WorldWideScience

Sample records for highly neutron-rich uranium

  1. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    in the chain of neutron-rich uranium isotopes is examined here. The neutron ... mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neu- .... For 250U with a fission barrier of 4.3 MeV [5], we obtain the value of.

  2. Properties of neutron-rich hafnium high-spin isomers

    CERN Multimedia

    Tungate, G; Walker, P M; Neyens, G; Billowes, J; Flanagan, K; Koester, U H; Litvinov, Y

    It is proposed to study highly-excited multi-quasiparticle isomers in neutron-rich hafnium (Z=72) isotopes. Long half-lives have already been measured for such isomers in the storage ring at GSI, ensuring their accessibility with ISOL production. The present proposal focuses on:\\\\ (i) an on-line experiment to measure isomer properties in $^{183}$Hf and $^{184}$Hf, and\\\\ (ii) an off-line molecular breakup test using REXTRAP, to provide Hf$^{+}$ beams for future laser spectroscopy and greater sensitivity for the future study of more neutron-rich isotopes.

  3. High-spin structure of neutron-rich Dy isotopes

    Indian Academy of Sciences (India)

    Neutron-rich Dy isotopes; high-spin states; g-factors; cranked HFB theory. ... for 164Dy marking a clear separation in the behaviour as a function of neutron ... cipal x-axis as the cranking axis) in this mass region we have planned to make a sys-.

  4. New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Knoebel, R.; Litvinov, Yu.A.; Weick, H.; Bosch, F.; Boutin, D.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S.A.; Matos, M.; Mazzocco, M.; Muenzenberg, G.; Nociforo, C.; Nolden, F.; Stadlmann, J.; Steck, M.; Winkler, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Diwisch, M. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Geissel, H.; Plass, W.R.; Scheidenberger, C.; Chen, L. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Patyk, Z. [National Centre for Nuclear Research - NCBJ Swierk, Warszawa (Poland); Sun, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Hausmann, M. [Michigan State University, East Lansing, MI (United States); Nakajima, S.; Suzuki, T.; Yamaguchi, T. [Saitama University, Department of Physics, Saitama (Japan); Ohtsubo, T. [Niigata University, Department of Physics, Niigata (Japan); Ozawa, A. [University of Tsukuba, Institute of Physics, Ibaraki (Japan); Walker, P.M. [University of Surrey, Department of Physics, Guildford (United Kingdom)

    2016-05-15

    Masses of uranium fission fragments have been measured with the FRagment Separator (FRS) combined with the Experimental Storage Ring (ESR) at GSI. A 410-415 MeV/u {sup 238}U projectile beam was fast extracted from the synchrotron SIS-18 with an average intensity of 10{sup 9}/spill. The projectiles were focused on a 1g/cm{sup 2} beryllium target at the entrance of the FRS to create neutron-rich isotopes via abrasion-fission. The fission fragments were spatially separated with the FRS and injected into the isochronous storage ring ESR for fast mass measurements without applying cooling. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B ρ-tagging at the high-resolution dispersive central focal plane of the FRS. The evaluation has been done for the combined data sets from both experiments with a new method of data analysis. The use of a correlation matrix has provided experimental mass values for 23 different neutron-rich isotopes for the first time and 6 masses with improved values. The new masses were obtained for nuclides in the element range from Se to Ce. The applied analysis has given access even to rare isotopes detected with an intensity of a few atoms per week. The novel data analysis and systematic error determination are described and the results are compared with extrapolations of experimental values and theoretical models. (orig.)

  5. High spin study and lifetime measurements of neutron rich Co isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, P H; Arrison, J W; Huttmeier, U J; Balamuth, D P [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1992-08-01

    The neutron rich nuclei {sup 61,63}Co have been studied using the reactions {sup 16}O({sup 48}Ca,p2n){sup 61}Co at 110 MeV and {sup 18}O({sup 48}Ca,p2n){sup 63}Co at 110 MeV respectively. Discrete lines from the channels of interest were investigated using pre-scaled {gamma} singles, charged-particle-{gamma}, neutron-charged-particle-{gamma} and charged particle-{gamma}-{gamma} data. Decay schemes, with level spins deduced from angular distribution data are presented together with preliminary information on the lifetimes of some higher excitation states. These data represent the first study on the medium to high spin states in these nuclei. (author). 9 refs., 1 tab., 4 figs.

  6. High-accuracy mass measurements of neutron-rich Kr isotopes

    CERN Document Server

    Delahaye, P; Blaum, K; Carrel, F; George, S; Herfurth, F; Herlert, A; Kellerbauer, A G; Kluge, H J; Lunney, D; Schweikhard, L; Yazidjian, C

    2006-01-01

    The atomic masses of the neutron-rich krypton isotopes 84,86-95Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes 94Kr and 95Kr were measured for the first time. The masses of the radioactive nuclides 89Kr and 91Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  7. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  8. High resolution collinear resonance ionization spectroscopy of neutron-rich $^{76,77,78}$Cu isotopes

    CERN Document Server

    AUTHOR|(CDS)2083035

    In this work, nuclear magnetic dipole moments, electric quadrupole moments, nuclear spins and changes in the mean-squared charge radii of radioactive copper isotopes are presented. Reaching up to $^{78}$Cu ($Z=29$, $N=49$), produced at rates of only 10 particles per second, these measurements represent the most exotic laser spectroscopic investigations near the doubly-magic and very exotic $^{78}$Ni ($Z=28$,$N=50$) to date. This thesis outlines the technical developments and investigations of laser-atom interactions that were performed during this thesis. These developments were crucial for establishing a high-resolution, high sensitivity collinear resonance ionization spectroscopy experiment at ISOLDE, CERN. This thesis furthermore provides a detailed description of the analysis tools that were implemented and applied to extract the nuclear observables from the experimental data. The results were compared to several large-scale shell model calculations, and provide deep insight into the structure of $^{78}$N...

  9. Calculation of the radii of neutron rich light exotic nuclei

    International Nuclear Information System (INIS)

    Charagi, S.K.; Gupta, S.K.

    1991-01-01

    The interaction cross section of a few unstable neutron rich nuclei have been measured using exotic isotope beams produced through the projectile fragmentation process in high energy heavy-ion collisions. Interaction cross section of He, Li, Be and B isotope projectiles with Be, C and Al targets have thus been measured at 790 MeV/nucleon. We have made a comprehensive analysis of the data on the interaction cross section, to extract the radii of these neutron rich light nuclei. 7 refs., 1 fig., 3 tabs

  10. The neutrino opacity of neutron rich matter

    Energy Technology Data Exchange (ETDEWEB)

    Alcain, P.N., E-mail: pabloalcain@gmail.com [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina); Dorso, C.O. [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina)

    2017-05-15

    The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.

  11. Neutron rich nuclei around 132Sn

    International Nuclear Information System (INIS)

    Bhattacharya, Sarmishtha

    2016-01-01

    The neutron rich nuclei with few particles or holes in 132 Sn have various experimental and theoretical interest to understand the evolution of nuclear structure around the doubly magic shell closure Z=50 and N=82. Some of the exotic neutron rich nuclei in this mass region are situated near waiting points in the r-process path and are of special astrophysical interest. Neutron rich nuclei near 132 Sn have been studied using fission fragment spectroscopy. The lifetime of low lying isomeric states have been precisely measured and the beta decay from the ground and isomeric states have been characterized using gamma-ray spectroscopy

  12. Penning-trap mass spectrometry of radioactive, highly charged ions. Measurements of neutron-rich Rb and Sr nuclides for nuclear astrophysics and development of a novel Penning trap for cooling highly charged ions

    International Nuclear Information System (INIS)

    Simon, Vanessa Veronique

    2012-01-01

    High-precision atomic mass measurements are vital for the description of nuclear structure, investigations of nuclear astrophysical processes, and tests of fundamental symmetries. The neutron-rich A ∼ 100 region presents challenges for modeling the astrophysical r-process because of sudden nuclear shape transitions. This thesis reports on high-precision masses of short-lived neutron-rich 94,97,98 Rb and 94,97-99 Sr isotopes using the TITAN Penning-trap mass spectrometer at TRIUMF. The isotopes were charge-bred to q = 15+; uncertainties of less than 4 keV were achieved. Results deviate by up to 11σ compared to earlier measurements and extend the region of nuclear deformation observed in the A∼100 region. A parameterized r-process model network calculation shows that mass uncertainties for the elemental abundances in this region are now negligible. Although beneficial for the measurement precision, the charge breeding process leads to an increased energy spread of the ions on the order of tens of eV/q. To eliminate this drawback, a Cooler Penning Trap (CPET) has been developed as part of this thesis. The novel multi-electrode trap structure of CPET forms nested potentials to cool HCI sympathetically using either electrons or protons to increase the overall efficiency and precision of the mass measurement. The status of the off-line setup and initial commissioning experiments are presented.

  13. Thermodynamics of neutron-rich nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    López, Jorge A., E-mail: jorgelopez@utep.edu [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, U.S.A (United States); Porras, Sergio Terrazas, E-mail: sterraza@uacj.mx; Gutiérrez, Araceli Rodríguez, E-mail: al104010@alumnos.uacj.mx [Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México (Mexico)

    2016-07-07

    This manuscript presents methods to obtain properties of neutron-rich nuclear matter from classical molecular dynamics. Some of these are bulk properties of infinite nuclear matter, phase information, the Maxwell construction, spinodal lines and symmetry energy.

  14. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  15. Structure of Light Neutron-rich Nuclei

    International Nuclear Information System (INIS)

    Dlouhy, Zdenek

    2007-01-01

    In this contribution we searched for irregularities in various separation energies in the frame of mass measurement of neutron-rich nuclei at GANIL. On this basis we can summarize that the new doubly magic nuclei are 8 He, 22 O and 24 O. They are characterized by extra stability and, except 24 O, they cannot accept and bind additional neutrons. However, if we add to these nuclei a proton we obtain 9 Li and 25 F which are the core for two-neutron halo nucleus 11 Li and enables that fluorine can bound even 6 more neutrons, respectively. In that aspect the doubly magic nuclei in the neutron-rich region can form the basis either for neutron halo or very neutron-rich nuclei. (Author)

  16. Experiments with neutron-rich isomeric beams

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Lewitowicz, M.; Pfuetzner, M.

    1998-01-01

    A review of experimental results obtained on microsecond-isomeric states in neutron-rich nuclei produced in fragmentation reactions and studied with SISSI-Alpha-LISE3 spectrometer system at GANIL Caen is given. The perspectives of experiments based on secondary reactions with isomeric beams are presented

  17. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  18. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  19. Laser Spectroscopy Studies in the Neutron-Rich Sn Region

    CERN Multimedia

    Obert, J

    2002-01-01

    We propose to use the powerful laser spectroscopy method to determine the magnetic moment $\\mu$ and the variation of the mean square charge radius ($\\delta\\,\\langle$r$_{c}^{2}\\,\\rangle$) for ground and long-lived isomeric states of the Sn isotopes from A=125 to the doubly-magic $^{132}$Sn isotope and beyond. For these neutron-rich Sn nuclei, numerous $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ curves have already been calculated and the predictions depend upon the effective interactions used. Therefore, a study of the effect of the shell closure N=82 on the $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ values in the Z=50 magic nuclei is of great interest, especially because $^{132}$Sn is located far from the stability valley. It will help to improve the parameters of the effective interactions and make them more suitable to predict the properties of exotic nuclei. \\\\ \\\\The neutron-rich Sn isotopes produced with an uranium carbide target, are ionized using either a hot plasma ion source or the resonant ionization laser ion ...

  20. Modeling a neutron rich nuclei source

    Energy Technology Data Exchange (ETDEWEB)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Mirea, M. [Institute of Physics and Nuclear Engineering, Tandem Lab., Bucharest (Romania)

    2000-07-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (author000.

  1. Modeling a neutron rich nuclei source

    International Nuclear Information System (INIS)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J.; Mirea, M.

    2000-01-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (authors)

  2. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.

    1997-11-01

    One of the frontiers of today's nuclear science is the ''journey to the limits'': of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The new data on exotic nuclei are expected to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure of neutron-rich nuclei are discussed from a theoretical perspective

  3. Synthesis and study of neutron-rich nuclides

    International Nuclear Information System (INIS)

    Luo Yixiao

    1995-01-01

    During the past few years our understanding of the decay properties and nuclear structure has been extended in a systematic fashion for the neutron-rich nuclei. This review will first sketch the production and identification of the neutron-rich nuclei throughout the whole mass region, and will then discuss the impressive progress in the studies of the exotic decay properties and nuclear structure of neutron-rich nuclei. Their astrophysical implications will also be outlined

  4. High-spin structure of the neutron-rich sup 1 sup 0 sup 9 sup , sup 1 sup 1 sup 1 sup , sup 1 sup 1 sup 3 sup sub 4 sup sub 5 Rh isotopes

    CERN Document Server

    Venkova, T; Bauchet, A; Deloncle, I; Astier, A; Buforn, N; Meyer, M; Prevost, A; Redon, N; Stezowski, O; Lalkovski, S; Donadille, L; Dorvaux, O; Gall, B J P; Schulz, N; Lucas, R; Minkova, A

    2002-01-01

    The sup 1 sup 0 sup 9 sup , sup 1 sup 1 sup 1 sup , sup 1 sup 1 sup 3 Rh nuclei have been produced as fission fragments in the fusion reaction sup 1 sup 8 O + sup 2 sup 0 sup 8 Pb at 85 MeV. Their level schemes have been built from gamma-rays detected using the Euroball IV array. High-spin states of the neutron-rich sup 1 sup 1 sup 1 sup , sup 1 sup 1 sup 3 Rh nuclei have been identified for the first time. Several rotational bands with the odd proton occupying the pi g sub 9 sub / sub 2 , pi p sub 1 sub / sub 2 and pi(g sub 7 sub / sub 2 /d sub 5 sub / sub 2) sub-shells have been observed. A band of low-energy transitions has been identified at excitation energy around 2 MeV in sup 1 sup 0 sup 9 sup , sup 1 sup 1 sup 1 Rh, which can be interpreted in terms of three-quasiparticle excitation, pi g sub 9 sub / sub 2 nu h sub 1 sub 1 sub / sub 2 nu g sub 7 sub / sub 2 /d sub 5 sub / sub 2. In addition another structure built on states located at low excitation energy (608 keV in sup 1 sup 1 sup 1 Rh, 570 keV in ...

  5. Neutron rich matter, neutron stars, and their crusts

    International Nuclear Information System (INIS)

    Horowitz, C J

    2011-01-01

    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.

  6. Development of an on-line high-temperature ion source for neutron-rich fission products at TRIGA-SPEC

    Energy Technology Data Exchange (ETDEWEB)

    Renisch, Dennis [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: TRIGA-SPEC-Collaboration

    2012-07-01

    The TRIGA-SPEC experiment at the TRIGA Mainz research reactor aims to determine ground-state properties of exotic nuclides. It includes the Penning-trap mass spectrometer TRIGA-TRAP and the collinear laser spectroscopy setup TRIGA-LASER. Nuclides of interest are produced in the neutron-induced fission of suitable actinide isotopes, thermalized in a gas-filled volume and transported to an on-line ion source with a gas-jet. The ion source being constructed has two operation modes: a high-temperature surface ionization mode and a hollow cathode plasma mode. It is expected that the surface mode will yield a high ionization efficiency for certain elements, in the order of at least several percent, whereas the plasma mode has the advantage, that more elements can be ionized but with lower efficiency compared to the surface ionization mode. The current status of the TRIGA-SPEC experiments and the present performance of the on-line ion source are presented.

  7. K isomerism and collectivity in neutron-rich rare-earth isotopes.

    OpenAIRE

    Patel, Zena

    2016-01-01

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated an...

  8. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    2000-01-01

    Complete text of publication follows. The uncharted regions of the (N,Z) plane contain information that can answer many questions of fundamental importance for science: How many protons and neutrons can be clustered together by the strong interaction to form a bound nucleus? What are the proton and neutron magic numbers of the exotic nuclei? What are the properties of very short-lived exotic nuclei with extreme neutron-to-proton ratios? What is the effective nucleon-nucleon interaction in a nucleus that has a very large neutron excess? Nuclear life far from stability is different from that around the stability line; the promised access to completely new combinations of proton and neutron numbers offers prospects for new structural phenomena. The main objective of this talk is to discuss some of the challenges and opportunities of research with exotic nuclei. The covered topics will include: Theoretical challenges; Skins and halos in heavy nuclei; Shape coexistence in exotic nuclei; Beta-decays of neutron-rich nuclei. (author)

  9. Two-proton knockout on neutron-rich nuclei

    International Nuclear Information System (INIS)

    Bazin, D.; Brown, B.A.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Enders, J.; Gade, A.; Glasmacher, T.; Hansen, P.G.; Mueller, W.F.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Tostevin, J.A.

    2004-01-01

    Two-proton knockout reactions on neutron-rich nuclei [Phys. Rev. Lett. 91 (2003) 012501] have been studied in inverse kinematics at intermediate energy. Strong evidence that the two-proton removal from a neutron-rich system proceeds as a direct reaction is presented, together with a preliminary theoretical discussion of the partial cross sections based on eikonal reaction theory and the many-body shell model. They show that this reaction can be used to characterize the wave functions of the projectiles and holds great promise for the study of neutron-rich nuclei

  10. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  11. Fusion enhancement in the reactions of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Bian Baoan; Zhang Fengshou; Zhou Hongyu

    2009-01-01

    The neutron-rich fusion reactions are investigated systematically using the improved isospin dependent quantum molecular dynamics model. By studying the systematic dependence of fusion barrier on neuron excess, we find the enhancement of the fusion cross sections for neutron-rich nuclear reactions that give the lowered static Coulomb barriers. The calculated fusion cross sections agree quantitatively with the experimental data. We further discuss the mechanism of the fusion enhancement of the cross sections for neutron-rich nuclear reactions by analyzing the dynamical lowering of the Coulomb barrier that is attributed to the enhancement of the N/Z ratio at the neck region.

  12. Isomer spectroscopy of neutron-rich 168 Tb 103

    Energy Technology Data Exchange (ETDEWEB)

    Gurgi, L. A.; Regan, P. H.; Söderström, P. -A.; Watanabe, H.; Walker, P. M.; Podolyák, Zs.; Nishimura, S.; Berry, T. A.; Doornenbal, P.; Lorusso, G.; Isobe, T.; Baba, H.; Xu, Z. Y.; Sakurai, H.; Sumikama, T.; Catford, W. N.; Bruce, A. M.; Browne, F.; Lane, G. J.; Kondev, F. G.; Odahara, A.; Wu, J.; Liu, H. L.; Xu, F. R.; Korkulu, Z.; Lee, P.; Liu, J. J.; Phong, V. H.; Yag, A.; Zhang, G. X.; Alharbi, T.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Kanaoka, H.; Kojouharov, I.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lee, E. J.; Lee, C. S.; Lotay, G.; Moon, C. -B.; Nishizuka, I.; Nita, C. R.; Patel, Z.; Roberts, O. J.; Schaffner, H.; Shand, C. M.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Yoshida, S.; Valiente-Dòbon, J. J.

    2017-11-01

    In-flight fission of a 345 MeV per nucleon 238U primary beam on a 2 mm thick 9Be target has been used to produce and study the decays of a range of neutron-rich nuclei centred around the doubly mid-shell nucleus 170Dy at the RIBF Facility, RIKEN, Japan. The produced secondary fragments of interest were identified event-by-event using the BigRIPS separator. The fragments were implanted into the WAS3ABI position sensitive silicon active stopper which allowed pixelated correlations between implants and their subsequent β-decay. Discrete γ-ray transitions emitted following decays from either metastable states or excited states populated following beta decay were identified using the 84 coaxial high-purity germanium (HPGe) detectors of the EURICA spectrometer, which was complemented by 18 additional cerium-doped lanthanum bromide (LaBr3) fast-timing scintillation detectors from the FATIMA collaboration. This paper presents the internal decay of a metastable isomeric excited state in the odd-odd nucleus 168Tb, which corresponds to a single proton-neutron hole configuration in the valence maximum nucleus 170Dy. These data represent the first information on excited states in this nucleus, which is the most neutron-rich odd-odd isotope of terbium (Z=65) studied to date. Nilsson configurations associated with an axially symmetric, prolate-deformed nucleus are proposed for the 168Tb ground state the observed isomeric state by comparison with Blocked BCS-Nilsson calculations.

  13. Shape evolution in neutron-rich A ~ 140 nuclei beyond the doubly-magic nucleus 132Sn

    Science.gov (United States)

    Odahara, Atsuko; Eurica Collaboration

    2014-09-01

    Study for the shape evolution enables us to disentangle competition between spherical (single-particle like) shape and deformed (collective-like) shape as a function of neutron number. Neutron-rich nuclei in the northeast region of the doubly-magic 132Sn locates in one of the best mass region where a variety of collective modes, not only prolate deformation but also octupole collectivity, are expected to appear. These neutron-rich A ~140 nuclei were produced by using in-flight fission reaction of the 345 MeV/u 238U86+ beam at RIKEN RI Beam Factory. This experiment was performed in the framework of the EURICA (EUroball RIken Cluster Array) project based on the highly-efficient β- and isomer-decay spectroscopy methods. Around 20 extremely neutron-rich nuclei with Z=51--55 have been studied in this work. New isomers with half lives of longer than hundreds ns were found in some nuclei, such as the neutron-rich Cs isotopes. Also, preliminary results for the β decay of neutron-rich I and Xe isotopes have been obtained. Systematic change of the shape evolution for these neutron-rich isotopes will be discussed.

  14. Delayed Particle Study of Neutron Rich Lithium Isotopes

    CERN Multimedia

    Marechal, F; Perrot, F

    2002-01-01

    We propose to make a systematic complete coincidence study of $\\beta$-delayed particles from the decay of neutron-rich lithium isotopes. The lithium isotopes with A=9,10,11 have proven to contain a vast information on nuclear structure and especially on the formation of halo nuclei. A mapping of the $\\beta$-strength at high energies in the daughter nucleus will make possible a detailed test of our understanding of their structure. An essential step is the comparison of $\\beta$-strength patterns in $^{11}$Li and the core nucleus $^{9}$Li, another is the full characterization of the break-up processes following the $\\beta$-decay. To enable such a measurement of the full decay process we will use a highly segmented detection system where energy and emission angles of both charged and neutral particles are detected in coincidence and with high efficiency and accuracy. We ask for a total of 30 shifts (21 shifts for $^{11}$Li, 9 shifts $^{9}$Li adding 5 shifts for setting up with stable beam) using a Ta-foil target...

  15. Neutron-rich isotopes of the lightest elements

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Penionzhkevich, Yu.Eh.; Kalpakchieva, R.

    1989-01-01

    A review is presented of the experimental investigations on the stability of very neutron-rich light nuclei carried out at the JINR Laboratory of Nuclear Reactions. Results on mass excess measurements are reported for 4 H, 5 H, 6 H, 7 H and for the superheavy helium isotope 9 He. Some results from the joint JINR-Ganil experiment on the search for and study of new neutron-rich light nuclei are also given. Analyzed are new possibilities for the investigation of multineutron decay of light nuclei. 14 refs.; 10 figs

  16. Synthesis and study of neutron-rich nuclides

    International Nuclear Information System (INIS)

    Luo, Y.X.

    1995-01-01

    During the past few years our understanding of the decay properties and nuclear structure has been extended in a systematic fashion for the neutron-rich nuclei. This review will discuss the impressive progress in the studies of the exotic decay properties and nuclear structure of n-rich nuclei. Their astrophysical implications will also be outlined. ((orig.))

  17. Recent results on neutron rich tin isotopes by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J E; Essabaa, S; Fedosseev, V; Geithner, W; Genevey, J; Girod, M; Huber, G; Horn, R; Kappertz, S; Lassen, J; Le Blanc, F; Lee, J K P; Le Scornet, G; Lettry, Jacques; Mishin, V I; Neugart, R; Obert, J; Oms, J; Ouchrif, A; Peru, S; Pinard, J; Ravn, H L; Sauvage, J; Verney, D

    2001-01-01

    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on $^{134}$Sn are presented.

  18. Haloes and clustering in light, neutron-rich nuclei

    International Nuclear Information System (INIS)

    Orr, N.A.

    2001-10-01

    Clustering is a relatively widespread phenomenon which takes on many guises across the nuclear landscape. Selected topics concerning the study of halo systems and clustering in light, neutron-rich nuclei are discussed here through illustrative examples taken from the Be isotopic chain. (author)

  19. GALS – setup for production and study of heavy neutron rich nuclei

    Directory of Open Access Journals (Sweden)

    Zemlyanoy Sergey

    2015-01-01

    Full Text Available The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below 208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion–fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  20. GALS – setup for production and study of heavy neutron rich nuclei

    CERN Document Server

    Zemlyanoy, Sergey; Kozulin, Eduard; Kudryavtsev, Yury; Fedosseev, Valentin; Bark, Robert; Janas, Zenon; Othman, Hosam

    2015-01-01

    The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below ^208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of ^136Xe with ^208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  1. Influence Of The Neutron Richness On Binary Decays

    Directory of Open Access Journals (Sweden)

    Roy R.

    2010-03-01

    Full Text Available The influence of the neutron richness on binary decays is investigated in 78,82Kr+ 40Ca reactions at 5.5 MeV/A incident energy. Kinetic energy distributions and angular distributions of fragments with atomic number 6 ≤ Z ≤ 28 were measured using the 4π-INDRA array. Global features are compatible with an emission from a long-lived system. The yields around the symmetric splitting are about 30The persistence of strong structural effects is evidenced from elemental cross-sections of the light fragments. The cross-sections for odd-Z fragments are higher for the neutron rich CN while cross-sections for even-Z fragments are higher for the neutron poor CN. Calculations assuming two different potential energy surfaces are presented.

  2. Decay properties of some neutron-rich praseodymium isotopes

    International Nuclear Information System (INIS)

    Skarnemark, G.; Aronsson, P.O.; Stender, E.; Trautmann, N.; Kaffrell, N.; Bjoernstad, T.; Kvale, E.; Skarestad, M.

    1976-01-01

    Neutron-rich Pr isotopes produced in the thermal neutron-induced fission of 235 U have been investigated by means of γ-γ coincidence experiments. The nuclides have been separated from the fission product mixture, using the fast chemical separation system SISAK in connection with a gas jet recoil transport system. The results include assignments of several new γ-ray energies and partial decay schemes for 147 Pr, 148 Pr, 149 Pr and 150 Pr. (orig.) [de

  3. Shell gap reduction in neutron-rich N=17 nuclei

    International Nuclear Information System (INIS)

    Obertelli, A.; Gillibert, A.; Alamanos, N.; Alvarez, M.; Auger, F.; Dayras, R.; Drouart, A.; France, G. de; Jurado, B.; Keeley, N.; Lapoux, V.; Mittig, W.; Mougeot, X.; Nalpas, L.; Pakou, A.; Patronis, N.; Pollacco, E.C.; Rejmund, F.; Rejmund, M.; Roussel-Chomaz, P.; Savajols, H.; Skaza, F.; Theisen, Ch.

    2006-01-01

    The spectroscopy of 27 Ne has been investigated through the one-neutron transfer reaction 26 Ne(d,p) 27 Ne in inverse kinematics at 9.7 MeV/nucleon. The results strongly support the existence of a low-lying negative parity state in 27 Ne, which is a signature of a reduced sd-fp shell gap in the N=16 neutron-rich region, at variance with stable nuclei

  4. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    Science.gov (United States)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  5. Study of neutron-rich $^{51−53}$ Ca isotopes via $\\beta$-decay

    CERN Multimedia

    The high Q$_\\beta$ values in certain neutron-rich regions of the chart of nuclides opens up the possibility to study states in the daughter nuclei which lie at high excitation energy, above the neutron separation threshold. We propose to perform spectroscopy of the $\\beta$-delayed neutron emission of the $^{51-53}$K isotopes to study the population of single-particle or particle-hole states both below and above the neutron separation threshold. The VANDLE neutron detector will be used in combination with the IDS tape station setup and Ge detectors.

  6. Application of the generator coordinate method to neutron-rich Se and Ge isotopes

    Directory of Open Access Journals (Sweden)

    Higashiyama Koji

    2014-03-01

    Full Text Available The quantum-number projected generator coordinate method (GCM is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.

  7. IOP Shape coexistence in neutron-rich strontium isotopes at N = 60

    CERN Document Server

    Clément, Emmanuel

    2017-01-01

    The structure of neutron-rich $^{96,98}$ Sr nuclei was investigated by low-energy Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E2 matrix elements has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N=60, giving rise to the coexistence of a highly deformed prolate and a spherical configuration in $^{98}$ Sr with low configuration mixing.

  8. The CARDS array for neutron-rich decay spectroscopy at HRIBF

    CERN Document Server

    Batchelder, J C; Bingham, C R; Carter, H K; Cole, J D; Fong, D; Garrett, P E; Grzywacz, R; Hamilton, J H; Hartley, D J; Hwang, J K; Krolas, W; Kulp, D C; Larochelle, Y; Piechaczek, A; Ramayya, A V; Rykaczewski, K; Spejewski, E H; Stracener, D W; Tantawy, M N; Winger, J A; Wood, J; Zganjar, E F

    2003-01-01

    An array for decay studies of neutron-rich nuclei has been commissioned for use at the UNISOR separator at Holifield Radioactive Ion Beam Facility. This array consists of three segmented clover Ge detectors, plastic scintillators, and a high-resolution (approx 1 keV) Si conversion electron spectrometer. These detectors are mounted on a support that surrounds a moving tape collector. This system has been named clover array for radioactive decay studies. The detectors have been outfitted with digital flash ADCs (XIA DGFs) that fit the preamp signals, with built-in pileup rejection.

  9. The CARDS array for neutron-rich decay spectroscopy at HRIBF

    International Nuclear Information System (INIS)

    Batchelder, J.C.; Bilheux, J.-C.; Bingham, C.R.; Carter, H.K.; Cole, J.D.; Fong, D.; Garrett, P.E.; Grzywacz, R.; Hamilton, J.H.; Hartley, D.J.; Hwang, J.K.; Krolas, W.; Kulp, D.; Larochelle, Y.; Piechaczek, A.; Ramayya, A.V.; Rykaczewski, K.P.; Spejewski, E.H.; Stracener, D.W.; Tantawy, M.N.; Winger, J.A.; Wood, J.; Zganjar, E.F.

    2003-01-01

    An array for decay studies of neutron-rich nuclei has been commissioned for use at the UNISOR separator at Holifield Radioactive Ion Beam Facility. This array consists of three segmented clover Ge detectors, plastic scintillators, and a high-resolution (∼1 keV) Si conversion electron spectrometer. These detectors are mounted on a support that surrounds a moving tape collector. This system has been named clover array for radioactive decay studies. The detectors have been outfitted with digital flash ADCs (XIA DGFs) that fit the preamp signals, with built-in pileup rejection

  10. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  11. Shape transition in the neutron rich sodium isotopes

    International Nuclear Information System (INIS)

    Campi, X.; Flocard, H.; Kerman, A.K.; Koonin, S.; Massachusetts Inst. of Tech., Cambridge

    1975-06-01

    Mass spectrometer measurements of the neutron rich sodium isotopes show a sudden increase at 31 Na in the values of the two neutron separation energies. The spherical shell model naturally predicts a sudden decrease at 32 Na after the N=20 shell closure. It is proposed that the explanation for this disagreement lies in the fact that sodium isotopes in this mass region are strongly deformed due to the filling of negative parity orbitals from the 1fsub(7/2) shell. Hartree-Fock calculations are presented in support of this conjecture [fr

  12. Level structures of neutron-rich Xe isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    The level structures of neutron-rich Xe isotopes were determined by observing prompt gamma-ray coincidences in {sup 248}Cm fission fragments. A 5-mg {sup 248}Cm, in the form of {sup 248}Cm-KCl pellet, was placed inside Eurogam array which consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. Transitions in Xe isotopes were identified by the appearance of new peaks in the {gamma}-ray spectra obtained by gating on the gamma peaks of the complementary Mo fragments.

  13. Nuclear transition moment measurements of neutron rich nuclei

    Science.gov (United States)

    Starosta, Krzysztof

    2009-10-01

    The Recoil Distance Method (RDM) and related Doppler Shift Attenuation Method (DSAM) are well-established tools for lifetime measurements following nuclear reactions near the Coulomb barrier. Recently, the RDM was implemented at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University using NSCL/K"oln plunger device and a unique combination of the state-of-the-art instruments available there. Doppler-shift lifetime measurements following Coulomb excitation, knock-out, and fragmentation at intermediate energies of ˜100 MeV/u hold the promise of providing lifetime information for excited states in a wide range of unstable nuclei. So far, the method was used to investigate the collectivity of the neutron-rich ^16,18,20C, ^62,64,66Fe, ^70,72Ni, ^110,114Pd isotopes and also of the neutron-deficient N=Z ^64Ge. A significant fraction of these experiments was performed using NSCL's Segmented Germanium Array instrumented with the Digital Data Acquisition System which enables gamma-ray tracking. The impact of GRETINA and gamma-ray tracking on RDM and DSAM studies of neutron-rich nuclei will be discussed.

  14. Spectroscopy of neutron-rich isotopes of nickel and iron

    International Nuclear Information System (INIS)

    Girod, M.; Dessagne, P.; Bernas, M.; Langevin, M.; Pougheon, F.; Roussel, P.

    1987-01-01

    Spectroscopy of neutron rich isotopes of 67 Ni, 68 Ni and 62 Fe is studied using the quasi-elastic transfer reactions ( 14 C, 16 O) and ( 14 C, 17 O) on mass separated targets of 70 Zn and of 64 Ni. The structure of these new nuclei is investigated through the Hartree-Fock-Bogoliubov (HFB) calculations, using the D1SA interaction. Inertial parameters are calculated in the cranking approximation. Collective excited states are obtained consistently by solving the Bohr Hamiltonian. Based on these results, quantum numbers are tentatively assigned to the observed states and angular distributions, measured and calculated from the DWBA, are used to check this assignment. The spectroscopy of more neutron rich nuclei, yet unknown, is anticipated. A sharper test of wave functions is provided by the monopole operator of the O 2 + → O 1 + transition in 68 Ni, which have been deduced from the halflife measurement performed in delayed coincidence experiments. An impressive agreement is obtained between the measured halflife and its value calculated using complete HFB wave functions

  15. Physics with Heavy Neutron Rich Ribs at the Hribf

    Science.gov (United States)

    Radford, David

    2002-10-01

    The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory has recently produced the world's first post-accelerated beams of heavy neutron-rich nuclei. B(E2;0^+ arrow 2^+) values for neutron-rich ^126,128Sn and ^132,134,136Te isotopes have been measured by Coulomb excitation of radioactive ion beams in inverse kinematics. The results for ^132Te and ^134Te (N=80,82) show excellent agreement with systematics of lighter Te isotopes, but the B(E2) value for ^136Te (N=84) is unexpectedly small. Single-neutron transfer reactions leading to ^135Te were identified using a ^134Te beam on ^natBe and ^13C targets at energies just above the Coulomb barrier. The use of the Be target provided an unambiguous signature for neutron transfer through the detection of two correlated α particles, arising from the breakup of unstable ^8Be. The results of these experiments will be discussed, togther with plans for future experiments with these heavy n-rich RIBs.

  16. Study of shape transition in the neutron-rich Os isotopes

    Directory of Open Access Journals (Sweden)

    John P.R.

    2014-03-01

    Full Text Available The neutron-rich isotopes of tungsten, osmium and platinum have different shapes in their ground states and present also shape transitions phenomena. Spectroscopic information for these nuclei is scarce and often limited to the gamma rays from the decay of isomeric states. For the neutron-rich even-even osmium isotopes 194Os and 198Os, a shape transition between a slightly prolate deformed to an oblate deformed ground state was deduced from the observed level schemes. For the even-even nucleus lying in between, 196Os, no gamma ray transition is known. In order to elucidate the shape transition and to test the nuclear models describing it, this region was investigated through gamma-ray spectroscopy using the AGATA demonstrator and the large acceptance heavy-ion spectrometer PRISMA at LNL, Italy. A two-nucleon transfer from a 198Pt target to a stable 82Se beam was utilized to populate medium-high spin states of 196Os. The analysis method and preliminary results, including the first life-time measurement of isomeric states with AGATA, are presented.

  17. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  18. Weakly bound structures in neutron rich Si isotopes

    International Nuclear Information System (INIS)

    Singh, D.; Saxena, G.; Yadav, H.L.

    2009-01-01

    Production of radioactive beams have facilitated the nuclear structure studies away from the line of β-stability, especially for the neutron rich drip line nuclei. Theoretical investigations of these nuclei have been carried out by using various approaches viz. few body model or clusters, shell model and mean field theories, both nonrelativistic as well as relativistic mean field (RMF). The advantage of the RMF approach, however, is that in this treatment the spin-orbit interaction is included in a natural way. This is especially advantageous for the description of drip-line nuclei for which the spin-orbit interaction plays an important role. In this communication we report briefly the results of our calculations for the Si isotopes carried out within the framework of RMF + BCS approach

  19. Beta decay rates of neutron-rich nuclei

    Science.gov (United States)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  20. SU(3) symmetries in exotic neutron-rich nuclei

    International Nuclear Information System (INIS)

    Hayes, A.C.

    1991-01-01

    We examine the structure of the exotic neutron-rich nucleus 11 Li with an emphasis on understanding the origin of the soft E1 resonance and the neuron halo. The similarities and differences between shell model and di-neutron cluster model descriptions of the system are displayed using the Hecht expansion techniques. We find that the ground state 11 Li as described in large shell model calculations is well approximated by the di-neutron cluster state. In contrast to the ground state, the soft E1 model of 11 Li appears to have a more complicated structure and the E1 strength of this resonance is very sensitive to cancellations between p→s and p→d contributions to the dipole matrix elements. 12 refs., 6 figs., 3 tabs

  1. The electric dipole response of neutron rich tin isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Aumann, Thomas; Rossi, Dominic; Schindler, Fabia [Institut fuer Kernphysik, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Johansen, Jacob [Aarhus University (Denmark); Schrock, Philipp [The University of Tokyo (Japan); Collaboration: R3B-Collaboration

    2016-07-01

    Studies of the dipole response in medium heavy and heavy neutron rich nuclei reveal valuable information about the isospin dependence of the nuclear equation of state. Therefore an experimental campaign investigating both the electric dipole response via Coulomb excitation and neutron removal along the tin isotope chain ({sup 124-134}Sn) has been carried out at the R3B (Reactions with Relativistic Radioactive Beams) setup at GSI (Helmholtzzentrum fuer Schwerionenforschung) for which the analysis is ongoing. The E1 response was induced via relativistic Coulomb scattering by a lead target in inverse kinematics, and calls for a kinematically complete determination of all reaction products in order to reconstruct the excitation energy by means of the invariant mass method. The goal is to obtain the Coulomb excitation cross section up to the adiabatic cut-off energy, covering the giant dipole resonance (GDR) range.

  2. Beta decay rates of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Marketin, Tomislav; Petković, Jelena; Paar, Nils; Huther, Lutz; Martínez-Pinedo, Gabriel

    2016-01-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  3. Beta decay rates of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav, E-mail: marketin@phy.hr; Petković, Jelena; Paar, Nils [Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Huther, Lutz [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); Martínez-Pinedo, Gabriel [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerioneneforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2016-06-21

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  4. Beta decay rates of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel

    2015-01-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei

  5. Beta decay rates of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav, E-mail: marketin@phy.hr [Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Huther, Lutz [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); Martínez-Pinedo, Gabriel [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerioneneforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-10-15

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  6. Precision mass measurements on neutron-rich Zn isotopes and their consequences on the astrophysical r-process

    Energy Technology Data Exchange (ETDEWEB)

    Baruah, Sudarshan

    2008-07-15

    The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier than iron. For the calculation of the abundances of those nuclei, atomic masses are required as one of the input parameters with very high precision. In the present work, the masses of the neutron rich Zn isotopes (A=71 to 81) lying in the r-process path have been measured in the ISOLTRAP experiment at ISOLDE/CERN. The mass of {sup 81}Zn has been measured directly for the rst time. The half-lives of the nuclides ranged from 46.5 h ({sup 72}Zn) down to 290 ms ({sup 81}Zn). In case of all the nuclides, the relative mass uncertainty ({delta}m=m) achieved was in the order of 10{sup -8} corresponding to a 100-fold improvement in precision over previous measurements. (orig.)

  7. Precision mass measurements on neutron-rich Zn isotopes and their consequences on the astrophysical r-process

    International Nuclear Information System (INIS)

    Baruah, Sudarshan

    2008-07-01

    The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier than iron. For the calculation of the abundances of those nuclei, atomic masses are required as one of the input parameters with very high precision. In the present work, the masses of the neutron rich Zn isotopes (A=71 to 81) lying in the r-process path have been measured in the ISOLTRAP experiment at ISOLDE/CERN. The mass of 81 Zn has been measured directly for the rst time. The half-lives of the nuclides ranged from 46.5 h ( 72 Zn) down to 290 ms ( 81 Zn). In case of all the nuclides, the relative mass uncertainty (Δm=m) achieved was in the order of 10 -8 corresponding to a 100-fold improvement in precision over previous measurements. (orig.)

  8. Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei

    International Nuclear Information System (INIS)

    Li Baoan; Das, Champak B.; Das Gupta, Subal; Gale, Charles

    2004-01-01

    Using an isospin- and momentum-dependent transport model we study effects of the momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. It is found that symmetry potentials with and without the momentum-dependence but corresponding to the same density-dependent symmetry energy E sym (ρ) lead to significantly different predictions on several E sym (ρ)-sensitive experimental observables especially for energetic nucleons. The momentum- and density-dependence of the symmetry potential have to be determined simultaneously in order to extract the E sym (ρ) accurately. The isospin asymmetry of midrapidity nucleons at high transverse momenta is particularly sensitive to the momentum-dependence of the symmetry potential. It is thus very useful for investigating accurately the equation of state of dense neutron-rich matter

  9. Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Myeong-Hwan; Lee, Young-Ouk [Korea Atomic Energy Research Institue, Daejeon (Korea, Republic of); Adamian, G.G.; Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-12-15

    The possibilities of production of yet unknown neutron-rich isotopes of Md are explored in several multi-nucleon transfer reactions with actinide targets and stable and radioactive beams. The projectile-target combinations and bombarding energies are suggested to produce new neutron-rich isotopes of Md in future experiments. (orig.)

  10. Production and identification of new, neutron-rich nuclei in the {sup 208}Pb region

    Energy Technology Data Exchange (ETDEWEB)

    Rykaczewski, K. [Oak Ridge National Lab., TN (United States). Physics Div.]|[ISOLDE-CERN, Geneva (Switzerland)]|[Univ. of Warsaw (Poland); Kurpeta, J.; Plochocki, A. [Univ. of Warsaw (Poland)] [and others

    1998-11-01

    The recently developed methods allowing the experimental studies on new neutron-rich nuclei beyond doubly-magic {sup 208}Pb are briefly described. An identification of new neutron-rich isotopes {sup 215}Pb and {sup 217}Bi, and new decay properties of {sup 216}Bi studied by means of a pulsed release element selective technique at PS Booster-ISOLDE are reported.

  11. Properties of neutron-rich nuclei studied by fission product nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.; Henry, E.A.; Griffin, H.C.; Lien, O.G. III; Lane, S.M.; Stevenson, P.C.; Yaffe, R.P.; Skarnemark, G.

    1979-09-01

    A review is given of the properties of neutron-rich nuclei studied by fission product nuclear chemistry and includes the techniques used in elemental isolation and current research on the structure of nuclei near 132 Sn, particle emission, and coexisting structure in both neutron-poor and neutron-rich nuclei. 35 references

  12. Production and identification of new, neutron-rich nuclei in the 208Pb region

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Kurpeta, J.; Plochocki, A.; Karny, M.; Szerypo, J.; Evensen, A.-H.; Kugler, E.; Lettry, J.; Ravn, H.; Duppen, P. van; Andreyev, A.; Huyse, M.; Woehr, A.; Jokinen, A.; Aeystoe, J.; Nieminen, A.; Huhta, M.; Ramdhane, M.; Walter, G.; Hoff, P.

    1998-01-01

    The recently developed methods allowing the experimental studies on new neutron-rich nuclei beyond doubly-magic 208 Pb are briefly described. An identification of new neutron-rich isotopes 215 Pb and 217 Bi, and new decay properties of 216 Bi studied by means of a pulsed release element selective technique at PS Booster-ISOLDE are reported

  13. Excited-state lifetimes in neutron-rich Ce isotopes from EXILL and FATIMA

    Energy Technology Data Exchange (ETDEWEB)

    Koseoglou, P.; Pietralla, N.; Stoyanka, I.; Kroell, T. [IKP, TU-Darmstadt, Darmstadt (Germany); Werner, V. [IKP, TU-Darmstadt, Darmstadt (Germany); Yale University (United States); Bernards, C.; Cooper, N. [Yale University (United States); Blanc, A.; Jentschel, M.; Koester, U.; Mutti, P.; Soldner, T.; Urban, W. [ILL Grenoble (France); Bruce, A.M.; Roberts, O.J. [University of Brighton (United Kingdom); Cakirli, R.B. [MPIK Heidelberg (Germany); France, G. de [GANIL Caen (France); Humby, P.; Patel, Z.; Podolyak, Zs.; Regan, P.H.; Wilson, E. [University of Surrey (United Kingdom); Jolie, J.; Regis, J.-M.; Saed-Samii, N.; Wilmsen, D. [KP, University of Cologne (Germany); Paziy, V. [Universidad Complutense (Spain); Simpson, G.S. [PSC Grenoble (France); Ur, C.A. [INFN Legnaro (Italy)

    2016-07-01

    {sup 235}U and {sup 241}Pu fission fragments were measured by a mixed spectrometer consisting of high-resolution Ge and fast LaBr{sub 3}(Ce)-scintillator detectors at the high-flux reactor of the ILL. Prompt γ-ray cascades from the nuclei of interest are selected via Ge-Ge-LaBr{sub 3}-LaBr{sub 3} coincidences. The good energy resolution of the Ge allow precise gates to be set, selecting the cascade, hence, the nucleus of interest. The excellent timing performance of the LaBr{sub 3} detectors in combination with the General Centroid Difference method allows the measurement of lifetimes in the ps range in preparation for the FATIMA experiment at FAIR. The first results on neutron-rich Ce isotopes are presented.

  14. Transition probabilities in neutron-rich Se,8684

    Science.gov (United States)

    Litzinger, J.; Blazhev, A.; Dewald, A.; Didierjean, F.; Duchêne, G.; Fransen, C.; Lozeva, R.; Sieja, K.; Verney, D.; de Angelis, G.; Bazzacco, D.; Birkenbach, B.; Bottoni, S.; Bracco, A.; Braunroth, T.; Cederwall, B.; Corradi, L.; Crespi, F. C. L.; Désesquelles, P.; Eberth, J.; Ellinger, E.; Farnea, E.; Fioretto, E.; Gernhäuser, R.; Goasduff, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hackstein, M.; Hess, H.; Ibrahim, F.; Jolie, J.; Jungclaus, A.; Kolos, K.; Korten, W.; Leoni, S.; Lunardi, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovic, T.; Million, B.; Möller, O.; Modamio, V.; Montagnoli, G.; Montanari, D.; Morales, A. I.; Napoli, D. R.; Niikura, M.; Pollarolo, G.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Theisen, Ch.; Valiente Dobón, J. J.; Vandone, V.; Vogt, A.

    2015-12-01

    Reduced quadrupole transition probabilities for low-lying transitions in neutron-rich Se,8684 are investigated with a recoil distance Doppler shift (RDDS) experiment. The experiment was performed at the Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Legnaro using the Cologne Plunger device for the RDDS technique and the AGATA Demonstrator array for the γ -ray detection coupled to the PRISMA magnetic spectrometer for an event-by-event particle identification. In 86Se the level lifetime of the yrast 21+ state and an upper limit for the lifetime of the 41+ state are determined for the first time. The results of 86Se are in agreement with previously reported predictions of large-scale shell-model calculations using Ni78-I and Ni78-II effective interactions. In addition, intrinsic shape parameters of lowest yrast states in 86Se are calculated. In semimagic 84Se level lifetimes of the yrast 41+ and 61+ states are determined for the first time. Large-scale shell-model calculations using effective interactions Ni78-II, JUN45, jj4b, and jj4pna are performed. The calculations describe B (E 2 ;21+→01+) and B (E 2 ;61+→41+) fairly well and point out problems in reproducing the experimental B (E 2 ;41+→21+) .

  15. Radiochemical search for neutron-rich isotopes of element 107

    International Nuclear Information System (INIS)

    Schaedel, M.

    1987-01-01

    Recent mass calculations have indicated that there is a region of deformed nuclei around neutron number N=162 that is especially stable against spontaneous fission. Barrier heights of about 5 MeV for Z = 107 nuclides can be extrapolated. To search for new, neutron-rich isotopes of element 107 in radiochemical experiments with 254 Es as a target an on-line chemical separation of element 107 (EKA-Rhenium), especially from the actinide elements is needed. An on-line gas-phase chemistry was developed with the homolog Re based on the volatility of the oxide which is transported in an O 2 containing atmosphere along a temperature gradient in a quartz tube and is condensed onto a thin Ta coated Ni-foil. The authors applied this technique in two series of experiments with their rotating wheel on-line gas-phase chemistry apparatus at the 88-inch cyclotron where they irradiated 254 Es as a target with 93 MeV and 96 MeV 16 O ions to search for 266 107. The assignment of the observed alpha events between 8 and 9 MeV to possibly (1) non actinide contaminants like 212 Po, (2) known isotopes of heavy elements like 261 105, or (3) a new isotope will be discussed

  16. Lifetime measurement in neutron-rich A ∝ 100 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Saba; Jolie, Jan; Regis, Jean-Marc; Saed-Samii, Nima; Warr, Nigel [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); Collaboration: EXILL-FATIMA-Collaboration

    2016-07-01

    Rapid shape changes are observed in the region of neutron rich nuclei with a mass around A=100. Precise lifetime measurements are a key ingredient in the systematic study of the evolution of nuclear deformation and the degree of collectivity in this region. Nuclear lifetimes of excited states can be obtained using the fast-timing technique with LaBr{sub 3}(Ce)-scintillators. We used neutron induced fission of {sup 241}Pu in order to study lifetimes of excited states of fission fragments in the A∝100 region. The EXILL-FATIMA array located at the PF1B cold neutron beam line at the Institut Laue-Langevin comprises of 8 BGO-shielded EXOGAM clover detectors and 16 very fast LaBr{sub 3}(Ce)-scintillator detectors, which were installed around the fission target. We have studied the lifetimes of low lying states for the nuclei {sup 98}Zr, {sup 100}Zr and {sup 102}Zr by applying the generalized centroid difference method. In this contribution we report on the used fast-timing setup and present preliminary results for the studied isotopes.

  17. Dipole polarizability of neutron rich nuclei and the symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Johansen, Jacob; Miki, Kenjiro; Schindler, Fabia; Schrock, Philipp [IKP, TU Darmstadt (Germany); Aumann, Thomas [IKP, TU Darmstadt (Germany); GSI, Darmstadt (Germany); Boretzky, Konstanze [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    As a part of a systematic investigation of the dipole response of stable up to very neutron rich tin isotopes, nuclear and electromagnetic excitation of {sup 124}Sn-{sup 134}Sn has been investigated at relativistic energies in inverse kinematics induced by carbon and lead targets at the LAND-R3B setup at GSI in Darmstadt. The electric dipole response and the nuclear reaction cross section, total and charge-changing, are obtained from the kinematically complete determination of momenta of all particles on an event by event basis. The dipole polarizability is extracted from the Coulomb excitation interaction channel, in order to make use of relevant correlations of this observable with nuclear matter properties such as the symmetry energy at saturation density (J) and it's slope (L). The systematics of the low-lying ''pygmy'' dipole strength, the giant dipole resonance (GDR) and the neutron skin thickness are determined with respect to increasing isospin asymmetry. This talk also discusses the correlations and sensitivities of these variables and observables obtained within the framework of nuclear energy density functional theory.

  18. The pygmy dipole resonance in neutron-rich nuclei

    International Nuclear Information System (INIS)

    Hung, Nguyen Quang; Kiet, Hoang Anh Tuan; Duc, Huynh Ngoc; Chuong, Nguyen Thi

    2016-01-01

    The pygmy dipole resonance (PDR), which has been observed via the enhancement of the electric dipole strength E 1 of atomic nuclei, is studied within a microscopic collective model. The latter employs the Hartree-Fock (HF) method with effective nucleon-nucleon interactions of the Skyrme types plus the random-phase approximation (RPA). The results of the calculations obtained for various even-even nuclei such as "1"6"-"2"8O, "4"0"-"5"8Ca, "1"0"0"-"1"2"0Sn, and "1"8"2"-"2"1"8Pb show that the PDR is significantly enhanced when the number of neutrons outside the stable core of the nucleus is increased, that is, in the neutron-rich nuclei. As the result, the relative ratio between the energy weighted sum of the strength of the PDR and that of the GDR (giant dipole resonance) does not exceed 4%. The collectivity of the PDR and GDR states will be also discussed. (paper)

  19. Unexpectedly large charge radii of neutron-rich calcium isotopes

    CERN Document Server

    Garcia Ruiz, R F; Blaum, K; Ekström, A; Frömmgen, N; Hagen, G; Hammen, M; Hebeler, K; Holt, J D; Jansen, G R; Kowalska, M; Kreim, K; Nazarewicz, W; Neugart, R; Neyens, G; Nörtershäuser, W; Papenbrock, T; Papuga, J; Schwenk, A; Simonis, J; Wendt, K A; Yordanov, D T

    2016-01-01

    Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-...

  20. Investigation of the core-halo structure of the neutron-rich nuclei 6He and 8He by intermediate-energy elastic proton scattering at high momentum transfer

    International Nuclear Information System (INIS)

    Aksouh, F.

    2002-12-01

    The elastic proton scattering from the halo nuclei 6 He and 8 He was investigated in inverse kinematics at energies around 700 MeV/u with the aim to deduce the differential cross sections for the region of high momentum transfer, covering the first diffraction minimum. For this purpose, a liquid-hydrogen target was specially developed and used for the first time allowing to obtain low-background data as compared to commonly used targets made from C-H compounds. Previous data taken in the region of small momentum transfer were sensitive to the size and the peripheral shape of the total nuclear matter density distribution but not to the inner part. The present data allow for a more detailed insight in the structure of the alike core in 6,8 He through a better determination of the matter density distributions. Several density distributions calculated from different microscopic models were used to derive elastic scattering cross sections which are compared with the obtained data. (author)

  1. Structure of the neutron-rich lithium isotopes in heavy-ion reactions

    International Nuclear Information System (INIS)

    Bespalova, O.V.; Galakhmatova, B.S.; Romanovskij, E.A.; Shitikova, K.V.; Burov, V.V.; Rzyanin, M.V.; Miller, H.G.; Yen, G.D.

    1993-01-01

    The structure properties, for factors, angular distributions and interaction cross sections of Li neutron-rich isotopes have been analyzed in the unified way. A good qualitative agreement with the experiment data was obtained. 20 refs.; 11 figs.; 1 tab

  2. Study of very neutron-rich nuclei produced by means of a 48Ca beam

    International Nuclear Information System (INIS)

    Lewitowicz, M.; Artukh, A.G.

    1991-01-01

    The results of experiments with a 48 Ca beam performed at GANIL are presented and discussed. More than 30 very neutron-rich isotopes were identified or studied for the first time. The evidence for particle-unstable character of the 26 O isotope is reported. Half-life measurements for light neutron rich nuclei are compared with different theoretical predictions. (author) 14 refs.; 6 figs.; 1 tab

  3. Uranium prices approaching a 7 year high

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper provides a market overview of the uranium market. The spot market activity totaled approximately 1.1 million lbs of U3O8 and equivalent. The restricted uranium spot market price range jumped from a high last month of $12.25 to a low this month of $12.45 There was a more moderate increase in the unrestricted range with this month's low end rising to last month's high of $10.15. Conversion prices remained steady and the lower end of the SWU range rose slightly to $92

  4. A comparison between thorium-uranium and low enrichment uranium cycles in the high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cerles, J M

    1973-03-15

    In a previous report, it was shown that the Uranium cycle could be used as well with multi-hole block (GGA type) as with tubular elements. Now, in a F.S.V. geometry, a comparison is made between Thorium cycle and Uranium cycle. This comparison will be concerned with the physical properties of the materials, the needs of natural Uranium, the fissile material inventory and, at last, an attempt of economical considerations. In this report the cycle will be characterizd by the fertile material. So, we write ''Thorium cycle'' for Highly Enriched Uranium - Thorium cycle and ''Uranium cycle'' for low Enrichment Uranium cycle.

  5. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  6. 31 CFR 540.306 - Highly Enriched Uranium (HEU).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Highly Enriched Uranium (HEU). 540...) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.306 Highly Enriched Uranium (HEU). The term highly...

  7. High throughput salt separation from uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.W.; Park, K.M.; Kim, J.G.; Kim, I.T.; Park, S.B., E-mail: swkwon@kaeri.re.kr [Korea Atomic Energy Research Inst. (Korea, Republic of)

    2014-07-01

    It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites in pyroprocessing. Multilayer porous crucible system was proposed to increase a throughput of the salt distiller in this study. An integrated sieve-crucible assembly was also investigated for the practical use of the porous crucible system. The salt evaporation behaviors were compared between the conventional nonporous crucible and the porous crucible. Two step weight reductions took place in the porous crucible, whereas the salt weight reduced only at high temperature by distillation in a nonporous crucible. The first weight reduction in the porous crucible was caused by the liquid salt penetrated out through the perforated crucible during the temperature elevation until the distillation temperature. Multilayer porous crucibles have a benefit to expand the evaporation surface area. (author)

  8. Study on growth of highly pure uranium compounds

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Ochiai, Akira; Suzuki, Kenji.

    1992-01-01

    We developed the systems for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. Chemical analysis of the purified uranium was performed using the inductive coupled plasma emission spectrometry (ICP). The problem that emission spectra of the uranium conceal those of analyzed impurities was settled by extraction of the uranium using tri-n-butyl-phosphate (TBP). The result shows that some metallic impurities such as Pb, Mn, Cu etc. evaporated by the r.f. heating and other usual metallic impurities moved to the end of rod with molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained highly purified uranium metal of 99.99 % up with regard to metallic impurities. Using the purified uranium, we attempted to grow a highly pure uranium-titanium single crystals. (author)

  9. Laser-spectroscopy studies of the nuclear structure of neutron-rich radium

    Science.gov (United States)

    Lynch, K. M.; Wilkins, S. G.; Billowes, J.; Binnersley, C. L.; Bissell, M. L.; Chrysalidis, K.; Cocolios, T. E.; Goodacre, T. Day; de Groote, R. P.; Farooq-Smith, G. J.; Fedorov, D. V.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heinke, R.; Koszorús, Á.; Marsh, B. A.; Molkanov, P. L.; Naubereit, P.; Neyens, G.; Ricketts, C. M.; Rothe, S.; Seiffert, C.; Seliverstov, M. D.; Stroke, H. H.; Studer, D.; Vernon, A. R.; Wendt, K. D. A.; Yang, X. F.

    2018-02-01

    The neutron-rich radium isotopes, Ra-233222, were measured with Collinear Resonance Ionization Spectroscopy (CRIS) at the ISOLDE facility, CERN. The hyperfine structure of the 7 s2S10→7 s 7 p P31 transition was probed, allowing measurement of the magnetic moments, quadrupole moments, and changes in mean-square charge radii. These results are compared to existing literature values, and the new moments and change in mean-square charge radii of 231Ra are presented. Low-resolution laser spectroscopy of the very neutron-rich 233Ra has allowed the isotope shift and relative charge radius to be determined for the first time.

  10. Detection of the weak γ activities from new neutron-rich nuclei

    International Nuclear Information System (INIS)

    Zhang Li; Wang Jicheng; Zhao Jinhua; Yang Yongfeng; Zheng Jiwen; Hu Qingyuan; Guo Tianrui

    2003-01-01

    Energic signals of γ rays detected by a HPGe γ detector were coincided with γ-ray, energy-loss signals detected by a 4πΔEβ detector. Then the coinciding β-ray spectra was anticoincided with timing logical signals of 511 keV γ ray created in positron annihilate, detected by a large BGO detector. This special coincidence-anticoincidence system has played an important role in the first observation of the new neutron-rich nuclide 209 Hg. It is shown that this is an effective method to detecting very weak γ-ray activities of neutron-rich isotope in an element-separation sample

  11. Nucleosynthesis of neutron-rich heavy nuclei during explosive helium burning in massive stars

    International Nuclear Information System (INIS)

    Blake, J.B.; Woosley, S.E.; Weaver, T.A.; Schramm, D.N.

    1981-01-01

    The production of heavy nuclei during explosive helium burning has been calculated using a hydrodynamical model of a 15 M/sub sun/ (Type II) supernovae and a n-process nuclear reaction network. The resulting neutron-rich heavy nuclei are not produced in the relative abundances of solar-system r-process material, especially in the vicinity of Pt, nor are any actinides produced. These deficiencies reflect an inadequate supply of neutrons. However, some neutron-rich isotopes, normally associated with the r-process, are produced which may be significant for the production of isotopic anomalies in meteorites

  12. Study of subshell gap around N = 70 for neutron-rich nuclei

    International Nuclear Information System (INIS)

    Hemalatha, M.

    2011-01-01

    The study and search for new regions of shell closure for nuclei away from stability is a topic of current interest both experimentally and theoretically. There have been few studies predicting a weak spherical subshell gap of 110 Zr (N = 70), for example. This is supported by a recent study indicating that the spherical N = 70 shell gap may not have a large effect at N = 68 for Zr isotopes. It would be, therefore, interesting to know whether there is a subshell closure at N = 70 in the neutron rich region and also for the very neutron-rich nuclei, 110 Zr

  13. Nuclear shell effects in neutron-rich nuclei around N=20 and N=32,34

    CERN Document Server

    Seidlitz, M

    Nuclear shell effects in neutron-rich nuclei around N=20 and N=32,34 were studied by means of reduced transition probabilities, i.e. B(E2) and B(M1) values. To this end a series of Coulomb-excitation experiments, employing radioactive 31Mg and 29,30Na beams, as well as a precise lifetime experiment of excited states in 56Cr were performed. The collective properties of excited states of 31Mg were the subject of a Coulomb-excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31Mg beam at a beam energy of 3.0 MeV/u. The beam intensity amounted to 3000 ions/s on average. The highly efficient MINIBALL setup was employed, consisting of eight HPGe cluster detectors for gamma-ray detection and a segmented Si-detector for coincident particle detection. The level scheme of 31Mg was extended. Spin and parity assignment of the observed 945 keV state yielded 5/2+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of 30,31,32Mg establishes that f...

  14. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    CERN Document Server

    Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

  15. Decay spectroscopy of neutron-rich nuclei around {sup 37,38}Al

    Energy Technology Data Exchange (ETDEWEB)

    Steiger, Konrad [Physik-Department E12, Technische Universitaet Muenchen (Germany); Collaboration: CAITEN-Collaboration

    2013-07-01

    An experiment at RIBF (Radioactive Isotope Beam Factory at RIKEN, Japan) investigated N=20 nuclei above {sup 29}F and the midshell region around {sup 37}Al. These nuclei were produced by relativistic projectile fragmentation of a 345 AMeV {sup 48}Ca primary beam from the superconducting ring cyclotron SRC with an average intensity of 70 pnA. The secondary cocktail beam was separated and identified with the BigRIPS fragment separator and the ZeroDegree spectrometer. The identified fragments were implanted in the CAITEN detector (Cylindrical Active Implantation Target for Efficient Nuclear-decay study). The main part of this detector is a highly segmented plastic scintillator with the shape of a hollow cylinder. To reduce background decay events the scintillator was moved axially and vertically similar to a tape-transport system. Implantations and decays were correlated in time and space. For the first time β-delayed γ-rays were measured in the neutron-rich isotopes {sup 37,38}Si (with three germanium clover detectors). From β-γ-γ coincidences partial level schemes could be constructed. The results were compared to shell model calculations and a tentative assignment for spins and parities of the experimental level schemes was possible. Significantly more precise half-lives for the implanted nuclei were measured.

  16. Shape coexistence in neutron-rich Sr isotopes : Coulomb excitation of $^{96}$Sr

    CERN Multimedia

    Clement, E; Siem, S; Czosnyka, T

    2007-01-01

    The nuclei in the mass region A $\\cong$ 100 around Sr and Zr show a dramatic change of the nuclear ground-state shape from near spherical for N $\\leq$ 58 to strongly deformed for N $\\geq$ 60. Theoretical calculations predict the coexistence of slightly oblate and strongly prolate deformed configurations in the transitional region. However, excited rotational structures based on the highly deformed configuration, which becomes the ground state at N = 60, are not firmly established in the lighter isotopes, and the earlier interpretation of a very abrupt change of shape has been challenged by recent experimental results in favor of a rather gradual change. We propose to study the electromagnetic properties of the neutron-rich nucleus $_{38}^{96}$Sr$_{58}$ by low-energy Coulomb excitation using the REX-ISOLDE facility and the MINIBALL detector array. Both transitional and diagonal matrix elements will be extracted, resulting in a complete description of the transition strengths and quadrupole moments of the low-l...

  17. Investigation of reduced transition-strengths in neutron-rich chromium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Braunroth, Thomas; Dewald, Alfred; Fransen, Christoph; Litzinger, Julia [Institut fuer Kernphysik, Universitaet Koeln (Germany); Iwasaki, Hironori [National Superconducting Cyclotron Laboratory, MSU (United States); Lemasson, Antoine [GANIL, Laboratoire Commun DSM/CEA (France); Lenzi, Silvia [Department of Physics and Astronomy, University of Padova (Italy); INFN, Sezione di Padova (Italy)

    2015-07-01

    Neutron-rich nuclei close to N=40 are known for their rapid changes in nuclear structure. While {sup 68}Ni exhibits signatures of a shell closure, experimental data - e.g. excitation energies of the 2{sup +}{sub 1}-state and B(E2;2{sup +}{sub 1} → 0{sup +}{sub 1})-values - along the isotopic chains in even more exotic Fe and Cr-isotopes suggest a sudden rise in collective behaviour for N → 40. Lifetimes of low-lying yrast states in {sup 58,60,62}Cr were measured with the Recoil Distance Doppler-shift (RDDS) technique at NSCL, MSU (USA) to deduce model independent B(E2)-values. After fragmentation of a primary {sup 82}Se beam (E=140 AMeV) on a {sup 9}Be target and subsequent filtering with the A1900 fragment separator, high purity {sup 59,61,63}Mn-beams (E ∝ 95 AMeV) impinged on the {sup 9}Be plunger target, where excited states in the above mentioned Cr-isotopes were then populated in one proton knockout reactions. The S800 spectrograph allowed a clear recoil identification, which then lead to clean γ-spectra as measured by the Segmented Germanium Array (SeGA). Final results of this experiment will be shown and discussed in the context of state-of-the-art shell-model calculations.

  18. Identification of new neutron-rich rare-earth nuclei produced in /sup 252/Cf spontaneous fission

    CERN Document Server

    Greenwood, R C; Gehrke, R J; Meikrantz, D H

    1981-01-01

    A program of systematic study of the decay properties of neutron-rich rare-earth nuclei with 30 shigh-performance chromatography columns connected in series and coupled to the /sup 252 /Cf fission source via a helium gas-jet transport arrangement. The time delay for separation and initiation of gamma -ray counting with results which have been obtained to date with this system include the identification of a number of new neutron-rich rare-earth isotopes including /sup 155/Pm (t/sub 1/2/=48+or-4 s) and /sup 163/Gd (t/sub 1 /2/=68+or-3 s), in addition to 5.51 min /sup 158/Sm which was identified in an earlier series of experiments. (11 refs).

  19. Examination of different strengths of octupole correlations in neutron-rich Pr and Pm isotopes

    Czech Academy of Sciences Publication Activity Database

    Thiamova, G.; Alexa, P.; Hons, Zdeněk; Simpson, G.S.

    2012-01-01

    Roč. 86, č. 4 (2012), 044334/1-044334/5 ISSN 0556-2813 R&D Projects: GA ČR GAP203/10/0310 Institutional support: RVO:61389005 Keywords : neutron rich nuclei * octupole correlations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.715, year: 2012

  20. Beta spectroscopy on neutron-rich nuclei of mass 93<=A<=100

    International Nuclear Information System (INIS)

    Pahlmann, B.

    1982-01-01

    In the present thesis for the first time measurements of the Qsub(β) value of the neutron-rich fission products sup(99,100)Sr and 99 Rb were performed. Preliminary results could be obtained on the beta decays of the nuclides 100 Rb and 100 Y. (orig./HSI) [de

  1. Production of neutron-rich nuclei at 200 MeV/nucleon

    International Nuclear Information System (INIS)

    Symons, T.J.M.

    1979-01-01

    Ways that heavy ion accelerators have been used to produce neutron rich isotopes are discussed. These include: fusion-evaporation reactions; transfer reactions; deep-inelastic scattering; and heavy ion fragmentation. Experiments using beams of 40 Ar and 48 Ca at 205 MeV/nucleon and 212 MeV/nucleon respectively, are described

  2. Active interrogation of highly enriched uranium

    Science.gov (United States)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is

  3. Coulomb excitation of neutron-rich nuclei between the N=40 and N=50 shell gaps using REX-ISOLDE and the Ge MINIBALL array

    CERN Multimedia

    2002-01-01

    We propose to perform Coulomb excitation experiments of neutron-rich nuclei in the vicinity of $^{68}$Ni towards $^{78}$Ni using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Major changes in the structure of the atomic nucleus are expected around the N = 40 subshell closure. Recent B(E2) measurements suggested that $^{68}$Ni behaves like a doubly magic nucleus while neutron-rich Zn isotopes with N>38 exhibit a sudden increase of B(E2) values which may be the signature of deformation. We would like to check and test these predictions for neutron-rich nuclei in the vicinity of N = 40 and N = 50 shell closures like $^{72}$Zn, $^{74}$Zn, $^{76}$Zn, $^{68}$Ni, $^{70}$Ni. Our calculations show that an energy upgrade from 2.2 to 3 MeV/nucleon will be of crucial importance for a part of our study while some nuclei can still be very efficiently studied at an energy of 2.2 MeV/nucleon. Therefore, to perform our experiment in an efficient way, we request 21 shifts of beam time before the ene...

  4. Surplus Highly Enriched Uranium Disposition Program plan

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of this document is to provide upper level guidance for the program that will downblend surplus highly enriched uranium for use as commercial nuclear reactor fuel or low-level radioactive waste. The intent of this document is to outline the overall mission and program objectives. The document is also intended to provide a general basis for integration of disposition efforts among all applicable sites. This plan provides background information, establishes the scope of disposition activities, provides an approach to the mission and objectives, identifies programmatic assumptions, defines major roles, provides summary level schedules and milestones, and addresses budget requirements

  5. Civilian inventories of plutonium and highly enriched uranium

    International Nuclear Information System (INIS)

    Albright, D.

    1987-01-01

    In the future, commercial laser isotope enrichment technologies, currently under development, could make it easier for national to produce highly enriched uranium secretly. The head of a US firm that is developing a laser enrichment process predicts that in twenty years, major utilities and small countries will have relatively small, on-site, laser-based uranium enrichment facilities. Although these plants will be designed for the production of low enriched uranium, they could be modified to produce highly enriched uranium, an option that raises the possibility of countries producing highly enriched uranium in small, easily hidden facilities. Against this background, most of this report describes the current and future quantities of plutonium and highly enriched uranium in the world, their forms, the facilities in which they are produced, stored, and used, and the extent to which they are transported. 5 figures, 10 tables

  6. Microscopic multiphonon approach to spectroscopy in the neutron-rich oxygen region

    Science.gov (United States)

    De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2018-03-01

    Background: A fairly rich amount of experimental spectroscopic data have disclosed intriguing properties of the nuclei in the region of neutron rich oxygen isotopes up to the neutron dripline. They, therefore, represent a unique laboratory for studying the evolution of nuclear structure away from the stability line. Purpose: We intend to give an exhaustive microscopic description of low and high energy spectra, dipole response, weak, and electromagnetic properties of the even 22O and the odd 23O and 23F. Method: An equation of motion phonon method generates an orthonormal basis of correlated n -phonon states (n =0 ,1 ,2 ,⋯ ) built of constituent Tamm-Dancoff phonons. This basis is adopted to solve the full eigenvalue equations in even nuclei and to construct an orthonormal particle-core basis for the eigenvalue problem in odd nuclei. No approximations are involved and the Pauli principle is taken into full account. The method is adopted to perform self-consistent, parameter free, calculations using an optimized chiral nucleon-nucleon interaction in a space encompassing up to two-phonon basis states. Results: The computed spectra in 22O and 23O and the dipole cross section in 22O are in overall agreement with the experimental data. The calculation describes poorly the spectrum of 23F. Conclusions: The two-phonon configurations play a crucial role in the description of spectra and transitions. The large discrepancies concerning the spectra of 23F are ultimately traced back to the large separation between the Hartree-Fock levels belonging to different major shells. We suggest that a more compact single particle spectrum is needed and can be generated by a new chiral potential which includes explicitly the contribution of the three-body forces.

  7. Lifetimes in neutron-rich Nd isotopes measured by Doppler profile method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Lifetimes of the rotational levels in neutron-rich even-even Nd isotopes were deduced from the analysis of the Doppler broadened line shapes. The experiment was performed at Daresbury with the Eurogam array, which at that time consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. The source was in the form of a 7-mm pellet which was prepared by mixing 5-mg; {sup 248}Cm and 65-mg KCl and pressing it under high pressure. Events for which three or more detectors fired were used to construct a cubic data array whose axes represented the {gamma}-ray energies and the contents of each channel the number of events with that particular combination of {gamma}-ray energies. From this cubic array, one-dimensional spectra were generated by placing gates on peaks on the other two axes. Gamma-ray spectra of even-even Nd isotopes were obtained by gating on the transitions in the complimentary Kr fragments. The gamma peaks de-exciting states with I {>=} 12 h were found to be broader than the instrumental line width due to the Doppler effect. The line shapes of they-ray peaks were fitted separately with a simple model for the feeding of the states and assuming a rotational band with constant intrinsic quadruple moment and these are shown in Fig. I-27. The quadrupole moments thus determined were found to be in good agreement with the quadrupole moments measured previously for lower spin states. Because of the success of this technique for the Nd isotopes, we intend to apply this technique to the new larger data set collected with the Eurogam II array. The results of this study were published.

  8. Velocity determination of neutron-rich projectile fragments with a ring-imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Zeitelhack, K.

    1992-11-01

    For the velocity determination of relativistic heavy ions (A>100) in the energy range 300A.MeV ≤ E kin ≤ 2A.GeV a highly resolving, compact ring-imaging Cherenkov counter with large dynamical measurement range was developed. The Cherenkov light cone emitted in the flight of a relativistic heavy ion by a liquid layer (C 6 F 14 ) is focused on the entrance window of a one-dimensional position-resolving VUV-sensitive photon detector. This gas detector is operated at atmospheric pressure with a mixture of 90% methane and 10% isobutane with 0.04% TMAE as photosensitive admixture. For 725A.MeV 129 Xe ions a velocity resolution Δβ/β=1.8.10 -3 and a nuclear charge-number resolution ΔZ/Z=5.1.10 -2 was reached. The over the photon energy range 5.4 eV ≤ E γ ≤ 7.2 eV averaged detection efficiency of the detector system was determined to ε tot =2.8%>. At the 0deg magnet spectrometer Fragmentseparator of the GSI Darmstadt the RICH detector was for the first time applied for the identification of nuclear charge number and mass of heavy relativistic projectile fragments. In the experiment the production cross sections of very neutron-rich nuclei by fragmentation of 136 Xe projectiles in the reaction 76A.MeV 136 Xe on 27 Al were determined. From the measured production erates for the production of the double-magic nucleus 132 Zn in this reaction a cross section of σ=(0.4± 0.3 0.6 ) μbarn can be extrapolated. (orig./HSI) [de

  9. K isomerism and collectivity in neutron-rich rare-earth isotopes

    Science.gov (United States)

    Patel, Zena

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated and identified. The excited states of nuclei are studied by delayed isomeric or beta-delayed gamma-ray spectroscopy. New K isomers were found in Sm (Z=62), Eu (Z=63), and Gd (Z=64) isotopes. The key results are discussed here. Excited states in the N=102 isotones 166Gd and 164Sm have been observed following isomeric decay for the first time. The K-isomeric states in 166Gd and 164Sm are due to 2-quasiparticle configurations. Based on the decay patterns and potential energy surface calculations, including beta6 deformation, both isomers are assigned a (6-) spin-parity. The half-lives of the isomeric states have been measured to be 950(60)ns and 600(140)ns for 166Gd and 164Sm respectively. Collective observables are discussed in light of the systematics of the region, giving insight into nuclear shape evolution. The decrease in the ground state band energies of 166Gd and 164Sm (N=102) compared to 164Gd and 162Sm (N=100) respectively, presents evidence for the predicted deformed shell closure at N=100. A 4-quasiparticle isomeric state has been discovered in 160Sm: the lightest deformed nucleus with a 4-quasiparticle isomer to date. The isomeric state is assigned an (11+) spin-parity with a measured half-life of 1.8(4)us. The (11+) isomeric state decays into a rotational band structure, based on a (6-) v5/2-[523] ⊗ v7/2+[633] bandhead, determined from the extracted gK-gR values. Potential energy surface and blocked BCS calculations were performed in the deformed midshell region

  10. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  11. Solvent extraction of uranium from high acid leach solution

    International Nuclear Information System (INIS)

    Ramadevi, G.; Sreenivas, T.; Navale, A.S.; Padmanabhan, N.P.H.

    2010-01-01

    A significant part of the total uranium reserves all over the world is contributed by refractory uranium minerals. The refractory oxides are highly stable and inert to attack by most of the commonly used acids under normal conditions of acid strength, pressure and temperature. Quantitative dissolution of uranium from such ores containing refractory uranium minerals requires drastic operating conditions during chemical leaching like high acid strength, elevated pressures and temperatures. The leach liquors produced under these conditions normally have high free acidity, which affects the downstream operations like ion exchange and solvent extraction

  12. β decay half-live measurement of 22 very neutron-rich isotopes in the Ti-Ni region

    International Nuclear Information System (INIS)

    Czajkowski, S.; Ameil, F.; Armbruster, P.; Donzaud, C.; Geissel, H.; Kozhuharov, C.; Schwab, W.; Bernas, M.; Dessagne, P.; Miehe, C.; Grewe, A.; Hanelt, E.; Heinz, A.; Jong, M. de; Steinhaeuser, S.; Janas, Z.

    1997-01-01

    Very neutron-rich Ti to Ni isotopes were produced in fragmentation of a 500 MeV/u 86 Kr primary beam on a Be target, separated using the Fragment Separator at GSI, and implanted in a set of PIN-diodes where β-decay particles were detected. From time-correlations analysis the unknown β-decay half-life of 22 isotopes were determined. Their values are within 10 -1 s. The β decay spectrum of 70 Co is presented as resulting from an analysis of the first β particle detected after ion implantation in the same detector. Also are presented the example of 3 β decay chains for 65 Mn and 66 Mn. The identification of such chains was instrumental in reducing the influence of background noise in the time correlation analysis while it allows life-time determinations of high confidence

  13. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Akram, W.; Schönbächler, M. [School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Sprung, P. [Institut für Planetologie, Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Vogel, N. [Institute for Geochemistry and Petrology, ETH, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.

  14. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  15. Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei

    CERN Document Server

    Ramayya, A V; ICFN5

    2014-01-01

    These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.

  16. Goodness of isospin in neutron rich systems from the fission fragment distribution

    Science.gov (United States)

    Garg, Swati; Jain, Ashok Kumar

    2017-09-01

    We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in 208Pb (18O, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. We take into account a range of isospin values allowed by the isospin algebra and assume that the fission fragments are formed in isobaric analog states. We also take into account the neutron multiplicity data for various neutron-emission channels in each partition, and use them to obtain the weight factors in calculating the yields. We then calculate the relative yields of the fission fragments. Our calculated results are able to reproduce the experimental trends reasonably well. This is the first direct evidence of the isospin conservation in neutron-rich systems and may prove a very useful tool in their studies.

  17. Nuclear structure far from stability: the neutron-rich 69-79Cu isotopes

    International Nuclear Information System (INIS)

    Franchoo, Serge

    2015-01-01

    Far from stability, the nuclear structure that is predicted by the shell model is evolving. Old magic numbers disappear, while new ones appear. Our understanding of the underlying nuclear force that drives these changes is still incomplete. After a short overview across the nuclear chart, we discuss the strength functions of the shell-model orbitals in the neutron-rich copper isotopes towards the 78 Ni doubly-magic nucleus. These were measured in a 72 Zn(d, 3 He) 71 Cu proton pick-up reaction in inverse kinematics with a radioactive beam at the Ganil laboratory in France. We also present the latest results from a 80 Zn(p,2p) 79 Cu knockout experiment at Riken in Japan, leading to selective population of hole states in 79 Cu. Our findings show that the Z=28 shell gap in the neutron-rich copper isotopes is surprisingly steady against the addition of neutrons beyond N=40. (author)

  18. Structure of neutron-rich nuclei around the N = 50 shell-gap closure

    Science.gov (United States)

    Faul, T.; Duchêne, G.; Thomas, J.-C.; Nowacki, F.; Huyse, M.; Van Duppen, P.

    2010-04-01

    The structure of neutron-rich nuclei in the vicinity of 78Ni have been investigated via the β-decay of 71,73,75Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p3/21f5/22p1/21g9/2) valence space and a 56/28Ni28 core.

  19. Measurement of total reaction cross sections of exotic neutron rich nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Chouvel, J.M.; Wen Long, Z.

    1987-01-01

    Total reaction cross-sections of neutron rich nuclei from C to Mg in a thick Si-target have been measured using the detection of the associated γ-rays in a 4Π-geometry. This cross-section strongly increases with neutron excess, indicating an increase of as much as 15% of the reduced strong absorption radius with respect to stable nuclei

  20. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  1. Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes

    Science.gov (United States)

    Yu, Mian; Wei, Hui-Ling; Song, Yi-Dan; Ma, Chun-Wang

    2017-09-01

    A method is proposed to determine the one-neutron S n or two-neutron S 2n separation energy of neutron-rich isotopes. Relationships between S n (S 2n) and isotopic cross sections have been deduced from an empirical formula, i.e., the cross section of an isotope exponentially depends on the average binding energy per nucleon B/A. The proposed relationships have been verified using the neutron-rich copper isotopes measured in the 64A MeV 86Kr + 9Be reaction. S n, S 2n, and B/A for the very neutron-rich 77,78,79Cu isotopes are determined from the proposed correlations. It is also proposed that the correlations between S n, S 2n and isotopic cross sections can be used to find the location of neutron drip line isotopes. Supported by Program for Science and Technology Innovation Talents at Universities of Henan Province (13HASTIT046), Natural and Science Foundation in Henan Province (162300410179), Program for the Excellent Youth at Henan Normal University (154100510007) and Y-D Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017)

  2. First observation of the beta decay of neutron-rich $^{218}Bi$ by the pulsed-release technique and resonant laser ionization

    CERN Document Server

    De Witte, H; Borzov, I N; Caurier, E; Cederkäll, J; De Smet, A; Eckhaudt, S; Fedorov, D V; Fedosseev, V; Franchoo, S; Górska, M; Grawe, H; Huber, G; Huyse, M; Janas, Z; Köster, U; Kurcewicz, W; Kurpeta, J; Plochocki, A; Van Duppen, P; Van de Vel, K; Weissman, L

    2004-01-01

    The neutron-rich isotope /sup 218/Bi has been produced in proton- induced spallation of a uranium carbide target at the ISOLDE facility at CERN, extracted from the ion source by the pulsed-release technique and resonant laser ionization, and its beta decay is studied for the first time. A half-life of 33(1)s was measured and is discussed in the self-consistent continuum-quasi particle-random- phase approximation framework that includes Gamow-Teller and first- forbidden transitions. A level scheme was constructed for /sup 218 /Po, and a deexcitation pattern of stretched E2 transitions 8/sup +/ to 6/sup +/ to 4/sup +/ to 2/sup +/ to 0/sup +/ to the ground state is suggested. Shell-model calculations based on the Kuo-Herling interaction reproduce the experimental results satisfactorily. (28 refs).

  3. Production of neutron-rich nuclei in fission induced by neutrons generated by the p+ sup 1 sup 3 C reaction at 55 MeV

    CERN Document Server

    Stroe, L; Andrighetto, A; Tecchio, L B; Dendooven, P; Huikari, J; Pentillä, H; Peraejaervi, K; Wang, Y

    2003-01-01

    Cross-sections for the production of neutron-rich nuclei obtained by neutron-induced fission of natural uranium have been measured. The neutrons were generated by bombarding a sup 1 sup 3 C target with 55 MeV protons. The results, position of the maximum in the (Z, A)-plane, width and magnitude, are very comparable with those where the neutrons are generated by bombardment of natural sup 1 sup 2 C graphite with 50 MeV deuterons. Depending on the geometry of the converter/target assembly the isotope yields, however, are a factor of 2-3 lower due to less efficient production of neutrons per primary projectile, especially at small forward angles. (orig.)

  4. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  5. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    International Nuclear Information System (INIS)

    Ishii, T.; Asai, M.; Matsuda, M.; Ichikawa, S.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.

    2002-01-01

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T 1/2 >1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68 Ni and its neighbor 69,71 Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed. (orig.)

  6. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    Science.gov (United States)

    Ishii, T.; Asai, M.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.; Matsuda, M.; Ichikawa, S.

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T1/2 > 1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68Ni and its neighbor 69,71Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed.

  7. 77 FR 51579 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-08-24

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken metal to the Atomic Energy of Canada...

  8. Neutron activation analysis of high pure uranium using preconcentration

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Rakhimov, A.V.; Salimov, M.I.; Zinov'ev, V.G.

    2006-01-01

    Full text: Uranium and its compounds are used as nuclear fuel, and requirements for purity of initial uranium are very high. Therefore highly sensitive and multielemental analysis of uranium is required. One of such methods is neutron activation analysis (NAA). During irradiation of uranium by nuclear reactor neutrons the induced radioactivity of a sample is formed by uranium radionuclide 239 U (T 1/2 = 23,4 min.) and its daughter radionuclide 239 Np (T 1/2 = 2,39 d). Short-lived 239 U almost completely decays in 24 hours after irradiation and the radioactivity of the sample is mainly due to 239 Np and is more than 10 9 Bq for 0.1 g of uranium sample (F = 1*10 14 cm -2 s -1 , t irr . = 5 h). That is why nondestructive determination of the impurities is impossible and they should be separated from 239 Np. When irradiated uranium yields fission products - radionuclides of some elements with mass numbers 91-104 and 131-144. The main problem in NAA of uranium is to take into account correctly the influence of fission products on the analysis results. We have developed a radiochemical separation procedure for RNAA of uranium [1]. Comparing the results of analysis carried out by radiochemical NAA and instrumental NAA with preconcentration of trace elements can be used for evaluating the interference of fission products on uranium analysis results. Preconcentration of trace elements have been carried out by extraction chromatography in 'TBP - 6M HNO 3 ' system [1]. Experiments have shown that if 0.1 g uranium sample is taken for analysis (F = 1*10 14 cm -2 s -1 , t irr . =5 h) the apparent concentration of Y, Zr, Mo, Cs, La, Ce, Pr, Nd exceeds the true concentration by 2500-3000 times and so determination of these elements is not possible by radiochemical NAA. (author)

  9. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  10. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  11. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  12. Evolution of collectivity in neutron-rich nuclei in the 132Sn region

    International Nuclear Information System (INIS)

    Kshetri, Ritesh; Sarkar, M. Saha; Sarkar, S.

    2006-01-01

    Motivated by the observed regularity in the energy spectra and the structure of the shell model wave functions for the levels of 137 Te and 137 I, a few weakly and moderately deformed neutron-rich odd-A nuclei above the doubly magic nucleus 132 Sn were studied using the particle rotor model (PRM). The calculated energy spectra and branching ratios agree reasonably well with the most recent experimental data. In a few cases ambiguity in level ordering was resolved and spin-parities were assigned to the levels. Observed octupole correlation in some of these nuclei is discussed in the light of the present results

  13. Spectroscopy on neutron-rich nuclei at RIKEN. Present and future

    International Nuclear Information System (INIS)

    Sakurai, H.

    2003-01-01

    Recent studies on nuclear structure by using radioactive isotope beams available at the RIKEN projectile-fragment separator (RIPS) are introduced. Special emphasis is given to experiments selected from the recent programs that highlight studies at N=20-28; on the large deformation of 30 Ne and 34 Mg via the in-beam gamma spectroscopy, and on the particle stability of very neutron-rich nuclei, 34 Ne, 37 Na and 43 Si. The RI Beam Factory (RIBF) project is illustrated through review of such present research activities at RIPS. (author)

  14. Decay of a three-quasiparticle isomer in the neutron-rich nucleus 183Ta

    Directory of Open Access Journals (Sweden)

    Zhu S.

    2012-10-01

    Full Text Available Excited states in neutron-rich tantalum isotopes have been studied with deep-inelastic reactions using 136Xe ions incident on a 186W target. New transitions observed below the τ=1.3 μs isomer in 183Ta have enabled the establishment of its energy and put limits on the spin and parity. On the basis of the reduced hindrances for the depopulating transitions, a 3-quasiparticle configuration of ν1/2−[510]11/2+[615] ⊗ π9/2−[514] is suggested.

  15. β decay and isomeric properties of neutron-rich Ca and Sc isotopes

    International Nuclear Information System (INIS)

    Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Stoker, J. B.; Janssens, R. V. F.; Carpenter, M. P.; Kay, B. P.; Lauritsen, T.; Zhu, S.; Broda, R.; Cieplicka, N.; Fornal, B.; Grinyer, G. F.; Minamisono, K.; Hoteling, N.; Stefanescu, I.; Walters, W. B.

    2010-01-01

    The isomeric and β-decay properties of neutron-rich 53-57 Sc and 53,54 Ca nuclei near neutron number N=32 are reported, and the low-energy level schemes of 53,54,56 Sc and 53-57 Ti are presented. The low-energy level structures of the 21 Sc isotopes are discussed in terms of the coupling of the valence 1f 7/2 proton to states in the corresponding 20 Ca cores. Implications with respect to the robustness of the N=32 subshell closure are discussed, as well as the repercussions for a possible N=34 subshell closure.

  16. Simulation of neutron rich nuclei production through 239U fission at intermediates energies

    International Nuclear Information System (INIS)

    Mirea, M.; Clapier, F.; Pauwels, N.; Proust, J.

    1997-01-01

    The theoretical part and some results obtained from a model realised for fission processes in wide range of mass-asymmetries are presented. The fission barriers are computed in a tridimensional configuration space using the Yukawa - plus - exponential macroscopic energies corrected within the Strutinsky procedure. It is assumed that channel probabilities are proportional with Gamow penetrabilities. The model is applied for the disintegration of the 239 U in order to determine the relative yields for the production of neutron rich nuclei at diverse intermediate energies. (author)

  17. Collective excitations in neutron-rich nuclei within the model of a Fermi liquid drop

    International Nuclear Information System (INIS)

    Kolomietz, V.M.; Magner, A.G.

    2000-01-01

    We discuss a new mechanism of splitting of giant multipole resonances (GMR) in spherical neutron-rich nuclei. This mechanism is associated with the basic properties of an asymmetric drop of nuclear Fermi liquid. In addition to well-known isospin shell-model predictions, our approach can be used to describe the GMR splitting phenomenon in the wide nuclear-mass region A ∼ 40-240. For the dipole isovector modes, the splitting energy, the relative strength of resonance peaks, and the contribution to the energy-weighted sum rules are in agreement with experimental data for the integrated cross sections for photonuclear (γ, n) and (γ, p) reactions

  18. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  19. Coulomb excitation of neutron-rich $^{134-136}$Sn isotopes

    CERN Multimedia

    We propose to study excited states in the isotopes $^{134,136}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to investigate the evolution of quadrupole collectivity beyond the magic shell closure at N = 82 by the determination of B(E2) values and electric quadrupole moments $\\mathcal{Q}_2$. Recent shell-model calculations using realistic interactions predict possible enhanced collectivity in neutron-rich regions. Evidence for this could be obtained by this experiment. Furthermore, the currently unknown excitation energies of the 2$^+_{1}$ and 4$^+_{1}$ states in $^{136}$Sn will be measured for the first time.

  20. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  1. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  2. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  3. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  4. Decay spectroscopy of neutron-rich nuclei with the CAITEN detector

    Energy Technology Data Exchange (ETDEWEB)

    Steiger, Konrad [Physik-Department E12, Technische Universitaet Muenchen (Germany); Collaboration: CAITEN-Collaboration

    2012-07-01

    An experiment in fall 2010 at the RIBF (Radioactive Ion Beam Factory at RIKEN, Japan) investigated the neutron-rich nuclei in the neighborhood of {sup 30}Ne and {sup 36}Mg. These nuclei were produced by relativistic projectile fragmentation of a 345 AMeV {sup 48}Ca primary beam which was delivered from the superconducting ring cyclotron SRC with an average intensity of 70 pnA. The secondary cocktail beam was separated and identified with the BigRIPS fragment separator and the ZeroDegree spectrometer. The unambiguous particle identification was achieved by measuring the energy loss, time of flight and magnetic rigidity event-by-event. The identified fragments were implanted in the CAITEN detector (Cylindrical Active Implantation Target for Efficient Nuclear-decay study). The main part of this detector is a 4 x 10{sup 4}-fold segmented plastic scintillator with the shape of a hollow cylinder. To reduce background events the scintillator was moved continuously in axial and vertical direction (similar to a tape-transporting system). Implantations and decays were correlated in time and space. {gamma}-rays were detected with three germanium clover detectors. For the first time {beta}-delayed gammas were measured in the neutron-rich isotopes {sup 36-38}Si. The status of the analysis and preliminary results including new half-life values and tentative level schemes for these very exotic nuclei are presented.

  5. Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

    Science.gov (United States)

    Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.

    2018-02-01

    The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.

  6. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Directory of Open Access Journals (Sweden)

    Roland Wirth

    2018-04-01

    Full Text Available We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains — from HeΛ5 to HeΛ11 and from LiΛ7 to LiΛ12 — in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon–nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon. Keywords: Hypernuclei, Ab-initio methods, Neutron-rich nuclei, Neutron separation energies, Neutron drip line

  7. Development of axial asymmetry in the neutron-rich nucleus {sup 110}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H., E-mail: hiroshi@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, K.; Odahara, A. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka (Japan); Sumikama, T. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Nishimura, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yoshinaga, K. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Li, Z. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Miyashita, Y. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Sato, K. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Prochniak, L. [Institute of Physics, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin (Poland); Baba, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Berryman, J.S. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Blasi, N. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Bracco, A.; Camera, F. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Chiba, J. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Doornenbal, P. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Go, S.; Hashimoto, T.; Hayakawa, S. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan)

    2011-10-19

    The neutron-rich nucleus {sup 110}Mo has been investigated by means of {gamma}-ray spectroscopy following the {beta}-decay of {sup 110}Nb, produced using in-flight fission of a {sup 238}U beam at 345 MeV/nucleon at the RIBF facility. In addition to the ground-band members reported previously, spectroscopic information on the low-lying levels of the quasi-{gamma} band built on the second 2{sup +} state at 494 keV has been obtained for the first time. The experimental finding of the second 2{sup +} state being lower than the yrast 4{sup +} level suggests that axially-asymmetric {gamma} softness is substantially enhanced in this nucleus. The experimental results are compared with model calculations based on the general Bohr Hamiltonian method. The systematics of the low-lying levels in even-even A{approx}110 nuclei is discussed in comparison with that in the neutron-rich A{approx}190 region, by introducing the quantity E{sub S}/E(2{sub 1}{sup +}), E{sub S}=E(2{sub 2}{sup +})-E(4{sub 1}{sup +}), as a global signature of the structural evolution involving axial asymmetry.

  8. Coulomb Excitation of Neutron-Rich $A\\approx$140 Nuclei

    CERN Multimedia

    Van duppen, P L E

    2002-01-01

    Investigating the isospin dependence of the product between the B( E2; 0$_{1}^{+} \\rightarrow 2_{1}^{+}$)-value and the 2$_{1}^{+}$-excitation energy E$_{2^{+}}$ in even-even nuclei around $A\\!\\approx$140 one observes a rather smooth trend close to the valley of stability but clear indication for a reduction from the extrapolated B(E2)-values by one order of magnitude for some very neutron-rich nuclei. While close to the valley of stability the strong neutron-proton interaction results in an equilibration of the neutron and proton deformations with a predominate isoscalar character of the collective 2$^{+}$ excitation, it is conceivable that more loosely bound neutrons cannot polarize a close-to-magic proton core that well any more. This might result in a decoupling of the shape of the outer neutrons from the core and in a strong isovector admixture to the lowest lying 2$^{+}$ level. In this way the 2$^{+}$ -energies could be further lowered in neutron-rich nuclei, while the quadrupole moments of the proton c...

  9. New neutron-rich isotope production in 154Sm+160Gd

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-09-01

    Full Text Available Deep inelastic scattering in 154Sm+160Gd at energies above the Bass barrier is for the first time investigated with two different microscopic dynamics approaches: improved quantum molecular dynamics (ImQMD model and time dependent Hartree–Fock (TDHF theory. No fusion is observed from both models. The capture pocket disappears for this reaction due to strong Coulomb repulsion and the contact time of the di-nuclear system formed in head-on collisions is about 700 fm/c at an incident energy of 440 MeV. The isotope distribution of fragments in the deep inelastic scattering process is predicted with the simulations of the latest ImQMD-v2.2 model together with a statistical code (GEMINI for describing the secondary decay of fragments. More than 40 extremely neutron-rich unmeasured nuclei with 58≤Z≤76 are observed and the production cross sections are at the order of μb to mb. The multi-nucleon transfer reaction of Sm+Gd could be an alternative way to synthesize new neutron-rich lanthanides which are difficult to be produced with traditional fusion reactions or fission of actinides.

  10. Transformations of highly enriched uranium into metal or oxide

    International Nuclear Information System (INIS)

    Nollet, P.; Sarrat, P.

    1964-01-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  11. Nuclear shell effects in neutron-rich nuclei around N=20 and N=32,34

    International Nuclear Information System (INIS)

    Seidlitz, Michael

    2012-01-01

    Nuclear shell effects in neutron-rich nuclei around N=20 and N=32,34 were studied by means of reduced transition probabilities, i.e. B(E2) and B(M1) values. To this end a series of Coulomb-excitation experiments, employing radioactive 31 Mg and 29,30 Na beams, as well as a precise lifetime experiment of excited states in 56 Cr were performed. The collective properties of excited states of 31 Mg were the subject of a Coulomb-excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31 Mg beam at a beam energy of 3.0 MeV/u. The beam intensity amounted to 3000 ions/s on average. The highly efficient MINIBALL setup was employed, consisting of eight HPGe cluster detectors for γ-ray detection and a segmented Si-detector for coincident particle detection. The level scheme of 31 Mg was extended. Spin and parity assignment of the observed 945 keV state yielded 5/2 + and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of 30,31,32 Mg establishes that for the N=19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration. This implies that 31 Mg is part of the so-called ''island of inversion''. Coulomb-excitation experiments of radioactive 29,30 Na were carried out at REX-ISOLDE, CERN, at a final beam energy of 2.85 MeV/u. De-excitation γ rays were detected by the MINIBALL γ-ray spectrometer in coincidence with scattered particles in a segmented Si-detector. Despite rather low beam intensities transition probabilities to the first excited states were deduced. Results of very recently published experiments at MSU and TRIUMF could be largely confirmed and extended. The measured B(E2) values agree well with shell-model predictions, supporting the idea that in the sodium isotopic chain the ground-state wave function contains a significant intruder admixture already at N=18, with N=19 having an almost pure 2p2h deformed ground

  12. Nuclear reactions of neutron-rich Sn isotopes investigated at relativistic energies at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Fabia; Aumann, Thomas; Horvat, Andrea [TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Schrock, Philipp [CNS, University of Tokyo (Japan); Johansen, Jacob [Aarhus University (Denmark); Collaboration: R3B-Collaboration

    2016-07-01

    Nuclei with a large neutron excess are expected to form a neutron-rich surface layer which is often referred to as the neutron skin. The investigation of this phenomenon is of great interest in nuclear-structure physics and offers a possibility to constrain the equation-of-state of neutron-rich matter. Assuming a geometrical description of reaction processes as in the eikonal approximation, nuclear-induced reactions are a good tool to probe the neutron skin. Measured reaction cross sections can be used to constrain the density distributions of protons and neutrons in the nucleus and therefore the neutron-skin thickness. For this purpose, reactions of neutron-rich tin isotopes in the A=124-134 mass range have been measured on a carbon target at the R{sup 3}B-setup at GSI in inverse kinematics in a kinematically complete manner. Preliminary results for the reaction cross sections of {sup 124}Sn are presented.

  13. 76 FR 72984 - Revised Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2011-11-28

    ... NUCLEAR REGULATORY COMMISSION Revised Application for a License To Export High-Enriched Uranium The application for a license to export high-enriched Uranium has been revised as noted below. Notice... fabricate fuel France. Security Complex; October 18, Uranium (93.35%). uranium (174.0 elements in France...

  14. Investigation of the single Particle Structure of the neutron-rich Sodium Isotopes $^{27-31}\\!$Na

    CERN Document Server

    2002-01-01

    We propose to study the single particle structure of the neutron-rich isotopes $^{27-31}\\!$Na. These isotopes will be investigated via neutron pickup reactions in inverse kinematics on a deuterium and a beryllium target. Scattered beam particles and transfer products are detected in a position sensitive detector located around 0$^\\circ$. De-excitation $\\gamma$-rays emitted after an excited state has been populated will be registered by the MINIBALL Germanium array. The results will shed new light on the structure of the neutron-rich sodium isotopes and especially on the region of strong deformation around the N=20 nucleus $^{31}\\!$Na.

  15. Direct mass and lifetime measurements of neutron-rich nuclei up to A∼100 using the TOFI spectrometer at LAMPF

    International Nuclear Information System (INIS)

    Lind, V.G.

    1993-01-01

    This project was directed toward the study of neutron-rich nuclei using the experimental facilities at LAMPF, which is a part of LANL. The principal results of the investigation include the discovery of many new isotopes along with a measurement of their masses and in particular those nuclides in the Z = 7--19 and 14 --26 regions of the chart of the nuclides.Thirty-four new nuclides were detected and studied with their masses being measured with relatively high accuracy, and an additional twenty-six that were previously known and measured were remeasured to an improved accuracy. Besides providing new information about the mass surface in new and extended redons of the chart of the nuclides, this investigation enabled properties and previously unknown structure of some of the nuclei to be determined such as nuclear deformation among some of the nuclides. Also a study of the neutron pairing gaps and the proton pairing gaps among these nuclides was made. Other developments also achieved included instrument (TOFI) improvements and upgrades and theoretical investigations into the masses of the hadrons

  16. Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Fabia; Aumann, Thomas; Johansen, Jacob; Schrock, Philipp [IKP, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    Reactions of neutron-rich tin isotopes in a mass range of A=124 to A=134 have been measured at the R{sup 3}B setup at GSI in inverse kinematics. Due to the neutron excess, which results in a weaker binding of the valence neutrons such isotopes are expected to form a neutron skin. The investigation of this phenomenon is an important goal in nuclear-structure physics. Reactions of the tin isotopes with different targets have been performed kinematically complete. The taken data set therefore allows for the extraction of the neutron-skin thickness from two independent reaction channels. These are dipole excitations on the one hand and nuclear-induced reactions on the other hand. This contribution focuses on the latter mechanism. The analysis techniques which are used to extract the total charge-changing as well as the total neutron-removal cross section are presented using the example of {sup 124}Sn. The total neutron-removal cross section is of particular interest because of its high sensitivity to the neutron-skin thickness.

  17. Measurement of ground state properties of neutron-rich nuclei on the r-process path between the N=50 and N=82 shells

    CERN Multimedia

    2007-01-01

    The evolution of the unknown ground-state ${\\beta}$-decay properties of the neutron-rich $^{84-89}$Ge, $^{90-93}$Se and $^{102-104}$Sr isotopes near the r-process path is of high interest for the study of the abundance peaks around the N=50 and N=82 neutron shells. At ISOLDE, beams of certain elements with sufficient isotopic purity are produced as molecular sidebands rather than atomic beams. This applies e.g, to germanium, separated as GeS$^{+}$, selenium separated as SeCO$^{+}$ and strontium separated as SrF$^{+}$. However, in case of neutron-rich isotopes produced in actinide targets, new "isobaric" background of atomic ions appears on the mass of the molecular sideband. For this particular case, the ECR charge breeder, positioned in the experimental hall after ISOLDE first mass separation, can be advantageously used as a purification device, by breaking the molecules and removing the molecular contaminants. This proposal indicates our interest in the study of basic nuclear structure properties of neutron...

  18. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  19. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, Igor, E-mail: mishustin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); “Kurchatov Institute”, National Research Center, 123182 Moscow (Russian Federation); Malyshkin, Yury, E-mail: malyshkin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2015-04-15

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to {sup 249}Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  20. Neutrino-'pasta' scattering: The opacity of nonuniform neutron-rich matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Perez-Garcia, M.A.; Piekarewicz, J.

    2004-01-01

    Neutron-rich matter at subnuclear densities may involve complex structures displaying a variety of shapes, such as spherical, slablike, and/or rodlike shapes. These phases of the nuclear pasta are expected to exist in the crust of neutron stars and in core-collapse supernovae. The dynamics of core-collapse supernovae is very sensitive to the interactions between neutrinos and nucleons/nuclei. Indeed, neutrino excitation of the low-energy modes of the pasta may allow for a significant energy transfer to the nuclear medium, thereby reviving the stalled supernovae shock. The linear response of the nuclear pasta to neutrinos is modeled via a simple semiclassical simulation. The transport mean free path for μ and τ neutrinos (and antineutrinos) is expressed in terms of the static structure factor of the pasta, which is evaluated using Metropolis Monte Carlo simulations

  1. Magicity of neutron-rich nuclei within relativistic self-consistent approaches

    Directory of Open Access Journals (Sweden)

    Jia Jie Li

    2016-02-01

    Full Text Available The formation of new shell gaps in intermediate mass neutron-rich nuclei is investigated within the relativistic Hartree–Fock–Bogoliubov theory, and the role of the Lorentz pseudo-vector and tensor interactions is analyzed. Based on the Foldy–Wouthuysen transformation, we discuss in detail the role played by the different terms of the Lorentz pseudo-vector and tensor interactions in the appearing of the N=16, 32 and 34 shell gaps. The nuclei 24O, 48Si and 52,54Ca are predicted with a large shell gap and zero (24O, 52Ca or almost zero (48Si, 54Ca pairing gap, making them candidates for new magic numbers in exotic nuclei. We find from our analysis that the Lorentz pseudo-vector and tensor interactions induce very specific evolutions of single-particle energies, which could clearly sign their presence and reveal the need for relativistic approaches with exchange interactions.

  2. Impact of triaxiality on the rotational structure of neutron-rich rhenium isotopes

    Directory of Open Access Journals (Sweden)

    M.W. Reed

    2016-01-01

    Full Text Available A number of 3-quasiparticle isomers have been found and characterised in the odd-mass, neutron-rich, 187Re, 189Re and 191Re nuclei, the latter being four neutrons beyond stability. The decay of the isomers populates states in the rotational bands built upon the 9/2−[514] Nilsson orbital. These bands exhibit a degree of signature splitting that increases with neutron number. This splitting taken together with measurements of the M1/E2 mixing ratios and with the changes observed in the energy of the gamma-vibrational band coupled to the 9/2−[514] state, suggests an increase in triaxiality, with γ values of 5°, 18° and 25° deduced in the framework of a particle-rotor model.

  3. Determination of spin, magnetic moment and isotopic shift of neutron rich 205Hg by optical pumping

    International Nuclear Information System (INIS)

    Rodriguez, J.; Bonn, J.; Huber, G.; Kluge, H.J.; Otten, E.W.; European Organisation for Nuclear Research, Geneva

    1975-01-01

    Neutron rich 205 Hg(Tsub(1/2) = 5.2 min) was produced and on-line mass separated at the ISOLDE facility at CERN. The polarization achieved by optical pumping via the atomic line (6s 21 S 0 - 6s6p 3 P 1 , lambda = 2,537 A) was monitored by the β decay asymmetry. Hyperfine structure and isotopic shift of the 205 Hg absorption line was determined by Zeeman scanning. In addition a magnetic resoncance was performed on the polarized 205 Hg nuclei in the atomic ground state. The results are: I( 205 Hg) = 1/2 (confirmed); μ(I, 205 Hg) = 0.5915(1)μ(N) (uncorrected for diamagnetism); isotopic shift deltaν(204/205) = ν( 205 Hg) - ν( 204 Hg) = -1.8(1)GHz. μ(I) and IS are discussed briefly in the frame of current literature. (orig.) [de

  4. Mass measurements of neutron-rich indium isotopes toward the N =82 shell closure

    Science.gov (United States)

    Babcock, C.; Klawitter, R.; Leistenschneider, E.; Lascar, D.; Barquest, B. R.; Finlay, A.; Foster, M.; Gallant, A. T.; Hunt, P.; Kootte, B.; Lan, Y.; Paul, S. F.; Phan, M. L.; Reiter, M. P.; Schultz, B.; Short, D.; Andreoiu, C.; Brodeur, M.; Dillmann, I.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.; Dilling, J.

    2018-02-01

    Precise mass measurements of the neutron-rich In-130125 isotopes have been performed with the TITAN Penning trap mass spectrometer. TITAN's electron beam ion trap was used to charge breed the ions to charge state q =13 + thus providing the necessary resolving power to measure not only the ground states but also isomeric states at each mass number. In this paper, the properties of the ground states are investigated through a series of mass differentials, highlighting trends in the indium isotopic chain as compared to its proton-magic neighbor, tin (Z =50 ). In addition, the energies of the indium isomers are presented. The (8-) level in 128In is found to be 78 keV lower than previously thought and the (21 /2- ) isomer in 127In is shown to be lower than the literature value by more than 150 keV.

  5. Evidence for a smooth onset of deformation in the neutron-rich Kr isotopes

    CERN Document Server

    Albers, M; Nomura, K; Blazhev, A; Jolie, J; Mucher, D; Bastin, B; Bauer, C; Bernards, C; Bettermann, L; Bildstein, V; Butterworth, J; Cappellazzo, M; Cederkall, J; Cline, D; Darby, I; Das Gupta, S; Daugas, J M; Davinson, T; De Witte, H; Diriken, J; Filipescu, D; Fiori, E; Fransen, C; Gaffney, L P; Georgiev, G; Gernhauser, R; Hackstein, M; Heinze, S; Hess, H; Huyse, M; Jenkins, D; Konki, J; Kowalczyk, M; Kroll, T; Krucken, R; Litzinger, J; Lutter, R; Marginean, N; Mihai, C; Moschner, K; Napiorkowski, P; Nara Singh, B S; Nowak, K; Otsuka, T; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Rigby, S; Robledo, L M; Rodriguez-Guzman, R; Rudigier, M; Sarriguren, P; Scheck, M; Seidlitz, M; Siebeck, B; Simpson, G; Thole, P; Thomas, T; Van de Walle, J; Van Duppen, P; Vermeulen, M; Voulot, D; Wadsworth, R; Wenander, F; Wimmer, K; Zell, K O; Zielinska, M

    2012-01-01

    The neutron-rich nuclei $^{94,96}$Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2$^{+}$ states and their absolute $E2$ transition strengths to the ground state are determined and discussed in the context of the $E(2^{+}_{1})$ and $B(E2;2^{+}_{1} \\rightarrow 0^{+}_{1})$ systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed. This experimental result is supported by a new proton-neutron interacting boson model calculation based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional.

  6. Shape transitions in neutron rich 110-112Ru nuclei and empirical relations

    International Nuclear Information System (INIS)

    Bihari, Chhail; Singh, Yuvraj; Gupta, K.K.; Varshney, A.K.; Singh, M.; Gupta, D.K.

    2010-01-01

    In the study of even even neutron rich Ru isotopes, the electromagnetic properties of the γ-vibrational bands are well described by a rigid triaxial rotor for lower spin state and by the rotation vibration collective model for the higher spin states. Thus interpretation in further suggested by the observation of nearly identical moment of inertia, the rotational frequency below the first band crossing, between the ground state and the γ-structural bands for both 110 Ru and 112 Ru which conclude a weak pairing, a more likely suitable explanation of observations. In the present work, the soft rotor energy formula is undertaken suggested by Brentano et al. for yrast band, may be employed to calculate the perturbed energies of the anomalous rotational band (γ-band) generated by rotation of the rigid asymmetric atomic nucleus and the two parameter formula (TPF) of Gupta et al.

  7. Observation of isoscalar and isovector dipole excitations in neutron-rich 20O

    Directory of Open Access Journals (Sweden)

    N. Nakatsuka

    2017-05-01

    Full Text Available The isospin characters of low-energy dipole excitations in neutron-rich unstable nucleus 20O were investigated, for the first time in unstable nuclei. Two spectra obtained from a dominant isovector probe (O20+Au and a dominant isoscalar probe (O20+α were compared and analyzed by the distorted-wave Born approximation to extract independently the isovector and isoscalar dipole strengths. Two known 1− states with large isovector dipole strengths at energies of 5.36(5 MeV (11− and 6.84(7 MeV (12− were also excited by the isoscalar probe. These two states were found to have different isoscalar dipole strengths, 2.70(32% (11− and 0.67(12% (12−, respectively, in exhaustion of the isoscalar dipole-energy-weighted sum rule. The difference in isoscalar strength indicated that they have different underlying structures.

  8. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    Science.gov (United States)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  9. Half-lives of cluster decay of neutron rich nuclei in trans-tin region

    International Nuclear Information System (INIS)

    Swamy, G.S.; Umesh, T.K.

    2011-01-01

    In this work, the logarithmic half-life [log 10 (T 1/2 )] values have been reported for the exotic decay of some neutron rich even–even parent nuclei (56≤Z≤64) accompanied by the emission of alpha-like and non-alpha-like clusters in the trans-tin region. These values were calculated by using the single line of universal curve (UNIV) for alpha and cluster radioactive decay as well as the universal decay law (UDL). The half-life values were also separately calculated by considering the interacting nuclear potential barrier as the sum of Coulomb and proximity potentials. The half-life values based on the three calculations mentioned above, were found to agree with one another within a few orders of magnitude. Possible conclusions are drawn based on the present study. (author)

  10. $\\beta$-decay study of neutron-rich Tl and Pb isotopes

    CERN Multimedia

    It is proposed to study the structure of neutron-rich nuclei beyond $^{208}$Pb. The one-proton hole $^{211-215}$Tl and the semi magic $^{213}$Pb will be produced and studied via nuclear and atomic spectroscopy searching for long-lived isomers and investigating the $\\beta$-delayed $\\gamma$- emission to build level schemes. Information on the single particle structure in $^{211-215}$Pb, especially the position of the g$_{9/2}$ and i$_{11/2}$ neutron orbitals, will be extracted along with lifetimes. The $\\beta$-decay will be complemented with the higher spin selectivity that can be obtained by resonant laser ionization to single-out the decay properties of long-living isomers in $^{211,213}$Tl and $^{213}$Pb.

  11. Photo-neutron cross sections for unstable neutron-rich oxygen isotopes

    International Nuclear Information System (INIS)

    Leistenschneider, A.; Aumann, T.; Boretzky, K.

    2001-05-01

    The dipole response of stable and unstable neutron-rich oxygen nuclei of masses A = 17 to A = 22 has been investigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies around 600 MeV/nucleon. A kinematically complete measurement of the neutron decay channel in inelastic scattering of the secondary beam projectiles from a Pb target was performed. Differential electromagnetic excitation cross sections dσ/dE were derived up to 30 MeV excitation energy. In contrast to stable nuclei, the deduced dipole strength distribution appears to be strongly fragmented and systematically exhibits a considerable fraction of low-lying strength, exhausting up to 12% of the energy-weighted dipole sum rule at excitation energies below 15 MeV. (orig.)

  12. Fusion reaction around the Coulomb barrier with neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Atsushi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-07-01

    Two fusion reactions with neutron-rich nuclei are reported in this work. On the first reaction: {sup 9,10,11}Be+{sup 209}Bi, the fusion cross sections around the coulomb barrier were measured by determing {alpha} disintegration from compound nucleus Fr. In the field of 10-100 mb, the same total fusion cross sections were obtained. The phenomenon {sup 11}Be(neutron halo nucleus) alone increased and decreased was not observed. The fusion cross sections of {sup 27,29,31}Al+{sup 197}Au system were determined by using 130 kcps and 30 kcps of beam strength of {sup 29,31}Al, respectively. The value of {sup 27}Al was reproduced by calculation, but that of {sup 29}Al increased around barrier which could not be explained by CCDEF calculation. (S.Y.)

  13. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  14. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  15. 78 FR 60928 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-10-02

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant... manufacture HEU The Netherlands. National Nuclear Security Uranium uranium (17.1 targets in France... export from 9.4 kg of U-235 contained in 10.1 kg uranium to a new cumulative total of 17.1 kg of U-235...

  16. 77 FR 73056 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant... Complex. Uranium (93.2%). uranium-235 at CERCA AREVA Romans October 10, 2012 contained in 6.2 in France and to October 12, 2012 kilograms irradiate targets at XSNM3729 uranium. the BR-2 Research 11006053...

  17. 77 FR 73055 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Security Complex. Uranium uranium-235 at CERCA AREVA October 10, 2012 (93.35%). contained in Romans in France October 12, 2012 10.1 kilograms and to irradiate XSNM3730 uranium. targets at the HFR 11006054...

  18. 78 FR 33448 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-06-04

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Security Complex, May 13, Uranium (93.35%). uranium-235 at the National 2013, May 21, 2013, XSNM3745, contained in 7.5 Research Universal 11006098. kilograms reactor in Canada for uranium. ultimate use in...

  19. 78 FR 72123 - Request To Amend a License to Export High-Enriched Uranium

    Science.gov (United States)

    2013-12-02

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License to Export High-Enriched Uranium Pursuant... manufacture HEU targets in Belgium. National Nuclear Security Uranium (HEU) uranium France for irradiation in... 5.8 kg of U- 235 contained in 6.2 kg uranium to a new cumulative total of 12.615 kg of U-235...

  20. Isotopic anomalies in high Z elements: Uranium?

    International Nuclear Information System (INIS)

    Jovanovic, S.; Reed, G.W. Jr.; Essling, A.M.; Rauh, E.G.; Graczyk, D.G.

    1989-03-01

    Uranium in terrestrial volcanic ejecta from mantle-related sources has been analyzed mass spectrometrically. The objective was to seek supporting evidence for or refutation isotopic variations reported by Fried et al. (1985) for some such samples. The possibility that terrestrial U is not of constant isotopic composition is extraordinary. If true, mechanisms for creating the variation must be sought and the lack of homogenization within the earth addressed. Samples of 100 grams or more were processed in order to minimize reagent and environmental (laboratory) blank interference and to permit isolation of large amounts (several to tens of μg) of U for the mass spectrometer (MS) measurements, which utilizes aliquots of /approximately/1 μg. Aliquants from four volcanic samples gave data which indicate enrichments of 235 U ranging from 0.2% to 5.9% in the 235/238 ratio relative normal uranium ratios. These relative enrichments are consistent with, and in some cases, higher than the 0.18% enrichment reported by Fried et al. (1985) for two volcanic lava samples. However, we were not able to reproduce their results on the Kilauea lava for which they report 0.18% 235 U enrichment. The relative error in our MS ratios is 0.05% -- 0.07%. 1 tab

  1. High levels of uranium in groundwater of Ulaanbaatar, Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Nriagu, Jerome, E-mail: stoten@umich.edu [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Nam, Dong-Ha; Ayanwola, Titilayo A. [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Dinh, Hau [College of Literature, Science and Arts, University of Michigan (United States); Erdenechimeg, Erdenebayar; Ochir, Chimedsuren [Department Of Preventive Medicine, School Of Public Health, Health Science University, Mongolia, Ulaanbaatar (Mongolia); Bolormaa, Tsend-Ayush [Central Water Laboratory of Water Supply and Sewerage Authority (USUG), Ulaanbaatar (Mongolia)

    2012-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be low with the average concentrations (ranges in brackets) being 0.9 (< 0.1-7.9) {mu}g/L for As; 7.7 (0.12-177) {mu}g/L for Mn; 0.2 (< 0.05-1.9) {mu}g/L for Co; 16 (< 0.1-686) {mu}g/L for Zn; 0.7 (< 0.1-1.8) {mu}g/L for Se; < 0.1 (< 0.02-0.69) {mu}g/L for Cd; and 1.3 (< 0.02-32) {mu}g/L for Pb. The levels of uranium were surprisingly elevated (mean, 4.6 {mu}g/L; range < 0.01-57 {mu}g/L), with the values for many samples exceeding the World Health Organization's guideline of 15 {mu}g/L for uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. - Highlights: Black-Right-Pointing-Pointer We analyzed water samples from wells across the city of Ulaanbaatar, Mongolia for total uranium along with arsenic, manganese, cobalt, zinc, selenium, cadmium and lead. Black-Right-Pointing-Pointer We found that compared to other trace metals and metalloids, the levels of uranium were surprisingly elevated with the values for many samples exceeding the World Health Organization's guideline for drinking water. Black-Right-Pointing-Pointer Local rocks and soils appear to be the natural source of the uranium. Black-Right-Pointing-Pointer The health risk associated with drinking the groundwater

  2. Underground Milling of High-Grade Uranium Ore

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C., E-mail: chuck.edwards@amec.com [AMEC Americas Limited, Saskatoon, Saskatchewan (Canada)

    2014-05-15

    There are many safety and technical issues involved in the mining and progressing of high grade uranium ores such as those exploited in Northern Canada at present. With more of this type of mine due to commence production in the near future, operators have been looking at ways to better manage the situation. The paper describes underground milling of high-grade uranium ore as a means of optimising production costs and managing safety issues. In addition the paper presents some examples of possible process flowsheets and plant layouts that could be applicable to such operations. Finally an assessment of potential benefits from underground milling from a variety of viewpoints is provided. (author)

  3. Low-lying dipole strength of neutron-rich 'island of inversion' nuclei around n ∼ 20

    International Nuclear Information System (INIS)

    Datta Pramanik, U.; Chakraborty, S.; Ray, I.

    2009-01-01

    Magic numbers are the basic building blocks of nuclear structure since last fifty years. Recently, through various experimental results using Radioactive Ion Beam (RIB) facilities, it has been observed that those long cherished magic numbers are not valid anymore in the neutron rich nuclei like 32 Mg etc. The breakdown of magic number was hinted in the late 1980 's by Thibault et. al. in sodium nuclei ( 31,32 Na). Motobayashi et. al. showed large deformation for 32 Mg which leads to the failure of magic number at N = 20. Exploration into the cause of this breakdown shows the filling of higher pf orbitals rather than the pure lower sd orbitals in the ground state of the neutron-rich nuclei like Ne, Na, Mg in the region N∼20. Thus there is obviously an inversion in nuclear orbitals and hence the so called name 'island of inversion'. This year, we have performed an experiment at GSI, Darmstadt. The measurement of dipole threshold strength of neutron-rich nucleus (N∼20) through electromagnetic excitation was done using LAND-FRS setup. Through this dipole strength, we would like to probe directly the quantum numbers of the valence neutrons in neutron rich nuclei like 31-33 Mg, 33-35 Al, 29-30 Na, 25-27 Ne, 24 F etc.

  4. Use of highly enriched uranium at the FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Boening, K. [Forschungs-Neutronenquelle FRM-II, Technische Universitaet Muenchen, D-85747 Garching bei Muenchen (Germany)

    2002-07-01

    The new FRM-II research reactor in Munich, Germany, provides a high flux of thermal neutrons outside of the core at only 20 MW power. This is achieved by using a single compact, cylindrical fuel element with highly enriched uranium (HEU) which is cooled by light water and placed in the center of a large heavy water tank. The paper outlines the arguments which have led to this core concept and summarizes its performance. It also reports on alternative studies which have been performed for the case of low enriched uranium (LEU) and compares the data of the two concepts, with the conclusion that the FRM-II cannot be converted to LEU. A concept using medium enriched uranium (MEU) is described as well as plans to develop such a fuel element in the future. Finally, it is argued that the use of HEU fuel elements at the FRM-II does not - realistically -involve any risk of proliferation. (author)

  5. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  6. High pressure behaviour of uranium mono pnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Ojha, Poonam; Sanyal, S.P.; Aynyas, Mahendra

    2006-01-01

    The pressure induced structural phase transition of three actinide mono pnictides AX (A=U and X=As, Sb, Bi), have been studied theoretically using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 5f electrons of the actinide (uranium) ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves are compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 17GPa, 9.5GPa and 5.3 GPa respectively. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. (author)

  7. HIGH LEVELS OF URANIUM IN GROUNDWATER OF ULAANBAATAR, MONGOLIA

    Science.gov (United States)

    Nriagu, Jerome; Nam, Dong-Ha; Ayanwola, Titilayo A.; Dinh, Hau; Erdenechimeg, Erdenebayar; Ochir, Chimedsuren; Bolormaa, Tsend-Ayush

    2011-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be very low with the average concentrations (ranges in brackets) being 0.9 (uranium were surprisingly elevated (mean, 4.6 μg/L; range uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. PMID:22142646

  8. Disposition of surplus highly enriched uranium: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1995-10-01

    This document assesses the environmental impacts at four potential sites that may result from alternatives for the disposition of United States-origin weapons-usable highly enriched uranium (HEU) that has been or may be declared surplus to national defense or defense-related program needs. In addition to the no action alternative, it assesses four alternatives that would eliminate the weapons-usability of HEU by blending it with depleted uranium, natural uranium, or low-enriched uranium (LEU) to create low-enriched uranium, either as commercial reactor fuel feedstock or as low-level radioactive waste. The potential blending sites are DOE's Y-12 Plant at Oak Ridge Reservation in Oak Ridge, Tennessee; DOE's Savannah River Site in Aiken, South Carolina; the Babcock ampersand Wilcox Naval Nuclear Fuel Division Facility in Lynchburg, Virginia; and the Nuclear Fuel Services Fuel Fabrication Plant in Erwin, Tennessee. Evaluations of impacts on site infrastructure, water resources, air quality and noise, socioeconomic resources, waste management, public and occupational health, and environmental justice for the potential blending sites are included in the assessment. The intersite transportation of nuclear and hazardous materials is also assessed. The preferred alternative is to blend down surplus HEU to LEU for maximum commercial use as reactor fuel feed which would likely be done at a combination of DOE and commercial sites

  9. Desert pioneers go high tech in uranium project

    International Nuclear Information System (INIS)

    1988-01-01

    The Kintyre uranium deposit discovered in 1985 in Western Australia's Great Sandy Desert by CRA Exploration is a highly competitive, easy to mine deposit, estimated at 35,000 tonnes of uranium oxide. Since its discovery CRA has spent $20 million on evaluation drilling and exploration and will spend another $10 million in 1988. Despite its remoteness the latest technology is being used, with sophisticated computer and assaying facilities, including an automatic X-ray fluorescence spectrometer, being established on site. A CRA-built radiometric ore sorter is being tested there which could cut ore processing costs

  10. Nickel container of highly-enriched uranium bodies and sodium

    Science.gov (United States)

    Zinn, Walter H.

    1976-01-01

    A fuel element comprises highly a enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel.

  11. Nickel container of highly-enriched uranium bodies and sodium

    International Nuclear Information System (INIS)

    Zinn, W.H.

    1976-01-01

    A fuel element comprises highly enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel

  12. Neutron-rich Λ-Hypernuclei study with the FINUDA experiment

    Directory of Open Access Journals (Sweden)

    Botta E.

    2014-03-01

    Full Text Available The FINUDA experiment at DAΦNE, Frascati, has found evidence for the neutron-rich hypernucleus HΛ6${}_ \\wedge ^6{\\rm{H}}$ studying (π+, π− pairs in coincidence from the Kstop−+L6i→HΛ6+π+$K_{{\\rm{stop}}}^ - + {}^{\\rm{6}}{\\rm{Li}} \\to {}_ \\wedge ^6{\\rm{H}} + {\\pi ^ + }$ production reaction followed by HΛ6→H6e +π−${}_ \\wedge ^6{\\rm{H}} \\to {}^6{\\rm{He + }}{\\pi ^ - }$ weak decay. The production rate of HΛ6${}_ \\wedge ^6{\\rm{H}}$ undergoing this two-body π− decay has been found to be (2.9±2.0⋅10−6/Kstop−$(2.9 \\pm 2.0 \\cdot {10^{ - 6}}/K_{{\\rm{stop}}}^ - $. Its binding energy has been evaluated to be BΛ(HΛ6=(4.0±1.1${B_ \\wedge }({}_ \\wedge ^6H = (4.0 \\pm 1.1$ MeV with respect to (H5+Λ$({}^5{\\rm{H}} + \\Lambda $, jointly from production and decay. A systematic difference of (0.98 ± 0.74 MeV between BΛ values derived separately from decay and from production has been tentatively assigned to the HΛ6 0g.s.+→1+${}_\\Lambda ^6{\\rm{H 0}}_{{\\rm{g}}{\\rm{.s}}{\\rm{.}}}^ + \\to {1^ + }$ excitation. A similar investigation has been carried out for the neutron-rich hypernucleus HΛ9e${}_\\Lambda ^9{\\rm{He}}$ studying the Kstop−+B9e→HΛ9e+π+$K_{{\\rm{stop}}}^ - + {}_{}^{\\rm{9}}{\\rm{Be}} \\to {}_\\Lambda ^9{\\rm{He}} + {\\pi ^ + }$ reaction in coincidence with the H Λ 9e→ L 9i +  π −${}_\\Lambda ^9{\\rm{He}} \\to {}_{}^{\\rm{9}}{\\rm{Li + }}{\\pi ^ - }$ weak decay; an upper limit for the production rate of HΛ9e${}_\\Lambda ^9{\\rm{He}}$ undergoing the two-body π− decay has been found to be 4.2⋅10 −6 /K stop− $4.2 \\cdot {10^{ - 6}}/{\\rm{K}}_{stop}^ - $ (90% C.L..

  13. Mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter within the relativistic impulse approximation

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    The mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter are investigated using the nucleon optical potential obtained within the relativistic impulse approximation with the empirical nucleon-nucleon scattering amplitudes and the nuclear densities obtained in the relativistic mean-field model. It is found that the isospin-splitting of nucleon mean free paths, sensitive to the imaginary part of the symmetry potential, changes its sign at certain high kinetic energy. The in-medium nucleon-nucleon cross sections are analytically and numerically demonstrated to be essentially independent of the isospin asymmetry of the medium and increase linearly with density in the high-energy region where the relativistic impulse approximation is applicable

  14. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  15. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  16. Decay studies and mass measurements on isobarically pure neutron-rich Hg and Tl isotopes

    CERN Multimedia

    Schweikhard, L C; Savreux, R P; Hager, U D K; Beck, D; Blaum, K

    2007-01-01

    We propose to perform mass measurements followed by $\\beta$- and $\\gamma$-decay studies on isobarically pure beams of neutron-rich Hg and Tl isotopes, which are very poorly known due to a large contamination at ISOL-facilities with surface-ionised francium. The aim is to study the binding energies of mother Hg and Tl nuclides, as well as the energies, spins and parities of the excited and ground states in the daughter Tl and Pb isotopes. The proposed studies will address a new subsection of the nuclear chart, with Z 126, where only 9 nuclides have been observed so far. Our studies will provide valuable input for mass models and shell-model calculations: they will probe the proton hole-neutron interaction and will allow to refine the matrix elements for the two-body residual interaction. Furthermore, they also give prospects for discovering new isomeric states or even new isotopes, for which the half-lives are predicted in the minute- and second-range.\\\\ To reach the isobaric purity, the experiments will be p...

  17. Shear viscosity of neutron-rich nucleonic matter near its liquid–gas phase transition

    International Nuclear Information System (INIS)

    Xu, Jun; Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An; Ma, Yu Gang

    2013-01-01

    Within a relaxation time approach using free nucleon–nucleon cross sections modified by the in-medium nucleon masses that are determined from an isospin- and momentum-dependent effective nucleon–nucleon interaction, we investigate the specific shear viscosity (η/s) of neutron-rich nucleonic matter near its liquid–gas phase transition. It is found that as the nucleonic matter is heated at fixed pressure or compressed at fixed temperature, its specific shear viscosity shows a valley shape in the temperature or density dependence, with the minimum located at the boundary of the phase transition. Moreover, the value of η/s drops suddenly at the first-order liquid–gas phase transition temperature, reaching as low as 4–5 times the KSS bound of ℏ/4π. However, it varies smoothly for the second-order liquid–gas phase transition. Effects of the isospin degree of freedom and the nuclear symmetry energy on the value of η/s are also discussed

  18. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Directory of Open Access Journals (Sweden)

    Leoni S.

    2016-01-01

    Full Text Available The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets, with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic “hybrid” model is introduced: it is based on the coupling between core excitations (both collective and non-collective of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  19. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Science.gov (United States)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  20. Search for low lying dipole strength in the neutron rich nucleus Ne{sup 26}

    Energy Technology Data Exchange (ETDEWEB)

    Gibelin, J

    2005-11-15

    We carried out the Coulomb excitation, on a lead target, of an exotic beam of neutron-rich nucleus Ne{sup 26} at 58 MeV/n, in order to study the possible existence of a pygmy dipole resonance above the neutron emission threshold. The experiment was performed at the Riken Research Facility, in Tokyo (Japan) and included a gamma-ray detector, a charged fragment hodoscope and a neutron detector. Using the invariant mass method in the Ne{sup 25} + n decay channel, and by comparing the reaction cross section on the lead target and a light target of aluminum, we observe a sizable amount of E1 strength between the one neutron and the two neutron emission thresholds. The corresponding Ne{sup 26} angular distribution confirms its nature and we deduce its reduced dipole transition probability value of B(E1) = 0.54 {+-} 0.18 e{sup 2}fm{sup 2}. Our method also enables us to extract for the first time the decay pattern of a pygmy resonance. By detecting the decay photons from the excited states below the neutron emission threshold and by analyzing the angular distribution of the inelastically scattered Ne{sup 26} we deduce the reduced transition probability of the first 2{sup +} state, from the ground state. The value obtained of B(E2) = 87 {+-} 13 e{sup 2}fm{sup 4} being in disagreement with a previous result. (author)

  1. Nuclear structure studies of the neutron-rich Rubidium isotopes using Coulomb excitation

    CERN Multimedia

    Reiter, P; Blazhev, A A; Voulot, D; Meot, V H; Simpson, G S; Georgiev, G P; Gaudefroy, L; Roig, O

    We propose to study the properties of odd-mass neutron-rich rubidium isotopes by the Coulomb-excitation technique, using the Miniball array coupled to the REX-ISOLDE facility. The results from similar measurements from the recent years (e.g. for the odd-mass and the odd-odd Cu isotopes, IS435) have shown the strong potential in such measurements for gaining information both for single-particle-like and collective states in exotic nuclei. Since there is practically no experimental information for excited states in the odd-mass Rb isotopes beyond $^{93}$Rb, the present study should be able to provide new data in a region of spherical ($^{93}$Rb and $^{95}$Rb) as well as well-deformed nuclei ($^{97}$Rb and $^{99}$Rb). Of particular interest is the rapid shape change that occurs when going from $^{95}$Rb (${\\varepsilon}_{2}$=0.06) to $^{97}$Rb (${\\varepsilon}_{2}$=0.3). These results should be of significant astrophysical interest as well, due to the close proximity of the r-process path.

  2. Coulomb Excitation of a Neutron-Rich $^{88}$Kr Beam Search for Mixed Symmetry States

    CERN Multimedia

    Andreoiu, C; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    We propose to use the ISOLDE/REX/MINIBALL/CD set-up to perform a Coulomb Excitation experiment with a $^{88}$Kr radioactive beam. The motivation includes a search for $Mixed$ $Symmetry$ states predicted by the IBM-2 model, gathering more spectroscopy data about the $^{88}$Kr nucleus and extending shape coexistence studies (performed previously by the proposers for neutron-deficient Kr isotopes) to the neutron-rich side. The proposed experiment will provide data complementary to the Coulomb Excitation of a relativistic $^{88}$Kr beam proposed by D. Tonev et al. for a RISING experiment. A total of 12 days of beam time is necessary for the experiment, equally divided into two runs. One run with a 2.2 MeV/A beam energy on a $^{48}$Ti target and a second run with the maximum available REX energy of 3.1 MeV/A on a $^{208}$Pb target are requested. Using either a UC$_{x}$ or ThC$_{x}$ fissioning primary target coupled with a plasma source by a cooled transfer line seems to be the best choice for the proposed experime...

  3. Evolution of Single Particle and Collective properties in the Neutron-Rich Mg Isotopes

    CERN Multimedia

    Reiter, P; Wiens, A; Fitting, J; Lauer, M; Van duppen, P L E; Finke, F

    2002-01-01

    We propose to study the single particle and collective properties of the neutron-rich Mg isotopes in transfer reactions and Coulomb excitation using REX-ISOLDE and MINIBALL. From the Coulomb excitation measurement precise and largely model independent B( E2 ; 0$^{+}_{g.s.}\\rightarrow$ 2$^{+}_{1}$ ) will be determined for the even-even isotopes. For the odd isotopes the distribution of the E2 strength over a few low-lying states will be measured. The sign of the M1/E2 mixing ratio, extracted from angular distributions, is characteristic of the sign of the deformation, as is the resulting level scheme. The neutron-pickup channel in the transfer reactions will allow for a determination of the single particle properties (spin, parity, spectroscopic factors) of these nuclei. This information will give new insights in changes of nuclear structure in the vicinity of the island of deformation around $^{32}$Mg. A total of 24 shifts of REX beam time is requested.

  4. Symmetry energy and surface properties of neutron-rich exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gaidarov, M. K.; Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Sarriguren, P. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Moya de Guerra, E. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-07-23

    The symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a smoother behavior in the case of spherical nuclei than for deformed ones. We also notice that the neutron skin thickness obtained for {sup 208}Pb with SLy4 force is found to be in a good agreement with the recent data. In addition to the interest that this study may have by itself, we give some numerical arguments in proof of the existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain.

  5. Experimental study of the lifetime and phase transition in neutron-rich Zr 98 ,100 ,102

    Science.gov (United States)

    Ansari, S.; Régis, J.-M.; Jolie, J.; Saed-Samii, N.; Warr, N.; Korten, W.; Zielińska, M.; Salsac, M.-D.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; Drouet, F.; Vancraeyenest, A.; de France, G.; Clément, E.; Stezowski, O.; Ur, C. A.; Urban, W.; Regan, P. H.; Podolyák, Zs.; Larijani, C.; Townsley, C.; Carroll, R.; Wilson, E.; Mach, H.; Fraile, L. M.; Paziy, V.; Olaizola, B.; Vedia, V.; Bruce, A. M.; Roberts, O. J.; Smith, J. F.; Scheck, M.; Kröll, T.; Hartig, A.-L.; Ignatov, A.; Ilieva, S.; Lalkovski, S.; Mǎrginean, N.; Otsuka, T.; Shimizu, N.; Togashi, T.; Tsunoda, Y.

    2017-11-01

    Rapid shape changes are observed for neutron-rich nuclei with A around 100. In particular, a sudden onset of ground-state deformation is observed in the Zr and Sr isotopic chains at N = 60: Low-lying states in N ≤58 nuclei are nearly spherical, while those with N ≥60 have a rotational character. Nuclear lifetimes as short as a few picoseconds can be measured using fast-timing techniques with LaBr3(Ce) scintillators, yielding a key ingredient in the systematic study of the shape evolution in this region. We used neutron-induced fission of 241Pu and 235U to study lifetimes of excited states in fission fragments in the A ˜100 region with the EXILL-FATIMA array located at the PF1B cold neutron beam line at the Institut Laue-Langevin. In particular, we applied the generalized centroid difference method to deduce lifetimes of low-lying states for the nuclei 98Zr (N = 58), 100Zr, and 102Zr (N ≥60 ). The results are discussed in the context of the presumed phase transition in the Zr chain by comparing the experimental transition strengths with the theoretical calculations using the interacting boson model and the Monte Carlo shell model.

  6. Shape of 44Ar: Onset of deformation in neutron-rich nuclei near 48Ca

    International Nuclear Information System (INIS)

    Zielinska, M.; Goergen, A.; Clement, E.; Korten, W.; Dossat, C.; Ljungvall, J.; Obertelli, A.; Theisen, Ch.; Delaroche, J.-P.; Girod, M.; Buerger, A.; Catford, W.; Iwanicki, J.; Napiorkowski, P. J.; Srebrny, J.; Wrzosek, K.; Libert, J.; PiePtak, D.; Rodriguez-Guzman, R.; Sletten, G.

    2009-01-01

    The development of deformation and shape coexistence in the vicinity of doubly magic 48 Ca, related to the weakening of the N=28 shell closure, was addressed in a low-energy Coulomb excitation experiment using a radioactive 44 Ar beam from the SPIRAL facility at GANIL. The 2 1 + and 2 2 + states in 44 Ar were excited on 208 Pb and 109 Ag targets at two different beam energies. B(E2) values between all observed states and the spectroscopic quadrupole moment of the 2 1 + state were extracted from the differential Coulomb excitation cross sections, indicating a prolate shape of the 44 Ar nucleus and giving evidence of an onset of deformation already two protons and two neutrons away from doubly magic 48 Ca. New Hartree-Fock-Bogoliubov based configuration mixing calculations have been performed with the Gogny D1S interaction for 44 Ar and neighboring nuclei using two different approaches: the angular momentum projected generator coordinate method considering axial quadrupole deformations and a five-dimensional approach including the triaxial degree of freedom. The experimental values and new calculations are furthermore compared to shell-model calculations and to relativistic mean-field calculations. The new results give insight into the weakening of the N=28 shell closure and the development of deformation in this neutron-rich region of the nuclear chart.

  7. Isomers in neutron-rich A ∼ 190 nuclides from 208Pb fragmentation

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Caamano, M.; Banu, A.; Walker, P.M.; Morton, N.H.; Regan, P. H.; Regan, Patrick H; Pfutzner, M.; Podolyak, Zs.; Gerl, J.; Hellstrom, M.; Mayet, P.; Miernik, K.; Mineva, M.N.; Aprahamian, A.; Benlliure, J.; Bruce, A.M.; Butler, P.A.; Cortina Gil, D.; Cullen, D.M.; Doring, J.; Enqvist, T.; Fox, C.; Garces Narro, J.; Geissel, H.; Gelletly, W.; Giovinazzo, J.; Gorska, M.; Grawe, H.; Grzywacz, R.; Kleinbohl, A.; Korten, W.; Lewitowicz, M.; Lucas, R.; Mach, H.; O'Leary, C.D.; De Oliveira, F.; Pearson, C.J.; Rejmund, F.

    2004-01-01

    Relativistic projectile fragmentation of 208 Pb has been used to produce isomers in neutron-rich, A ∼ 190 nuclides. A forward-focusing spectrometer provided ion-by-ion mass and charge identification. The detection of gamma-rays emitted by stopped ions has led to the assignment of isomers in 188 Ta, 190 W, 192 Re, 193 Re, 195 Os, 197 Ir, 198 Ir, 200 Pt, 201 Pt, 202 Pt and 203 Au, with half-lives ranging from approximately 10 ns to 1 ms. Tentative isomer information has been found also for 174 Er, 175 Er, 185 Hf, 191 Re, 194 Re and 199 Ir. In most cases, time-correlated, singles gamma-ray events provided the first spectroscopic data on excited states for each nuclide. In 200 Pt and 201 Pt, the assignments are supported by gamma-gamma coincidences. Isomeric ratios provide additional information, such as half-life and transition energy constraints in particular cases. The level structures of the platinum isotopes are discussed, and comparisons are made with isomer systematics

  8. Evolution of deformation in neutron-rich Ba isotopes up to A =150

    Science.gov (United States)

    Licǎ, R.; Benzoni, G.; Rodríguez, T. R.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Morales, A. I.; Madurga, M.; Sotty, C. O.; Vedia, V.; De Witte, H.; Benito, J.; Bernard, R. N.; Berry, T.; Bracco, A.; Camera, F.; Ceruti, S.; Charviakova, V.; Cieplicka-Oryńczak, N.; Costache, C.; Crespi, F. C. L.; Creswell, J.; Fernandez-Martínez, G.; Fynbo, H.; Greenlees, P. T.; Homm, I.; Huyse, M.; Jolie, J.; Karayonchev, V.; Köster, U.; Konki, J.; Kröll, T.; Kurcewicz, J.; Kurtukian-Nieto, T.; Lazarus, I.; Lund, M. V.; Mǎrginean, N.; Mǎrginean, R.; Mihai, C.; Mihai, R. E.; Negret, A.; Orduz, A.; Patyk, Z.; Pascu, S.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Regis, J. M.; Robledo, L. M.; Rotaru, F.; Saed-Samii, N.; Sánchez-Tembleque, V.; Stanoiu, M.; Tengblad, O.; Thuerauf, M.; Turturica, A.; Van Duppen, P.; Warr, N.; IDS Collaboration

    2018-02-01

    The occurrence of octupolar shapes in the Ba isotopic chain was recently established experimentally up to N =90 . To further extend the systematics, the evolution of shapes in the most neutron-rich members of the Z =56 isotopic chain accessible at present, Ba,150148, has been studied via β decay at the ISOLDE Decay Station. This paper reports on the first measurement of the positive- and negative-parity low-spin excited states of 150Ba and presents an extension of the β -decay scheme of 148Cs. Employing the fast timing technique, half-lives for the 21+ level in both nuclei have been determined, resulting in T1 /2=1.51 (1 ) ns for 148Ba and T1 /2=3.4 (2 ) ns for 150Ba. The systematics of low-spin states, together with the experimental determination of the B (E 2 :2+→0+) transition probabilities, indicate an increasing collectivity in Ba-150148, towards prolate deformed shapes. The experimental data are compared to symmetry conserving configuration mixing (SCCM) calculations, confirming an evolution of increasingly quadrupole deformed shapes with a definite octupolar character.

  9. New mass analysis and results for neutron rich nuclei performed with isochronous mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, Marcel [Justus-Liebig-Universitaet Giessen, Giessen (Germany); Knoebel, Ronja; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Patyk, Zygmunt [Soltan Institute for Nuclear Studies, Warsaw (Poland); Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2015-07-01

    The Isochronous Mass Spectrometry (IMS) allows to measure masses of rare exotic nuclei in a storage ring in a timescale of tens of μs. The ring is operated in an isochronous mode, i.e. such that particles with different velocities but same mass-to-charge ratio (m/q) travel different paths in the ring arcs (faster ions travel longer paths whereas slower ions travel shorter paths). This means that for each m/q a fix revolution time exists and can be measured by a time-of-flight (TOF) detector which then yields the masses of the nuclei for known charge states. A new analysis approach of IMS data with a correlation matrix method allowed combining data with different quality. The latest production run was using an additional determination of the magnetic rigidity which increased the resolving power of the experiment. Combining this experiment with previous experiments one can increase the statistics and accuracy of the overall mass determination. It was possible to deduce mass values of neutron rich isotopes which have not been measured before. One of those isotopes is {sup 130}Cd which is a very important nuclei involved in the r-process. Those mass values and a comparison to theoretical predictions will be presented in the poster.

  10. New experimental investigation of cluster structures in 10 Be and 16 C neutron-rich nuclei

    Science.gov (United States)

    Dell'Aquila, L.; Acosta, D.; Auditore, L.; Cardella, G.; De Filippo, E.; De Luca, S.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Martorana, N. S.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2017-11-01

    The existence of cluster structures in ^{10} Be and ^{16} C neutron-rich isotopes is investigated via projectile break-up reactions induced on polyethylene (CH _2 target. We used a fragmentation beam constituted by 55MeV/u ^{10} Be and 49MeV/u ^{16} C beams provided by the FRIBs facility at INFN-LNS. Invariant mass spectra of 4{He}+ 6 He and 6{He} + ^{10} Be breakup fragments are reconstructed by means of the CHIMERA 4π detector to investigate the presence of excited states of projectile nuclei characterized by cluster structure. In the first case, we suggest the presence of a new state in ^{10} Be at 13.5MeV. A non-vanishing yield corresponding to 20.6MeV excitation energy of ^{16} C was observed in the 6{He} + ^{10} Be cluster decay channel. To improve the results of the present analysis, a new experiment has been performed recently, taking advantage of the coupling of CHIMERA and FARCOS. In the paper we describe the data reduction process of the new experiment together with preliminary results.

  11. Exploratory analysis of a neutron-rich nuclei source based on photo-fission

    CERN Document Server

    Mirea, M; Clapier, F; Essabaa, S; Groza, L; Ibrahim, F; Kandri-Rody, S; Müller, A C; Pauwels, N; Proust, J

    2003-01-01

    A source of neutron rich ions can be conceived through the photo-fission process. An exploratory study of such a source is realized. A survey of the radiative electron energy loss theory is reported in order to estimate numerically the bremsstrahlung production of thick targets. The resulted bremsstrahlung angular and energy theoretical distributions delivered from W and UCx thick converters are presented and compared with previous results. Some quantities as the number of fission events produced in the fissionable source and the energy loss in the converters are also reported as function of the geometry of the combination and the incident electron energy. An attempt of comparison with experimental data shows a quantitative agreement. This study is focussed on initial kinetic energies of the electron beam included in the range 30-60 MeV, suitable for the production of large radiative gamma-ray yields able to induce the $^{238}$U fission through the giant dipole resonance. A confrontation with the number of fi...

  12. Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb

    Directory of Open Access Journals (Sweden)

    Gurgi L.A.

    2017-01-01

    Full Text Available This short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4 μs. The multipolarity assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2[521] and π(3+/2 Nilsson orbitals.

  13. Structure of neutron rich nuclei of Germanium and Gallium beyond N equals 50 at Alto

    International Nuclear Information System (INIS)

    Lebois, M.

    2008-09-01

    The gamma rays following the beta decay of the following very neutron-rich isotopes: 82,83,84 Ga produced by photo-fission, have been studied at the newly built ISOL facility in Orsay: ALTO. In ALTO the interaction of an electron beam with U 238 target generates a continuous spectra of Bremsstrahlung gamma radiation that triggers U 238 fission. The fission fragments are then ionized, extracted and mass-separated. The analysis of the data has shown the existence of an isomer in 31 84 Ga 53 and has enabled us to confirm known results on 32 83 Ge 51 energy levels including the gamma transition between the 1/2+ state at 247,7 KeV and the fundamental state. We have also proposed the first energy level scheme for 33 84 As 51 . In order to understand the structure of the nucleus we have used the Thankappan and True model that gives a description of the coupling between the pair-pair core (half-magical) and the single nucleon. This model applied to the N=51 chain ( 38 89 Sr 51 , 36 87 Kr 51 , 34 85 Se 51 , 32 83 Ge 51 and 30 81 Zn 51 ) has allowed us to see the main features of odd isotope structure. We have also confirmed previous results concerning the nature of the states in the following decay 31 83 Ga 52 → 32 83 Ge 51

  14. Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    Directory of Open Access Journals (Sweden)

    C. Wraith

    2017-08-01

    Full Text Available Collinear laser spectroscopy was performed on Zn (Z=30 isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (>10 ms isomeric state has been established in each 69–79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell–model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ=1/2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N=43, while the progression towards 79Zn points to the stability of the Z=28 and N=50 shell gaps, supporting the magicity of 78Ni.

  15. Nuclear-decay studies of neutron-rich rare-earth nuclides

    International Nuclear Information System (INIS)

    Chasteler, R.M.

    1990-01-01

    Neutron-rich rare-earth nuclei were produced in multinucleon transfer reactions of 170 Er and 176 Yb projectiles on nat W targets at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decays properties studied at the on-line mass separation facility OASIS. Two unknown isotopes, 169 Dy (t 1/2 = 39 ± 8 s) and 174 Er(t 1/2 = 3.3 ± 0.2 m) were discovered and their decay characteristics determined. The decay schemes for two previously identified isotopes, 168 Dy (t 1/2 = 8.8 ± 0.3 m) and 171 Ho (t 1/2 = 55 ± 3 s), were characterized. Evidence for a new isomer of 3.0 m 168 Ho g , 168 Ho m (t 1/2 = 132 ± 4 s) which decays by isomeric transition (IT) is presented. Beta particle endpoint energies were determined for the decay of 168 Ho g , 169 Dy, 171 Ho, and 174 Er, the resulting Qβ-values are: 2.93 ± 0.03, 3.2 ± 0.3, 3.2 ± 0.6, and 1.8 ± 0.2 MeV, respectively. These values were compared with values calculated using recent atomic mass formulae. Comparisons of various target/ion source geometries used in the OASIS mass separator facility for these multinucleon transfer reactions were performed. 73 refs., 40 figs., 11 tabs

  16. β-decay spectroscopy of neutron-rich 160,161,162Sm isotopes

    Directory of Open Access Journals (Sweden)

    Patel Z.

    2016-01-01

    Full Text Available Neutron-rich 160,161,162Sm isotopes have been populated at the RIBF, RIKEN via β first time. β-coincident γ rays were observed in all three isotopes including γ rays from the isomeric decay of 160Sm and 162Sm. The isomers in 160Sm and 162Sm have previously been observed but have been populated via β decay for the first time. The isomeric state in 162Sm is assigned a 4−v72+[ 633 ]⊗v12−[ 521 ]${4^ - }v{{7 \\over 2}^ + }\\left[ {633} \\right] \\otimes v{{1 \\over 2}^ - }\\left[ {521} \\right]$ configuration based on the decay pattern. The level schemes of 160Sm and 162Sm are presented. The ground states in the parent nuclei 160Pm and 162Pm are both assigned a 6−v72+[633]⊗π52−[532]${6^ - }v{{7 \\over 2}^ + }\\left[ {633} \\right] \\otimes \\pi {{5 \\over 2}^ - }\\left[ {532} \\right]$ configuration based on the population of states in the daughter nuclei. Blocked BCS calculations were performed to further investigate the spin-parities of the ground states in 160Pm, 161Pm, and 162Pm, and the isomeric state in 162Sm

  17. Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes

    Science.gov (United States)

    Chaudhary, Ritu; Devi, Rani; Khosa, S. K.

    2018-02-01

    The projected shell model calculations have been carried out in the neutron-rich 114-124Pd isotopic mass chain. The results have been obtained for the deformation systematics of E(2+1) and E(4+1)/E({2}+1) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena, B( E2) transition probabilities and g-factors in these nuclei. The observed systematics of E(2+1) values and R_{42} ratios in the 114-124Pd isotopic mass chain indicate that there is a decrease of collectivity as the neutron number increases from 68 to 78. The occurrence of backbending in these nuclei as well as the changes in the calculated B( E2) transition probabilities and g -factors predict that there are changes in the structure of yrast bands in these nuclei. These changes occur at the spin where there is crossing of g-band by 2-qp bands. The predicted backbendings and predicted values of B( E2)s and g-factors in some of the isotopes need to be confirmed experimentally.

  18. Gamma-ray spectroscopy of neutron-rich products of heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    Thick-target {gamma}{gamma} coincidence techniques are being used to explore the spectroscopy of otherwise hard-to-reach neutron-rich products of deep-inelastic heavy ion reactions. Extensive {gamma}{gamma} coincidence measurements were performed at ATLAS using pulsed beams of {sup 80}Se, {sup 136}Xe, and {sup 238}U on lead-backed {sup 122,124}Sn targets with energies 10-15% above the Coulomb barrier. Gamma-ray coincidence intensities were used to map out yield distributions with A and Z for even-even product nuclei around the target and around the projectile. The main features of the yield patterns are understandable in terms of N/Z equilibration. We had the most success in studying the decays of yrast isomers. Thus far, more than thirty new {mu}s isomers in the Z = 50 region were found and characterized. Making isotopic assignments for previously unknown {gamma}-ray cascades proves to be one of the biggest problems. Our assignments were based (a) on rare overlaps with radioactivity data, (b) on the relative yields with different beams, and (c) on observed cross-coincidences between {gamma} rays from light and heavy reaction partners. However, the primary products of deep inelastic collisions often are sufficiently excited for subsequent neutron evaporation, so {gamma}{gamma} cross-coincidence results require careful interpretation.

  19. Coulomb excitation of neutron-rich odd-$A$ Cd isotopes

    CERN Multimedia

    Reiter, P; Kruecken, R; Gernhaeuser, R A; Kroell, T; Leske, J; Marginean, N M

    We propose to study excited states in the odd-${A}$ isotopes $^{123,125,127}$Cd by ${\\gamma}$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to determine the B(E2) values connecting excited states with the ground state as well as the long-lived (11/2$^{-}$) isomer. The proposed study profits from the unique capability of ISOLDE to produce beams containing Cd in the ground state or in the isomeric state. Our recent results on the neutron-rich even-A Cd nuclei appear to show that these nuclei may possess some collectivity beyond that calculated by modern shell-model predictions. Beyond-mean-field calculations also predict these nuclei to be weakly deformed. These facets are surprising considering their proximity to the doubly magic $^{132}$Sn. Coulomb-excitation studies of odd-${A}$ Cd isotopes may give a unique insight into the deformation-driving roles played by different orbits in this region. Such studies of the onset of collectivity become especially important in light of recent...

  20. Neutron-rich polonium isotopes studied with in-source laser spectroscopy

    CERN Document Server

    Dexters, Wim; Cocolios, T E

    This work studies the unknown region of neutron rich polonium isotopes. The polonium isotopes, with Z=84, lie above the magic lead nuclei (Z=82). The motivation for this research can mainly be found in these lead nuclei. When looking at the changes in the mean square charge radii beyond the N=126 shell gap, a kink is observed. This kink is also found in the radon (Z=86) and radium (Z=88) isotopes. The observed effect cannot be reproduced with our current models. The polonium isotopes yield more information on the kink and they are also able to link the known charge radii in lead isotopes to those in radon and radium. Additionally, the nuclear moments of the odd-neutron isotope $^{211}$Po are investigated. This nucleus has two protons and one neutron more than the doubly magic nucleus $^{208}$Pb. Nuclear moments of isotopes close to this doubly magic nucleus are good tests for the theoretic models. Besides pushing the models to their limits, the nuclear moments of $^{211}$Po also yield new information on the f...

  1. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Science.gov (United States)

    Wirth, Roland; Roth, Robert

    2018-04-01

    We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.

  2. Equation of state of neutron-rich nuclear matter from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Norbert; Strohmeier, Susanne [Technische Universitaet Muenchen (Germany)

    2016-07-01

    Based on chiral effective field theory, the equation of state of neutron-rich nuclear matter is investigated systematically. The contributing diagrams include one- and two-pion exchange together with three-body terms arising from virtual Δ(1232)-isobar excitations. The proper expansion of the energy per particle, anti E(k{sub f},δ) = anti E{sub n}(k{sub f}) + δB{sub 1}(k{sub f}) + δ{sup 5/3}B{sub 5/3}(k{sub f}) + δ{sup 2}B{sub 2}(k{sub f}) +.., for the system with neutron density ρ{sub n} = k{sub f}{sup 3}(1-δ)/3π{sup 2} and proton density ρ{sub p} = k{sub f}{sup 3}δ/3π{sup 2} is performed analytically for the various interaction contributions. One observes essential structural differences to the commonly used quadratic approximation. The density dependent coefficient B{sub 1}(k{sub f}) turns out to be unrelated to the isospin-asymmetry of nuclear matter. The coefficient B{sub 5/3}(k{sub f}) of the non-analytical δ{sup 5/3}-term receives contributions from the proton kinetic energy and from the one- and two-pion exchange interactions. The physical consequences for neutron star matter are studied.

  3. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  4. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  5. A systematic study of band structure and electromagnetic properties of neutron rich odd mass Eu isotopes in the projected shell model framework

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Rakesh K.; Devi, Rani [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-10-15

    The positive and negative parity rotational band structure of the neutron rich odd mass Eu isotopes with neutron numbers ranging from 90 to 96 are investigated up to the high angular momentum. In the theoretical analysis of energy spectra, transition energies and electromagnetic transition probabilities we employ the projected shell model. The calculations successfully describe the formation of the ground and excited band structures from the single particle and multi quasiparticle configurations. Calculated excitation energy spectra, transition energies, exact quantum mechanically calculated B(E2) and B(M1) transition probabilities are compared with experimental data wherever available and a reasonably good agreement is obtained with the observed data. The change in deformation in the ground state band with the increase in angular momentum and the increase in neutron number has also been established. (orig.)

  6. β-decay half-lives of neutron-rich isotopes of Fe, Co, Ni involved in the beginning of the r-process

    International Nuclear Information System (INIS)

    Czajkowski, S.; Bernas, M.; Brissot, R.

    1992-01-01

    The very neutron-rich Fe- to Ni-isotopes are of interest since they are located at the very beginning of the astrophysical r-process path. The β-decay half-lives of several isotopes, identified in thermal fission of 235 U or 239 Pu, have been measured at the ILL high-flux reactor using the Lohengrin spectrometer. Half-lives have been determined from time-correlations analysis between the fragment implantation and the detection of the subsequent β-particles in the same detector. With the fragment separator FRS , at GSI, the projectile fragments of 86 Kr have been separated. The β-decay half-life of 65 Fe has been measured. Received: (from VMMAIL[FRSAC11 for XIN[IAEA1 via NJE)

  7. Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS

    International Nuclear Information System (INIS)

    Kurcewicz, J.; Farinon, F.; Geissel, H.; Pietri, S.; Nociforo, C.; Prochazka, A.; Weick, H.; Winfield, J.S.; Estradé, A.; Allegro, P.R.P.; Bail, A.; Bélier, G.; Benlliure, J.; Benzoni, G.; Bunce, M.; Bowry, M.; Caballero-Folch, R.

    2012-01-01

    Using the high-resolution performance of the fragment separator FRS at GSI we have discovered 60 new neutron-rich isotopes in the atomic number range of 60⩽Z⩽78. The new isotopes were unambiguously identified in reactions with a 238 U beam impinging on a Be target at 1 GeV/nucleon. The production cross-section for the new isotopes have been measured down to the pico-barn level and compared with predictions of different model calculations. For elements above hafnium fragmentation is the dominant reaction mechanism which creates the new isotopes, whereas fission plays a dominant role for the production of the new isotopes up to thulium.

  8. Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS

    Energy Technology Data Exchange (ETDEWEB)

    Kurcewicz, J., E-mail: j.kurcewicz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Farinon, F.; Geissel, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Pietri, S.; Nociforo, C. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Prochazka, A. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Weick, H.; Winfield, J.S. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Estrade, A. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Allegro, P.R.P. [Institute of Physics, Universidade de Sao Paulo, CEP 05508-090 Cidade Universitaria, Sao Paulo (Brazil); Bail, A.; Belier, G. [CEA DAM DiF, 91290 Arpajon Cedex (France); Benlliure, J. [Universidad de Santiago de Compostela, E-15706 Santiago de Compostella (Spain); Benzoni, G. [INFN sezione di Milano, I-20133 Milano (Italy); Bunce, M.; Bowry, M. [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Caballero-Folch, R. [Universitat Politecnica de Catalunya, 08034 Barcelona (Spain); and others

    2012-10-31

    Using the high-resolution performance of the fragment separator FRS at GSI we have discovered 60 new neutron-rich isotopes in the atomic number range of 60 Less-Than-Or-Slanted-Equal-To Z Less-Than-Or-Slanted-Equal-To 78. The new isotopes were unambiguously identified in reactions with a {sup 238}U beam impinging on a Be target at 1 GeV/nucleon. The production cross-section for the new isotopes have been measured down to the pico-barn level and compared with predictions of different model calculations. For elements above hafnium fragmentation is the dominant reaction mechanism which creates the new isotopes, whereas fission plays a dominant role for the production of the new isotopes up to thulium.

  9. Spectroscopic Quadrupole Moments in {96,98}Sr: Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N=60.

    Science.gov (United States)

    Clément, E; Zielińska, M; Görgen, A; Korten, W; Péru, S; Libert, J; Goutte, H; Hilaire, S; Bastin, B; Bauer, C; Blazhev, A; Bree, N; Bruyneel, B; Butler, P A; Butterworth, J; Delahaye, P; Dijon, A; Doherty, D T; Ekström, A; Fitzpatrick, C; Fransen, C; Georgiev, G; Gernhäuser, R; Hess, H; Iwanicki, J; Jenkins, D G; Larsen, A C; Ljungvall, J; Lutter, R; Marley, P; Moschner, K; Napiorkowski, P J; Pakarinen, J; Petts, A; Reiter, P; Renstrøm, T; Seidlitz, M; Siebeck, B; Siem, S; Sotty, C; Srebrny, J; Stefanescu, I; Tveten, G M; Van de Walle, J; Vermeulen, M; Voulot, D; Warr, N; Wenander, F; Wiens, A; De Witte, H; Wrzosek-Lipska, K

    2016-01-15

    Neutron-rich {96,98}Sr isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N=60.

  10. High-uranium-loaded U3O8--Al fuel element development program

    International Nuclear Information System (INIS)

    Martin, M.M.

    1978-01-01

    The High-Uranium-Loaded U 3 O 8 --Al Fuel Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages

  11. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  12. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  13. Production of neutron-rich nuclides in the vicinity of N = 126 shell closure in multinucleon transfer reactions

    Directory of Open Access Journals (Sweden)

    Karpov Alexander

    2017-01-01

    Full Text Available Multinucleon transfer in low-energy nucleus-nucleus collisions is widely discussed as a method of production of yet-unknown neutron-rich nuclei hardly accessible (or inaccessible by other methods. Modeling of complicated dynamics of nuclear reactions induced by heavy ions is done within a multidimensional dynamical model of nucleus-nucleus collisions based on the Langevin equations. The model gives a continuous description of the system evolution starting from the well-separated target and projectile in the entrance channel of the reaction up to the formation of final reaction products. In this paper, rather recent sets of experimental data for the 136Xe+198Pt,208Pb reactions are analyzed together with the production cross sections for neutron-rich nuclei in the vicinity of the N = 126 magic shell.

  14. Shape Evolution in Neutron-Rich Krypton Isotopes Beyond N=60: First Spectroscopy of ^{98,100}Kr.

    Science.gov (United States)

    Flavigny, F; Doornenbal, P; Obertelli, A; Delaroche, J-P; Girod, M; Libert, J; Rodriguez, T R; Authelet, G; Baba, H; Calvet, D; Château, F; Chen, S; Corsi, A; Delbart, A; Gheller, J-M; Giganon, A; Gillibert, A; Lapoux, V; Motobayashi, T; Niikura, M; Paul, N; Roussé, J-Y; Sakurai, H; Santamaria, C; Steppenbeck, D; Taniuchi, R; Uesaka, T; Ando, T; Arici, T; Blazhev, A; Browne, F; Bruce, A; Carroll, R; Chung, L X; Cortés, M L; Dewald, M; Ding, B; Franchoo, S; Górska, M; Gottardo, A; Jungclaus, A; Lee, J; Lettmann, M; Linh, B D; Liu, J; Liu, Z; Lizarazo, C; Momiyama, S; Moschner, K; Nagamine, S; Nakatsuka, N; Nita, C; Nobs, C R; Olivier, L; Orlandi, R; Patel, Z; Podolyák, Zs; Rudigier, M; Saito, T; Shand, C; Söderström, P A; Stefan, I; Vaquero, V; Werner, V; Wimmer, K; Xu, Z

    2017-06-16

    We report on the first γ-ray spectroscopy of low-lying states in neutron-rich ^{98,100}Kr isotopes obtained from ^{99,101}Rb(p,2p) reactions at ∼220  MeV/nucleon. A reduction of the 2_{1}^{+} state energies beyond N=60 demonstrates a significant increase of deformation, shifted in neutron number compared to the sharper transition observed in strontium and zirconium isotopes. State-of-the-art beyond-mean-field calculations using the Gogny D1S interaction predict level energies in good agreement with experimental results. The identification of a low-lying (0_{2}^{+}, 2_{2}^{+}) state in ^{98}Kr provides the first experimental evidence of a competing configuration at low energy in neutron-rich krypton isotopes consistent with the oblate-prolate shape coexistence picture suggested by theory.

  15. Decay Study for the very Neutron-Rich Sn Nuclides, $^{135-140}$Sn Separated by Selective Laser Ionization

    CERN Multimedia

    2002-01-01

    %IS378 %title\\\\ \\\\ In this investigation, we wish to take advantage of chemically selective laser ionization to separate the very-neutron-rich Sn nuclides and determine their half-lives and delayed-neutron branches (P$_{n}$) using the Mainz $^{3}$He-delayed neutron spectrometer and close-geometry $\\gamma$-ray spectroscopy system. The $\\beta$-decay rates are dependent on a number of nuclear structure factors that may not be well described by models of nuclear structure developed for nuclides near stability. Determination of these decay properties will provide direct experimental data for r-process calculations and test the large number of models of nuclear structure for very-neutron rich Sn nuclides now in print.

  16. 78 FR 16303 - Request To Amend a License To Export; High-Enriched Uranium

    Science.gov (United States)

    2013-03-14

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export; High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the... Application No. Docket No. U.S. Department of Energy, High-Enriched Uranium 10 kilograms uranium To...

  17. The technology of uranium extraction from the brine with high chlorine-ion content

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.; Negmatov, Sh.I.; Barotov, B.B.

    2010-01-01

    Present article is devoted to technology of uranium extraction from the brine with high chlorine-ion content. The research results on uranium extraction from the brine of Sasik-Kul Lake by means of sorption method were considered. The chemical composition of salt was determined. The process of uranium sorption was described and analyzed. The technology of uranium extraction from the brine with high chlorine-ion content was proposed.

  18. Recent Progress in Constraining the Equation of State of Dense Neutron-Rich Nuclear Matter with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Wen Dehua; Xiao Zhigang; Xu Chang; Yong Gaochan; Zhang Ming

    2010-01-01

    The nuclear symmetry energy E sym (ρ) is the most uncertain part of the Equation of State (EOS) of dense neutron-rich nuclear matter. In this talk, we discuss the underlying physics responsible for the uncertain E sym (ρ) especially at supra-saturation densities, the circumstantial evidence for a super-soft E sym (ρ) from analyzing π - /π + ratio in relativistic heavy-ion collisions and its impacts on astrophysics and cosmology.

  19. Study of Neutron-Rich $^{124,126,128}$Cd Isotopes; Excursion from Symmetries to Shell-Model Picture

    CERN Multimedia

    Nieminen, A M; Reponen, M

    2002-01-01

    A short outline is given on a number of topics that are present in the long series of even-even Cd nuclei and therefore, may turn out to constitute an ideal test bench in order to verify a number of theoretical ideas on how collective motion, near closed shells, builds up taking into account both the valence and core nucleons when studying the nucleon correlations. Moreover, these experiments can reveal new challenges when moving towards very neutron-rich systems.

  20. Beta-decay measurements of neutron-rich thallium, lead, and bismuth by means of resonant laser ionisation

    Science.gov (United States)

    Franchoo, S.; de Witte, H.; Andreyev, A. N.; Cederka¨Ll, J.; Dean, S.; de Smet, A.; Eeckhaudt, S.; Fedorov, D. V.; Fedosseev, V. N.; G´Rska, M.; Huber, G.; Huyse, M.; Janas, Z.; Ko¨Ster, U.; Kurcewicz, W.; Kurpeta, J.; Mayer, P.; Płchocki, A.; van de Vel, K.; van Duppen, P.; Weissman, L.; Isolde Collaboration

    2004-04-01

    Neutron-rich thallium, lead, and bismuth isotopes were investigated at the ISOLDE facility. After mass separation and resonant laser ionisation of the produced activity, new spectroscopic data were obtained for 215,218Bi and 215Pb. An attempt to reach heavy thallium had to be abandoned because of a strong francium component in the beam that gave rise to a neutron background through (α,n) reactions on the aluminium walls of the experimental chamber.

  1. Investigation of neutron-rich rare-earth nuclei including the new isotopes 177Tm and 184Lu

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Gippert, K.L.; Runte, E.; Schmidt-Ott, W.D.; Tidemand-Petersson, P.; Kurcewicz, W.; Nazarewicz, W.

    1989-01-01

    Decays of neutron-rich isotopes in the rare-earth region were studied by means of on-line mass separation and β-γ spectroscopy using multinucleon-transfer reactions between beams of 136 Xe (9 and 11.7 MeV/u), 186 W (11.7 and 15 MeV/u) and 238 U (11.4 MeV/u) and targets of nat W and Ta. The higher beam energies appear to be advantageous for the production of such isotopes. Two new isotopes were identified: 177 Tm with a half-life T 1/2 = 85±10/15 s, and 184 Lu with T 1/2 ≅ 18 s. A new 47 s-activity found at A = 171 is tentatively assigned to the decay of the new isotope 171 Ho. The properties of the ground and excited states of neutron-rich lanthanide isotopes are interpreted within the shell model using the deformed Woods-Saxon potential. A change of the ground-state configuration for odd-mass neutron-rich lutetium isotopes from π 7/2 + [404] to π 9/2 - [514] is suggested, this change being due to the influence of a large hexadecapole deformation. The role of a possible isometric state in 180 Lu for the nucleosynthesis of 180m Ta is discussed. (orig.)

  2. Nuclear structure studies of neutron-rich heavy nuclei by mass measurements of francium and radium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbusch, Marco [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, 17487 Greifswald (Germany); Collaboration: ISOLTRAP-Collaboration

    2013-07-01

    The mass is a unique property of an atomic nucleus reflecting its binding energy and thus the sum of all interactions at work. Precise measurements of nuclear masses especially of short-lived exotic nuclides provide important input for nuclear structure, nuclear astrophysics, tests of the Standard Model, and weak interaction studies. The Penning-trap mass spectrometer ISOLTRAP at the on-line isotope separator ISOLDE/CERN has been set up for precision mass measurements and continuously improved for accessing more exotic nuclides. The mass uncertainty is typically δm / m=10{sup -8} and the accessible half-life has been reduced to about 50 ms. In this contribution, the results of a measurement campaign of neutron-rich francium and radium isotopes will be presented, i.e. the masses of the isotopic chain of {sup 224-233}Fr and {sup 233,234}Ra, one of the most neutron-rich ensemble obtainable at ISOL facilities. The mass {sup 234}Ra denotes the heaviest mass ever measured with ISOLTRAP. Experimental data in the neutron-rich, heavy mass region is of great interest for studies of structural evolution far from stability, especially because the knowledge from nuclear mass models is scarce. The impact of the new data on the physics in this mass region as well as recent technical developments of ISOLTRAP are discussed.

  3. Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M. [Hokkaido University, Department of Physics, Sapporo (Japan); Hokkaido University, Nuclear Reaction Data Centre, Faculty of Science, Sapporo (Japan); Suhara, T. [Matsue College of Technology, Matsue (Japan); Kanada-En' yo, Y. [Kyoto University, Department of Physics, Kyoto (Japan)

    2016-12-15

    We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular and atomic orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this ''molecular-orbit picture'' reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the 3α linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering. (orig.)

  4. Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N≈60

    International Nuclear Information System (INIS)

    Xiang, J.; Li, Z.P.; Li, Z.X.; Yao, J.M.; Meng, J.

    2012-01-01

    The shape evolution and shape coexistence phenomena in neutron-rich nuclei at N≈60, including Kr, Sr, Zr, and Mo isotopes, are studied in the covariant density functional theory (DFT) with the new parameter set PC-PK1. Pairing correlations are treated using the BCS approximation with a separable pairing force. Sharp rising in the charge radii of Sr and Zr isotopes at N=60 is observed and shown to be related to the rapid changing in nuclear shapes. The shape evolution is moderate in neighboring Kr and Mo isotopes. Similar as the results of previous Hartree–Fock–Bogoliubov (HFB) calculations with the Gogny force, triaxiality is observed in Mo isotopes and shown to be essential to reproduce quantitatively the corresponding charge radii. In addition, the coexistence of prolate and oblate shapes is found in both 98 Sr and 100 Zr. The observed oblate and prolate minima are related to the low single-particle energy level density around the Fermi surfaces of neutron and proton respectively. Furthermore, the 5-dimensional (5D) collective Hamiltonian determined by the calculations of the PC-PK1 energy functional is solved for 98 Sr and 100 Zr. The resultant excitation energy of 0 2 + state and E0 transition strength ρ 2 (E0;0 2 + →0 1 + ) are in rather good agreement with the data. It is found that the lower barrier height separating the two competing minima along the γ deformation in 100 Zr gives rise to the larger ρ 2 (E0;0 2 + →0 1 + ) than that in 98 Sr.

  5. I. Surface properties of neutron-rich nuclei. II. Pion condensation at finite temperature

    International Nuclear Information System (INIS)

    Kolehmainen, K.A.

    1983-01-01

    In part I, the energy density formalism, the Thomas-Fermi approximation, and Skyrme-type interactions were used to describe the energy density of a semi-infinite slab of neturon-rich nuclear matter at zero temperature. The existence of a drip phase at low proton fractions is allowed in addition to the more dense nuclear phase, and various bulk properties of both phases are found when the system is in equilibrium. The usual definition of the surface energy is extended to apply to the case where drip is present. Assuming a Fermi function type density profile, a constrained variational calculation is performed to determine the neutron and proton surface diffuseness parameters, the thickness of the neutron skin, and the surface energy. Results are obtained for proton fractions reanging from 0.5 (symmetric nuclear matter) to zero (pure neutron matter) for most Skyrme-type interactions in common use. The results are in close agreement with the predictions of the droplet model, as well as with the results of more exact calculations in those cases where the more exact results exist (only for symmetric or nearly symmetric matter in most cases). Significantly different asymmetry dependences for different interactions are found. In part II, several simple but increasingly complex models are used to calculate the threshold for charged pion condensation in neutron-rich nuclear matter at finite temperature. Unlike in mean field theory descriptions of pion condensation, the effects of thermal excitations of the pion field are included. The thermal pion excitations have two important effects: first, to modify the phase diagram qualitatively from that predicted by mean field theory, and second, to make the phase transition to a spatially nonuniform condensed state at finite temperature always first, rather than second, order

  6. 75 FR 15743 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-03-30

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the...-Enriched 160.0 kilograms To fabricate fuel France. Complex, March 3, 2010. Uranium (93.35%). uranium (149...

  7. 75 FR 6223 - Application For a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-08

    ... NUCLEAR REGULATORY COMMISSION Application For a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the..., Uranium (93.35%). uranium (16.3 targets for December 28, 2009, XSNM3623, kilograms U-235). irradiation in...

  8. 77 FR 1956 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-01-12

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the.... Security Complex. Uranium uranium (9.3 targets at December 21, 2011 (93.35%). kilograms U- CERCA AREVA...

  9. 75 FR 7525 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-19

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the..., February 2, Uranium (93.35%). uranium (87.3 elements in 2010, February 2, 2010, kilograms U-235). France...

  10. 78 FR 17942 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-03-25

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant... Administration. Enriched Uranium contained in 99.7 Reactor in the be processed for March 6, 2013 (93.35%)) kilograms Czech Republic to medical isotope March 11, 2013 uranium) the list of production at the XSNM3622...

  11. Choice and utilization of slightly enriched uranium fuel for high performance research reactors

    International Nuclear Information System (INIS)

    Cerles, J.M.; Schwartz, J.P.

    1978-01-01

    Problems relating to the replacement of highly enriched (90% or 93% U 235 ) uranium fuel: by moderately enriched (20% or 40% in U 235 ) metallic uranium fuel and slightly enriched (3% or 8% in U 235 ) uranium oxide fuel are discussed

  12. Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro

    Science.gov (United States)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.

    2018-02-01

    The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.

  13. Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials

    International Nuclear Information System (INIS)

    Bernard Jones; J. Blair Briggs; Leland Monteirth

    2007-01-01

    A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well as to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated

  14. Research reactor core conversion from the use of highly enriched uranium to the use of low enriched uranium fuels guidebook

    International Nuclear Information System (INIS)

    1980-08-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this document has been prepared to assist reactor operators in determining whether conversion to the use of low enriched uranium (LEU) fuel designs is technically feasible for their specific reactor, and to assist in making a smooth transition to the use of LEU fuel designs where appropriate

  15. High-spin structure of the neutron-rich odd-odd sup 1 sup 0 sup 6 sup , sup 1 sup 0 sup 8 sub 4 sub 5 Rh and sup 1 sup 1 sup 0 sup , sup 1 sup 1 sup 2 sub 4 sub 7 Ag isotopes

    CERN Document Server

    Porquet, M G; Deloncle, I; Wilson, A; Venkova, T; Petkov, P; Kutsarova, T; Astier, A; Buforn, N; Meyer, M; Redon, N; Duprat, J; Gall, B J P; Hoellinger, F; Schulz, N; Gautherin, C; Lucas, R; Gueorguieva, E; Minkova, A; Sergolle, H

    2002-01-01

    The sup 1 sup 0 sup 6 sup , sup 1 sup 0 sup 8 Rh and sup 1 sup 1 sup 0 sup , sup 1 sup 1 sup 2 Ag nuclei have been produced as fission fragments following the fusion reaction sup 2 sup 8 Si+ sup 1 sup 7 sup 6 Yb at 145 MeV bombarding energy and studied with the Eurogam2 array. The yrast high-spin states of these four odd-odd nuclei, which are observed for the first time, consist of rotational bands in which the odd proton occupies the pi g sub 9 sub / sub 2 subshell and the odd neutron the nu h sub 1 sub 1 sub / sub 2 subshell. Their behaviour as a function of spin values does not vary with the number of neutrons: as observed in the odd-N neighbouring nuclei, the motion of the odd neutron remains decoupled from the motion of the core, from N=61 to N=65. Moreover, the staggering observed in the yrast bands of odd-odd isotopes is strongly reduced as compared to the large values displayed by the rotational bands built on the pi g sub 9 sub / sub 2 subshell in the odd-A Rh and Ag isotopes. The results of particle...

  16. In-beam γ-ray spectroscopy of the neutron rich 39Si

    International Nuclear Information System (INIS)

    Sohler, D.; Dombradi, Zs.; Achouri, N.L.; Angelique, J.C.; Bastin, B.; Azaiez, F.; Baiborodin, D.; Borcea, R.

    2009-01-01

    Complete text of publication follows. In order to clarify the role of proton excitations across the Z = 14 subshell closure in neutron-rich Si isotopes, we investigated the structure of the 14 39 Si 25 isotope, having three neutron-hole configurations with respect to an N = 28 core. The excited states of 39 Si were studied by in-beam γ-ray spectroscopy trough fragmentation of radioactive beams. The experiment was performed at the GANIL facility in France. The radioactive beams were produced by the fragmentation of the stable 48 Ca beam of 60 MeV/u energy and 4μA intensity on a 12 C target in the SISSI device. The cocktail beam produced was impinged onto a 9 Be target. The nuclei produced in the secondary fragmentation reaction were selected and unambiguously identified by the SPEG spectrometer. In the performed experiment the 39 Si nuclei were obtained via 1p, 1p1n, 2p1n and 2p2n knockout reactions from the 40,41 P and 42,43 S secondary beams. To measure the γ rays emitted from the excited states, the secondary target was surrounded by the 4π 'Chateau de Crystal' array consisting of 74 BaF 2 scintillators. The γ-ray spectra were generated by gating event-by-event on the incoming secondary beam particles and the ejectiles after the secondary target. For the γ rays emitted by the fast moving fragments accurate Doppler correction was performed. From the obtained γ spectra of 39 Si displayed in Figure 1, two strong γ transitions at 163 and 397 keV as well as weaker ones at 303, 657, 906, 1143 and 1551 keV have been identified. γγ coincidences were obtained in 39 Si after having added all data from the various reaction channels giving rise to 39 Si. Analysing these data the 163 keV transition was found to be in coincidence with the 657, 1143 and 1551 keV ones, but not with the 397 keV transition. The two lines of the 303+397 keV doublet are in mutual coincidence, and one or both of them are found in coincidence with the 906 keV transition.

  17. Quasifree (p ,p N ) scattering of light neutron-rich nuclei near N =14

    Science.gov (United States)

    Díaz Fernández, P.; Alvarez-Pol, H.; Crespo, R.; Cravo, E.; Atar, L.; Deltuva, A.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Cabanelas, P.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Datta Pramanik, U.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fernández-Domínguez, B.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Jurčiukonis, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Moro, A. M.; Movsesyan, A.; Nacher, E.; Najafi, A.; Nikolskii, E.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietras, B.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-02-01

    Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The R 3B collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable 12C beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p ,p n ) and (p ,2 p ) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N =14 to N =15 . Method: The structure of the projectiles 23O, 22O, and 21N has been studied simultaneously via (p ,p n ) and (p ,2 p ) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B -LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p ,p n ) and (p ,2 p ) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p ,p n ) channels, indications of a change in the structure of these nuclei moving from N =14 to N =15 have been observed, i.e., from the 0 d5 /2 shell to the 1 s1 /2 . This supports previous observations of a subshell closure at N =14 for neutron-rich oxygen isotopes and its weakening

  18. Probing the collectivity in neutron-rich Cd isotopes via γ-ray spectroscopy

    International Nuclear Information System (INIS)

    Naqvi, Farheen

    2011-01-01

    The spin and configurational structure of excited states of 127 Cd, 125 Cd and 129 Cd, having two proton and three, five and one neutron holes, respectively in the doubly magic 132 Sn core have been studied. The isomeric states in Cd isotopes were populated in the fragmentation of a 136 Xe beam at an energy of 750 MeV/u on a 9 Be target of 4 g/cm 2 . The experiment was performed at GSI Darmstadt. The neutron-rich Cd isotopes were selected using the Bρ - ΔE - Bρ method at the FRagment Separator (FRS). Event by event identification of fragments in terms of their A (mass) and Z (charge) was provided by the standard FRS detectors. The reaction residues were implanted in a plastic stopper surrounded by 15 Ge cluster detectors from the RISING array to detect the γ decays. In 127 Cd, an isomeric state with a half-life of 17.5(3) μs has been detected. This yrast (19/2) + isomer is proposed to have mixed proton-neutron configurations and to decay by two competing stretched M2 and E3 transitions. Experimental results are compared with the isotone 129 Sn. In 125 Cd, apart from the previously observed (19/2) + isomer, two new metastable states at 3896 keV and 2141 keV have been detected. A half-life of 13.6(2) μs was measured for the (19/2) + isomer, having a decay structure similar to the corresponding isomeric state in 127 Cd. The higher lying isomers have a half-life of 3.1(1) μs and 2.5(15) ns, respectively. Time distributions of delayed γ transitions and γγ-coincidence relations were exploited to construct decay schemes for the two nuclei. Comparison of the experimental data with shell-model calculations is also discussed. The new information provides input for the proton-neutron interaction in nuclei around the doubly magic 132 Sn core. The γ decays of the isomeric states in 129 Cd were not observed experimentally. The reasons for the non-observation of delayed γ rays for 129 Cd are either an isomeric half-life of less than 93 ns based on the experimentally

  19. Mass measurement and structure studies of neutron-rich isotopes of Zn, Ni, Fe

    International Nuclear Information System (INIS)

    Dessagne, P.

    1982-01-01

    With the Orsay MP Tandem, the reaction ( 14 C, 16 O) on 58 - 60 - 62 - 64 Ni, 64 - 66 - 68 - 70 Zn, 74 - 76 Ge and 82 Se targets, and the reaction ( 14 C, 15 O) on 60 - 62 - 64 Ni, 68 - 70 Zn, 76 Ge targets, have been investigated at 72 MeV bombarding energy. The mass excess of neutron rich nuclei: 63 Fe (-55.19+-.06MeV), 69 Ni(-60.14+-.06 MeV), 75 Zn(.62.7+-08 MeV) have been measured for the first time, and those of 62 Fe, 68 Ni, 74 Zn, 80 Ge have been remeasured. A new equipment has been designed in order to perform measurements at zero degree. From the angular distribution around 0 0 for the 70 Zn( 14 C, 16 O) reaction, the first state of 68 Ni observed for the first time (1.77 MeV +- .04 MeV) has been shown to be a 0 + . This result establishes a new case of 2 1+ - 0 2+ inversion. The systematics of the ( 14 C, 16 O) measurements on the even Ni and Zn isotopes have shown a different behaviour with two series. For the Ni → Fe (g.s.) transitions, the ratio σsub(exp)/σsub(DWBA) increases by a factor of four when the neutron number varies from 30 to 36. Whereas for the Zn → Ni (gs) transitions this ratio remains constant for the first three isotopes and decrease by a factor of two when N=40. For the Ni → Fe transitions, axial and spherical symmetries have been used. In agreement with the shell model no change are found with the spherical symmetry. For the axial symmetry a variation is observed but strongly dapendant of the sub-shell. Hence no clear conclusion can be deduced for the cross section estimate. For the Zn → Ni transitions, the spherical symmetry has been used. One configuration prevails, leading to a qualitative agreement with the experimental results [fr

  20. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  1. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  2. High-temperature thermal conductivity of uranium chromite and uranium niobate

    International Nuclear Information System (INIS)

    Fedoseev, D.V.; Varshavskaya, I.G.; Lavrent'ev, A.V.; Oziraner, S.N.; Kuznetsova, D.G.

    1979-01-01

    The technique of determining thermal conductivity coefficient of uranium niobate and uranium chromite on heating with laser radiation is described. Determined is the coefficient of free-convective heat transfer (with provision for a conduction component) by means of a standard specimen. The thermal conductivity coefficients of uranium chromite and niobate were measured in the 1300-1700 K temperature range. The results are presented in a diagram form. It has been calculated, that the thermal conductivity coefficient for uranium niobate specimens is greater in comparison with uranium chromite specimens. The thermal conductivity coefficients of the materials mentioned depend on temperature very slightly. Thermal conductivity of the materials considerably depends on their porosity. The specimens under investigation were fabricated by the pressing method and had the following porosity: uranium chromite - 30 %, uranium niobate - 10 %. Calculation results show, that thermal conductivity of dense uranium chromite is higher than thermal conductivity of dense uranium niobate. The experimental error equals approximately 20 %, that is mainly due to the error of measuring the temperature equal to +-25 deg, with a micropyrometer

  3. Midwest Joint Venture high-grade uranium mining

    International Nuclear Information System (INIS)

    Fredrickson, H.K.

    1992-01-01

    Midwest Joint Venture (MJV) owns a high-grade uranium deposit in northern Saskatchewan. The deposit is located too deep below surface to be mined economically by open pit methods, and as a consequence, present plans are that it will be mined by underground methods. High-grade uranium ore of the type at MJV, encased in weak, highly altered ground and with radon-rich water inflows, has not before been mined by underground methods. The test mining phase of the project, completed in 1989, had three objectives: To evaluate radiation protection requirements associated with the handling of large quantities of radon-rich water and mining high-grade uranium ore in an underground environment; to investigate the quantity and quality of water inflows into the mine; and, to investigate ground conditions in and around the ore zone as an aid in determining the production mining method to be used. With information gained from the test mining project, a mining method for the production mine has been devised. Level plans have been drawn up, ventilation system designed, pumping arrangements made and methods of ore handling considered. All this is to be done in a manner that will be safe for those doing the work underground. Some of the mining methods planned are felt to be unique in that they are designed to cope with mining problems not known to have been encountered before. New problems underground have required new methods to handle them. Remote drilling, blasting, mucking and backfilling form the basis of the planned mining method

  4. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  5. AC measurements on uranium doped high temperature superconductors

    International Nuclear Information System (INIS)

    Eisterer, M.

    1999-11-01

    The subject of this thesis is the influence of fission tracks on the superconducting properties of melt textured Y-123. The critical current densities, the irreversibility lines and the transition temperature were determined by means of ac measurements. The corresponding ac techniques are explored in detail. Deviations of the ac signal from the expectations according to the Bean model were explained by the dependence of the shielding currents on the electric field. This explanation is supported by the influence of the ac amplitude and frequency on the critical current density but also by a comparison of the obtained data with other experimental techniques. Y-123 has to be doped with uranium in order to induce fission tracks. Uranium forms normal conducting clusters, which are nearly spherical, with a diameter of about 300 nm. Fission of uranium-235 by thermal neutrons creates two high energy ions with a total energy of about 160 MeV. Each of these fission products induces a linear defect with a diameter of about 10 nm. The length of one fission track is 2-4 μm. At 77 K the critical current density is enhanced by the pinning action of the uranium clusters, compared to undoped samples. With decreasing temperature this influence becomes negligible. The critical current densities are strongly enhanced due to the irradiation. At low magnetic fields we find extremely high values for melt textured materials, e.g. 2.5x10 9 Am -2 at 77 K and 0.25 T or 6x10 10 Am -2 at 5 K. Since the critical current was found to be inverse proportional to the square root of the applied magnetic field it decreases rapidly as the field increases. This behavior is predicted by simple theoretical considerations, but is only valid at low temperatures as well as in low magnetic fields at high temperatures. At high fields the critical current drops more rapidly. The irreversibility lines are only slightly changed by this irradiation technique. Only a small shift to higher fields and temperatures

  6. Constraining the EOS of Neutron-Rich Nuclear Matter and Properties of Neutron Stars with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Worley, Aaron; Chen, L.-W.; Ko, Che Ming; Krastev, Plamen G.; Wen Dehua; Xiao Zhigang; Zhang Ming; Xu Jun; Yong Gaochan

    2009-01-01

    Heavy-ion reactions especially those induced by radioactive beams provide useful information about the density dependence of the nuclear symmetry energy, thus the Equation of State of neutron-rich nuclear matter, relevant for many astrophysical studies. The latest developments in constraining the symmetry energy at both sub- and supra-saturation densities from analyses of the isopsin diffusion and the π - /π + ratio in heavy-ion collisions using the IBUU04 transport model are discussed. Astrophysical ramifications of the partially constrained symmetry energy on properties of neutron star crusts, gravitational waves emitted by deformed pulsars and the w-mode oscillations of neutron stars are presented briefly.

  7. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  8. Nuclear spectroscopy of neutron rich A = 147 nuclides: decay of 147Cs, 147Ba and 147La

    International Nuclear Information System (INIS)

    Shmid, M.; Chu, Y.Y.; Gowdy, G.M.

    1981-01-01

    A study of the beta decay of neutron rich nuclides of the A = 147 chain was carried out at the TRISTAN isotope separator. Half lives of 14 'Cs, 147 Ba and 147 La were measured. Six gamma lines are assigned to 147 Cs decay. A decay scheme for 147 Ba with levels up to 2 MeV is proposed for the first time. A partial decay scheme for 147 La is proposed, which confirms the previously existing one, with five new levels added from the present work

  9. Neutron-rich isotopes around the r-process 'waiting-point' nuclei 2979Cu50 and 3080Zn50

    International Nuclear Information System (INIS)

    Kratz, K.L.; Gabelmann, H.; Pfeiffer, B.; Woehr, A.

    1991-01-01

    Beta-decay half-lives (T 1/2 ) and delayed-neutron emission probabilities (P n ) of very neutron-rich Cu to As nuclei have been measured, among them the new isotopes 77 Cu 48 , 79 Cu 50 , 81 Zn 51 and 84 Ga 53 . With the T 1/2 and P n -values of now four N≅50 'waiting-point' nuclei known, our hypothesis that the r-process has attained a local β-flow equilibrium around A≅80 is further strengthened. (orig.)

  10. New approach to the nuclear in beam γ spectroscopy of neutron rich nuclei at N=20 using projectile fragmentation

    International Nuclear Information System (INIS)

    Lopez-Jimenez, M.J.; Saint-Laurent, M.G.; Achouri, L.; Daugas, J.M.; Belleguic, M.; Azaiez, F.; Bourgeois, C.; Angelique, J.C.

    1999-01-01

    The structure of nuclei far from stability around 32 Mg have been recently investigated by means of a novel method. In-beam γ-decay spectroscopy of a large number of exotic neutron-rich nuclei produced by projectile fragmentation of a 36 S projectile has been performed, using coincidences between the recoil fragments collected at the focal plane of SPEG spectrometer and γ-rays emitted at the target location. Preliminary results on both the population mechanism and the decay of excited states in nuclei around 32 Mg are presented. (author)

  11. Hyperfine structure and isotope shift of the neutron-rich barium isotopes 139-146Ba and 148Ba

    International Nuclear Information System (INIS)

    Wendt, K.; Ahmad, S.A.; Klempt, W.; Neugart, R.; Otten, E.W.

    1988-01-01

    The hyperfine structure and isotope shift in the 6s 2 S 1/2 -6p 2 P 3/2 line of Ba II (455.4 nm) have been measured by collinear fast-beam laser spectroscopy for the neutron-rich isotopes 139-146 Ba and 148 Ba. Nuclear moments and mean square charge radii of these isotopes have been recalculated. The isotope shift of the isotope 148 Ba (T 1/2 = 0.64 s) could be studied for the first time, yielding δ 2 > 138,148 = 1.245(3) fm 2 . (orig.)

  12. Prospects for future uranium savings through LWRs with high performance cores

    International Nuclear Information System (INIS)

    Mochida, T.; Yamamoto, T.; Sasaki, M.; Matsuura, H.; Ueji, M.; Murata, T.; Kanda, K.; Oka, Y.; Kondo, S.

    1995-01-01

    Since 1986, Nuclear Power Engineering Cooperation (NUPEC) has been studying four types of LWR high performance core concepts (i.e., the uranium saving core I (USC-I), the uranium saving core II (USC-II), the high moderation core (HMC) and the low moderation core (LMC)), which aim at improvement of uranium and plutonium utilization. After the evaluation of fundamental core performance and uranium and plutonium material balance for each reactor, potential uranium savings with different reactor strategies are evaluated for the Japanese scenario with assumption of the growth of future nuclear power plant generation, annual reprocessing capacity and schedules for the introduction of high performance core. At 2030, about 3-6% savings in uranium demand are expected by USC-I or USC-II strategy, while about 14% savings by HMC strategy and about 8% by LMC strategy. (author)

  13. Universal odd-even staggering in isotopic fragmentation and spallation cross sections of neutron-rich fragments

    Science.gov (United States)

    Mei, B.; Tu, X. L.; Wang, M.

    2018-04-01

    An evident odd-even staggering (OES) in fragment cross sections has been experimentally observed in many fragmentation and spallation reactions. However, quantitative comparisons of this OES effect in different reaction systems are still scarce for neutron-rich nuclei near the neutron drip line. By employing a third-order difference formula, the magnitudes of this OES in extensive experimental cross sections are systematically investigated for many neutron-rich nuclei with (N -Z ) from 1 to 23 over a broad range of atomic numbers (Z ≈3 -50 ). A comparison of these magnitude values extracted from fragment cross sections measured in different fragmentation and spallation reactions with a large variety of projectile-target combinations over a wide energy range reveals that the OES magnitude is almost independent of the projectile-target combinations and the projectile energy. The weighted average of these OES magnitudes derived from cross sections accurately measured in different reaction systems is adopted as the evaluation value of the OES magnitude. These evaluated OES magnitudes are recommended to be used in fragmentation and spallation models to improve their predictions for fragment cross sections.

  14. Mass measurements of neutron rich isotopes in the Fe region and electron capture processes in neutron star crusts

    International Nuclear Information System (INIS)

    Estrade, Alfredo; Matos, M.; Schatz, Hendrik; Amthor, A.M.; Beard, Mary; Brown, Edward; Bazin, D.; Becerril, A.; Elliot, T.; Gade, A.; Galaviz, D.; Gupta, Sanjib; Hix, William Raphael; Lau, Rita; Moeller, Peter; Pereira, J.; Portillo, M.; Rogers, A.M.; Shapira, Dan; Smith, E.; Stolz, A.; Wallace, M.; Wiescher, Michael

    2011-01-01

    Experimental knowledge of nuclear masses of exotic nuclei is important for understanding nuclear structure far from the valley of stability, and as a direct input into astrophysical models. Electron capture processes in the crust of accreting neutron stars have been proposed as a heat source that can affect the thermal structure of the star. Nuclear masses of very neutron-rich nuclides are necessary inputs to model the electron capture process. The time-of-flight (TOF) mass measurement technique allows measurements on very short-lived nuclei. It has been effectively applied using the fast fragment beams produced at the National Superconducting Cyclotron Lab (NSCL) to reach masses very far from stability. Measurements were performed for neutron-rich isotopes in the region of the N=32 and N=40 subshells, which coincides with the mass range of carbon superburst ashes. We discuss reaction network calculations performed to investigate the impact of our new measurements and to compare the effect of using different global mass models in the calculations. It is observed that the process is sensitive to the differences in the odd-even mass staggering predicted by the mass models, and our new result for 66Mn has a significant impact on the distribution of heat sources in the crust.

  15. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.

  16. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  17. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  18. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  19. Irradiation Stability of Uranium Alloys at High Exposures

    International Nuclear Information System (INIS)

    McDonell, W.R.

    2001-01-01

    Postirradiation examinations were begun of a series of unrestrained dilute uranium alloy specimens irradiated to exposures up to 13,000 MWD/T in NaK-containing stainless steel capsules. This test, part of a program of development of uranium metal fuels for desalination and power reactors sponsored by the Division of Reactor Development and Technology, has the objective of defining the temperature and exposure limits of swelling resistance of the alloyed uranium. This paper discusses those test results

  20. Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE, CERN

    Directory of Open Access Journals (Sweden)

    Clément E.

    2013-12-01

    Full Text Available A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N = 60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  1. In situ spectroscopy and spectroelectrochemistry of uranium in high-temperature alkali chloride molten salts.

    Science.gov (United States)

    Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A

    2008-09-01

    Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.

  2. Lifetime measurements in neutron-rich isotopes close to N = 40 and development of a simulation tool for RDDS spectra

    International Nuclear Information System (INIS)

    Braunroth, Thomas Christian

    2017-01-01

    interest are the neutron-rich 59,61 Mn isotopes (Z=25), for which level lifetimes of the 7/2 - 1 , 9/2 - 1 and 11/2 - 1 states were determined (in 61 Mn the assignment is only tentative). In addition, level lifetimes in 63 Mn of the tentatively assigned (7/2 - 1 ) and (9/2 - 1 ) states were evaluated. The results are compared to shell-model calculations using the fp interaction KB3G as well as the state-of-the-art interaction LNPS-m. The present data indicates a structural change close to N=36. The experimental data for 61 Mn suggests that the B(M1) value for the 7/2 - 1 → 5/2 - gs is underestimated by the LNPS-m interaction when free g factors are used. In the second part of this thesis, a tool is presented which allows to generate γ-ray spectra of lifetime studies based on the electromagnetic Doppler-shift using empirical parameters. The tool is highly flexible which enables the incorporation of various experimental bounding conditions. It is applied to investigate the influence of velocity distributions on the lifetime analysis and results indicate that systematic deviations are minimized if distance-dependent mean recoil velocities are taken into account.

  3. Lifetime measurements in neutron-rich isotopes close to N = 40 and development of a simulation tool for RDDS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Braunroth, Thomas Christian

    2017-10-10

    degree of quadrupole deformation. Other isotopes that were produced in the experiment were investigated with respect to the identification of γ-ray transitions and level lifetimes. Of particular interest are the neutron-rich {sup 59,61}Mn isotopes (Z=25), for which level lifetimes of the 7/2{sup -}{sub 1}, 9/2{sup -}{sub 1} and 11/2{sup -}{sub 1} states were determined (in {sup 61}Mn the assignment is only tentative). In addition, level lifetimes in {sup 63}Mn of the tentatively assigned (7/2{sup -}{sub 1}) and (9/2{sup -}{sub 1}) states were evaluated. The results are compared to shell-model calculations using the fp interaction KB3G as well as the state-of-the-art interaction LNPS-m. The present data indicates a structural change close to N=36. The experimental data for {sup 61}Mn suggests that the B(M1) value for the 7/2{sup -}{sub 1} → 5/2{sup -}{sub gs} is underestimated by the LNPS-m interaction when free g factors are used. In the second part of this thesis, a tool is presented which allows to generate γ-ray spectra of lifetime studies based on the electromagnetic Doppler-shift using empirical parameters. The tool is highly flexible which enables the incorporation of various experimental bounding conditions. It is applied to investigate the influence of velocity distributions on the lifetime analysis and results indicate that systematic deviations are minimized if distance-dependent mean recoil velocities are taken into account.

  4. Theoretical study on production of heavy neutron-rich isotopes around the N=126 shell closure in radioactive beam induced transfer reactions

    Directory of Open Access Journals (Sweden)

    Long Zhu

    2017-04-01

    Full Text Available In order to produce more unknown neutron-rich nuclei around N=126, the transfer reactions 136Xe + 198Pt, 136–144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z=72–77 are predicted in the reactions 136–144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line project as well, for production of neutron-rich nuclei around the N=126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N=126 and the advantages get more obvious for producing nuclei with less charge number.

  5. Highly enriched uranium (HEU) storage and disposition program plan

    International Nuclear Information System (INIS)

    Arms, W.M.; Everitt, D.A.; O'Dell, C.L.

    1995-01-01

    Recent changes in international relations and other changes in national priorities have profoundly affected the management of weapons-usable fissile materials within the United States (US). The nuclear weapon stockpile reductions agreed to by the US and Russia have reduced the national security requirements for these fissile materials. National policies outlined by the US President seek to prevent the accumulation of nuclear weapon stockpiles of plutonium (Pu) and HEU, and to ensure that these materials are subjected to the highest standards of safety, security and international accountability. The purpose of the Highly Enriched Uranium (HEU) Storage and Disposition Program Plan is to define and establish a planned approach for storage of all HEU and disposition of surplus HEU in support of the US Department of Energy (DOE) Fissile Material Disposition Program. Elements Of this Plan, which are specific to HEU storage and disposition, include program requirements, roles and responsibilities, program activities (action plans), milestone schedules, and deliverables

  6. Isotopic analysis of uranium hexafluoride highly enriched in U-235

    International Nuclear Information System (INIS)

    Chaussy, L.; Boyer, R.

    1968-01-01

    Isotopic analysis of uranium in the form of the hexafluoride by mass-spectrometry gives gross results which are not very accurate. Using a linear interpolation method applied to two standards it is possible to correct for this inaccuracy as long as the isotopic concentrations are less than about 10 per cent in U-235. Above this level, the interpolations formula overestimates the results, especially if the enrichment of the analyzed samples is higher than 1.3 with respect to the standards. A formula is proposed for correcting the interpolation equation and for the extending its field of application to high values of the enrichment (≅2) and of the concentration. It is shown that by using this correction the results obtained have an accuracy which depends practically only on that of the standards, taking into account the dispersion in the measurements. (authors) [fr

  7. Validation of NCSSHP for highly enriched uranium systems containing beryllium

    International Nuclear Information System (INIS)

    Krass, A.W.; Elliott, E.P.; Tollefson, D.A.

    1994-01-01

    This document describes the validation of KENO V.a using the 27-group ENDF/B-IV cross section library for highly enriched uranium and beryllium neutronic systems, and is in accordance with ANSI/ANS-8.1-1983(R1988) requirements for calculational methods. The validation has been performed on a Hewlett Packard 9000/Series 700 Workstation at the Oak Ridge Y-12 Plant Nuclear Criticality Safety Department using the Oak Ridge Y-12 Plant Nuclear Criticality Safety Software code package. Critical experiments from LA-2203, UCRL-4975, ORNL-2201, and ORNL/ENG-2 have been identified as having the constituents desired for this validation as well as sufficient experimental detail to allow accurate construction of KENO V.a calculational models. The results of these calculations establish the safety criteria to be employed in future calculational studies of these types of systems

  8. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  9. $\\beta$-decay study of neutron-rich Tl, Pb, and Bi by means of the pulsed-release technique and resonant laser ionisation

    CERN Multimedia

    Lettry, J

    2002-01-01

    It is proposed to study new neutron-rich nuclei around the Z = 82 magic shell closure, with major relevance for understanding the evolution of nuclear structure at extreme isospin values. Following the IS354 experiment, $\\beta$-decay studies of neutron-rich thallium, lead and bismuth isotopes will be performed for 215 $\\leqslant$ A $\\leqslant$ 219. To this purpose the pulsed-release technique, which was pioneered at ISOLDE, will be optimised. It will be complemented with the higher element selectivity that can be obtained by the unique features of resonant laser ionisation, available at ISOLDE from the RILIS source.

  10. Coulomb excitation of neutron-rich$^{28,29,30}$Na nuclei with MINIBALL at REX-ISOLDE: Mapping the borders of the island of inversion

    CERN Multimedia

    Butler, P; Cederkall, J A; Reiter, P; Wiens, A; Blazhev, A A; Kruecken, R; Voulot, D; Kalkuehler, M; Wadsworth, R; Gernhaeuser, R A; Hess, H E; Holler, A; Finke, F; Leske, J; Huyse, M L; Seidlitz, M

    We propose to study the properties of neutron-rich nuclei $^{28,29,30}$Na via Coulomb excitation experiments using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Reliable B(E2,0$^{+}$ $\\rightarrow$ 2$^{+}$) values for $^{30,32}$Mg were obtained at ISOLDE. Together with recent new results on $^{31}$Mg, collective and single particle properties are probed for Z=12 at the N=20 neutron closed shell, the 'island of inversion'. We would like to extend this knowledge to the neighbouring $^{28,29,30}$Na isotopes where a different transition from the usual filling of the neutron levels into the region with low lying 2p-2h cross shell configurations is predicted by theory. Detailed theoretical predictions on the transition strength in all three Na nuclei are awaiting experimental verification and are the subject of this proposal. At REX beam energies of 3.0 MeV /nucleon the cross-sections for Coulomb excitation are sufficient. Moreover the results from the close-by $^{30,31,32}$Mg nuclei de...

  11. First one-line mass measurements at SHIPTRAP and mass determinations of neutron-rich Fr and Ra isotopes at ISOLTRAP

    International Nuclear Information System (INIS)

    Rahaman, M.S.

    2005-01-01

    SHIPTRAP is an ion trap facility behind the velocity lter SHIP at GSI/Darmstadt. Its aim are precision studies of transuranium nuclides produced in a fusion reaction and separated by SHIP. The current set-up for high-precision mass measurements consists of three main functional parts: (i) a gas cell for stopping the energetic ions from SHIP, (ii) radiofrequency quadrupole structures to cool and to bunch the ions extracted from the gas cell, and (iii) a superconducting magnet with two cylindrical Penning traps at a eld strength of 7 T. In this work the Penning trap system has been installed and extensively characterized. The rst on-line mass measurements of short-lived nuclides were carried out and the masses of 147 Er and 148 Er could be experimentally determined for the rst time. Here a relative mass uncertainty of δm/m of about 1 x 10 -6 was achieved. Furthermore the masses of heavy neutron-rich 229-232 Ra and 230 Fr isotopes have been determined with a relative mass uncertainty of about 1 x 10 -7 with the ISOLTRAP mass spectometer at ISOLDE/CERN. The isotope 232 Ra is the heaviest unstable nuclide ever investigated with a Penning trap. Underlying nuclear structure effects of these nuclides far from β-stability were studied by a comparison of the resulting two-neutron separation energies S 2n with those given by the theoretical Infinite Nuclear Mass model. (orig.)

  12. First on-line mass measurements at SHIPTRAP and mass determinations of neutron-rich Fr and Ra isotopes at ISOLTRAP

    CERN Document Server

    Rahaman, Saidu

    SHIPTRAP is an ion trap facility behind the velocity filter SHIP at GSI/Darmstadt. Its aim are precision studies of transuranium nuclides produced in a fusion reaction and separated by SHIP. The current set-up for high-precision mass measurements consists of three main functional parts: (i) a gas cell for stopping the energetic ions from SHIP, (ii) radiofrequency quadrupole structures to cool and to bunch the ions extracted from the gas cell, and (iii) a superconducting magnet with two cylindrical Penning traps at a field strength of 7 T. In this work the Penning trap system has been installed and extensively characterized. The first on-line mass measurements of short-lived nuclides were carried out and the masses of $^{147}$Er and $^{148}$Er could be experimentally determined for the first time. Here a relative mass uncertainty of $\\delta$ m/m of about 1$\\times$ 10$^{-6}$ was achieved. Furthermore the masses of heavy neutron-rich $^{229-232}$Ra and $^{230}$Fr isotopes have been determined with a relative m...

  13. Octupole correlations in neutron-rich {sup 143,145}Ba and a type of superdeformed band in {sup 145}Ba

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.J.; Wang, M.G.; Long, G.L.; Zhu, L.Y.; Gan, C.Y.; Yang, L.M.; Sakhaee, M.; Li, M.; Deng, J.K. [Physics Department, Tsinghua University, Beijing 100084, Peoples Republic of (China); Zhu, S.J.; Hamilton, J.H.; Ramayya, A.V.; Jones, E.F.; Hwang, J.K.; Zhang, X.Q.; Gore, P.M.; Peker, L.K.; Drafta, G.; Babu, B.R.; Deng, J.K.; Ginter, T.N.; Beyer, C.J.; Kormicki, J.; Ter-Akopian, G.M.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville, Tennessee 37235 (United States); Zhu, S.J.; Ter-Akopian, G.M.; Daniel, A.V. [Joint Institute for Heavy Ion Research, Oak Ridge, Tennessee 37831 (United States); Ma, W.C. [Physics Department, Mississippi State University, Mississippi 39762 (United States); Cole, J.D.; Aryaeinejad, R.; Drigert, M.W. [Idaho National Engineering Laboratory, Idaho Falls, Idaho 83415 (United States); Rasmussen, J.O.; Asztalos, S.; Lee, I.Y.; Macchiavelli, A.O.; Chu, S.Y.; Gregorich, K.E.; Mohar, M.F. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ter-Akopian, G.M.; Daniel, A.V.; Oganessian, Y.T.; Kliman, J. [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russia); Donangelo, R. [Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RG (Brazil); Stoyer, M.A.; Lougheed, R.W.; Moody, K.J.; Wild, J.F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Prussin, S.G. [Nuclear Engineering Department, University of California at Berkeley, Berkeley, California 94720 (United States); Kliman, J. [Institute of Physics, SASc, Dubravskacesta 9, 84228 Bratislava (Slovakia); Griffin, H.C. [University of Michigan, Ann Arbor, Michigan 48104 (United States)

    1999-11-01

    High spin states in neutron-rich odd-{ital Z} {sup 143,145}Ba nuclei have been investigated from the study of prompt {gamma} rays in the spontaneous fission of {sup 252}Cf by using {gamma}-{gamma}- and {gamma}-{gamma}-{gamma}- coincidence techniques. Alternating parity bands are identified for the first time in {sup 145}Ba and extended in {sup 143}Ba. A new side band, with equal, constant dynamic, and kinetic moments of inertia equal to the rigid body value, as found in superdeformed bands, is discovered in {sup 145}Ba. Enhanced E1 transitions between the negative- and positive-parity bands in these nuclei give evidence for strong octupole deformation in {sup 143}Ba and in {sup 145}Ba. These collective bands show competition and coexistence between symmetric and asymmetric shapes in {sup 145}Ba. Evidence is found for crossing M1 and E1 transitions between the s=+i and s={minus}i doublets in {sup 143}Ba. {copyright} {ital 1999} {ital The American Physical Society}

  14. Direct mass measurements in the light neutron-rich region using a combined energy and time-of-flight technique

    International Nuclear Information System (INIS)

    Pillai, C.; Swenson, L.W.; Vieira, D.J.; Butler, G.W.; Wouters, J.M.; Rokni, S.H.; Vaziri, K.; Remsberg, L.P.

    1985-01-01

    This experiment has demonstrated that direct mass measurements can be performed (albeit of low precision in this first attempt) using the M proportional to ET 2 method. This technique has the advantage that many particle-bound nuclei, produced in fragmentation reactions can be measured simultaneously, independent of their N or Z. The main disadvantage of this approach is that both energy and time-of-flight must be measured precisely on an absolute scale. Although some mass walk with N and Z was observed in this experiment, these uncertainties were largely removed by extrapolating the smooth dependence observed for known nuclei which lie closer to the valley of β-stability. Mass measurements for several neutron-rich light nuclei ranging from 17 C to 26 Ne have been performed. In all cases these measurements agree with the latest mass compilation of Wapstra and Audi. The masses of 20 N and 24 F have been determined for the first time

  15. Study of Ground State Wave-function of the Neutron-rich 29,30Na Isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Rahaman A.

    2014-03-01

    Full Text Available Coulomb breakup of unstable neutron rich nuclei 29,30Na around the ‘island of inversion’ has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s⊗νs1/2 and 29Na(g.s⊗νs1/2,respectively.

  16. Dipole resonances in light neutron-rich nuclei studied with time-dependent calculations of antisymmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Kanada-En'yo, Y.; Kimura, M.

    2005-01-01

    To study isovector dipole responses of neutron-rich nuclei, we applied a time-dependent method of antisymmetrized molecular dynamics. The dipole resonances in Be, B, and C isotopes were investigated. In 10 Be, 15 B, and 16 C, collective modes of the vibration between a core and valence neutrons cause soft resonances at the excitation energy E x =10-15 MeV below the giant dipole resonance (GDR). In 16 C, we found that a remarkable peak at E x =14 MeV corresponds to the coherent motion of four valence neutrons against a 12 C core, whereas the GDR arises in the E x >20 MeV region because of vibration within the core. In 17 B and 18 C, the dipole strengths in the low-energy region decline compared with those in 15 B and 16 C. We also discuss the energy-weighted sum rule for the E1 transitions

  17. Low-lying level structure of the neutron-rich nucleus {sup 109}Nb: A possible oblate-shape isomer

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H., E-mail: hiroshi@ribf.riken.j [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sumikama, T. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Nishimura, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yoshinaga, K. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Li, Z. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Miyashita, Y. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Yamaguchi, K. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka (Japan); Baba, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Berryman, J.S. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Blasi, N. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Bracco, A.; Camera, F. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Chiba, J. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Doornenbal, P. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Go, S.; Hashimoto, T.; Hayakawa, S. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Hinke, C. [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Ideguchi, E. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-01-31

    The neutron-rich nuclei {sup 109}Nb and {sup 109}Zr have been populated using in-flight fission of a {sup 238}U beam at 345 MeV/nucleon at the RIBF facility. A T{sub 1/2}=150(30) ns isomer at 313 keV has been identified in {sup 109}Nb for the first time. The low-lying levels in {sup 109}Nb have been also populated following the {beta}-decay of {sup 109}Zr. Based on the difference in feeding pattern between the isomeric and {beta} decays, the decay scheme from the isomeric state in {sup 109}Nb was established. The observed hindrances of the electromagnetic transitions deexciting the isomeric state are discussed in terms of possible shape coexistence. Potential energy surface calculations for single-proton configurations predict the presence of low-lying oblate-deformed states in {sup 109}Nb.

  18. High temperature behavior of metallic inclusions in uranium dioxide

    International Nuclear Information System (INIS)

    Yang, R.L.

    1980-08-01

    The object of this thesis was to construct a temperature gradient furnace to simulate the thermal conditions in the reactor fuel and to study the migration of metallic inclusions in uranium oxide under the influence of temperature gradient. No thermal migration of molybdenum and tungsten inclusions was observed under the experimental conditions. Ruthenium inclusions, however, dissolved and diffused atomically through grain boundaries in slightly reduced uranium oxide. An intermetallic compound (probably URu 3 ) was formed by reaction of Ru and UO/sub 2-x/. The diffusivity and solubility of ruthenium in uranium oxide were measured

  19. Candidate processes for diluting the 235U isotope in weapons-capable highly enriched uranium

    International Nuclear Information System (INIS)

    Snider, J.D.

    1996-02-01

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile 235 U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile 235 U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel

  20. Basic research on high-uranium density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Ugajin, M.; Itoh, A.; Akabori, M.

    1992-01-01

    High-uranium density fuels, uranium silicides (U 3 Si 2 , U 3 Si) and U 6 Me-type uranium alloys (Me = Fe, Mn, Ni), were prepared and examined metallurgically as low-enriched uranium (LEU) fuels for research and test reactors. Miniature aluminum-dispersion plate-type fuel (miniplate) and aluminum-clad disk-type fuel specimens were fabricated and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Fuel-aluminum compatibility tests were conducted to elucidate the extent of reaction and to identify reaction products. The relative stability of the fuels in an aluminum matrix was established at 350degC or above. Experiments were also performed to predict the chemical form of the solid fission-products in the uranium silicide (U 3 Si 2 ) simulating a high burnup anticipated for reactor service. (author)

  1. Nuclear structure of neutron rich gallium, germanium and arsenic around N=50 and development of a laser ion source at ALTO

    International Nuclear Information System (INIS)

    Tastet, B.

    2011-01-01

    During this thesis, we have studied β decays of gallium's nuclei around N=50 and prepared a laser ionization source at ALTO.The production of exotic isotopes has brought new beam production challenges. The one addressed here relates to the elimination of isobar contaminants that create background for experiments. To address this issue a laser ionization source has been developed at ALTO. Copper has been chosen to be the first element to be ionized for physical interests and to compare the results of the laser ionization source with the ones at others facilities. A laser setup has been installed and optimized in order to ionize selectively the atoms of copper produced for experiments. After the optimization, a test of ionization of stable-copper was performed. This test has shown us that the laser system is able to successfully ionize atoms of copper.The studies of the region of the neutron-rich nuclei around N=50 are still to complete. 79,80,82,83,84,85 Ga has been produced using photo-nuclear reactions at the experimental area of the on-line PARRNe mass-separator operating with the ALTO facility. The fission fragments are produced at the interaction of the 50 MeV electron beam delivered by the ALTO linear accelerator with a thick target of uranium in a standard UC x form. The oven is connected to a W ionizer heated up to 2000 C degrees that selectively ionizes alkalis but also elements with low ionization potentials such as Ga. The ions are accelerated through 30 kV and magnetically mass-separated before being implanted on a mylar tape close to the detection setup, so that this system allows us to study β and β-n decays of 79,80,82,83,84,85 Ga.The data analysis have produced new results concerning the decays of 80 Ga, 84 Ga and 84 Ge. For 80 Ga, the existence of an isomeric state has been confirmed and two different half-lives were measured for the ground state and the isomer. Furthermore, the analysis of 84 Ga decay confirmed two states and allowed us to

  2. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    Science.gov (United States)

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  3. Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal

    Science.gov (United States)

    McLean, II, William; Miller, Philip E.; Horton, James A.

    1995-01-01

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

  4. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process. Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko

    2016-07-06

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton-to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium ({sup 129-131}Cd) and caesium ({sup 132,146-148}Cs) isotopes. Measurements were done at the on-line radioactive ion-beam facility ISOLDE by using the four-trap mass spectrometer ISOLTRAP. The cadmium isotopes are key nuclides for the synthesis of stable isotopes around the mass peak A = 130 in the Solar System abundance.

  5. Measurement of the magnetic moment of the 2$^{+}$ state in neutron-rich radioactive $^{72,74}$Zn using the transient field technique in inverse kinematics

    CERN Multimedia

    Kruecken, R; Speidel, K; Voulot, D; Neyens, G; Gernhaeuser, R A; Fraile prieto, L M; Leske, J

    We propose to measure the sign and magnitude of the g-factors of the first 2$^{+}$ states in radioactive neutron-rich $^{72,74}$Zn applying the transient field (TF) technique in inverse kinematics. The result of this experiment will allow to probe the $\

  6. Statistical properties of warm nuclei: Investigating the low-energy enhancement in the $\\gamma$- strength function of neutron-rich nuclei

    CERN Multimedia

    We propose to start a program to study the $\\gamma$-ray strength function of neutron rich nuclei in inverse kinematics with radioactive beams at HIE-ISOLDE. An unexpected increase in the $\\gamma$-strength function at low energy has been observed in several stable nuclei using the Oslo method. This year these results were confirmed with a different experimental technique and model independent analysis developed by iThemba/Livermore. If this enhancement of the $\\gamma$-strength function is also present in neutron-rich nuclei, it will strongly affect the neutron capture cross sections, which are important input in stellar models of synthesis of heavier elements in stars. We propose to start with an experiment using a $^{66}$Ni beam of 5.5 MeV /u, where the data will be analyzed using both methods independently, and we are sure to get enough statistics, before moving to more neutron-rich nuclei. When/if neutron-rich Ti, Fe or Mo beams will be available at ISOLDE, we will submit additional proposals.

  7. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    CERN Document Server

    AUTHOR|(CDS)2085660; Litvinov, Yuri A.; Kreim, Susanne

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton- to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium (129−131 Cd) and caesium...

  8. Uranium extraction from high content chlorine leach liquor

    International Nuclear Information System (INIS)

    Fatemi, K.

    1998-01-01

    In this work uranium solution has been leached out by leaching process of uranium ores from Bandar-Ab bass port using sea water, since fresh water could not be available when it is processed in large scale. Two samples of different batches containing 11 and 20 gr./lit chlorine underwent two stages of precipitation by lead nitrate. As the result of this treatment the chlorine removed and its final concentration reduced to 530 p.p.m. which is well below allowances. Then, the uranium of this recent dechlorinated solu ton has been extracted by T.B.P. Uranium in organic phase was stripped out into inorganic phase by sodium carbonate and precipitated in a form of yellow cake and converted to U3o8. The total recovery of U, was well above 90% and the purity of the conc. U was better than 94%. The lead used at the beginning of the process was recovered for next use

  9. Characterization of highly enriched uranium in a nuclear forensic exercise

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Marcos R.L. do; Quinelato, Antonio L.; Silva, Nivaldo C. da, E-mail: pmarcos@cnen.gov.br [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil); Sarkis, Jorge E.S., E-mail: jesarkis@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the characterization of two metal samples of highly enriched uranium as a contribution of Pocos de Caldas Laboratory, LAPOC, a branch of Brazilian National Commission for Nuclear Energy, CNEN, to the Round Robin 3, R R3, coordinated by the Nuclear Forensics International Technical Working Group. A scenario was constructed in which two separate seizures of nuclear material occurred and forensics analysis was requested to help discern whether these incidents were related and whether these incidents exceeded country statutes. Laboratories were instructed to submit assessment reports in 24 hours, one week, and two month time frames. Besides preliminary evaluations for categorization of the material, our laboratory applied high resolution gamma spectrometry, optical emission spectrometry by inductively coupled plasma, and potentiometric titration for quantitative characterization of the samples. Concerning our technical reports answers for the three main forensics questions formulated by R R3, one of them was inconclusive, considering that LAPOC does not yet have all essential equipment for a fully satisfactory forensics nuclear analysis. (author)

  10. Characterization of highly enriched uranium in a nuclear forensic exercise

    International Nuclear Information System (INIS)

    Nascimento, Marcos R.L. do; Quinelato, Antonio L.; Silva, Nivaldo C. da; Sarkis, Jorge E.S.

    2011-01-01

    This paper presents the characterization of two metal samples of highly enriched uranium as a contribution of Pocos de Caldas Laboratory, LAPOC, a branch of Brazilian National Commission for Nuclear Energy, CNEN, to the Round Robin 3, R R3, coordinated by the Nuclear Forensics International Technical Working Group. A scenario was constructed in which two separate seizures of nuclear material occurred and forensics analysis was requested to help discern whether these incidents were related and whether these incidents exceeded country statutes. Laboratories were instructed to submit assessment reports in 24 hours, one week, and two month time frames. Besides preliminary evaluations for categorization of the material, our laboratory applied high resolution gamma spectrometry, optical emission spectrometry by inductively coupled plasma, and potentiometric titration for quantitative characterization of the samples. Concerning our technical reports answers for the three main forensics questions formulated by R R3, one of them was inconclusive, considering that LAPOC does not yet have all essential equipment for a fully satisfactory forensics nuclear analysis. (author)

  11. Release of gases from uranium metal at high temperatures

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Yadav, C.S.; Shankaran, P.S.; Chhapru, G.C.; Ramakumar, K.L.; Venugopal, V.

    2008-01-01

    Depending on the ambient environmental conditions, different gaseous species could get entrapped in uranium metal ingots or pellets. On heating, melting or vapourising uranium metal, these get released and depending on the composition, may cause detrimental effects either within the metal matrix itself or on the surrounding materials/environment. For instance, these gases may affect the performance of the uranium metal, which is used as fuel in the heavy water moderated research reactors, CIRUS and DHRUVA. Hence, detailed investigations have been carried out on the release of gases over a temperature range 875-1500 K employing hot vacuum extraction technique, in specimen uranium pellets made from uranium rods/ingots. Employing an on-line quadrupole mass spectrometer, the analysis of released gases was carried out. The isobaric interference between carbon monoxide and nitrogen at m/e = 28 in the mass spectrometric analysis has been resolved by considering their fragmentation patterns. Since no standards are available to evaluate the results, only the reproducibility is tested. The precision (relative standard deviation at 3σ level) of the method is ±5%. The minimum detectable gas content employing the method is 5.00 x 10 -09 m 3 . About 4 x 10 -04 m 3 /kg of gas is released from uranium pellets, with hydrogen as the main constituent. The gas content increases with storage in air

  12. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  13. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  14. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    International Nuclear Information System (INIS)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh

    2016-01-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO 4 . 7H 2 O concentration at 13.83 g/L and (NH 4 ) 2 SO 4 concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  15. A Very High Uranium Density Fission Mo Target Suitable for LEU Using atomization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Ryu, H. J.; Woo, Y. M.; Jang, S. J.; Park, J. M.; Choi, S. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Currently HEU minimization efforts in fission Mo production are underway in connection with the global threat reduction policy. In order to convert HEU to LEU for the fission Mo target, higher uranium density material could be applied. The uranium aluminide targets used world widely for commercial {sup 99}Mo production are limited to 3.0 g-U/cc in uranium density of the target meat. A consideration of high uranium density using the uranium metal particles dispersion plate target is taken into account. The irradiation burnup of the fission Mo target are as low as 8 at.% and the irradiation period is shorter than 7 days. Pure uranium material has higher thermal conductivity than uranium compounds or alloys. It is considered that the degradation by irradiation would be almost negligible. In this study, using the computer code of the PLATE developed by ANL the irradiation behavior was estimated. Some considerations were taken into account to improve the irradiation performance further. It has been known that some alloying elements of Si, Cr, Fe, and Mo are beneficial for reducing the swelling by grain refinement. In the RERTR program recently the interaction problem could be solved by adding a small amount of Si to the aluminum matrix phase. The fabrication process and the separation process for the proposed atomized uranium particles dispersion target were reviewed

  16. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh [NSTRI, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2016-08-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO{sub 4} . 7H{sub 2}O concentration at 13.83 g/L and (NH{sub 4}){sub 2}SO{sub 4} concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  17. PHASE ANALYSES OF URANIUM BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    International Nuclear Information System (INIS)

    Ren, M.; Goodell, P.; Kelts, A.; Anthony, E.Y.; Fayek, M.; Fan, C.; Beshears, C.

    2005-01-01

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions

  18. A system for the synthesis of uranium hexafluoride by high pressure fluorination of uranium oxides

    International Nuclear Information System (INIS)

    Elizalde T, J.; Saniger B, J.M.; Nava S, R.

    1986-01-01

    An equipment for the synthesis of uranium hexafluoride by a direct fluorination method is reported. The equipment is composed by a gaseous fluorine supply, a gas burette, a reactor tube inside a protective shield, a soda-lime chemical trap and a vacuum system. The fluorination is accomplished at a pressure of about 70 kg/cm 2 (1000 lb in 2 ), using gaseous fluorine. (Author). 5 refs, 4 figs, 2 tabs

  19. Mining the high grade McArthur River uranium deposit

    International Nuclear Information System (INIS)

    Jamieson, B.W.

    2002-01-01

    The McArthur River deposit, discovered in 1988, is recognized as the world's largest, highest grade uranium deposit, with current mineable reserves containing 255 million lb U 3 O 8 at an average grade of 17.33% U 3 O 8 . In addition the project has resources of 228 million pounds U 3 O 8 averaging 12.02% U 3 O 8 . Mining this high-grade ore body presents serious challenges in controlling radiation and in dealing with high water pressures. Experience from the underground exploration programme has provided the information needed to plan the safe mining of the massive Pelite ore zone, which represents the most significant source of ore discovered during the underground drilling programme, with 220 million pounds of U 3 O 8 at an average grade in excess of 17%. Non-entry mining will be used in the high-grade ore zones. Raise boring will be the primary method to safely extract the ore, with all underground development in waste rock to provide radiation shielding. Water will be controlled by grouting and perimeter freezing. The ore cuttings from the raise boring will be ground underground and pumped to surface as slurry, at an average daily production of 150 tonnes. The slurry will be transported to the Key Lake mill and diluted to 4% before processing. The annual production is projected to be 18 million lb U 3 O 8 . The paper focuses on the activities undertaken since discovery, including the initiation of the raise bore mining method utilized to safely mine this high grade ore body. Radiation protection, environmental protection and worker health and safety are discussed in terms of both design and practical implementation. (author)

  20. Uranium, thorium and bismuth photofission cross sections at high energies

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1973-01-01

    The U 238 , Th 232 and Bi 209 photofission using nuclear emulsion technique for fission fragments detection is presented. The photofission cross sections were measured using Bremsstrahlung photon which were produced irradiating thin tungsten radiators with electrons accelerated at the energy range from 1,0 to 5,5 GeV in the ''Deutsches Elektronen Synchrotron'' (Hamburg), and aluminium radiator with electrons accelarated at 16,0 GeV in Stanford Linear Accelerator Center. A special revelation technique for nuclear emulsion pellicles loaded with uranium and thorium, allowed the discrimination between alpha particles tracks and fission fragments tracks. The results show a decrease in the cross sections, which is in good agreement, within experimental errors, with the conclusions of other authors. The estimations from the two-step mechanism for high energy nuclear reactions (intranuclear cascade followed by fission-evaporation competition) show that, the primary interaction according to the photomesonic model and the quasi-deuteron photon interaction are sufficient to explain the general behavior exhibited by photofission cross sections for investigated nuclei. The calculations show a resonant structure around 300 MeV, with a width at half maximum of 200 MeV, and another not so pronounced, near to 700 MeV. (Author) [pt

  1. Postirradiation examination of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Strain, R.V.

    1998-01-01

    Two irradiation test vehicles, designated RERTR-2, were inserted into the Advanced Test reactor in Idaho in August 1997. These tests were designed to obtain irradiation performance information on a variety of potential new, high-density uranium alloy dispersion fuels, including U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru and U-10Mo-0.05Sn: the intermetallic compounds U 2 Mo and U-10Mo-0.-5Sn; the intermetallic compounds U 2 Mo and U 3 Si 2 were also included in the fuel test matrix. These fuels are included in the experiments as microplates (76 mm x 22 mm x 1.3mm outer dimensions) with a nominal fuel volume loading of 25% and irradiated at relatively low temperature (∼100 deg C). RERTR-1 and RERTR-2 were discharged from the reactor in November 1997 and July 1998, respectively at calculated peak fuel burnups of 45 and 71 at %-U 235 Both experiments are currently under examination at the Alpha Gamma Hot Cell Facility at Argonne National Laboratory in Chicago. This paper presents the postirradiation examination results available to date from these experiments. (author)

  2. First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide

    Science.gov (United States)

    Geng, Hua Y.; Song, Hong X.; Jin, K.; Xiang, S. K.; Wu, Q.

    2011-11-01

    Formation Gibbs free energy of point defects and oxygen clusters in uranium dioxide at high-pressure high-temperature conditions are calculated from first principles, using the LSDA+U approach for the electronic structure and the Debye model for the lattice vibrations. The phonon contribution on Frenkel pairs is found to be notable, whereas it is negligible for the Schottky defect. Hydrostatic compression changes the formation energies drastically, making defect concentrations depend more sensitively on pressure. Calculations show that, if no oxygen clusters are considered, uranium vacancy becomes predominant in overstoichiometric UO2 with the aid of the contribution from lattice vibrations, while compression favors oxygen defects and suppresses uranium vacancy greatly. At ambient pressure, however, the experimental observation of predominant oxygen defects in this regime can be reproduced only in a form of cuboctahedral clusters, underlining the importance of defect clustering in UO2+x. Making use of the point defect model, an equation of state for nonstoichiometric oxides is established, which is then applied to describe the shock Hugoniot of UO2+x. Furthermore, the oxidization and compression behavior of uranium monoxide, triuranium octoxide, uranium trioxide, and a series of defective UO2 at 0 K are investigated. The evolution of mechanical properties and electronic structures with an increase of the oxidation degree are analyzed, revealing the transition of the ground state of uranium oxides from metallic to Mott insulator and then to charge-transfer insulator due to the interplay of strongly correlated effects of 5f orbitals and the shift of electrons from uranium to oxygen atoms.

  3. The design on high slope stabilization in waste rock sites of uranium mines

    International Nuclear Information System (INIS)

    Liu Taoan; Zhou Xinghuo; Liu Jia

    2005-01-01

    Design methods, reinforcement measures, and flood control measures concerning high slope stabilization in harnessing waste rock site are described in brief according to some examples of two uranium mines in Hunan province. (authors)

  4. A confirmatory measurement technique for highly enriched uranium

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.

    1987-07-01

    This report describes a confirmatory measurement technique for measuring uranium items in their shipping containers. The measurement consists of a weight verification and the detection of three gamma rays. The weight can be determined very precisely, thus it severely constrains the options of the diverter who might want to imitate the gamma signal with a bogus item. The 185.7-keV gamma ray originates from 235 U, the 1001 keV originates from a daughter of 238 U, and the 2614 keV originates from a daughter of 232 U. These three gamma rays exhibit widely different attenuation properties, they correlate with enrichment and total uranium mass, and they rigorously discriminate against a likely diversion scenario (low-enriched uranium substitution). These four measured quantities, when combined, provide a signature that is very difficult to counterfeit

  5. Highly dispersive ion exchangers in the analytical chemistry of uranium, particularly regarding separation methods

    International Nuclear Information System (INIS)

    Schoening, R.

    1975-01-01

    The reaction of water-insoluble polyvinyl pyrrolidon with uranium VI was investigated and a determination method for uranium was worked out in which the polyvinyl pyrrolidon was used as specific exchanger. Good separations of uranium from numerous transition metal ions were achieved here. The application of this exchanger for a fast and simple elution and determination method was of particular importance. A possible sorption mechanism was suggested based on the capacity curve of uranium with polyvinyl pyrrolidon and nitrogen and chloride content at maximum load. The sorption occurs by coordination of the carbonyl oxygen of single pyrrolidon rings with the protons of the complex acides and uranium. This assumption is supported by IR investigations. The sorbability of other inorganic acids was also investigated and possible structures were formulated for the sorption mechanism. In addition to this, ion exchangers were prepared based on cellulose by converting cellulose powder with aziridine and tris-1-aziridinyl-phosphine oxide. A polyethylene imine cellulose of high capacity was obtained in the conversion of cellulose powder with aziridine. This exchanger absorbs cobalt III very strongly. The exchanger loaded with cobalt III was used to separate the uranium as cyanato complex. The exchanger obtained in converting chlorated cellulose with tris-1-aziridinyl phosphine oxide also absorbs uranium VI very strongly. Thus a separation method of high specifity and selectivity was developed. (orig.) [de

  6. Sintering of uranium oxide of high specific surface area

    International Nuclear Information System (INIS)

    Bel, Alain; Francois, Bernard; Delmas, Roger; Caillat, Roger

    1959-01-01

    The extent to which a uranium oxide powder deriving from ammonium uranate or uranium peroxide lends itself to the sintering process depends largely on its specific surface area. When this is greater than 5 m 2 / g there is an optimum temperature for sintering in hydrogen. This temperature becomes less as the specific area of the powder is greater. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 1045-1047, sitting of 21 September 1959 [fr

  7. Product Stewardship in Uranium: A Way for the Industry to Demonstrate its High Performance

    International Nuclear Information System (INIS)

    Harris, Frank

    2014-01-01

    Conclusions: • Product stewardship is an means for communicating the high performance on health, safety and environment of the nuclear fuel cycle including uranium mining. • It has been effective with other products and is appropriate for uranium. • Can be a vehicle for addressing public concerns across the industry. • Due to uranium’s unique characteristics it has the potential to be a best practice example of product stewardship. • Work is underway in the international arena to progress uranium product stewardship and it represent a unique opportunity to provide whole of industry benefits

  8. Unallocated Off-Specification Highly Enriched Uranium: Recommendations for Disposition

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, D. N.; Boeke, S. G.; Tousley, D. R.; Bickford, W.; Goergen, C.; Williams, W.; Hassler, M.; Nelson, T.; Keck, R.; Arbital, J.

    2002-02-27

    The U.S. Department of Energy (DOE) has made significant progress with regard to disposition planning for 174 metric tons (MTU) of surplus Highly Enriched Uranium (HEU). Approximately 55 MTU of this 174 MTU are ''offspec'' HEU. (''Off-spec'' signifies that the isotopic or chemical content of the material does not meet the American Society for Testing and Materials standards for commercial nuclear reactor fuel.) Approximately 33 of the 55 MTU have been allocated to off-spec commercial reactor fuel per an Interagency Agreement between DOE and the Tennessee Valley Authority (1). To determine disposition plans for the remaining {approx}22 MTU, the DOE National Nuclear Security Administration (NNSA) Office of Fissile Materials Disposition (OFMD) and the DOE Office of Environmental Management (EM) co-sponsored this technical study. This paper represents a synopsis of the formal technical report (NNSA/NN-0014). The {approx} 22 MTU of off-spec HEU inventory in this study were divided into two main groupings: one grouping with plutonium (Pu) contamination and one grouping without plutonium. This study identified and evaluated 26 potential paths for the disposition of this HEU using proven decision analysis tools. This selection process resulted in recommended and alternative disposition paths for each group of HEU. The evaluation and selection of these paths considered criteria such as technical maturity, programmatic issues, cost, schedule, and environment, safety and health compliance. The primary recommendations from the analysis are comprised of 7 different disposition paths. The study recommendations will serve as a technical basis for subsequent programmatic decisions as disposition of this HEU moves into the implementation phase.

  9. The structure of neutron-rich nuclei explored via in-beam gamma-ray spectroscopy of fast beams

    International Nuclear Information System (INIS)

    Glasmacher, T.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Hansen, P.G.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Bazin, D.; Enders, J.; Gade, A.; Hu, Z.; Mueller, W.F.

    2003-01-01

    In-beam gamma-ray spectroscopy with fast exotic beams provides an efficient tool to study bound states in exotic neutron-rich nuclei. Specialized experimental techniques have been developed and explore different aspects of nuclear structure. Inelastic scattering experiments with γ-ray detection can measure the response of exotic nuclei to electromagnetic (Coulomb excitation with a heavy target) or hadronic probes (proton scattering with hydrogen target). In-beam fragmentation populates higher-lying bound states to establish levels. Single- and two-nucleon knockout reactions allow for detailed wavefunction spectroscopy of individual levels and for the measurement of spectroscopic factors. Experimental programs employing these techniques are now underway at all projectile-fragmentation facilities around the world. Here we report on several successful in-beam gamma-ray spectroscopy experiments that have been performed at the Coupled Cyclotron Facility at Michigan State University with an emphasis on elucidating the evolution of nuclear structure around neutron numbers N=16, N=20, and N=28 in the π(sd) shell. (orig.)

  10. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided; if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly

  11. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided: if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly. (author)

  12. Highly enriched uranium, a dangerous substance that should be eliminated

    Energy Technology Data Exchange (ETDEWEB)

    Schaper, Annette

    2013-07-01

    Either highly enriched uranium (HEU) or plutonium is needed to construct a nuclear weapon. While plutonium is radioactive and hazardous in handling, HEU is far less dangerous. Furthermore, it is more difficult to detect by technical means. Therefore, in comparison to plutonium, HEU is much easier to divert, smuggle and hide. Moreover, a crude nuclear explosive made of HEU can be constructed in a much simpler way than one made using plutonium. For these reasons, HEU is the material most wanted by terrorists. A few tens of kilograms are sufficient for one explosive, but the quantities existing in the world add up to hundreds of tons. Due to the disarmament at the end of the Cold War, the NPT nuclear weapon states possess large quantities of HEU in excess of their needs for nuclear weapons. Therefore, these countries have not produced HEU for many years. Several international projects are working towards reducing the proliferation risks posed by HEU. The projects include the reduction of existing HEU by converting it to civilian reactor fuel that cannot be easily used for nuclear weapons. Other projects work towards reducing the number of countries and sites where HEU is stored by transferring it back to the countries of origin. And there are yet other projects which seek to minimize uses which would require new production of HEU. An international non-proliferation goal should be to eliminate all uses of HEU and thus to eliminate the need for any future production. Uses of HEU other than for nuclear weapons are as fuel in civilian research reactors, as base material for the production of special isotopes used in medical diagnostics, so-called medical targets and as fuel in military naval reactors. It is desirable to replace the HEU in all these applications with other materials and thus cease all HEU production forever. Use as fuel in civilian reactors has been greatly reduced during the last few decades. Within an international campaign, the Reduced Enrichment for

  13. Highly enriched uranium, a dangerous substance that should be eliminated

    International Nuclear Information System (INIS)

    Schaper, Annette

    2013-01-01

    Either highly enriched uranium (HEU) or plutonium is needed to construct a nuclear weapon. While plutonium is radioactive and hazardous in handling, HEU is far less dangerous. Furthermore, it is more difficult to detect by technical means. Therefore, in comparison to plutonium, HEU is much easier to divert, smuggle and hide. Moreover, a crude nuclear explosive made of HEU can be constructed in a much simpler way than one made using plutonium. For these reasons, HEU is the material most wanted by terrorists. A few tens of kilograms are sufficient for one explosive, but the quantities existing in the world add up to hundreds of tons. Due to the disarmament at the end of the Cold War, the NPT nuclear weapon states possess large quantities of HEU in excess of their needs for nuclear weapons. Therefore, these countries have not produced HEU for many years. Several international projects are working towards reducing the proliferation risks posed by HEU. The projects include the reduction of existing HEU by converting it to civilian reactor fuel that cannot be easily used for nuclear weapons. Other projects work towards reducing the number of countries and sites where HEU is stored by transferring it back to the countries of origin. And there are yet other projects which seek to minimize uses which would require new production of HEU. An international non-proliferation goal should be to eliminate all uses of HEU and thus to eliminate the need for any future production. Uses of HEU other than for nuclear weapons are as fuel in civilian research reactors, as base material for the production of special isotopes used in medical diagnostics, so-called medical targets and as fuel in military naval reactors. It is desirable to replace the HEU in all these applications with other materials and thus cease all HEU production forever. Use as fuel in civilian reactors has been greatly reduced during the last few decades. Within an international campaign, the Reduced Enrichment for

  14. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    OpenAIRE

    Pešić Milan P.; Šotić Obrad; Hopwood William H.Jr

    2002-01-01

    This paper presents the relevant data related to the recent shipment (August 2002) of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR) Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  15. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  16. D. C. electric field behavior of high lying states in atomic uranium

    International Nuclear Information System (INIS)

    Paisner, J.A.; Carlson, L.R.; Worden, E.F.; Johnson, S.A.; May, C.A.; Solarz, R.W.

    1976-01-01

    The effects of D. C. electric fields on high lying Rydberg and valence states in atomic uranium have been studied. Results of measurements of Stark shifts, lifetime lengthening via l-mixing, critical fields for ionization, barrier tunneling, and the appearance of zero-field parity forbidden transitions are presented for atomic uranium along with the observation of field induced autoionization of valence states. 3 figs

  17. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G.

    2013-01-01

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles

  18. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles.

  19. Beta decay of twelve light neutron-rich isotopes from 17C to 40S

    International Nuclear Information System (INIS)

    Dufour, J.P.; Del Moral, R.; Fleury, A.; Hubert, F.; Jean, D.; Pravikoff, M.S.; Geissel, H.; Schmidt, K.H.

    1986-07-01

    The results reported here have been obtained with an 40 Argon beam on a Be target. The separated nuclei were implanted in a catcher foil placed in between a thin scintillator detecting the betas and a high volume Ge detector; only gammas in coincidence with betas were recorded. Results for the gamma energies and the half-lives of the observed isotopes are given

  20. New neutron-rich isotopes in the scandium-to-nickel region, produced by fragmentation of a 500 MeV/u 86Kr beam

    International Nuclear Information System (INIS)

    Weber, M.; Geissel, H.; Keller, H.; Magel, A.; Muenzenberg, G.; Nickel, F.; Pfuetzner, M.; Piechaczek, A.; Roeckl, E.; Rykaczewski, K.; Schall, I.; Suemmerer, K.; Donzaud, C.; Guillemaud-Mueller, D.; Mueller, A.C.; Stephan, C.; Tassan-Got, L.; Dufour, J.P.; Pravikoff, M.; Grewe, A.; Voss, B.; Vieira, D.J.

    1991-10-01

    We have measured production cross-sections of the new neutron-rich isotopes 58 Ti, 61 V, 63 Cr, 66 Mn, 69 Fe, 71 Co and neighbouring isotopes that have been identified as projectile fragments from reactions between a 500 MeV/u 86 Kr beam and a beryllium target. The isotope identification was performed with the zero-degree magnetic spectrometer FRS at GSI, using in addition time-of-flight and energy-loss mesurements. The experimental production cross-sections for the new nuclides and neighbouring isotopes are compared with an empirical parameterization. The resulting prospects for reaching even more neutron-rich isotopes, such as the doubly-magic nuclide 78 Ni, are discussed. (orig.)

  1. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Luo, Y. X. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, S. H. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and UNRIB/Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Rasmussen, J. O.; Lee, I. Y. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stone, N. J. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Daniel, A. V. [Flerov Laboratory of Nuclear Reactions, JINR, Dubna (Russian Federation); Zhu, S. J. [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  2. Neutron-rich rare isotope production from projectile fission of heavy beams in the energy range of 20 MeV/nucleon

    OpenAIRE

    Vonta, N.; Souliotis, G. A.; Loveland, W. D.; Kwon, Y. K.; Tshoo, K.; Jeong, S. C.; Veselsky, M.; Bonasera, A.; Botvina, A.

    2016-01-01

    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Tr...

  3. Mass-measurements far from stability of neutron rich light nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Gregoire, C.; Schutz, Y.

    1987-07-01

    The study of nuclei far from stability is a verification of nuclear models that generally have been established using the properties of stable nuclei. The direct measurement of the mass has considerable advantages for nuclei very far from stability. This implies a high resolution measurement device, reasonable production rates of the nuclei of interest, and very low systematic errors. This is discussed here. Some of the results have been published recently. They are compared to different classes of models. Region presented is Z=9-15 region

  4. β Decay processes of neutron-rich isotopes of sodium and magnesium

    International Nuclear Information System (INIS)

    Guillemaud, D.

    1982-01-01

    The γ and n activities from the β decay of Na isotopes up to 34 Na, which are formed in high-energy fragmentation and analysed through mass-spectrometry techniques, are observed as well as those from their Mg descendants. Their intensities Isub(γ) and Isub(β) are measured; some radioactive half lives are determined. Delayed-neutron branching ratios Pn are measured. The existence of 35 Na is for the first time indicated. The position of the first excited 2 + level is taken as an indication of a stronger deformation for that isotope [fr

  5. Phenomenological study of nuclear structure of neutron-rich 88Rb isotope

    Science.gov (United States)

    Gupta, Surbhi; Gupta, Anuradha; Bharti, Arun

    2018-05-01

    A theoretical study of the nuclear structure of odd-odd 88Rb nucleus in the A ˜100 mass region is carried out by using the angular-momentum-projection technique implemented in the Projected Shell Model (PSM). The influence of the high-j orbitals, h11/2 for neutrons and g9/2 for protons on the structure of 88Rb isotope is investigated in the present case by assuming an axial symmetry in the deformed basis. For this isotope, PSM calculations are performed to obtain the yrast line and also the description of the formation of the yrast level structure from multi-quasi-particle configurations. The back-bending in moment of inertia and transition energies have also been calculated and compared with the experimental data.

  6. Radiochemical search for neutron-rich isotopes of nielsbohrium in the (16)O + (254)Es reaction

    International Nuclear Information System (INIS)

    Schaedel, M.; Jaeger, E.; Bruechle, W.; Suemmerer, K.; Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Dougan, R.J.; Moody, K.J.

    1994-09-01

    We have used on-line gas chromatography to search for new isotopes of element 107 near the deformed sub-shell at N = 162 and Z = 108. Enhanced nuclear stability is predicted for this region. 254g Es was irradiated with 16 O at barrier energies to minimize the fusion hindrance in the entrance channel and to reduce the excitation energy of the compound nucleus to a minimum value. For half-lives between roughly two seconds and two minutes no signal for a positive identification of a new isotope of element 107 was detected. Consequently, only an upper cross-section limit of a few nanobarns was obtained. While this cross-section limit was too high to probe the influence of the predicted enhanced nuclear ground-state stability on the survival probability in the fission/evaporation competition, a very large cross-section enhancement would have been detectable. (orig.)

  7. Electromagnetic properties of neutron-rich nuclei adjacent to the Z=50 shell closure

    Directory of Open Access Journals (Sweden)

    M. Rejmund

    2016-02-01

    Full Text Available Low-lying high-spin yrast states in the exotic odd–odd isotopes 124–128Sb (Z=51 and 118–128In (Z=49, studied for the first time, show a striking difference in their observed γ-ray decay. With a single valence proton particle/hole occupying the g7/2/g9/2 spin-orbit partners, dominant electric quadrupole transitions occur in Sb as opposed to magnetic dipole transitions in In. The observed properties are explained on the basis of general principles of symmetry and with large-scale shell-model calculations, and reveal novel aspects of the competition between the neutron–proton interaction and the like-nucleon pairing interaction.

  8. High-Uranium-Loaded U3O8-Al fuel element development program. Part 1

    International Nuclear Information System (INIS)

    Martin, M.M.

    1993-01-01

    The High-Uranium-Loaded U 3 O 8 -Al Fuel Element Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages. The specific objective of the program is to develop the technological and engineering data base for U 3 O 8 -Al plate-type fuel elements of maximal uranium content to the point of vendor qualification for full scale fabrication on a production basis. A program and management plan that details the organization, supporting objectives, schedule, and budget is in place and preparation for fuel and irradiation studies is under way. The current programming envisions a program of about four years duration for an estimated cost of about two million dollars. During the decades of the fifties and sixties, developments at Oak Ridge National Laboratory led to the use of U 3 O 8 -Al plate-type fuel elements in the High Flux Isotope Reactor, Oak Ridge Research Reactor, Puerto Rico Nuclear Center Reactor, and the High Flux Beam Reactor. Most of the developmental information however applies only up to a uranium concentration of about 55 wt % (about 35 vol % U 3 O 8 ). The technical issues that must be addressed to further increase the uranium loading beyond 55 wt % U involve plate fabrication phenomena of voids and dogboning, fuel behavior under long irradiation, and potential for the thermite reaction between U 3 O 8 and aluminum

  9. Coulomb excitation of $^{94,96}$Kr beam Deformation in the neutron-rich krypton isotopes

    CERN Multimedia

    Hass, M; Cederkall, J A; Di julio, D D; Zamfir, N - V; Srebrny, J; Wadsworth, R; Siem, S; Marginean, R; Iwanicki, J S

    Recently the energy of the 2$_{1}^{+}$ state in the N=60 $^{96}$Kr nucleus was determinated to be 241 keV. This was the first experimental observation of an excited state in this highly exotic nucleus. The 2$_{1}^{+}$ state in $^{94}$Kr is located at 665.5 keV, i.e. E(2$_{1}^{+}$) drops by more than 400 keV at N=60. This lowering of the 2$_{1}^{+}$ energy indicates a sharp shape transition behavior which is somewhat similar to that discovered in the Sr and Zr isotopic chains at N=60. The deformation expected for the 2$_{1}^{+}$ state of $^{96}$Kr, as resulting from the E(2$_{1}^{+}$) energy based on the semi-empirical relation of Raman et al. is $\\beta_{2}$ = 0.31, which is, however, considerably smaller than that for Sr and Zr ($\\geq$0.40). The sudden decrease of E(2$_{1}^{+}$) from N=50 to N=60 does not fully agree with the more gradual change of deformation deduced from laser spectroscopy measurements of mean square charge radii, although for $^{96}$Kr, in particular, these are consistent with a $\\beta_{2}...

  10. Measurement of beta decay periods for Fe-Ni neutrons rich isotopes

    International Nuclear Information System (INIS)

    Czajkowski, S.

    1992-01-01

    Thermal fission of 239 Pu was used to produce 68,69 Co and 68 Fe isotopes, the lightest ones ever observed in thermal fission, at the ILL high-flux reactor, in Grenoble. Separated with the Lohengrin recoil spectrometer, then identified by means of a Δ E-E ionization chamber, fragments were implanted in a set of Si-detectors, where β-particles were detected too. The fission yields were determined, and the beta-decay half-lives were extracted from delayed coincidence analysis between ion implantation and the subsequent beta detection: They were found to be 0.27±0.05s, 0.18±0.10s, and 0.10±0.06s respectively for 69 Co, 68 Co, and 68 Fe. This method was adapted to a new experimental configuration: 65 Fe isotopes were produced from 86 Kr projectile fragmentation at 500 MeV/u on a Be target. Selected ions were separated with the fragment separator FRS at GSI (Darmstadt), tuned in the monoenergetic mode. Fragments were identified by ΔE-ToF, slowed down, and then implanted in two rows of PIN-diodes that provided an additional range selection. The half-life were determined from the analysis of the decay chain Fe-Co-Ni: it was found 0.4±0.2s. Production rates obtained with the two methods are compared at the end of this work

  11. Triaxial shapes in the ground states of even-even neutron-rich Ru isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Partial level schemes for {sup 108,110,112}Ru, and {sup 114}Ru about which nothing was previously known, were determined from the measurement of prompt, triple-gamma coincidences in {sup 248}Cm fission fragments. A 5-mg {sup 249}Cm source, mixed with 65-mg KCl and pressed in the form of a 7-mm diameter pellet, was used for the experiment. Prompt {gamma} rays emitted from the fission fragments were detected with the Eurogam array at Daresbury, which at that time consisted of 45 Compton suppressed Ge detectors and 5 LEPS spectrometers. Transitions in Ru were identified by gating on {gamma} rays in the complementary Te fragments. Figure I-25 shows the technique used to identify the previously unknown transitions in {sup 114}Ru and its partial level scheme. High spin states up to spin 10 h were observed and the {gamma}-ray branching ratios were determined. The ratios of electric quadrupole transition probabilities deduced from the experimental branching ratios were found to be in good agreement with the predictions of a simple model of rigid triaxial rotor. Our analysis shows that gamma deformation in Ru isotopes is increasing with the neutron number and the gamma value for {sup 112}Ru and {sup 114}Ru is {approximately} 25 degrees. This is one of the highest gamma values encountered in nuclei, suggesting soft triaxial shapes for {sup 112}Ru and {sup 114}Ru. The results of this investigation were published.

  12. Laser Spectroscopy Study on the Neutron-Rich and Neutron-Deficient Te Isotopes

    CERN Multimedia

    2002-01-01

    We propose to perform laser spectroscopy measurements on the Te isotopes. This will give access to fundamental properties of the ground and rather long-lived isomeric states such as the change in the mean square charge radius ($\\delta\\langle$r$^2_c\\rangle$) and the nuclear moments. For these medium-mass isotopes, at this moment the optical resolution obtained with RILIS is not high enough to perform isotope shift measurements. Thus we will use the COMPLIS experimental setup which allows Resonant Ionization Spectroscopy (RIS) on laser desorbed atoms. The 5p$^{4}$ $^{3}$P$_{2} \\rightarrow$ 5p$^{3}$ 6s $^{3}$S$_{1}$ and 5p$^{4}$ $^{3}$P$_{2} \\rightarrow$ 5p$^{3}$ 6s $^{5}$S$_{2}$ optical transitions have been used to perform, on the stable Te isotopes, the tests required by the INTC committee. For this purpose stable-ion sources have been built and Te isotopes have been delivered as stable beams by the injector coupled to the COMPLIS setup. ISOLDE offers the opportunity for studying the Te isotope series over a ...

  13. Response of plants to high concentrations of uranium stress and the screening of remediation plants

    International Nuclear Information System (INIS)

    Tang Yongjin; Luo Xuegang; Zeng Feng; Jiang Shijie

    2013-01-01

    Studies of the resistance and accumulation ability of different plant species to uranium (U) has important influence on the bioremediation of U contaminated soil. The resistance and enrichment ability of high concentrations of U (500 mg · kg"-"1 soil) in fourteen plant species were investigated and evaluated in this study in order to screen remediation plants for governance soil U contamination. The results showed that: (1) high concentrations of U stress had different effects on the emergence and survival of the different plants. The seed emergence of Hibiscus esculentus was reduced by 2/3, but the seed emergence of Gynura cusimbua (D. Don) S. Moore, Chenopodium album L. and Phaseolus vulgaris var. humilis Alef were not reduced. Under the contaminated soil, all the sesamum indicum died within a month after the emergence and the survival number of Amaranth and Iresine herbstii 'Aureo-reticulata' reduced by about 80%. But the survival number of Alternanthera philoxeroides (Mart.) Griseb., Chenopodium album L. and Phaseolus vulgaris var. humilis Alef were not influenced. (2) The biomass of the plants would be reduced by 8-99% in the uranium-contaminated soil. The anti-stress ability of Phaseolus vulgaris var. humilis Alef was the strongest in the fourteen plants, and Cucurbita pepo L., Sorghumbicolor (L.) Moench, Ipomoea aquatica Forsk, Helianthus annuus, Chenopodium album L. and Alternanthera philoxeroides (Mart.) Griseb. showed some the anti-stress ability. (3) Significant differences were found in the capacity of plants to absorb uranium between under high-uranium contaminated soil and under the non-uranium contaminated soil were. The plants with higher uranium content in thenon-contaminated soil were Gomphrena globosa, and Cucurbita pepo L., which were 2.249 mg · kg"-"1 DW and 1.620 mg · kg"-"1 DW, respectively. But the plants with higher uranium content in the high uranium contaminated soil were Cichorium intybus L., Amaranth and Ipomoea aquatica Forsk, which

  14. The Pajarito Monitor: a high-sensitivity monitoring system for highly enriched uranium

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.; Garcia, C.; Martinez, J.

    1984-01-01

    The Pajarito Monitor for Special Nuclear Material is a high-sensitivity gamma-ray monitoring system for detecting small quantities of highly enriched uranium transported by pedestrians or motor vehicles. The monitor consists of two components: a walk-through personnel monitor and a vehicle monitor. The personnel monitor has a plastic-scintillator detector portal, a microwave occupancy monitor, and a microprocessor control unit that measures the radiation intensity during background and monitoring periods to detect transient diversion signals. The vehicle monitor examines stationary motor vehicles while the vehicle's occupants pass through the personnel portal to exchange their badges. The vehicle monitor has four groups of large plastic scintillators that scan the vehicle from above and below. Its microprocessor control unit measures separate radiation intensities in each detector group. Vehicle occupancy is sensed by a highway traffic detection system. Each monitor's controller is responsible for detecting diversion as well as serving as a calibration and trouble-shooting aid. Diversion signals are detected by a sequential probability ratio hypothesis test that minimizes the monitoring time in the vehicle monitor and adapts itself well to variations in individual passage speed in the personnel monitor. Designed to be highly sensitive to diverted enriched uranium, the monitoring system also exhibits exceptional sensitivity for plutonium

  15. Emission characteristics of uranium hexafluoride at high temperatures

    International Nuclear Information System (INIS)

    Krascella, N.L.

    1976-01-01

    An experimental study was conducted to ascertain the spectral characteristics of uranium hexafluoride (UF 6 ) and possible UF 6 thermal decomposition products as a function of temperature and pressure. Relative emission measurements were made for UF 6 /Argon mixtures heated in a plasma torch over a range of temperatures from 800 to about 3600 0 K over a wavelength range from 80 to 600 nm. Total pressures were varied from 1 to approximately 1.7 atm. Similarly absorption measurements were carried out in the visible region from 420 to 580 nm over a temperature range from about 1000 to 1800 0 K. Total pressure for these measurements was 1.0 atm

  16. Metallurgical structures in a high uranium-silicon alloy

    International Nuclear Information System (INIS)

    Wyatt, B.S.; Berthiaume, L.C.; Conversi, J.L.

    1968-10-01

    The effects of fabrication and heat treatment variables on the structure of a uranium -- 3.96 wt% silicon alloy have been studied using optical microscopy, quantitative metallography and hardness determinations. It has been shown that an optimum temperature exists below the peritectoid temperature where the maximum amount of transformation to U 3 Si occurs in a given period of time. The time required to fully transform an as-cast alloy at this optimum temperature is affected by the size of the primary U 3 Si 2 dendrites. With a U 3 Si 2 particle size of <12 μm complete transformation can be achieved in four hours. (author)

  17. Conversion of the University of Missouri-Rolla Reactor from high-enriched uranium to low-enriched uranium fuel

    International Nuclear Information System (INIS)

    Bolon, A.E.; Straka, M.; Freeman, D.W.

    1997-01-01

    The objectives of this project were to convert the UMR Reactor fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel and to ship the HEU fuel back to the Department of Energy Savannah River Site. The actual core conversion was completed in the summer of 1992. The HEU fuel was offloaded to an onsite storage pit where it remained until July, 1996. In July, 1996, the HEU fuel was shipped to the DOE Savannah River Site. The objectives of the project have been achieved. DOE provided the following funding for the project. Several papers were published regarding the conversion project and are listed in the Attachment. In retrospect, the conversion project required much more time and effort than originally thought. Several difficulties were encountered including the unavailability of a shipping cask for several years. The authors are grateful for the generous funding provided by DOE for this project but wish to point out that much of their efforts on the conversion project went unfunded

  18. A Highly Expressed High-Molecular-Weight S-Layer Complex of Pelosinus sp. Strain UFO1 Binds Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Thorgersen, Michael P. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Lancaster, W. Andrew [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Rajeev, Lara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Ge, Xiaoxuan [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Vaccaro, Brian J. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Poole, Farris L. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Arkin, Adam P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Mukhopadhyay, Aindrila [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Adams, Michael W. W. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology

    2016-12-02

    Cell suspensions of Pelosinus sp. strain UFO1 were previously shown, using spectroscopic analysis, to sequester uranium as U(IV) complexed with carboxyl and phosphoryl group ligands on proteins. The goal of our present study was to characterize the proteins involved in uranium binding. Virtually all of the uranium in UFO1 cells was associated with a heterodimeric protein, which was termed the uranium-binding complex (UBC). The UBC was composed of two S-layer domain proteins encoded by UFO1_4202 and UFO1_4203. Samples of UBC purified from the membrane fraction contained 3.3 U atoms/heterodimer, but significant amounts of phosphate were not detected. The UBC had an estimated molecular mass by gel filtration chromatography of 15 MDa, and it was proposed to contain 150 heterodimers (UFO1_4203 and UFO1_4202) and about 500 uranium atoms. The UBC was also the dominant extracellular protein, but when purified from the growth medium, it contained only 0.3 U atoms/heterodimer. The two genes encoding the UBC were among the most highly expressed genes within the UFO1 genome, and their expressions were unchanged by the presence or absence of uranium. Therefore, the UBC appears to be constitutively expressed and is the first line of defense against uranium, including by secretion into the extracellular medium. Although S-layer proteins were previously shown to bind U(VI), here we showed that U(IV) binds to S-layer proteins, we identified the proteins involved, and we quantitated the amount of uranium bound. Widespread uranium contamination from industrial sources poses hazards to human health and to the environment. Here in this paper, we identified a highly abundant uranium-binding complex (UBC) from Pelosinus sp. strain UFO1. The complex makes up the primary protein component of the S-layer of strain UFO1 and binds 3.3 atoms of U(IV) per heterodimer. Finally, while other bacteria have been shown to bind U(VI) on their S-layer, we demonstrate here an example of U(IV) bound by

  19. ZPR-3 Assembly 11: A cylindrical sssembly of highly enriched uranium and depleted uranium with an average 235U enrichment of 12 atom % and a depleted uranium reflector

    International Nuclear Information System (INIS)

    Lell, R.M.; McKnight, R.D.; Tsiboulia, A.; Rozhikhin, Y.

    2010-01-01

    Specificationsa and has historically been used as a data validation benchmark assembly. Loading of ZPR-3 Assembly 11 began in early January 1958, and the Assembly 11 program ended in late January 1958. The core consisted of highly enriched uranium (HEU) plates and depleted uranium plates loaded into stainless steel drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of two columns of 0.125 in.-wide (3.175 mm) HEU plates, six columns of 0.125 in.-wide (3.175 mm) depleted uranium plates and one column of 1.0 in.-wide (25.4 mm) depleted uranium plates. The length of each column was 10 in. (254.0 mm) in each half of the core. The axial blanket consisted of 12 in. (304.8 mm) of depleted uranium behind the core. The thickness of the depleted uranium radial blanket was approximately 14 in. (355.6 mm), and the length of the radial blanket in each half of the matrix was 22 in. (558.8 mm). The assembly geometry approximated a right circular cylinder as closely as the square matrix tubes allowed. According to the logbook and loading records for ZPR-3/11, the reference critical configuration was loading 10 which was critical on January 21, 1958. Subsequent loadings were very similar but less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/11 loading 10 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment. A very accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly, even a clean core such as ZPR-3/11 loading 10. The transformation must reduce the detail to a practical level without masking any of the important features of the critical

  20. Chapter 6. Uranium extraction possibilities from natural uranium-bearing waters of complex salt composition. 6.2. Technology for uranium extraction from brine with a high content of ion-chlorine

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Present article is devoted to technology for uranium extraction from brine with a high content of ion-chlorine. The content of basic anions and cations in lake waters of Sasik-Kul deposit was defined. Results of X-ray spectral analysis of salt residual after water evaporation from Sasik-Kul lake was discussed. Investigations revealed that uranium extraction from brines containing ion-chlorine is possible. The developed basic process flow diagram of uranium extraction from Sasik-Kul Lake' brine consists of the following basic stages: evaporation, leaching, catching of formed gases (HCl), sorption, desorption, deposition, drying and tempering.

  1. Chapter 6. Uranium extraction possibilities from natural uranium-bearing waters of complex salt composition. 6.2. Technology for uranium extraction from brine with a high content of ion-chlorine

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2011-01-01

    Present article is devoted to technology for uranium extraction from brine with a high content of ion-chlorine. The content of basic anions and cations in lake waters of Sasik-Kul deposit was defined. Results of X-ray spectral analysis of salt residual after water evaporation from Sasik-Kul lake was discussed. Investigations revealed that uranium extraction from brines containing ion-chlorine is possible. The developed basic process flow diagram of uranium extraction from Sasik-Kul Lake' brine consists of the following basic stages: evaporation, leaching, catching of formed gases (HCl), sorption, desorption, deposition, drying and tempering.

  2. Source-driven noise analysis measurements with neptunium metal reflected by high enriched uranium

    International Nuclear Information System (INIS)

    Valentine, Timothy E.; Mattingly, John K.

    2003-01-01

    Subcritical noise analysis measurements have been performed with neptunium ( 237 Np) sphere reflected by highly enriched uranium. These measurements were performed at the Los Alamos Critical Experiment Facility in December 2002 to provide an estimate of the subcriticality of 237 Np reflected by various amounts of high-enriched uranium. This paper provides a description of the measurements and presents some preliminary results of the analysis of the measurements. The measured and calculated spectral ratios differ by 15% whereas the 'interpreted' and calculated k eff values differ by approximately 1%. (author)

  3. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  4. Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Ray, Allison E.

    1998-01-01

    Uranium alloys are candidates for the fuel phase in aluminium matrix dispersion fuels requiring high uranium loading. Certain uranium alloys have been shown to have good irradiation performance at intermediate burnup. previous studies have shown that acceptable fission gas swelling behavior and fuel-aluminium interaction is possible only if the fuel alloy can be maintained in the high temperature body-centered-cubic γ-phase during fabrication and irradiation, at temperatures at which αU is the equilibrium phase. transition metals in Groups V through VIII are known to allow metastable retention of the gamma phase below the equilibrium isotherm. These metals have varying degrees of effectiveness in stabilizing the gamma phase. Certain alloys are metastable for very long times at the relatively low fuel temperatures seen in research operation. In this paper, the existing data on the gamma stability of binary and ternary uranium alloys is analysed. The mechanism and kinetics of decomposition of the gamma phase are assessed with the help of metal alloy theory. Alloys with the highest possible uranium content, good gamma-phase stability, and good neutronic performance are identified for further metallurgical studies and irradiation tests. Results from theory will be compared with experimentally generated data. (author)

  5. Biomineral processing of high apatite containing low-grade indian uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Abhilash; Mehta, K.D.; Pandey, B.D., E-mail: biometnml@gmail.com [National Metallurgical Laboratory (CSIR), Jamshedpur (India); Ray, L. [Jadavpur Univ., FTBE Dept., Kolkata (India); Tamrakar, P.K. [Uranium Corp. of India Limited, CR& D Dept., Jaduguda (India)

    2010-07-01

    Microbial species isolated from source mine water, primarily an enriched culture of Acidithiobacillus ferrooxidans was employed for bio-leaching of uranium from a low-grade apatite rich uranium ore of Narwapahar Mines, India while varying pH, pulp density (PD), particle size, etc. The ore (0.047% U{sub 3}O{sub 8}), though of Singhbhum area (richest deposit of uranium ores in India), due to presence of some refractory minerals and high apatite (5%) causes a maximum 78% recovery through conventional processing. Bioleaching experiments were carried out by varying pH at 35{sup o}C using 20%(w/v) PD and <76μm size particles resulting in 83.5% and 78% uranium bio-recovery at 1.7 and 2.0 pH in 40 days as against maximum recovery of 46% and 41% metal in control experiments respectively. Finer size (<45μm) ore fractions exhibited higher uranium dissolution (96%) in 40 days at 10% (w/v) pulp density (PD), 1.7 pH and 35{sup o}C. On increasing the pulp density from 10% to 20% under the same conditions, the biorecovery of uranium fell down from 96% to 82%. The higher uranium dissolution during bioleaching at 1.7 pH with the fine size particles (<45μm) can be correlated with increase in redox potential from 598 mV to 708 mV and the corresponding variation of Fe(III) ion concentration in 40 days. (author)

  6. Biomineral processing of high apatite containing low-grade indian uranium ore

    International Nuclear Information System (INIS)

    Abhilash; Mehta, K.D.; Pandey, B.D.; Ray, L.; Tamrakar, P.K.

    2010-01-01

    Microbial species isolated from source mine water, primarily an enriched culture of Acidithiobacillus ferrooxidans was employed for bio-leaching of uranium from a low-grade apatite rich uranium ore of Narwapahar Mines, India while varying pH, pulp density (PD), particle size, etc. The ore (0.047% U_3O_8), though of Singhbhum area (richest deposit of uranium ores in India), due to presence of some refractory minerals and high apatite (5%) causes a maximum 78% recovery through conventional processing. Bioleaching experiments were carried out by varying pH at 35"oC using 20%(w/v) PD and <76μm size particles resulting in 83.5% and 78% uranium bio-recovery at 1.7 and 2.0 pH in 40 days as against maximum recovery of 46% and 41% metal in control experiments respectively. Finer size (<45μm) ore fractions exhibited higher uranium dissolution (96%) in 40 days at 10% (w/v) pulp density (PD), 1.7 pH and 35"oC. On increasing the pulp density from 10% to 20% under the same conditions, the biorecovery of uranium fell down from 96% to 82%. The higher uranium dissolution during bioleaching at 1.7 pH with the fine size particles (<45μm) can be correlated with increase in redox potential from 598 mV to 708 mV and the corresponding variation of Fe(III) ion concentration in 40 days. (author)

  7. Replacement of highly enriched uranium by medium or low-enriched uranium in fuels for research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    To exclude the possibility of an explosive use of the uranium obtained from an elementary chemical process, one needs to use a fuel less enriched than 20 weight percent in U 235 . This goal can be reached by two ways: 1. The low density fuels, i.e. U or U 3 O 8 /Al fuels. One has to increase their U content from 1.3 g U/cm 3 presently qualified under normal operation conditions. Several manufacturers such as CERCA in France developed these fuels with a near-term objective of about 2 g U/cm 3 and a long-term objective of 3 g U/cm 3 . 2. The high density fuels. They are the UO 2 Caramel plate type fuels now under consideration, and U 3 Si and UMo as a long-term potential

  8. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    International Nuclear Information System (INIS)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-01-01

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project

  9. The discovery and character of Pleistocene calcrete uranium deposits in the Southern High Plains of west Texas, United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Hall, Susan M.

    2017-12-18

    This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.

  10. In vivo measurement of uranium in the human chest under high background conditions

    International Nuclear Information System (INIS)

    Kruger, P.J.; Feather, J.I.

    1981-08-01

    The use of a low-background counting room was considered essential for in vivo gamma counting of uranium in the human chest. When such measurements were, however, carried out under relatively high background conditions, this necessitated a new method of analysis. It was found that a linear relationship between LnN and E exists for each individual where N is the count rate per keV and E the energy in keV, for gamma energies between 90 keV and 300 keV. The displacements from this straight line at the energy values of 90 and 186 keV then represent the contribution of the uranium present. These displacements were calibrated for natural uranium. It was possible to detect contamination levels of lower than half MPLB [af

  11. Method of semi-automatic high precision potentiometric titration for characterization of uranium compounds

    International Nuclear Information System (INIS)

    Cristiano, Barbara Fernandes G.; Dias, Fabio C.; Barros, Pedro D. de; Araujo, Radier Mario S. de; Delgado, Jose Ubiratan; Silva, Jose Wanderley S. da; Lopes, Ricardo T.

    2011-01-01

    The method of high precision potentiometric titration is widely used in the certification and characterization of uranium compounds. In order to reduce the analysis and diminish the influence if the annalist, a semi-automatic version of the method was developed at the safeguards laboratory of the CNEN-RJ, Brazil. The method was applied with traceability guaranteed by use of primary standard of potassium dichromate. The standard uncertainty combined in the determination of concentration of total uranium was of the order of 0.01%, which is better related to traditionally methods used by the nuclear installations which is of the order of 0.1%

  12. Investigation of the core-halo structure of the neutron-rich nuclei {sup 6}He and {sup 8}He by intermediate-energy elastic proton scattering at high momentum transfer; Etude de la structure coeur-halo des noyaux riches en neutron {sup 6}He et {sup 8}He par la diffusion elastique de protons aux energies intermediaires etendue a la region du premier minimum de diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Aksouh, F

    2002-12-01

    The elastic proton scattering from the halo nuclei {sup 6}He and {sup 8}He was investigated in inverse kinematics at energies around 700 MeV/u with the aim to deduce the differential cross sections for the region of high momentum transfer, covering the first diffraction minimum. For this purpose, a liquid-hydrogen target was specially developed and used for the first time allowing to obtain low-background data as compared to commonly used targets made from C-H compounds. Previous data taken in the region of small momentum transfer were sensitive to the size and the peripheral shape of the total nuclear matter density distribution but not to the inner part. The present data allow for a more detailed insight in the structure of the alike core in {sup 6,8}He through a better determination of the matter density distributions. Several density distributions calculated from different microscopic models were used to derive elastic scattering cross sections which are compared with the obtained data. (author)

  13. Measurement of highly enriched uranium metal buttons with the high-level neutron coincidence counter operating in the active mode

    International Nuclear Information System (INIS)

    Foley, J.E.

    1980-10-01

    The portable High-Level Neutron Coincidence Counter is used in the active mode with the addition of AmLi neutron sources to assay the 235 U content of highly enriched metal pieces or buttons. It is concluded that the portable instrument is a practical instrument for assaying uranium metal buttons with masses in the range 1.5 to 4 kg

  14. Using depleted uranium to shield vitrified high-level waste packages

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Gildea, P.D.; Bernard, E.A.

    1995-01-01

    The underlying report for this paper evaluates options for using depleted uranium as shielding materials for transport systems for disposal of vitrified high-level waste (VHLW). In addition, economic analyses are presented to compare costs associated with these options to costs, associated with existing and proposed storage, transport, and diposal capabilities. A more detailed evaluation is provided elsewhere. (Yoshimura et al. 1995.)

  15. Preparation of uranium-plutonium mixed nitride pellets with high purity

    International Nuclear Information System (INIS)

    Arai, Yasuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko

    1992-01-01

    Uranium-plutonium mixed nitride pellets have been prepared in the gloveboxes with high purity Ar gas atmosphere. Carbothermic reduction of the oxides in N 2 -H 2 mixed gas stream was adopted for synthesizing mixed nitride. Sintering was carried out in various conditions and the effect on the pellet characteristics was investigated. (author)

  16. Schottky mass measurements of heavy neutron-rich nuclides in the element range $70\\leq Z\\leq 79$ at the ESR

    CERN Document Server

    Shubina, D; Litvinov, Yu A; Blaum, K; Brandau, C; Bosch, F; Carroll, J J; Casten, R F; Cullen, D M; Cullen, I J; Deo, A Y; Detwiler, B; Dimopoulou, C; Farinon, F; Geissel, H; Haettner, E; Heil, M; Kempley, R S; Kozhuharov, C; Knobel, R; Kurcewicz, J; Kuzminchuk, N; Litvinov, S A; Liu, Z; Mao, R; Nociforo, C; Nolden, F; Patyk, Z; Plass, W R; Prochazka, A; Reed, M W; Sanjari, M S; Scheidenberger, C; Steck, M; Stohlker, Th; Sun, B; Swan, T P D; Trees, G; Walker, P M; Weick, H; Winckler, N; Winkler, M; Woods, P J; Yamaguchi, T; Zhou, C

    2013-01-01

    Storage-ring mass spectrometry was applied to neutron-rich $^{197}$Au projectile fragments. Masses of $^{181,183}$Lu, $^{185,186}$Hf, $^{187,188}$Ta, $^{191}$W, and $^{192,193}$Re nuclei were measured for the first time. The uncertainty of previously known masses of $^{189,190}$W and $^{195}$Os nuclei was improved. Observed irregularities on the smooth two-neutron separation energies for Hf and W isotopes are linked to the collectivity phenomena in the corresponding nuclei.

  17. Transformations of highly enriched uranium into metal or oxide; Etudes des procedes de transformation des composes d'uranium a fort enrichissement isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Nollet, P; Sarrat, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  18. Use of Savannah River Site facilities for blend down of highly enriched uranium

    International Nuclear Information System (INIS)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO 3 ) powder, uranyl nitrate [UO 2 (NO 3 ) 2 ] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO 2 ) or uranium hexafluoride (UF 3 ), the normal inputs for commercial fuel fabrication. This study's scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO 2 or UF 6 , blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM)

  19. Measurement of few-electron uranium ions on a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    The high-energy electron beam ion trap, dubbed Super-EBIT, was used to produce, trap, and excite uranium ions as highly charged as fully stripped U 92+ . The production of such highly charged ions was indicated by the x-ray emission observed with high-purity Ge detectors. Moreover, high-resolution Bragg crystal spectromters were used to analyze the x-ray emission, including a detailed measurement of both the 2s 1/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole transitions. Unlike in ion accelerators, where the uranium ions move at relativistic speeds, the ions in this trap are stationary. Thus very precise measurements of the transition energies could be made, and the QED contribution to the transition energies could be measured within less than 1 %. Details of the production of these highly charged ions and their measurement is given

  20. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  1. Analysis of leachability for a sandstone uranium deposite with high acid consumption and sensitivities in Inner Mongolia

    International Nuclear Information System (INIS)

    Cheng Wei; Miao Aisheng; Li Jianhua; Zhou Lei; Chang Jingtao

    2014-01-01

    In-situ Leaching adaptability of a ground water oxidation zone type sandstone uranium deposit from Inner Mongolia is studied. The ore of the uranium deposit has high acid consumption and sensitivities in in-situ leaching. The leaching process with agent of CO_2 + O_2 and adjusting concentration of HCO_3"- can be suitable for the deposit. (authors)

  2. Assessment of undiscovered resources in calcrete uranium deposits, Southern High Plains region of Texas, New Mexico, and Oklahoma, 2017

    Science.gov (United States)

    Hall, Susan M.; Mihalasky, Mark J.; Van Gosen, Bradley S.

    2017-11-14

    The U.S. Geological Survey estimates a mean of 40 million pounds of in-place uranium oxide (U3O8) remaining as potential undiscovered resources in the Southern High Plains region of Texas, New Mexico, and Oklahoma. This estimate used a geology-based assessment method specific to calcrete uranium deposits.

  3. Uranium recovery from phosphate fertilizer in the form of a high purity compound

    International Nuclear Information System (INIS)

    Bunus, F.; Coroianu, T.; Filip, G.; Filip, D.

    2001-01-01

    Uranium recovery from phosphate fertilizer industry is based on a one cycle extraction-stripping process. The process was experimented on both sulfuric and nitric acid attack of phosphate rock when uranium is dissolved in phosphoric acid (WPA) or phosphonitric (PN) solution respectively. The WPA and PN solution must be clarified. In the first alternative by ageing and settling and in the second by settling in the presence of flocculant. The organic components must be removed on active carbon for WPA only since in the case of nitric attack calcined phosphates are used. In both alternatives uranium is extracted from aqueous acidic solutions in the same time with the rare earths (REE), by di(2-ethylhexyl) phosphate (DEPA) as basic extractants, eventually in the presence of octylphosphine oxide (TOPO) as synergic agent. The stripping process is carried out in two stages: in the first stage REE are stripped and precipitated by HF or NH 4 F + H 2 S0 4 and in the second stage uranium as U(VI) is stripped by the same reagents but in the presence of Fe(II) as reductant for U(VI) to U(IV) inextractible species. Tetravalent uranium is also precipitated as green cake either UF 4 xH 2 0 or (NH 4 ) 7 U 6 F 31 as dependent on reagents HF or NH 4 F + H 2 S0 4 . Uranium stripping is possible for PN solution only if HNO 3 partially extracted is previously washed out by a urea solution. The green cake washed and filtered is dissolved in nitric acid in presence of Al(OH)3 as complexant for F. The filtered nitric solution is adjusted to 3-5 mol/L HNO 3 and extracted by 20% TBP when uranium is transferred to the organic phase which after scrubbing is stripped in the classic way with acidulated (HN0 3 ) demineralized water. Uranium is precipitated as diuranate of high purity. Rare earths left in the aqueous raffinate are extracted by pure TBP from 8-10 mol/L HNO 3 medium. The stripping process takes place with acidulated water. Rare earths are precipitated as hydroxides. (author)

  4. Supply of low enriched (LEU) and highly enriched uranium (HEU) for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Enriched uranium for research reactors in the form of LEU /= low enriched uranium at 19.75% U-235) and HEU (= highly enriched uranium at 90 to 93% U-235) was and is - due to its high U-235 enrichment - a political fuel other than enriched uranium for power reactors. The sufficient availability of LEU and HEU is a vital question for research reactors, especially in Europe, in order to perform their peaceful research reactor programs. In the past the USA were in the Western hemisphere sole supplier of LEU and HEU. Today the USA have de facto stopped the supply of LEU and HEU, for HEU mainly due to political reasons. This paper deals, among others, with the present availability of LEU and HEU for European research reactors and touches the following topics: - historical US supplies, - influence of the RERTR-program, - characteristics of LEU and HEU, - military HEU enters the civil market, -what is the supply situation for LEU and HEU today? - outlook for safe supplies of LEU and HEU. (author)

  5. Study of the tensor correlation in a neutron-rich sd-shell region with the charge- and parity-projected Hartree-Fock method

    International Nuclear Information System (INIS)

    Sugimoto, Satoru; Toki, Hiroshi; Ikeda, Kiyomi

    2008-01-01

    We study the effect of the tensor force on nuclear structure with mean-field and beyond-mean-field methods. An important correlation induced by the tensor force is two-particle-two-hole (2p2h) correlation, which cannot be treated with a usual mean-filed method. To treat the 2p2h tensor correlation, we develop a new framework (charge- and parity-projected Hartree-Fock (CPPHF) method), which is a beyond-mean-field method. In the CPPHF method, we introduce single-particle states with parity and charge mixing. The parity and charge projections are performed on a total wave function before variation. We apply the CPPHF method to oxygen isotopes including neutron-rich ones. The potential energy from the tensor force has the same order of magnitude with that from the LS force and becomes smaller with neutron number, which indicates that excess neutrons do not contribute to the 2p2h tensor correlation significantly. We also study the effect of the tensor force on spin-orbit-splitting (ls-splitting) in a neutron-rich fluorine isotope 23 F. The tensor force reduces the ls-splitting for the proton d-orbits by about 3 MeV. This effect is important to reproduce the experimental value. We also find that the 2p2h tensor correlation does not affect the ls-splitting in 23 F

  6. Gamma-ray Spectroscopy of Nano-second Isomers in Neutron-rich Ni Region Produced by Deep-inelastic Collisions

    Science.gov (United States)

    Ishii, Tetsuro; Asai, Masato; Kleinheinz, Peter; Matsuda, Makoto; Ichikawa, Shinichi; Makishima, Akiyasu; Ogawa, Masao

    2001-10-01

    We have been studying nuclear structure of neutron-rich nuclei produced by heavy-ion deep-inelastic collisions at the JAERI Tandem Booster facility. In our method using an `isomer-scope', γ-rays only from isomers with T_1/2 > 1ns are measured by shielding Ge detectors from prompt γ rays emitted at the target position. Atomic numbers of isomers can be also identified by detecting projectile-like fragments with Si Δ E-E detectors. Until now, we have found several new isomers in neutron-rich Ni region using about 8 MeV/nucleon ^70Zn, ^76Ge and ^82Se beams and a ^198Pt target of 4.3 mg/cm^2 thickness. In the doubly magic ^68_28Ni_40, the (ν g_9/2^2 ν p_1/2-2)8^+ isomer with T_1/2=23(1) ns was found. In its neighbor nuclei ^69,71Cu, the 19/2^- isomers were found and the energy levels decaying from the isomers can be calculated very accurately by a parameter-free shell model calculation using experimental energy levels as two-body residual interactions. I will also briefly discuss nano-second isomers in ^32,33Si and ^34P produced by 9 MeV/nucleon ^37Cl beams.

  7. ${\\beta}$-decay studies of neutron-rich $^{61-70}$Mn isotopes with the new LISOL ${\\beta}$-decay setup

    CERN Multimedia

    Diriken, J V J

    2008-01-01

    The aim of this proposal is to gather new information that will serve as benchmark to test shell model calculations in the region below $^{68}$Ni, where proper residual interactions are still under development. More specifically, the ${\\beta}$-decay experiment of the $^{61-70}$Mn isotopes will highlight the development of collectivity in the Fe isotopes and its daughters. At ISOLDE, neutron-rich Mn isotopes are produced with a UC$_{x}$ target and selective laser ionization. These beams are particularly pure and reasonable yields are obtained for the neutron-rich short lived $^{61-70}$Mn isotopes. We propose to perform ${\\beta}$-decay studies on $^{61-70}$Mn utilizing the newly-developed "LISOL ${\\beta}$-decay setup", consisting of two MINIBALL cluster Ge detectors and a standard tape station. The use of digital electronics in the readout of these detectors enables us to perform a "slow correlation technique" which should indicate the possible existence of isomers in the daughter nuclei.

  8. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  9. Low-enriched uranium high-density target project. Compendium report

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.; Gelis, Artem V.; Stepinski, Dominique C.; Wiedmeyer, Stanley; Youker, Amanda; Hebden, Andrew; Solbrekken, G; Allen, C; Robertson., D; El-Gizawy, Sherif; Govindarajan, Srisharan; Hoyer, Annemarie; Makarewicz, Philip; Harris, Jacob; Graybill, Brian; Gunn, Andy; Berlin, James; Bryan, Chris; Sherman, Steven; Hobbs, Randy; Griffin, F. P.; Chandler, David; Hurt, C. J.; Williams, Paul; Creasy, John; Tjader, Barak; McFall, Danielle; Longmire, Hollie

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.

  10. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  11. Uranium industry framework

    International Nuclear Information System (INIS)

    Riley, K.

    2008-01-01

    The global uranium market is undergoing a major expansion due to an increase in global demand for uranium, the highest uranium prices in the last 20 years and recognition of the potential greenhouse benefits of nuclear power. Australia holds approximately 27% of the world's uranium resources (recoverable at under US$80/kg U), so is well placed to benefit from the expansion in the global uranium market. Increasing exploration activity due to these factors is resulting in the discovery and delineation of further high grade uranium deposits and extending Australia's strategic position as a reliable and safe supplier of low cost uranium.

  12. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...

  13. A natural analogy of high-level radioactive waste disposal. A case study of the groundwater from a uranium deposit

    International Nuclear Information System (INIS)

    Li Xinchun; Zhang Zhanshi; Ouyang Hegen

    2009-01-01

    Radionuclide migration is one of the key effects of high-level radioactive waste disposal. The groundwater is considered the primary means of radionuclide migration. Uranium and rare earth element(REE) in groundwater from a uranium deposit were used as a chemical analogue to study the migration of radionuclides. The results show that REE and its chemical analogue might migrate under the uranium deposit condition, but uranium and its analogue do not migrate obviously. According to the results, we might infer that after the groundwater penetrates into the HLW repository, REE and its analogue might migrate with the groundwater; but there is no obvious migration of uranium and its chemical analogue,which might increase our confidence to built a safe HLW repository. (authors)

  14. PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    M. Ren; P. Goodell; A. Kelts; E.Y. Anthony; M. Fayek; C. Fan; C. Beshears

    2005-07-11

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.

  15. Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects.

    Science.gov (United States)

    Bondici, V F; Lawrence, J R; Khan, N H; Hill, J E; Yergeau, E; Wolfaardt, G M; Warner, J; Korber, D R

    2013-06-01

    To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P tailings zone being significant (P tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings. © 2013 The Society for Applied Microbiology.

  16. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  17. Single-particle states in neutron-rich 69,71Cu by means of the (d,3He) transfer reaction

    International Nuclear Information System (INIS)

    Morfouace, Pierre

    2014-01-01

    In two (d, 3 He) transfer reactions with MUST2 at GANIL and the split-pole at Orsay, we have determined the position of the proton-hole states in the neutron-rich 71 Cu (N=42) and 69 Cu (N=40) isotopes. We have found that in 71 Cu the hole strength of the f7/2 orbital lies at higher excitation energies than expected. From beta-decay and laser spectroscopy, the f5/2 first excited particle state in these isotopes was known to come down rapidly in energy when passing N=40 and even become the ground state in 75 Cu. This sudden energy shift has been explained in a number of theoretical works. The prediction for the f7/2 spin-orbit partner was that it would change in energy too through a related effect. Experimentally, the f7/2 proton-hole state is not known for N≥40. In 71 Cu two 7/2- states around 1 MeV are candidates to be a proton-hole. The experiment at GANIL took place in March 2011. A secondary beam of 72 Zn at 38 AMeV was produced by fragmentation and purified through the LISE spectrometer. The transfer reaction in inverse kinematics was studied with the MUST2 detectors plus four 20 micrometer silicon detector to identified the 3 He of low kinetic energy. The excitation spectrum of 71 Cu was reconstruct thanks to the missing mass method and the angular distributions were extracted and compared with a reaction model using the DWUCK4 and DWUCK5 code. From this work no states have been populated around 1 MeV concluding that the centroid of the f7/2 lies at higher excitation energy. We then remeasured the single-particle strength in 69 Cu in the corresponding (d, 3 He) reaction at Orsay in March 2013 in order to extend the existing data where 60% of the f7/2 strength is missing and make sure that there is a consistent analysis of spectroscopic factors between both isotopes in order to well understood and well quantify the evolution of the f7/2 orbital when we start filling the g9/2 orbital. In this second experiment we have performed the reaction in direct

  18. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  19. An innovative jet boring mining method available for the high grade uranium ore underground deposits

    International Nuclear Information System (INIS)

    Narcy, J.L.

    1996-01-01

    An innovative mining method, based on the capability of a high pressure water jet to desaggregate rock, has been conceived and tested with success at the highest grade uranium ore deposit in the world, the Cigar Lake deposit in Saskatchewan, Canada. 113 tonnes of ore at 13% U were mined out by a new jet-boring mining method operated on a semi-industrial basis, in 1992 during the test mining program of Cigar Lake Project. (author). 9 figs

  20. High temperature chlorination of uranium and some radionuclides from rich sulphide ores

    International Nuclear Information System (INIS)

    Mahdy, M.A.

    1992-01-01

    This work is concerned with the application of the high temperature chlorination technique upon a sulphide-rich uranium ore from elliot lake, ontario, canada. The purpose is to find a substitute to conventional sulphuric acid leaching which involves both acid drainage and radionuclide dissolution problems. Test work has therefore been directed towards studying some relevant factors of chlorination beside the effect of a number of additives

  1. A new approach for the high-precision determination of the elemental uranium concentration in uranium ore by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Nagel, W.; Quik, F.

    1993-01-01

    A new approach for the determination of elemental uranium in uranium bearing ore, using high resolution gamma-ray spectrometry, was applied. Using a variant of the enrichment meter technique an agreement of better than 1% has been obtained between gamma-ray measurement results and the certified value obtained by other analytical methods. For the calibration of the gamma-ray spectrometer uranium reference samples have been used which are made available jointly in Europe and the USA as Certified Reference Materials for Gamma-ray Spectrometry (EC NRM 171 and NBS SRM 969, respectively). The measured ore has been put in a special designed container which ensured in all directions seen from the radiation window a uniform degree of infinite thickness of about 95%. The measurement results can be taken as an example for the applicability of gamma-ray spectrometry when high accuracy is required and under conditions where homogeneous distributed elemental uranium is embedded in a larger amount of matrix material. (author). 8 refs., 10 figs., 2 tabs., 2 appendices

  2. Provision by the uranium and uranium products

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2005-01-01

    International uranium market is converted from the buyer market into the seller market. The prices of uranium are high and the market attempts to adapt to changing circumstances. The industry of uranium enrichment satisfies the increasing demands but should to increase ots capacities. On the whole the situation is not stable and every year may change the existing position [ru

  3. Return of 80% highly enriched uranium fresh fuel from Yugoslavia to Russia

    International Nuclear Information System (INIS)

    Pesic, M.; Sotic, O.; Subotic, K.; Hopwood, W. Jr; Moses, S.; Wander, T.; Smirnov, A.; Kanashov, B.; Eshcherkin, A.; Efarov, S.; Olivieri, C.; Loghin, N. E.

    2003-01-01

    The transport of almost 50 kg of highly enriched (80%) uranium (HEU), in the form of fresh TVR-S fuel elements, from the Vin a Institute of Nuclear Sciences, Yugoslavia, to the Russian Federation for uranium reprocessing was carried out in August 2002. This act was a contribution of the Government of the Federal Republics of Yugoslavia (now Serbia and Montenegro) to the world's joint efforts to prevent possible actions of terrorists against nuclear material that potentially would be usable for the production of nuclear weapons. Basic aspects of this complex operation, carried out mainly by transport teams of the Vinca Institute and of the Institute for Safe Transport of Nuclear Materials from Dimitrovgrad, Russian Federation, are described in this paper. A team of IAEA safety inspectors and experts from the DOE, USA, for transport and non-proliferation, supported the whole operation. (author)

  4. Repository emplacement costs for Al-clad high enriched uranium spent fuel

    International Nuclear Information System (INIS)

    McDonell, W.R.; Parks, P.B.

    1994-01-01

    A range of strategies for treatment and packaging of Al-clad high-enriched uranium (HEU) spent fuels to prevent or delay the onset of criticality in a geologic repository was evaluated in terms of the number of canisters produced and associated repository costs incurred. The results indicated that strategies in which neutron poisons were added to consolidated forms of the U-Al alloy fuel generally produced the lowest number of canisters and associated repository costs. Chemical processing whereby the HEU was removed from the waste form was also a low cost option. The repository costs generally increased for isotopic dilution strategies, because of the substantial depleted uranium added. Chemical dissolution strategies without HEU removal were also penalized because of the inert constituents in the final waste glass form. Avoiding repository criticality by limiting the fissile mass content of each canister incurred the highest repository costs

  5. Validation of the Monte Carlo Criticality Program KENO V. a for highly-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Knight, J.R.

    1984-11-01

    A series of calculations based on critical experiments have been performed using the KENO V.a Monte Carlo Criticality Program for the purpose of validating KENO V.a for use in evaluating Y-12 Plant criticality problems. The experiments were reflected and unreflected systems of single units and arrays containing highly enriched uranium metal or uranium compounds. Various geometrical shapes were used in the experiments. The SCALE control module CSAS25 with the 27-group ENDF/B-4 cross-section library was used to perform the calculations. Some of the experiments were also calculated using the 16-group Hansen-Roach Library. Results are presented in a series of tables and discussed. Results show that the criteria established for the safe application of the KENO IV program may also be used for KENO V.a results.

  6. Progress in developing very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Hayes, S.L.; Wiencek, T.C.; Strain, R.V.

    1999-01-01

    Preliminary results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-Mo alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm 3 . Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 deg. C) are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 deg. C in 8-g U/cm 3 fuel. (author)

  7. Minimizing civilian use of highly enriched uranium - FRM II and global developments

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [Oeko-Institut e.V., Darmstadt (Germany)

    2016-07-01

    The need to use highly enriched uranium (HEU) in civil nuclear applications is shrinking due to international efforts worldwide in the last three decades. Today low enriched uranium (LEU) that is not suitable for nuclear weapon purposes can be used instead in almost all civil applications. An overview of the current HEU use worldwide will be presented before focusing more on the use of HEU in research reactors and the conversion of existing reactors to LEU. Specifically interesting is the case of the German research reactor in Munich, the FRM-II. The reactor operates since ten years after intense national and international discussions over the use of weapon usable HEU to fuel the reactor. Since its construction the reactor is therefore obliged to convert to lower enrichment levels as soon as a suitable fuel becomes available. Despite huge international efforts to develop new fuels it is still not clear if and when the reactor can be converted.

  8. Return of 80% highly enriched uranium fresh fuel from Yugoslavia to Russia

    International Nuclear Information System (INIS)

    Pesic, M.; Sotic, O.; Subotic, K.; Hopwood, W. Jr; Moses, S.; Wander, T.; Smirnov, A.; Kanashov, B.; Eshcherkin, A.; Efarov, S.; Olivieri, C.; Loghin, N. E.

    2003-01-01

    The transport of almost 50 kg of highly enriched (80%) uranium (HEU), in the form of fresh TVR-S fuel elements, from the Vinca Institute of Nuclear Sciences, Yugoslavia, to the Russian Federation for uranium reprocessing was carried out in August 2002. This act was a contribution of the Government of the Federal Republics of Yugoslavia (now Serbia and Montenegro) to the world's joint efforts to prevent possible actions of terrorists against nuclear material that potentially would be usable for the production of nuclear weapons. Basic aspects of this complex operation, carried out mainly by transport teams of the Vinca Institute and of the Institute for Safe Transport of Nuclear Materials from Dimitrovgrad, Russian Federation, are described in this paper. A team of IAEA safety inspectors and experts from the DOE, USA, for transport and non-proliferation, supported the whole operation. (author)

  9. Z dependence of the N=152 deformed shell gap: In-beam γ-ray spectroscopy of neutron-rich 245,246Pu

    International Nuclear Information System (INIS)

    Makii, H.; Ishii, T.; Asai, M.; Tsukada, K.; Toyoshima, A.; Ichikawa, S.; Matsuda, M.; Makishima, A.; Kaneko, J.; Toume, H.; Shigematsu, S.; Kohno, T.; Ogawa, M.

    2007-01-01

    We have measured in-beam γ rays in the neutron-rich 246 Pu 152 and 245 Pu 151 nuclei by means of 244 Pu( 18 O, 16 O) 246 Pu and 244 Pu( 18 O, 17 O) 245 Pu neutron transfer reactions, respectively. The γ rays emitted from 246 Pu ( 245 Pu) were identified by selecting the kinetic energy of scattered 16 O ( 17 O) detected by Si ΔE-E detectors. The ground-state band of 246 Pu was established up to the 12 + state. We have found that the shell gap of N=152 is reduced in energy with decreasing atomic number by extending the systematics of the one-quasiparticle energies in N=151 nuclei into those in 245 Pu. This reduction of the shell gap clearly affects the 2 + energy of the ground-state band of 246 Pu

  10. Study of fission barriers in neutron-rich nuclei using the (p,2p) reaction. Status of SAMURAI-experiment NP1306 SAMURAI14

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Sebastian [TU Munich (Germany); Collaboration: NP1306-SAMURAI14-Collaboration

    2015-07-01

    Violent stellar processes are currently assumed to be a major origin of the elements beyond iron and their abundances. The conditions during stellar explosions lead to the so called r-process in which the rapid capture of neutrons and subsequent β decays form heavier elements. This extension of the nuclei stops at the point when the repulsive Coulomb energy induces fission. Its recycling is one key aspect to describe the macroscopic structure of the r-process and the well known elemental abundance pattern. The RIBF at RIKEN is able to provide such neutron rich heavy element beams and a first test with the primary beam {sup 238}U was performed to understand the response of the SAMURAI spectrometer and detectors for heavy beams. The final goal is the definition of the fission barrier height with a resolution of 1 MeV (in σ) using the missing mass method using (p,2p) reactions in inverse kinematics.

  11. Shape coexistence in the N=19 neutron-rich nucleus 31Mg explored by β–γ spectroscopy of spin-polarized 31Na

    Directory of Open Access Journals (Sweden)

    H. Nishibata

    2017-04-01

    Full Text Available The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the “island of inversion” associated with the neutron magic number N=20, is studied by β–γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ=1/2+ and 1/2− are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD plus generator coordinate method (GCM. It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.

  12. Study of Beta-Delayed Neutron Emission by Neutron-Rich Nuclei and Analysis of the Nuclear Reaction Mechanism responsible for the Yields of these Nuclei

    International Nuclear Information System (INIS)

    Bazin, D.

    1987-07-01

    Among the nuclear mechanisms used for the production of nuclei far from stability, the projectile fragmentation process has recently proved its efficiency. However, at Fermi energies, one has to take into account some collective and relaxation effects which drastically modify the production cross-sections. The spectroscopic study of very neutron-rich nuclei is very dependent of these production rates. A study of beta-delayed neutron emission which leads to new measurements of half-lives and neutron delayed emission probabilities is achieved with a liquid scintillator detector. The results which are then compared to different theories are of interest for the understanding of natural production of heavy elements (r processus) [fr

  13. Spectrographic determination of lanthanides in high-purity uranium compounds, after chromatographic separation by alumina-hydrofluoric acid

    International Nuclear Information System (INIS)

    Lordello, A.R.; Abrao, A.

    1979-01-01

    A method is presented for the determination of fourteen rare earth elements in high-purity uranium compounds by emission spectrography. The rare earths are chromatographically separated from uranium by using alumina-hydrofluoric acid. Lanthanum is used both as collector and internal standard. The technique of excitation involves a total consumption of the sample in a 17 ampere direct current arc. The range of determination is about 0.005 to 0.5 μg/g uranium. The coefficient of variation for Pr, Ho, Dy, Er, Tm, Lu, Gd and Tb amounts to 10%. (Author) [pt

  14. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  15. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    Oliveira, Fabio Branco Vaz de

    2008-01-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and

  16. Recent developments and on-line tests of uranium carbide targets for production of nuclides far from

    CERN Document Server

    V.N. Panteleev et al.

    The capacity of uranium carbide target materials of different structure and density for production of neutron-rich and heavy neutron-deficient isotopes have been investigated at the IRIS facility (PNPI) in the collaboration with Legnaro – GANIL – Orsay laboratories. The yields and release times of the species produced in the targets by the reactions induced by a 1 GeV proton beam of the PNPI synchrocyclotron have been measured. For the purpose to elaborate the most efficient and fast uranium carbide target prototype three kinds of the target materials were studied: a) a high density UC target material having ceramic-like structure with the density of 11 g/cm3 and the grain dimensions of about 200 microns; b) a high density UC target material with the density of 12 g/cm3 and the grain dimensions of about 20 microns prepared by the method of the powder metallurgy; c) a low density UCx target material with the density 3g/cm3 and the grain dimensions of about 20 microns prepared by the ISOLDE method. The comp...

  17. Stability of uranium silicides during high energy ion irradiation

    International Nuclear Information System (INIS)

    Birtcher, R.C; Wang, L.M.

    1991-11-01

    Changes induced by 1.5 MeV Kr ion irradiation of both U 3 Si and U 3 Si 2 have been followed by in situ transmission electron microscopy. When irradiated at sufficiently low temperatures, both alloys transform from the crystalline to the amorphous state. When irradiated at temperatures above the temperature limit for ion beam amorphization, both compounds disorder with the Martensite twin structure in U 3 Si disappearing from view in TEM. Prolonged irradiation of the disordered crystalline phases results in nucleation of small crystallites within the initially large crystal grains. The new crystallites increase in number during continued irradiation until a fine grain structure is formed. Electron diffraction yields a powder-like diffraction pattern that indicates a random alignment of the small crystallites. During a second irradiation at lower temperatures, the small crystallizes retard amorphization. After 2 dpa at high temperatures, the amorphization dose is increased by over twenty times compared to that of initially unirradiated material

  18. A confirmatory measurement technique for HEU [highly enriched uranium

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Goldman, A.; Russo, P.A.; Stovall, L.; Brumfield, T.L.; Gunn, C.S.; Watson, D.R.; Beedgen, R.

    1987-01-01

    Precise measurements of the special nuclear material (SNM) in an item can be used to confirm that the item has not been tampered with. These measurements do not require a highly accurate calibration, but they should be based on an attribute that is unique to the SNM. We describe an instrument that performs gamma-ray measurements at three energies: 185.7 keV, 1001 keV, and 2614 keV. This instrument collects data for 200 s from shipping containers (208-l barrels). These measurements help to distinguish the issue of material control - Has any material been diverted? - from the issue of measurement control - Is there a measurement bias?

  19. Uranium recovery by leaching with sodium carbonate at high temperature and pressure

    International Nuclear Information System (INIS)

    Soerensen, E.; Koefoed, S.; Lundgaard, T.

    1990-09-01

    An alkaline rock from the Ilimaussaq instrusion, SW Greenland, was proposed as a source of uranium. Its principal uranium bearing mineral, Steenstrupine, is a complex sodium REE phosphosilicate in which Fe, Mn, Th and U are minor constituents. A special feature of this ore body is the content of water soluble minerals: NaF (Villiaumite), Na 2 Si 2 O 5 (Natrosilite) and an organic substance which displays the characteristics of humus. Sulfides are sparse, the most important one being ZnS (Sphalerite) of which the content is generally less than 0.5%. In the mineral under consideration (Lujavrite) the Steenstrupine is mainly finelay disseminated throughout the rock, yielding a uranium content of 300-400 ppm and thorium content of 800-1000 ppm. Laboratory tests indicated that high temperature carbonate leaching was necessary to decompose Steenstrupine. The optium temperature was shown to be 260 deg. C and the leach liquor composition 120 g/l of NaHCO 3 and 20 g/l of Na 2 C0 3 . Addition of oxygen is necessary. The process was developed to industrial scale in a continuous pipe autoclave with a retention time of 20 min. After filtering on a belt filter, the liquor was recycled several times to obtain a higher U-concentration. By reductive precipitation with iron powder a raw UO 2 was obtained. It was purified after dissolution in HNO 3 . An overall yield of 80% could be obtained. (author) 32 tabs., 13 ills., 24 refs

  20. Management of high enriched uranium for peaceful purposes: Status and trends

    International Nuclear Information System (INIS)

    2005-06-01

    Arms control agreements between some Nuclear Weapon States have led to the dismantling of many of the nuclear weapons in their military stockpiles, which in turn have produced stockpiles of excess weapons-grade high enriched uranium (HEU) from the dismantled weapons. Considering the proliferation potential of HEU, the management, control and disposition of this fissile material has become a primary focus of nuclear non-proliferation efforts worldwide. To lessen the proliferation threat of excess HEU stockpiles, the USA agreed to purchase several tonnes of excess Russian HEU down-blended to low enriched uranium (LEU). Proliferation concerns about HEU have also resulted in a global effort to convert research reactors from HEU to LEU fuel and to minimize civilian use of HEU. This publication addresses HEU management declared excesses, non-proliferation programmes and options for the use of HEU stockpiles, including disposition programmes. Also addressed are the influence of LEU derived from surplus HEU on the global market for uranium, technical issues associated with utilization and the disposition of HEU

  1. Development of very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    Following a hiatus of several years and following its successful development and qualification of 4.8 g U cm -3 U 3 Si 2 -Al dispersion fuel for application with low-enriched uranium in research and test reactors, the US Reduced Enrichment for Research and Test Reactors program has embarked on the development of even-higher-density fuels. Our goal is to achieve uranium densities of 8-9 g cm -3 in aluminum-based dispersion fuels. Achieving this goal will require the use of high-density, γ-stabilized uranium alloy powders in conjunction with the most-advanced fuel fabrication techniques. Key issues being addressed are the reaction of the fuel alloys with aluminum and the irradiation behavior of the fuel alloys and any reaction products. Test irradiations of candidate fuels in very-small (micro) plates are scheduled to begin in the Advanced Test Reactor during June, 1997. Initial results are expected to be available in early 1998. We are performing out-of-reactor studies on the phase structure of the candidate alloys on diffusion of the matrix material into the aluminum. In addition, we are modifying our current dispersion fuel irradiation behavior model to accommodate the new fuels. Several international partners are participating in various phases of this work. (orig.)

  2. Research reactor preparations for the air shipment of highly enriched uranium from Romania

    International Nuclear Information System (INIS)

    Bolshinsky, I.; Allen, K.J.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.; Paunoiu, C.; Ciocanescu, M.

    2010-01-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation (RF) for conversion to low enriched uranium (LEU). The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR-S research reactor at Magurele, Romania, to Ozersk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation for Atomic Energy Rosatom and the International Atomic Energy Agency (IAEA). Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel. (author)

  3. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  4. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  5. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  6. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  7. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  8. Price of military uranium

    International Nuclear Information System (INIS)

    Klimenko, A.V.

    1998-01-01

    The theoretical results about optimum strategy of use of military uranium confirmed by systems approach accounts are received. The numerical value of the system approach price of the highly enriched military uranium also is given

  9. Anomalously high concentrations of uranium, radium and radon in water from drilled wells in the Helsinki region

    International Nuclear Information System (INIS)

    Asikainen, M.; Kahlos, H.

    1979-01-01

    The concentrations of uranium, 226 Ra and 222 Rn were determined in 308 drilled and 58 dug wells in the Helsinki region. The study area was about 400 km 2 and geologically highly variable, with granites, amphibolites and migmatites the dominant rocks. The radioactivity of water in the dug wells was on a 'normal' level, but in numerous drilled wells it was anomalously high. In 14 drilled wells the concentration of uranium exceeded 1000 μg/l, the highest concentration being 14,870 μg/l. For 222 Rn the maximum concentration was 880,000 pCi/l. The 226 Ra/ 228 Ra and 230 Th/ 232 Th activity ratios showed the isotopes of the uranium series to be dominant in the study area. A state of disequilibrium between 238 U and 234 U was very common in the samples. The 234 U/ 238 U activity ratios varied in the range 1.0 to 4.0 regardless of the amount of uranium in the water. The conclusion can be drawn from the isotopic data that the high radioactivity of water is in some cases caused by primary uranium mineralizations, but mostly by uranium deposited in fissures of the bedrock. The paper includes a summary of the results of two studies carried out between 1967 and 1977. (author)

  10. A feasibility study concerning the conversion of the TR-2 reactor from using highly enriched uranium to light enriched uranium

    International Nuclear Information System (INIS)

    Aldemir, T.; Turgut, H.M.; Bretscher, M.M.; Snelgrove, L.J.

    1983-01-01

    A study has been made of the feasibility of converting the 5-MW TR-2 reactor at CNAEM to use fuel with uranium enrichment of 3 O 8 -Al fuel meat with a uranium density in the range 2.3 to 3.0 g/cm 3 in the fuel meat with meat thickness varying between 0.9 and 1.00 mm, the number of plates in the LEU element being reduced from 23 in the HEU element to 19 to 20 to maintain adequate cooling. Fuels within this density range are expected to be commercially available within the next two years. From the results of the study it appears to be feasible to safely operate the TR-2 reactor using LEU fuel without increased fuel cycle costs or decreased performance using U 2 O 8 fuels with densities in the 2.3 to 3.0 gU/cm 3 range. (author)

  11. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  12. Purification by high vacuum fusion and progressive solidification of uranium from electrolytic origin

    International Nuclear Information System (INIS)

    Poeydomenge, P.

    1964-01-01

    Within the general framework of research on uranium purification by zone melting, an attempt was made to determine the degree of purification which could be obtained by a simple gradual solidification of a normal nuclear-pure uranium paying close attention to the rate and direction of solidification. This uranium of intermediate purity would provide a starting material more suited to the first purification which is a vertical zone-melting process, so-called 'floating'. For this purpose, ingots of electrolytic uranium were melted under vacuum (2 to 5 x 10 -6 mm) in a long crucible after a slow rise in temperature to eliminate as much as possible the gases and volatiles impurities. This degassing and impurities volatilisation are completed by maintaining both at a high temperature for a considerable time. The beth is then made to solidify from the one an in the other the crucible by slowly moving the solid-liquid interface at a constant rate so as to obtain an impurity distribution according to the laws established by PFANN. Various experimental methods have made it possible to show that the metal which solidifies first is much purer than that at the other end of the ingot. The degree of purification of the metal at the beginning of the ingot has been evaluated either quantitatively by measuring the ratio of the electrical resistivities at room temperature and at the liquid nitrogen temperature, or qualitatively by an examination of the micrographic structure and by a study of the recrystallisation of the metal. On the one hand the purified metal re-crystallises during iso-chromic annealings carried out at increasing temperatures, at a temperature much lower than the initial metal or than the end of the ingot. The passage from the cold-worked state to the recrystallised state is followed by micro-hardness measurements. On the other end, only is the purified metal, strongly cold-worked by unidirectional melting, is the phenomenon of 'dissociative growth' of the grain

  13. Determination of boron in uranium and aluminium by high pressure liquid chromatography (HPLC)

    International Nuclear Information System (INIS)

    Rao, Radhika M.; Aggarwal, S.K.

    2003-01-01

    Experiments were conducted for the determination of boron in U 3 O 8 powder and aluminium metal using dynamically modified reversed phase high pressure liquid chromatography (RP-HPLC) and using precolumn chromogenic agent viz. curcumin for complexing boron. The complex was separated from the excess of reagent and determined by HPLC. The boron curcumin complex (rosocyanin) was formed after extraction of boron with 2-ethyl-1,3-hexane diol (EHD). Linear calibration curves for boron amounts in the range of 0.02 μg to 0.5 μg were developed and used for the determination of boron in aluminium and uranium samples. (author)

  14. Theoretical prediction of the structural properties of uranium chalcogenides under high pressure

    Science.gov (United States)

    Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna

    2018-05-01

    Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.

  15. Study on automatic control of high uranium concentration solvent extraction with pulse sieve-plate column

    International Nuclear Information System (INIS)

    You Wenzhi; Xing Guangxuan; Long Maoxiong; Zhang Jianmin; Zhou Qin; Chen Fuping; Ye Lingfeng

    1998-01-01

    The author mainly described the working condition of the automatic control system of high uranium concentration solvent extraction with pulse sieve-plate column on a large scale test. The use of the automatic instrument and meter, automatic control circuit, and the best feedback control point of the solvent extraction processing with pulse sieve-plate column are discussed in detail. The writers point out the success of this experiment on automation, also present some questions that should be cared for the automatic control, instruments and meters in production in the future

  16. Comparison Of A Neutron Kinetics Parameter For A Polyethylene Moderated Highly Enriched Uranium System

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, IV, George Espy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-17

    This paper examines the comparison of MCNP® code’s capability to calculate kinetics parameters effectively for a thermal system containing highly enriched uranium (HEU). The Rossi-α parameter was chosen for this examination because it is relatively easy to measure as well as easy to calculate using MCNP®’s kopts card. The Rossi-α also incorporates many other parameters of interest in nuclear kinetics most of which are more difficult to precisely measure. The comparison looks at two different nuclear data libraries for comparison to the experimental data. These libraries are ENDF/BVI (.66c) and ENDF/BVII (.80c).

  17. Radiation dose estimates from a mining plan for a high-grade uranium deposit

    International Nuclear Information System (INIS)

    Scott, L.M.

    1981-01-01

    The significance of gamma exposure to uranium miners has been recognized only in the last few years. Most ore deposits which have been underground mined, were 1% or less U 3 O 8 . Full-time mining of this grade ore can result in exposure exceeding 1 Rem per year. Several companies in Saskatchewan are planning to mine recently discovered ore bodies which contain ore pods in excess of 10% U 3 O 8 . The purpose of this paper is to present dose data which can be used to estimate gamma exposure from high-grade ore deposits, and to present mining techniques which will minimize miner exposure

  18. Preparation of high density (8 to 9) uranium oxide UO2

    International Nuclear Information System (INIS)

    Eichner, C.; Ertaud, A.; Ortel, Y.; Stohr, J.; Vautrey, L.

    1948-10-01

    This report describes the process elaborated for the preparation of high density UO 2 . The thermal decomposition of uranium peroxide leads to UO 3 which is reduced by an hydrogen flow to obtain UO 2 . A UO 2 powder of good quality is obtained for temperatures below 650 deg. C. The powder is pulverized to obtain an homogeneous grain size and compressed inside a die to make pellets. Pellets are sintered up to 1600 deg. C in a reducing atmosphere and following a temperature rise law of 150 deg. C/hour. The equipment used (furnaces, gases purifier, control equipment, power supplies, thermoregulation systems) is described at the end. (J.S.)

  19. Nonproliferation analysis of the reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  20. Analysis of civilian processing programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  1. High-uranium-loaded U3O8-Al fuel element development program [contributed by N.M. Martin, ORNL

    International Nuclear Information System (INIS)

    Martin, M.M.

    1993-01-01

    The High-Uranium-Loaded U 3 O 8 -Al Fuel Element Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages. The specific objective of the program is to develop the technological and engineering data base for U 3 O 8 -Al plate-type fuel elements of maximal uranium content to the point of vendor qualification for full scale fabrication on a production basis. A program and management plan that details the organization, supporting objectives, schedule, and budget is in place and preparation for fuel and irradiation studies is under way. The current programming envisions a program of about four years duration for an estimated cost of about two million dollars. During the decades of the fifties and sixties, developments at Oak Ridge National Laboratory led to the use of U 3 O 8 -Al plate-type fuel elements in the High Flux Isotope Reactor, Oak Ridge Research Reactor, Puerto Rico Nuclear Center Reactor, and the High Flux Beam Reactor. Most of the developmental information however applies only up to a uranium concentration of about 55 wt % (about 35 vol % U 3 O 8 ). The technical issues that must be addressed to further increase the uranium loading beyond 55 wt % involve plate fabrication phenomena of voids and dogboning, fuel behavior under long irradiation, and potential for the thermite reaction between U 3 O 8 and aluminum. (author)

  2. Reduction of uranium hexafluoride to uranium tetrafluoride

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    The single step continuous reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ) has been investigated. Heat required to initiate and maintain the reaction in the reactor is supplied by the highly exothermic reaction of hydrogen with a small amount of elemental fluorine which is added to the uranium hexafluoride stream. When gases uranium hexafluoride and hydrogen react in a vertical monel pipe reactor, the green product, UF 4 has 2.5g/cc in bulk density and is partly contaminated by incomplete reduction products (UF 5 ,U 2 F 9 ) and the corrosion product, presumably, of monel pipe of the reactor itself, but its assay (93% of UF 4 ) is acceptable for the preparation of uranium metal with magnesium metal. Remaining problems are the handling of uranium hexafluoride, which is easily clogging the flowmeter and gas feeding lines because of extreme sensitivity toward moisture, and a development of gas nozzel for free flow of uranium hexafluoride gas. (Author)

  3. The effects of uranium oxide high-level waste on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.

    1998-01-01

    Because of their unusually good chemical durability, iron phosphate glasses are a natural candidate for a nuclear waste disposal glass. We have studied the effects of UO 2 high-level waste on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction using the GLAD instrument of the Intense Pulsed Neutron Source and the 1-BM bending magnet beamline of the Advanced Photon Source, respectively. The results of neutron scattering, which is mostly sensitive to correlations involving light atoms i.e. O-O, Fe-O and P-O, suggest the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with the earlier results of Raman scattering and EXAFS on the Fe-K edge wherein both cases the spectra remain similar to the base glass. High-energy x-ray scattering which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, is also consistent with uranium occupying interstitial sites in the relatively undisturbed base glass structure. However, important questions remain as to the precise local structure and oxidation state of uranium in these glasses

  4. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  5. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    International Nuclear Information System (INIS)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 μm and a geometric standard deviation, σ g of about 2; the CMD was found to increase and σ g decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 μm and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented

  6. Highly Efficient Interception and Precipitation of Uranium(VI) from Aqueous Solution by Iron-Electrocoagulation Combined with Cooperative Chelation by Organic Ligands.

    Science.gov (United States)

    Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin

    2017-12-19

    A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.

  7. Recent activities for β-decay half-lives and β-delayed neutron emission of very neutron-rich isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dillmann, Iris [TRIUMF, Vancouver BC, V6T 2A3, Canada and GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Abriola, Daniel [Laboratorio Tandar, Comisión Nacional de Energía Atómica, B1650KINA, San Martín, Buenos Aires (Argentina); Singh, Balraj [Department of Physics and Astronomy, McMaster University, Hamilton ON, L8S 4M1 (Canada)

    2014-05-02

    Beta-delayed neutron (βn) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the 'rapid neutron-capture process' (r process). On one hand they lead to a detour of the material β-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes inside the r-process reaction path are not yet experimentally accessible and are located in the (experimental) 'Terra Incognita'. With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of these very neutron-rich isotopes. A short overview of one of the planned programs to measure βn-emitters at the limits of the presently know isotopes, the BRIKEN campaign (Beta delayed neutron emission measurements at RIKEN) will be given. Presently, about 600 β-delayed one-neutron emitters are accessible, but only for a third of them experimental data are available. Reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. About 460 β-delayed two-, three-or four-neutron emitters are identified up to now but for only 30 of them experimental data about the neutron branching ratios are available, most of them in the light mass region below A=30. The International Atomic and Energy Agency (IAEA) has identified the urgency and picked up this topic recently in a 'Coordinated Research Project' on a 'Reference Database for Beta-Delayed Neutron Emission Data'. This project will review, compile, and evaluate the existing data for neutron-branching ratios and half-lives of β-delayed neutron emitters and help to ensure a reliable database for the future discoveries of new isotopes and help to constrain astrophysical and

  8. Determination of uranium and plutonium in high active solutions by extractive spectrophotometry

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Damodaran, K.; Santosh Kumar, G.; Ravi, T.N.

    2000-01-01

    Plutonium and uranium was extracted from nitric acid into trioctyl phosphine oxide in xylene. The TOPO layer was analysed by spectrophotometry. Thoron was used as the chromogenic agent for plutonium. Pyridyl azoresorcinol was used as chromogenic agent for uranium. The molar absorption coefficient for uranium and plutonium was found to be 19000 and 19264 liter/mole-cm, respectively. The correlation coefficient for plutonium and uranium was found to be 0.9994. The relative standard deviation for the determination of plutonium and uranium was found to be 0.96% and 1.4%, respectively. (author)

  9. Validation of KENO V.a for highly enriched uranium systems with hydrogen and/or carbon moderation

    International Nuclear Information System (INIS)

    Elliott, E.P.; Vornehm, R.G.; Dodds, H.L. Jr.

    1993-01-01

    This paper describes the validation in accordance with ANSI/ANS-8.1-1983(R1988) of KENO V.a using the 27-group ENDF/B-IV cross-section library for systems containing highly-enriched uranium, carbon, and hydrogen and for systems containing highly-enriched uranium and carbon with high carbon to uranium (C/U) atomic ratios. The validation has been performed for two separate computational platforms: an IBM 3090 mainframe and an HP 9000 Model 730 workstation, both using the Oak Ridge Y-12 Plant Nuclear Criticality Safety Software (NCSS) code package. Critical experiments performed at the Oak Ridge Critical Experiments Facility, in support of the Rover reactor program, and at the Pajarito site at Los Alamos National Laboratory were identified as having the constituents desired for this validation as well as sufficient experimental detail to allow accurate construction of KENO V.a calculational models. Calculated values of k eff for the Rover experiments, which contain uranium, carbon, and hydrogen, are between 1.0012 ± 0.0026 and 1.0245 ± 0.0023. Calculation of the Los Alamos experiments, which contain uranium and carbon at high C/U ratios, yields values of k eff between 0.9746 ± 0.0028 and 0.9983 ± 0.0027. Safety criteria can be established using this data for both types of systems

  10. Extraction of prospecting information of uranium deposit based on high spatial resolution satellite data. Taking bashibulake region as an example

    International Nuclear Information System (INIS)

    Yang Xu; Liu Dechang; Zhang Jielin

    2008-01-01

    In this study, the signification and content of prospecting information of uranium deposit are expounded. Quickbird high spatial resolution satellite data are used to extract the prospecting information of uranium deposit in Bashibulake area in the north of Tarim Basin. By using the pertinent methods of image processing, the information of ore-bearing bed, ore-control structure and mineralized alteration have been extracted. The results show a high consistency with the field survey. The aim of this study is to explore practicability of high spatial resolution satellite data for prospecting minerals, and to broaden the thinking of prospectation at similar area. (authors)

  11. Comparison of high-density carbon implosions in unlined uranium versus gold hohlraums

    Science.gov (United States)

    Dewald, Eduard; Meezan, Nathan; Tommasini, Riccardo; Khan, Shahab; MacKinnon, Andrew; Berzak Hopkins, Laura; Divol, Laurent; Lepape, Sebastien; Moore, Alastair; Schneider, Marilyn; Pak, Arthur; Nikroo, Abbas; Landen, Otto

    2016-10-01

    In Inertial Confinement Fusion (ICF) implosions, laser energy is converted to x-ray radiation in hohlraums with High-Z walls. At radiation temperatures near 300 eV relevant for ICF experiments, the radiative losses in heating the wall are lower for U than for Au hohlraums. Furthermore, the intensity of the ``M-band'' x-rays with photon energies h ν >1.8 keV is lower for uranium, allowing for reduced capsule dopant concentrations employed to minimize inner ablator preheat and hence keep favorable fuel/ablator interface Atwood numbers. This in turn improves the ablator rocket efficiency and reduces the risk of polluting the hot-spot with emissive dopant material. The first uranium vacuum hohlraum experiments on the National Ignition Facility (NIF) with undoped high-density carbon (HDC, or diamond) capsules have demonstrated 30% lower ``M-band'' intensity relative to Au, resulting in lower inflight ablator thickness due to reduced preheat. In addition, fusion neutron yields are 2x higher in U than in Au hohlraums for D2-gas filled capsule implosions at ICF relevant velocities of 380 +/-20 km/s. These results have led the NIF ICF implosions to routinely employ U hohlraums. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Fast critical assembly safeguards: NDA methods for highly enriched uranium. Summary report, October 1978-September 1979

    International Nuclear Information System (INIS)

    Bellinger, F.O.; Winslow, G.H.

    1980-12-01

    Nondestructive assay (NDA) methods, principally passive gamma measurements and active neutron interrogation, have been studied for their safeguards effectiveness and programmatic impact as tools for making inventories of highly enriched uranium fast critical assembly fuel plates. It was concluded that no NDA method is the sole answer to the safeguards problem, that each of those emphasized here has its place in an integrated safeguards system, and that each has minimum facility impact. It was found that the 185-keV area, as determined with a NaI detector, was independent of highly-enriched uranium (HEU) plate irradiation history, though the random neutron driver methods used here did not permit accurate assay of irradiated plates. Containment procedures most effective for accurate assaying were considered, and a particular geometry is recommended for active interrogation by a random driver. A model, pertinent to that geometry, which relates the effects of multiplication and self-absorption, is described. Probabilities of failing to detect that plates are missing are examined

  13. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, Th.

    2004-01-01

    The controversy about the extend of the uranium resources worldwide is still important, this article sheds some light on this topic. Every 2 years IAEA and NEA (nuclear energy agency) edit an inventory of uranium resources as reported by contributing countries. It appears that about 4.6 millions tons of uranium are available at a recovery cost less than 130 dollars per kg of uranium and a total of 14 millions tons of uranium can be assessed when including all existing or supposed resources. In fact there is enough uranium to sustain a moderate growth of the park of nuclear reactors during next decades and it is highly likely that the volume of uranium resources can allow a more aggressive development of nuclear energy. It is recalled that a broad use of the validated breeder technology can stretch the durability of uranium resources by a factor 50. (A.C.)

  14. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Reedy, G.T.; Leibowitz, L.

    1977-01-01

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  15. Comparison of laser fluorimetry, high resolution gamma-ray spectrometry and neutron activation analysis techniques for determination of uranium content in soil samples

    International Nuclear Information System (INIS)

    Ghods, A.; Asgharizadeh, F.; Salimi, B.; Abbasi, A.

    2004-01-01

    Much more concern is given nowadays for exposure of the world population to natural radiation especially to uranium since 57% of that exposure is due to radon-222, which is a member of uranium decay series. Most of the methods used for uranium determination is low concentration require either tedious separation and preconcentration or the accessibility to special instrumentation for detection of uranium at this low level. this study compares three techniques and methods for uranium analysis among different soil sample with variable uranium contents. Two of these techniques, neutron activation analysis and high resolution gamma-ray spectrometry , are non-destructive while the other, laser fluorimetry is done via chemical extraction of uranium. Analysis of standard materials is done also to control the quality and accuracy of the work. In spite of having quite variable ranges of detection limit, results obtained by high resolution gamma-ray spectrometry based on the assumption of having secular equilibrium between uranium and its daughters, which causes deviation whenever this condition was missed. For samples with reasonable uranium content, neutron activation analysis would be a rapid and reliable technique, while for low uranium content laser fluorimetry would be the most appropriate and accurate technique

  16. Reaction cross section measurements of neutron-rich exotic nuclei in the vicinity of closed shells N=20 and N=28

    International Nuclear Information System (INIS)

    Khouaja, A.

    2003-12-01

    Using the direct method, the mean energy integrated reaction cross section was investigated for a wide range of neutron-rich nuclei (N → Ar) at GANIL. Using the parametrisation of S. Kox, 19 new radii measurements (reaction cross sections) were obtained. By the isotopic, isotonic and isospin dependence, the evolution of the strong reduced radius was studied according to the excess of neutrons. New halo effect is proposed to the nuclei of Mg 35 and S 44 . A quadratic parametrization is also proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. In addition, we used a modified version of the Glauber model for studying the tail and matter distribution of nuclei. Indeed, using our new data the effects of the nuclear size (root mean square radii) and the matter distribution (diffusivity) were de-convoluted for each isotope. The root mean square radii of Na and Mg isotopes obtained so far were consistent with the ones from literature. (author)

  17. Identification and Decay Studies of New, Neutron-Rich Isotopes of Bismuth, Lead and Thallium by means of a Pulsed Release Element Selective Method

    CERN Multimedia

    Mills, A; Kugler, E; Van duppen, P L E; Lettry, J

    2002-01-01

    % IS354 \\\\ \\\\ It is proposed to produce, identify and investigate at ISOLDE new, neutron-rich isotopes of bismuth, lead and thallium at the mass numbers A=215 to A=218. A recently tested operation mode of the PS Booster-ISOLDE complex, taking an advantage of the unique pulsed proton beam structure, will be used together with a ThC target in order to increase the selectivity. The decay properties of new nuclides will be studied by means of $\\beta$-, $\\gamma$- and X- ray spectroscopy methods. The expected information on the $\\beta$-half-lives and excited states will be used for testing and developing the nuclear structure models ``south-east'' of $^{208}$Pb, and will provide input data for the description of the r-process path at very heavy nuclei. The proposed study of the yields and the decay properties of those heavy nuclei produced in the spallation of $^{232}$Th by a 1~GeV proton beam contributes also the data necessary for the simulations of a hybrid accelerator-reactor system.

  18. Penning-trap mass measurements of the neutron-rich K and Ca isotopes: Resurgence of the N=28 shell strength

    Science.gov (United States)

    Lapierre, A.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Finlay, P.; Gallant, A. T.; Simon, V. V.; Delheij, P.; Lunney, D.; Ringle, R.; Savajols, H.; Dilling, J.

    2012-02-01

    We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN electron beam ion trap and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME’03). The 48,49,50K mass excesses are more precise than the AME’03 values by more than 1 order of magnitude. For 48,49K, we find deviations of 7σ and 10σ, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME’03 mass-excess values and thus increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.

  19. A study of some neutron-rich isotopes of lanthanum, cerium and praseodymium by means of fast chemical on-line separation technique SISAK

    International Nuclear Information System (INIS)

    Skarnemark, G.

    1977-01-01

    The fast on-line chemical separation technique SISAK has been utilized to study the decay properties of neutron-rich isotopes of La, Ce and Pr. The results include partial decay schemes and γ-ray intensity data for 14 min 143 La, 42 s 144 La, 25 s 145 La, 9 s 146 La, 3 min 145 Ce, 14 min 146 Ce, 56 s 147 Ce, 50 s 148 Ce, 12 min 147 Pr, 2 min 148 Pr, 3 min 149 Pr and 6 s 150 Pr. Half-lives and γ-ray energies are reported for the previously unknown nuclides 147 La (Tsub(1/2) = 2.2 s), 148 La (Tsub(1/2) approximately 1 s), 149 Ce (Tsub(1/2) = 5.7 s) and 150 Ce (Tsub(1/2) = 4.1 s). The nuclides were formed in thermal neutron-induced fission of 235 U. The fission products were transferred to the SISAK system via a gas jet recoil transportation (GJRT) system. The combination of the GJRT system with SISAK is discussed, as well as the chemical separation systems used for the isolation of La, Ce and Pr. The appendices I - IX contain previously published material which is included in the thesis. (Auth.)

  20. Beta- and gamma-decay studies of neutron-rich chromium, manganese, cobalt and nickel isotopes including the new isotopes 60Cr and 60gMn

    International Nuclear Information System (INIS)

    Bosch, U.; Schmidt-Ott, W.D.; Runte, E.; Tidemand-Petersson, P.; Koschel, P.; Meissner, F.; Kirchner, R.; Klepper, O.; Roeckl, E.; Rykaczewski, K.; Schardt, D.

    1987-10-01

    A 36 mg/cm 2 thick nat W target was irradiated with 11.5 MeV/u 76 Ge of 15 to 20 particle + nA beam intensity. On-line mass-separated samples of projectile-like neutron-rich products from multi-nucleon transfer-reactions were investigated in the region of mass 58-69 by β- and γ-ray spectroscopy. The new isotope 60 Cr was identified with a half-life of 0.57(6) s and for the 60 Mn ground-state a half-life value of 51(6) s was obtained. Decay schemes were constructed for 58 Cr, 58 Mn (t 1/2 = 3 s), 65,66,67 Co and 69 Ni. One new γ-ray was found in the decay of 59 Cr. The Q β -value of 66 Co was measured yielding 9.7(5) MeV. The comparison of the measured new β-half-life of 60 Cr with the most recent predictions gave again an enhancement of the experimental value. (orig.)

  1. Neutron-Rich Silver Isotopes Produced by a Chemically Selective Laser Ion-Source: Test of the R-Process " Waiting-Point " Concept

    CERN Multimedia

    2002-01-01

    The r-process is an important nucleosynthesis mechanism for several reasons: \\begin{enumerate} \\item It is crucial to an understanding of about half of the A>60 elemental composition of the Galaxy; \\item It is the mechanism that forms the long-lived Th-U-Pu nuclear chronometers which are used for cosmochronolgy; \\item It provides an important probe for the temperature (T$ _{9} $)-neutron density ($n_{n}$) conditions in explosive events; and last but not least \\item It may serve to provide useful clues to and constraints upon the nuclear properties of very neutron-rich heavy nuclei. \\end{enumerate} \\\\ \\\\With regard to nuclear-physics data, of particular interest are the T$ _{1/2} $ and P$_{n-} $ values of certain$\\,$ "waiting-point"$\\,$ isotopes in the regions of the A $ \\approx $ 80 and 130. r-abundance peaks. Previous studies of $^{130}_{\\phantom{1}48}$Cd$_{82}$ and $^{79}_{29}$Cu$_{50}$. $\\beta$-decay properties at ISOLDE using a hot plasma ion source were strongly complicated by isobar and molecular-ion c...

  2. Study of single particle properties of neutron-rich Na isotopes on the "shore of the island of inversion" by means of neutron-transfer reactions

    CERN Multimedia

    Reiter, P; Blazhev, A A; Riisager, K; Bastin, B; Tengborn, E A; Kruecken, R; Voulot, D; Jeppesen, H B; Hadinia, B; Gernhaeuser, R A; Fynbo, H O U; Georgiev, G P; Habs, D; Fraile prieto, L M; Chapman, R; Nilsson, T; Diriken, J V J; Jenkins, D G; Kroell, T; Leske, J; Huyse, M L; Patronis, N

    We aim at the investigation of single particle properties of neutron-rich Na isotopes around the "shore of the island of inversion". As first experiment of this programme, we propose to study excited states in the isotope $^{29}$Na by a one-neutron transfer reaction with a $^{28}$Na beam at 3 MeV/u obtained from REX-ISOLDE impinging on a CD$_{2}$-target. The $\\gamma$-rays will be detected by the MINIBALL array and the particles by the T-REX array of segmented Si detectors. The main physics aims are to extract from the relative spectroscopic factors information on the configurations contributing to the wave functions of the populated states and, secondly, to identify and characterize negative parity states whose excitation energies reflect directly the N= 28 gap in this region. The results will be compared to recent shell model calculations involving new residual interactions. This will shed new light on the evolution of single particle structure and help to understand the underlying physics relevant for the f...

  3. Identifying high-grade uranium deposits in the Proterozoic basins of India- a challenge to exploration

    International Nuclear Information System (INIS)

    Mahadevan, T.M.

    1995-01-01

    The favorability factors that bestow on the Proterozoic formation of India, a potential to host high grade uranium deposits are discussed in the light of the known features of the new class of unconformity- related and strata bound uranium deposits. The need to reorient several past approaches is emphasised and it is suggested that future programmes must avail of the constraining benefits of a spectrum of geophysical, geochemical, and sedimentological studies in the choice of target areas for detailed exploration and development. A synthesis of geological and geochemical data with such geophysical features as magnetic and gravity anomalies, velocity structure, seismic reflectivity, electrical conductivity, and radioactivity can effectively lead to relatively more favourable exploration targets. Such efforts may lead to the generation of more than one model of the deep basinal features, which then provide wider options for drilling and proving of ore bodies. The alternative to the above approach is saturation drilling, which is a costly and time-consuming process and, therefore, very often self-defeating. (author). 28 refs., 2 figs., 2 tabs

  4. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  5. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    International Nuclear Information System (INIS)

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  6. Mineralogic investigation into occurrence of high uranium well waters in upstate South Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Richard, E-mail: wrichar@clemson.edu [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634-0919 (United States); Meadows, Jason; Sojda, Scott; Price, Van; Temples, Tom [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634-0919 (United States); Arai, Yuji [Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, SC 29634-0315 (United States); Fleisher, Chris [Department of Geology, University of Georgia, Athens, GA 30602-2501 (United States); Crawford, Bruce; Stone, Peter [Bureau of Water, South Carolina Department of Health and Environmental Control, Columbia, SC 29201 (United States)

    2011-05-15

    Research Highlights: > Oxidative dissolution of uraninite in biotite granite is primary source of uranium in high-U well waters near Simpsonville, SC. > Uranium is chiefly transported as mixed uranyl hydroxyl-carbonate complexes. > Local reduction has resulted in secondary precipitation of uranium along fractures as coffinite. > Dissolution of uraninite and precipitation of coffinite were geologically recent. - Abstract: High levels of U (up to 5570 {mu}g/L) have been discovered in well waters near Simpsonville, South Carolina, USA. In order to characterize the mineralogical source of the U and possible structural controls on its presence, a deep (214 m) well was cored adjacent to one of the enriched wells. The highest gamma-ray emissions in the recovered core occur in coarse biotite granite at a depth just below 52 m. A slickenlined fault plane at 48.6 m and narrow pegmatite layers at depths of 113, 203 and 207 m also yield high gamma-ray counts. Thin sections were made from the above materials and along several subvertical healed fractures. Uraninite and coffinite are the principal U-rich minerals in the core. Other U-bearing minerals include thorite and thorogummite, monazite, zircon and allanite. Primary uraninite occurs in the biotite granite and in pegmatite layers. Secondary coffinite is present as tiny (<5 {mu}m) crystals dispersed along fractures in the granite and pegmatites. Coffinite also occurs along the slickenlined fault plane, where it is associated with calcite and calcic zeolite and also replaces allanite. Coffinite lacks radiogenic Pb, hence is considerably younger than the uraninite. Dissolution of partially oxidized Ca-rich uraninite occurring in the surficial biotite granite (or secondary coffinite in fracture zones) is likely the main source for the current high levels of U in nearby area wells. The high-U well waters have a carbonate signature, consistent with pervasive calcite vein mineralization in the core. Aqueous speciation calculations

  7. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  8. The obtainment of highly concentrated uranium pellets for plate type (MTR) fuel by dispersion of uranium aluminides in aluminium

    International Nuclear Information System (INIS)

    Morando, R.A.; Raffaeli, H.A.; Balzaretti, D.E.

    1980-01-01

    The use of the intermetallic UAl 3 for manufacturing plate type MTR fuel with 20% U 235 enriched uranium and a density of about 20 kg/m 3 is analyzed. The technique used is the dispersion of UAl 3 particles in aluminium powder. The obtainment of the UAl 3 intermetallic was performed by fusion in an induction furnace in an atmosphere of argon at a pressure of 0.7 BAR (400 mm) using an alumina melting pot. To make the aluminide powder and attain the wished granulometry a cutting and a rotating crusher were used. Aluminide powders of different granulometries and different pressures of compactation were analyzed. In each case the densities were measured. The compacts were colaminated with the 'Picture Frame' technique at temperatures of 490 and 0 deg C with excellent results from the manufacturing view point. (M.E.L.) [es

  9. Baccharis Salicifolia development in the presence of high concentrations of uranium in the arid environment of San Marcos, Chihuahua

    Energy Technology Data Exchange (ETDEWEB)

    Luna P, M. Y.; Alarcon H, M. T.; Silva S, M.; Renteria V, M; Rodriguez V, M. A.; Herrera P, E.; Reyes C, M.; Montero C, M. E., E-mail: elena.montero@cimav.edu.m [Centro de Investigacion en Materiales Avanzados, S. C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31109 Chihuahua (Mexico)

    2011-02-15

    In humid zones and marine environments the bio indicator contaminants by trace elements are well established. However, in arid zones it is more difficult to find these tools because there is less biodiversity. The objective of this paper was to analyze the behavior of the Baccharis salicifolia plant in areas with high uranium concentration in arid zones, to determine the characteristics of tolerance and possible use as a bio monitor for the presence of such contaminants. For this project a uraniferous zone was selected in San Marcos, located northwest of the City of Chihuahua. A total of 8 sampling points of the plant and soil were located here. Each sample was divided into the root and the stem and leaves to determine the specific activity of the uranium in both parts of the plant and its sediments. The determination of the specific activities of the total uranium in the samples was obtained by liquid scintillation with alpha-beta separation. The results indicate a tendency for the plant to accumulate the uranium in its different parts, and to trans locate it to its stem and leaves. The plant is resistant to high concentrations of uranium, not showing any specific changes in relation to non contaminated areas that might indicate the presence of the contaminant. Therefore, its use as a bio monitor species is limited. (Author)

  10. Baccharis Salicifolia development in the presence of high concentrations of uranium in the arid environment of San Marcos, Chihuahua

    International Nuclear Information System (INIS)

    Luna P, M. Y.; Alarcon H, M. T.; Silva S, M.; Renteria V, M; Rodriguez V, M. A.; Herrera P, E.; Reyes C, M.; Montero C, M. E.

    2011-01-01

    In humid zones and marine environments the bio indicator contaminants by trace elements are well established. However, in arid zones it is more difficult to find these tools because there is less biodiversity. The objective of this paper was to analyze the behavior of the Baccharis salicifolia plant in areas with high uranium concentration in arid zones, to determine the characteristics of tolerance and possible use as a bio monitor for the presence of such contaminants. For this project a uraniferous zone was selected in San Marcos, located northwest of the City of Chihuahua. A total of 8 sampling points of the plant and soil were located here. Each sample was divided into the root and the stem and leaves to determine the specific activity of the uranium in both parts of the plant and its sediments. The determination of the specific activities of the total uranium in the samples was obtained by liquid scintillation with alpha-beta separation. The results indicate a tendency for the plant to accumulate the uranium in its different parts, and to trans locate it to its stem and leaves. The plant is resistant to high concentrations of uranium, not showing any specific changes in relation to non contaminated areas that might indicate the presence of the contaminant. Therefore, its use as a bio monitor species is limited. (Author)

  11. Study of the elastic scattering and of the (p,n) charge exchange reaction with neutron-rich light exotic beams; Etude de la diffusion elastique et de la reaction d`echange de charge (p,n) avec des faisceaux exotiques legers riches en neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cortina Gil, D.

    1996-07-05

    We have measured at GANIL, with the high resolution spectrometer SPEG, the elastic scattering of several neutron rich secondary beams ({sup 6}He, {sup 10}Be and {sup 11}Be) on a polypropylene target and the charge exchange reaction p({sup 6}He, {sup 6}Li)n. These exotic beams were produced by nuclear fragmentation and re-focalized with the SISSI device (superconducting solenoids). The signature of a halo structure in these nuclei has been analysed. Special attention has been paid to several aspects of the associated calculations namely, the proton and neutron density distributions and the small binding energy for the last nucleons in these exotic nuclei. Break-up mechanisms are seen to play an important role in these nuclei. 100 refs.

  12. Waste arisings from a high-temperature reactor with a uranium-thorium fuel cycle

    International Nuclear Information System (INIS)

    1979-09-01

    This paper presents an equilibrium-recycle condition flow sheet for a high-temperature gas-cooled reactor (HTR) fuel cycle which uses thorium and high-enriched uranium (93% U-235) as makeup fuel. INFCE Working Group 7 defined percentage losses to various waste streams are used to adjust the heavy-element mass flows per gigawatt-year of electricity generated. Thorium and bred U-233 are recycled following Thorex reprocessing. Fissile U-235 is recycled one time following Purex reprocessing and then is discarded to waste. Plutonium and other transuranics are discarded to waste. Included are estimates of volume, radioactivity, and heavy-element content of wastes arising from HTR fuel element fabrication; HTR operation, maintenance, and decommissioning; and reprocessing spent fuel where the waste is unique to the HTR fuel cycle

  13. Uranium rich granite and uranium productive granite in south China

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Debao, He [CNNC Key Laboratory of Uranium Resource Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology (China)

    2012-07-15

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  14. Uranium rich granite and uranium productive granite in south China

    International Nuclear Information System (INIS)

    Feng Mingyue; He Debao

    2012-01-01

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  15. Refining of high-temperature uranium melt by filtration through foam-ceramic filters

    International Nuclear Information System (INIS)

    Antsiferov, V.N.; Porozova, S.E.; Filippov, V.B.; Shtutsa, M.G.; Il'enko, E.V.; Kolotygina, N.S.

    2004-01-01

    An opportunity of applying foam-ceramic filters of corundum-mullite composition has been studied in refining natural uranium melts. Uranium melting conditions were chosen depending on technical characteristics of the foam ceramic filters. When their using, a portion of nonmetallic inclusions decreases by 20-30% (as little as 2.0-3.5% ingot weight), their size is reduced and their distribution in the ingot volume is equalized, contamination of uranium by the filter material being failed to be noticed. The parameters of foam-ceramic filters are optimized for provision of stable characteristics of uranium melt filtration process [ru

  16. Deep inelastic reactions and isomers in neutron-rich nuclei across the perimeter of the A = 180 - 190 deformed region

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Watanabe, H.; Hughes, R.O.; Kondev, F.G.; Carpenter, M.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Seweryniak, D.; Zhu, S.; Chowdhury, P.; Shi, Y.; Xu, F.R.

    2014-01-01

    Recent results on high-spin isomers populated in deep-inelastic reactions in the transitional tungsten-osmium region are outlined with a focus on 190 Os, 192 Os and 194 Os. As well as the characterization of several two-quasineutron isomers, the 12 + and 20 + isomers in 192 Os are interpreted as manifestations of maximal rotation alignment within the neutron i(13/2) and possibly proton h(11/2) shells at oblate deformation. (authors)

  17. Stability of uranium(VI) doped CSH phases in high saline water

    Energy Technology Data Exchange (ETDEWEB)

    Wolter, Jan-Martin; Schmeide, Katja [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    To evaluate the long-term stability of U(VI) doped calcium silicate hydrate (CSH) phases at high saline conditions, leaching experiments with NaCl, NaCl/Na{sub 2}SO{sub 4} and NaCl/NaHCO{sub 3} containing solutions were performed. Time-resolved laser-induced fluorescence spectroscopy (TRLFS), infrared spectroscopy (IR) and X-ray powder diffraction (XRD) were applied to study the U(VI) binding onto the CSH phases and to get a deeper understanding of structural changes due to leaching. Results indicate that neither NaCl nor Na{sub 2}SO{sub 4} affect the structural stability of CSH phases and their retention potential for U(VI). However, carbonate containing solutions lead to a decomposition of CSH phases and thus, to a release of incorporated uranium.

  18. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  19. Determination of uranium and thorium in semiconductor memory materials by high fluence neutron activation analysis

    International Nuclear Information System (INIS)

    Dyer, F.F.; Emery, J.F.; Northcutt, K.J.; Scott, R.M.

    1981-01-01

    Uranium and thorium were measured by absolute neutron activation analysis in high-purity materials used to manufacture semiconductor memories. The main thrust of the study concerned aluminum and aluminum alloys used as sources for thin film preparation, evaporated metal films, and samples from the Czochralski silicon crystal process. Average levels of U and Th were found for the source alloys to be approx. 65 and approx. 45 ppB, respectively. Levels of U and Th in silicon samples fell in the range of a few parts per trillion. Evaporated metal films contained about 1 ppB U and Th, but there is some question about these results due to the possibility of contamination

  20. Russian-Origin Highly Enriched Uranium Spent Nuclear Fuel Shipment From Bulgaria

    International Nuclear Information System (INIS)

    Cummins, Kelly; Bolshinsky, Igor; Allen, Ken; Apostolov, Tihomir; Dimitrov, Ivaylo

    2009-01-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  1. Improvement of the homogeneity of atomized particles dispersed in high uranium density research reactor fuels

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Yoon-Sang; Lee, Don-Bae; Sohn, Woong-Hee; Hong, Soon-Hyung

    1998-01-01

    A study on improving the homogeneous dispersion of atomized spherical particles in fuel meats has been performed in connection with the development of high uranium density fuel. In comparing various mixing methods, the better homogeneity of the mixture could be obtained as in order of Spex mill, V-shape tumbler mixer, and off-axis rotating drum mixer. The Spex mill mixer required some laborious work because of its small capacity per batch. Trough optimizing the rotating speed parameter for the V-shape tumbler mixer, almost the same homogeneity as with the Spex mill could be obtained. The homogeneity of the extruded fuel meats appeared to improve through extrusion. All extruded fuel meats with U 3 Si powder of 50-volume % had fairly smooth surfaces. The homogeneity of fuel meats by V-shaped tumbler mixer revealed to be fairly good on micrographs. (author)

  2. The proposed use of low enriched uranium fuel in the High Flux Australian Reactor (HIFAR)

    International Nuclear Information System (INIS)

    Vittorio, D.; Durance, G.

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) operates the High Flux Australian Reactor (HIFAR). HIFAR commenced operation in the late 1950's with fuel elements containing uranium enriched to 93%. From that time the level of enrichment has gradually decreased to the current level of 60%. It is now proposed to further reduce the enrichment of HIFAR fuel to <20% by utilising LEU fuel assemblies manufactured by RISO National Laboratory, that were originally intended for use in the DR-3 reactor. Minor modifications have been made to the assemblies to adapt them for use in HIFAR. A detailed design review has been performed and initial safety analysis and reactor physics calculations are to be submitted to ARPANSA as part of a four-stage approval process. (author)

  3. Sensitivity of the moment of inertia of neutron stars to the equation of state of neutron-rich matter

    International Nuclear Information System (INIS)

    Fattoyev, F. J.; Piekarewicz, J.

    2010-01-01

    The sensitivity of the stellar moment of inertia to the neutron-star matter equation of state is examined using accurately calibrated relativistic mean-field models. We probe this sensitivity by tuning both the density dependence of the symmetry energy and the high-density component of the equation of state, properties that are at present poorly constrained by existing laboratory data. Particularly attractive is the study of the fraction of the moment of inertia contained in the solid crust. Analytic treatments of the crustal moment of inertia reveal a high sensitivity to the transition pressure at the core-crust interface. This may suggest the existence of a strong correlation between the density dependence of the symmetry energy and the crustal moment of inertia. However, no correlation was found. We conclude that constraining the density dependence of the symmetry energy - through, for example, the measurement of the neutron skin thickness in 208 Pb - will place no significant bound on either the transition pressure or the crustal moment of inertia.

  4. Precision mass measurements of very short-lived, neutron-rich Na isotopes using a radiofrequency spectrometer

    CERN Document Server

    Lunney, M D; Doubre, H; Henry, S; Monsanglant, C; De Saint-Simon, M; Thibault, C; Toader, C F; Borcea, C; Bollen, G

    2001-01-01

    Mass measurements of high precision have been performed on sodium isotopes out to $^{30}$Na using a new technique of radiofrequency excitation of ion trajectories in a homogeneous magnetic field. This method, especially suited to very short-lived nuclides, has allowed us to significantly reduce the uncertainty in mass of the most exotic Na isotopes: a relative error of 5x10$^{-7}$ was achieved for $^{28}$Na having a half-life of only 30.5 ms and 9x10$^{-7}$ for the weakly produced $^{30}$Na. Verifying and minimizing binding energy uncertainties in this region of the nuclear chart is important for clarification of a long standing problem concerning the strength of the $N$=20 magic shell closure. These results are the fruit of the commissioning of the new experimental program Mistral.

  5. First direct mass measurements of stored neutron-rich 129,130,131Cd isotopes with FRS-ESR

    Directory of Open Access Journals (Sweden)

    R. Knöbel

    2016-03-01

    Full Text Available A 410 MeV/u 238U projectile beam was used to create cadmium isotopes via abrasion-fission in a beryllium target placed at the entrance of the in-flight separator FRS at GSI. The fission fragments were separated by the FRS and injected into the isochronous storage ring ESR for mass measurements. Isochronous Mass Spectrometry (IMS was performed under two different experimental conditions, with and without Bρ-tagging at the high-resolution central focal plane of the FRS. In the experiment with Bρ-tagging the magnetic rigidity of the injected fragments was determined with an accuracy of 2⋅10−4. A new method of data analysis, which uses a correlation matrix for the combined data set from both experiments, has provided experimental mass values of 25 rare isotopes for the first time. The high sensitivity and selectivity of the method have given access to nuclides detected with a rate of a few atoms per week. In this letter we present for the 129,130,131Cd isotopes mass values directly measured for the first time. The experimental mass values of cadmium as well as for tellurium and tin isotopes show a pronounced shell effect towards and at N=82. Shell quenching cannot be deduced from a single new mass value, nor by a better agreement with a theoretical model which explicitly takes into account a quenching feature. This is in agreement with the conclusion from γ-ray spectroscopy and confirms modern shell-model calculations.

  6. 31 CFR 540.309 - Natural uranium.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...

  7. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  8. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  9. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique

    International Nuclear Information System (INIS)

    Bastin, B.

    2007-10-01

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, 42 Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in 42 Si, combined with the observation of 38,40 Si and the spectroscopy of 41,43 P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  10. Viscoplastic behavior of uranium dioxide at high temperature; Comportement viscoplastique du dioxyde d'uranium a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sauter, F

    2001-02-01

    This work is a part of a project led by EDF the purpose of which is the development of more predictive models to describe the thermomechanical behavior of fuel assembly. First, we recall the baselines of the Power Water Reactors then we deal with the viscoplastic behavior of uranium dioxide (UO{sub 2}). This knowledge enables an accurate description of the stress relaxation during Pellet Cladding Interactions. The pellets we have used in the last part are similar to the industrial ones. They exhibit a yield point during strain hardening tests and a sigma creep curve. In order to describe these characteristics, we have adapted different kind of approaches: thermodynamical - the Distribution of Non Linear Relaxations, approaches based on dislocation glide inspired by Alexander and Haasen and introduced in the Pilvin polycrystalline model. We recall the purpose of internal variables in the thermodynamics of system far from equilibrium then in case of a viscoplastic flow controlled by dislocation glide, we establish a link between densities of dislocations and internal variables in the D.N.L.R. approach. As vacancy diffusion in the grain boundary has a contribution to the viscoplastic strain, a similar is presented in appendix. These models are able to reproduce the behavior of UO{sub 2} pellets in strain hardening, stress relaxation and creep tests. Much possible progress has been revealed by the analysis of the tests. Further more, we propose a model for yield point and sigma creep curve. We also have extended these results to the behavior of irradiated pellets and stressed the influence of damage. (author)

  11. Implementation of the United States-Russian Highly Enriched Uranium Agreement: Current Status and Prospects

    International Nuclear Information System (INIS)

    R.rutkowski, E; Armantrout, G; Mastal, E; Glaser, J; Benton, J

    2004-01-01

    The National Nuclear Security Administration's (NNSA) Highly Enriched Uranium (HEU) Transparency Implementation Program (TIP) monitors and provides assurance that Russian weapons-grade HEU is processed into low enriched uranium (LEU) under the transparency provisions of the 1993 United States (U.S.)-Russian HEU Purchase Agreement. Meeting the Agreement's transparency provisions is not just a program requirement; it is a legal requirement. The HEU Purchase Agreement requires transparency measures to be established to provide assurance that the nonproliferation objectives of the Agreement are met. The Transparency concept has evolved into a viable program that consists of complimentary elements that provide necessary assurances. The key elements include: (1) monitoring by technical experts; (2) independent measurements of enrichment and flow; (3) nuclear material accountability documents from Russian plants; and (4) comparison of transparency data with declared processing data. In the interest of protecting sensitive information, the monitoring is neither full time nor invasive. Thus, an element of trust is required regarding declared operations that are not observed. U.S. transparency monitoring data and independent instrument measurements are compared with plant accountability records and other declared processing data to provide assurance that the nonproliferation objectives of the 1993 Agreement are being met. Similarly, Russian monitoring of U. S. storage and fuel fabrication operations provides assurance to the Russians that the derived LEU is being used in accordance with the Agreement. The successful implementation of the Transparency program enables the receipt of Russian origin LEU into the United States. Implementation of the 1993 Agreement is proceeding on schedule, with the permanent elimination of over 8,700 warhead equivalents of HEU. The successful implementation of the Transparency program has taken place over the last 10 years and has provided the

  12. Environmental acceptability of high-performance alternatives for depleted uranium penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, C.R.; Easterly, C.E.; Eckerman, K.F. [and others

    1996-08-01

    The Army`s environmental strategy for investigating material substitution and management is to measure system environmental gains/losses in all phases of the material management life cycle from cradle to grave. This study is the first in a series of new investigations, applying material life cycle concepts, to evaluate whether there are environmental benefits from increasing the use of tungsten as an alternative to depleted uranium (DU) in Kinetic Energy Penetrators (KEPs). Current military armor penetrators use DU and tungsten as base materials. Although DU alloys have provided the highest performance of any high-density alloy deployed against enemy heavy armor, its low-level radioactivity poses a number of environmental risks. These risks include exposures to the military and civilian population from inhalation, ingestion, and injection of particles. Depleted uranium is well known to be chemically toxic (kidney toxicity), and workplace exposure levels are based on its renal toxicity. Waste materials containing DU fragments are classified as low-level radioactive waste and are regulated by the Nuclear Regulatory Commission. These characteristics of DU do not preclude its use in KEPs. However, long-term management challenges associated with KEP deployment and improved public perceptions about environmental risks from military activities might be well served by a serious effort to identify, develop, and substitute alternative materials that meet performance objectives and involve fewer environmental risks. Tungsten, a leading candidate base material for KEPS, is potentially such a material because it is not radioactive. Tungsten is less well studied, however, with respect to health impacts and other environmental risks. The present study is designed to contribute to the understanding of the environmental behavior of tungsten by synthesizing available information that is relevant to its potential use as a penetrator.

  13. Recovery of uranium from crude uranium tetrafluoride

    International Nuclear Information System (INIS)

    Ghosh, S.K.; Bellary, M.P.; Keni, V.S.

    1994-01-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author)

  14. Recovery of uranium from crude uranium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Bellary, M P; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author). 4 refs., 1 fig., 3 tabs.

  15. Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler

    International Nuclear Information System (INIS)

    Mount, M; O'Connell, W; Cochran, C; Rinard, P

    2003-01-01

    Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within ±1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the ±2% to ±10% range, or ±20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the 252 Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms

  16. Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts

    International Nuclear Information System (INIS)

    Thomas, W.E.

    1976-04-01

    This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U 3 O 8 to UF 6 conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent 235 U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent 235 U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor

  17. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Robin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2013-12-21

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The

  18. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    International Nuclear Information System (INIS)

    Rogers, Robin

    2013-01-01

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100 deg C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The resulting

  19. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  20. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.