculated from the Kubo formula, with current vertex function treated in a conserving approximation satisfying the Ward identity. In order to obtain a finite dc limit, we introduce phenomenologically impurity scattering, characterized by a relaxation time τ. σ xx ((Omega)) satisfies the f-sum rule. For the infinitely peaked spin-correlation function, χ(q)∝(delta)(q-Q), we recover the expressions for the conductivities in the mean-field theory of the ordered state. When the spin-correlation length ζ is large but finite, both σ xx and σ xy show behaviors characteristic of the state with long-range order. The calculation runs into difficulty for (Omega) ∼ xx ((Omega)) and σ xy ((Omega)) are qualitatively consistent with data on electron-doped cuprates when (Omega) > 1/τ.
Quantum Communication Through a Two-Dimensional Spin Network
International Nuclear Information System (INIS)
Wang Zhaoming; Gu Yongjian
2012-01-01
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
Graphene – A Two-Dimensional Dirac Material
Liu, Danny; Wicklund, Johan
2014-01-01
Graphene is a two-dimensional material, whose popularity has soared in both condensedmatter physics and material science the past decade. Due to its unique properties, graphene can be used in a vast array of new and interesting applications that could fundamentally change the material industry. This report reviews the current research and literature in order to trace the historical development of graphene. Then, in order to better understand the material, the unique properties of graphene are...
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...
Inter-layer Cooper pairing of two-dimensional electrons
International Nuclear Information System (INIS)
Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo
1987-01-01
The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)
Theory of the one- and two-dimensional electron gas
International Nuclear Information System (INIS)
Emery, V.J.
1987-01-01
Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides
Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...
Indian Academy of Sciences (India)
tribpo
Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...
Graphene: a promising two-dimensional support for heterogeneous catalysts
Directory of Open Access Journals (Sweden)
Xiaobin eFan
2015-01-01
Full Text Available Graphene has many advantages that make it an attractive two-dimensional (2D support for heterogeneous catalysts. It not only allows the high loading of targeted catalytic species, but also facilitates the mass transfer during the reaction processes. These advantages, along with its unique physical and chemical properties, endow graphene great potential as catalyst support in heterogeneous catalysis.
Two-Dimensional Tellurene as Excellent Thermoelectric Material
Sharma, Sitansh; Singh, Nirpendra; Schwingenschlö gl, Udo
2018-01-01
We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-Dimensional Motions of Rockets
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Extended Polymorphism of Two-Dimensional Material
Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro
When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
International Nuclear Information System (INIS)
Kraak, W.; Nachtwei, G.; Herrmann, R.; Glinski, M.
1988-01-01
The magnetotransport properties of the two-dimensional electron gas (2DEG) confined at the interface of the grain boundary in p-type InSb bicrystals are investigated. Under high hydrostatic pressures and in high magnetic fields (B > 5 T) the integral quantum Hall regime is reached, where the Hall resistance ρ xy is quantized to h/e 2 j (j is the number of filled Landau levels of the 2DEG). In this high field regime detailed measurements are given of the resistivity ρ xx and the Hall resistance ρ xy as function of temperature T and current density j x . An unexpected high accuracy of the Hall resistance ρ xy at magnetic field values close to a fully occupied Landau level is found, despite the high value of the diagonal resistivity ρ xx . At high current densities j x in the quantum Hall regime (j = 1) a sudden breakdown of the quantized resistance value associated with a jump-like switching to the next lower quantized value h/2e 2 is observed. A simple macroscopic picture is proposed to account for these novel transport properties associated with the quantum Hall effect. (author)
Entropy Viscosity Method for High-Order Approximations of Conservation Laws
Guermond, J. L.
2010-09-17
A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.
Entropy Viscosity Method for High-Order Approximations of Conservation Laws
Guermond, J. L.; Pasquetti, R.
2010-01-01
A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.
Gournis, Dimitrios; Papachristodoulou, Christina; Maccallini, Enrico; Rudolf, Petra; Karakassides, Michael A.; Karamanis, Dimitrios T.; Sage, Marie-Helene; Palstra, Thomas T. M.; Colomer, Jean-Francois; Papavasileiou, Konstantinos D.; Melissas, Vasilios S.; Gangas, Nicolaos H.
2010-01-01
A highly ordered two-dimensional hybrid magnetic nanocomposite has been prepared by synthesizing and intercalating a new cationic aluminum-hydroxy ferric ferrocyanide compound into a cation-adsorbing nanoclay (montmorillonite). Chemical and structural properties were investigated by X-ray
Sritirawisarn, N.; Wera, J.L.E.; Otten, van F.W.M.; Nötzel, R.
2010-01-01
The formation of ordered InAs/InP quantum dot (QD) arrays is demonstrated on patterned InP (1 0 0) and (3 1 1)B substrates by the concept of self-organized anisotropic strain engineering in chemical beam epitaxy (CBE). On shallow- and deep stripe-patterned InP (1 0 0) substrates, depending on the
International Nuclear Information System (INIS)
Bartelt, N.C.; Einstein, T.L.; Roelofs, L.D.
1987-01-01
We study the temperature dependence of the structure factors of two lattice gases which undergo order-disorder phase transitions. Our goal is to determine how much information about the critical behavior of these phase transitions a low-energy electron-diffraction experiment might obtain. We use Monte Carlo simulation to compute the structure factors. Both lattice gases are on triangular nets; one has a (√3 x √3)R30 0 ordered phase; the other has a p(2 x 2) ordered phase. The structure factors scale almost halfway from the center of an extra spot to the zone center; for system sizes comparable to those that are physically realizable we see effective critical exponents which are typically within of order 10% of expectations based on universality. Below the transition temperature, nonlinearities in log-log plots are significant, indicating that corrections to scaling cannot be ignored. We consider how asymmetries in the structure factor reflect differences between lattice-gas systems and magnetic analogs in the same universality class and also briefly treat the effects of quenched random vacancies and of a fixed concentration of annealed vacancies
Hysteresis and avalanches in two-dimensional foam rheology simulations
International Nuclear Information System (INIS)
Jiang, Y.; Swart, P.J.; Saxena, A.; Asipauskas, M.; Glazier, J.A.
1999-01-01
Foams have unique rheological properties that range from solidlike to fluidlike. We study two-dimensional noncoarsening foams of different disorder under shear in a Monte Carlo simulation, using a driven large-Q Potts model. Simulations of periodic shear on an ordered foam show several different response regimes. At small strain amplitudes, bubbles deform and recover their shapes elastically, and the macroscopic response is that of a linear elastic cellular material. For increasing strain amplitude, the energy-strain curve starts to exhibit hysteresis before any topological rearrangements occur, indicating a macroscopic viscoelastic response. When the applied strain amplitude exceeds a critical value, the yield strain, topological rearrangements occur, the foam starts to flow, and we observe macroscopic irreversibility. We find that the dynamics of topological rearrangements depend sensitively on the structural disorder. Structural disorder decreases the yield strain; sufficiently high disorder changes the macroscopic response of a foam from a viscoelastic solid to a viscoelastic fluid. This wide-ranging dynamical response and the associated history effects of foams result from avalanchelike rearrangement events. The spatiotemporal statistics of rearrangement events do not display long-range correlations for ordered foams or at low shear rates, consistent with experimental observations. As the shear rate or structural disorder increases, the topological events become more correlated and their power spectra change from that of white noise toward 1/f noise. Intriguingly, the power spectra of the total stored energy also exhibit this 1/f trend. copyright 1999 The American Physical Society
Theory of a Nearly Two-Dimensional Dipolar Bose Gas
2016-05-11
order to be published, he sent the paper to Einstein to translate it. The other contributing scientist is world famous physicist Albert Einstein , maybe...mechanical state, a Bose- Einstein condensate (BEC), where the atoms cease to behave like distinguishable entities, and instead form a single macroscopic...model in both three- and two-dimensional geometries. 15. SUBJECT TERMS Bose Einstein condensation, ultracold physics, condensed matter, dipoles 16
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe
2017-01-01
Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...
Two-Dimensional Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Bo Jia
2015-01-01
(BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
A two-dimensional lattice equation as an extension of the Heideman-Hogan recurrence
Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji
2018-03-01
We consider a two dimensional extension of the so-called linearizable mappings. In particular, we start from the Heideman-Hogan recurrence, which is known as one of the linearizable Somos-like recurrences, and introduce one of its two dimensional extensions. The two dimensional lattice equation we present is linearizable in both directions, and has the Laurent and the coprimeness properties. Moreover, its reduction produces a generalized family of the Heideman-Hogan recurrence. Higher order examples of two dimensional linearizable lattice equations related to the Dana Scott recurrence are also discussed.
Two-dimensional silica opens new perspectives
Büchner, Christin; Heyde, Markus
2017-12-01
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science
Quasi-two-dimensional thermoelectricity in SnSe
Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.
2018-01-01
Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.
International Nuclear Information System (INIS)
Freedsman, J. J.; Watanabe, A.; Urayama, Y.; Egawa, T.
2015-01-01
The authors report on Al 2 O 3 /Al 0.85 In 0.15 N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al 2 O 3 as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al 2 O 3 /Al 0.85 In 0.15 N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics
Kimura, Kosei; Wada, Akira; Ueta, Masami; Ogata, Akihiko; Tanaka, Satoru; Sakai, Akiko; Yoshida, Hideji; Fushitani, Hideo; Miyamoto, Akiko; Fukushima, Masakazu; Uchiumi, Toshio; Tanigawa, Nobuhiko
2010-11-01
Many auxiliary functions of ribosomal proteins (r-proteins) have received considerable attention in recent years. However, human r-proteins have hardly been examined by proteomic analysis. In this study, we isolated ribosomal particles and subsequently compared the proteome of r-proteins between the DLD-1 human colon cancer cell line and its 5-fluorouracil (5-FU)-resistant sub-line, DLD-1/5-FU, using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis, which has a superior ability to separate basic proteins, and we discuss the role of r-proteins in 5-FU resistance. Densitometric analysis was performed to quantify modulated proteins, and protein spots showing significant changes were identified by employing matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Three basic proteins (L15, L37 and prohibitin) which were significantly modulated between DLD-1 and DLD-1/5-FU were identified. Two proteins, L15 and L37, showed down-regulated expression in DLD-1/5-FU in comparison to DLD-1. Prohibitin, which is not an r-protein and is known to be localized in the mitochondria, showed up-regulated expression in DLD-1/5-FU. These 3 proteins may be related to 5-FU resistance.
Li, Xiu-Mei; Luo, Xue-Gang; Zhang, Chao-Zheng; Wang, Nan; Zhang, Tong-Cun
2015-02-01
In this paper, a heart-cutting two-dimensional high-performance liquid chromatography coupled with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one-dimensional fingerprint, the second-dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were ＞0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second-dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tuning spin transport across two-dimensional organometallic junctions
Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping
2018-01-01
We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
International Nuclear Information System (INIS)
Lu, Xuena; Shang, Yu; Zhang, Sen; Deng, Chao
2015-01-01
Highlights: • Li 0.85 Na 0.15 V 3 O 8 nanosheet with superionic conductive layer was constructed. • Li x V 2 O 5 surface layer provides facile pathways for lithium migration. • Li x V 2 O 5 -Li 0.85 Na 0.15 V 3 O 8 composite displays good high rate capability. - Abstract: Poor ion transport and rate capability are the main challenges for LiV 3 O 8 as cathode material for lithium ion batteries. Here we report a novel strategy for enhancing lithium ion transport by building superionic pathways on the surface of Li 0.85 Na 0.15 V 3 O 8 nanosheet. The two-dimensional Li 0.85 Na 0.15 V 3 O 8 nanoparticle with an ion conductive layer of Li x V 2 O 5 on its surface is constructed by a modified sol–gel strategy with carefully controlled sodium incorporation and elements stoichiometry. Ultrathin Li x V 2 O 5 surface layer not only provides facile pathways for lithium migration, but also increases the structure stability during cycling. The Li x V 2 O 5 -Li 0.85 Na 0.15 V 3 O 8 composite displays good high rate capability of 172.3 mAh g −1 at 5C and excellent cycling stability of 98.9% over fifty cycles. This superior electrochemical property is attributed to the occupation of lithium site by Na + in LiV 3 O 8 host crystals and the surface superionic pathways of Li x V 2 O 5 phase. Therefore, the advantages of both high ion transport and the structure stabilization in present study put forward a new strategy for achieving high-performance LiV 3 O 8 electrode material with tailored nanoarchitecture
Electron cryomicroscopy of two-dimensional crystals of the H+-ATPase from chloroplasts
Böttcher, Bettina; Gräber, Peter; Boekema, Egbert J.; Lücken, Uwe
1995-01-01
The H+-ATPase from spinach chloroplasts was isolated and purified. Two-dimensional crystals were obtained from the protein/lipid/detergent micelles by treatment with phospholipase and simultaneous removal of detergent and fatty acids by Biobeads. The resulting two-dimensionally ordered arrays were
Farag, Marwa H.; Hoenders, Bernhard J.; Knoester, Jasper; Jansen, Thomas L. C.
2017-01-01
The effect of Gaussian dynamics on the line shapes in linear absorption and two-dimensional correlation spectroscopy is well understood as the second-order cumulant expansion provides exact spectra. Gaussian solvent dynamics can be well analyzed using slope line analysis of two-dimensional
Anisotropic strain in YBa2Cu3O7-δ films analysed by deconvolution of two-dimensional intensity data
International Nuclear Information System (INIS)
Broetz, J.; Fuess, H.
2001-01-01
The influence of the instrumental resolution on two-dimensional reflection profiles of epitaxic YBa 2 Cu 3 O 7-δ films on SrTiO 3 (001) has been studied in order to investigate the strain in the superconducting films. The X-ray diffraction intensity data were obtained by two-dimensional scans in reciprocal space (q-scan). Since the reflection broadening caused by the apparatus differs for each position in reciprocal space, a highly crystalline substrate was used as a standard. Thus it was possible to measure a standard very close to the YBa 2 Cu 3 O 7-δ reflections in reciprocal space. The two-dimensional deconvolution of reflections by a new computer program revealed an anisotropic strain of the two twinning systems of the film. (orig.)
One and two dimensional simulations on beat wave acceleration
International Nuclear Information System (INIS)
Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.
1984-01-01
Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept
Vector current scattering in two dimensional quantum chromodynamics
International Nuclear Information System (INIS)
Fleishon, N.L.
1979-04-01
The interaction of vector currents with hadrons is considered in a two dimensional SU(N) color gauge theory coupled to fermions in leading order in an N -1 expansion. After giving a detailed review of the model, various transition matrix elements of one and two vector currents between hadronic states were considered. A pattern is established whereby the low mass currents interact via meson dominance and the highly virtual currents interact via bare quark-current couplings. This pattern is especially evident in the hadronic contribution to inelastic Compton scattering, M/sub μν/ = ∫ dx e/sup iq.x/ , which is investigated in various kinematic limits. It is shown that in the dual Regge region of soft processes the currents interact as purely hadronic systems. Modification of dimensional counting rules is indicated by a study of a large angle scattering analog. In several hard inclusive nonlight cone processes, parton model ideas are confirmed. The impulse approximation is valid in a Bjorken--Paschos-like limit with very virtual currents. A Drell--Yan type annihilation mechanism is found in photoproduction of massive lepton pairs, leading to identification of a parton wave function for the current. 56 references
Vector (two-dimensional) magnetic phenomena
International Nuclear Information System (INIS)
Enokizono, Masato
2002-01-01
In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Airy beams on two dimensional materials
Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping
2018-05-01
We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.
Two-dimensional heat flow apparatus
McDougall, Patrick; Ayars, Eric
2014-06-01
We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
Quantum phases of dipolar rotors on two-dimensional lattices.
Abolins, B P; Zillich, R E; Whaley, K B
2018-03-14
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Quantum phases of dipolar rotors on two-dimensional lattices
Abolins, B. P.; Zillich, R. E.; Whaley, K. B.
2018-03-01
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Resistive-strips micromegas detectors with two-dimensional readout
Byszewski, M.; Wotschack, J.
2012-02-01
Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
DEFF Research Database (Denmark)
Chen, Yunzhong; Bovet, N.; Trier, Felix
2013-01-01
The discovery of two-dimensional electron gases at the heterointerface between two insulating perovskite-type oxides, such as LaAlO3 and SrTiO3, provides opportunities for a new generation of all-oxide electronic devices. Key challenges remain for achieving interfacial electron mobilities much...
High-order finite volume advection
Shaw, James
2018-01-01
The cubicFit advection scheme is limited to second-order convergence because it uses a polynomial reconstruction fitted to point values at cell centres. The highOrderFit advection scheme achieves higher than second order by calculating high-order moments over the mesh geometry.
Energy Technology Data Exchange (ETDEWEB)
Freedsman, J. J., E-mail: freedy54@gmail.com; Watanabe, A.; Urayama, Y. [Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Egawa, T., E-mail: egawa.takashi@nitech.ac.jp [Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan)
2015-09-07
The authors report on Al{sub 2}O{sub 3}/Al{sub 0.85}In{sub 0.15}N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al{sub 2}O{sub 3} as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al{sub 2}O{sub 3}/Al{sub 0.85}In{sub 0.15}N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics.
Zeng, L W; Singh, R S
1993-09-01
We have attempted to estimate the number of genes involved in postzygotic reproductive isolation between two closely related species, Drosophila simulans and Drosophila sechellia, by a novel approach that involves the use of high resolution two-dimensional gel electrophoresis (2DE) to examine testis proteins in parents, hybrids and fertile and sterile backcross progenies. The important results that have emerged from this study are as follows: (1) about 8% of about 1000 proteins examined showed divergence (presence/absence) between the two species; (2) by tracing individual proteins in parental, hybrid and backcross males, we were able to associate the divergent proteins with different chromosomes and found that most divergent proteins are associated with autosomes and very few with X chromosome, Y chromosome and cytoplasm; (3) when proteins showing both quantitative and qualitative differences between the two species were examined in F1 hybrid males, most (97.4%) proteins were expressed at levels between the two parents and no sign of large scale changes in spot density was observed. All the proteins observed in the two parental species were present in F1 hybrid males except two species-specific proteins that may be encoded (or regulated) by sex chromosomes; (4) when different fertile and sterile backcross male testes were compared, a few D. sechellia-specific proteins were identified to be consistently associated with male sterility. These results along with the observation that a large proportion (23.6%) of first generation backcross males were fertile show that hybrid male sterility between D. simulans and D. sechellia involves a relatively small number of genes. Role of large scale genetic changes due to general genome incompatibility is not supported. The results also suggest that the large effect of X chromosome on hybrid male sterility is not due to higher divergence of X chromosome than autosomes.
Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration
Vignal, Philippe
2015-06-01
In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.
High-Order Hamilton's Principle and the Hamilton's Principle of High-Order Lagrangian Function
International Nuclear Information System (INIS)
Zhao Hongxia; Ma Shanjun
2008-01-01
In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.
Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.
Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B
2018-06-04
Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.
Two-dimensional simulation of sintering process
International Nuclear Information System (INIS)
Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.
1996-01-01
The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Pressure of two-dimensional Yukawa liquids
International Nuclear Information System (INIS)
Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin
2016-01-01
A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)
Geometrical aspects of solvable two dimensional models
International Nuclear Information System (INIS)
Tanaka, K.
1989-01-01
It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Two-dimensional phase fraction charts
International Nuclear Information System (INIS)
Morral, J.E.
1984-01-01
A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams
Two-dimensional motions of rockets
International Nuclear Information System (INIS)
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights
Two dimensional NMR studies of polysaccharides
International Nuclear Information System (INIS)
Byrd, R.A.; Egan, W.; Summers, M.F.
1987-01-01
Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Versatile two-dimensional transition metal dichalcogenides
DEFF Research Database (Denmark)
Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max
), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Experimental two-dimensional quantum walk on a photonic chip.
Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min
2018-05-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.
Multiscale high-order/low-order (HOLO) algorithms and applications
International Nuclear Information System (INIS)
Chacón, L.; Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W.; Willert, J.A.; Womeldorff, G.
2017-01-01
We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.
Multiscale high-order/low-order (HOLO) algorithms and applications
Energy Technology Data Exchange (ETDEWEB)
Chacón, L., E-mail: chacon@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Willert, J.A. [Institute for Defense Analyses, Alexandria, VA 22311 (United States); Womeldorff, G. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2017-02-01
We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.
Two dimensional hybrid simulation of a curved bow shock
International Nuclear Information System (INIS)
Thomas, V.A.; Winske, D.
1990-01-01
Results are presented from two dimensional hybrid simulations of curved collisionless supercritical shocks, retaining both quasi-perpendicular and quasi-parallel sections of the shock in order to study the character and origin of the foreshock ion population. The simulations demonstrate that the foreshock ion population is dominated by ions impinging upon the quasi-parallel side of the shock, while nonlocal transport from the quasi-perpendicular side of the shock into the foreshock region is minimal. Further, it is shown that the ions gain energy by drifting significantly in the direction of the convection electric field through multiple shock encounters
Nonlinear aerodynamics of two-dimensional airfoils in severe maneuver
Scott, Matthew T.; Mccune, James E.
1988-01-01
This paper presents a nonlinear theory of forces and moment acting on a two-dimensional airfoil in unsteady potential flow. Results are obtained for cases of both large and small amplitude motion. The analysis, which is based on an extension of Wagner's integral equation to the nonlinear regime, takes full advantage of the trailing wake's tendency to deform under local velocities. Interactive computational results are presented that show examples of wake-induced lift and moment augmentation on the order of 20 percent of quasi-static values. The expandability and flexibility of the present computational method are noted, as well as the relative speed with which solutions are obtained.
Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry
International Nuclear Information System (INIS)
Pascoli, G.
1990-01-01
Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure
Mixed-symmetry superconductivity in two-dimensional Fermi liquids
International Nuclear Information System (INIS)
Musaelian, K.A.; Betouras, J.; Chubukov, A.V.; Joynt, R.
1996-01-01
We consider a two-dimensional (2D) isotropic Fermi liquid with attraction in both s and d channels and examine the possibility of a superconducting state with mixed s and d symmetry of the gap function. We show that both in the weak-coupling limit and at strong coupling, a mixed s+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+d symmetry state at any coupling. copyright 1996 The American Physical Society
Two dimensional NMR of liquids and oriented molecules
International Nuclear Information System (INIS)
Gochin, M.
1987-02-01
Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of 13 C and 1 H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface
Two dimensional NMR of liquids and oriented molecules
Energy Technology Data Exchange (ETDEWEB)
Gochin, M.
1987-02-01
Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.
Hasei, Tomohiro; Nakanishi, Haruka; Toda, Yumiko; Watanabe, Tetsushi
2012-08-31
3-Nitrobenzanthrone (3-NBA) is an extremely strong mutagen and carcinogen in rats inducing squamous cell carcinoma and adenocarcinoma. We developed a new sensitive analytical method, a two-dimensional HPLC system coupled with on-line reduction, to quantify non-fluorescent 3-NBA as fluorescent 3-aminobenzanthrone (3-ABA). The two-dimensional HPLC system consisted of reversed-phase HPLC and normal-phase HPLC, which were connected with a switch valve. 3-NBA was purified by reversed-phase HPLC and reduced to 3-ABA with a catalyst column, packed with alumina coated with platinum, in ethanol. An alcoholic solvent is necessary for reduction of 3-NBA, but 3-ABA is not fluorescent in the alcoholic solvent. Therefore, 3-ABA was separated from alcohol and impurities by normal-phase HPLC and detected with a fluorescence detector. Extracts from surface soil, airborne particles, classified airborne particles, and incinerator dust were applied to the two-dimensional HPLC system after clean-up with a silica gel column. 3-NBA, detected as 3-ABA, in the extracts was found as a single peak on the chromatograms without any interfering peaks. 3-NBA was detected in 4 incinerator dust samples (n=5). When classified airborne particles, that is, those 7.0 μm in size, were applied to the two-dimensional HPLC system after purified using a silica gel column, 3-NBA was detected in those particles with particle sizes NBA in airborne particles and the detection of 3-NBA in incinerator dust. Copyright © 2012 Elsevier B.V. All rights reserved.
Cheng, Cheanyeh; Wu, Shing-Chen
2011-05-20
An innovative two-dimensional high-performance liquid chromatography system was developed for the simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero. A C8 reversed-phase chromatographic column with ultraviolet detection was used as the first dimension for the determination of aspartame, and a ligand-exchange chromatographic column with on-line postcolumn derivation fluorescence detection was employed as the second dimension for the analysis of amino acid enantiomers. The fluorimetric derivative reagent of amino acid enantiomers was o-phthaldialdehyde. The hydrolysis of aspartame in Coca-Cola Zero was induced by electric-heating or microwave heating. Aspartame was quantified by the matrix matched external standard calibration curve with a linear concentration range of 0-50 μg mL(-1) (r(2)=0.9984). The limit of detection (LOD) and the limit of quantification (LOQ) were 1.3 μg mL(-1) and 4.3 μg mL(-1), respectively. The amino acid enantiomers was analyzed by the matrix matched internal standard calibration method (D-leucine as the internal standard) with a linear concentration range of 0-10 μg mL(-1) (r(2)=0.9988-0.9997). The LODs and LOQs for L- and D-aspartic acid and L- and D-phenylalanine were 0.16-0.17 μg mL(-1) and 0.52-0.55 μg mL(-1), respectively, that was 12-13 times more sensitive than ultraviolet detection. The overall analysis accuracy for aspartame and amino acid enantiomers was 90.2-99.2% and 90.4-96.2%, respectively. The overall analysis precision for aspartame and amino acid enantiomers was 0.1-1.7% and 0.5-6.7%, respectively. Generally, the extent of aspartame hydrolysis increases with the increase of electro-thermal temperature, microwave power, and the duration of hydrolysis time. D-aspartic acid and D-phenylalanine can be observed with the electro-thermal racemization at the hydrolysis temperature 120°C for 1 day and only D-aspartic acid can be observed at the hydrolysis temperature 90°C for 2 and 3 days. For
Park, H J; Lee, S Y; Kim, M S; Choi, S H; Chung, E C; Kook, S H; Kim, E
2015-03-01
To evaluate the diagnostic accuracy of three-dimensional (3D) enhanced T1 high-resolution isotropic volume excitation (eTHRIVE) shoulder MR for the detection of rotator cuff tears, labral lesions and calcific tendonitis of the rotator cuff in comparison with two-dimensional (2D) fast spin echo T2 fat saturation (FS) MR. This retrospective study included 73 patients who underwent shoulder MRI using the eTHRIVE technique. Shoulder MR images were interpreted separately by two radiologists. They evaluated anatomic identification and image quality of the shoulder joint on routine MRI sequences (axial and oblique coronal T2 FS images) and compared them with the reformatted eTHRIVE images. The images were scored on a four-point scale (0, poor; 1, questionable; 2, adequate; 3, excellent) according to the degree of homogeneous and sufficient fat saturation to penetrate bone and soft tissue, visualization of the glenoid labrum and distinction of the supraspinatus tendon (SST). The diagnostic accuracy of eTHRIVE images compared with routine MRI sequences was evaluated in the setting of rotator cuff tears, glenoid labral injuries and calcific tendonitis of the SST. Fat saturation scores for eTHRIVE were significantly higher than those of the T2 FS for both radiologists. The sensitivity and accuracy of the T2 FS in diagnosing rotor cuff tears were >90%, whereas sensitivity and accuracy of the eTHRIVE method were significantly lower. The sensitivity, specificity and accuracy of both images in diagnosing labral injuries and calcific tendonitis were similar and showed no significant differences. The specificity of both images for the diagnosis of labral injuries and calcific tendonitis was higher than the sensitivities. The accuracy of 3D eTHRIVE imaging was comparable to that of 2D FSE T2 FS for the diagnosis of glenoid labral injury and calcific tendonitis of SST. The 3D eTHRIVE technique was superior to 2D FSE T2 FS in terms of fat saturation. Overall, 3D eTHRIVE was inferior
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr
Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan
2017-02-01
It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.
High-Order Frequency-Locked Loops
DEFF Research Database (Denmark)
Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez
2017-01-01
In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...
Electronic Transport in Two-Dimensional Materials
Sangwan, Vinod K.; Hersam, Mark C.
2018-04-01
Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.
Stress distribution in two-dimensional silos
Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel
2018-01-01
Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Seismic isolation of two dimensional periodic foundations
International Nuclear Information System (INIS)
Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.
2014-01-01
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Two-dimensional transport of tokamak plasmas
International Nuclear Information System (INIS)
Hirshman, S.P.; Jardin, S.C.
1979-01-01
A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Buckled two-dimensional Xene sheets.
Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji
2017-02-01
Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.
Two-dimensional imaging of Debye-Scherrer ring for tri-axial stress analysis of industrial materials
International Nuclear Information System (INIS)
Sasaki, T; Maruyama, Y; Ohba, H; Ejiri, S
2014-01-01
In this study, an application of the two-dimensional imaging technology to the X ray tri-axial stress analysis was studied. An image plate (IP) was used to obtain a Debye-Scherre ring and the image data was analized for determining stress. A new principle for stress analysis which is suitable to two-dimensional imaging data was used. For the verification of this two-dimensional imaging type X-ray stress measurement method, an experiment was conducted using a ferritic steel sample which was processed with a surface grinder. Tri-axial stress analysis was conducted to evaluate the sample. The conventional method for X-ray tri-axial stress analysis proposed by Dölle and Hauk was used to evaluate residual stress in order to compare with the present method. As a result, it was confirmed that a sufficiently highly precise and high-speed stress measurement was enabled with the two-dimensional imaging technology compared with the conventional method
Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins
International Nuclear Information System (INIS)
Ojima, N.; Sakamoto, T.; Yamashita, M.
1996-01-01
Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation
Statistical mechanics of two-dimensional and geophysical flows
International Nuclear Information System (INIS)
Bouchet, Freddy; Venaille, Antoine
2012-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.
Two-dimensional core calculation research for fuel management optimization based on CPACT code
International Nuclear Information System (INIS)
Chen Xiaosong; Peng Lianghui; Gang Zhi
2013-01-01
Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)
Focused two-dimensional antiscatter grid for mammography
International Nuclear Information System (INIS)
Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.
2002-01-01
We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
Energy Technology Data Exchange (ETDEWEB)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.
2015-12-17
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
Sample preparation guidelines for two-dimensional electrophoresis.
Posch, Anton
2014-12-01
Sample preparation is one of the key technologies for successful two-dimensional electrophoresis (2DE). Due to the great diversity of protein sample types and sources, no single sample preparation method works with all proteins; for any sample the optimum procedure must be determined empirically. This review is meant to provide a broad overview of the most important principles in sample preparation in order to avoid a multitude of possible pitfalls. Sample preparation protocols from the expert in the field were screened and evaluated. On the basis of these protocols and my own comprehensive practical experience important guidelines are given in this review. The presented guidelines will facilitate straightforward protocol development for researchers new to gel-based proteomics. In addition the available choices are rationalized in order to successfully prepare a protein sample for 2DE separations. The strategies described here are not limited to 2DE and can also be applied to other protein separation techniques.
Discrete formulation for two-dimensional multigroup neutron diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Vosoughi, Naser E-mail: vosoughi@mehr.sharif.edu; Salehi, Ali A.; Shahriari, Majid
2003-02-01
The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method.
Discrete formulation for two-dimensional multigroup neutron diffusion equations
International Nuclear Information System (INIS)
Vosoughi, Naser; Salehi, Ali A.; Shahriari, Majid
2003-01-01
The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal
International Nuclear Information System (INIS)
Konno, R; Hatayama, N; Takahashi, Y; Nakano, H
2009-01-01
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.
A high-order solver for aerodynamic flow simulations and comparison of different numerical schemes
Mikhaylov, Sergey; Morozov, Alexander; Podaruev, Vladimir; Troshin, Alexey
2017-11-01
An implementation of high order of accuracy Discontinuous Galerkin method is presented. Reconstruction is done for the conservative variables. Gradients are calculated using the BR2 method. Coordinate transformations are done by serendipity elements. In computations with schemes of order higher than 2, curvature of the mesh lines is taken into account. A comparison with finite volume methods is performed, including WENO method with linear weights and single quadrature point on a cell side. The results of the following classical tests are presented: subsonic flow around a circular cylinder in an ideal gas, convection of two-dimensional isentropic vortex, and decay of the Taylor-Green vortex.
High-order passive photonic temporal integrators.
Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José
2010-04-15
We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.
Growth and characterization of two-dimensional nanostructures
International Nuclear Information System (INIS)
Herrera Sancho, Oscar Andrey
2008-01-01
Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es
High-order beam optics - an overview
International Nuclear Information System (INIS)
Heighway, E.A.
1989-01-01
Beam-transport codes have been around for as long as thirty years and high order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. The author will describe some of the main design tools available today, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs., 1 tab
Two dimensional estimates from ocean SAR images
Directory of Open Access Journals (Sweden)
J. M. Le Caillec
1996-01-01
Full Text Available Synthetic Aperture Radar (SAR images of the ocean yield a lot of information on the sea-state surface providing that the mapping process between the surface and the image is clearly defined. However it is well known that SAR images exhibit non-gaussian statistics and that the motion of the scatterers on the surface, while the image is being formed, may yield to nonlinearities. The detection and quantification of these nonlinearities are made possible by using Higher Order Spectra (HOS methods and more specifically, bispectrum estimation. The development of the latter method allowed us to find phase relations between different parts of the image and to recognise their level of coupling, i.e. if and how waves of different wavelengths interacted nonlinearly. This information is quite important as the usual models assume strong nonlinearities when the waves are propagating in the azimuthal direction (i.e. along the satellite track and almost no nonlinearities when propagating in the range direction. In this paper, the mapping of the ocean surface to the SAR image is reinterpreted and a specific model (i.e. a Second Order Volterra Model is introduced. The nonlinearities are thus explained as either produced by a nonlinear system or due to waves propagating into selected directions (azimuth or range and interacting during image formation. It is shown that quadratic nonlinearities occur for waves propagating near the range direction while for those travelling in the azimuthal direction the nonlinearities, when present, are mostly due to wave interactions but are almost completely removed by the filtering effect coming from the surface motion itself (azimuth cut-off. An inherent quadratic interaction filtering (azimuth high pass filter is also present. But some other effects, apparently nonlinear, are not detected with the methods described here, meaning that either the usual relation developed for the Ocean-to-SAR transform is somewhat incomplete
A microprocessor based on a two-dimensional semiconductor
Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas
2017-04-01
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
Strain-engineered growth of two-dimensional materials.
Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali
2017-09-20
The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.
Development of two dimensional electrophoresis method using single chain DNA
International Nuclear Information System (INIS)
Ikeda, Junichi; Hidaka, So
1998-01-01
By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Static and dynamic properties of two-dimensional Coulomb clusters.
Ash, Biswarup; Chakrabarti, J; Ghosal, Amit
2017-10-01
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Two-dimensional strain gradient damage modeling: a variational approach
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Bifurcated equilibria in two-dimensional MHD with diamagnetic effects
International Nuclear Information System (INIS)
Ottaviani, M.; Tebaldi, C.
1998-12-01
In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)
Two-Dimensional Perovskite Activation with an Organic Luminophore.
Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle
2015-10-07
A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers.
On wakefields with two-dimensional planar geometry
International Nuclear Information System (INIS)
Chao, A.W.; Bane, K.L.F.
1996-10-01
In order to reach higher acceleration gradients in linear accelerators, it is advantageous to use a higher accelerating RF frequency, which in turn requires smaller accelerating structures. As the structure size becomes smaller, rectangular structures become increasingly interesting because they are easier to construct than cylindrically symmetric ones. One drawback of small structures, however, is that the wakefields generated by the beam in such structures tend to be strong. Recently, it has been suggested that one way of ameliorating this problem is to use rectangular structures that are very flat and to use flat beams. In the limiting case of a very flat planar geometry, the problem resembles a purely two-dimensional (2-D) problem, the wakefields of which have been studied
Ion distributions in a two-dimensional reconnection field geometry
International Nuclear Information System (INIS)
Curran, D.B.; Goertz, C.K.; Whelan, T.A.
1987-01-01
ISEE observations have shown trapped ion distributions in the magnetosphere along with streaming ion distributions in the magnetosheath. The more energetic ion beams are found to exist further away from the magnetopause than lower-energy ion beams. In order to understand these properties of the data, we have taken a simple two-dimensional reconnection model which contains a neutral line and an azimuthal electric field and compared its predictions with the experimental data of September 8, 1978. Our model explains trapped particles in the magnetosphere due to nonadiabatic mirroring in the magnetosheath and streaming ions in the magnetosheath due to energization at the magnetopause. The model also shows the higher-energy ions extending further into the magnetosheath, away from the magnetopause than the lower-energy ions. This suggests the ion data of September 8, 1978 are consistent with a reconnection geometry. Copyright American Geophysical Union 1987
Two-dimensional random arrays for real time volumetric imaging
DEFF Research Database (Denmark)
Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.
1994-01-01
real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...
Seismic isolation of buildings on two dimensional phononic crystal foundation
Han, Lin; Li, Xiao-mei; Zhang, Yan
2017-11-01
In order to realize the seismic isolation of buildings, we establish the two dimensional phononic crystal (PC) foundation which has the cell with the size close to the regular concrete test specimens, and is composed of the concrete base, rubber coating and lead cylindrical core. We study the in-plane band gap (BG) characteristics in it, through the analysis of the frequency dispersion relation and frequency response result. To lower the start BG frequency to the seismic frequency range, we also study the influences of material parameters (the elastic modulus of coating and density of cylindrical core) and geometry parameters (the thickness of coating, radius of cylindrical core and lattice constant) on BG ranges. The study could help to design the PC foundation for seismic isolation of building.
Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.
Zhao, Ziguang; Fang, Ruochen; Rong, Qinfeng; Liu, Mingjie
2017-12-01
In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lie algebra contractions on two-dimensional hyperboloid
International Nuclear Information System (INIS)
Pogosyan, G. S.; Yakhno, A.
2010-01-01
The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.
Consistent two-dimensional visualization of protein-ligand complex series
Directory of Open Access Journals (Sweden)
Stierand Katrin
2011-06-01
Full Text Available Abstract Background The comparative two-dimensional graphical representation of protein-ligand complex series featuring different ligands bound to the same active site offers a quick insight in their binding mode differences. In comparison to arbitrary orientations of the residue molecules in the individual complex depictions a consistent placement improves the legibility and comparability within the series. The automatic generation of such consistent layouts offers the possibility to apply it to large data sets originating from computer-aided drug design methods. Results We developed a new approach, which automatically generates a consistent layout of interacting residues for a given series of complexes. Based on the structural three-dimensional input information, a global two-dimensional layout for all residues of the complex ensemble is computed. The algorithm incorporates the three-dimensional adjacencies of the active site residues in order to find an universally valid circular arrangement of the residues around the ligand. Subsequent to a two-dimensional ligand superimposition step, a global placement for each residue is derived from the set of already placed ligands. The method generates high-quality layouts, showing mostly overlap-free solutions with molecules which are displayed as structure diagrams providing interaction information in atomic detail. Application examples document an improved legibility compared to series of diagrams whose layouts are calculated independently from each other. Conclusions The presented method extends the field of complex series visualizations. A series of molecules binding to the same protein active site is drawn in a graphically consistent way. Compared to existing approaches these drawings substantially simplify the visual analysis of large compound series.
Coding for Two Dimensional Constrained Fields
DEFF Research Database (Denmark)
Laursen, Torben Vaarbye
2006-01-01
a first order model to model higher order constraints by the use of an alphabet extension. We present an iterative method that based on a set of conditional probabilities can help in choosing the large numbers of parameters of the model in order to obtain a stationary model. Explicit results are given...... for the No Isolated Bits constraint. Finally we present a variation of the encoding scheme of bit-stuffing that is applicable to the class of checkerboard constrained fields. It is possible to calculate the entropy of the coding scheme thus obtaining lower bounds on the entropy of the fields considered. These lower...... bounds are very tight for the Run-Length limited fields. Explicit bounds are given for the diamond constrained field as well....
COBRA/TRAC analysis of two-dimensional thermal-hydraulic behavior in SCTF reflood tests
International Nuclear Information System (INIS)
Iwamura, Takamichi; Ohnuki, Akira; Sobajima, Makoto; Adachi, Hiromichi
1987-01-01
The effects of radial power distribution and non-uniform upper plenum water accumulation on thermal-hydraulic behavior in the core were observed in the reflood tests with Slab Core Test Facility (SCTF). In order to examine the predictability of these two effects by a multi-dimensional analysis code, the COBRA/TRAC calculations were made. The calculated results indicated that the heat transfer enhancement in high power bundles above quench front was caused by high vapor flow rate in those bundles due to the radial power distribution. On the other hand, the heat transfer degradation in the peripheral bundles under the condition of non-uniform upper plenum water accumulation was caused by the lower flow rates of vapor and entrained liquid above the quench front in those bundles by the reason that vapor concentrated in the center bundles due to the cross flow induced by the horizontal pressure gradient in the core. The above-mentioned two-dimensional heat transfer behaviors calculated with the COBRA/TRAC code is similar to those observed in SCTF tests and therefore those calculations are useful to investigate the mechanism of the two-dimensional effects in SCTF reflood tests. (author)
Two-Dimensional Halide Perovskites for Emerging New- Generation Photodetectors
DEFF Research Database (Denmark)
Tang, Yingying; Cao, Xianyi; Chi, Qijin
2018-01-01
Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two...... distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (i.e. MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D...... halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, color tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights...
Guo, Chuan Fei; Cao, Sihai; Zhang, Jianming; Tang, Haoying; Guo, Shengming; Tian, Ye; Liu, Qian
2011-06-01
Design and synthesis of super-nanostructures is one of the key and prominent topics in nanotechnology. Here we propose a novel methodology for synthesizing complex hierarchical superstructures using sacrificial templates composed of ordered two-dimensional (2D) nanostructures through lattice-directed topotactic transformations. The fabricated superstructures are nested 2D orthogonal Bi(2)S(3) networks composed of nanorods. Further investigation indicates that the lattice matching between the product and sacrificial template is the dominant mechanism for the formation of the superstructures, which agrees well with the simulation results based on an anisotropic nucleation and growth analysis. Our approach may provide a promising way toward a lattice-directed nonlithographic nanofabrication technique for making functional porous nanoarchitectures and electronic devices. © 2011 American Chemical Society
Energy Technology Data Exchange (ETDEWEB)
Alcover, Ignacio Blazquez; David, Rénald; Daviero-Minaud, Sylvie; Filimonov, Dmitry; Huvé, Marielle; Roussel, Pascal; Kabbour, Houria; Mentré, Olivier [CNRS-UMR
2015-08-12
We show here that the exsolution of Fe^{2+} ions out of two-dimensional (2D) honeycomb layers of BaFe_{2}(PO_{4})_{2 }into iron-deficient BaFe_{2–x}(PO_{4})_{2} phases and nanometric α-Fe_{2}O_{3} (typically 50 nm diameter at the grain surface) is efficient and reversible until x = 2/3 in mild oxidizing/reducing conditions. It corresponds to the renewable conversion of 12 wt % of the initial mass into iron oxide. After analyzing single crystal X-ray diffraction data of intermediate members x = 2/7, x = 1/3, x = 1/2 and the ultimate Fe-depleted x = 2/3 term, we then observed a systematic full ordering between Fe ions and vacancies (V_{Fe}) that denote unprecedented easy in-plane metal diffusion driven by the Fe^{2+}/Fe^{3+} redox. Besides the discovery of a diversity of original depleted triangular _{∞}{Fe^{2/3+}_{2–x}O_{6}} topologies, we propose a unified model correlating the x Fe-removal and the experimental Fe/V_{Fe} ordering into periodic one-dimensional motifs paving the layers, gaining insights into predictive crystahemistry of complex low dimensional oxides. When we increased the x values it led to a progressive change of the materials from 2D ferromagnets (Fe2+) to 2D ferrimagnets (Fe2/3+) to antiferromagnets for x = 2/3 (Fe3+).
Two-dimensional melting of colloids with long-range attractive interactions.
Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa
2017-02-22
The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.
High-order shock-fitted detonation propagation in high explosives
Romick, Christopher M.; Aslam, Tariq D.
2017-03-01
A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Solution of the two-dimensional spectral factorization problem
Lawton, W. M.
1985-01-01
An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; van Heijst, G.J.F.
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; Heijst, van G.J.F.
2009-01-01
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Self-organized defect strings in two-dimensional crystals.
Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph
2013-12-01
Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Two-Dimensional Tellurene as Excellent Thermoelectric Material
Sharma, Sitansh
2018-04-20
We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
Energy Technology Data Exchange (ETDEWEB)
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens, E-mail: bredenbeck@biophysik.uni-frankfurt.org, E-mail: bredenbeck@biophysik.uni-frankfurt.de [Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)
2015-08-15
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.
Two-dimensional electronic spectroscopy with birefringent wedges
Energy Technology Data Exchange (ETDEWEB)
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Atomically thin two-dimensional organic-inorganic hybrid perovskites
Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong
2015-09-01
Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.
Selective growth of two-dimensional phosphorene on catalyst surface.
Qiu, L; Dong, J C; Ding, F
2018-02-01
Although the study of black phosphorene (BP) and its isomers has attracted enormous attention, the method of synthesizing high-quality samples in a large area is still pending. Here we explore the potential of using the chemical vapor deposition method to synthesize large-area two-dimensional (2D) phosphorene films on metal surfaces. Our ab initio calculations show that BP can be synthesized by using tin (Sn) as a catalyst, while one of its isomers, blue phosphorene (BLP), is very possible to be synthesized by using most other metals, such as Ag and Au. Besides, our study also suggests that the large binding energy between the 2D phosphorene and the active metal substrate may prohibit the exfoliation of the 2D phosphorene for real applications and, therefore, tin, silver and gold are predicted to be the most suitable catalysts for the synthesis of BP and BLP.
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
International Nuclear Information System (INIS)
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens
2015-01-01
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported
Finite volume model for two-dimensional shallow environmental flow
Simoes, F.J.M.
2011-01-01
This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.
Two-dimensional electrophoretic analysis of nuclear matrix proteins in human colon adenocarcinoma.
Toumpanaki, A; Baltatzis, G E; Gaitanarou, E; Seretis, E; Toumpanakis, C; Aroni, K; Kittas, Christos; Voloudakis-Baltatzis, I E
2009-01-01
The aim of the present study was to observe possible qualitative and quantitative expression differences between nuclear matrix proteins (NMPs) of human colon adenocarcinoma and their mirror biopsies, using the technique of two-dimensional gel electrophoresis, in order to identify the existence of specific NMP fingerprints for colon cancer. Colon tissues were examined ultrastructurally and NMPs were isolated biochemically, by serial extraction of lipids, soluble proteins, DNA, RNA, and intermediate filaments and were separated according to their isoelectric point (pI) and their molecular weight (MW) by high-resolution two-dimensional electrophoresis (2D). By comparing the 2D electropherograms of colon cancer tissues and mirror biopsy tissues we observed qualitative and quantitative expression differences between their NMPs but also a differentiation of NMP composition between the stages of malignancy. Moreover, despite the similarities between mirror biopsy samples, a highlight percentage of exception was observed. Electrophoretic results provided in this study demonstrated that the examined NMPs could be further investigated as potential markers for detection of colorectal cancer in an early stage, for the assessment of the disease progression, as well as useful tools for individual therapy and for preventing a possible recurrence of cancer and metastasis.
Superfluid transition of homogeneous and trapped two-dimensional Bose gases.
Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck
2007-01-30
Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.
Directory of Open Access Journals (Sweden)
Yong Cai
2015-01-01
Full Text Available Chemical fingerprinting is currently a widely used tool that enables rapid and accurate quality evaluation of Traditional Chinese Medicine (TCM. However, chemical fingerprints are not amenable to information storage, recognition, and retrieval, which limit their use in Chinese medicine traceability. In this study, samples of three kinds of Chinese medicines were randomly selected and chemical fingerprints were then constructed by using high performance liquid chromatography. Based on chemical data, the process of converting the TCM chemical fingerprint into two-dimensional code is presented; preprocess and filtering algorithm are also proposed aiming at standardizing the large amount of original raw data. In order to know which type of two-dimensional code (2D is suitable for storing data of chemical fingerprints, current popular types of 2D codes are analyzed and compared. Results show that QR Code is suitable for recording the TCM chemical fingerprint. The fingerprint information of TCM can be converted into data format that can be stored as 2D code for traceability and quality control.
Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie
2017-10-02
Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.
Two dimensional electron systems for solid state quantum computation
Mondal, Sumit
Two dimensional electron systems based on GaAs/AlGaAs heterostructures are extremely useful in various scientific investigations of recent times including the search for quantum computational schemes. Although significant strides have been made over the past few years to realize solid state qubits on GaAs/AlGaAs 2DEGs, there are numerous factors limiting the progress. We attempt to identify factors that have material and design-specific origin and develop ways to overcome them. The thesis is divided in two broad segments. In the first segment we describe the realization of a new field-effect induced two dimensional electron system on GaAs/AlGaAs heterostructure where the novel device-design is expected to suppress the level of charge noise present in the device. Modulation-doped GaAs/AlGaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect that is tunable over a density range of 6.5x10 10cm-2 to 2.6x1011cm-2 . Device design, fabrication, and low temperature (T=0.3K) characterization results are discussed. The demonstrated device-design overcomes several existing limitations in the fabrication of field-induced 2DEGs and might find utility in hosting nanostructures required for making spin qubits. The second broad segment describes our effort to correlate transport parameters measured at T=0.3K to the strength of the fractional quantum Hall state observed at nu=5/2 in the second Landau level of high-mobility GaAs/AlGaAs two dimensional
High-order nonlinear susceptibilities of He
International Nuclear Information System (INIS)
Liu, W.C.; Clark, C.W.
1996-01-01
High-order nonlinear optical response of noble gases to intense laser radiation is of considerable experimental interest, but is difficult to measure or calculate accurately. The authors have begun a set of calculations of frequency-dependent nonlinear susceptibilities of He 1s, within the framework of Rayleigh=Schroedinger perturbation theory at lowest applicable order, with the goal of providing critically evaluated atomic data for modelling high harmonic generation processes. The atomic Hamiltonian is decomposed in term of Hylleraas coordinates and spherical harmonics using the formalism of Ponte and Shakeshaft, and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively. A combination of Hylleraas and Frankowski basis functions is used; the compact Hylleraas basis provides a highly accurate representation of the ground state wavefunction, whereas the diffuse Frankowski basis functions efficiently reproduce the correct asymptotic structure of the perturbed orbitals
Willemse, Chandré M; Stander, Maria A; Vestner, Jochen; Tredoux, Andreas G J; de Villiers, André
2015-12-15
Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.
Two dimensional layered materials: First-principle investigation
Tang, Youjian
Two-dimensional layered materials have emerged as a fascinating research area due to their unique physical and chemical properties, which differ from those of their bulk counterparts. Some of these unique properties are due to carriers and transport being confined to 2 dimensions, some are due to lattice symmetry, and some arise from their large surface area, gateability, stackability, high mobility, spin transport, or optical accessibility. How to modify the electronic and magnetic properties of two-dimensional layered materials for desirable long-term applications or fundamental physics is the main focus of this thesis. We explored the methods of adsorption, intercalation, and doping as ways to modify two-dimensional layered materials, using density functional theory as the main computational methodology. Chapter 1 gives a brief review of density functional theory. Due to the difficulty of solving the many-particle Schrodinger equation, density functional theory was developed to find the ground-state properties of many-electron systems through an examination of their charge density, rather than their wavefunction. This method has great application throughout the chemical and material sciences, such as modeling nano-scale systems, analyzing electronic, mechanical, thermal, optical and magnetic properties, and predicting reaction mechanisms. Graphene and transition metal dichalcogenides are arguably the two most important two-dimensional layered materials in terms of the scope and interest of their physical properties. Thus they are the main focus of this thesis. In chapter 2, the structure and electronic properties of graphene and transition metal dichalcogenides are described. Alkali adsorption onto the surface of bulk graphite and metal intecalation into transition metal dichalcogenides -- two methods of modifying properties through the introduction of metallic atoms into layered systems -- are described in chapter 2. Chapter 3 presents a new method of tuning
Energy Technology Data Exchange (ETDEWEB)
Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.
2006-01-01
Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2014-10-07
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
Critical phenomena in quasi-two-dimensional vibrated granular systems.
Guzmán, Marcelo; Soto, Rodrigo
2018-01-01
The critical phenomena associated to the liquid-to-solid transition of quasi-two-dimensional vibrated granular systems is studied using molecular dynamics simulations of the inelastic hard sphere model. The critical properties are associated to the fourfold bond-orientational order parameter χ_{4}, which measures the level of square crystallization of the system. Previous experimental results have shown that the transition of χ_{4}, when varying the vibration amplitude, can be either discontinuous or continuous, for two different values of the height of the box. Exploring the amplitude-height phase space, a transition line is found, which can be either discontinuous or continuous, merging at a tricritical point and the continuous branch ends in an upper critical point. In the continuous transition branch, the critical properties are studied. The exponent associated to the amplitude of the order parameter is β=1/2, for various system sizes, in complete agreement with the experimental results. However, the fluctuations of χ_{4} do not show any critical behavior, probably due to crossover effects by the close presence of the tricritical point. Finally, in quasi-one-dimensional systems, the transition is only discontinuous, limited by one critical point, indicating that two is the lower dimension for having a tricritical point.
Third sound in one and two dimensional modulated structures
International Nuclear Information System (INIS)
Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.
1996-01-01
An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction
A two-dimensional mathematical model of percutaneous drug absorption
Directory of Open Access Journals (Sweden)
Kubota K
2004-06-01
Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady
Gao, Wei; Li, Yongtao; Guo, Jianhua; Ni, Muxun; Liao, Ming; Mo, Haojie; Li, Jingbo
2018-05-10
Here we report ultrathin SnS1-xSex alloyed nanosheets synthesized via a narrow-gap physical vapour deposition approach. The SnS1-xSex alloy presents a uniform quadrangle shape with a lateral size of 5-80 μm and a thickness of several nanometers. Clear orthorhombic symmetries and unique in-plane anisotropic properties of the 2D alloyed nanosheets were found with the help of X-ray diffraction, high resolution transmission electron microscopy and polarized Raman spectroscopy. Moreover, 2D alloyed field-effect transistors were fabricated, exhibiting a unipolar p-type semiconductor behavior. This study also provided a lesson that the thickness of the alloyed channels played the major role in the current on/off ratio, and the high ratio of 2.10 × 102 measured from a large ultrathin SnS1-xSex device was two orders of magnitude larger than that of previously reported SnS, SnSe nanosheet based transistors because of the capacitance shielding effect. Obviously enhanced Raman peaks were also found in the thinner nanosheets. Furthermore, the ultrathin SnS0.5Se0.5 based photodetector showed a highest responsivity of 1.69 A W-1 and a short response time of 40 ms under illumination of a 532 nm laser from 405 to 808 nm. Simultaneously, the corresponding highest external quantum efficiency of 392% and detectivity of 3.96 × 104 Jones were also achieved. Hopefully, the narrow-gap synthesis technique provides us with an improved strategy to obtain large ultrathin 2D nanosheets which may tend to grow into thicker ones for stronger interlayer van der Waals forces, and the enhanced physical and (opto)electrical performances in the obtained ultrathin SnS1-xSex alloyed nanosheets prove their great potential in the future applications for versatile devices.
Coexistence of incommensurate magnetism and superconductivity in the two-dimensional Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Yamase, Hiroyuki [Max Planck Institute for Solid State Research, Stuttgart (Germany); National Institute for Materials Science, Tsukuba (Japan); Eberlein, Andreas [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Physics, Harvard University, Cambridge (United States); Metzner, Walter [Max Planck Institute for Solid State Research, Stuttgart (Germany)
2016-07-01
We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Neel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.
Two dimensional fully nonlinear numerical wave tank based on the BEM
Sun, Zhe; Pang, Yongjie; Li, Hongwei
2012-12-01
The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable. In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process. A modified double nodes method is assumed to tackle the corner problem, as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank. A variety of waves are generated by the NWT, for example; a monochromatic wave, solitary wave and irregular wave. The results confirm the NWT model is efficient and stable.
Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U.
Faust, I; Delgado-Aparicio, L; Bell, R E; Tritz, K; Diallo, A; Gerhardt, S P; LeBlanc, B; Kozub, T A; Parker, R R; Stratton, B C
2014-11-01
A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.
Two-dimensional AXUV-based radiated power density diagnostics on NSTX-Ua)
Faust, I.; Delgado-Aparicio, L.; Bell, R. E.; Tritz, K.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Parker, R. R.; Stratton, B. C.
2014-11-01
A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.
Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U
Energy Technology Data Exchange (ETDEWEB)
Faust, I.; Parker, R. R. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Tritz, K. [The Johns Hopkins University, Baltimore, Maryland 21209 (United States); Stratton, B. C. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)
2014-11-15
A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.
Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U
International Nuclear Information System (INIS)
Faust, I.; Parker, R. R.; Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Tritz, K.; Stratton, B. C.
2014-01-01
A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed
International Nuclear Information System (INIS)
Budantsev, M. V.; Lavrov, R. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Pokhabov, D. A.
2011-01-01
Extraordinary piecewise parabolic behavior of the magnetoresistance has been experimentally detected in the two-dimensional electron gas with a dense triangular lattice of antidots, where commensurability magnetoresistance oscillations are suppressed. The magnetic field range of 0–0.6 T can be divided into three wide regions, in each of which the magnetoresistance is described by parabolic dependences with high accuracy (comparable to the experimental accuracy) and the transition regions between adjacent regions are much narrower than the regions themselves. In the region corresponding to the weakest magnetic fields, the parabolic behavior becomes almost linear. The observed behavior is reproducible as the electron gas density changes, which results in a change in the resistance by more than an order of magnitude. Possible physical mechanisms responsible for the observed behavior, including so-called “memory effects,” are discussed.
Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko
2018-01-01
Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.
High-order nonuniformly correlated beams
Wu, Dan; Wang, Fei; Cai, Yangjian
2018-02-01
We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.
High order corrections to the renormalon
International Nuclear Information System (INIS)
Faleev, S.V.
1997-01-01
High order corrections to the renormalon are considered. Each new type of insertion into the renormalon chain of graphs generates a correction to the asymptotics of perturbation theory of the order of ∝1. However, this series of corrections to the asymptotics is not the asymptotic one (i.e. the mth correction does not grow like m.). The summation of these corrections for the UV renormalon may change the asymptotics by a factor N δ . For the traditional IR renormalon the mth correction diverges like (-2) m . However, this divergence has no infrared origin and may be removed by a proper redefinition of the IR renormalon. On the other hand, for IR renormalons in hadronic event shapes one should naturally expect these multiloop contributions to decrease like (-2) -m . Some problems expected upon reaching the best accuracy of perturbative QCD are also discussed. (orig.)
Multisoliton formula for completely integrable two-dimensional systems
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations
Two-dimensional electronic femtosecond stimulated Raman spectroscopy
Directory of Open Access Journals (Sweden)
Ogilvie J.P.
2013-03-01
Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.
Micromachined two dimensional resistor arrays for determination of gas parameters
van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.
Topological aspect of disclinations in two-dimensional crystals
International Nuclear Information System (INIS)
Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)
Structures of two-dimensional three-body systems
International Nuclear Information System (INIS)
Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.
1996-01-01
Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer
High order harmonic generation from plasma mirror
International Nuclear Information System (INIS)
Thaury, C.
2008-09-01
When an intense laser beam is focused on a solid target, its surface is rapidly ionized and forms a dense plasma that reflects the incident field. For laser intensities above few 10 15 W/cm 2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as = 10 18 s), can be generated upon this reflection. Because such a plasma mirror can be used with arbitrarily high laser intensities, this process should eventually lead to the production of very intense pulses in the X-ray domain. In this thesis, we demonstrate that for laser intensities about 10 19 W/cm 2 , two mechanisms can contribute to the generation of high order harmonics: the coherent wake emission and the relativistic emission. These two mechanisms are studied both theoretically and experimentally. In particular, we show that, thanks to very different properties, the harmonics generated by these two processes can be unambiguously distinguished experimentally. We then investigate the phase properties of the harmonic, in the spectral and in the spatial domain. Finally, we illustrate how to exploit the coherence of the generation mechanisms to get information on the dynamics of the plasma electrons. (author)
Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor
Park, Jun Hong
For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part
Two-dimensional multifractal cross-correlation analysis
International Nuclear Information System (INIS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-01-01
Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.
Fractional calculus phenomenology in two-dimensional plasma models
Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill
2006-10-01
Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).
Two dimensional spatial distortion correction algorithm for scintillation GAMMA cameras
International Nuclear Information System (INIS)
Chaney, R.; Gray, E.; Jih, F.; King, S.E.; Lim, C.B.
1985-01-01
Spatial distortion in an Anger gamma camera originates fundamentally from the discrete nature of scintillation light sampling with an array of PMT's. Historically digital distortion correction started with the method based on the distortion measurement by using 1-D slit pattern and the subsequent on-line bi-linear approximation with 64 x 64 look-up tables for X and Y. However, the X, Y distortions are inherently two-dimensional in nature, and thus the validity of this 1-D calibration method becomes questionable with the increasing distortion amplitude in association with the effort to get better spatial and energy resolutions. The authors have developed a new accurate 2-D correction algorithm. This method involves the steps of; data collection from 2-D orthogonal hole pattern, 2-D distortion vector measurement, 2-D Lagrangian polynomial interpolation, and transformation to X, Y ADC frame. The impact of numerical precision used in correction and the accuracy of bilinear approximation with varying look-up table size have been carefully examined through computer simulation by using measured single PMT light response function together with Anger positioning logic. Also the accuracy level of different order Lagrangian polynomial interpolations for correction table expansion from hole centroids were investigated. Detailed algorithm and computer simulation are presented along with camera test results
Two-dimensional multiferroics in monolayer group IV monochalcogenides
Wang, Hua; Qian, Xiaofeng
2017-03-01
Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.
Two dimensional kicked quantum Ising model: dynamical phase transitions
International Nuclear Information System (INIS)
Pineda, C; Prosen, T; Villaseñor, E
2014-01-01
Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)
Two-dimensional modeling of conduction-mode laser welding
International Nuclear Information System (INIS)
Russo, A.J.
1984-01-01
WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon
Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics
Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.
2018-05-01
We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.